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Abstract: We address the optimal logic design of PLA-based Finite State
Machines (FSM). Techniques related to heuristic combinational logic
minimization are used to determine optimal coding of the FSM internal
states. We show that if appropriate Hamming-distance requirements
among state codes are preserved, reduction of the combinational logic
is guaranteed. A state encoding technique satisfying these require-
ments and based on graph embedding in squashed hypercubes is
presented. Experimental results are reported.

1. INTRODUCTION

Sequential circuits play a major role in the control part of digital
systems. We address the automated synthesis of sequential logic func-
tions in a structured VL3I design methodology. We consider sequential
logic functions implemented by synchronous deterministic Finite State
Machines (FSM) consisting of two distinct components: a combinational
circuit implemented by a Programmable Logic Array (PLA) and a
memory implemented by Delay-type registers.

In particular we consider here the problem of assigning binary
cades to the internal states of a Finite State Machine. The literature is
rich of papers dealing with the state-assignment problem. Here we
refer to the major approaches only. Armstrong [1] introduced a set of
criteria for encoding states, aiming at the minimization of the number
of gates used to implement the FSM and formulated the encoding prob-
lem as a graph embedding problem. Hartmanis [2], Stearns [3] and
Karp [4] developed algebraic methods based on partition theory and on
a reduced dependence criterion. Dolotta and McCluskey [5] suggested
a "column-based" procedure to code states.

Note that despite these efforts, to the best of our knowledge no tool for
designing FSM is in use today for a time-effective state encoding of
industrial digital controllers.

Armstrong's approach can in principle handle rather large
machines, but it has three serious drawbacks. The first is related to the
fact that the criteria suggested by Armstrong do not take into account
the techniques of fast heuristic logic minimizers such as MINT [8],
PRESTO [7], or ESPRESSO-II {8] in use today (Armstrongs paper
appeared before the work on heuristic minimizers started). The
second Is that the state-assignment problem is transformed into a par-
ticular graph-embedding problem, which represents only partially the
state coding problem, as shown in section 4. The third is that the
graph embedding algorithm suggested by Armstrong was ineflective.

Our approach is based, as Armstrong's, on the use of distance
relations among the codes of the internal states. In section 3 we show
how the combinational logic can be reduced by requiring state codes to
satisfy appropriate distances. Distance requirements are determined
by predicting the effects of heuristic minimization of the combinational
logic related to a symbolic description of the FSM, and are represented
by a graph. In particular it is shown that a convenient reduction of the
cambinational logic is obtained if the distance between some state
codes is large enough and appropriate states have adjacent codes.

In section 4 we consider the problem of assigning codes which
satisfy the distance relations. Adjacent code assignment can be seen
as an embedding of an adjacency graph into a boolean hypercube.
Armstrong [1] and Saucier [9] represented the state assignment prob-
lem as a subgraph isomorphism problem, where a one-to-one relation
(coding) is sought between the set of the states (vertices of the adja-
cency graph) and a subset of the boolean hypercube vertices (codes).

Note that even questioning the existence of a subgraph isomorphism is
& hard problem: in particular it was shown to belong to the class of NP-
complete problems [10]. Since such an isomorphism may not exists,
Armstrong and Saucier relaxed some adjacency requirements and pro-
posed heuristic techniques to embed a subgraph of the adjacency
graph into the boolean hypercube. Note that a distance-preserving
embedding is not even guaranteed by augmenting the dimensions of
the hypercube, i.e. increasing the length of the state codes.

Our approach exploits the use of don't care conditions in state
codes. In particular every state is coded by associating each vertex of
the adjacency graph to a subcube of the boolean hypercube. This is
equivalent to embed the adjacency graph into a squashed hypercube ,
i.e. a hypercube having appropriate faces squeezed into vertices [11].
Note that most of the state assignment techniques presented in the
literature obtained a state coding using the minimum number of bits,
because it was important te minimize the number of memory elements
due to their cost. On the other hand, the area taken by the PLA is the
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major concern in a VLSI circuit implementation of a Finite State
Machine. Minimal area PLA implementations of the FSM combinaticnal
component can be obtained by using non-minimal-length state codings
i.e. fewer product-terms are often required to implement a logic func-
tion at the expense of an increased number of input/output columns.
Therefore we allow non-minimal-length state codings when leading to
minimal area PLAs. In this case, state coding corresponds to an
embedding into a squashed hypercube of variable dimension. However
bounds on code-length can be enforced when required by a particular
implementation.

2. FINITE STATE MACHINE REPRESENTATION

Different functional FSM representations are commonly used.
Most state-assignment techniques reported in the literature are based
on a state-table representation, though it can be cumbersome for large
uncompletely-specified machines. For this reason designers describe
the machine functionality by means of flow-charts or Hardware
Description Languages {HDL). Unfortunately these descriptions are not
well-suited to support machine optimization techniques. For these rea-
sons we represent the FSM functionality by means of a symbalic cover .
The concept of symbolic cover is a generalization of the logic cover
representation of combinational-logic functions [6]. Symbolic covers
can be obtalned from flow-charts, HDL or state tables in a straight-
forward way.

A symbolic cover is a set of primitive elements called symbolic
implicants . A symbolic implicant (denoted here by a capital letter e.g.
A =iy, 8., 8, 04}) is a set of two input and two output character
strings. The two input strings 1epresent a binary-valued representation
of a primary input (i4) and a symbolic representation of a present
state (§54). The two output strings represent the corresponding sym-
bolic representation of the nexi-state (s'y) and a binary-valued
representation of the primary outputs (04). Note that we consider in
this paper the problem of assigning binary codes to the FSM internal
states only. Therefore we assume that i4 and o4 are already coded into
binary strings. However 4 and 04 might describe symbalic inputs and
outputs in a more general framewaork, where primary input and output
coding is also considered. We represent binary valued variables by the
symbols "1”, "0" and ""*", where "*' represents a don't care condition.
States are represented symbolically by a character mnemonic string.

Ezample: Consider the traffic-light controller presented in
{12]. The following is a symbolic implicant:

11*,HG,HY,10010
showing the a "1” in the first two primary-input lines maps
state "HG" into state "HY" and asserts output 10010. The sym-
bolic cover is the collection of the symbolic implicants
representing the state transitions: :

0** HG,HG,00010
*0¢,HG, HG,00010
11¢,HG, HY,10010
¢+0,HY,HY,00110
**1,HY,FG,10110
10¢,FG,FG,01000
0**,FG,FY,11000
*1*,FG,FY,11000
*%0,FY,FY,01001
**1,FY,HG, 11001

Note that a symbolic cover is a logic cover of a multiple-valued logic
function [8] [13], where each state takes a different logic level and is
represented by a character string. A symbolic implicant having n (m)
primary input (output) bits can be seen as a (n+1)-input, (m+1)-output
multiple-valued logic implicant. Definitions and properties of muitiple-
valued-logic covers carry over to symbolic covers as well [13].

The motivation for using a symbolic cover relies on the following
points.

i) properties and operations on symbolic covers can be exploited
and related to heuristic minimization algorithms for binary-valued
logic functions [8],[7],[8]).

ii) any logic cover of the combinational component of a FSM
obtained by assigning disjoint codes to each state can be seen as a
symbolic cover, Hence the technique we present can be interfaced
to several FSM automated design tools, in order to implement the
machine aiming specifically to & PLA-based implementation in a
minimal area.



The state assignment problem consists of determining a coding map
¢ (- ) which transforms the state symbols into strings of binary digits.
This is equivalent to transforming the symbolic cover-into a binary-
valued logic cover of the combinational component. Note that in gen-
eral don't care coordinates are used in state codes, and therefore
every state is assigned to a subcube of the boolean hypercube., How-
ever a cading map is implementable only if the states are assigned to
non-overlapping regions of the boolean hypercube.

State coding affects substantially the complexity of the combina-
tional component of a FSM, because minimal binary-valued logic covers
[6] corresponding to different coding maps have different cardinalities.
We consider first coding maps with no code-length bounds. The uncon-
strained optimum state assignment problem can be stated as follows:

Find an implementable coding map ¢ (- ) that minimizes the car-
dinality of the minimal logic cover of the FSM combinational
component.

This is a formidable task, because it involves the search for all the
minimal covers related to all possible codings! We therefore concen-
trate on a simpler problem and we relate optimal state coding to
heuristic minimization of the logic cover [8] (8]. In particular we look
for an implementable coding map which leads to a minimal logic cover
having significantly fewer implicants than the original symbolic cover.
Similarly a constrained state assignment problem can be defined by
restricting the search to codings of bounded length.

3. CODE DISTANCES AND COMBINATIONAL LOGIC MINIMIZATION

We investigate in this section the relations between state assign-
ment and the complexity of the related implementation of the combi-
national part of a FSM. In particular a set of rules can be obtained to
determine constraints on state code distances, so that either the cardi-
nality or the number of literals of the logic cover (or both) can be
reduced. However we report here on the two major rules only.

We call cube any string of characters from the set {0,1,*]. We
refer the reader to [8] for definitions of cover (2), union (V), sharp (-)
and intersection (M) between cubes. The distance D(a, b ) between
two cubes @ and b of equal length is the number of positions in which
they differ. The Hamming distance H(a, b ) between two cubes a
and b of equal length is the number of positions in which they differ
and both entries are cares. Note that if s1 and s2 are two different
state symbols, an implementable coding is such that
H(e(s1) e (s2))> 0. We define two state codes to be adjacent, if
their Hamming distance is one, because they are adjacent vertices cf a
squashed cube representation.

The basic strategy for obtaining a set of relations among state
codes is the following. All pairs of symbolic implicants ( A, B ) are
examined and code distance requirements are enforced according to
the following rules. When Rule 1 applies, two symbclic implicants can
be coded and merged into one binary-valued logical implicant and the
cover cardinality be reduced. Therefore Rule 1 is considered a "strong
rule” and it is highly desirable that the related code distance require-
ments are satisfled. Rule 2 allows to reduce the number of literals and
is considered a "weak rule” compared to Rule 1, because a reduction in
size of the PLA is considered more desirable than a reduction of its
complexity.

Let A = iy, 54, S'4, 04} be a symbalic implicant of the machine
cover. We define S(A) the set of states which are mapped by any
input representation 1 Ciy either into a next-state different from s'4 or
into an output representation not covered by 04 ar both.

Rule 1: Let A = i'iA, S4. S'A, OA;. B = i'l:g, Sg. SVB, OB; be
two symbolic implicants such that: i4 2ip and 04205.
Then:
c(s'y)2c(s'p).
and:

H(e(sq)uc(sp). c(sq))>0 Vsqe S(A)

Rationale: A and B can be coded and merged into only one
logic implicant, namely:

fig. clsg)Uc(sg), c(s'y). o4 ™

Rule 1 requires two different conditions on state codes: i) a covering
relation between cubes ¢ (s'y ) and ¢ (s'g ) considered as output parts
of binary-valued implicants; ii) a distance relation which keeps state
codes € (54 ) and ¢ (8g ) far from the codes of the states in S (A ).
Remark: If s'y = s'p the covering requirement is automatical-
ly satisfled. Moreover if only completely specified codes are
used (i.e. no don't care conditions are used in state codes),
then Dfc(sa) c(sg))=1 implies that
H(c(sq)vec(sg ) c(sq)) >0 Vsg#s, end sg#sp. This re-
quirement is equivalent to the column adjacency rule stated by
Armstrong in [1], when iy =ip and 04 = 0. Note that Rule 1

is far more general than Armstrong's rule. »

Let A = {iy, 54, 8’3, 04} and B = {ig, s, s'g. 0p} be two symbalic
implicants such that: 54 = 55 and 04 = 0g. We define / (AP ) the set
of input representations {4 Ci4Vig | which map state s, either into a
next-state different from §'y or §'p or into an output representation
not covered by 04 or both.

Rule 2 Let A = {iy, 54, 84, 04} and B = {ig, sp, s'g, 0} be

two symbolic implicants such that: s4 = Sp and 04 = 0p.If

I(AB )= ¢ ,then:

H(e(s'g)c(s'p))=1

Kationale: the corresponding logical implicants can be

reshaped [8] as: ~
HaUip. e (sp) cfsia) o4}
{ia.c(sp) c(s'g)-c(s'4 )9

where ¥ is a string of "0"s and where without loss of generality
c(s'y) and c(s'p) are obtained by assigning cares to the
dan,t care _entries of the next-state codes,.so that
D{c(s's), ¢(§'p)) = 1 and the "1" count in c(s'p) is
larger than in ¢ (s; ). Note that the second logical implicant
obtained by Rule 2 has always only one care in the cutput
part. Hence it may be covered by some other implicants of the
logical caver. Therefore when Rule 2 applies the number of
literals and possibly the logical cover cardinality are reduced. »

Rule 2 requires an adjacency relation between cubes ¢ (s'y) and
c{s'p)
Remark: If D(i,, ig) =1, then I{AF) = ¢ . Therefore, i
we restrict our attention to completely specified codes only,
Dlc(s'a) c(s's))=1 implies that
H{c{s'y) c{s'y))=1 This condition is equivalent to the
row adjacency rule presented by Armstrong in [1)]. ™

More complex rules can be derived by considering other relations
between symbolic implicants. In particular, Rule 2 can be generalized
to the case in which 04205 and Rule 1 be modified to the case in which
H{oy,08)=1

4. STATE ENCODING STRATEGIES

The rules stated in Section 3 give rise to relations among state codes
which can be grouped as follows:

1) code adjacency (H(c (s4) c(sp)) = 1);

2) code covering , i.e. requiring a next-state code to cover another

next-state code ( ¢ (s'4 J2¢ (s'5 ));

8) code distance, i.e. requiring the code of one state, say sg , to be

far enough from the union of the codes of a pair of states §4 and

sp(H(c(sq)vc(sp) c(sq))>0)

Relations 1) and 2) are represented by a mixed weighted graph,
G{V.E,W(E)), where the set of nodes V is in one-to-one correspon-
dence with the set of states, and £ consists of a set of directed and
undirected edges. The undirected edges are related to the adjacency
relations, ie. {Uguyl €E if Hfc(sq) c(sp)) = 1; and the
directed edges are related to covering relations, i.e. (v, JEE, it
H(e(sp) c(sp))=1 and c(s,)2¢c(sy) Weights are defined
according to the number of times the same distance requirement
occurs and to the related rule. Code distance requirements are
represented by a list structure. In particular
H(ce(sq)ue(sp) c(sq)) >0 is represented by sg pointing to the
pair §4 and Sp in the list.

The problem of finding a state coding which satisfles the rules
given in Section 3 can now be seen as a graph embedding problem. Let
N be the dimension of a boclean hypercube H, representing the possi-
ble codes. Let P(B) be the set of all subcubes contained in 5. We
have to determine the dimension N and an injective function
¢:V-+P(B) such that the relations induced by the rules presented in
Section 3 are satisfled. The adjacency relations are satisfled if:

de(uwy )= Hie(w)e () Yu,u wryy €V

where dg{v;,v; ) is the length of the shortest path in the graph
between vy and vy and A{c (1;),c(v;)) denotes the Hamming distance
of the subcubes ¢ () and c(‘vj ). Geometrically, we would like to
determine, if posstdle, an isomorphism between the graph and a
squashed hypercube, i.e. an hypercube B in which some elements of
P(RB) collapge into a vertex. It can be proven that there always exists
en integer N such that en injective map ¢:5-P(B) satisfying the
above relations can be found. However, it is important not only to
reduce the number of product terms of the FSM combinaticnal com-
ponent, but alsc to keep N as small as possible because N is propor-
tional to the number of columns required by a PLA implementation.

Three optimization strategies can be followed:

1) Set N to a fixed value and find c(') such that the number of
code constraints violated by the encoding is minimized;

2) Find the smallest A such that all the rules are satisfied;
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3) Trade-off N and the number of constraints violated.

Strategy 1 _is close to the one followed by Armstrong where
N= rlog2| V1], ie. the minimum number of bits needed to encode the
states. Strategy 3 is the most desirable but obviously the most difficult
to implement. We decided to implement strategy 2 as an intermediate
step towards strategy 3. A first theoretical question to ask, when
implementing strategy 2, is whether a bound on N can be fannd

If we require that:
de(ug vy J=H{c(u)e{vyy)) Yy v wrv; €V

we have an isometric embedding of a graph into & squashed hypercube.
Greaham showed in {11} that any graph G(V,£) can be embedded into
an hypercube of dimension N{ )=(TV] —1)diam(G) where diam(G) is
the diameter of &, and conjectured that the bound can be lowered to
N{(G)=|V|-1. The conjecture can be proven true for graphs belong-
ing to some special classes ,e.g. complete graphs. The graph embed-
ding problem arising from our formulation is a distance-bounded graph
embedding. It can be reduced to an isometric embedding into a
squashed hypercube by appending appropriate edges to G. Therefore
there always exists a coding map ¢(') satisfying the given requirements
having N(G)=|V|~-1.

We present in Fig. 1 the flow-chart of a heuristic algorithm for
distance-bounded graph embedding, which reminds of the procedure
presented in [14] for isometric embedding. The algorithm tries to
minimize N and is constructs a coding using N<| V| —1 bits. Note that
this is a worst~case upper bound and that the computed codes are
much shorter than | V| ~1 in many practical cases.

The algorithm applies to connected graphs. If G{V.E, W(E)) is
disconnected, its connected components are determined first and the
diflerent groups of codes are packed together at the end. We deal here
with a connected graph for the sake of simplicity.

The algorithm visits each node of the graph v, k=1,....| V| and
at the k-th step constructs a partial encoding of length N(K) for vy,. It
appends one bit to the codes of the nodes vy, 1=1,...,k only if the code
length must be increased, as shown in Fig. 1. A degree of freedom of
our procedure is the order of the selected nodes. We choose as first
node the one which corresponds to the state with maximum number of
occurrences as next-state in the symbolic cover. We map it into the
origin of the coordinates of the hypercube, to maximize the occurrence
of "0"s in the output part of the coded implicants. The node selected at
the k-th step, v, is adjacent to a coded vertex (i.e. adjacent to v;;j <k)
and has the maximum number of uncoded adjacent nodes. - The
rationale is that such a node has more constraints to satisfy and so it
deserves higher priority in the space occupation on the hypercube.

At step k node v, is coded as follows. Assume we have assigned
partial codings of code length N(K—1) tov;, i=1,....k—1 so that:

H(o (u).e (v;))=1

for all adjacent coded pairs ¥; and v;. Then we search for an imple-
mentable coding ¢ ('”k ) of the same length with the property that:

H(c(ughe(y;))=1
for all adjacent coded pairs v; and vy, under the constraint:
H(e (v ).e(vp))ue (1,)))>0

for all node pairs ¥r,%, in the list pointed by v, and coded before step
k. An exhaustive search of a feasible code would require 3¥(X~1} trials.
Therefore we test only a subset of the possible trials, which are called
"slight modiflcations” of the coding of the vertices adjacent to vgy. A
slight modification is obtained by complementing one care bit (1" or
"0") of the code of a vertex adjacent to vy.There are at most | V|? such
trials.

1t is possible that no implementable coding for ¥y can be obtained

by slight modifications. In this cese the algorithm constructs the code
of vy by appending a ""1" to the string of bits obtained from the logical
union of the codes of all the adjacent vertices and by appending a "1"
ar "0" or "* to the code of each vertex vy coded before step k. In this
way,we can always satisfy the distance requirements, but unfortunately
at the expense of an increase in the code length. However, the algo-
ritl?.%r ill construct a valid encoding for G of length bounded by
1+ 1={V|~-1. Its computational complexity is O] V|®) in the

=3
worst case.

Ramark: Since a bound on the code length can be cbtained by

bounding the number of vertices in each connected compenent

of (7, we can partition the graph into components of bounded

size by removing a subset of edges. Edge weights can be used

to determine the optimal graph decomposition. ™

5. EXPERINENTAL RESULTS AND CONCLUDING REMARKS

The algorithm has been implemented by an interactive computer
program. The program reads the symbolic description of a FSM, gen-
erates the distance requirements and determines state codes. The
program has been tested on a set of industrial Finite State Machines.
Results are reported in Table 1 and show that the algorithm is effective
in generating state codes leading to a FSM implementation with a
reduced number of product-terms in the combinational component.
Execution times are in the order of some seconds on a [BM 3081 com-
puter.

A new approach based on multiple-valued logic minimization is
being currently pursued in collaboration with Dr. Brayton of IBM. Prel-
iminary experimental results show that this method can be considered
a break-through in FSM synthesis.
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