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Abstract

Displacement techniques used for the timing analysis of VLSI circuits

are presented under a new perspective.

Their numerical properties

such as stability, accuracy, consistency and convergence are

investigated.-

1. INTRODUCTION

When analog voltage levels are critical to circuit
performance, or where tightly coupled feedback
loops are present, standard circuit simulations
such as SPICE [1] or ASTAP [2] can be used to
analyze the circuit. However, when the size of the
circuit becomes large, the cost and the memory
requirements of conventional circuit simulators
become prohibitive and new techniques have to be
used.
to simulate large scale integrated circuits. The
program MOTIS was a revolutionary simulator in two
main respects:

a) . It limited severely the types of networks it
dealt with (MOS devices with quasi-unidirectional
circuit models and a grounded capacitor on every
node)

b) It discarded both sparse Gauss elimination and
conventional Newton-Raphson iteration as solution
methods.

In MOTIS Backward Euler formula was used to
discretize the time derivative operator and a
nonlinear Gauss-Jacobi 1ike relaxation technique
[4] was adopted to decouple the node equations at
the nonlinear equation level. The algorithm of the
timing simulators MOTIS-C [5] and SPLICE [6]
perfectioned this technique. In particular, SPLICE
used a nonlinear "Gauss-Seidel 1ike" technique with
a selective trace algorithm to exploit the
"latency" [7][8] of large digital circuits. A1l of
these algorithms did not carry the iteration of

the relaxation methods to convergence: only one
sweep was taken. Because of this, the numerical
properties such as stability of the integration
formulae used to discretize the derivative

operator no longer hold. These methods have indeed
to be considered as new integration methods. Hence
a complete analysis of their numerical properties
has to-be carried out to characterize them.

In this paper we formalize these relaxation or dis-
placement methods and propose a generalization of

a method presented for the first time in [9]. Then
we propose a model to study formally the stability,
accuracy, consistency and convergence properties

of the methods. Based on this model, we evaluate
the various methods and show that the method
proposed in [9] has better stability and accuracy
properties.

2. TIMING ANALYSIS ALGORITHMS
MOS VLSI circuits are often modeled as electrical

circuits containing linear and nonlinear resistors
(controlled sources are considered to be resistive

The timing simulation MOTIS [3] was developed.

elements according to [10]) and capacitors.
Furthermore, a capacitor is connected from each node
of the circuit to ground to model the time delay of
a signal propagating through the circuit. Since
each node has a capacitor to ground, the node
equations have the following form:

c(v)v + f(v,u(t)) =0
v(0) = Vo -

(2.1)

VERM u:R » R™ c(+) : R" » R™"; £(.,0) :
R" x R™ > R

£(vou(t)) = [F(v,u(t)),Fp(vou(t)),oeesf (vou(t)]
where v is the vector of node voltages. u is the

vector of independent source waveforms, C(v) is
the nonlinear nodal capacitance matrix and

-f.(v,u(t)) is the sum of the currents feeding the

cApacitors connected to node i. In this paper we
shall assume that no floating capacitor (i.e.,
capacitors connected between two non ground nodes)
is present in the circuit. Therefore C(v) is a
diagonal matrix. We assume also that C(v)-1 exists
for all v of interest. Therefore we can simplify
(2.1) as follows:

v + F(v,u(t)) =0
(2.2)
v(0) = vo -

where:

F(vou(t)) 2 €)1 fvou(t)) . (2.3)
Algorithms used in the timing analysis of MOS VLSI
circuits discretize the derivative operator by
Backward Euler [3] [6] or trapezoidal formula [5].
In this paper we shall focus on the Backward Euler
formula

Vi = (Vvi/h (2.4)

where h A t, -t and v, 44 and v, are the computed
voltages of the node voltage vectors at time tk+1
and t, respectively. The solution of the resulting
non]ihear system of equations:

vk+]—vk+hF(vk+],u(tk+])) =0 (2.5)

is then approximated by one sweep of a displacement
technique

The MOTIS program [3] uses a Gauss-Jacobi like
technique which yields the following set of




decoupled equations:

L. | BV =
Vk+]-vk+hF](Vk+1,vk’ ’vk)u](tk+])) 0

2 2 1.2 n w
Vk+]-Vk+hF2(Vk;Vk+]9"'9Vk9u2(tk+1)) =0

e e . . . . . (2.6)

n n 1.2 n -
Vk+~|'Vk+th(Vk,Vk s"',vk_n ’un(tkﬂ)) =0

The solution of the decoupled nonlinear equations
(2.6) is then approximated by taking a single
step of a "regular falsi" iteration [11].

The MOTIS-C and SPLICE programs use a Gauss-
Seidel like technique. In SPLICE this technique

yields:
i i v = = i = LN
vk+]-vk+hFi(vk+],i,U(tk+1)) = 0, .- ]92’ n .
(2.7)
where
v S I N b B b1 |
Vk#1,i T [Vk+1’ TS A ’Vk] . (2.8)

The solution of (2.6) is then approximated by
using one step of the Newton Raphson algorithm.

Another displacement technique for the solution of
(2.1) has been proposed for a simple circuit in
[12]. This algorithm is a symmetric displacement
method reminiscent of the alternating-direction
implicit method [11] and of a method proposed in
[9]. The basic idea here is to "symmetrize" the
Gauss-Seidel scheme with a method that takes two
half steps of size h/2 each: one half step is
taken in the usual "forward" (i.e.,

triangular) direction, the second half step in
the backward (i.e., upper triangular) direction.
Letting:

1o i i+ o T
[Vl > ’vl’vl-]/Z’ ’V2_1/2]

" if 22 is odd
L,1 (2.9)
i i-1 i nT
APR VPRI R 7R R
if 22 is even.

the forward step yields:

i i.h -
Vier172- % ¥ 7 Fi ez, 109t g2)) (2.10)

h - = i = ces
7 Fi(vk+]/2,i-1’u(tk+1/2)) =0i=1,2,°+°,n.

and the backward step:

1

i i,h -
Vir1 VK +3'Fi(vk+1,i’u(tk+1)) (2.11)

h e = i =
7 Fi(vk+1,i+1’u(tk+1)) =0 i=n,n-l,°°°,1.

The solution of the decoupled equations is then
approximated by taking one step of the "Newton-
Raphson" algorithm. Note that all these methods
do not solve (2.5) since only one sweep of the
displacement iteration is taken. Therefore the
stability and accuracy properties of the

integration method used to discretize operator no
longer hold.

In the sequel we will refer to the "time
advancement" algorithms which use the Gauss-Jacobi,
the Gauss-Seidel and the modified symmetric Gauss-
Seidel displacement step as Gauss-Jacobi, Gauss-
Seidel and modified symmetric Gauss~Seidel integra-
tion algorithms respectively. In the following
section the numerical properties of these "time
advancement" methods will be investigated.

3. NUMERICAL PROPERTIES OF TIMING ANALYSIS
ALGORITHMS

The numerical properties of an integration method,
such as stability, are studied on test problems
[13][14], which are simple enough to allow a
theoretical analysis but still so general that one
can have insight about how the method behaves in
general. For the commonly used multistep methods,
the test problem consists of a linear time-invariant
zero-input asymptotically stable differential
equation. Unfortunately this simple test problem
cannot be used to evaluate the displacement
techniques introduced in section 2. In fact, each
variable of the system of differential equations is
treated differently according to the ordering in
which equations are processed. Hence a more com-
plex test problem is needed. The test problem we
choose is a linear time-invariant zero-input
asymptotically stable system of differential
equations, i.e.:

X = Ax
x(0)
nxn

(3.1)

XO.
where A € R and the set of eignevalues

(spectrum) of A, o(A), is in the open left half
complex plane, i.e., o(A) € Cp- Let A A L+D+U,

where L is strictly lower triangular, D is diagonal
and U is strictly upper triangular. The displace
ment methods presented in section 2 applied to the
test system (3.1) yield the following recursive
relations:

a) Gauss-Jacobi integration algorithm:

[I-hD]xk+] = [I+h(L+U)]xk . (3.2)
X1 = Mgg(h)x - (3.3)
where I is the identity matrix and
Mgy(h) = [1-hDT T[I+h(L+0)] . (3.4)
b) Gauss-Seidel integration algorithm:
[I-h(D+L)]xk+1 = [I+hU]xk . (3.5)
Xe41 = MGS(h)xk . (3.6)
where:
Mgg(h) = [1-h(D+1)]"'[1+hU] . (3.7)
c) Modified symmetric Gauss-Seidel integration
algorithm:
Let:
AL=L+1/2D
(3.8)
AU =U+1/20D

Forward step:




h - h
[1 -7 (2L+D)]Xk+1/2 =[1 +I (D+2U)]Xk (3.9)
[1- AL]xk+]/2 [1 + U]X (3.10)
a -1
xk+]/2 b [I = AL] [I +f AU]xk (3.'”)
Backward step:
h _ h \
[1-7 (0¥20)Ixyyy = [T+ (24D)Ixy 0,0 (3.12)
- h -1 h
xk+" = [I -E AU] [I +—2_ AL]ka/Z (3.]3)
Combining (3.11) and (3.13) we obtain:
Xesl = Ms(h)xk (3.14)

where:
Mg(h) =[1-3 A 37145 AT I+D A

(3.15)

L][I '_

The matrices MGJ(h), MGS(h) and Ms(h) are called

the companion matrices of the methods. If we
denote with M(h) the generic companion matrix of
a method, we have:

= M(h)1¥ x

We define now the numerical properties of the
integration algorithms described by (3.16) follow-
ing the outlines of one-step integration methods
applied to ordinary differential equations [13].

(3.16)

Definition 3.1 (Consistency)

An integration algorithm is consistent if its com-

panion matrix can be expanded in power series as a

function of the stepsize h as:
M(h) = I + hA + 0(h?) . (3.17)

Definition 3.2. (Stability)

An integration algorithm is stable if J& > 0
3N > 0 such that ¥x; € R, Jk > 0.

Ix! <N ¥k >k ¥he€[0,6), (3.18)

where {xk} is the sequence generated by the

a]gor;thm applied to the test problem according to
(3.16).

Definition 3.3. (Convergence)

Let x(t) be the exact solution of the test problem.

An integration algorithm is convergent if the
sequence of the computed solution converges
uniformly to x(t) as the stepsize h tends to zero.
Theorem 3.1.

Gauss-Jacobi, Gauss-Seidel and modified Symmetric

Gauss-Seidel integration algorithms are consistent.

Proof.

a) Let us consider Gauss-Jacobi integration
algorithm first. To expand the companion matrix
given by (3.4) in power series as a function of
the stepsize h, we compute

%Med(h) = [1-h0]"'D[1-hD]~ 1 [1+h(L+U)] + [1-hD] ]
(L+U) (3.19)

and:

%MGJ(0)=D+L+U=A. (3.20)

where é% MGJ(O) is the derivative of MGJ(h)

evaluated at h = It follows that:

Meg(h) = T+ nA + o(h?) . (3.21)
b) The consistency of Gauss-Seidel integration
algorithm follows, "mutatis mutandis," a similar
argument.

c) For the modified symmetric Gauss-Seidel
integration algorithm, we have:

de M =L-F AT g A -3 A0 g A
(-8a1T+la+

+ [1-—-AU]" FAL-2 L]"[1+ u] +

+ [1-—AUJ"[1+— Ji-3a07t 2a
[1-—ALJ"[1+2 Al +

s -f a0l aar-gaa 2a
and: (3'22)
d ]
BM(0) = FA +F A T A +I A = (3.23)
Hence:

Mg(h) = T + hA + 0(h?) . (3.24)

The definition of stability requires the boundness
of the sequence of {x,} for small values of the
stepsize h. The following proposition relates the
bgun?nsss of the sequence {xk} with the spectrum

of M .

Proposition 3.1 [15]

The sequence of vectors {xk} defined by (3.16) is

bounded for a given value of the stepsize h if and
only if the spectrum of M(h) is contained in the
unit ball B(0,1), i.e., o(M(h)) € B(0,1) and no
multiple zero of the minimal polynomial of M(h)
has modulus equal to one.

In the sequel we restrict our analysis to the case
in which the stepsize is constant. From
Proposition 3.1 it is immediate to derive the
following theorem:

Theorem 3.2.

An integration algorithm is stable if and only if
36 > 0 such that Vh € [0,5) the spectrum of M(h)
is contained in the unit ball B(0,1) and no
multiple zero of the minimal polynomial of M(h)
has modulus equal to one.

Theorem 3.3.

Gauss-Jacobi, Gauss-Seidel and modified symmetric
Gauss-Seidel integration algorithms are stable.




Proof.

From the consistency of the above mentioned
algorithms we have

M(h) = I + hA + 0(h?) (3.25)
By the spectral mapping theorem [15]
o (M(h)) = {&E; =1+hxi+o(h2); A; € o(A);

i=1,2,-%,0} (3.26)

From (3.26) we have:
€1 = 11+ my + 0(h%)] . i =1,2,000,0 (3.27)
and
;12 =01 +h Re(r )1 +[h In(3)1% + 0(n?) . (3.28)

Since M(0) = I, its eigenvalues are all 1, and 1
is a simple zero of the minimal polynomial of the
identity matrix. Therefore from Theorem 3.2 it is
sufficient to show that:

a(M(h)) € B(0,1) ¥h € (0,8) (3.29)
j.e., from (3.28).

lg 12 <1 ¥hE(0,6) =120  (3.30)
From (3.30), we have:
2Re(3;) +h(Re?(x;) +1nP(A{)) +0(h) <0 (3.31)

i=1,2,°°,0

2Re(Ai) +0(h) <0 1i=1,2,-°,0 (3.32)
Since by assumption Re(Ai) <0 i=1,2,0°240
38 > 0, such that ¥h € (0,6),

o(M(h)) € B(0,1) . (3.33)

Corollary 3.1.

Gauss-Jacobi - Gauss Seidel and modified symmetric
Gauss-Seidel integration algorithm are convergent.

Proof.

Follows from Theorems 3.1, 3.3 and the c]ass1ca1
convergence theorem.

For computational efficiency, it would be highly
desirable that the stepsize be limited only by
accuracy considerations as in the case of the
implicit backward differentiation formulae [13].
In the case of classical multistep methods, the
concept of A-stability [14] and stiff-stability
[13] have been introduced to test the
"unconditional” stability of multistep methods.
For the "time-advancement" techniques introduced
in this paper, it would make sense to define a
similar concept. Unfortunately, general results
of "unconditional" stability are not available
for the test problem previously defined, but only
for a subclass, the subclass characterized by a
symmetric A matrix.

Definition 3.4 (A-stability)

An integration method is A-stable if JN > 0 such
that ¥x; € RM,

xkl <N ¥ >k ¥he€[0,») . (3.34)

where {xk} is the sequence generated by the method
applied to the test problem (3.1) with A symmetrix.
) |

Theorem 3.4.

The modified symmetric Gauss-Seidel method is A
stable.

Proof.

Since A is symmetric and o(A) € €y, A is a negative
definite matrix. For h = (0 = I, the

eigenvalues of M.(0) are all 1, and 1 is a simple
zero of the mini%a] polynomial. Hence we need
only to see where the eigenvalues of M.(h) lie
when h € (0,). Let us apply to Ms(h a
similarity transformation:

Mg(h) & [1-5 A MmII-5 AT . (3.35)
and factorize ﬁs as:
ﬁs(h) = P(h) Q(h) . (3.36)
where:
P(h) o [1+8ACI-3ATT . (3.37)
a(h) & [1+% AI0T -5 AT (3.38)
Now:
IP(h)Iz
-1 K
<1+— 1-— I+2A 1-—
(g A g AT+ AT -F A T
x#0 {(x4% (3.39)
Let: h -1
y=1[I-7AT1 x (3.40)
Then:
h h
([I+5A I1+5A )
IP(h)13 = max [ 2 Al 2 1Y (3.41)
y#0 ([1 -—A,_]y (r- L]y>
h2
Cy.p+ Xyap +8(y.a A y)
Lo < ZyA”Ly (3.42)

y?0 (y,y) - —(y A.y)+h (y,I\JALy)

Since Vy, (y,A,A y) > 0, and A is negative definite
L

IP(h)13 <1 ¥h € (0,%) . (3.41)
Hence:

IP(h)1, <1 ¥h € (0,=) . (3.42)
It can be proved in a similar way that

lQ(h)I2 <1 Vh € (0,») . (3.43)
Hence:
IMg(h)1 < IP(N)IIQ(R) < 1 Wh € (0,=) .  (3.44)




and:
o(Mg(h)) = o(Ms(h)) € B(0,1) ¥h € (0,=) . (3.45)

Remark

Note that we cannot prove any A stability result
for the Gauss-Jacobi and the Gauss-Seidel integra-
tion methods. In our practical experiments, we
have seen that when applied to circuit problems,
the modified symmetric Gauss-Seidel method is
indeed "more stable" than the other two methods.

Now we are going to discuss the accuracy of the
integration methods presented in this paper. Once
more, we are going to define accuracy in terms

of the test problem (3.1).

Definition 3.5.

Let x(tk) be the exact value of the solution of
the test problem at time tk‘ Let Xy be the
computed solution at time t, assuming x, _, =x(tk_])

i.e., that no error has been made in computing the
previous time point-value of x. Let h A t -t ;,

the local truncation error is defined to be

€= Ix(tk)-xkl (3.46)

If ¢ = 0(hr+1), r is said to be the order of the
jntegration method [13].

Theorem 3.5.

Gauss-Jacobi and Gauss-Seidel integration methods
are first order integration algorithms. L
Proof:

From (3.46) we have:
(3.47)
(3.48)

€ Ix(tk)-xkl

1(eM-m)x, !

By expanding ehA in power series of h and by

Theorem 3.1,

e = HI+hA+0(h%) - 1-hA-0(h?)}x, 1 = 0(h?)

(3.49)

|
Theorem 3.6.

The modified symmetric Gauss-Seidel algorithm is
a second-order integration algorithm.

Proof.

Since matrices [I-+% AL] and [I -l»%—l\u]'1 commute,
then:

. hy1-Try h g 1=1rgah h
Mg = [T-2 A [1-2 AT [T+7 AJII+7 Al
2 2 (3.50)
crroh el a7 ah p ekl
—[I-7A+4_ﬁﬁﬂ [I+2A+4 ﬁﬁﬂ (3.51)
n? 3
=1+m+iasomd) . (3.52)
Hence:
e = MeMom)x, 1 = ond) . (3.53)

|

In the circuit analysis, another important criterion
for evaluating the accuracy of an integration
method, is what we define "waveform accuracy." 1In
. general, the computed solution of a system of
differential equations is the superposition of a
principal solution and parasitic solutions [13].
Parasitic solutions are generated by the numerical
approximations and, in particular for the algorithm
we are dealing with in this paper, by the dis-
placement technique used.

Proposition 3.2.

Oscillatory parasitic components are present in
the computed. solution if the spectrum of the com-
panion matrix M(h) contains complex conjugate
eigenvalues. x

If the original system to be analyzed does not con-
tain an oscillatory component, the presence of such
a component in the computed solution can be mis-
leading in the evaluation of the performances of
the system [16]. Therefore we introduce a subclass
of the test problem, characterized by o(A) € Ry
i.e., the set of test problems which does not have
an oscillatory component in the solution, and we
look for bounds on the oscillatory components of
the computed sotutions.

Theorem 3.7.

Let o(A) € Rg. The imaginary part of the
eigenvalues 09 the companion matrix of Gauss-
Jacobi and Gauss Seidel and modified symmetric
Gauss-Seidel integration methods is bounded by a
quadratic function of the stepsize h

.. max |Im(g;)| = 0(h?) (3.54)
. Proof. k
From Theorem (3.1)
M(h) = T + hA + 0(h%) (3.55)

Hence

(M(h)) = {g;1&; = 1+2;h+0(h%); A, € o(A) (3.56)
and

Im(g,) = 0(h?) i (3.57)

Remark.

The theorem essentially says that by choosing an
appropriately small stepsize h, the parasitic
oscillatory solutions can be made negligible with
respect to the principal solution. x

If we restrict the class of the test problems to
the subclass characterized by a symmetric A matrix,
then we can prove a much stronger result for the
modified symmetric Gauss-Seidel integration method.

Theorem 3.8.

If A is a real symmetric matrix, the spectrum of
the companion matrix of the modified symmetric
Gauss-Seidel integration method is real i.e., no
oscillatory parasitic components are present in the
computed solution.




Proof.

Let us factorize matrix MS as in (3.51)

MS =PQ (3.58)
2
h h -1
PalI-Da+ioan (3.59)
h, . h
Qa1 +§A +TALAU] (3.60)

Since ALAU is a positive semidefinite symmetric

matrix, -A is symmetrix and positive definite
follows that P is symmetric positive definite
matrix. Matrix Q is the sum of symmetric matrices,
hence symmetric. Since

(-]

)

i=1

A; Ry (3.61)

where Ai are the eigenvalues and Ri are the
residues of matrix P, then

(o}
P12 §
i=1

/X; R,

i Ry (3.62)

P]/2 is a symmetric matrix, since the residues Ri

are symmetric matrices. Let us consider now the
similarity transformation:

Mg = P12 m p1/2 (3.63)

= pl/2 g pl/2 (3.64)
Matrix ﬁs is symmetric and therefore has real

eigenvalues. Then by similarity also MS has real
eigenvalues. x

4. CONCLUSIONS

We have investigated the numerical properties of
certain displacement techniques used for the
timing analysis of VLSI MOS circuits. From
stability and accuracy viewpoint, the modified
symmetric Gauss-Seidel integration algorithm

out performs the other two methods: the Gauss-
Jacobi method used in MOTIS and Gauss-Seidel
method used in MOTIS-C and SPLICE. The
algorithms have been discussed for circuits con-
taining no floating capacitors. When floating
capacitors are present, the algorithms have to be
modified to deal with the additional coupling
between equations introduced by the capacitors,
analysis of the modified algorithms is complex and
is carried out in [17], where experimental results
are also presented and discussed. We believe that
these methods will replace the traditional circuit
simulator techniques based on sparsity techniques,
Newton-Raphson methods and stiffly stable ingegra-
tion formulae, for the analysis of digital very
large scale integrated circuits.

5. ACKNOWLEDGEMENT

Sponsored by Defense Advanced Research Projects
Agency (DOD). Monitored by Naval Electronic
Systems Command under Contract No. N00039-K-0251,

also sponsored by Rotary International.

The

6.
01

[2]

[3]
(4]

(sl

(6]

(71

(el

(9]
(10]

(RN

(2]

[13]

[14]
[(15]

[16]

(7]

REFERENCES

W. Nagel, "SPICE2, A computer program to
simulate semiconductor circuits,"
University of California, Berkeley, ERL
Memo No. ERL-M520, May 1975.

"Advanced statistical analysis program
(ASTAP)," Program reference manual, Pub.
No. SH20-1118-0, IBM Corp. Data Proc. Div.,
White Plains, N. Y. 10604.

B. R. Chawla, H. K. Gummel and P. Kozak,
"MOTIS-an M.0.S timing simulator," Trans.
IEEE, vol. CAS-22, pp. 901-909, Dec. 1975.

M. Ortega, W. C. Reinboldt, "Iterative
Solutions of Nonlinear Equations in Several
Variables," Academic Press 70

S. P. Fan, M. Y. Hsueh, A. R. Newton and

D. 0. Pederson, "MOTIS-C A new circuit
simulator for M.0.S L.S.I. circuits,"”" Proc.
IEEE ISCAS, April. 1977,

A. R. Newton, "The Simulation of Large Scale
Integrated Circuits," Memorandum UCB/ERL
M78/52, July 1978,

A. R. Newton, "Timing, logic and mixed-mode
simulation for large M.0.S. integrated
circuits," NATO ASI Notes Sogesta, Urbino,
Italy, 1980.

N. B. G. Rabbat, A. L. Sangiovanni-
Vincentelli and H. Y. Hsieh, "A multilevel
Newton Algorithm with macromodelling and
latency for the analysis of large scale
nonlinear circuits in the time domain,"
IEEE Trans. on Circuits and Systems, vol.
CAS-26, N. 29, pp. 733-741, Sept. 1979.

W. Kahan, Private communication.

C. A. Desoer and E. S. Kuh, "Basic Circuit
Theory," McGraw Hill, 1969.

E. Isaacson and H. B. Keller, "Analysis of
Numerical Methods," Wiley, 1966.

G. De Micheli, A. R. Newton, and A. L.
Sangiovanni-Vincentelli, "New algorithms for
timing analysis of large circuits,"
International Symposium on Circuits and
Systems. Houston, April 1980.

C. W. Gear, "Numerical Initial Value
Problems for Ordinary Differential
Equations," Prentice-Hall. 1971.

G. Dahlquist and R. Byorch, "Numerical
Methods," Prentice Hall, 1974.

C. A. Desoer, "Notes for a Second .Course
on Linear Systems," D. Van Nostrand, 1970.

A. R. Newton, "The Timing Analysis of Floating
Capacitors for Timing Simulation," Proc. 13th
Asilomar Conference on Circuits Systems and
Computers,"” Asilomar CA, November 1979.

G. De Micheli, A. R. Newton, and A. L.
Sangiovanni-Vincentelli, "Symmetric &i-."
Displacement Algorithms for the Timing
Analysis of VLSI MOS circuits," submitted for
publication.




