TOPOLOGICAL PARTITIONING OF PROGRAMMABLE LOGIC ARRAYS

Giovanni De Micheli and Mauro Santomauro
Department of Electrical Enginesring and Computer Science
University of California at Berkeley

Abstract: We present a new approach to optimal topological design of
Programmable Logic Arrays. In particular we address the array parti-
tioning problem and the implementation of partitioned arrays as block
folded or PLAs connected in parallel. We present an efficient heuristic
algorithm based on a graph theoretical interpretation of the PLA parti-
tioning problem. A computer program, SMILE, is described and experi-
mental results are reported.
1. INTRODUCTION

Programmable Logic Arrays (PLA) are used extensively in the
struciured design of Very Large Scale Circuits (VLSI) [1]. Multiple-
output switching functions are effectively implemented by PLAs,
because they show a regular structure and can be designed ard optim-
ized with the support of computer aids.

We consider Programmable Logic Arrays implementing sum-of-
products switching functions with the following structure. The PLA con-
sists of two adjacent arrays: the input array or AND plane and the out-
pat array or OR plane. Input signals and their complements run verti-
cally in the AND plane, product terms run horizontally in both planes
and outputs run vertically in the OR plane. Both arrays are perscnal-
ized by the presence of active devices in positions corresponding to the
"cares" of the switching function and are represented by Topological
" Personality Matrices, i.e. 1-0 matrices whose {(.7)" entry is "0” if the
(i,j)"’ location of the physical array is occupied by interconnect only.

We address here the optimal topological design of logic arrays: i.e.
the problem of optimizing the silicon area taken by large PLAs by rear-
ranging the array structure [2},[3],[4]. In particular we describe a gen-
eral method for compacting a logic array based on partitioning .

There are two motivations in exploiting partitioning techniques for
PLA topological design. The first is to explore and compare a
topological-campaction technique alternative to folding {2],[3]. As an
example, partitioned arrays can be implemented by block folded struc-
tures [5]. The second is to provide means of designing PLAs partitioned
in subarrays of bounded size in order to satisfy some technological con-
straints. [n particular, since timing delay through an array grows with
the array size, it is often necessary to set an upper bound on the physi-
cal array size and partition the original array into sub-units, which
satisfy the array-size bound.

PLA partitioning does not exclude folding. In particular, parti-
tioned arrays can be folded to achieve a further array compaction. For
example, Suwa [6] presented a technique for partitioning a PLA into
segments and implement it as a row-segmented column-folded array.

Kang {7] proposed for the first time a general approach to PLA
partitioning and a related heuristic algorithm. We proposed in [4] a
graph representation of the PLA partitioning problem, which allows to
state formally the optimal PLA pertitionirg problem. We present here a
partitioning algorithm based on a node cluster search in the PLA graph
representation and on array transformations and we show how parti-
tioned arrays can be implemented.

2. EQUIVALENT ARRAYS AND PARTITIONING

Array partitioning techniques attempt to achieve a PLA implemen-
tation in a minimal area, by using array connectivity information in
exploiting the array sparsity.

A logical array {or a plane of a logical array) is connected if no
subset of the rows of the topological personality matrix (input/output
plane topological personality matrices) have non-zere entries in a
column subset only, It is obvious that disconnected arrays can be
implemented by an appropriate connection of smaller arrays. It is also
easy to show [7] that such an implementation is always convenient in
terms of silicon area. However a good logical design of a switching func-
tion seldom leads to a disconnected array. On the other hand, several
PLAs show weakly-connected structures. I[n this case, our PLA parti-
tioning technique allows to transform the array into an equivalent
disconnected one, which has a convenient implementation in terms of
gilicon area.

Two logic arrays are equivalent if they implement the same
switching function. Equivalent arrays can have different size and can be
obtained by introducing redundent rcws and/or columns [7], or by
rearranging the personality matrix of the array by a reshape of the
logic function.

A general equivalence transformation based on row {column) aug-
mentation is described in [4]. The augmentation of an input, cutput
or product-term, is the substitution of the input, output column or
product-term row with a set of input, output columns or product-term
rows which gives an equivalent logic array. Three rules for augmenting
the rows and/or columns of a PLA are reported in [4]. An array
(input/qutput array) cen be transformed into an equivalent discon-
nected one by partitioning the row set into disjoint subsets and by

replacing each column having “1"s in different subsets by a set of
columns, each having "1"s in a row subset only and whose componer:i-
wise conjunction is the original column. Similarly an array (output
array) can be transformed into an equivalent disconrected one by aug-
menting appropriate product-term rows, as described in [4].

It is clear that there are many different possible augmentation
strategies. Array partitioning requires the determination of an optimal
sequence of augmentations, in order to obtain area-efiective parti-
tioned array implementatians.

3. A CLUSTERING ALGORITHM FOR PLA PARTITIONING

Three diflerent PLA tapological partitioning problems are dealt
with here, namely: input-plane partitioning, output-plane partitioning
and partitioning . A graph representation of the problem is useful to
understand the underlying structure and to develop heuristics for the
related algorithms. The input plane (outgut plane) of a PLA is
represented by a bipartite graph GA(I,P,E?) (GB(P,0,E%)) whose

F
A

T
adjacency matrix is: AO l (597- g), where A and B are the topo-
logical personality matrices of the AND and OR plane respectively. The
whole logic array is therefore represented by the union of such graphs,
i.e. the tripartite graph G(/,P,0.E), where E=EAJFE? The node
sets I,P and O are in one-to-one correspondence with the PLA input-
column, product-row and output-column sets respectively. Since the
search for loocsely-coupled sets is performed in a similar fashion for the
three problems, the graph will be referred to as G(V,£) ir. the sequel
for the sake of simplicity.

The optimization problems arising from PLA partitioning are
stated formally in {4] and related to the graph representation. The
three problems require to minimize a nonlinear function {partiticned
array area) subject to integer constraints (equivalence of the parti-
tioned array to the original one). Since this problem is hard to solve, a
heuristic algorithm based on a cluster search and on array transforma-
tions is reported.

The rationale of the algorithm is the following. The algorithm
attempts first to find a node cluster inside G(V, %) and then partitions
Vinto two subsets V; and Vu. The former contains the cluster nodes
and the latter the remaining ones. If the node partitior. induces a graph
partition into two disjoint subgraphs G,(Vy, £,) and Gp(Vs, E3), the
partition corresponds to the array partition. Else, the array is
transformed by augmenting rows or columns according to the rules
stated in [4] (i.e. adding appropriate nodes to the graph) until the
edge set FE is partitionable into &, and £, and G((Vy, £,) and
Ga(V3, By) are disjoint. Subgraph G.(Vi, £,)2 is stored and the algo-
rithm reattempts a on the
G(V.E) = Go(Ve, Ea).

The cluster search in G{V,E) is based on the contour tableau
approach described in [8]. The contour tableau is an array of three
columns. The first one is called i#erating set (/S) and its entries are
nodes of the graph. The second one is the adjacency set (AS) and its
entries are sets of nodes of the graph. The third column is the objec-
tive function vector (OF) and in this particular case its entries are
the values of the partitioned erray area estimates. An area estimate
can be easily obtained from the knowledge of subgraphs G(V;, E,)
end Gg(Vp, Ep) as shown in [4].

The tableau is built iteratively until a cluster is found and cor-
venient conditions are met to separate it from the rest of the graph. At
this point the tableau is cleared and the algerithm restarts cn the rest
of the graph. The algorithm is described in Pidgin C.

PARTITIONING ALGORTTHM

cluster search updated graph

while (V# ¢) {

{Si¢;AS=¢:0F=¢:
i=1;

IS(i) = INSELECT [V);
AS{i) = ADJ [1s(i§];

while { cluster criterion not satisfied) §

IS(i+1) = NEXTSELECT [AS(i)];
4S(i+i) = NEXTADJ [/S.AS(i)];
i =1i+1;

§:
;(_;(V,E) = UPDATE [G(V.E)};

182

The algorithm constructs step-by-step a cluster set
X = U'-'=l I5(5). Procedure INSELECT [V] selects the initial cluster
node. 'f'he cluster set X is increased by adding adjacent nodes to it.
Procedure AN {i] returns the nodes adjacent to node i. In particular
ADJ [IS(1)] returns the nodes adjacent to the initial node. Procedure
NEXTAIN [/S.AS(i)] returns all the nodes adjacent to node JS{i+1)
not contained in the cluster set X. Procedure [AS ()]
selects the next iterating node in AS{i) according to a heuristic cri-
terion described in the sequel. Procedure UPDATE [G(V,F)] stores
subgraph G,(V|, £;) and returns subgraph Ga(Va, Ep). where
GlfV + By) end Gy('V,, E3) are defined according to the partitioning
problem and the augmentation strategy required. The strategy follows
the augmentation reported in [4].

The cluster criterion is satisfled when at least one of the following
conditions is met:
|AS(i)] =0

block area > maximum block area

OF (i) is & local minimum
The first condition guarantees that a cluster is found if G(V,£) is not
connected. The second condition allows the user to define the max-
imum size of each block according to the technological constraints on
the implementation of the partitioned array. The third condition is a
heuristic rule for determining a cluster. It can be also required that
OF(i) be smaller than a proper fraction of the initial area OF(0) to
ensure that partitioning is performed only if it gives a considerable sav-
ing in the total area. Since the objective function vector may have
several local minima close to each cther, the cluster decision can be
taken a few steps after the minimum is detected.

Procedure NEXTSELECT uses a greedy strategy to select the next

iterating node among the nodes in AS (‘L; When any node in AS (i) is
added to the cluster node set X , G(V,£) can be partitioned according
to the augmentation rules and the corresponding value of the objective
function be camputed. The selected node is the one that minimizes the
objective function at that step of the algorithm. This means that the
selected node is the "local best" node.
Procedure INSELECT returns the initial iterating node. As pointed out
in {8], a node connecting two clusters is a bad selection of initial node.
Nodes with degree 1 cannot join two clusters and hopefully the lower
~ the degree of the node, the lower is the probability of choosing a "bad"
node. Hence procedure INSELECT returns the min-degree node in the
actual implementation of the algorithm.

It is shown in [4] that the time computationsl complexity of the
algorithm is polynomially bounded , though the total number of ncdes
may Increase at each iteration.

PARTITIONED PLA IMPLEMENTATIONS

Different implementations of partitioned PLAs are possible. Two-
fold partitioned input-arrays can be implemented as simply column
block-folded arrays. This implementation is referred to as hipartite
falded implementation by E‘gan [5], and shown in Fig. 1.

4]

L3
t oty
Note that augmented input columns are implemented as unsplit
columns and therefore require connection to the input signal line from
ong side of the array only. The column positions in each block are arbi-
trary and can be assigned to route optimelly the PLA-input signal lines
from the other circuit blocks. Input arrays partitioned into more than
two blocks can be implemented by a multiply column block-folded
array, where inputs are routed by means of connection rows as
described in [3] and shown in Fig. 2..
B adiindin

e -y

e

Partitioned output arrays are implemented similarly. Augmented out-
puts from different blocks must be OR-ed together with the proper
phase (Fig. 3a). In MOS NOR implementation, the cclumn segments
corresponding to the augmented columns can be connected by a
wired-NOR by simply stacking them on top of each othex" (Fi‘g. 3b).
Lty |

B o 4

Ko

5=
Partitioned arrays can be implementea as connected in parallel, as
shown in Fig. 4. In this case the component-PLAs are placed to simplify
the routing between them [9].

AND! >

AND 2
IAND 1

OR2

In particular, partitioned arrays can be stacked or arranged in a line.
The former implementation is similar to a column block-folded imple-
mentation (Fig. 5a), the latter to a row block-folded cne (Fig. 6b).

R
LT

AI;ID

Smile is an interactive progrem for Programmable Logic Arrays
partitioning. The PLA description is given as input to the program in
the form of personality matrix along with the partitioning instructions.
The program performs input and output augmentations by default. In
the case of output partitioning, product augmentations can be allowed.
The user can require to limit the number of clusters, i.e. the number of
subarrays in which a plane {(or both planes) is partitioned as well as the
maximum size of the subarrays.

Smile generates an output flle containing a symbolic matrix,
representing the personality of the partitioned array. This matrix is
suitable to be processed by a stlicon assembler, which generates the
mask layout of the array according to a given technology. Examples are
reported in [4]. Note that the partitioned PLA structure generated by
smiie is technologically independent.

6. EXPERINMENTAL AND CONCLUDING

We tested program smile on a large set of industrial PLAs. Scme
results are reported in Table 1. The time spent by the algorithm
ranges from a few hundreds of milliseconds for PLA 1 to several
seconds for larger arrays. Since execution time is small, circuit
designers may want to use the program with different requirements in
order to compare the different partitioned structures.

Table 2 compares the area taken by a partitioned array and imple-
mented as a block folded array to the area taken by the same array
when folded by pleasure [3]. The results show that PLA topological
partitioning is a viable tool for optimal PLA deiién.

7. ACKNOWLEDGENFEN'

This research was partially supported by [BM corporatipn, NSF
under subcontract #392741C-1 and Consiglio Nazionale delle Ricerche,
{taly.

The authors wish to thank Prof. Albertc Sangiovanni-Vincentelli for
many helpful and stimulating discussions.

8. REFERENCES
[1] J.Fleisher and L.I.Maissel "An Introduction to Array Logic" IBM Jour. on

Res. and Devel, vol 19 pp 88-108 Mar 75
[R] ©.D.HachtelA.R.Newton and A.L.Sangiovanni Vincentelli "An Algorithm for
Optimal PLA Folding" IEEE Trans on (4D 5f Int. Circ. and Sys. vol 1 no 2
pp 63-76 Apr 82
G.De Micheli and A.L.Sangiovanni Vincentelli "PLEASURE: a computer pro-
gram for simple and multiple constrained folding of Programmable Logic
Arrays” Proc. Des Aut. Conf. Miami Beach, Jun 83.

G. De Micheli and M. Santomauro "Smile: A Computer Program for Parti-
tioning of Programmed Logic Arrays” Computer-Aided Design vol 15 No. 2
Mar 1983

I.R.Egan and C.L.Liu ” Optimal Bipartite Folding of PLA" Proc. !9th Design
Automation Conf. Las Vegas Jun 82

LSuwa and W.J.Kubitz " A Computer Aided Design System for Segment-
Folded PLA Macro Cells” Proc. 18th Design Automation Conf. Nashville
Jun 81

(a]
(4]

(sl
(sl

[7] Sungho Kang “Automated Synthesis of PLA Based Systems" Ph.D. Disserta-
tion Stanford University 158!

[B] A.Sangiovanni Vincentelli,li-Kuan Chen and L.0.Chua "An Efficient Cluster
Algorithm for Tearing Large-Scale Networks" [EEE Trans. on Circ. and Sys.
vol CAS-24 no 12 pp 708-717 Dec 77

[9] G.D. Hachtel Private communication.

EBALIEED PARTTOMS ANILY AFENS. BUITIAL ANNA = W0 ANERAD. TRITIAL RIS » M.
“ - T b m=.. LG PARTITIORWG
0%8+4) n 64 61 6+4) 80 61
16%4+16) 100 n [] 16%(4+16) [65
30%10+10) k] 81 o7 18+10) 8 87
T8%(86+29) k] 0 4 36+29) 53 46
G2(24+14) ™ 80] 24+14) 68 80
B84%(27+10) T 8t 80 %27+10) 54 59
B4%(27+10) 69 81 87 #(27+10) 51 57

TR 1 TARE 2 ’

183

