
ON-CHIP MULTIPROCESSOR COMMUNICATION

NETWORK DESIGN AND ANALYSIS

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Terry Tao Ye

December 2003

c© Copyright by Terry Tao Ye 2004

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Giovanni De Micheli
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Teresa Meng

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Martin Morf

Approved for the University Committee on Graduate

Studies:

iii

Preface

To My Wife Joanne Wang and My Parents Lu Ye and YongShang Gao

iv

Acknowledgments

I would like to first and foremost thank my advisor Professor Giovanni De Micheli for

his advice and guidance in my PhD research. Professor De Micheli is one of the most

influential people in my career path. He helped me to make the right decision when I

began to pursue my PhD at Stanford, and had been an inspiring mentor throughout

the years.

I would like to thank my wonderful wife Joanne Wang. Without her love, encour-

agement and patience over the years, I would not be able to finish the PhD research.

She is always the first one I would go to whenever I need support, and the first one

to share my happiness on my success.

I would also like to thank my parents Lu Ye and YongShang Gao, for their love

and support. They always believed in me on whatever decision I made, and are proud

of me on whatever achievement I may have.

My PhD research would not be possible to proceed without the direct and indirect

help from many other people. I would like to thank my PhD Committee member

Professor Teresa Meng and Professor Martin Morf for their suggestions and reviews

on my oral defense presentation and thesis writing. I would also like to acknowledge

the support from the members of Professor De Micheli’s research group - the CAD

group at Stanford, and the Stanford Computer Systems Lab.

This research is supported by the MARCO GSRC research center.

v

Contents

Preface iv

Acknowledgments v

1 Introduction 1

1.1 From Systems-on-Chip to Networks-on-Chip 1

1.2 Micro-Networks: Architectures and Protocols 4

1.2.1 Physical Layer . 4

1.2.2 Datalink, Network and Transport Layers 5

1.2.3 Software and Application Layer 5

1.3 Research Challenges in Networks-on-Chip 6

1.3.1 Current Research in NoCs . 6

1.3.2 My Contribution in NOC Research 11

1.4 Assumptions and Limitation . 13

1.5 Thesis Organization . 13

2 Networks-on-Chip 15

2.1 MPSoC Architecture and Networks 15

2.1.1 Shared Memory MPSoC Examples 16

2.1.2 MPSoC Architecture . 16

2.2 MPSoC Network Topologies . 17

2.2.1 Direct Network Topologies . 18

2.2.2 Indirect Network Topologies 19

2.3 On-chip Network Characteristics . 22

vi

2.3.1 Wiring Resources . 22

2.3.2 Buffers on Networks . 24

2.3.3 On-Chip Protocols . 25

2.3.4 System Software and Application 25

2.4 Summary . 27

3 On-Chip Network Energy Model 28

3.1 Introduction . 28

3.2 Indirect Networks Switch Fabrics . 30

3.3 Power Modeling with Bit Energy . 30

3.3.1 Switch Power Consumption 31

3.3.2 Internal Buffer Power Consumption 32

3.3.3 Interconnect Wires Power Consumption 34

3.3.4 Interconnect Wire Length Estimation 35

3.4 Switch Fabric Architectures . 36

3.4.1 Crossbar Switch Fabrics . 36

3.4.2 Fully-Connected Network . 38

3.4.3 Banyan Network . 39

3.4.4 Batcher-Banyan Network . 40

3.5 Bit-Energy Calculation and Experiments 41

3.5.1 Bit Energy Calculation . 41

3.5.2 Simulation Platform . 44

3.6 Results and Analysis . 45

3.7 Summary . 48

4 On-Chip Network Routing Algorithms Analysis 50

4.1 Introduction . 50

4.2 Packet Switching Techniques . 51

4.2.1 Store-and-Forward Switching 51

4.2.2 Virtual Cut Through Switching 52

4.2.3 Wormhole Switching . 52

4.3 Wormhole Routing Issues . 53

vii

4.3.1 Deadlock . 53

4.3.2 Livelock . 53

4.4 Contention-Look-Ahead Routing . 54

4.4.1 Contention Awareness . 55

4.4.2 Contention-look-ahead Routing 55

4.4.3 Wormhole Contention-Look-Ahead Algorithm 57

4.5 On-chip Switch Design . 58

4.6 Experiments and Results . 61

4.6.1 Performance Improvements 62

4.6.2 Buffer Requirements . 65

4.6.3 Network Power Consumption 65

4.7 Summary . 70

5 On-Chip Communication with Different Packet Sizes 71

5.1 Introduction . 71

5.2 On-chip Network Traffic . 73

5.2.1 Sources of Packets . 73

5.2.2 Data Segmentation and Packet Size 74

5.3 MPSoC Power Consumption . 75

5.3.1 Node power consumption . 75

5.3.2 Shared memory power consumption 76

5.3.3 Interconnect network power consumption 76

5.4 Network Energy Modeling . 77

5.4.1 Bit Energy of Packet . 77

5.4.2 Packets and Hops . 77

5.5 Experiments . 79

5.5.1 Platform . 79

5.5.2 Energy Model . 80

5.5.3 Experiments and Benchmarks 80

5.6 Packetization and MPSoC Performance 81

5.6.1 Cache Miss Rate . 81

viii

5.6.2 Cache Miss Penalty . 82

5.6.3 Overall Performance . 83

5.7 Packetization and Power Consumption 83

5.8 Packetization Impact Analysis . 88

5.9 Summary . 90

6 Physical Planning of On-Chip Networks 91

6.1 Introduction . 91

6.2 MPSoC Network Floorplan . 93

6.3 Problem Formulation . 93

6.4 Regularity Extraction . 95

6.4.1 Forming the Objective Function 96

6.4.2 Floorplan Without I/O Constraints 97

6.4.3 Floorplan With I/O Constraints 99

6.5 Legalization . 101

6.6 Experiments . 102

6.7 Summary . 105

7 Conclusions and Future Directions 107

Bibliography 111

ix

List of Tables

3.1 Bit Energy Under Different Input Vectors 42

3.2 Buffer Bit Energy of N × N Banyan Network 43

6.1 Wirelength Comparison Between REGULAY and UCLA MCM . . . 106

x

List of Figures

1.1 Micro-Network Stack . 3

1.2 The Two-Dimensional Torus Networks Proposed by Dally, et. al 7

1.3 The Two-Dimensional Indirect Mesh Proposed by Kumar, et. al. 8

1.4 The SPIN Networks . 8

1.5 The Octagon Networks . 9

2.1 MPSoC Architecture . 17

2.2 Mesh and Torus Networks . 18

2.3 Cube-connected-cycles Networks . 19

2.4 Crossbar Switch Fabrics . 20

2.5 Fully-Connected Switch Fabrics . 21

2.6 Butterfly and Fat-tree Network Switch Fabrics 22

2.7 Banyan Switch Fabric Network . 23

2.8 Batcher-Banyan Switch Fabric Network 23

2.9 The Fat-Tree Networks . 24

3.1 A 2 × 2 Node Switch in Banyan Switch 31

3.2 Buffers in a 2 × 2 Node Switch . 33

3.3 Thompson Wire Length Estimation Model and Mapping Process 35

3.4 Crossbar Switch Fabrics . 37

3.5 Fully Connected Switch Fabrics . 38

3.6 Banyan Switch Fabric Network . 39

3.7 Batcher-Banyan Switch Fabric Network 40

3.8 4x4 Switch Power Consumption Under Different Traffic Throughput . . . 45

xi

3.9 8x8 Switch Power Consumption Under Different Traffic Throughput . . . 46

3.10 16x16 Switch Power Consumption Under Different Traffic Throughput . . 46

3.11 32x32 Switch Power Consumption Under Different Traffic Throughput . . 47

3.12 Power Consumption Under Different Number of Ports 48

4.1 Dedicated Control Wires and Data Paths for On-Chip Network 51

4.2 Adaptive Routing for On-Chip Networks 56

4.3 Profitable Route and Misroute . 56

4.4 Adaptive Routing Algorithm . 58

4.5 Switch Fabrics for On-Chip Networks 59

4.6 Allocator Circuit That Implements the Routing Algorithm 60

4.7 RSIM Multiprocessor Architecture . 61

4.8 Averaged Packet Network Delays (quicksort) under Different Routing Schemes 63

4.9 Averaged Packet Network Delays (fft) under Different Routing Schemes . . 63

4.10 Averaged Packet Network Delays (lu) under Different Routing Schemes . . 64

4.11 Averaged Packet Network Delays (sor) under Different Routing Schemes . 64

4.12 Total Execution Time Comparison Between Different Routing Schemes . . 66

4.13 Total Execution Time Comparison Between Different Routing Schemes . . 66

4.14 Total Execution Time Comparison Between Different Routing Schemes . . 67

4.15 Total Execution Time Comparison Between Different Routing Schemes . . 67

4.16 Contention-look-ahead Routing Achieves Better Performance with Less Buffers 68

4.17 Power Consumption Comparison on Interconnect Wires and Buffers . . . 69

4.18 Total Power Consumption Reduction 69

5.1 Packet Size and Cache Block Size . 75

5.2 Hops and Alternate Routes of Packets 78

5.3 Hop Histogram of Long and Short Packets 79

5.4 MPSoC L1 Cache Miss Rate under Different Packetization Schemes 81

5.5 MPSoC L2 Cache Miss Rate under Different Packetization Schemes 82

5.6 Cache Miss Penalty under Different Packetization Schemes 83

5.7 MPSoC Performance under Different Packetization Schemes 84

5.8 Packet Count Changes as Packet Payload Size Increases 86

xii

5.9 Contention Occurrence Changes as Packet Payload Size Increases 86

5.10 Network Energy Consumption under Different Packet Payload Sizes . . . 87

5.11 Cache Energy Decrease as Packet Payload Size Increases 87

5.12 Memory Energy Decrease as Packet Payload Size Increases 89

5.13 Total MPSoC Energy Consumption under Different Packet Payload Sizes . 89

5.14 Qualitative Analysis of Packet Size Impact 90

6.1 MPSoC Tiling Is Different From Traditional Floorplan 92

6.2 Constraints of Floorplan Tiling . 94

6.3 Initial Eigenvector Locations of 5-Ring Octagon Network Without I/O Con-

straints . 99

6.4 Initial Eigenvector Locations of Cube-Connected-Cycles Without I/O Con-

straints . 99

6.5 Initial Locations of 5-ring Octagon Network with I/Os on the Corners . . 101

6.6 Initial Locations of Butterfly Network with I/O Constraints 102

6.7 Legalization of the Node Locations by Sorting and Packing 103

6.8 Legalized Floorplan of Octagon Networks with and without I/O Constraints 104

6.9 Floorplan of Cube-Connected-Cycles Network 105

6.10 Floorplan of 4-ary 3-mesh Network . 105

6.11 Floorplan of 4-ary 3-cube Torus Network 106

6.12 Floorplan Comparison of Constrained Butterfly Network 106

xiii

Abstract

Future multiprocessor systems-on-chip (SoC) designs will need novel on-chip com-

munication architectures that can provide scalable and reliable data transport – On-

chip network architectures are believed to be the ideal solution to many of today’s SoC

interconnection problems. On-chip network architectures may adopt design concepts

and methodologies from computer networks, namely from system-area-networks and

parallel computer clusters. Nevertheless, silicon implementation of networks requires

a different perspective, because network architectures and protocols have to deal with

the advantages and limitations of the silicon fabric. These characteristics will re-

quire new methodologies for both on-chip switch designs as well as routing algorithm

designs. We envision that future on-chip systems will be communication-centric, in

particular, energy and performance issues in designing the communication infrastruc-

ture will become challenging.

In this thesis, we explore several critical aspects in the physical and network layers

of the on-chip communication stack that include: 1) On-chip interconnect power con-

sumption modeling and simulation. 2) On-chip routing schemes and switch architec-

ture. 3) Packetization and its impact on system performance and power consumption.

4) Physical planning for on-chip networks. Many of the issues are new and unique

for on-chip networks, thus novel techniques and design concepts have to be explored.

Using multi-processor systems-on-chip (MPSoC) networks as the experimental

platform, this thesis presents both quantitative and qualitative analysis for on-chip

networks. New methodologies and solutions are also proposed to achieve better per-

formance and power balance for MPSoCs.

Chapter 1

Introduction

1.1 From Systems-on-Chip to Networks-on-Chip

Multi-processor systems-on-chips (MPSoCs) have been widely used in today’s high

performance embedded systems, such as network processors (NP) and parallel media

processors (PMP). They combine the advantages of data processing parallelism of

multi-processors and the high level integration of systems-on-chip (SoCs).

Driven by the advances of semiconductor technology, future SoCs will continue to

accelerate in system’s complexity and capacity. SoCs in the next decade are expected

to integrate hundreds, or even more of, processing elements (PEs) and/or storage

elements (SEs) on a single chip. SoC designs at this scale cannot be started from

scratch, instead, it is common believe that SoCs will be designed using pre-existing

components, such as processors, controllers and memory arrays. Future SoC design

methodologies have to support component re-use in a plug-and-play fashion in order

to meet time-to-market requirement.

In such a plug-and-play system integration approach, the most critical factor will

be related to the communication scheme among components. The design of reli-

able, low-energy and high-performance on-chip communication architectures for fu-

ture SoCs will pose unprecedented challenges [5][15][24]. Interconnect technology will

become the limiting factor for achieving the operational goals. Therefore, we envision

a communication-centric view of design methodology in the years to come [44], as

1

CHAPTER 1. INTRODUCTION 2

50-100nm technologies will prevail in the second part of this decade.

Traditional on-chip communication structures have already encountered many lim-

itations in today’s VLSI designs. Many of these limitations will become even more

problematic as the semiconductor technology advances into newer generations. These

limitations are either associated with the scaling-down of the device feature size, or

they are inevitable with the scaling-up of design complexity [25]. Particularly, the

following issues will become the bottleneck in the future communication-centric SoC

design scheme:

• Throughput Limitation– Traditional on-chip communication structures (i.e.,

the buses) cannot scale up as the number of components increases. When

multiple dataflows are transmitted concurrently, they will compete for the same

communication resources.

• Energy Consumption– As the VLSI device features are continuously shrink-

ing down, interconnect wires have been one of the major contributors of the

system energy consumption. The buses used in many of today’s SoC designs

are notoriously not energy-efficient, because every bit transmitted is propagated

throughout the bus to every terminal.

• Signal Integrity – Energy considerations will impose small logic swings and

power supplies, most likely below 1 Volt. Smaller device feature sizes will also

produce denser wires (i.e., 7 layers or more of routing wires) connecting highly

compacted transistors. Therefore, future VLSI systems will become more vul-

nerable to various forms of electrical noise, such as cross-talk, electro-magnetic

interference (EMI) and radiation-induced charge injection (soft errors). An ad-

ditional source of errors is contention in shared-medium networks. Contention

resolution is fundamentally a non-deterministic process, because it requires syn-

chronization of a distributed system, and for this reason it can be seen as an

additional noise source. Because of these effects, the mere transmission of digital

values on wires will be inherently unreliable.

• Signal Latency– The propagation delay on wires will gradually dominate the

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Micro-Network Stack

signal latency as the wire feature size shrinks. In fact, wire delay has already

become a big challenge in today’s VLSI systems, because the delay is determined

by the physical distribution of the components, which is hard to predict in the

early stages of the design flow. A more predictable communication scheme is of

great importance in the future SoC designs.

• Global Synchronization– Propagation delay on global wires - spanning a sig-

nificant fraction of the chip size - will pose another challenge on future SoCs. As

the wire size continues to shrink, the signal propagation delay will eventually ex-

ceed the clock period. Thus signals on global wires will be pipelined. Hence the

need for latency insensitive design is critical. The most likely synchronization

paradigm for future chips is globally-asynchronous locally-synchronous (GALS),

with many different clocks.

We propose to use network design technology to analyze and design future SoCs.

In other words, we view a SoC as a micro-network of components, where the PEs and

SEs are interconnected as node components, or simply referred to as nodes. We pos-

tulate that SoC interconnect design analysis and synthesis can be done by using the

micro-network stack paradigm, which is an adaptation of the protocol stack [48] (Fig-

ure 1.1). Thus the electrical, logic, and functional properties of the interconnection

scheme can be abstracted.

CHAPTER 1. INTRODUCTION 4

1.2 Micro-Networks: Architectures and Protocols

In the proposed on-chip network architecture, or networks-on-chip (NoC), each PE or

SE is abstracted as a node, and the nodes are interconnected by the micro-network

that can provide scalable and concurrent point-to-point (P2P) or point-to-many (P2M)

connection. As a new SoC design paradigm, NoCs will support novel solutions

to many of above mentioned SoC interconnect problems. For example, multiple

dataflows can be supported concurrently by the same communication resources, data

integrity can be enhanced by error correction and data restoration, and components

are more modularized for IP reuse.

On-chip network architectures may adopt design concepts and methodologies from

computer networks, namely from system-area-networks (SAN) and parallel computer

clusters (PCC). Communication in on-chip network architecture is also regulated by

protocols, which are designed in layers. The layer stack in NoCs may differ from

traditional networks because of local proximity and because they exhibit much less

non-determinism. Although we may borrow some concepts and approaches from

computer network architectures, we do not need to follow the OSI seven-layer scheme

to setup a communication transaction. Instead, on-chip networks may exploit tailor-

made protocols to satisfy application specific requirements.

We analyze next specific issues related to the different layers of abstraction out-

lined in the micro-network stack in a bottom-up way.

1.2.1 Physical Layer

Global wires are the physical implementation of the communication channels. While

the VLSI technology trends lead us to use smaller voltage swings and capacitances,

the signal integrity problem will get worse. Thus the trend toward faster and lower-

power communication may decrease reliability as an unfortunate side effect.

Current design styles consider wiring-related effects as undesirable parasitics, and

try to reduce or cancel them by specific and detailed physical design techniques.

It is important to realize that a well-balanced design should not over-design wires

so that their behavior approaches an ideal one, because the corresponding cost in

CHAPTER 1. INTRODUCTION 5

performance, energy-efficiency and modularity may be too high. Physical layer design

should find a compromise between competing quality metrics and provide a clean and

complete abstraction of channel characteristics to micro-network layers above.

1.2.2 Datalink, Network and Transport Layers

The data-link layer abstracts the physical layer as an unreliable digital link, where the

probability of bit upsets is not negligible (and increasing as technology scales down).

An effective way to deal with errors in communication is to packetize data. If data

is sent on an unreliable channel in packets, error containment and recovery is easier,

because the effect of errors is contained by packet boundaries, and error recovery can

be carried out on a packet-by-packet basis. At the data link layer, error correction

can be achieved by using standard error correcting codes (ECC) that add redundancy

to the transferred information.

At the network layer, packetized data transmission can be customized by the

choice of switching and routing algorithms. The former establishes the type of connec-

tion while the latter determines the path followed by a message through the network

to its final destination.

At the transport layer, algorithms deal with the decomposition of messages into

packets at the source and their assembly at destination. Packetization granularity is

a critical design decision, because the behavior of most network control algorithms

is very sensitive to packet size. Packet size can be application-specific in SoCs, as

opposed to general networks.

1.2.3 Software and Application Layer

Software layers comprise system and application software. The system software pro-

vides us with an abstraction of the underlying hardware platform, which can be

leveraged by the application developer to safely and effectively exploit the hardware’s

capabilities.

From a high level application viewpoint, multiprocessor SoC platforms can be

viewed as networks of computing nodes equipped with local storage. Software layers

CHAPTER 1. INTRODUCTION 6

are critical for the NoC paradigm shift, especially when energy efficiency is a require-

ment. Software programming abstractions, development tools and system software

need to help programmers understanding communication-related costs and coping

with them

1.3 Research Challenges in Networks-on-Chip

The above analysis shows that on-chip networks differ from traditional computer

networks, many assumptions and solutions have to be adapted to the on-chip imple-

mentation. NoC architectures and protocols have to deal with the advantages and

limitations of the silicon fabric. In particular, chip-level communication is localized

between nodes (PEs and SEs). On-chip networks do not need to follow the standard

schemes for communication since they can use lighter and faster protocol layers. NoCs

will require novel methodologies for both on-chip switch designs as well as routing

algorithm designs.

1.3.1 Current Research in NoCs

NoC research has been an active topic in recent years. Many researchers around the

world are contributing to this field from different aspects. The NoC related research

has been primarily carried out in the following three areas: 1) NoC architectures, 2)

NoC protocols and 3) NoC design automation. In reality, these three areas are closely

interacted to each other, any design exploration on NoC has to consider all issues as

well. Next, we will summarize the research activities in different areas briefly.

NoC Architectures

A torus network architecture was proposed by [15] for the feasibility of on-chip com-

munication. In the architecture proposed, each PE is placed as a tile and connected

by the torus network (Fig. 1.2a). The tiles represent the processing elements or

storage elements. Although the tiles may have different functionalities, they have

homogeneous physical dimension and are regularly floorplanned and placed. Packet

CHAPTER 1. INTRODUCTION 7

switching technique is applied for inter-tile communication. The dataflows are seg-

mented into packets, and the packets are routed from sources to destinations. Each

tile can perform packet routing and arbitration independently. The network inter-

faces are located on the peripherals of each tile. Since in a torus network, each

tile is abutted to four neighboring tiles, the packets are exchanged between adjacent

neighbors.

Figure 1.2: The Two-Dimensional Torus Networks Proposed by Dally, et. al

The Nostrum network was proposed by [31]. It also adopts the tile-based floorplan

structure and utilizes a two-dimensional mesh topology (Fig. 1.3). The dataflows

are segmented into packets and packets are routed independently. Different from

the architecture proposed in [15], a dedicated switch network is used to perform

the routing function and acts as a network interface for each node. The dedicated

network consists of switches and interconnect wires. The switches are located at the

intersection of the mesh grids. Each switch has its own buffers and arbitration circuits

to deliver the packets.

The SPIN network [20] was proposed as a communication architecture for on-chip

multiprocessors. The network utilizes a fat-tree topology where each processor is

located at the leaf node of the fat-tree, as shown in Fig. 1.4. Messages (segmented into

packets) can be exchanged between processing elements by traveling up and down the

fat-tree network. The packets are defined as sequences of 36-bit words. The packet

header fits in the first word, where a byte in the header identifies the destination

address, and other bits are used for packet tagging and routing information. The

CHAPTER 1. INTRODUCTION 8

Figure 1.3: The Two-Dimensional Indirect Mesh Proposed by Kumar, et. al.

packet payload can be of variable sizes. Each packet is terminated by a trailer, which

contains no data, but a checksum for error detection.

Figure 1.4: The SPIN Networks

The Octagon network (Fig. 1.5) was proposed by [29] as an on-chip communi-

cation architecture for network processors. In this architecture, eight processors are

connected by an octagonal ring and three diameters. The delays between any two

node processors are no more than two stages (through one intermediate node) within

the local ring. The Octagon network is scalable. If one node processor is used as the

CHAPTER 1. INTRODUCTION 9

Figure 1.5: The Octagon Networks

bridge node, more Octagons can be cascaded together, as shown in Fig. 1.5.

NoC Protocols

Communication in a NoC architecture is regulated by protocols. A protocol not only

determines how dataflows are distributed among networks nodes (known as routing

protocol), but also defines how senders and receivers execute the communication

transactions (known as transmission protocols). For NoC applications, the reliability

and power consumption issues are greatly affected by different protocol options. Next,

we will describe some recent works related to the NoC transmission protocol and

routing protocol implementation.

A low-swing signaling, error detection coding and a retransmission scheme is pro-

posed by [50]. It minimizes the interconnect voltage swing and frequency subject

to workload requirement and S/N conditions. Simulation results show that tangible

saving in energy can be attained while achieving at the same time more robustness

to large variations in actual workload, noise and technology quality. It shows that

traditional worse-case correct-be design paradigm will be less and less applicable in

future NoC designs.

Two alternative reliability-enhancement communication protocols: error-correcting

CHAPTER 1. INTRODUCTION 10

codes and error-detecting codes with retransmission, are analyzed and compared by

[6]. A set of experiments that apply error correcting and detecting codes to an AMBA

bus are compared in terms of the energy consumption. The results show that retrans-

mission strategies are more effective than correction ones from an energy viewpoint.

Because larger detection capability allows to use smaller voltage swing on the in-

terconnect, thus helps to reduce the energy consumption. Moreover, error-detection

requires minor decoding complexity than the error-correction approach.

Guaranteed service protocols are essential to provide predictable interconnects

performance. However, guaranteed communication protocol implementation typically

utilize resources inefficiently. In comparison, best-effort service protocols overcome

this problem but provide no guarantees. In [41], an integration of guaranteed and

best-effort services is proposed, which provides efficient resource utilization, and still

provides guarantees for critical traffic.

Another NoC traffic mapping and routing algorithm is proposed by [27]. The pro-

posed scheme can automatically map the cores onto a mesh-based NoC architecture

and constructs a deadlock-free deterministic routing function such that the total com-

munication energy is minimized. The performance of the resulting communication

system is guaranteed to satisfy the specified constraints through bandwidth reser-

vation. An efficient branch-and-bound algorithm is used to solve this mapping and

allocation problem. The proposed algorithm is fast and achieves significant energy

savings compared to an ad-hoc implementation.

Design Automation for NoC

Xpipes [12] was designed in University of Bologna. It is a scalable and high-performance

NoC architecture for multi-processor SoCs. It consists of soft macros that can be

turned into instance-specific network components at instantiation time. The flexibil-

ity of the Xpipes components allows the NoC to support both homogeneous and het-

erogeneous architectures. The interface with IP cores at the periphery of the network

is standardized. Links can be pipelined with a flexible number of stages to decou-

ple data introduction speed from worst-case link delay. Switches are lightweight and

support reliable communication for arbitrary link pipeline depths (latency insensitive

CHAPTER 1. INTRODUCTION 11

operation). Xpipes components have been described in synthesizable SystemC, at the

cycle-accurate and signal-accurate level. Xpipes architecture is highly configurable to

different network topologies and technology parameters.

A framework for early exploration of the on-chip communication architecture was

proposed by [30] at Aachen University of Technology. The framework is also written in

SystemC. It is able to capture the performance and cost requirements for different on-

chip networks, such as dedicated point-to-point, shared bus, and crossbar topologies.

The mapping of the inter-module traffic to an efficient communication architecture

is driven by monitoring the performance parameters, i.e., utilization, latency and

throughput, etc. The effectiveness of this approach is demonstrated by the exemplary

design of a high performance Network Processing Unit (NPU), which is compared

against a commercial NPU device.

1.3.2 My Contribution in NOC Research

The idea of on-chip network architecture will create many new research opportunities

within the Electronic Design Automation (EDA) field. In particular, this dissertation

has explored the on-chip network and communication design spaces in the following

directions:

1. On-chip interconnect power consumption modeling and simulation

Future systems-on-chip have very stringent limitation on power dissipation.

Therefore, system performance needs to balance with the power consumption

in on-chip network designs. I have proposed a bit-level power model that can

be used for on-chip network power consumption analysis. As a case study, I

applied this model to analyze the power consumption of switch fabrics used in

many different on-chip network topologies.

2. Novel on-chip communication routing protocol

The characteristics of silicon fabrics require new methodologies for on-chip net-

work packet routing. I have proposed a new routing scheme that achieves signif-

icant performance improvement and power saving compared with conventional

CHAPTER 1. INTRODUCTION 12

methods. This routing scheme utilizes the abundant wiring resources avail-

able on silicon and propagates the network contention information on dedicated

control wires. This contention-look-ahead scheme improves the routing per-

formance. Because the contention occurrence between packets is reduced, the

on-chip buffer usage can be dramatically reduced. Consequently, the network

power consumption is reduced as well.

3. Packetization and its impact on system performance and power con-

sumption.

On-chip network performance and power consumption are greatly affected by

the packet dataflows that are transported on the network. In this research,

I analyzed the packet size impact on system performance as well as power

consumption. Particularly, I have proposed a quantitative method of analysis

to evaluate the trade-off relationship between different design options (cache,

memory, packetization scheme, etc.) at the architectural level.

4. Physical planning of on-chip networks and switch fabrics

Silicon implementations of on-chip networks need to planarize the interconnect

networks and switch fabrics onto the two-dimensional floorplan. On-chip net-

work physical planning is particularly critical for multiprocessor systems-on-chip

architectures that utilize regular network topologies. The floorplan requires to

preserve the network regularity while minimizing the total interconnect wire

length to save power and reduce delay.

I have proposed an automated MPSoC physical planning methodology; a tool-

implementation of this methodology, called REGULAY, has also been devel-

oped. REGULAY can generate an optimal floorplan for different topologies

under different design constraints. Compared with traditional floorplanning

approaches, REGULAY shows significant advantages in reducing the total inter-

connect wirelength while preserving the regularity and hierarchy of the network

topology.

CHAPTER 1. INTRODUCTION 13

1.4 Assumptions and Limitation

The analysis and routing schemes proposed in this dissertation are based on the

shared-memory multiprocessor SoCs. Each node contains a microprocessor and a

local memory hierarchy that includes one or two levels of cache and a local memory.

The memories on different nodes are globally addressed and accessible from remote

nodes.

The experiments described in this dissertation are ported from parallel computer

benchmarks, many of them are from the Stanford SPLASH project. Although the

benchmarks were originally designed for parallel computer clusters, we found them

also applicable to many on-chip implementations. Details of those benchmarks are

described in the corresponding chapters.

The software and application layer is a very critical aspect on the NoC commu-

nication stack. However, in this dissertation, we focus mostly on the physical and

network layer issues. The benchmark experiments performed in this research are

loaded manually to each node processor, because there is no NoC-based operating

system that can support executable programs.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 first introduces the basis of on-chip

network architectures used in multiprocessor systems-on-chip designs. In particular,

we will focus on the shared-memory MPSoCs, although much of the analysis can also

be used for other MPSoC architectures. Chapter 3 presents a bit-level power model

that can be applied to the analysis of on-chip communication power consumption.

Chapter 4 introduces a contention-look-ahead on-chip routing scheme that can re-

duce the contention occurrence with much smaller buffer space requirement. This

routing scheme is particularly useful for on-chip communication design because it

minimizes both the power consumption and packet latency. Chapter 5 analyzes dif-

ferent packetization schemes and the corresponding impact on MPSoC performance

CHAPTER 1. INTRODUCTION 14

as well as power dissipation. Chapter 6 shifts the focus to the on-chip network imple-

mentation issues. In particular, it is shown that different network topologies can be

planarized on a silicon floorplan under varies constraints. A tool-implementation of

this floorplanning methodology, called REGULAY is also introduced. Chapter 7 will

propose future works on networks-on-chip research.

Chapter 2

Networks-on-Chip

In this chapter, we will describe the basis of MPSoC architectures that includes the

processor-memory hierarchy as well as inter-processor network topology. MPSoC net-

works have many special characteristics that are different from traditional computer

networks, we will exploit these characteristics in the MPSoC silicon implementation.

2.1 MPSoC Architecture and Networks

The inter-node communication between multiprocessors can be implemented by either

message passing or memory sharing. In the message passing MPSoCs, data trans-

actions between nodes are performed explicitly by the communication APIs, such

as send() or receive(). These API commands require special protocols to handle the

transaction, and thus create extra communication overhead. In comparison, in shared

memory (in some case, shared level-2 cache) MPSoCs, data transactions can be per-

formed implicitly through memory access operation [11]. Therefore, shared-memory

MPSoC architectures have been widely used in many of today’s high performance

multiprocessor systems. In our research, we will use the shared-memory MPSoC ar-

chitectures to analysis the on-chip network issues, although many of the solutions can

be applied to general MPSoC architectures as well.

We will first introduce some examples of shared-memory MPSoC architectures,

15

CHAPTER 2. NETWORKS-ON-CHIP 16

then proceed to more detailed analysis of different aspects of on-chip network archi-

tectures.

2.1.1 Shared Memory MPSoC Examples

Daytona [1] is a single chip multiprocessor developed by Lucent. It consists of four 64-

bit processing elements that generate transactions of different sizes. Daytona targets

on the high performance DSP applications with scalable implementation choices. The

inter-node communication is performed by the on-chip bus with split transactions.

Piranha [4] project is developed by DEC/Compaq, it integrates eight alpha processors

on a single chip and uses packet routing for the on-chip communication. The Stanford

Hydra [23] chip contains four MIPS-based processors and uses shared level-2 cache

for inter-node communication.

All these architectures utilize shared memory (or cache) approach to perform data

transactions between processors, and thus achieve high performance with parallel data

processing ability. In this chapter, we will use the shared memory MPSoC platform

to analyze different aspects of on-chip network architectures.

2.1.2 MPSoC Architecture

A typical shared-memory on-chip multiprocessor system is shown in Figure 2.1. It

consists of several node processors or processing elements connected by an on-chip in-

terconnect network. Each node processor has its own CPU/FPU and cache hierarchy

(one or two levels of cache). A read miss in L1 cache will create an L2 cache access,

and a miss in L2 cache will then need a memory access. Both L1 and L2 cache may

use write-through or write-back for cache updates.

The shared memories are associated with each node, but they can be physically

placed into one big memory block. The memories are globally addressed and accessible

by the memory directory. When there is a miss in L2 cache, the L2 cache will send a

request packet across the network asking for memory access. The memory with the

requested address will return a reply packet containing the data to the requesting

node. When there is a cache write-through or write-back operation, the cache block

CHAPTER 2. NETWORKS-ON-CHIP 17

Figure 2.1: MPSoC Architecture

that needs to be updated is encapsulated in a packet and sent to the destination node

where the corresponding memory resides.

Cache coherence is a very critical issue in shared-memory MPSoC. Because one

data may have several copies in different node caches, when the data in memory is

updated, the stale data stored in each cache needs to be updated. There are two

methods of solving the cache coherence problem: 1) cache update updates all copies

in cache when the data in memory is updated; 2) cache invalidate invalidates all

copies in cache. When the data is read the next time, the read will become a miss

and consequently need to fetch the updated data from the corresponding memory.

2.2 MPSoC Network Topologies

Because of different performance requirements and cost metrics, many different multi-

processor network topologies are designed for specific applications. MPSoC networks

can be categorized as direct networks and indirect networks [17]. In direct network

MPSoCs, node processors are connected directly with each other by the network.

Each node performs dataflow routing as well as arbitration. In indirect network MP-

SoCs, node processors are connected by one (or more) intermediate node switches.

The switching nodes perform the routing and arbitration functions. Therefore, indi-

rect networks are also often referred to as multistage interconnect networks (MIN).

CHAPTER 2. NETWORKS-ON-CHIP 18

Although some direct networks and indirect networks may be equivalent in function-

ality, e.g., if each node processor has one dedicated node switch, this node switch

can either be embedded inside the node processor, or be constructed outside. Nev-

ertheless, direct and indirect topologies have different impact on network physical

implementation. In this thesis, to avoid confusion, we call the intermediate switching

nodes in indirect networks switch fabrics, and simply refer to both node processors

and node switches as “nodes”.

Direct networks and indirect networks can have different topologies [17]. It is not

the objective of this chapter to discuss the functionalities and performance metrics

of these different networks. Rather, we are going to give only a brief description of

some of the popular network topologies. We will use these topologies as examples to

formulate the MPSoC on-chip network problems in later chapters.

2.2.1 Direct Network Topologies

Orthogonal Topology

Nodes in orthogonal networks are connected in k-ary n-dimensional mesh (k-ary n-

mesh) or k-ary n-dimensional torus (k-ary n-cube) formations, as shown in Fig. 2.2.

Because of the simple connection and easy routing provided by adjacency, mesh and

torus networks are widely used in parallel computing platforms [13]. Orthogonal

networks are highly regular. Therefore, the interconnect length between nodes is

expected to be uniform to ensure the performance uniformity of the node processors.

Figure 2.2: Mesh and Torus Networks

CHAPTER 2. NETWORKS-ON-CHIP 19

Cube-Connected-Cycles Topology

The cube-connected-cycles (CCC) topology is proposed as an alternative to orthogonal

topologies to reduce the degree of each node [40], as shown in Fig. 2.3a. Each node

has 3 degrees of connectivity as compared to 2n degrees in mesh and torus networks.

CCC networks have a hierarchical structure: the three nodes at each corner of the

cube form a local ring.

Figure 2.3: Cube-connected-cycles Networks

Octagon Topology

The Octagon network [29] introduced in Chapter 1 is another example of direct net-

work topologies.

2.2.2 Indirect Network Topologies

Crossbar Switch Fabrics

An N × N crossbar network connects N input ports with N output ports. Any of

the N input ports can be connected to any of the N output ports by a node switch

on the corresponding crosspoint (Fig. 2.4).

CHAPTER 2. NETWORKS-ON-CHIP 20

Figure 2.4: Crossbar Switch Fabrics

Fully-Connected Network

An N × N fully-connected network uses MUXes to aggregate every input to the

output (Fig. 2.5). Each MUX is controlled by the arbiter that determines which

input should be directed to the output.

Similar to the crossbar network (fully connected switch network is also often re-

ferred as crossbar), in fully connected switch network, each source-destination con-

nection has its dedicated data path.

Butterfly Topology

The Butterfly network (Fig. 2.6) is an indirect network architecture. Inside the

butterfly fabrics, each source-destination route uses a dedicated datapath. The delays

between any two node processors are the same, and the delay is determined by the

number of intermediate stages on the switch fabrics.

Butterfly topology has many different isomorphic variations, such as Banyan Net-

work, Batcher-Banyan Networks, etc., as described as follows.

CHAPTER 2. NETWORKS-ON-CHIP 21

Figure 2.5: Fully-Connected Switch Fabrics

Banyan Network

Banyan network (Fig. 2.7) is an isomorphic variation of Butterfly topology. It has

N = 2n inputs and N = 2n outputs, where n is called the dimension of Banyan. It

has total of 1

2
N log

2
N switches in n stages, each stage is referred as stage i where

0 ≤ i < n [9].

Batcher-Banyan Network

The Batcher-Banyan consists of a Batcher sorting network, followed by the Banyan

network, as shown in Fig. 2.8. After sorting network, each input-output connection

will have its own dedicated path. Batcher-Banyan network addresses the interconnect

contention issues [9], which will be analyzed in details in the following chapters.

Fat-tree Topology

Unlike the Butterfly network, a fat-tree network provides multiple datapaths from

source node to destination node. As shown in Fig. 2.9, the fat-tree network can be

CHAPTER 2. NETWORKS-ON-CHIP 22

Figure 2.6: Butterfly and Fat-tree Network Switch Fabrics

regarded as an expanded n-ary tree network with multiple root nodes. The network

delays are dependent on the depth of the tree. SPIN network [20] is one design

example that uses 4-ary fat-tree topology for the MPSoC on-chip communication.

2.3 On-chip Network Characteristics

On-chip networks are fabricated on a single chip and benefit from data locality. In

comparison, networked computers are physically distributed at different locations.

Although many of the above on-chip network architectures adopt the topology from

computer networks, e.g., system area networks and parallel computer clusters. Many

assumptions in computer networks may no longer hold for on-chip networks.

2.3.1 Wiring Resources

In computer networks, computers are connected by cables. The number of wires

encapsulated in a cable is limited (e.g., CAT-5 Ethernet cable has 8 wires, parallel

CHAPTER 2. NETWORKS-ON-CHIP 23

Figure 2.7: Banyan Switch Fabric Network

Figure 2.8: Batcher-Banyan Switch Fabric Network

cable in PC peripheral devices has 25 wires, etc.). Binding more wires in a cable is

not physically and practically viable. Because of the wiring limitation, in many of

today’s computer networks, data are serialized in fixed quanta before transmission.

In comparison, the wire connection between components in SoC is only limited

by the switching and routing resources. In today’s 0.13µm semiconductor process,

the metal wire pitch varies from 0.30µm to 0.50µm, while 8 metal layers are avail-

able. Thus a 100µm× 100µm switch-box can accommodate hundreds of wires in any

direction (i.e., layers). The cost of adding more routing layers continues to decrease

as the VLSI process technology advances. Therefore, physical wire density is not the

limiting factor for future SoC designs.

CHAPTER 2. NETWORKS-ON-CHIP 24

Figure 2.9: The Fat-Tree Networks

2.3.2 Buffers on Networks

Limited wiring resource tends to create contention and limit throughput. Computer

networks use heavily buffers to compensate for wire limitation. Buffers provide tem-

porary storage when contention occurs, or when the dataflow exceeds the network

throughput. Network switches and routers use a fairly large amount of buffer spaces.

These buffers are implemented with SRAMs and DRAMs. The buffer size can be as

big as several hundred megabytes (e.g., in the case of network routers).

In comparison, on-chip networks should always balance the buffer usage with

other architectural options, because on-chip buffers are implemented by SRAMs or

DRAMs, and both memories consume significant power during operation. Besides,

on-chip SRAMs occupy a large silicon area, and embedded DRAMs increase the wafer

manufacturing cost. Since buffers are expensive to implement and power-hungry

during operation, on-chip networks should reduce the buffer size on the switches as

much as possible.

CHAPTER 2. NETWORKS-ON-CHIP 25

2.3.3 On-Chip Protocols

Communication protocols in computer networks are strictly regulated by compati-

bility and adaptability requirements. In comparison, on-chip communication is con-

strained less strictly because NoC is a self-contained system. NoC communication

may benefit from on-chip locality and adopt application-specific or platform-specific

protocols that can best exploit the hardware resources.

In Chapter 1, we have described different approaches for on-chip network protocol

implementation. In the forthcoming chapters, we will show that many parameters in

NoC communication protocol, e.g., packet size, segmentation schemes, buffer sizes,

etc., can be adjusted to achieve optimal tradeoffs between performance and energy

consumption. More detailed analysis will be performed in those chapters.

2.3.4 System Software and Application

Current and future NoC platform will be highly programmable, and therefore the

NoC performance and power consumption will critically depend on software aspects.

The system software provides the users with an abstraction of the underlying NoC

hardware platform, which can be leveraged by the application developer to safely and

effectively exploit the hardware’s capabilities. Current SoC programming methodol-

ogy is not capable for these requirements because of the following limitations.

1. The on-chip communication cost, which includes power consumption and la-

tency, is not explicit in current SoC operating system and software develop-

ment tools. Current SoC programming styles are based on a shared memory

paradigm, which is appropriate for tightly coupled, small-scale SoCs with lim-

ited number of PEs and SEs. Shared memory abstraction tend to hide the cost

and unpredictability of communication, which are destined to grow in a NoC

platform.

2. Current SoC software development platforms are mostly geared toward single

microcontroller with multiple coprocessors architectures. Most of the system

CHAPTER 2. NETWORKS-ON-CHIP 26

software runs on the control processor, which orchestrates the system activ-

ity and assigns computationally intensive tasks to domain-specific coprocessors.

Microcontroller-coprocessor communication is usually not data-intensive (e.g.,

synchronization and re-configuration information), and most high-bandwidth

data communication (e.g., coprocessor-coprocessor and coprocessor-IO) is per-

formed via shared memories and DMA transfers. The orchestration activities

in the micro-controller are performed via run-time services provided by single-

processor real-time operating systems, which differentiate from standard op-

erating systems in their enhanced modularity, reduced memory footprint and

support for real-time scheduling and bounded time interrupt service times.

3. Current SoC application programming is mostly based on manual partitioning

and distribution of the most computationally intensive kernels to data copro-

cessors (e.g., VLIW multimedia engines, digital signal processors, etc.). After

partitioning, different code generation and optimization approaches are used for

each target coprocessor and the control processor.

NoC system software needs a paradigm shift. On-chip communication cost (in-

cluding latency and power consumption) should be made explicit throughout all step

of the NoC software development flow. Software programming and analysis should

identify communication bottlenecks and power dissipation hot spots on the system.

We envision the NoC system and programming paradigm should be emphasized on

the following issues.

1. The NoC operating system cannot be centralized. Truly distributed embedded

OSes are required [8] to create a scalable run-time system. The NoC OS should

natively support power management. Each PE node and SE node in NoC mi-

cronetworks should be power-manageable, with individually controllable clock

speeds and supply voltages.

2. Future NoC system should optimize and automate the task mapping procedure.

Because a communication-optimal task mapping leads to balanced throughput

and/or shorter latency. The on-chip communication energy consumption can

CHAPTER 2. NETWORKS-ON-CHIP 27

also benefit from an optimized task mapping, because in many cases, local

congestion requires more network resources (e.g., buffers or wires) to solve the

contention, and consequently cost high power consumption.

System and application software are very critical issues for future NoC designs. We

believe that the full potential of on-chip networks can be effectively exploited only

if adequate software abstractions and programming aids are developed to support

them.

2.4 Summary

In this chapter, we outlined many critical areas that need to be emphasized in design-

ing NoC platforms. Many of these areas require a paradigm shift from the traditional

SoC design methodologies. In the next few chapters, we will focus on the NoC com-

munication architecture analysis and designs. In particular, we will discuss the power

modeling, routing and packetization issues.

Chapter 3

On-Chip Network Energy Model

3.1 Introduction

Whereas computation and storage energy greatly benefits from device scaling (smaller

gates, smaller memory cells), the energy for on-chip communication does not scale

down. On the contrary, projections based on current delay optimization techniques for

global interconnects [25, 45, 46] show that global communication on chip will require

increasingly higher energy consumption. Hence, communication-energy minimization

will be a growing concern in future technologies.

In this chapter, we introduce a framework to estimate the power consumption of

on-chip networks. We propose different modeling methodologies for node switches,

internal buffers and interconnect wires inside on-chip network architectures. A sim-

ulation platform is also implemented to trace the dynamic power consumption with

bit-level accuracy. Using this framework, four on-chip network architectures are ana-

lyzed under different traffic throughput and different numbers of ingress/egress ports.

This framework and analysis will be applied in later chapters in the NoC architectural

exploration and performance analysis.

In direct networks, the routing and arbitration functions are embedded into each

node processor. In comparison, indirect networks have dedicated node switches and

buffers. Nevertheless, when we consider the power consumption of the on-chip net-

works (both direct and indirect), we can estimate the power from the following three

28

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 29

components:

1. The internal node switches, located on the intermediate nodes between node

processors.

2. The internal buffers, used to temporarily store the packets when contention

between packets occurs.

3. The interconnect wires that connect node switches.

The power consumption on these three components changes differently under different

traffic loads and configurations. Therefore, they need to be analyzed with different

modeling methodologies.

In this chapter, we propose different power consumption models for each of the

above three components. We then apply these models on four widely-used indirect

switch fabric architectures:

1. Crossbar

2. Fully Connected

3. Banyan

4. Batcher-Banyan

We will also use these power models on direct networks in the later chapters when

we analysis the routing and packetization issues of on-chip networks.

A Simulink based multi-threading simulation platform is created for this analysis.

It performs a time domain simulation with bit-level accuracy. The power consumption

of every bit in the traffic flow is traced as the bit moves among the components inside

switch fabrics.

Previous approaches for switch network power estimation are either based on

statistical traffic models [49], or analytical models [37] [33]. The simulation is per-

formed on gate or circuit levels, it is time consuming and not practical for large

on-chip network designs. Furthermore, these approaches are not suitable for tracing

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 30

the power consumption dynamically in real-time network traffic conditions. For ex-

ample, the power consumption on internal switch buffers depends on the dynamic

contention between packets. Compared with previous approaches, our modeling is an

architectural-level estimation with bit-level accuracy. It traces the power consump-

tion based on dynamic packet dataflows. This approach is well-suited for architectural

design exploration as well as application specific power analysis.

3.2 Indirect Networks Switch Fabrics

In indirect networks, switch fabrics are the intermediate circuits that are intercon-

nected between node processors. Switch fabric circuits consist of the node switches,

interconnect wires and buffers. Generally, the ports that connect switch fabrics with

node processors are often referred as ingress and egress ports.

Different switch fabric architectures affect the network performance (e.g. through-

put, delay, power, etc.) differently. In the following sections, we will focus on the

power consumption issues of switch fabrics and estimate the power consumption of

different switch fabric architectures with different numbers of ingress and egress ports.

3.3 Power Modeling with Bit Energy

As introduced previously, the power consumption on switch fabrics comes from the

following three different sources:

1. The internal node switches.

2. The internal buffer queues.

3. The interconnect wires.

Inside the switch fabrics, different packets travel on different data paths concurrently,

and the traffic load on each data path may change dramatically from time to time. To

estimate the dynamic power consumption in this multi-process interconnect network,

we propose a new modeling approach: the Bit Energy Ebit.

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 31

The bit energy Ebit is defined as the energy consumed by each bit when the

bit is transported inside the switch fabrics from ingress ports to egress ports. The

bit energy Ebit is the sum of the bit energy consumed on node switches, ESbit
, on

internal buffers, EBbit
and on interconnect wires, EWbit

. We will analyze these three

bit energies in details in the following sections.

3.3.1 Switch Power Consumption

Switches are located on the intermediate nodes inside switch fabrics. They direct the

packets from one intermediate stage to the next stage until reaching the destination

ports. In different switch fabric topologies, node switches may have different functions

and node degrees. For example, in Banyan switch fabrics, the node switch is a 2 × 2

switch and has degree of 4.

When a data bit travels through a node switch, the logic gates on the data path

inside the node switch consume power as they toggle between power rails. We will

analyze the 2 × 2 switch used in Banyan switch fabrics as an example (Fig. 3.1).

Figure 3.1: A 2 × 2 Node Switch in Banyan Switch

The 2 × 2 switch directs the packets from its two inputs to the outputs, according

to the destination addresses of the packets. The ingress process unit had already

parallelized the serial dataflow on the transmission line into a parallel bus dataflow

(16-bit or 32-bit wide), so the destination address can be read out at one clock cycle.

The destination bits are first detected by the allocator. If the destination port is

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 32

available, the allocator allocates the output port to the packet and preserves the

allocation throughout the packet transmission. The allocation process and packet

transmission process are denoted in Fig. 3.1 as “header data path” and “payload

data path” respectively. Both processes consume energy when packet bits travel

through the data paths. The energy consumed by the header bits is actually different

from the payload bits. However, the header normally occupies a small portion of the

entire packet. Without loss of generality, we will use the payload bit energy as the

node switch bit energy ESbit
in our analysis.

In reality, the bit energy ESbit
also depends on the presence or absence of packets

on other ports of the node switch. For example, the switch will consume more power

to process two packets at the same time, but the power consumption is not necessarily

twice as much as that of processing a single packet. Therefore, the bit energy ESbit
is

an input state-dependent value and should be expressed in an input vector indexed

look-up table. For a switch with n input ports, there will be 2n different input vectors

with different ESbit
values.

In our analysis, the look-up table is pre-calculated from Synopsys Power Compiler

simulation. The node switch circuit is first simulated based on input vectors. Then,

the switching activities on every gate are also traced. Last, the power consumption

of the entire circuit is estimated. We simulate different combinations of the input

vectors and the results are shown in details in Section 3.5. Using the look-up table,

the power consumption on the switch node can be estimated under different traffic

conditions.

3.3.2 Internal Buffer Power Consumption

When contention occurs between packets, internal buffers are needed to temporarily

store the packets with lower priorities (Fig. 3.2). There are two different types of con-

tention between ingress packets, namely, the destination contention and interconnect

contention.

• Destination contention – When there are two or more packets in the ingress ports

requesting the same destination port at the same time, destination contention

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 33

will occur. This type of contention is application dependent. In our analysis, we

assume the arbiter had already solved this type of contention before the ingress

process unit delivers the packets to the switch fabrics.

• Interconnect contention (Internal Blocking) – Inside switch fabric circuits, the

same interconnect link may be shared by packets with different destinations.

The contention on the shared interconnects is called interconnect contention or

internal blocking. It happens inside switch fabric interconnect networks and it

is architectural dependent.

Figure 3.2: Buffers in a 2 × 2 Node Switch

In switch fabric circuits, the buffers are normally implemented with shared SRAM

or DRAM memories. The energy consumption in buffers comes from two sources: 1)

the data access energy, consumed by each READ or WRITE memory access operation,

and 2) the refreshing energy, consumed by the memory refreshing operation (in the

case of DRAM). The bit energy on the internal buffers EBbit
can be expressed by the

following equation(Eq. 3.1):

EBbit
= Eaccess + Eref (3.1)

where Eaccess is the energy consumed by each access operation and Eref is the

energy consumed by each memory refreshing operation. In reality, memory is accessed

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 34

on word or byte basis instead of a single bit, the Eaccess is actually the average energy

consumed for one bit.

The energy consumed by memory access is determined by the contention between

the ingress packets. As discussed earlier, destination contention is application depen-

dent, regardless of what switch fabric circuits are used. In comparison, interconnect

contention is switch-fabric architecture dependent. Different architecture topologies

result in different contention occurrence. In this chapter, we are interested in com-

paring the power consumption on different switch fabric architectures under the same

network traffic, therefore, we assume the destination contention has already been re-

solved by the arbiter before the ingress packets are delivered to the switch fabrics.

We only compare the internal buffer energy consumption occurred from interconnect

contention.

3.3.3 Interconnect Wires Power Consumption

When the node switch delivers one bit with flipped polarity to the interconnect wires,

the signal on the wire will toggle between logic “0” and logic “1”. Energy is dissipated

in this charging or discharging process. Only bits with flipped polarity consume

energy, namely, EWbit0→1
or EWbit1→0

have bit energy values, EWbit0→0
= 0, EWbit1→1

= 0.

Assuming a rail-to-rail toggling, the bit energy on the interconnect wires EWbit
for

bit 1→0 and 0→1 can be described by the following equation (Eq. 3.2).

EWbit
=

1

2
CwireV

2α +
1

2
CinputV

2α =
1

2
CW V 2α (3.2)

Here Cwire is the wire capacitance on the interconnect, Cinput is the total capac-

itance of the input gates connected to the interconnect. CW = Cwire + Cinput is the

total load capacitance propagated by that bit. The rail-to-rail voltage is denoted by

V , assuming the CMOS gates are switching from Vdd to GND. The activity factor α

ranges from 0 to 1. In our simulation, we assume a random bit-stream in the dataflow,

therefore, α = 0.5.

The bit transmitted on interconnect wires consumes energy only when its polarity

is flipped from previous transmitted bit. The switching activities on interconnects

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 35

can be traced by our simulation approach proposed in Section 3.5.

3.3.4 Interconnect Wire Length Estimation

The wire capacitance Cwire is a function of wirelength and coupling capacitance be-

tween adjacent wires [25]. Estimation of interconnect wirelength of the switch fabric

network is essential for the bit energy calculation on wires. Here we adopt the Thomp-

son model [47] for wirelength estimation.

The Thompson Model

The Thompson model is based on a graph embedding process that maps a network

connectivity graph (referred as source graph G) to a two dimensional grid floorplan

(referred as destination graph H). The mapping process is described below and also

illustrated in Fig. 3.3.

Figure 3.3: Thompson Wire Length Estimation Model and Mapping Process

We are given a source graph G(VG, EG), where VGi
(0 < i ≤ n) are the vertices

of graph G and EGi
(0 < i ≤ m) are the edges. The source graph represents the

network topology. The target graph is denoted by H(VH , EH), where VH and EH are

the vertices and edges of H. Graph H is a 2-dimensional grid mesh consisting of p

columns and q rows. An embedding of graph G into graph H is performed as follows.

Each vertex in G is mapped into a d×d square of vertices in H, where d is the degree

of vertex vi ∈ VG and no more than one vertex in VG occupies the same vertex in VH .

Each edge in G is mapped into one or more edges of graph H, and no more than one

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 36

edge in EG occupies the same edge in graph H. The optimal Thompson embedding

of graph G into graph H is to find the minimum number of columns pmin and rows

qmin in H that are needed for this embedding. The interconnect wirelength is defined

as the number of grids that an edge EG covers.

Wire Length Estimation Using Thompson Model

In our approach, we manually map the switch fabric topologies into Thompson grids

and estimate the interconnect wirelength by counting the number of grids the inter-

connect covers. The detailed mapping of each particular switch fabric topology will

be shown in Section 3.4.

The Thompson model is only a global wirelength estimation. It is not as accurate

as detailed wire-routing, but it is an effective way of architectural planning for in-

terconnect networks, especially when the network topology is regular. In the case of

switch fabrics, it is straightforward to map the regular switch nodes and interconnects

into a 2-dimensional mesh of regular rows and columns. Therefore, the Thompson

model is an ideal model for switch fabric wirelength estimation.

For an interconnect wire of length equal to one Thompson grid, we define the wire

bit energy consumption as ETbit
. If an interconnect wire has its length equal to m

Thompson grids, its wire bit energy is EWbit
= m × ETbit

.

3.4 Switch Fabric Architectures

With the aforementioned power consumption model, we will analyze four widely-used

switch fabric architectures in this section.

3.4.1 Crossbar Switch Fabrics

Crossbar topology (Fig. 3.4) uses space division multiplexing for input-output con-

nection. Every input-output connection has its own dedicated data path, therefore,

crossbar is interconnect contention free.

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 37

Figure 3.4: Crossbar Switch Fabrics

The node switch on the crosspoint of crossbar network can be a simple CMOS

pass gate, or a tri-state CMOS buffer. Both are relatively simple compared to the

node switches used in other network topologies.

Every bit will propagate throughout the long interconnect wires that connect to

the input port (the row interconnect, in Fig. 3.4) and output port (the column

interconnect). It also toggles the input gates of all the node switches connected to

the same row. The load on the input port is the total of the wire capacitance and

the sum of all input capacitances of N switches.

Some crossbar switch networks use buffers at every crosspoint to solve the destina-

tion contention problems. As discussed earlier, we assume the destination contention

is already resolved by the arbiter, i.e., there are no buffers needed in the power mod-

eling of crossbar network.

A Thompson embedding of crossbar switch network is also shown in Fig. 3.4.

Under the Thompson model, the mapping is straightforward and the total bit energy

for the crossbar switch fabrics is described in Eq. 3.3.

Ebitcrossbar
= N × ESbit

+ 8N × ETbit
(3.3)

where ESbit
is the bit energy for the switch and ETbit

is the bit energy of a Thomp-

son grid wire. Each crossbar node switch has degree of 4, however, two of the ports

are used as feed-through ports, so we assume it occupies 2 × 2 Thompson grids.

Two extra rows/columns are also needed for horizontal and vertical interconnects for

each node switch. Each bit traveling from input i to output j will propagate both

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 38

the interconnect wires connected to the input port i and output port j, each of the

interconnect has length of 4N of a Thompson grid.

Crossbar has the benefit of being free of interconnect contention. However, the

bit energy will increase linearly with the number of input and output ports N . The

power consumption will be very high for switch fabrics with large port numbers.

3.4.2 Fully-Connected Network

Figure 3.5: Fully Connected Switch Fabrics

Similar to the crossbar network, in fully connected switch network (Fig. 3.5), each

source-destination connection has its dedicated data path (fully connected switch

network is also often referred as crossbar). The network is also free of interconnect

contention. There are no internal buffers needed in its power modeling.

The bit energy for a fully connected switch network is consumed on the intercon-

nect wires and the MUXes. A Thompson embedding is shown in Fig. 3.5, where the

MUXes are placed in a double-row fashion. The bit energy can be estimated with the

following equation (Eq. 3.4).

Ebitfullyconn
= ESbit

+
1

2
N × N × ETbit

(3.4)

where ESbit
is the bit energy on the MUX. Compared with crossbar switch, each

bit only consumes energy on one of the MUXes, instead of N switches as in the case

of crossbar. However, the N -input MUX has more complicated logic gates, and its

power consumption and complexity scale up with the number of inputs N .

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 39

3.4.3 Banyan Network

Banyan network (Fig. 3.6) has N = 2n inputs and N = 2n outputs, where n is

the dimension of Banyan. Therefore, the total number of switches is 1

2
N log

2
N in n

stages, each stage is referred as stage i where 0 ≤ i < n [9].

Figure 3.6: Banyan Switch Fabric Network

The switch used in a Banyan network is a binary switch, as described in Section

3.3. It has two inputs and two outputs. The input packet with destination bit ”0” or

”1” goes to output ”0” and ”1” respectively. Stage i in the Banyan network checks

the ith bit of the destination address of the packet, therefore, the packet will be routed

automatically from stage 0 to stage n − 1. This routing scheme is also called self-

routing switch fabrics. If two input packets have the same destination bit coming at

the same time, one of the input packets will be buffered.

Banyan network has interconnect contention problems [9]. The same interconnect

might be shared by different data paths. A buffer is needed at each internal node

switch.

The binary switches in Banyan network have more complex logic as compared

to the crosspoint node switches in crossbar network. A binary switch also consumes

more power when bit is switched from the input port to the output port.

A simple Thompson embedding of Banyan network is shown in Fig. 3.3. Detailed

analysis of Thompson embedding of Banyan isomorphic networks can be found in

[16]. Using the Thompson model, the longest interconnect wirelength for stage i of

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 40

Banyan network can be estimated as 4 × 2i Thompson grid. Different input/output

connections have different interconnect data paths. The worst case bit energy of

Banyan network (the longest interconnects a bit may travel) can be estimated using

Eq. 3.5 below.

EbitBanyan
=

n−1
∑

i=0

qiEBbit
+ 4

n−1
∑

i=0

2iETbit
+ nESbit

(3.5)

where N ≥ 2 and n ≥ 1. qi has the value of 0 or 1. When there is a contention

at stage i, qi is 1, otherwise it is 0. The value of qi is determined by the contentions

between packets on the interconnect.

3.4.4 Batcher-Banyan Network

To solve the interconnect contention problem, the Batcher-Banyan network architec-

ture is introduced, as shown in Fig. 3.7. The contention is solved by the Batcher

sorting network, followed by the Banyan network. After sorting network, each input-

output connection will have its own dedicated path, therefore there is no interconnect

contention [9].

Figure 3.7: Batcher-Banyan Switch Fabric Network

Although Batcher-Banyan network solves the interconnect contention problem, it

pays the price by increasing the number of stages between the inputs and outputs.

It has total of 1

2
(log2N)(log2N + 1)stages, which will in turn increase the bit energy

consumed on switches and interconnect wires.

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 41

The Thompson embedding of Batcher-Banyan is very similar to Banyan network,

except it has more stages. The worst case bit energy for Batcher-Banyan network can

be expressed in the following equation (Eq. 3.6).

EbitBatcher
= 4

n−1
∑

j=0

j
∑

i=0

2iETbit
+ 4

n−1
∑

i=0

2iETbit
(3.6)

+
1

2
n(n + 1)ESSbit

+ nESBbit
(3.7)

where N ≥ 4 and n ≥ 2. Because the sorting switch used in Batcher sorting

network is different from the binary switch used in Banyan network. we denote ESSbit

for the bit energy of sorting switches and ESBbit
for the bit energy of binary switches.

3.5 Bit-Energy Calculation and Experiments

In this chapter, we present a framework to estimate switch fabric power consumption.

The calculation and results are based on case studies. The accurate values of each

parameter for a specific switch fabric implementation depend on particular circuit

design techniques and technologies. However, the methodology introduced here can

be applied in other cases.

3.5.1 Bit Energy Calculation

1. Bit energy of Node Switches

As discussed in Section 3.3, the bit energy of node switches is state-dependent, it

depends on the presence or absence of the packets on other input ports. For a node

switch with n-input ports, there are 2n different input vectors with different bit energy

values. Normally switch fabrics with a large input/output ports are constructed

from node switches with smaller number of degrees (2 × 2 or 4 × 4), therefore, the

vector number 2n is not prohibitively large. In this chapter, the bit energy is pre-

calculated from Synopsys Power Compiler simulation. We build each of the node

switches with 0.18µm libraries, apply different input vectors and calculate the average

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 42

energy consumption on each bit. The circuits for each node switch range from a few

hundred gates to 10K gates, therefore, the simulating time is very quick (tens of

seconds, in most cases). The bit energy results for crossbar switches, the N-input

MUXes, the Banyan binary switches, the Batcher sorting switches are listed in Table

3.1.

Table 3.1: Bit Energy Under Different Input Vectors
Switch Fabric Input Bit Input Bit
Architectures Vector Energy Vector Energy

10−15joule 10−15joule

Crossbar 1 × 1 [0] 0 [1] 220
Banyan 2 × 2 [0,0] 0 [0,1] 1080

[1,0] 1080 [1,1] 1821
Batcher 2 × 2 [0,0] 0 [0,1] 1253

[1,0] 1253 [1,1] 2025
N-input MUX N = 4 431

N = 8 782
N = 16 1350
N = 32 2515

The input vectors for the 2×2 switches in the above table indicate presence or

absence of the packets on the corresponding input ports, e.g. [1,0] means only input

port 0 has a packet coming in. For the N -input MUXes, bit energy values are very

close among different input vectors, but they increase with the number of inputs N ,

as shown in the table.

2. Bit Energy of Buffer Queues

We use SRAM as the shared buffers inside Banyan switch fabrics. We adopt

techniques similar to those proposed by [19] and [42] to estimate the memory access

power consumption. SRAMs with different sizes have different access time and cur-

rent, therefore they have different memory access power dissipation. The buffer size

at each node switch greatly affects the performance of Banyan switch. The trade-off

analysis between buffer size and switch throughput is beyond the scope of this re-

search. Researches in [53] and [36] show that buffer size of a few packets will actually

achieve ideal throughput under most network traffic conditions. In our experiments,

we use 4K bit buffer queue for each Banyan node switch. Based on the buffer size of

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 43

each switch, we calculate the size of the shared memory. The memory access energy

consumption can then be estimated based on selected memory size.

An off-the-shelf 0.18µm 3.3V SRAM is used as a reference for bit energy estima-

tion. The calculation of access energy is based on 133MHz operation with access time

specified in the data sheet. The results are shown in Table 3.2.

Table 3.2: Buffer Bit Energy of N × N Banyan Network
In/Out Number of Shared SRAM Bit Energy

Size Switches Size (10−12joule)
4×4 4 16K 140
8×8 12 48K 140

16×16 32 128K 154
32×32 80 320K 222

3. Bit Energy of Interconnect Wires

The length of the Thompson grid can be estimated from the bus pitch distance

of the interconnect. In Thompson model, each interconnect is a signal bus and oc-

cupies one grid square. Assuming the bus width is 32 bit, in 0.18µm technology, the

wire pitch of global buses is around 1µm, therefore, the Thompson grid is around

32µm. The interconnect wire capacitance can be calculated from the method pre-

sented in [25]. For a global wire in 0.18µm technology, the wire capacitance is around

0.50fF/µm. Using these estimations, under 3.3V, the bit energy on interconnect wire

of a Thompson grid length ETbit
= 87 × 10−15 joule.

Comparing the buffer bit energy EBbit
values in Table 3.2 with the interconnect

wire bit energy ETbit
value calculated above, we can see that storing a packet in buffer

consumes far more energy than transmitting the packet on interconnect wires. This

“buffer penalty” indicates that energy consumed in buffers is a significant part of total

energy consumption of switch fabrics, and the buffer energy will increase very fast as

the packet flow throughput increases. Our experiments in Section 3.6 will show this

result.

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 44

3.5.2 Simulation Platform

The bit energy introduced in Sections 3.3 and 3.4 is the energy consumption for one

bit. In switch fabric interconnect networks, different packets will travel on different

data paths. To calculate the total power consumption of the entire switch fabrics,

we need to trace the dataflow of every packet and summarize the bit energy of every

bit on nodes switches, internal buffers and interconnect wires. In this chapter, we

describe a Simulink based bit-level multi-threading simulation platform.

The complete switch fabric architecture is implemented in Simulink. The ingress

process units, the egress process units, the global arbiter and different switch fabric

architectures are all written in C++ and then compiled into Simulink S-functions.

The switch fabric architecture is constructed hierarchically. The activities of every bit

in the packet are traced at every node switches, every buffers as well as interconnect

wires (all implemented in S-functions).

A randomized packet traffic flow is generated as inputs for the network router.

Because we only need to simulate the switching activities inside the switch fabrics,

the packet payloads are random binary bits. The address of each packet has been

translated into destination port address by the ingress process unit. The arbiter uses

the first-come-first-serve arbitration with round robin policy. The destinations of the

packets are random. We use input buffer scheme to store the packets when there is

destination contention. The input buffers are located at each ingress process unit.

Because the input buffers are outside the switch fabric network, they are not counted

for switch fabric power consumption.

Power consumption is measured under three metrics: 1) different traffic through-

put, 2) different switch fabric architectures, and 3) different numbers of ingress and

egress ports.

We implement four switch fabric architectures with different numbers of input/output

ports, namely, 4×4, 8×8, 16×16 and 32×32. Packet dataflow is generated at each

input port. The throughput of the packet dataflow can be adjusted by controlling

the packet generation intervals. The throughput is measured at the egress process

units. The throughput indicates the traffic loads that flow through the switch fabric

networks.

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 45

Figure 3.8: 4x4 Switch Power Consumption Under Different Traffic Throughput

3.6 Results and Analysis

Fig. 3.8 3.9 3.10 3.11 shows the power consumption of different switch fabric archi-

tectures under traffic throughput from 10% to 50%. The figures also show the power

consumption/throughput relationship under different numbers of ingress/egress ports.

Because we use input buffering scheme to store the packets with destination con-

tention, the theoretical maximum throughput is 58.6% (measured at egress ports).

In reality, the 58.6% throughput is not achievable [9].

From these results, we have the following observations:

1) Interconnect contention has a dramatic impact on the power consumption of

Banyan switch. Banyan switch has the lowest power consumption under low traffic

throughput, as the throughput increases, the power consumption increases exponen-

tially. This is caused by the “buffer penalty” as discussed in Section 3.5. However,

as the number of ingress and egress ports increases, the interconnect wirelength and

bit energy also increase, the “buffer penalty” domination will have less impact. This

can be seen by comparing the “Banyan curve” in the figures with the curves of other

architectures. Actually, in the 32×32 configuration, Banyan had the lowest power

consumption when the traffic throughput is less than 35%.

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 46

Figure 3.9: 8x8 Switch Power Consumption Under Different Traffic Throughput

Figure 3.10: 16x16 Switch Power Consumption Under Different Traffic Throughput

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 47

Figure 3.11: 32x32 Switch Power Consumption Under Different Traffic Throughput

2) Fully connected switch has the lowest power consumption among all four ar-

chitectures with different numbers of ports. But the difference with Batcher-Banyan

narrows down as the number of ports increases. This is because in switch fabrics

with a small number of ports, the power consumption on the internal node switches

dominates, as the switch fabrics is getting bigger (more ports), interconnect power

consumption will dominate.

The impact of number of ports on power can be better seen from Fig. 3.12.

In this figure, power consumption of each architecture is compared with different

number of ports. The traffic throughput is 50%. The power consumption difference

between fully connected switch and Batcher-Banyan switch decreases from 37% in

4×4 switches to 20% in 32×32 switches.

3) The power consumption of crossbar, fully connected and Batcher-Banyan net-

works increases almost linearly with the increase of the traffic throughput, except the

Banyan network, which is dominated by the power consumption on internal buffers.

This observation is not surprising because data flow with higher throughput needs

more power to process the bits along the data path.

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 48

Figure 3.12: Power Consumption Under Different Number of Ports

3.7 Summary

A power consumption estimation framework of on-chip networks is proposed in this

chapter. Using the framework, we analyze the power consumption of different indirect

switch fabric architectures. From our analysis, we draw the following conclusions:

1) Interconnect contention (internal blocking) induces significant power consump-

tion on internal buffers, and the power consumption on buffers will increase sharply

as throughput increases.

2) For switch fabrics with a small number of ports, internal node switches dominate

the power consumption, for switch fabrics with a larger number of ports (e.g. beyond

32×32), interconnect wires will gradually dominate the power consumption.

The analysis and comparison above are only based on case studies with specific

technology parameters. Different implementations of switch fabrics will have different

CHAPTER 3. ON-CHIP NETWORK ENERGY MODEL 49

comparison results. However, the methodology presented in this chapter is general, it

will be applied to different on-chip network power analysis in the following chapters.

Chapter 4

On-Chip Network Routing

Algorithms Analysis

4.1 Introduction

On-chip networks may borrow features and design methods from those used in parallel

computing clusters and computer system area networks. Nevertheless, they differ

from traditional networks because of larger on-chip wiring resources and flexibility,

as well as constraints on area and energy consumption (in addition to performance

requirements). We believe these different aspects will require new methodologies for

both the on-chip switch designs as well as the routing algorithm designs. In particular,

we explore the following directions in the MPSoC networks-on-chip design.

• Network architecture – The on-chip network architecture should utilize the

abundant wiring resources available on silicon. Control signals need not be

serialized and transmitted along with data, but can run on dedicated control

wires (Fig 4.1). The usage of buffers should be limited to reduce the area and

energy consumption.

• Routing algorithm – On-chip routing should use those algorithms that do not

require substantial on-chip buffer usage. At the same time, the network state

50

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 51

Figure 4.1: Dedicated Control Wires and Data Paths for On-Chip Network

(including contention information) can be made available through dedicated

control wires. From this perspective, it is possible to achieve contention-look-

ahead to reduce contention occurrence and increase bandwidth.

In this chapter, we analyze different routing schemes for packetized on-chip com-

munication on a mesh network architecture, with particular emphasis on specific

benefits and limitations of silicon VLSI implementations. A contention-look-ahead

on-chip routing scheme is proposed. It reduces the network delay as well as power

consumption with significantly smaller buffers. The improvement is also quantified

by the network/multiprocessor co-simulation benchmarks results.

4.2 Packet Switching Techniques

In computer networks, different techniques are used to perform packet switching be-

tween different nodes. Popular switching techniques include store-and-forward, vir-

tual cut-through and wormhole. When these switching techniques are implemented

in on-chip networks, they have different performance metrics along with different

requirements on hardware resources.

4.2.1 Store-and-Forward Switching

In many computer networks, packets are routed in a store-and-forward fashion from

one router to the next. Store-and-forward routing enables each router to inspect the

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 52

passing packets, and therefore perform complex operations (e.g., content-aware packet

routing). When the packet size is big enough, store-and-forward routing not only

introduces extra packet delay at every router stage, but it also requires a substantial

amount of buffer spaces because the switches may store multiple complete packets at

the same time.

In on-chip networks, storage resources are very expensive in terms of area and

energy consumption. Moreover, the point-to-point transmission delay is very critical.

Therefore, store-and-forward approaches are disadvantageous for on-chip communi-

cations.

4.2.2 Virtual Cut Through Switching

Virtual cut through (VCT) switching reduces the packet delays at each routing stage.

In VCT switching, one packet can be forwarded to the next stage before its entirety

is received by the current switch. Therefore, VCT switching reduces the store-and

forward delays. However, when the next stage switch is not available, the entire

packet still needs to be stored in the buffers of the current switch.

4.2.3 Wormhole Switching

Wormhole routing was originally designed for parallel computer clusters [17] because

it achieves the minimal network delay and requires less buffer usage. In wormhole

routing, each packet is further segmented into flits (flow control unit). The header

flit reserves the routing channel of each switch, the body flits will then follow the

reserved channel, the tail flit will later release the channel reservation.

One major advantage of wormhole routing is that it does not require the complete

packet to be stored in the switch while waiting for the header flit to route to the

next stages. Wormhole routing not only reduces the store-and-forward delay at each

switch, but it also requires much less buffer spaces. One packet may occupy several

intermediate switches at the same time. Because of these advantages, wormhole rout-

ing is an ideal candidate switching technique for on-chip multiprocessor interconnect

networks.

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 53

4.3 Wormhole Routing Issues

Since wormhole switching has many unique advantages for on-chip network imple-

mentation, we will discuss the deadlock and livelock issues in this context, although

these issues exist in other routing schemes as well.

4.3.1 Deadlock

In wormhole routing, one packet may occupy several intermediate switches at the

same time. Packets may block each other in a circular fashion such that no packets

can advance, thus creating a deadlock.

To solve the deadlock problem, the routing algorithms have to break the circular

dependencies among the packets. Dimension-ordered routing [17][51] is one simple

way to solve the deadlock: the packets always route on one dimension first, e.g.,

column first, upon reaching the destination row (or column), and then switch to the

other dimension until reaching the destination. Dimension-ordered routing is deter-

ministic: packets will always follow the same route for the same source-destination

pair. Therefore, it cannot avoid contention. Whenever contention occurs, the packets

have to wait for the channel to be free.

Another way to solve the deadlock problem is to use virtual channels [17][14].

In this approach, one physical channel is split into several virtual channels. Virtual

channels can solve the deadlock problem while achieving high performance. Never-

theless, this scheme requires a large buffer space for the waiting queue of each virtual

channel. For example, if one channel is split into four virtual channels, it will use four

times as much buffer spaces as a single channel. The architecture proposed in [15]

requires about 10K-bit of buffer space on each edge of the tile. The virtual channel

arbitration also increases the complexity of circuit design.

4.3.2 Livelock

Livelock is a potential problem in many adaptive routing schemes. It happens when

a packet is running forever in a circular motion around its destination. We will use

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 54

the hot potato routing as an example to explain this issue.

Hot potato or deflection routing [18] is based on the idea of delivering a packet

to an output channel at each cycle. It requires the assumption that each switch has

an equal number of input and output channels. Therefore, input packets can always

find at least one output exit. Under this routing scheme, when contention occurs

and the desired channel is not available, the packet, instead of waiting, will pick any

alternative available channels to continue moving to the next switch. However, the

alternate channels are not necessarily along the shortest routes.

In hot potato routing, if the switch does not serve as the network interface to a

node PE, packets can always find a way to exit, therefore the switch does not need

buffers. However, if the PE nodes send packets to the network through the switch,

input buffers are still needed, because the packet created by the node PE also needs

an output channel to be delivered to the network. Since there may not be enough

outputs for all input packets, either the packets from one of the input or the packets

from the node processor have to be buffered [17].

In hot potato routing, if the number of input channels is equal to the number of

output channels at every switch node, packets can always find an exit channel and

they are deadlock free. However, livelock is a potential problem in hot potato routing.

Proper deflection rules need to be defined to avoid livelock problem. The deflected

routes in hot potato routing increase the network delays. Therefore, performance of

hot potato routing is not as good as other wormhole routing approaches [17]. This is

also confirmed by our experiments, as shown in Section 4.6.

4.4 Contention-Look-Ahead Routing

One big problem of the packet forwarding scheme in Section 4.2 and 4.3 is that the

routing decision for a packet (or header flit) at a given switch ignores the status of the

upcoming switches. A contention-look-ahead routing scheme is one where the current

routing decision is helped by monitoring the adjacent switches, thus possibly avoiding

blockages.

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 55

4.4.1 Contention Awareness

In computer networks, contention information in neighboring nodes cannot be trans-

mitted instantaneously, because inter-node information can only be exchanged through

packets. In comparison, on-chip networks can take advantage of dedicated control

wires to transmit contention information.

A contention-aware hot-potato routing scheme is proposed in [35]. It is based on a

two-dimensional mesh on-chip network. The switch architecture is similar to that in

[31]. Each switch node also serves as network interface to a node processor (also called

resource). Therefore, it has five inputs and five outputs. Each input has a buffer that

can contain one packet. One input and one output are used for connecting the node

processor. An internal FIFO is used to store the packets when the output channels

are all occupied. The routing decision at every node is based on the “stress values”,

which indicate the traffic loads of the neighbors. The stress value can be calculated

based on the number of packets coming into the neighboring nodes at a unit time,

or based on the running average of the number of packets coming to the neighbors

over a period of time. The stress values are propagated between neighboring nodes.

This scheme is effective in avoiding “hot spots” in the network. The routing decision

steers the packets to less congested nodes.

In the next section, we will propose a wormhole-based contention-look-ahead rout-

ing algorithm that can “foresee” the contention and delays in the coming stages using

a direct connection from the neighboring nodes. It is also based on a mesh net-

work topology. The major difference from [35] is that information is handled in flits,

and thus large and/or variable size packets can be handled with limited input buffers.

Therefore, our scheme combines the advantages of wormhole switching and hot potato

routing.

4.4.2 Contention-look-ahead Routing

Fig. 4.2 illustrates how contention information benefits the routing decision. When

the header flit of a packet arrives at a node, the traffic condition of the neighboring

nodes can be acquired through the control signal wires. The traffic signal can be

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 56

either a one-bit wire, indicating whether the corresponding switch is busy or free,

or multiple-bit signal, indicating the buffer level (queue length) of the input wait-

ing queue. Based on this information, the packet can choose the route to the next

available (or shortest queue) switch. The local routing decision is performed at every

switch once the header flit arrives. It is stored to allow the remaining flits to follow

the same path until the tail flit releases the switch.

Figure 4.2: Adaptive Routing for On-Chip Networks

There are many alternate routes to the neighboring nodes at every intermediate

stage. We call the route that always leads the packet closer to the destination a

profitable route. Conversely, a route that leads the packet away from the destination

is called a misroute [17] (Fig. 4.3). In mesh networks, profitable routes and misroutes

can be distinguished by comparing the current node ID with the destination node ID.

In order to reduce the calculation overhead, the profitable route and misroute choices

for every destination are stored in a look-up table, and the table is pre-coded once

the network topology is set up.

Figure 4.3: Profitable Route and Misroute

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 57

Profitable routes will guarantee the shortest path from source to destination. Nev-

ertheless, misroutes do not necessarily need to be avoided. Occasionally, the buffer

queues in all available profitable routes are full, or the queues are too long. Thus,

detouring to a misroute may lead to a shorter delay time. Under these circumstances,

a misroute may be more desirable.

4.4.3 Wormhole Contention-Look-Ahead Algorithm

For any packet entering an intermediate switch along a path, there are multiple output

channels to exit. We call C the set of output channels. For a 2-dimensional mesh,

C = {North, South, East, West}. We further partition C into profitable routes P

and misroutes M . We define the buffer queue length of every profitable route p ∈ P

as Qp. Similarly, we define the buffer queue length of every misroute m ∈ M as Qm.

Assume the flit delay of one buffer stage is DB, and the flit delay of one switch

stage is DS. The delay penalty to take a profitable and a misroute is defined as Dprofit

and Dmisroute, respectively, in the following equations.

Dprofit = min(Qp, ∀p ∈ P) × DB (4.1)

Dmisroute = min(Qm, ∀m ∈ M) × DB + 2DS (4.2)

In a mesh network, when a switch routes a packet to a misroute, the packet moves

away from its destination by one switch stage. In the subsequent routing steps,

this packet needs to get back on track and route one more stage back towards its

destination. Therefore, the delay penalty for a misroute is 2 × DS, plus potential

extra buffering delays at the misrouted stages. In our experiment, we use 2 × DS as

the misroute penalty value. This value can be adjusted to penalize (or favor) more on

misroute choices. In on-chip networks, the switch delay of one routing stage consists

of the gate delays inside the switch logic plus the arbitration delays. The delay DS

can be estimated beforehand, and, without loss of generality, we assume the same DS

value for all switches in the network.

If all profitable routes are available and waiting queues are free, the packet will

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 58

use dimension-ordered routing decision. If the buffer queues on all of the profitable

routes are full or the minimum delay penalty of all the profitable routes is larger than

the minimum penalty of the misroutes, it is more desirable to take the misroute. The

routing decision evaluation procedure is described in the pseudo code below:

(Dprofit ≤ Dmisroute)AND(Qp ≤ Qpmax
)?ProfitRoute : Misroute (4.3)

where Qpmax
is the maximum buffer queue length (buffer limit). Fig. 4.4 illustrates

how the queue length information is evaluated at each stage of the routing process.

Figure 4.4: Adaptive Routing Algorithm

This routing algorithm is heuristic, because it can only “foresee” one step ahead

of the network. It provides a local best solution but does not guarantee the global

optimum. Nevertheless, we believe the proposed algorithm have many unique ad-

vantages. Compared to dimension-ordered routing, the proposed routing algorithm

induces shorter delays on buffers because it is smarter in avoiding contention. Com-

pared to hot-potato routing, the proposed routing algorithm will route faster because

it evaluates the delay penalties in the forthcoming stages. This can be verified exper-

imentally, as shown in Section 4.6.

4.5 On-chip Switch Design

We have designed a 2-dimensional mesh network to test the proposed routing scheme.

The node processors are tiled on the floorplan (Fig. 4.5a). Each side of the tile has

one input and one output. The switch also serves as network interface for the node

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 59

PE located at the center of the tile (Fig. 4.5b). The four inputs and four outputs of

each tile are interconnected as shown in Fig. 4.5c. The switch supports concurrent

links from any input channels to any output channels.

Because of the wormhole switching approach, the switch network can have lim-

ited storage and can accommodate packets with variable sizes. Because packets are

segmented into flits, only one flit is processed at each input in one cycle. Each switch

needs to store only a fraction of the whole packet. Long packets can be distributed

over several consecutive switches and will not require extra buffer spaces. In compar-

ison, the hot potato routing switch network described in [31] and [35] needs to handle

the whole packet at every switch.

Figure 4.5: Switch Fabrics for On-Chip Networks

If the local PE is the source of the packet, the same contention-look-ahead algo-

rithm is used. If no output is available, the node will hold the packet transmission.

If the node is the destination of the packet, it will “absorb” this packet. Incoming

packets will take priority over those generated/absorbed by the local PE.

The proposed switch network architecture and contention-look-ahead scheme can

be applied to many existing wormhole routing algorithms. Because it foresees the

contention occurrence and buffer queue length in the neighboring nodes, it helps the

local nodes to make better decision to avoid potential livelock or deadlock problems.

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 60

The control signal wires are connected between any pair of neighboring nodes.

The signal wires carry the input buffer queue length information of the corresponding

route. The queue length value is encoded in a binary word, e.g., 1011 means the

buffer queue length is 11 flit. The flit size is 64-bit, if each side of the tile uses a 2-flit

buffer, with the internal queue included, the total buffer size for the switch is 640-bit.

Figure 4.6: Allocator Circuit That Implements the Routing Algorithm

The control portion of the routing algorithm, defined by Eq. 4.1 to Eq. 4.3, is

realized by a combinational logic module called allocator, shown in Fig. 4.6. The

output channel is selected by DeMUX, and the selection is based on the comparator

results of the delay penalty of each output channels. The delay penalty is either the

buffer queue length of the corresponding input of the next node, or, in the case of a

misroute channel, the sum of the queue length and 2×Ds, which is the extra switch

delay incurred with the misroute. Another DeMUX selects the misroute channels,

because there could be multiple misroutes for a packet at each switch. This calculation

involves two 4-input DeMUX delays, one adder delay and one comparator delay. It can

be performed immediately after the address code in the header flit is available, thus

minimizing the delay overhead. The switch also uses registers to store the decision

taken by the header flit of a packet to keep a reserved path, until the tail flit resets

it.

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 61

4.6 Experiments and Results

We perform both qualitative as well as quantitative analysis on MPSoC and its on-

chip networks. The quantitative analysis is measured from the benchmark results.

Therefore, we will describe our experimental platform first before proceeding to the

detailed analysis.

We use RSIM, a multiprocessor instruction level simulator as our experiment

platform [28]. The proposed on-chip network switch module as well as the routing

algorithm are written in C and integrated into RSIM routing function. The multi-

processor architecture is shown in Fig. 4.7.

Figure 4.7: RSIM Multiprocessor Architecture

In our simulation, each processor element is connected to the interconnect network

as a node. RSIM uses distributed shared memories. Memory modules are associated

with each node, each module is globally addressed and accessible from any proces-

sors. Beside the interconnect data paths on the network, adjacent processors are also

connected by control wires. The control wires deliver the input buffer information to

the adjacent switches.

In multiprocessor systems-on-chip, the performance of node processors is closely

coupled with the interconnect networks. On one hand, the delay of packet transmis-

sion on the network greatly affects the instruction execution of the node processors.

On the other hand, the performance of the node processors will consequently affect

the packet generation and delivery onto the network. Therefore, to evaluate our pro-

posed on-chip communication architecture and routing algorithm, we need to measure

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 62

the packet delay of the network as well as the performance of the processors.

In our model, 16 RISC processors are connected in a 4 × 4 (4-ary 2-cube) mesh

network. We compared NoC routine schemes on four benchmarks: quicksort, fft, lu

and sor. These benchmarks are ported from Stanford SPLASH suite [43] and running

on the RSIM simulation platform. RSIM integrates detailed instruction-level models

of the processors and a cycle-accurate network simulator. Both the network packet

delays and the execution cycles of the node processors can therefore be measured and

compared.

The proposed contention-look-ahead routing algorithm is compared with dimension-

ordered routing and hot potato routing. The experiments are performed in the fol-

lowing metrics: 1) performance improvement, 2) buffer requirements, and 3) power

consumption on the network. As mentioned earlier, virtual channel wormhole rout-

ing requires substantial buffer spaces (40K bits, in the example in [15], as opposed

to 512 ∼ 4K bits for the switch buffers in our experiment). Therefore, we do not

consider the virtual channel approach in our experiments.

4.6.1 Performance Improvements

Fig. 4.8, 4.9, 4.10 and 4.11 show the average packet delay on the interconnect network

under the three routing schemes. The packet size is 64Byte. Contention-look-ahead

routing is compared with the dimension-ordered routing with different input buffer

sizes (2-flit, 4-flit, 8-flit, 16-flit). The hot potato routing input buffer size is fixed and

is equal to one packet. The delays of the other two routing schemes are normalized to

the hot potato results. The packet delay is measured from the header flit entering the

network until the tail flit leaves the network. Delays are expressed in clock cycles. In

all four benchmarks, the hot potato routing scheme has the longest network delays.

This is because deflections create extra latency. The contention-look-ahead routing

scheme achieves the shortest network delay under the same buffer size in all the

benchmarks.

Larger buffer sizes help reducing the packet network delays. Although the buffer

on the input channel of the switch is not big enough to store the entire packet, it can

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 63

Figure 4.8: Averaged Packet Network Delays (quicksort) under Different Routing Schemes

Figure 4.9: Averaged Packet Network Delays (fft) under Different Routing Schemes

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 64

Figure 4.10: Averaged Packet Network Delays (lu) under Different Routing Schemes

Figure 4.11: Averaged Packet Network Delays (sor) under Different Routing Schemes

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 65

still reduce the number of intermediate switches a packet occupies when it is waiting

for the next switch. This effect can also be seen from Fig. 4.8, 4.9, 4.10 and 4.11, as

packet delays are reduced with larger buffer sizes.

The overall performance (total benchmark execution time) of the multiprocessor

system follows the same trend as the network delays, because short network delay

helps to accelerate the execution process of node processors. Fig. 4.12, 4.13, 4.14

and 4.15 show the results of the three routing schemes on the benchmarks. Again,

results are normalized to the hot potato execution time. Hot potato routing has

the longest execution time. Contention-look-ahead routing outperforms dimension-

ordered routing in all cases.

4.6.2 Buffer Requirements

In order to obtain deeper insight in the comparison between dimension-ordered rout-

ing and contention-look-ahead routing, results from Fig. 4.12, 4.13, 4.14 and 4.15 are

re-drawn in Fig. 4.16. The figure shows execution time reduction of each benchmark

with various buffer sizes. With the proposed routing scheme, total running time on

the multiprocessor platform can be reduced as much as 7.6%. Actually, contention-

look-ahead routing shows greater improvement when the buffer sizes are small. As

seen from Fig. 4.16, execution time reduction is more significant with smaller buffer

size (2-flit, in the figure) than with larger buffer sizes (8-flit). This result is expected

because larger buffers “help” the dimension-ordered routing to reduce the network

contention and narrow its performance gap between the contention-look-ahead rout-

ing.

4.6.3 Network Power Consumption

Power consumption is a major bottleneck for on-chip network designs. Therefore,

we further compare the power consumption between the proposed contention-look-

ahead routing scheme with the dimension-ordered routing scheme. On-chip network

power consumption comes from three contributors, 1) the interconnect wires, 2) the

buffers and 3) the switch logic circuits. In this chapter, we adopt the network power

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 66

Figure 4.12: Total Execution Time Comparison Between Different Routing Schemes

Figure 4.13: Total Execution Time Comparison Between Different Routing Schemes

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 67

Figure 4.14: Total Execution Time Comparison Between Different Routing Schemes

Figure 4.15: Total Execution Time Comparison Between Different Routing Schemes

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 68

Figure 4.16: Contention-look-ahead Routing Achieves Better Performance with Less
Buffers

consumption estimation technique proposed by Chapter 3.

Our proposed routing scheme can “foresee” the contention in the forthcoming

stages. Therefore, it can reduce the contention occurrence on the network and shorten

the buffer queue length. Consequently, the power consumption on the buffers will

be reduced. In the experiments, we traced the buffer activities on the network and

compared the buffer power consumption, the results are shown in Fig. 4.17. The figure

shows the averaged buffer power reduction of different benchmarks. The reduction is

more significant under larger buffer sizes. This is because larger buffers consume more

power, and the power consumption is more sensitive with contention occurrence.

The power consumption on the interconnect is determined by the total wire length

the packets travel by. In our experiments, the processor nodes are interconnected by

the mesh network. The Thompson modeling of the network becomes straightfor-

ward, i.e., each hop (the segment of interconnect between two adjacent nodes) has

the same wire length and the total wire length can be estimated by counting the aver-

age number of hops a packet travels from source to destination. In dimension-ordered

routing, packets are always routed along the shortest path. In comparison, our pro-

posed routing scheme may choose the misroute when contention occurs. Therefore,

the contention-look-ahead routing has larger average hop count per packet than the

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 69

Figure 4.17: Power Consumption Comparison on Interconnect Wires and Buffers

Figure 4.18: Total Power Consumption Reduction

CHAPTER 4. ON-CHIP NETWORK ROUTING ALGORITHMS ANALYSIS 70

dimension-ordered routing, and consequently consumes more power on the intercon-

nect. This can be seen from Fig. 4.17. The proposed routing scheme consumes more

power (shown as negative values) with smaller buffer size. This is because smaller

buffer sizes will cause more contention and induce more misroutes.

The contention-look-ahead routing switch needs more logic gates than dimension-

ordered routing. From Synopsys Power Compiler simulation, the proposed switch

circuit consumes about 4.8% more power than dimension-ordered switch. Combining

the power consumption on the interconnects and buffers, the total network power

consumption is shown in Fig. 4.18. It shows the total network power reduction com-

pared with dimension-ordered routing, the reduction is more significant with larger

buffer sizes (15.2% under 16-flit buffers).

4.7 Summary

On-chip network can benefit from the abundant wiring resources as well as floor-

planning locality among PEs. Network routing strategies are limited by on-chip

buffers that are expensive to implement and power-hungry during operation. In this

chapter, we proposed a contention-look-ahead routing scheme that exploits increased

wiring resources, while reducing on-chip buffer requirements. The scheme achieves

better performance with significantly less buffer space usage. The network power

consumption is also reduced greatly compared to traditional routing algorithms. Al-

though results are reported on a mesh network, the methodology presented is general,

and can be extended to different on-chip network architectures.

Chapter 5

On-Chip Communication with

Different Packet Sizes

5.1 Introduction

The dataflow traffic on MPSoC interconnect network comes from the processor-

processor and processor-memory transactions. Therefore, the performance and power

consumption of on-chip communication are not only determined by the physical char-

acteristics of the network (e.g. voltage swing, the wire delay and fan-out load capaci-

tance, etc.), but are also dependent on the interactions between the processor nodes.

In order to analyze how different components of the MPSoC interact with the

on-chip network, in this chapter, we use the homogeneous shared-memory MPSoC as

a case study. The processors are interconnected by the on-chip mesh network, each

processor is identical and has its own memory hierarchy. The memories are globally

addressed and accessible.

Although homogeneous shared-memory MPSoC is only a specific example of MP-

SoC architectures, it is a good platform to analyze many characteristics of MPSoC

network traffic. Generally, the on-chip traffic is coming from the following sources:

1. Cache and memory transactions. Every cache miss needs to fetch data

from the shared memories, and consequently creates traffic on the interconnect.

71

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES72

2. Cache coherence operations. In MPSoC, one data may have multiple copies

in the caches of different node processors. When the data in memory is updated,

its cache copies also need to be updated or invalidated. This synchronization

operation will create traffic on the interconnect as well.

3. Packet segmentation overheads. When dataflows are segmented into pack-

ets, traffic on the interconnect will carry additional overhead. The overhead is

dependent on the packet size and header/tail size.

4. Contentions between packets. When there is contention between packets

on the interconnect, the packets need to be re-routed to another datapath or

buffered temporarily. This effect will again change the traffic pattern on the

interconnect.

The above factors are not independent. Instead, the performance and power trade-

off is determined by the interactions of all factors dynamically, and the variation of

one factor will impact other factors. For example, the changes of packet size will

affect the cache block size that can be updated during each memory access, and

consequently change the cache miss rate.

While the MPSoC performance issues have been addressed by many researchers

in the parallel computing field [11], the power consumption for on-chip network com-

munication has not been quantitatively analyzed. Previous researches either use

statistical traffic model, or calculate the power consumption in analytical methods

[49][37][33]. Those researches did not address the packetization impact on the network

power consumption, and they did not specify how on-chip network designers need to

trade-off different options in CPU, cache and memory designs at the architectural

level.

In this chapter, we introduce a MPSoC interconnect communication energy model

and apply this model on RSIM, a multi-processor simulator [28]. We will analyze

quantitatively the relationship between different packetization factors, and their im-

pact on the power consumption as well as system performance. Furthermore, based

on the analysis, we will show the trade-offs between MPSoC performance and its

interconnect power consumption.

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES73

5.2 On-chip Network Traffic

Before we start to discuss the characteristics of MPSoC interconnect networks, we

need to first study the traffic on the network; in particular, we should analyze the

composition of the packetized dataflows that are exchanged between MPSoC nodes.

Packets transported on the MPSoC network consist of three parts. The header

contains the destination address, the source address, and the requested operation

type (READ, WRITE, INVALIDATE, etc). The payload contains the transported

data. The tail contains the error checking or correction code.

5.2.1 Sources of Packets

Packets traveling on the network come from different sources, and they can be cate-

gorized into the following types:

1. Memory access request packet. The packet is induced by L2 cache miss

that requests data fetch from memories. The header of these packets contains

the destination address of the target memory (node ID and memory address) as

well as the type of memory operation requested (memory READ, for example).

Because there is no data being transported, the payload is empty.

2. Cache coherence synchronization packet. The packet is induced by the

cache coherence operation from the memory. This type of packet comes from

the updated memory, and it is sent to all caches that have a copy of the up-

dated data. The packet header contains the memory tag and block address of

the data. If the synchronization uses the “update” method, the packet contains

updated data as payload. If the synchronization uses the “invalidate” method,

the packet header contains the operation type (INVALIDATE, in this case),

and the payload is empty.

3. Data fetch packet. This is the reply packet from memory, containing the

requested data. The packet header contains the target address (the node ID of

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES74

the cache requesting for the data). The data is contained in the packet payload.

4. Data update packet. This packet contains the data that will be written back

to the memory. It comes from L2 cache that requests the memory write oper-

ation. The header of the packet contains the destination memory address, and

the payload contains the data.

5. IO and interrupt packet. This packet is used by IO operations or interrupt

operations. The header contains the destination address or node ID. If data

exchange is involved, the payload contains the data.

5.2.2 Data Segmentation and Packet Size

From the analysis in Section 5.2.1, we can see that most packets travel between

memories and caches, except those packets involved in I/O and interrupt operations.

Although packets of different types originate from different sources, the length of the

packets is determined by the size of the payload. In reality, there are two differently

sized packets on the MPSoC network, short packet and long packet, as described

below.

Short packets are the packets with no payloads, such as the memory access request

packets and cache coherence packets (invalidate approach). These packets consist only

header and tail. The request and control information can be encoded in the header

section.

Long packets are the packets with payloads, such as the data fetch packets, the

data update packets and the cache coherence packets used in update approach. These

packets travel between caches and memories. The data contained in the payload are

either from cache block, or they are sent back to the node cache to update the cache

block. Normally, the payload size equals the cache block size, as shown in Fig. 5.1.

Packets with payload size different than the cache block size will increase cache

miss penalty. The reasons are two. 1) If each cache block is segmented into different

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES75

Figure 5.1: Packet Size and Cache Block Size

packets, it is not guaranteed that all packets will arrive at the same time, and con-

sequently the cache block cannot be updated at the same time. 2) If several cache

blocks are to be packed into one packet payload, the packet needs to hold its trans-

mission until all the cache blocks are updated. This will again increase the cache miss

delay penalty.

In our analysis, we assume all the long packets contain the payload of one cache

block size. Therefore, the length of the long packets will determine the cache block

size of each node processor.

5.3 MPSoC Power Consumption

The MPSoC power consumption originates from three sources: the node power con-

sumption, the shared memory power consumption and the interconnect network power

consumption.

5.3.1 Node power consumption

Node power consumption comes from the operations inside each node processor, these

operations include:

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES76

1. CPU and FPU operations. Instructions like ADD, MOV, SUB etc consume

power because these operations cause the logic gates to toggle on the datapath of

processor.

2. L1 cache access. L1 cache is built with fast SRAMs. When data is loaded

or stored in the L1 cache, it consumes power.

3. L2 cache access. L2 cache is built with slower but larger SRAMs. Whenever

there is a read miss in L1 cache, or when there is write back from L1 cache, L2 cache

is accessed, and consequently consumes power.

5.3.2 Shared memory power consumption

Data miss in L2 cache requires data to be fetched from memory. Data write back

from L2 cache also needs to update the memory. Both operations will dissipate power

when accessing the memories.

5.3.3 Interconnect network power consumption

Operations like cache miss, data fetch, memory updates and cache synchronization all

need to send packets on the interconnect network. When packets are transported on

the network, energy is dissipated on the interconnect wires as well as the logic gates

inside each switch. Both wires and logic gates need to be counted when we estimate

the network power consumption.

Among the above three sources, the node power consumption and memory power

consumption have been studied by many researches. In the following sections, we will

only focus our analysis on the power consumption of interconnect networks. Later

in this chapter, when we compare the network power consumption with the total

MPSoC power consumption, we will reference the results from other researches for

node processor and memory power estimation.

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES77

5.4 Network Energy Modeling

5.4.1 Bit Energy of Packet

When a packet travels on the interconnect network, both the wires and logic gates

on the datapath toggle as the bit-stream flips its polarity. In this chapter, we use the

approach presented in Chapter 3 to estimate the energy consumption for the packets

traveling on the network.

We adopt the concept of bit energy Ebit to estimate the energy consumed for each

bit when the bit flips its polarity from previous bit in the bit stream. We further

decompose the bit energy Ebit into bit energy consumed on the interconnect wires

EWbit
and the bit energy consumed on the logic gates inside the node switch ESbit

.

The local memory on each node also serves as the buffer. The energy consumed on

the buffer can be estimated from the memory access energy, which will be discussed

in a later part of the chapter.

The bit energy consumed on the interconnect wire can be estimated from the total

load capacitance on the interconnect. The total load capacitance can be calculated

from Thompson model, as described in Chapter 3.

The bit energy consumed on the switch logic gates can be estimated from Synopsys

Power Compiler simulation. Without loss of generality, we use random bit-stream as

the packet payload content. Details of the estimation can also be found in [52].

5.4.2 Packets and Hops

When the source node and destination node are not placed adjacent to each other

on the network, a packet needs to travel several intermediate nodes (or hops) until

reaching the destination, as shown in Fig. 5.2.

In the mesh or torus network, there are several different alternate datapaths be-

tween source and destination, as shown in Fig. 5.2. When contention occurs between

packets, the packets may be re-routed to different datapaths. Therefore, packet data-

path will vary dynamically according to the traffic condition. Packets with the same

source and destination may not travel through the same number of hops, and they

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES78

Figure 5.2: Hops and Alternate Routes of Packets

may not necessarily travel on the datapath with the minimum number of hops.

The number of hops a packet travels greatly affects the total energy consumption

needed to transport the packet from source to destination. For every hop a packet

travels, the interconnect wires between the nodes will be charged and discharged as

the bit-stream flows by, and the logic gates inside the node switch will toggle.

We assume a tiled floorplan implementation for MPSoC, similar to those proposed

by [15] and [31], as shown in Fig. 5.2. Each node processor is placed inside a tile, and

the mesh network is routed in a regular topology. Without loss of generality, we can

assume all the hops in mesh network have the same interconnect length. Therefore,

if we pre-calculate the energy consumed by one packet on one hop, Ehop, by counting

the number of hops a packet travels, we can estimate the total energy consumed by

that packet.

We use the hop histogram to show the total energy consumption by the packet

traffic. In Fig. 5.3 below, histograms of the packets traveling on an 8-processor

SoC are shown. The 8 processors are connect by a 2-dimensional mesh interconnect

network. The histograms are extracted from the trace file of a quicksort benchmark.

The histogram has n bins with 1, 2, .., n hops, the bar on each bin shows the number

of packets in each bin. We count long packets and short packets separately in the

histograms.

Without loss of generality, we can assume packets of the same length will consume

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES79

Figure 5.3: Hop Histogram of Long and Short Packets

the same energy per hop. Using the hop histogram of the packets, we can calculate

the total network energy consumption with the following equation (Eq. 5.1).

Epacket =
maxhops

∑

h=1

h × N(h)packet × Llong × Eflit (5.1)

+
maxhops

∑

h=1

h × N(h)packet × Lshort × Eflit (5.2)

where N(h)packet is the number of packets with h number of hops in the histogram.

Llong and Lshort are the lengths of long and short packets respectively, in the unit of

flit. Eflit is the energy consumption for one flit on each hop. Because the packets are

actually segmented into flits when they are transported on the network, we only need

to calculate the energy consumption for one flit, Eflit. The energy of one packet per

hop Ehop can be calculated by multiplying the number of flits the packet contains.

5.5 Experiments

5.5.1 Platform

We again use RSIM as our shared memory MPSoC simulation platform in this anal-

ysis. The architecture and network is very similar to that used in Chapter 4. Here

we just describe more details on the memory hierarchy.

Each node processor contains two levels of cache hierarchy. L1 cache is 16K bytes,

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES80

and L2 cache is 64K bytes. Both L1 and L2 cache use write-through methods for

memory updates. We use the invalidate approach for cache coherence synchronization.

Wormhole routing is used, and the flit size is 8 bytes.

5.5.2 Energy Model

As discussed in Section 5.4, to calculate the power consumption on the network, we

need to calculate the value of Eflit, which is the energy consumed by one flit traveling

on one hop. We assume each tile of node processor is 2mm×2mm in dimension, and

they are placed regularly on the floorplan, as shown in Fig. 5.2. We assume 0.13µm

technology is used, and the wire load capacitance is 0.50fF per micron. Under these

assumption, the energy consumed by one flit on one hop interconnect is 0.174nJ.

The energy consumed on the switch logic gates of one hop is calculated from

Synopsys Power Compiler. We calculate the bit energy on the logic gates in a way

similar to that used in [52]. We use 0.13µm standard cell library, and the energy

consumed by one flit on one hop switch is 0.096nJ. Based on these calculation, the

flit energy per hop Eflit = 0.27nJ .

5.5.3 Experiments and Benchmarks

We tested five applications on our RSIM MPSoC simulation platform, they are sor,

water, quicksort, lu and mp3d. These applications are also ported from the Stanford

SPLASH project. To analyze how different packetization schemes will affect the

performance and power, we change the dataflow with different packet sizes. The

packet payload sizes are varied from 16Byte, 32Byte, 64Byte, 128Byte to 256Byte.

Because the short packets are always 2-flit in length, therefore, the change of packet

size is applied to long packets only. The results are discussed quantitatively in the

following sections.

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES81

5.6 Packetization and MPSoC Performance

As we mentioned in Section 1, MPSoC performance is determined by many factors.

Different packetization schemes affect these factors differently, and consequently, re-

sult in different performance metrics.

5.6.1 Cache Miss Rate

Changing the packet payload size (for long packets) will change the L2 cache block

size that can be updated in one memory fetch. If we choose larger payload size, more

cache contents can be updated. Therefore, the cache miss rate will decrease. This

effect can be observed from Fig. 5.4 and 5.5. As the packet payload size increases,

both the L1 cache (Fig. 5.4 and L2 cache (Fig. 5.5 miss rates decrease. Decreased

cache miss rate will reduce the number of packets needed for memory access.

Figure 5.4: MPSoC L1 Cache Miss Rate under Different Packetization Schemes

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES82

Figure 5.5: MPSoC L2 Cache Miss Rate under Different Packetization Schemes

5.6.2 Cache Miss Penalty

Whenever there is a L2 cache miss, the missed cache block needs to be fetched from

the memories. The latency associated with this fetch operation is called a miss

penalty. When we estimate the cache miss penalty, we need to count all the delays

occurred within the fetch operation. These delays include: 1) packetization delay, 2)

interconnect delay, 3) store and forward delay on each hop for one flit, 4) arbitration

delay, 5) memory access delay and 6) contention delay. Among these six factors,

2), 3) and 4) will not change significantly for packets with different sizes, because

we use wormhole routing. However, delays on 1) and 5) will become longer because

larger packets need longer time for packetization and memory access. Longer packets

will actually cause more contention delay. This is because when wormhole routing is

used, longer packet will hold more intermediate nodes during its transmission. Other

packets have to wait in the buffer, or choose alternative datapaths, which are not

necessarily the short routes. Combining all these factors, the overall cache penalty

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES83

will increase as the packet payload size increases, as shown from Fig. 5.6.

Figure 5.6: Cache Miss Penalty under Different Packetization Schemes

5.6.3 Overall Performance

From the above analysis, we know that although larger payload size helps to decrease

the cache miss rate, it will increase the cache miss latency. Combining these two

factors, there exists an optimal payload size that can achieve the minimum execution

time, as seen from Fig. 5.7. In order to illustrate the variation of performance, we

normalized the figure to the minimum execution time of each benchmark. In our

experiments, all the five benchmarks achieve the best performance with 64 bytes of

payload size.

5.7 Packetization and Power Consumption

Eq. 5.1 in Section 5.4 shows that the power consumption of packetized dataflow

on MPSoC network is determined by the following three factors: 1) the number of

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES84

Figure 5.7: MPSoC Performance under Different Packetization Schemes

packets on network, 2) the energy consumed by each packet on one hop, and 3) the

number of hops each packet travels. Different packetization schemes will have different

impact on these factors, and consequently affect the network power consumption. We

summarize these effects and list them below.

1. Packets with larger payload size will decrease the cache miss rate and conse-

quently decrease the number of packets on the network. This effect can be seen

from Fig. 5.8. It shows the average number of packets on the network (traffic

density) at one clock cycle. As the packet size increases, the number of packets

decreases accordingly. Actually, with the same packet size, the traffic density

of different benchmarks is consistent with the miss penalty. By comparing Fig.

5.8 with Fig. 5.6, we see that if the packet length stays the same, higher traffic

density causes longer miss latency.

2. Larger packet size will increase the energy consumed per packet, because there

are more bits in the payload.

3. As discussed in Section 5.6, larger packets will occupy the intermediate node

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES85

switches for a longer time, and cause other packets to be re-routed to non-

shortest datapaths. This leads to more contention that will increase the total

number of hops needed for packets traveling from source to destination. This

effect is shown in Fig.5.9. It shows the average number of hops a packet travels

between source and destination. As packet size (payload size) increases, more

hops are needed to transport the packets.

Actually, increasing the cache block size will not decrease the cache miss rate

proportionally [38]. Therefore, the decrease of packet count cannot compensate the

increase of energy consumed per packet caused by the increase of packet length.

Larger packet size also increases the hop counts on the datapath. Fig. 5.10 shows the

combined effects of these factors under different packet sizes. The values are normal-

ized to the measurement of 16Byte. As packet size increases, energy consumption on

the interconnect network will increase.

Although the increase of packet size will increase the energy dissipated on the

network, it will decrease the energy consumption on cache and memory. Because

larger packet sizes will decrease the cache miss rate, both cache energy consumption

and memory energy consumption will be reduced. This relationship can be seen from

Fig. 5.11 and 5.12. It shows the energy consumption on cache and memory under

different packet sizes respectively. The access energy of each cache and memory

instruction is estimated based on the work from [19] and [42]. The energy in the

figure is normalized to the value of 256Byte, which achieves the minimum energy

consumption.

The total energy dissipated on MPSoC comes from non-cache instructions (in-

structions that do not involve cache access) of each node processors, caches, shared

memories as well as the interconnect network. In order to see the packetization im-

pact on the total system energy consumption, we put all MPSoC energy contributors

together and see how the energy changes under different packet sizes. The results

are shown in Fig. 5.13. From this figure, we can see the overall MPSoC energy will

decrease as packets size increases. However, when the packets are too large, as in

the case of 256Byte in the figure, the total MPSoC energy will increase. This is be-

cause when the packet is too large, the increase of interconnect network energy will

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES86

Figure 5.8: Packet Count Changes as Packet Payload Size Increases

Figure 5.9: Contention Occurrence Changes as Packet Payload Size Increases

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES87

Figure 5.10: Network Energy Consumption under Different Packet Payload Sizes

Figure 5.11: Cache Energy Decrease as Packet Payload Size Increases

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES88

outgrow the decrease of energy on cache, memory and non-cache instructions. In our

simulation, the non-cache instruction energy consumption is estimated based on the

techniques presented in [7], and it does not change significantly under different packet

sizes.

5.8 Packetization Impact Analysis

Although the specific measurement values in the experiments are technology and

platform dependent, we believe the analysis will hold for different MPSoC implemen-

tations. We summarize our analysis qualitatively as follows (Fig. 5.14).

Large packet size decreases the cache miss rates of MPSoC but increases the

miss penalty. The increase of miss penalty is caused by the increase of packetization

delay, memory access delay, as well as contention delay on the network. As shown

qualitatively in Fig. 5.14a, the cache miss rate saturates with the increase of packet

size. Nevertheless, the miss penalty increases faster than linearly. Therefore, there

exists an optimal packet size to achieve best performance.

The energy spent on the interconnect network increases as the packet size in-

creases. Three factors play roles in this case (Fig. 5.14b). 1) Longer packets, i.e.

larger cache lines, reduce the cache miss rate, hence reduce the packet count. Never-

theless, the packet count does not fall linearly with the increase of packet size. 2) The

energy consumption per packet × hop increases in a linear fashion with the increase

of packet length. If we ignore the overhead of packet header and tail, this increase is

proportional to packet size. 3) The average number of hops per packet on the network

also increases with the packet length. The combined effect causes the network energy

to increase as the packet size increases.

The total MPSoC system energy is dominated by the sum of three factors as

the packet size increases (Fig. 5.14c). 1) Cache energy will decrease. 2) Memory

energy will decrease as well. 3) Network energy will increase over-linearly. In our

benchmarks, the non-cache instruction energy does not change significantly. The

overall trend depends on the breakdown among the three factors. Our experiments

show that there exists a packet size that minimizes the overall energy consumption.

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES89

Figure 5.12: Memory Energy Decrease as Packet Payload Size Increases

Figure 5.13: Total MPSoC Energy Consumption under Different Packet Payload Sizes

CHAPTER 5. ON-CHIP COMMUNICATION WITH DIFFERENT PACKET SIZES90

Figure 5.14: Qualitative Analysis of Packet Size Impact

Moreover, if the network energy contributes a major part of the total system energy

consumption, which is expected to happen as VLSI technology moves to nanometer

domain, the MPSoC energy will eventually increase with the packet size.

5.9 Summary

In this chapter, we analyzed the effect of packet size variation on MPSoC performance

and energy consumption. We further show that in the MPSoC platform, the behavior

of node processors is closely coupled with the activity on the network. The analysis

presented will help designers to select the appropriate architectures and communica-

tion schemes in their system level design.

Chapter 6

Physical Planning of On-Chip

Networks

6.1 Introduction

Designing the on-chip network will become a major task for future MPSoCs. A large

fraction of the timing delay is spent on the signal propagation on the interconnect,

and a significant amount of energy is also dissipated charging and discharging the load

capacitance on the wires [25]. Therefore, an optimized interconnect network floorplan

will be of great importance to MPSoC performance and energy consumption.

With the ever-increasing complexity of MPSoC integration, manual floorplanning

of the processing elements and switches will become even more time consuming and

inefficient. Automated methods are needed for large-scale MPSoC designs. Unlike

traditional floorplanning that deals with the circuit macro block placement and wire

routing [39], MPSoC floorplanning needs to solve the problems from a different per-

spective, as illustrated in Fig. 6.1. Namely:

1. Folding and planarization – MPSoC network topologies are multi-dimensional.

MPSoC planar layout requires that PE blocks are tiled and abutted on the

floorplan in a two-dimensional tile array [15]. The planarization process is also

constrained by the pre-defined aspect ratio and row/column numbers of the tile

91

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 92

Figure 6.1: MPSoC Tiling Is Different From Traditional Floorplan

array.

2. Regularity and hierarchy – MPSoC network topologies are often regular and

hierarchical. The planarization of the network is not only a simple packing

process: it has to preserve the regularity and hierarchy on the floorplan.

3. Critical path and total wirelength – Interconnect delays and power consumption

are the two critical issues in MPSoC network design. On one hand, inter-

node communication latencies are dominated by the wire propagation delays.

Therefore, the wirelength of the timing-critical links needs to be minimized. On

the other hand, interconnect wires are the main contributors of the total system

power consumption. Reducing the total wirelength helps reducing the power

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 93

dissipated on the interconnect.

Prior network graph planarization approaches either targeted only some specific

topologies, or they were not flexible enough to adapt to many of the floorplan con-

straints imposed by the silicon implementation [16] [21]. Therefore, those approaches

are not suitable for an automated design flow.

In this chapter, we propose a floorplanning method and a tool called REGULAY

that can automatically place regularly-configured MPSoC node processors as well as

switch fabrics onto a user-defined tile floorplan. Given the MPSoC network topology

and the physical dimension of the network nodes as inputs, along with the floorplan

specification (locations of the I/O tiles, number of rows and columns of the tiles),

REGULAY can create a floorplan that best satisfies different design constraints.

6.2 MPSoC Network Floorplan

Although quite different in their topologies, many MPSoC networks have some impor-

tant aspects in common: regularity and hierarchy. Regular and hierarchical topologies

help to distribute the network traffic and balance the workload of node processors.

Therefore, preserving the regularity and hierarchy formations in the silicon floorplan

is critical in MPSoC implementation.

Furthermore, on-chip interconnect delays and power consumption add additional

requirements in MPSoC floorplan design. To reduce wiring delays, MPSoC floorplans

need to limit the wirelength of the critical links (links that are timing sensitive). To

reduce the interconnect energy dissipation, the total network wirelength needs to be

minimized.

6.3 Problem Formulation

In an MPSoC floorplan, each node processor or node switch is placed as a dedicated

hard block tile. For example, in direct networks, as in the case of the Octagon network

design, the node processors can be tiled in a two-dimensional array, e.g., a 6×6 array

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 94

in Fig. 6.2. In indirect networks, as in the case of the Butterfly network, the tiling

of the switch fabrics will be constrained by the locations of the node processors, as

shown in Fig. 6.2.

Formally, we are given a source network S connecting a set of modules M , M =

{mi, i = 1, 2, 3,, p}, and a target two-dimensional tile array T with col× row tiles.

Since modules cannot overlap, we assume p ≤ col× row. Each net in N connects two

(or more) modules in M , and has a weighting factor. For example, net nij,...,k ∈ N

connects modules in mi, mj, ..., mk and has weight wij,...,k.

Figure 6.2: Constraints of Floorplan Tiling

Different network topologies and application requirements set different constraints

on MPSoC floorplanning problems. To be more specific, we summarize the constraints

that are relevant for MPSoC floorplanning:

1) Regularity constraints – As shown in Section 2.2, MPSoC placement should

preserve the regularity of the original network topology.

2) Hierarchy constraints – MPSoC networks may have hierarchical topologies

(clusters), e.g., a cascaded Octagon network consists of multiple local rings. The

placement should also preserve this hierarchical clusters.

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 95

3) I/O constraints – An MPSoC is implemented on a single chip. Some node pro-

cessors (or node switches, in the case of switch fabrics) serve as I/O nodes; therefore,

they need to be placed at the peripherals of the floorplan. An MPSoC floorplan needs

to accommodate those nodes at their proper locations.

4) Aspect-ratio constraints – Chip die size is limited by the silicon area and aspect

ratio. Therefore, node processor blocks and node switch blocks need to be packed

into a two-dimensional array with predefined numbers of rows and columns.

5) Critical-path constraints – The links between some node processors may be the

critical paths, e.g. the center ring in the cascaded Octagon network. Therefore, the

nodes connected by the critical paths need to be placed closer to each other.

6) Total net-length constraints – Reducing the total net length will achieve shorter

interconnect delays with lower power consumption.

The floorplanning problem is to determine a mapping from S to T , such that

the constraints are met and the overall wiring length is minimal. Such a problem is

computationally intractable, and has been the object of extensive investigation in the

ASIC domain. We propose a two-step heuristic approach that takes into account the

special properties of MPSoC topologies.

The proposed approach consists of two steps: 1) regularity extraction and de-

termination of tentative locations, and 2) legalization. The first step generates the

relative locations of the modules based on the regularity and hierarchical information

extracted from the network topology. If some modules have pre-fixed locations in T ,

these locations are used as placement constraints. The total weighted net length is

used as objective function. The second step will pack the modules onto the floorplan

constrained by the I/O locations and aspect ratio.

6.4 Regularity Extraction

We represent the network topology as a connectivity matrix, where each element off-

diagonal of the matrix corresponds to an edge of the topology graph. We use the

total square wirelength among the nodes as the objective function. The minimization

of the objective function can be calculated through a series of matrix operations.

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 96

The matrix representation preserves the topological regularity information, i.e.,

if the nodes in the original topology are symmetrical, the corresponding elements in

the matrix are symmetrical as well. Furthermore, all subsequent matrix operations

(e.g., transposition, vector multiplication, etc.) will preserve regularity. Therefore,

by minimizing the total square wirelength with this model, the regularity information

is preserved in the optimization process.

6.4.1 Forming the Objective Function

We generalize this problem by assigning weights on the nets, thus allowing us to

privilege the proximity/distance of some node pairs. Thus the weighted total square

wirelength objective function can be formed in the following way.

Giving a set of modules M , M = {mi, i = 1, 2, 3,, p},with locations on (x1, y1),

(x2, y2), ..., (xp, yp), the total weighted square wire length objective function can be

expressed as

Φ(x, y) =
p

∑

i,j=1

wij((xi − xj)
2 + (yi − yj)

2) = xTQx + yTQy (6.1)

where x ∈ Rp and y ∈ Rp are the location vectors for the modules on X and

Y dimensions. Q ∈ Rp×p is the matrix that represents the weighted connectivity of

the topology graph, where the weight factors {wij, i = 1, 2,, p, j = 1, 2, ..., p} are

the matrix elements. Q is generated in the following way: 1) wij is 0 if there is no

connection between modules mi and mj. 2) When modules mi and mj are connected,

the value of wij is the weighting factor of the net between mi and mj . 3) The diagonal

elements {wii, i = 1, 2, ..., p}, etc. of the matrix are the opposite of the sums of all

off-diagonal elements on the same row.

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 97

wij =































0 i 6= j and no connection

between mi and mj

weighting factor(i,j) i 6= j and mi, mj are connected

−
∑p

k=1,k 6=i wik i = j (The sum of wik

in the row i)

When the network topology graph is connected, it can be proved that the matrix

Q ∈ Rp×p constructed from this graph has the following properties [22]:

1. Q is positive positive semi-definite, and

2. is of rank p − 1.

As mentioned in Section 6.3, MPSoC floorplanning is sometimes constrained by

pre-defined I/O locations. To address these two different scenarios (with and without

I/O constraints), we develop two approaches, as described in the following sections.

6.4.2 Floorplan Without I/O Constraints

Eq. 6.1 shows that the x and y location vectors are independent of each other;

therefore, we can optimize the positions on the X and Y coordinates separately.

X-dimension Optimization

Since there is no I/O or boundary condition, we need to further normalize the objec-

tive function on the X-dimension by using the inner product xTx.

Now the normalized objective function of Eq. 6.1 can be rewritten as

Φ,(x) =
xTQx

xTx
(6.2)

From the construction of matrix Q, we note that the row sums of Q are zero, thus

Q has a unit eigenvector u = (1, 1, 1, ..., 1)T . The associated eigenvalue is zero. We

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 98

also note that Q is symmetrical and has rank p− 1. Therefore, it has p non-negative

real eigenvalues 0 = λ1 ≤ λ2 ≤, ≤ λp ∈ R. The smallest eigenvalue is λ1 = 0.

It can be proved that the first partial derivative with respect to the vector x of

the normalized objective function is zero when

(Q − λI)x = 0 (6.3)

which yields a non-trivial solution of x if and only if x is the eigenvector of the

corresponding eigenvalue of λ. Here I is the identity matrix.

It can be shown that the normalized objective function is bounded between the

minimum and maximum eigenvalues, or

λmin ≤ Φ,(x) =
xTQx

xTx
≤ λmax (6.4)

The minimum eigenvalue, zero, yields the trivial solution of unit vector, where all

nodes are to be placed at one single point. Therefore, the second smallest eigenvalue

and the associated eigenvector yield the optimal solution.

Y-Dimension Optimization

Since we already use e1 to form the location vector x on the X coordinate, the Y-

dimension location vector y has to be formed from other eigen-vectors, otherwise, the

modules will be placed in a diagonal line on the floorplan. This condition add one

extra constraint to y vector.

yTe1 = 0 (6.5)

Since the eigenvectors of the symmetrical matrix Q are orthogonal, we will choose

for y the eigenvector corresponding to the third smallest eigenvalue.

Fig. 6.3 shows the screen-shot of the initial node locations of the five-ring Octagon

network without I/O constraints. The locations on the X-Y plane are obtained di-

rectly from the first two non-zero eigenvectors of Q. From the locations of the nodes,

we can see that not only the regularity formation of the nodes is preserved, but also

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 99

the hierarchical clustering of the cascaded Octagon rings is shown as well.

Figure 6.3: Initial Eigenvector Locations of 5-Ring Octagon Network Without I/O Con-
straints

Fig. 6.4 shows the initial locations of the cube-connect-cycles obtained from the

eigenvectors of the matrix. Again, the formation of the nodes preserves the regularity

as well as the hierarchy of the original topology.

Figure 6.4: Initial Eigenvector Locations of Cube-Connected-Cycles Without I/O Con-
straints

6.4.3 Floorplan With I/O Constraints

For this problem, we can again decouple the optimization in the X and Y directions.

We will first describe the optimization in the X direction, the optimization in the Y

direction is similar.

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 100

If the positions of some modules are pre-fixed by the I/O constraints, we denote

these modules as Mf ⊂ M, and their corresponding location vector in the X direction

is denoted as xf ⊂ x. Similarly, the locations of all the movable modules are denoted

as vector xc ⊂ x. The objective function can then be re-written as:

Φ(x) = (xc xf)





Qcc Qcf

Qfc Qff



 (xc xf)
T (6.6)

Solving the zeros of the derivative of the objective function, we have

Qccxc = −Qcfxf (6.7)

Here Qcc is a subset of the original matrix Q. We know that Q is a symmetrical

matrix with the rank of p − 1. Therefore, if at least one node is fixed, Qcc is non-

singular and invertible, and the Eq. 6.7 has real solutions [3].

Fig. 6.5 shows the initial locations of the five-ring cascaded Octagon network

with I/O constraints. The four bridge I/O nodes in the center Octagon ring are used

as I/O nodes and placed at the four corners of the floorplan. The four I/O nodes

are used as the fixed locations in the quadratic equation Eq. 6.6. Under the I/O

constraints, the Octagon network shows a different formation than that without I/Os

(Fig. 6.3). Nevertheless, the regularity as well as the hierarchical formation of the

network is still preserved.

Fig. 6.6 shows the initial locations of the 2-ary 3-fly Butterfly switch fabrics. There

are 8 node processors and 32 node switches in the network. The node processors

are numbered from 0 to 7, as shown in Fig. 6.6. One node processor connects to

two node switches, serving as input switch and output switch respectively. On the

floorplan, we place the node processors 0, 1, 2, 3 on left side of the floorplan, while

the node processors 4, 5, 6, 7 on the right side. This arrangement of node processors

imposes I/O constraints on the Butterfly switch fabrics, because the switching nodes

that serve as input and output have to be placed next to the corresponding node

processors. The regularity formation of the switch fabrics is still preserved under

these I/O constraints, as shown in the figure.

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 101

Figure 6.5: Initial Locations of 5-ring Octagon Network with I/Os on the Corners

6.5 Legalization

The node positions solved from the quadratic objective function optimization are

real-valued numbers. However, the PE modules of each node are rectangular tiles

and have to be abutted next to each other. The position from the location vector

cannot be used directly in the tiling placement. Nevertheless, we can still use these

values as relative locations and further legalize (quantize) the node positions.

The legalization procedure also consists of two steps: 1) sorting, where the nodes

are ordered by the X and Y coordinates, and 2) packing, where the node blocks are

assigned to the corresponding tiles (row and column positions).

In the sorting step, as shown in Fig. 6.7, the nodes are first sorted according to

their X coordinates and evenly partitioned into several bins. The number of bins

is equal to the number of columns. Then the nodes in each bin are further sorted

according to their Y coordinates. After this step, the nodes are ordered in both the

X and Y coordinates. The packing step will assign the nodes into the corresponding

tiles in the col × row tile floorplan. The legalization procedure involves two linear

sorting operations, which can be implemented with any existing sorting algorithms.

Fig. 6.8 shows the legalization results. Fig. 6.8a is the legalized floorplan from

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 102

Figure 6.6: Initial Locations of Butterfly Network with I/O Constraints

Fig. 6.3 and Fig. 6.8b is legalized from Fig. 6.5. Both floorplans preserve the regu-

larity and hierarchy formations of the original topologies. Furthermore, the floorplan

also achieves a shorter total interconnect wirelength compared with other macro cell

floorplanning approaches. We will show this comparison in details through several

experiments.

6.6 Experiments

We have built a tool called REGULAY that implements the proposed floorplanning

method. REGULAY is written in C++ with GUI written in Tcl/Tk. To the best of

the my knowledge, there were no prior tools that target specifically on the MPSoC

network floorplanning applications. Therefore, we compare the resulting floorplan and

the total interconnect wirelength with the results obtained from ASIC floorplanning

approaches. We choose UCLA MCM floorplanner [10] for this comparison. MCM

is an open-source non-commercial tool that was originally designed to solve general

ASIC floorplanning problems. Nevertheless, we perform this comparison to show that

our method is particularly advantageous for MPSoC floorplans.

Fig. 6.9 shows the floorplan result of the cube-connected-cycles by REGULAY.

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 103

Figure 6.7: Legalization of the Node Locations by Sorting and Packing

There are total 24 nodes and 36 nets in the topology. For a better visualization of

the regularity and hierarchy of the resulting floorplan, we assign different colors to

different groups of nodes. There are no I/O constraints for the floorplan. From the

floorplan formation, we can see that regularity information of the topology is well

preserved by REGULAY.

The 4-ary 3-mesh network floorplan result is shown in Fig. 6.10. There are 64

nodes and 144 interconnects in this network, and the floorplan is an 8 × 8 tile array.

Both the original 4-ary 3-mesh topology and the resulting floorplan are shown in

the figure. Again, different groups of nodes are assigned different colors for a better

visualization. As shown from the figure, REGULAY creates a satisfying results for

this topology. All the nodes are placed into a regular and clustered formation on

the floorplan. The locations of yellow nodes and blue nodes are symmetrical to each

other, and the green nodes and white nodes are symmetrical too. This is because

that yellow and blue nodes are “sandwiched” between green and white nodes in the

original topology.

Fig. 6.11 shows the floorplan of 4-ary 3-cube torus network. There are total 64

node processors and 192 nets in this network, and they are also mapped into the same

8×8 tile floorplan. For a clearer view of the original network topology, we do not show

all the 192 nets in the figure. No I/O locations are constrained. Compared with the

4-ary 3-mesh network, the torus floorplan shows a different formation of regularity

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 104

Figure 6.8: Legalized Floorplan of Octagon Networks with and without I/O Constraints

and clustering. As shown in this figure, the green and yellow nodes locations are

symmetrical to each other, while the blue and white nodes are symmetrical too. This

difference is caused by the “wrap around” nets added in the torus topology.

A 2-ary 3-fly Butterfly switch fabrics is tested as an example for indirect network.

We use the same I/O constraints as described in Section 6.4.3, and the floorplan is

legalized from the initial locations shown in Fig. 6.6. As illustrated in Fig. 6.12,

under these I/O constraints, REGULAY creates a very dense arrangement of the

switch fabrics, the regularity of the topology, as well as the locality of the I/O switches

are well preserved.

Furthermore, we compare the total network wirelength and average net wirelength

between REGULAY and UCLA MCM. Each PE in the network is 100µm×100µm in

size. The wirelength is the Manhattan distance between two connected PEs. The re-

sults are compared in Table 6.1. We further calculate the wirelength reduction (both

total and average) achieved by REGULAY over UCLA MCM. As shown in the table,

the wirelength created by Regular is 1.8× to 6.5× smaller in all the benchmarks. Par-

ticularly, REGULAY shows even greater advantages in those more complex networks:

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 105

Figure 6.9: Floorplan of Cube-Connected-Cycles Network

Figure 6.10: Floorplan of 4-ary 3-mesh Network

the 4-ary 3-mesh and torus network and the Octagon network achieve much higher

wirelength reduction than those simpler networks.

6.7 Summary

In this chapter, we proposed a physical floorplanning method for MPSoC on-chip

network and switch fabrics, and introduced REGULAY, a network floorplanning tool

that implements the proposed methodology. Experiments show that REGULAY can

automatically create an optimal floorplan that preserves the regularity and hierar-

chy formation of the network topology, while achieving significantly reduced total

wirelength compared to traditional floorplanning tools.

CHAPTER 6. PHYSICAL PLANNING OF ON-CHIP NETWORKS 106

Figure 6.11: Floorplan of 4-ary 3-cube Torus Network

Figure 6.12: Floorplan Comparison of Constrained Butterfly Network

Table 6.1: Wirelength Comparison Between REGULAY and UCLA MCM

REGULAY UCLA MCM improv
total average total average ement

wirelengthwirelengthwirelengthwirelength

5ring Oct 12400 206 54000 900 4.4
CCC 6000 166 10800 300 1.8

4ary 3mesh 28800 200 115200 800 4.0
4ary 3torus 60800 422 393600 2733 6.5
2ary 3fly 9600 200 19200 400 2.0

Chapter 7

Conclusions and Future Directions

The challenges of designing SoCs in 50-100nm technologies include coping with design

complexity and providing reliable, high-performance operation and minimizing energy

consumption. Starting from the observation that interconnect technology will be the

limiting factor for achieving the operational goals, we envisioned a communication-

centric view of design. In particular, we focused on energy and performance aspects

for designing the communication infrastructure for future SoCs.

In this thesis, we analyzed several issues in the physical and network layers of the

on-chip communication stack, and we proposed several strategies to effectively tackle

the performance and energy challenge for on-chip communication networks.

1. On-chip packet routing should explore the schemes that can reduce the traffic

contention without extensively using the buffers. Contention-look-ahead routing

scheme, as proposed in this thesis, is proved to be an suitable candidate. It

utilizes the abundant on-chip wiring resources to deliver and propagate the

contention information among the neighboring nodes, thus helps the local nodes

to make ‘”smarter” routing decision and reduces the contention occurrence.

2. On-chip communication can benefit from application-specific and platform-

specific architectures, because the on-chip communication is less restrictively

constrained from compatibility and adaptability issues. In this thesis, we show

that changing the packet size can achieve a better performance-power trade-off.

107

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 108

The packet size impact on networks and node processors is also analyzed in

detail.

3. Many researchers proposed a tile-based on-chip network architecture for future

MPSoC platform. Therefore, physical planning of the network topology is an

important issue, because different network topologies need to be planarized

onto the two-dimensional silicon floorplan. Furthermore, the on-chip network

floorplan needs to preserve the topological regularity and minimize the total

wirelength. These requirements are conflicting with each other. In this thesis,

we proposed a floorplanning methodology and a tool to solve this problem

automatically.

Nevertheless, the methodologies presented in this thesis are far from serving com-

plete on-chip network solutions. As communication-energy minimization will be a

growing concern in future MPSoC technologies, an on-chip network implementation

needs different layers to be integrated and interacted effectively. We outline some of

the areas that, in our opinion, are particular critical for current and future networks-

on-chip research.

• Fault-tolerant and robust transmission. Ever since the VLSI process technology

moves into the deep sub-micron domain, on-chip data transmission can no longer

be assumed reliable. The signal integrity problem in future NoC will become

even worse as the device feature size continues to shrink. Increasing robustness

can be achieved by 1) increasing the noise margin, 2) increasing the sensitivity

of the receiver, or 3) error detection and correction. While increasing the noise

margin will inevitably increase the power consumption, the later two options

will likely be the directions for future NoC design exploration.

• Heterogeneous network routing algorithms. Most current NoC architectures

adopt regular network topologies, i.e., two-dimensional mesh or torus. While

packet routing and task mapping on these networks can benefit from regularity

formation, more dedicated approaches need to be developed for heterogeneous

NoCs. The diversity of future NoC applications will require application-specific

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 109

node processors, i.e., image processing units and general CPUs may coexist on

the same chip. NoC routing and mapping algorithms must be flexible enough

to support different platform configurations.

• Programming abstractions. Developing adequate abstractions for NoC program-

ming is a critical objective. Energy efficiency can be pursued by minimizing

redundant communication, and by carefully balancing local computation and

communication costs. A critical need in this area is the definition of hard-

ware platform dependent high-level metrics, such as energy per local operation

and energy per transmitted bit, which can help in first-cut exploration of the

communication vs. computation trade-off during algorithm development.

• Task-level analysis and optimization. Future networks-on-chip design flow will

need high-level optimization tools that can help designers mapping data-flow

specifications onto target hardware platforms. The issues in this area include

task splitting and merging (i.e., distributing the computation performed by a

task among two or more computational nodes, and collapsing two or more tasks

onto the same node), task allocation, as well as communication splitting and

merging over available physical NoC links.

• Code optimization. Code optimization will hold an important place in future

NoC software development. Many techniques are critical for further develop-

ments, such as: 1) techniques for parallelism extraction from a single task or

a legacy applications, 2) techniques that reduce the memory footprint and im-

prove access locality for both code and data, and 3) development of highly-

efficient communication primitives.

• Distributed operating systems. The operating system that supports NoC op-

eration cannot be centralized. Truly distributed embedded OSes are required

to create a scalable run-time system. In addition to traditional functions (i.e.,

scheduling, interrupt handling), the NoC OS should natively support power

management, bandwidth allocation and resource sharing.

CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS 110

The idea of networks-on-chip provides a new paradigm for future systems-on-chip

architectural design and methodology. Many new challenges will emerge and thus

create exciting research opportunities for the years to come.

Bibliography

[1] B. Ackland; et.al, “A single Chip, 1.6-Billion, 16-MAC/s Multiprocessor DSP”,

IEEE J. Solid-State Circuits, March 2000, pp. 412-424.

[2] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, C. A. Zeferino, “SPIN:

A Scalable, Packet Switched, On-Chip Micro-Network” Proceedings of the Design

Automation and Test in Europe, March 2003, pp. 70-73.

[3] C. J. Alpert, T. Chan, D. J.-H. Huang, I. L. Markov and K. Yan, “Quadratic

Placement Revisited”, Proceedings of the Design Automation Conference, June

1997, pp. 752-757.

[4] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S.

Smith, R. Stets, B. Verghese, “Piranha: A Scalable Architecture Based on Single-

Chip Multiprocessing”, Proceedings of 27th Annual International Symposium on

Computer Architecture, 2000, pp. 282-293.

[5] L. Benini, G. De Micheli, “Networks on Chips: A New SoC Paradigm”, IEEE

Computer January 2002, Volume: 35 Issue: 1, pp. 70-78.

[6] D. Bertozzi, L. Benini, G. De Micheli, “Low Power Error Resilient Encoding

for On-Chip Data Buses”, Proceedings of the Design Automation and Test in

Europe, March 2002, pp. 102-107.

[7] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, R. Zafalon “Energy Esti-

mation and Optimization of Embedded VLIW Processors Based on Instruction

Clustering”, Proceedings of 39th Design Automation Conference, June 2002, pp.

886-891.

111

BIBLIOGRAPHY 112

[8] W.O. Cesario, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, L. Gauthier, M.

Diaz-Nava, A.A. Jerraya, ”Multiprocessor SoC Platforms: A Component-Based

Design Approach”, IEEE Design & Test of Computers, Vol.19 Nr.6, Nov-Dec,

2002, pp. 52-63

[9] H. Jonathan Chao, Cheuk H. Lam, Eiji Oki Broadband Packet Switching Tech-

nologies: A Practical Guide to ATM Switches and IP Routers, Wiley-Interscience

Press, 2001.

[10] J. Cong, et al., ”Relaxed Simulated Tempering for VLSI Floorplan Designs”,

Proceedings of ASP Design Automation Conference, Jan. 1999, pp. 13-16.

[11] D. E. Culler, J. P. Singh, A. Gupta, Parallel Computer Architecture: A Hard-

ware/Software Approach, Morgan Kaufmann Publishers, 1998.

[12] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, L. Benini, “Xpipes:

a Latency Insensitive Parameterized Network-on-chip Architecture for Multi-

Processor SoCs” Proceedings of the International Conference on Computer De-

sign, Oct. 2003, pp. 80-85.

[13] W. J. Dally, “Performance Analysis of a k-ary n-cube Interconnect Networks”,

IEEE Transactions on Computers, June 1990, pp. 775-785.

[14] W. J. Dally, H. Aoki, “Deadlock -free adaptive routing in multicomputer net-

works using virtual channels”, IEEE Trans. on Parallel and Distributed Systems,

April 1993, pp. 466-475.

[15] W. Dally, B. Towles, “Route Packets, Not Wires: On-Chip Interconnection Net-

works”, Proceedings of the 38th Design Automation Conference, June 2001, pp.

684-689.

[16] A. Dehon, “Compact, Multilayer Layout for Butterfly Fat-Tree”, ACM Sympo-

sium on Parallel Algorithms and Architectures, 2000, pp. 206-215.

[17] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks, an Engineering Ap-

proach, IEEE Computer Society Press, 1997.

BIBLIOGRAPHY 113

[18] U. Feige, P. Raghavan, “Exact analysis of hot-potato routing”, Proceedings of

the 33rd Annual Symposium on Foundations of Computer Science, October 1992,

pp. 553-562.

[19] E. Geethanjali, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, ”Memory System

Energy: Influence of Hardware-Software Optimizations”, Proceedings of Interna-

tional Symposium on Low Power Design and Electronics, July 2000, pp. 244-246.

[20] P. Guerrier, A. Greiner, “A Generic Architecture for On-Chip Packet-Switched

Interconnections”, Proceedings of Design Automation and Test in Europe, March

2000, pp. 250-255.

[21] R. I. Greenberg, C. E. Leiserson, “A Compact Layout for the Three-Dimensional

Tree of Meshes”, Applied Math Letters, 1998, pp. 171-176.

[22] K. Hall, ”An r-dimensional Quadratic Placement Algorithm,” Management Sci-

ence, vol. 17, no. 3, November 1970, pp. 219-229.

[23] L. Hammond, B Hubbert, M. Siu, M. Prabhu, M. Chen, K. Olukotun, “The

Stanford Hydra CMP”, IEEE MICRO Magazine, March-April 2000, pp.71-84.

[24] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D.

Lindqvist, “Network on chip: An architecture for billion transistor era”, Pro-

ceeding of the IEEE NorChip Conference, November 2000, pp. 166-173.

[25] R. Ho, K. Mai, M. Horowitz, “The Future of wires,” Proceedings of the IEEE,

April 2001, pp. 490-504.

[26] J. Hu, R. Marculescu, “Energy-Aware Mapping for Tile-based NOC Architec-

tures Under Performance Constraints” Proceedings of ASP-Design Automation

Conference, Jan. 2003, pp. 233-239.

[27] J. Hu, R. Marculescu, “Exploiting the Routing Flexibility for En-

ergy/Performance Aware Mapping of Regular NoC Architectures” Proceedings

of Design Automation and Test in Europe, March 2003, pp. 688-693.

BIBLIOGRAPHY 114

[28] C. J. Hughes, V. S. Pai, P. Ranganathan, S. V. Adve, “Rsim: simulating shared-

memory multiprocessors with ILP processors”, IEEE Computer, Volume: 35

Issue: 2 , Feb. 2002, pp. 40-49.

[29] F. Karim, A. Nguyen, S. Dey, “On-chip Communication Architecture for OC-768

Network Processors” Proceedings of 38th Design Automation Conference, June

2001, pp. 678-683.

[30] T. Kogel, M. Doerper, A. Wieferink, R. Leupers, G. Ascheid, H. Meyr, S.

Goossens, “A modular simulation framework for architectural exploration of on-

chip interconnection networks” Proceedings of the 1st IEEE international con-

ference on Hardware/software codesign & system synthesis, Oct. 2003, pp. 7-12.

[31] S. Kumar, A. Jantsch, J. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tien-

syrj, and A. Hemani, “A network on chip architecture and design methodology”,

Proceedings of IEEE Computer Society Annual Symposium on VLSI, April 2002,

pp. 105-112.

[32] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno. “Efficient Power Estimation

Techniques for System-on-Chip Design”, Proceedings of Design Automation and

Test in Europe, March 2000, pp. 27-32.

[33] D. Langen, A. Brinkmann, U. Ruckert, “High level estimation of the area and

power consumption of on-chip interconnects”, Proceedings of 13th IEEE Inter-

national ASIC/SOC Conference, Sep. 2000, pp. 297-301.

[34] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley,

John & Sons, Sep. 1990

[35] E. Nilsson; M. Millberg, J. Oberg, A. Jantsch, “Load Distribution with the

Proximity Congestion Awareness in a Networks on Chip”, Proceedings of Design

Automation and Test in Europe, March 2003, pp. 1126-1127.

[36] S. F. Oktug, M. U. Caglayan, “Design and performance evaluation of a Banyan

network based interconnection structure for ATM switches“, IEEE Journal on

Selected Areas in Communications, June 1997, pp. 807-816.

BIBLIOGRAPHY 115

[37] C. Patel, S. Chai, S. Yalamanchili, D. Shimmel, “Power constrained design

of multiprocessor interconnection networks”, Proceedings of IEEE International

Conference on Computer Design, 1997, pp. 408-416.

[38] D. A. Patterson, J. Hennessy, Computer Organization and Design, The Hard-

ware/Software Interface, Morgan Kaufmann Publishers, 1998

[39] Bryan Preas and Michael Lorenzetti Physical Design Automation of VLSI Sys-

tems, The Benjamin Cummings Publishing Company, 1988.

[40] F. P. Preparata, J. Vuillemin, “The Cube-Connected Cycles: A Versatile Net-

work for Parallel Computation”, Comm. of the ACM, May 1981, pp. 300-309.

[41] E. Rijpkema, K. G. W. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen,

P. Wielage, and E. Waterlander, ”Trade offs in the design of a router with both

guaranteed and best-effort services for networks on chip”, Proceedings of Design

Automation and Test Conference in Europe, March 2003, pp. 350-355.

[42] W. T. Shiue, C. Chakrabarti, “Memory exploration for low power, embedded

systems”, Proceedings of the 36th Design Automation Conference, June, 1999,

pp. 140-145.

[43] J. P. Singh, W. Weber, A. Gupta, “SPLASH: Stanford Parallel Applications for

Shared-Memory”, Computer Architecture News, vol. 20, no. 1, March 1992. pp.

20(1):5-44.

[44] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, A.

Sangiovanni-Vincentelli, “Addressing System-on-a-Chip Interconnect Woes

Through Communication-Based Design”,Proceedings of the Design Automation

Conference, June 2001, pp. 667-672.

[45] D.Sylvester and K.Keutzer, “A Global Wiring Paradigm for Deep Submicron

Design,” IEEE Transactions on CAD/ICAS, Vol.19, No. 2, Feb. 2000, pp. 242-

252.

BIBLIOGRAPHY 116

[46] T. Theis, “The future of Interconnection Technology,” IBM Journal of Research

and Development, Vol. 44, No. 3, May 2000, pp. 379-390.

[47] C. D. Thompson, A Complexity Theory for VLSI, PhD thesis, Carnegie-Mellon

University, August 1980.

[48] J. Walrand, P. Varaiya, High-Performance Communication Networks, Morgan

Kaufman, 2000.

[49] A. G. Wassal, M. A. Hasan, “Low-power system-level design of VLSI packet

switching fabrics”, IEEE Transactions on CAD of Integrated Circuits and Sys-

tems, June 2001. pp. 723-738.

[50] F. Worm, P. Ienne, P. Thiran, G. De Micheli, “An Adaptive Low Power Trans-

mission Scheme for On-chip Networks” Proceedings of the 15th international sym-

posium on System Synthesis, Aug. 2002, pp. 92-100.

[51] J. Wu; “A deterministic fault-tolerant and deadlock-free routing protocol in 2-

D meshes based on odd-even turn model” Proceedings of the 16th international

conference on Supercomputing, 2002, pp. 67-76.

[52] T. T. Ye, L. Benini, G. De Micheli, “Analysis of power consumption on switch

fabrics in network routers” Proceedings of the 39th Design Automation Confer-

ence, June 2002, pp. 524-529.

[53] M. A. Youssef, M. N. El-Derini and H. H. Aly, “Structure and Performance Eval-

uation of a Replicated Banyan Network Based ATM Switch”, IEEE Symposium

on Computers and Communications, July 1999, pp. 258-266.

