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Abstract: This paper addresses the problem of optimizing the sili-
con area end the performance of large Programmable Logic
Arrays. In particular we describe a general method for compacting
a logic array called multiple row and column falding, and two phy-
sical implementations for multiply folded arrays. We present a
graph theoretic representation of the multiple folding problem,
that is used to develop a heuristic strategy for a multiple folding
algorithm.

1. INTRODUCTION

Programmable Logic Arrays are extensively used in the struc-
tured design of Very Large Scale Circuits and Systems [1] [2].
Though heuristic minimizers [3] {4] allow to express large switch-
ing functions as minimal sets of logical implicants, their physical
implementation may still be too expensive in terms of silicon area.
Large logic arrays are in general very sparse: the number of
"cares" is much smaller than the number of "don’t cares'[5]. A
straightforward physical implementation results in a significant
waste of the silicon area not directly contributing to the imple-
mentation of the logic function. The wasted area reduces circuit
yield and degrades the time performance of the PLA by introduc-
ing unnecessary parasitics.

In this paper we address the problem of optimizing the area
used by a PLA, by means of row and column folding [5] [6]. Wood
presented for the first time a folded PLA implementation in [5].
and Hachtel et al. an algorithm for PLA folding in [6]. The tech-
nique reported in [6] and [7] is referred here to as simple folding.
Simple folding aims at determining a permutation of the rows
(and/or columns) of the array which permits a maximal set of
column pairs (and/or row pairs ) to be implemented in the same
column (row) of the physical array. Folding comes in two flavors :
column falding and row folding. Since large arrays are usually
very sparse, a considerable area reduction can be achieved by fold-
ing rows and columns.

A generalization of simple folding is multiple folding. The
objective of multiple column (and/or row) folding is to determine a
permutation of the rows (and/or columns) of the PLA which allows
to implement in each column (and/or row) of the physical array a
set of logic columns (rows). From the description given above , it is
clear that multiple folding contains simple folding as a special
case. Thus, the area saving achieved by this technique can always
be made better than ( or, in the worst case, equal to ) the one
achieved by simple folding. Note that if simple falding is used , the
area of the PLA can be reduced at most to 25% , no matter what
the sparsity of the personality of the PLA is. If multiple folding is
used, we are limited only by the sparsity structure of the PLA.

Greer proposed for the first time a multiple row folded PLA
implementation in [8] and called it segmented array. Paillotin and
Chugquillanqui et al. presented multiple column folded arrays in [9]
end in [10]. A texonomy of the folding techniques for PLA is
reported in [11].

We presented in [12] an algorithm for multiple constrained
folding: columns and/or rows are folded subject to a set of con-
straints on their position. Constrained multiple folding allows to
compact the PLA area while ensuring an easy routing of the folded
array and therefore represents an effective tool for VLSI design.
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2. NULTIPLE FOLDED PLA IMPLEMENTATION

An unfolded PLA has the general structure shown in Fig. 2.1,
and can be implemented both in bipolar and MOS technology. We
refer in this paper to the NOR-NOR nMOS implementation
presented in [13] as the standard PLA architecture.

The implementation of simple column (and/or) folded PLA is
straightforward. since at most two columns (rows) are folded
together and connection to the outside circuitry can be done from
the top or the bottom of the array. (Fig 2.2) [5] [6] [7]. The imple-
mentation of a multiply folded PLA is more complex. We deal first
with the implementation of multiply column-folded logic arrays.

The implementation of several logic columns in the same phy-
sical location requires the physical (metal,poly or diffusion )
columns be split into segments. Therefore a path must be pro-
vided to route input and output signals to/from the split physical
columns inside the array. Thus standard PLA architectures cannot
be used to implement multiply column-folded PLAs. Several
authors [8] [10] [14] have proposed different architectures for
multiply folded arrays. We consider the following two structures,
which can be implemented in nMOS or cMOS technology.

The first architecture is shown in fig. 2.4. It requires two lev-
els of metal (polysilicon), in addition to the usual levels of poly
(metal) and diftusion. The PLA is implemented using two arrays
(the AND plane and the OR plane) personalized by MOS transistors.
Input ‘signals run vertically in the input columns of the AND plane,
product terms run horizontally in the rows of both planes and out-
put columns run vertically in the OR plane. Two levels of intercon-
nect are used for these rows and columns, in addition to ground
diffusion rows and columns. The third level of interconnect (second
metal or second poly level) is used to run horizontal cannection-
rows above the product term rows to route the input and output
signals to/from the input and output columns segments to the out-
side circuitry. : :

An alternative architecture supports multiple folding with
only one level of metal , poly and diffusion. Input and output signals
are routed inside/outside the array by connection-rows parallel
and alternated to the product term rows and implemented on the
same level. This structure is simpler than the previous one but the
area used by a multiply folded PLA is larger [12].

It is important to note that PLAs implemented with either
structure are essentially circuit blocks through which input and
output busses run straight in the connection-rows. They are there-
fore excellent building blocks of a regular and structured VLSI
design methodology.

We defined in [12] a multiple constrained column folding
problem related to the ordering of the connection-rows. In partic-
ular folding is constrained so that connection-rows can be posi-
tioned according to a given sequence or satisfying given position
bounds.

Multiple row folded PLAs can be implemented with a single-
poly, single-metal technology [13]. Row folding induces a permuta-
tion of input and output columns, which leads to a segmented
array, consisting of a sequence of AND and OR planes. This may be
a technological drawback,because product terms require area-
consuming connections between adjacent planes, in addition to an
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increased complexity of input and output routing. On the other
hand simple row folding may be constrained so that the folded
array shows an AND-OR-AND or an OR-AND-OR structure [11]. In
this case input or output signals can be routed to both external
planes by connection-rows.

Multiply row and column-folded arrays can be implemented
with the described architectures, provided that only columns in
the external planes are multiply folded.

3. GRAPH THEQGRETIC INTERPRETATION OF THE MULTIPLE
FOLDING PROBLEM

We concentrate our attention on a topological representation
of a PLA. The following definitions are a generalization of those
given in [7]. A logic array is described by a personality matrix.
For the sake of generality, we assume that the (i, j )* entry of
the personality matrix is zero if the (4, j )"’ location of the physi-
cal array is occupied by interconnect only Fig. 3.1 shows the per-
sonality of the PLA sketched in Fig. 21. Let
fei, ©=1,2 ,ned (frs, i=1,2 -, nri) be the set
of columns (rows) of the personality matrix. Each column is
labeled input (output), if it carries an input (output) signal in the
physical array. A maximal set of adjacent input (output) columns
is called input array or AND plane (ocutput array or OR plane). Let
R(c; (C(7;)) be the set of rows (columns) with a nonzero entry
in the i1** column (row) of the personality matrix Two columns
(rows 7y, 7;) are disjoint if R(c;)N\R(c;)=

¢, Cj ¢
(C?ﬂ JNC(73)= ¢ ). A column-olding list (row-folding list)
is a set of either input or output disjoint columns
Ji =tci ¢y 2  Ci n} (rows fi = fri rl 2- v ri al). An
ardered column-fol list o4 = c‘ 1. Cy, an ( ordered
rowfolding list 0; = (7 ;. Ti,2, - " " Ty, ,.5 ) is a column (row)

foldmg list whose elements are ordered. A column/row-falding set

set of disjoint column/row-folding lists

[f,, f2. - .Jx} and ordered column/row-falding set is a

set of dxsjoint column/row ordered folding lists

= {0,, 0z ", 0y ). Let U be the set of unfolded columns
(rows) ie.

—§c|2k s.t.c €0,) (U = {r |2k s.t. 7 € 0,}). The column
(row cardxnahtyofatolded PlAis C(0 )= |0 |+ |U]| (
2 + | U] ). An ordered folding list of columns
(rows) mduces a set QR(0O) (QC(0)) of ordering relations
among the rows (columns):
QrR(0)= fT,(Tv |75 € R(ci,j) B
Ci,j» C1,5+1 €04,0{ €

(QC(O) = 1C,<Cv ez € c('ri.j) '
Ti. 5. Ti, j+1 € 04,04 €

Let QR*(0) (QC*(0)) be
QR(0) (QC(0)) LIG] A column
un’plemenuble if QR*(0)(QC*(0)
Z*.

The optimal unconstrained column (row) folding problem can be
stated as follows:

%‘e R(cijn) :
C)€ C(rijn)

the transitive closure of
Srow) ordered folding set is

is a partial order of the set

Find an implementable ordered folding set that minimizes the

column (row) cardinality of the PLA

We introduce a graph theoretic interpretation of the multiple
folding problem in order to gain a better insight into the problem
.and to study heuristics for the related algorithm. We consider
column folding first. According to [7]. we define column-
intersection graph G(V, £ ) a graph whose nodes v € V are in
one-to-one correspondence with the columns of the logic array and
the set E is defined as £ = {v;, v; |R(c; )N\R(c; )# ¢ {. Given
an ordered column-folding set d we introduce an associated
mixed graph G(0) = (V, E. A(O)) A mixed graph G(V, £, A)
is a graph with two sets of edges, a set of undirected edges £ and a
set of directed edges A. V end E' are defined as in the column-
intersection graph. A( 0 ) is defined as:

A(0)=

.Ci ks Ci,k+1e ---Ci,n ) €O,

tvg k. vy, kol](c( 10 Cy, 2
‘n-1j
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We define xy—path in G(V, E,A(0)) ,
X = [v1, vz, ....v5 ] such that:
i) the first edge in ) is directed and the last undirected; i.e.
(vi.v2)€A(0)and fup.,, vp} € E
ii) every undirected edge in X is followed by a directed edge;
ie. (U, Y1) €F > (Vis1 viv2) €A(0)
Yvi=1,2 -,p-2
Ezample 3.1 : For the PLA sketched in fig. 2.1 and the or-
dered folding set O = §0,} ;: 0, = (€ 0. C4. Cg), the asso-
ciated mixed graph is shown in fig 3.2 and the partially
folded array in fig.3.3. A x—path is [v o, V7. Vg, -u,].

a directed path

We define " x—cycle in G(V, E, A(O)) a closed x—pa.th havmg
at least two undirected edges.

Thearem 3.1: An ordered column-folding set O is imple-
mentable if and only if the induced mixed graph
G(V, E, A(O))has no x—cycles. .

The proof is reported in [12].

Remark 3.1: Theorem 3.1 allows to verify the existence of
a row ordering compatible with a column ordered folding
set by checking relations among columns only. This pro-
cedure is much simpler (and therefore much faster to be
executed on a dlgltal corsxputer) than to verlfy directly cy-

clic relations in @R * Y
Remark 3.2: The graph interpretation and Theorem 3.1 ap-
plies "mutatis mutandis" to the multiple unconstrained
row folding problem. ™

A graph interpretation of unconstrained row and column falding is
more complex, because it involves bookkeeping of the ordering
relations among rows and among columns. For this problem the
information contained in the column and row intersection graphs

is not suflicient [12]). We introduce therefore the row constraint
graph Gp and the column constraint graph G which are the
directed graphs correspondmg to the transitive closure relations
QR* (005 and @R* (Og ) induced by the column and row folding
sets Oy and Og [11). By definition, the ordered folding sets Op
and O¢ are implementable if graphs G and Gp are acyclic.

4. AN ALGORITHN FOR MULTIPLE PLA FOLDING

The optimal multiple PLA folding problem was shown to be
NP-complete in [17]. We therefore propose a heuristic algorithm
that can be considered an extension of the simple folding algo-
rithm presented in [6].

We consider first the multiple column folding problem. The
ordered column folding set and the mixed graph G(V, E, A(0))
are constructed by the algorithm. At each step the algorithm tries
to increase the cardinality of the folded column set and verifies the
implementability of the folding by checking that the mixed graph
has no x—cycle.

A conceptual description of the algorithm is the following:

FOLDING ALGORITHM

Step O: Initialize the folding procedure

If the set of columns which have not been proces-
sed is empty, stop. Else select a pair of unfolded
disjoint columns or an unfolded column and a
column folding list as folding candidates.

Step 1:

If the fold induces x—cycle ingraph G('V, E, A(0)),
reject it and go tostep 1.

Step 2:

Fold the candidates, modify the PLA accordingly.
Go to Step 1.

Step 3:




A detailed description of the algorithm for simple column
folding is given in [B]. In this section we will concentrate on the
generalization to multiple folding, and on the the procedure for
multiple folding candidate selection.

The selection of the candidate columns for muiltiple folding
can be done according to one of the following folding patterns:

1) a new folding list can be formed by folding two unfolded

columns.
2) an unfolded column can be folded on top (bottom) of an
existing folding list.
8) a folding list can be "opened” and an unfolded column can
be folded "by insertion” into an existing folding list.
A selection of the folding pattern and candidate column is done at
each step according to a heuristic strategy.
Let us define first the set of descendants D (v ) (ancestors 4(v ))
of a vertex V as follows:
a vertex d is descendant of v if there is a x—path from v
tod.

avertex a is ancestor of v, if v is descendant of a.

We define a adjacency set ADJ (v ) of a vertex v, the set of ver-
tices connected to ¥ by an undirected edge. By definition, we con-
sider every vertex adjacent to ifself.

We define pseudo-descendants D (v ) of a vertex v the union of the
adjacency set of ¥ and the descendant sets of each vertex adjacent
tov. ’

Dw)=_ D(v) v ADJ(v)
veAD/(v)

Remark 4.1 : 1t Iollows from Theorem 3.1 that for each
pair of consecutive columns in an implementable ordered
folding list, the corresponding vertices v, and v are such
that:

ADJ (v2)NA(vy) = ¢

Let us consider now the selection strategy for folding pattern 1.

Ezample 4.1 : When two columns, say ¢y and C3, are fold-
ed, a directed edge (v;, V) is added to A(O). Hence a
X—path joins v, to gach vertex in D(vz ). Therefore all
pseudo-descendants D(vz) of vy are descendants of v;.

D(v,) « D(vy )uD (vg)

Moreover, since a x—path joins each ancestor of v, to v,,
the descendants of v, are descendants of each ancestor of
v,

D(v)+ D(v)uD(vy,) ~ov EA(-u‘,)

It follows that an upper bound on the number of ancestor-
descendant relations induced by the column folding is :

p1 = 1A(vi)|1D(ve)l
=

It is reasonable to conjecture that the fewer relations are induced,

the lower is the probability of finding x—cycles at further steps of

the orithm. Hence a good choice for a candidate foldi ai
o g n(n 1)

v,, Uz is the one for which p; is minimal. Unfortunately i >
candidate pairs have to be tried to find the minimum p; for an
array with n unfolded columns. This procedure is too time con-
suming for large arrays. Therefore, an alternative selection stra-
tegy is used: select the candidate folding pair (v), ¥z ) such that:

vy =arg M0 |4()]

vy = arg T | Gw)|
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where VCV is the vertex subset corresponding to the unfolded
columns.

Similar considerations apply to the candidate selection
according to folding pattern 2. When a column ¢, is folded on top
of an ordered folding list (€2 ;. ** ‘. Cgn ). a directed edge
(v,. vz, ,) is edded to A(Q ). Hence a x—path joins v, to each
vertex Vg, such that v, € D(vz , ). Therefore an upper bound on
the number of ancestor-destendant relations induced by the
column fold is:

pz= |A(vy)!|D (a2, 1)l

Conversely when a column c; is folded on the bottom of an
ordered folding list (€;;,€y 2, ***,C}1 n) an oriented edge
(V1. n. Vz2)is added to A(O ), Hence a x—path joins every vertex

V). n ) to every vertex in D (v, ). Therefore, an upper bound on
the number of ancestor-descendant relations induced by the
column fold is:

p2= |A(v1a )| D(w2)l

The strategy for candidate selection according to folding pattern 2
is based on the same considerations used for folding pattern 1.

A slightly different strategy is used for candidate selection
according to folding pattern 3.

Ezample 4.2 : Consider the PLA shown in fig. 2.1. Let us
suppose that column c, is folded into the folding list
0, = (€0, Cg) to give (Cyo. Co. cg ), as shown by fig. 3.3.
The ancestors of ¢, become ancestors of cg and the ances-
tors of ¢ ;g become ancestors of 5. ™

In the feneral case suppaose that column £ is folded intc a folding
list Ci,1,C2 ° ", C to give Ci.1.Ci.2 "°*.C
1 C, c(,ig'.l . ""2. c‘,,.). kx;'grientedg;dge j{:h‘fslver‘fezx Ui, k-1 t:i v
and U to vy . Hence the ancestors A(7 ) become ancestors of
the vertices in D(v; x ) and the ancestors A(v; p-;) become
ancestors of the vertices in D (7 ). Therefore, an upper bound on
the number of ancestor-descendant relations is:

ps = |A(v 1) 1D(T )| + AT ) D(wa )

Unfortunately the computation of the minimum pg may be
too time consuming for large arrays. Hence we find first the candi-
date for insertion as:

v = %0 TR (| Bw)| + |A(v)] )

and then the folding list and the insertion position such that :
- ~ A -~ ~
Ps = |A(v, k- ) 1D(V)] + |A(W )T D (v, )

is minimal.

When the "best” folding candidates have been selected
according to the three folding patterns, the selection of the folding

pattern is based on a weighted comparison of the upper bounds
pi . 1 =1, 2, 3. Weighting factors allow to privilege a folding pat-
tern with regard to the others, as, for example, multiple folding
versus simple folding.

Remark 4.2: The Folding Algorithm and the candidate
selection strategy applies "mutatis mutandis” to the mul-
tiple unconstrained row folding problem. a

The Folding Algorithm is used for multiple row and column
folding also. Order relations induced by the folds are described by
the row constraint and column constraint graphs. A candidate fold
is rejected at Step 2 of the algorithm if it induces a direct cycle in
any of the two graphs. The folding candidate selection strategy is
similar to the one used for column folding, provided that some
definitions are changed to be compatible with the different graph
representation.

For this problem, a vertex d is descendant of v if there is a
direct path from v to d; the adjacency set of a vertex is not
defined and the pseudo-descendant set is equivalent to the descen-




dant set. Hence the "best” column and the "best” row folding can-
didates and patterns can be found by a procedure similar to the
one described above. Let p° ( p" ) be the related upper bounds on
the number of relations induced in Gg ( G¢ ) by a column (row)
fold. A column (row) fold is attempted if :

(a*p"=2p°p )
R(O )-

where a = and f = -—(R;i—oz)—l— are dynamic

weighting factors which take into account the relative area saving

achieved by a column ( row ) fold at that step of the algorithm and

C(0) (R( O ) )isthe column (row) cardinality.

It is important to remark that this strategy allows to achieve
more folds in comparison with other algorithms performing
column (row) folding after row (column) folding. Nevertheless it is
straight-forward to constrain the selection so that all column (row)
folds are tried first, if desired.

a *p°<B *p
€(0)-1

S. EXPERIMENTAL AND CONCLUDING REMARKS

Computer program PLEASURE implements the algorithms for
multiple and/or constrained folding. The output of the program is
a symbolic array, showing the split rows and columns, the positions
of the personalizing transistors and the contacts between columns
and connection-rows according to the required PLA architecture.
PLEASURE is interactive: the user has the option to ask for column
folding only, row folding only or row and column folding in a
sequence. Different requirements on folding (e.g.:
simple/multiple) can be set in the AND plane and in the OR plane
independently. Simple row folding supports predefined structures,
such as AND-OR-AND or OR-AND-OR architectures [12].

The PLEASURE output file contains all the topological infor-
mations for the implementation of multiple folded arrays. The lay-
out of the masks of the folded array can be obtained from the
PLEASURE output file by means of a silicon assembler program,
cnce an implementation technology is chosen.

Program PLEASURE has been successfully tested on a large
set of industrial PLAs. Results are reported in [12].
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