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Abstract

Automatic synthesis of digital circuits has gained increasing importance. The synthesis
process consists of transforming an abstract representation of a system into an implemen-
tation in a target technology. The set of transformations has traditionally been broken
into three steps: high-level synthesis, logic synthesis and physical design.

This dissertation is concerned with logic synthesis. More specifically, we study tech-
nology mapping, which is the link between logic synthesis and physical design. The
object of technology mapping is to transform a technology-independent logic description
into an implementation in a target technology. One of the key operations during tech-
nology mapping is to recognize logic equivalence between a portion of the initial logic
description and an element of the target technology.

We introduce new methods for establishing logic equivalence between two logic
functions. The techniques, based on Boolean comparisons, use Binary Decision Diagrams
(BDDs). An algorithm for dealing with completely specified functions is first presented.
Then we introduce a second algorithm, which is applicable to incompletely specified
functions. We also present an ensemble of techniques for optimizing delay, which rely
on an iterative approach. All these methods have proven to be efficient both for run-times
and quality of results, when compared to other existing technology mapping systems.

The algorithms presented have been implemented in a technology mapping program,
Ceres. Results are shown that highlight the application of the different algorithms.
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Chapter 1
Introduction

Automatic synthesis of logic circuits has gained increasing importance in the digital-
circuit-design environment. Synthesis of digital circuits is now widely used because it
allows rapid generation of high quality circuitry. The requirement for fast turn-around
mandates that synthesis tools must produce results quickly, which then allows system
designers to easily experiment with different design options. The necessity for high
guality means that automatically generated circuits must meet or exceed the level of
performance achieved by custom, hand-designed systems.

In order to fulfill these goals of efficiency and quality, highly abstract descriptions of
target systems become the vehicle of choice. The synthesis process is typically broken
into a sequence of steps which gradually transform the abstract description into an actual
implementation. The transformation steps are subdivided into three classes: operations
on abstract representations, operations on logic descriptions and operations on geometric
representations. The first class is called high-level synthesis, the second class logic-level
synthesis and the last physical-design synthesis. Logic-level synthesis is further sub-
divided into technology-independent and technology-dependent operations. Technology
mapping, which is the subject of this thesis, represents the technology-dependent step.

In this chapter, we review current automatic design methodologies. We briefly
overview the origins of logic synthesis, including two-level and multi-level formula-
tions. We explain how current synthesis systems include both high level and logic level
synthesis, as well as physical design. We briefly des@ilyenpusas a test-case example
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of a synthesis system incorporating high-level and logic-level operations. We emphasize
the importance of technology mapping in the general synthesis framework, and describe
the contributions of the research we did on that subject. We introduce terminology which

will be used later in the thesis, and conclude the chapter with an outline of the remainder
of the thesis.

1.1 Automatic digital circuit synthesis

The quality of automatically synthesized logic circuits depends on the transformations at
each level of the synthesis process. Therefore, before addressing the specifics of tech-
nology mapping, we describe the different steps involved in current automatic synthesis
systems. We will review the operations carried out at each step, looking at existing
systems and tracing their origins. We start with logic synthesis, then briefly present
high-level synthesis, followed by physical design. As a case example, we then describe
Stanford’sOlympus Synthesis Systeanvertically integrated, automatic synthesis system.

1.1.1 Logic synthesis: a historic perspective

The origins of logic synthesis date back to the 1950’s, when the emergence of the transis-
tor made the implementation of logic circuits easier. In the mid-1950's, the first generation
of tube-based digital computers was fully operational, making rudimentary design automa-
tion possible for the next generation of transistor-based computers [Pre72, CK56, Sco58].
An instructive measure of the heightened interest in logic operations was the rapidly in-
creasing number of publications in the field during that decade [Hol61]. Quine introduced
a method of simplifying two-level logic expressions, which was later improved by Mc-
Cluskey [Qui52, McC56b]. Methods for minimizing two-level logic representations were
studied extensively at that time, because sum-of-products were the most common way of
implementing transistor-based digital circuits.

In parallel with the study of two-level logic optimization, multi-level representations
were also investigated. Ashenhurst introduced the idea of logic decomposition [Ash59],
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which is the basis for recognizing multi-level logic expressions. His method made pos-
sible simple decompositionsvhich reexpress a logic functiofi( ,x2,...,x,) as a
combination of two new functiong( %,...,2;,?) , ® %,...,2;) where{s,...,z;} U

{zg, .oy} = {z, 22, 2} @and{x;, ..., 2;} N {xg,...,z;} = 0. Curtis expanded

the method to allowcomplex decompositionf€ur61, Cur62], that is, decompositions
where the second condition is relaxed (inputgyahd ¢can be common to both func-
tions). Roth and Karp presented an algorithm implementing both simple and complex
decompositions [RK62]. Their system could potentially generate the optimum logic cir-
cuit implementing a user-provided logic description. The major limitation was that only
small circuits could be processed, because of the computational complexity of the algo-
rithm.

Schneider and Dietmeyer built a system for multiple-output function synthesis based
on the decomposition techniques of Karp and Roth [SD68]. Muroga introduced the idea
of permissible functions at the beginning of the 1970’s [MKLC89]. Liu was concerned
with the automatic synthesis of MOS networks [Liu77c, Liu77b]. Most of these methods
were computationally too complex at the time for being effectively used on large circuits.

Until the end of the 1970’s, most logic optimization systems would be able to pro-
cess circuits with limited number of inputs and outputs. With the introduction of the
Programmable Logic Array (PLA) and the advent of VLSI during the 1970’s [MC81],
approximate methods for two-level minimization became very important, because the
size of the circuits made the use of exact solutions very difficult [BHMSV84]. In 1974,
Hong et al. developed MINI, a program based on an efficient algorithm for prime im-
plicant generation [HCO74]. Arevalo presented an approximate two-level minimization
method targeted at PLAs [AB78]. Svoboda introduced an efficient heuristic for two-level
logic simplification [SW79], which was later implemented as program PRESTO [Bro81].
Braytonet al. introduced ESPRESSO, a combination of heuristics that proved very suc-
cessful at simplifying two-level logic expressions [BM84]. Dagenais presented an exact
minimization algorithm for two-level logic expressions [DAR86]. Gurunath and Biswas
described an efficient two-level minimization algorithm relying on the generation of only
a small portion of all the possible prime cubes [GB87]. Since PLAs were the technology
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of choice for hardware implementation of combinational logic, the problem of simplify-
ing the hardware was one of simplifying two-level representations and then taking logic
information into account at the layout level, to allow compressionfgting) of the
array [DSV83].

With the main technology for digital circuits shifting from NMOS to CMOS, and the
appearance of gate arrays, PLAs proved insufficient to meet the more stringent timing
and area requirements. Two-level logic minimization was augmented to multi-level logic
optimization. Brayton and McMullen proposed a decomposition technique suited for
multi-level logic operations [BM82, BHMSV84]. Many multi-level logic optimization
techniques and systems were developed in the 1980’s [DJBT81, GBdGH86 &K
BRSVW87, BHJ>87]. One of the new problems that appeared with multi-level logic
synthesis was that the transformation from the optimized logic description to a target
technology was no longer a transformation into a well-defined, regular PLA structure. In
addition to simplifying the logic description of circuits in a technology-independent set
of operations, logic synthesis systems had to be extended to take the target technology
into account, and technology mapping became the necessary technology-dependent step
for automatic synthesis of digital circuits.

The purpose of technology mapping is to transform an arbitrary multiple-level logic
representation into an interconnection of logic elements selected from a fixed library of
elements. Technology mapping is a very crucial step in the synthesis of semi-custom
circuits for different technologies, such as sea-of-gates, gate-arrays, standard cells, or
field programmable gate arrays (FPGA). The quality of the final implementation, both in
terms of area and performance, depends heavily on this step.

1.1.2 High level synthesis

It is possible to use logic synthesis tools directly, and enter the descriptions of desired
circuitry at the logic level. However, the operation of describing a circuit at the logic

level can be very time-consuming. With the very tight time-to-market schedules required
by today’s digital systems, facilitating the designers’ creative process has become of
prime importance. Therefore, there is a need for methods to efficiently describe digital



CHAPTER 1. INTRODUCTION 5

systems. From the beginning, the goal of high level synthesis has been to allow one to
describe digital systems at a very abstract level, thus eliminating the tedious description
at the logic level.

Typical high level synthesis systems operate on behavioral descriptions, which specify
the operations the target system is to carry out, without the need to specify in full detail
the logic circuit that will implement the target system. The role of high level synthesis
systems is therefore to operate on the abstract specifications given by designers and
generate a logic description that satisfies those initial functional requirements. Logic
descriptions produced by high-level synthesis systems are in general simply blueprints
for the required functionality. As a result, logic synthesis is typically used after high-level
synthesis to optimize the logic descriptions.

Starting at the end of the 1970’s, many systems have been created to address the
need for more abstract descriptions, and were typically targeted at very specific appli-
cations. MIMOLA was one of the first such system [Zim79]. HAL was targeted at the
synthesis of telecommunication ASIC circuits [PKG86]. The Cathedral system is aimed
at Digital Signal Processing (DSP) applications [NvMM88]. Other high level synthesis
systems developed in that period include 8ystem Architect's WorkbenghDW*89],
the Yorktown Silicon CompilefBCD*88], USC’s ADAM system [PPM86], UC Irvine’s
synthesis system [BG87], CADDY/DSL [CR89]. At Stanfotderculesand Hebewere
developed as the high-level end of tdympus Synthesis Syst¢ku91l].

1.1.3 Physical design

The usefulness of high-level and logic level synthesis hinges on the availability of tools
that generate the geometric description of the target circuits. These tools are called
physical design systems. The geometric description they produce is typically used to
drive the physical implementation, either because it directly represents fabrication masks
(e.g. in semi-custom designs), or it specifies which actions to take to create the final
circuit (e.g. which fuses to blow in a FPGA).

The earliest physical design tools were targeted at automatic layout systems for gate
arrays and standard cells, the Engineering Design System of IBM being among the
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first such systems [San87]. Because of its computational complexity, the physical de-
sign problem was quickly divided into smaller, more amenable subproblems. A cur-
rent customary subdivision includes partitioning (and floorplanning), placement, global
routing and local routing. Placement involves the positioning of geometrical objects
in a two-dimensional plane. Routing is related to the creation of interconnection links
between placed objects. Since placement and routing are themselves computationally
complex, the goal of partitioning is to isolate smaller circuit portions on which place-
ment and routing can be applied. Among partitioning techniques, Kernighan and Lin’s
heuristic for bipartite partitioning [KL70], and Kirkpatrickt al’s simulated annealing
method [KGV83] are the best known. Current research targets multiple way partition-
ing [YCL91]. Solutions to the placement problem include using slicing structures [Ott82],
min-cut algorithms [Bre77, Lau80] and rectangular dualization methods [HSM82]. In-
terest in wire routing started in the early 1960’s [Lee61]. A major milestone was the
idea of reservingchannelsfor routing, introduced by Hashimoto and Stevens [HS71].
Channel routing was extensively studied during the 1980’s [Bur86]. Global routing is
also an important component in today’s physical design systems [KMS86]. With the
availability of placement and routing tools, symbolic layout and automatic cell gener-
ation have become a viable path from semi-custom designs logic descriptions to lay-
out [New87, Uv81, MH87, MD88, HHLH91].

1.1.4 The Olympus Synthesis System

Most synthesis systems nowadays incorporate both high-level and logic synthesis oper-
ations. Olympusis an example of the current trend [DKMT90]. It is composed of an
ensemble of tools that can be classified as members of either the high-level or logic
synthesis domains. Figure 1.1 is a diagram representing the current tdolgnnpus

The entry point of the system is a behavioral description in a hardware description
language, HardwareC. The behavioral description is processed by prddgecules
which parses the description, does some compiler-like optimizatiergs (ead code
elimination, constant propagation), and generates SIF (Sequencing Intermediate Format),
an intermediate representation of the operations and data dependencies implied by the
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original specification. This intermediate representation can be simulated by means of
Ariadne which allows validation of the HardwareC description against the desired be-
havior. Hebeoperates on the same representation (SIF), performing resource allocation,
scheduling and control generatiotdebe allows design space exploratiorwhich lets

users of the system experiment with different design decisions and evaluate their impact
on the final implementationHebeproduces a logic description in SLIF (Structure/Logic
Intermediate Format), which consists of Boolean equations, delay elements, and possibly
hierarchy.

The logic description is passed Mercury, a logic synthesis frameworkMercury
allows for simple logic operations like constant propagatisweep and merging of
logic equations €liminatior). It contains a simple two-level optimization procedure,
called SANKA [Fil91], based in part on the POP algorithm [DHNSV8B]ercury also
allows users to operate on the hierarchy of the logic descriptibfescury contains an
interface to other logic synthesis systenesg( MISII and AutologictM). It allows a
logic description written in SLIF to be optimized by means of these other synthesis tools,
and then to be read baclercury contains an event-driven logic simulator. The logic
simulator has different built-in timing models: load-dependent with assumed loads (for
technology-independent logic descriptions), load and drive-dependent (for technology-
dependent logic descriptions), and zero-delay combinational logic (for compatibility with
the results ofAriadne).

Once logic descriptions have been optimized, they are transforme@ebss the
subject of this thesisCeresis a technology mapper which binds technology-independent
logic descriptions to target technologies. The target technologies are represented by anno-
tated libraries, which contain descriptions of available logic gates. The logic description
of each gate includes its logic function, and other parameters like area, input capacitance,
output drive, etc.Ceresshares its internal data representation Witbrcury, and accord-
ingly incorporates some of the functionality bfercury (e.g. constant propagation). In
addition, for the more specific tasks involved in technology mappiiegesincludes al-
gorithms for logic decomposition, logic equivalence verification for both completely and
incompletely specified functions, and area/delay optimizatiQeresultimately trans-
forms technology-independent descriptions, creating new representations based on target
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libraries. The resulting netlists are then passed to physical design tools for placement
and routing. Many physical design tools are currently available both from industry
and academia, and therefore are not included inQhgnpussystem. This dissertation
presents the ideas and algorithms implemented by pro@raras
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1.2 Terminology and notation

Descriptions of automatic synthesis systems have a very specific vocabulary and termi-
nology depending on the level of abstraction. Each of the three levels of abstraction
presented earlier, high-level synthesis, logic synthesis and physical design, has its own
representation and modeling paradigms. Since in the remainder of this thesis, we focus
on the logic level of automatic synthesis of digital circuits, we will define the terminology
which will be used throughout.

Customary representations at the logic level involve Boolean algebra, and relations
between Boolean functions. Technology mapping involves the technology-dependent
set of operations in logic synthesis systems. Technology-dependent and technology-
independent operations are closely linked. Therefore, the terminology and notation we use
in this thesis are strongly related to those used in descriptions of technology-independent
logic synthesis operations. In subsequent chapters of this thesis, we rely on the following
definitions and assumptions:

Definition 1.1 B = {0,1} is the Boolean domain.

We denoteBoolean variabledy subscripted stringse(9. =;, z;, yx). Boolean vari-
ablescan take on values from the sbt

Definition 1.2 The Boolean operatorst’, * and ’'I" represent the logic disjunction
(OR), conjunction (AND) and inversion (NOT), respectively. By default, we denote ™
by a white space. !’ is also represented by an appended apostrofihe ”

The phaseof a Boolean variabler; indicates whether the value of is to be used
directly or complemented (inverted). This is denoted by a 0 or 1 superseripneans
the direct phase of;, andz? means the complemented phase. When used without
superscripty; meansri. Symbolz? is also represented by andz;.

Definition 1.3 A Boolean functionH u,...,z,) is a composition oBoolean operators
A single outputBoolean functionis a functionF: B ™ — B. An m-output Boolean
functionis a functionF: B ™ —B ™. We denote by; the variable associated with the
output of F; L.

INote thatz; cannot be one of the inputs &f; (i.e. »; & {z1,..., %}).
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A Boolean functiorFis said to baunatein Boolean variabler ; if x; appears always
in only one phase in the expression &f F is said to bepositive (or negativé unate
in z; if only x; (or x!) appears in the expression &f Fis binatein = ; if the variable
appears in both phases in the expressiotf.of

Definition 1.4 Aninput vectory of a single output Boolean functigh: B * —Bis one
element of the domaii”. Input vectory of A x,...,z,) is represented by a product
i =Tz, =" wherep; € {0,1} is the phase of variable;.

Definition 1.5 We define thé@ON-setof Boolean functionF as the set of input vectors

{pj,9=1,...,] ON | } of Ffor which A ;) = 1. The input vectors of th©N-setare
also called minterms. Th@®FF-setof Boolean functiorn is defined as the set of input
vectors{u’,j=1,...,| GF|} suchthatA n ) =0.

Definition 1.6 Theimageof A through F: B" —B ™ is the subset oB™ reached
by A A, where Ais a subset of3 *. Therangeof Fis the image of3 " through F
(A=8B ).

Boolean functiongan becompletelyor incompletely specifiedCompletely specified
functions follow the previous definition. Incompletely specified functions have their range
B extended toB = {0,1, X}, where Xmeans either 0 or 1.

Definition 1.7 Don't care setgepresent the conditions under which a Boolean function
takes the valueX

Don't care conditions occur in Boolean logic either because some combination of
inputs of a Boolean function never happen (the domaif{ofs, ..., z,) is smaller than
B™), or because some outputs @fare not observed. The first class dbn't care
conditions is calleccontrollability dont cares and the second classbservability don't
cares Both are described more thoroughly in Chapter 6.

Definition 1.8 A Boolean functionF is implementableoy a Boolean functiory if for
each input combination eitheF and G have the same value, or elgéhas a valueX
Alternatively, we say thaf is compatiblewith F.
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Definition 1.9 The supportof a Boolean functionA x1,...,x,) is the set of variables
{z1,...,2,} used in the expression ¢

Definition 1.10 A Boolean networkis an ensemble of interrelated Boolean functions.
We represent a Boolean network by a sef\Boolean variable’ = {y 1,...,y~} and

a set of Boolean function§Fy, ..., Fx} such that\'= {y ;, = F;,: = 1,..., N where

y; = J; represents an assignment of a single-output Boolean function for every Boolean
variable. Functions?;.: = 1,...,N have K ; < Ninputs (i.e. F ; : BY —B), each

input corresponding to a Boolean variable Bf

Subsets of Boolean networks are also Boolean networks. Boolean networks are
represented by graphs( V, E) where the vertex sét’is in one-to-one correspondence
with the set of Boolean variabléé= {y1,...,yn}, andZis the set of edgese ;; | ¢, j €
{1,..., N} such thate ,; is a member of the sdfif y ; € support{F;). Such networks
are acyclic by definition.

We respectively call fanin and fanout the in-degree and the out-degree of vertices in
a Boolean network.

Definition 1.11 Primary inputsare Boolean variables of a Boolean network that depend
on no other variable (i.eF; is the identity function foprimary input3. Primary outputs
are Boolean variables on which no other variable depends.

Definition 1.12 Thedepthof a Boolean network is the maximum number of vertices in
a directed path between any primary input and any primary output.

Definition 1.13 Collapsingis the action of reducing the depth of a Boolean network to
one. Partial collapsingcorresponds to collapsing subnetworks.

Definition 1.14 The Boolean behavioof a n-input, noutput Boolean network is the
Boolean functionF: B " — B™ corresponding to the collapsed Boolean network.

Two Boolean networks are equivalent if there is a one-to-one correspondence between
their respective primary inputs and primary outputs, and if their corresponding Boolean
behaviors are compatible.
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1.3 Contributions

The research presented in this thesis concerns technology-dependent transformations at
the logic level in automatic synthesis of digital circuits. The goal of technology mapping,
as this operation is called, is to transform arbitrary Boolean networks into networks that
rely only on a predefined, restricted set of Boolean functions. The restricted set of Boolean
functions is called #ibrary, and represents logic gates available in some target technology.
Given a cost metric defined in terms of the restricted set of Boolean functions, the quality
of the transformed network increases as its associated cost decreases. Typically, the cost
metric involves area and delay of the gates implementing the Boolean functions in the
library. As will be described in Chapter 2, one of the key operations in the transformation
process is to recognize logic equivalence between two arbitrary Boolean functions. Since
comparisons are done between Boolean functions with supports labeled differently, this
operation, called matching, is difficult.

The contributions of this work are two-fold. First, new algorithms for matching
are introduced. Second, we present an iterative formulation of technology mapping for
performance optimization.

Matching is a key operation in technology mapping systems, and we present two
new classes of algorithms. The first one is based on Boolean techniques for equivalence
detection. These techniques are more powerful than existing methods, and therefore
produce better quality solutions. The second class of algorithms addresses the problem
of matching Boolean functions in the presencealoht careinformation. This is a new,
and very important addition to technology mapping operations, as it merges operations
that were traditionally technology independent with technology-dependent step of logic
synthesis. Better solutions can be obtained, since optimization decisions are made with
a clearer knowledge of the target technology.

Performance is of utmost importance in digital circuits. We present an iterative
framework based on specific transformations of mapped circuits. The effect of applying
these transformations is to progressively reduce the critical delay in the implemented
circuit, possibly at the expense of increased area.

All the algorithms presented in this thesis have been implemented in a software
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system,Ceres Results are presented at the end of Chapters 5, 6 and 7 to exemplify the
value of the algorithms.

1.4 Thesis outline

The remainder of his thesis is structured as follows. In Chapter 2, we formally present the
intrinsically difficult problems related to technology mapping. We then review previous
approaches to solving these problems. In particular, we briefly review rule-based and
algorithmic systems, explaining how these solutions deal with the computationally com-
plex issues. We conclude the chapter by comparing these two approaches, and discussing
their respective limitations.

Chapter 3 introduces the general divide-and-conquer approach used in our solution to
technology mapping. We describe the basic steps of technology mapping: partitioning,
decomposition, and covering. We introduce a new method for solving the covering
problem.

In Chapter 4 we focus on our contributions to the efficient solution of the matching
problem, a key element of the covering problem. We introduce Boolean matching, and
explain how the quality of the solutions it finds is improved over that of previous systems.
We briefly review binary decision diagrams (BDD), as they constitute the major data
structure of the logic operations involved during Boolean matching. We first present a
simple algorithm for matching which can be used for establishing the equivalence of very
small logic functions in the presence @dbn't care information. This simple algorithm
exemplifies the computational complexity of Boolean matching, and indicates the need
for careful search space reduction when processing large logic functions.

In Chapter 5, we explain how to reduce the potentially very large search space. The
method is based on binary decision diagrams (BDD), and on the use of logic symme-
try. We present a method for computing and exploiting logic symmetry during Boolean
matching. We justify the usefulness of logic symmetry as an efficient way of reducing the
search space, particularly when dealing with standard logic parts offered by semi-custom
and ASIC vendors. We conclude Chapter 5 with comparative results with respect to other
technology mapping systems.
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Chapter 6 presents methods that consatart careinformation during the matching
operation. We introduce theatching compatibility graptas a way to recognize logic
equivalence in the presence of incompletely specified functions. We describddmiw
care information is derived from the subject circuit. We briefly present how the intro-
duction ofdon't caresenhances the testability of the final implementation. We complete
Chapter 6 by presenting technology mapping results usorg cares.

Chapter 7 is concerned with circuit performance issues. We present an ensemble
of three performance enhancement techniques: gate duplication, redecomposition and
partitioning modification. We also explain how the three techniques are integrated, using
an iterative framework as the driving mechanism. Results of timing-driven operations
conclude the chapter.

Finally, Chapter 8 concludes the thesis with a summary of the contributions, and a
discussion of future extensions.



Chapter 2
Technology mapping

In this chapter, we first present a general description of the technology mapping problem.
Then we formally define the technology mapping problem, focusing on the intrinsically
complex aspects. Previous solutions fall into two classes: rule-based and algorithmic
systems. We review the two classes of solutions, and finally conclude this chapter by
comparing them and highlighting their limitations.

The goal of technology mapping is to transform a technology-independent description
of a logic circuit into a technology specific representation. The technology dependent
implementation should optimize some cost metric, typically delay and/or area (and some-
times power dissipation). Technology-independent descriptions, obtained, for example,
after logic synthesis, are typically expressed in terms of Boolean equations (and possibly
other components like delay elements). Target technologies are represented by technol-
ogy specific libraries, which are comprised of individual gates implemented in the target
technology. Each library is typically described by enumerating all available logic' cells
(also called gates), where each gate description lists the logic function together with ad-
ditional information related to its electrical and physical characteristics (area, input load,
input to output delay, power requirements, etc.).

The fundamental operation in most existing technology mapping systems restricts
library elements to single-output, combinational gates. Therefore, multi-output gates,

1Some technologies can be characterized by a single master cell, or by some general property common to
all logic functions availableg.g. fanin limit. This is particularly true with some current FPGA technologies.

16
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registers and buffers are rarely directly taken into account. The apparent limitation of
this assumption is not as restrictive as it may first seem. Most systems use post-processing
steps to add sequential elements and buffers. Similarly, it is possible to replace groups
of gates by multi-output gates as a post-processing step, following a pass where only
single-output gates are taken into account.

2.1 The technology mapping problem

Technology-independent logic descriptions of logic circuits can be cast Bsokan
Network i.e. as a set of Boolean equations. These equations do not necessarily represent
logic functions of gates in the target technology under consideration. For example, the
technology-independent optimization step of a logic synthesis system might choose a
complex equationd.g. «= a+ i ¢+ d + ¢ ) for the description of the optimized
circuit, whereas in the target technology there is no gate implementing that complex
logic function €.g. there may not be an OR-AND-OR gate in the library). Furthermore,
even when there is a corresponding gate in the library for each equation generated by
the logic optimization step, there is no guarantee that the replacement of the equation by
the corresponding library element optimizes some particular figure of merit, such as area
or delay, because the equations are generated without knowledge of the target library.
Therefore, the goal of technology mapping is to find an ensemble of interconnected gates
in the target technology that realizes the same logic function as the original circuit. In
addition, the final realization should be optimized in terms of some cost metric provided
by the library.

This transformation implies two distinct operations: recognizing logic equivalence
between two logic functions, and finding the best set of logically equivalent gates whose
interconnection represents the original circuit.

The first operation is callethatching and is defined as follows:

Definition 2.1 Given two logic functionsF: B"™ —BandG: B " —B, Fand G match

if 7 =g for some input assignmeft{z 1,y-1)}, {22, Y 2} -+ s {Tns Y 5 } },» Where
variables{z1,...,z,} are the inputs off; variables{y,,...,y,} are the inputs o,

and~ is a bijection from the integer domaifd, . ...} to itself (i.e. ris a permutation).
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Matching involves two steps: equivalence checking and input assignment. Checking
for logic equivalence can be expressed asAJTOLOGYproblem: givenF, G and
the set of variable§” = {y1,y2,....y.}, verify that H Y) & G(Y) = 1 for all 2
binary assignments of the variables Xif TAUTOLOGYhas been proven to be NP-
complete [GJ79]. Input assignment is also computationally complex. In the worst case,
it entails the examination of all combinationsrahputs, which representsoperations.

The second operation is calledvering and is defined as:

Definition 2.2 Given a Boolean network/and a restricted set of Boolean functions
(called a library) £ = {G; : BY —B;i = 1,2,...,L}, a coveris a network M,
represented b= {z ; =G;,i=1,....| M;j€{1,...,} where , is an instance
of G, € £ | M is the number of vertices intand Ms equivalent ta\/

Covering involves finding an alternate representation of a Boolean network using logic
elements which have been selected from a restricted set. Note that before covering is
considered, the equivalence between elements of the restricted set and portion of the
Boolean network is established using the matching operation described above. In its
most general form, the covering process can be described as follows.

Consider a primary output, of network A, Let G , C £ be the subset of library
cells having the property that their output is equivalent favhen their inputs are either
a subset of vertices iV (excludingv ) or a Boolean function of a subset of variables of
N Then the set , represents all matches for the primary output If a matchg;, € G,
is chosen, then all variables in its support must be available through some other matches
that are chosen. Consider a netwo¥K obtained fromA by removing the primary
outputwv, from Nand adding all the variables in the supporiof. as primary outputs of
N'. Then the new network/” must be covered as well. This operation can be applied
recursively until all the primary outputs df"’ correspond directly to the primary inputs
of V'(Figure 2.1). Given a cost associated with each library element, the optimum
cover minimizes the overall cost of the alternate representation.

Let us neglect the computational complexity of findiig and A at each recursion
step. The choice of an eleme@t € G, implies that the inputs ofj, are available
as the primary outputs of the corresponding netwdik Therefore, the selection of a
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End of recursion: - U

Y

>

Figure 2.1: lllustration of the recursive covering definition

matching elemeng; implies that subsequent selections must make the primary outputs
of N/ (or alternatively, the inputs df) available. If it were possible to recursively list
all choices for matcheg,, it would be necessary to describe how choosing a matching
gate G, in turn implies other matches which generate the input$/of Solving the
set of implications generated in this process is a type of covering problem, which has
been termedinate coveringlRud89a], covering with cosf{RH67], andcovering with
closure The covering problem has been shown to be equivalent3&BISFIABILITY
problem, with the additional requirement that each variable in each clause to satisfy has
an associated cost [Rud89a].

In the general covering formulatiody”” does not need to be a subset.\df That
is, inputs to the chosen gate. do not need to correspond to vertices in the network
AN A restricted coveringproblem can be formulated, where the inputs to the matching
gates must pre-exist in the initial Boolean netwgvki.e. the inputs to any matching
cell G, € G, must correspond to a vertex of the Boolean netwafk The restricted
covering problem has been considered by [Keu87, Rud89a] because it is simpler to
handle: no computation ok’ is required. Under the restricted covering assumption,
Boolean network\ is defined by a constant set of vertices throughout the covering
process. However, such a problem is still computationally complex, because it again
involves implications among the selection of the matches, and therefore it is still a binate
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covering problem.

As an example of the occurrence of binate covering inréls&ricted coveringproblem,
let us consider Figure 2.2, which shows a simple netwdfkwith a set of target logic
gates,L. We are interested in transformintinto a new network, A where each
Boolean function belongs to the restricted get For Mo be equivalent to\; the

Boolean Network N

Library L Cost RPN
ey ., m4

“‘u“““‘mz -

.4!:: H

AND2 D"
e 5
ANDORP

ml:AOR2  m4: AB ANDOR2

m2: B,AND2  m5: AC,ANDOR2
m3: C,AND2

vertices of N = {A,B,C}
matches = {m1,m2,m3,m4,m5}

%

Figure 2.2: A simple covering example

logic functionality of their respective primary outputs has to be compatible. The primary
outputs of the transformed networktust be implemented by gates selected from the
library £ Each variable in the support of these gates also must be implemented by some
gate from the library, unless the variable is a primary input. This has to be recursively
true, so that all variables used ibare defined.

Each vertex inV can be represented by at least one elemex} and possibly more
than one. Conversely, an elementdrcan possibly represent more than one vertex of
N, Therefore, there are usually many choices of gates ithat can generate a valid
network M

For example, in Figure 2.2, functiofcan be represented either by a single two-input
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OR gate (OR2), or together with functid® (or ' by a AND-OR gate (ANDOR2). We
can associate a binary variable with the choice of a particular gate cover, for example
represents whether the two-input OR gate is chosen to céier, = 1), or whether it

is not chosenf; = 0). Similarly, in Figure 2.2yn,4 represents the use of the AND-OR
gate to cover functiongland Bandm s represents and AND-OR gate coveridgnd

C

Therefore, we can represent the requirementdforbe covered at least by one gate
in £ by the Boolean equatiof my + ma4 4+ ms) . Similarly, the covering requirements
for Band C'can be represented by Boolean equations , + m4) and ( g+ ms)
respectively. For all vertices in the original network to be covered in the alternate
representation, the three Boolean equations above must be true at the samieetime,

(( m+ma+ms) ( mot ma) ( wrtms) =1).

In addition to these requirements, each cover in the alternate network must have its in-
puts generated by other covers (unless the inputs are primary inputs). For instance, choos-
ing a two-input AND gate to coveBrequires that the output ofbe available, which
is the case only if a two-input OR gate covetsThe choice of the two-input AND gate
coveringHs represented by Boolean variable ,, and the two-input OR gate covering
is represented by:;. This relation can thus be expressedias—m 1. Similarly, mz —
m1. These additional conditions must be valid simultaneously with the first covering con-
ditions. Therefore, to solve the covering problem, we must find a solution to the following
Boolean equation{ m + ma4 + ms) ( w4 ma) ( g+ ms) ( m—m 1) ( ;—m 1) =1,
which can be rewritten asm +ma+ms) ( w-ma) ( ge-ms) fiz+ma) tis+ma) = L.
We can see from this equation why this imate covering problem: some variables
(m2 andm3) appear in both their ON and OFF phases. For every cube that satisfies the
equation| mmomaing ms, Mm1ming mams, m1mzamsamains, my mz mamams) , the cost is
calculated as the sum of the costs of variables used with a positive phase (12,13,13,10
for the examplé). The satisfying minterm with minimum cost is chosen as the solution
to the covering problem; m; mzmams).

SATISFIABILITYhas long been known to be NP-complete [Coo71, GJHBlhate

°Remember that each variable with positive phase corresponds to selecting a gate from the library.
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covering which involves the additional requirement of minimal cost is, therefore, com-
putationally harder thaBATISFIABILITY

2.2 Previous work

In order to find acceptable solutions to the computationally complex problems intrinsic
to technology mapping, simplifications and heuristic approaches have been used in the
past. Two classes of methods exist: rule-based and algorithmic. Rule-based approaches
utilize expert systems to operate on a technology rule-base. A network is modified by
successively applying relevant transformation rules to each of its elements. The operation
continues until either no transformation can be applied or the network has reached some
acceptable statée. the evaluation of some metric of the network gives a cost lower than
some predefined value. A rule-base is created with rules that encapsulate the allowed
transformations on a network as pairs of logically equivalent configurations, with one
preferred element in the pair. Rules are typically very specific to the target technologies.
Therefore modifying or adding rules in the rule set of a technology (or creating a rule
set for a new technology) is usually not simple.

Algorithmic-based approaches use constructive methods to transform networks from
generic Boolean logic into technology-specific design. They follow a sequence of sys-
tematic operations that change the original logic description into an implementation that
conforms to the target technology.

There are currently many systems that support technology mapping to produce actual
implementations of circuits. Both ruled-based and algorithmic-based categories are well
represented. Often, the technology mapping operation is one step in a more general logic
synthesis system. We will now review previous logic synthesis systems, concentrating
on the technology mapping aspect. We will first consider rule-based systems, then follow
with algorithmic-based ones.
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2.2.1 Rule-based systems

One of the first systems to tackle the technology mapping problem was LSS [DJBT81,
DBJT84, JTB 86], which started at IBM in the early 1980’s. LSS uses local transfor-
mations to first simplify a logic description, and then expresses it in terms of the target
technology. Rules are used as the underlying transformation mechanism. For example,
Figure 2.3 represents two such rules (adapted from [DBJT84]). The first MTIR4
indicates that two successive AND gates with one input in common are equivalent to one
AND gate with a non-inverting buffer in front. The second ruTR3 similarly indi-

cates that two connected AND gates are equivalent to three connected AND gates, two
of them with one common input. Rul@&TR3andNTR4represent two different types of
operations, one that removes logic gatdd R4, and one that adds logic gateSTR3.

On any given set of adjacent gates, every applicable rule is evaluated by estimating the
cost of the resulting circuit, assuming the rule was applied. Rules which improve the
cost of the circuit are accepted as soon as they are found: it is a greedy operation.

Initially, in LSS, the target technology could be described only with simple
gates [DJBT81]. Eventually, more complex gates were introduced, but recognizing
the complex gatese(g. XORSs) involved adding many rules to deal with all possibil-
ities [DBJT84]. LSS has grown over the years from a simple logic synthesis program
to a system capable of taking testability and timing information into account during
technology mapping.

TMS, another rule-based technology mapping system, was also developed at IBM
during the same period [GLWH84]. Specifically designed to aid the transformation of
circuits from one technology to another, TMS relied on an intermediate representation,
GLN (General Logic Notation). Rules represented allowed transformations from one
logic configuration to another, but did not allow for transformation of some simple gates
into more complex ones. For example, parity functions could not be extracted from
interconnections of nands or exclusive-ors.

TRIP is a technology mapping system developed at NEC [SBK which does
both technology mapping and logic optimization. To detect equivalence between circuit
configurations and rule patterns, TRIP uses simulation to compare the initial circuit to
the modified circuit. TRIP also relies on user-aided partitioning to keep the size of the
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Figure 2.3: Two transformation rules from LSS
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designs manageable.

LORES/EX was developed at Mitsubishi [ISB8], and bears some similarities to
TRIP. LORES/EX differs from TRIP in that it is a logic synthesis system which uses
different classes or rules during different phases of operation. In particular, it initially uses
standardizingrules, which change the logic representation into a pseudo-canonical form,
where only certain gate configurations are allowed. This has the advantage of reducing
the number of patterns the rules need to recognize, and therefore decreases the size of the
rule-base and simplifies the process of applying the rules. Since run time grows rapidly
with the size of the descriptions, LORES/EX relies on partitioning to reduce the size of
the circuits it applies the rules on.

Recently, Autologic, a commercial ruled-based system for logic synthesis and tech-
nology mapping, was released by Mentor Graphics. Autologic reliesigmaturesto
recognize logic equivalence between different configurati@ignaturesare in essence
truth tables. They are extracted from the portion of the network to be replaced, and com-
pared to those of the library elements. The ussighaturesmplies that rule application
in Autologic is based on Boolean comparisons. However, since the entire truth table is
represented, its application is restricted to logic functions with a small number of inputs.
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Socratesoriginally developed at General Electric [GBAGH86] is a rule-based system
that exists in a class of its owinSocratesstands apart from the other rule-based systems
because it is a hybrid method between rule-based and algorithmic-based. It is a complete
system for logic optimization where the technology-independent portion is algorithmic-
based, and the technology-dependent portion is rule-based. Therefore, for the technology
mapping classification, we categorize it as a rule-based sys&wuratesintroduced a
new concept in rule-based systems, the idea of a state search. All rule-based systems
reviewed previously are greedy. They apply a transformation rule only if it lowers the
cost metric of the network. Consequently, it is possible for these systems to get stuck in
local optima. Socratesuses the state search as a way to avoid that problem. The state
search is a mechanism which allows the system to systematically evaluate the application
of a succession of rules, and choose to apply a rule with immediate negative impact
if it leads to a better solution after further rule transformations. The state search is
characterized by its breathi.e. the number of rules that are evaluated in parallel, and
by its depthD, i.e. the number of successive rules evaluated before a decision is made.
In theory, by choosingD= oo and B=| RB| (the size or the rule-base), all possible
rule applications could be considered, with the global optimum being selected in the end.
In practice, since the size of the state search growB’asthe breath and depth of the
state search is limited. But the method still makes it feasible to overcome local optimum
solutions, possibly finding a better final realization.

2.2.2 Algorithmic-based systems

The second class of systems is based on algorithmic approaches. We review this type of
approaches in detail, since the technology mapping system presented in this dissertation
is algorithmic-based. In particular, we carefully explain pattern matching, which was
the main method used for establishing logic equivalence in previous algorithmic-based
systems, to contrast with Boolean matching, the new method proposed in Chapters 4, 5
and 6.

The idea of algorithmic based technology mapping started from the realization that

3Socrateswas integrated into the initial synthesis system offered by Synopsys.
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logic function matching is similar to code generation in software compilers [Joh83,
TJB86]. For both compiling and technology mapping, an initial description must be
transformed into an expression involving only a restricted class of operations. In the
most general situation, the initial description is a directed acyclic graph (DAG) in which
nodes represent arbitrary operations, and edges represent data dependencies. Then, the
final description is a DAG where the operations attached to nodes are limited to those
belonging to the restricted class. The final expression should be optimum; that is, given

a cost associated with each operation in the restricted class, the total cost of the final
expression should be minimum.

In the case of software compilers, the initial description is an abstract syntax tree, the
restricted class is the target computer’s instruction set, and the optimum representation
implies the fastest execution of the resulting code. In the case of function matching in
Boolean networks, the initial description is a Boolean function, the restricted set is the set
of logic gates available in a target technology, and the optimum representation gives the
smallest delay between primary inputs and primary outputs. Kahrs showed that library
selection in silicon compilers is analogous to code generation in software compilers, and
he presented a simplified directed graph matching algorithm that covered abstract syntax
trees with parameterized library elements [Kah86].

In the area of software compilers, code generation has received considerable atten-
tion [Flo61, SU70, AJ76, BS76, AJU77]. DAG matching (which in software compilers
appears during the generation of code for expressions with common subexpressions) has
been shown to be computationally complex [BS76, AJU77, GJ79]. Therefore, an often
used simplifying assumption for code generation algorithms is to assume that only trees
are processed rather than DAGs. Since this is a crucial step in compilers, tree matching
has been extensively studied [And64, Nak67, Red69, AJ76, HO82].

In the area of technology mapping, in 1987 Keutzer presented a tree matching based
algorithm [Keu87] that relied on the tree matching systeny which was developed for
compilers [AG85]. The code generator-generatog was designed in 1985 by Ahet al,
as an efficient method for tree matching in compilers [AG85, Tji85, AGT89ig uses
a method based on a tree pattern-matching algorithm proposed by Hoffman [HO82],
coupled with dynamic programming [Bel57, BD62, AJ76]. Each tree is described by a
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Figure 2.4: Tree pattern and associated trie (adapted from [HO82])

set of strings where each path from the root of the tree to each leaf is represented by a
string in which node symbols alternate with branch numbers. For example, the tree in
Figure 2.4 can be represented by the set of stri$igs {ddb d@c 2d, assuming

the branches in the tree are numbered from left to right.

In the technology mapping domain, each library element is represented by a target
tree, each with its associated strings. The set of strings derived from all target trees is
then used to create an Aho-Corasick string-matching automatanthere is a single
matching automaton built for a given library. For example, the two trees in Figure 2.5
form the following pattern sef+1lv, +2!1+1v, +2!1+2v, +2v}. Each string represents
a branch of one or more trees.§. +1v represents branche$.1 andt2.1 of treestl
andt2). The strings in the pattern set are then used to generate the matching automaton
shown in Figure 2.6. Initially, the automaton has a single state, 0. Then, starting from
the @h state, each string is processed in turn, one character at a time, a new state being
added for each of the characters that is not recognized by the automaton being built
(e.g. states 1,2,3 are added when processing chara¢tgrg of the first string+1v).

Each edge between two states is annotated with the character processed when the second
state is added. Each state corresponding to the last character of a string is annotated
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2.1 2.2

t1.2 t1.3

Figure 2.5: Two trees and their associated tries (adapted from [AGT89])

with an output functionrepresenting the matched string.g. state 3 recognizes string
+1v which represents branché&k1 andt2.1 of treestl andt2). When all strings from
the pattern set are processed, the automaton is revisited to generédeutiefunction
This function indicates the state to go to when the running automaton reaches a state
where the processed character does not correspond to any outgoing edge. The failure
function is generated as follows. The automaton, which has a tree structure at this point,
is traversed using a breadth-first search. All the state®ached by the 1 state are
initially annotated withf; = 0, wheref; is the failure function at state,. Then, for each
states; reached by state; on input charactep, the failure functionf; is set to point to
the state reached b with character, For example, in Figure 2.6, the failure function
of statesy is ( f = 1) , since(sf= 0) andg reachess; on input "+”. As the failure
functions are created, output functions of states Wit O are updated with the output
functions of the state corresponding fp For example, when statg in Figure 2.6 is
processed, it is found that = 3. Therefore, the output function e§ is augmented with
the output function ok3 (t1.2is augmented withl.1, t2..

The matching automaton is constructed once for any given library. We now consider
its use in recognizing trees. The process uses both top-down and bottom-up traversals.
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t1.1,t1.2,
2.1

Figure 2.6: Aho-Corasick matching automaton (adapted from [AGT89))

Top-down traversal is used for detecting trees (with the Aho-Corasick automaton), while
bottom-up traversal finds the best tree representation for a particular subtree (based on
dynamic programming).

For a given tree to match (or subject tree), each node of the tree is processed in a depth
first manner through the matching automaton, the path from the root to the processed
node being encoded in a string as explained above. Each time the automaton reaches an
accepting state, the current node of the tree being processed is annotated with the path
that leads to it, together with the pattern tree(s) to which the accepted path belongs to.
When the subtrees under a node accept the entire pattern set of a pattefn them
that node matches the pattern trEe For each node in the tree, the best pattern tree is
chosen among all the matching trees. For bottom up tree traversals, it has been shown
that this leads to the selection of the optimum set of covering patterns [AJ76]. This is
called dynamic programming.

Keutzer adaptedwig to recognize logic patterns in Boolean networks [Keu87]. He
introduced the idea of representing the Boolean network by a forest of trees, where the
trees areBoolean functiongxpressed as interconnected two-input NAND gates. To that
end, he partitioned the network at multi-fanout vertices. Library elements were similarly
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represented by NAND2 trees. The representation of the logic network and library by
NAND2 trees made possible the usetafg. From a software compiler point of view,
this tree representation eliminated expressions with common subexpressions, which is
equivalent, in a graph theoretical framework, as reducing the complexity dbitizee
coveringproblem.

Figure 2.7 shows a typical set of patterns for matching a library.

Inverting buffer: B Logic Gates Trees Patterns  Label

O
2-input nand: o N
@)

INV —% 8 Blv t1.1
Input variable: \Y

NAND2 :W NLv, 21
d'b N2v 2.2
BINLv, £3.1
AND2 w 8 BIN2v 3.2
BIN1B1v, t4.1
NOR2 % BIN2B1v 4.2
N1B1v, t5.1
OR2 %’\% N2BLv t5.2
BININlv,  16A.1
BININ2v,  (6A.2
BIN2B1v t6A.3

AOI21
BIN1Blv,  16B.1
BIN2Nlv,  (6B.2
BIN2ZN2v t6B.3

BIN1Nlv, t7.1
BIN1N2v, t7.2
AOI22 B1IN2N1yv, t7.3
BIN2N2v t7.4

Figure 2.7: Patterns for a simple library
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These patterns represent a NAND decomposition of the logic functions representing
the gates of the target library. It is assumed that the technology mapping system generates
all possible patterns for each logic expression representing a gate in the library. Note
in particular that gate AOI21 has 2 representative patterns. Figure 2.8 represents the
associated automaton. Each accepting state in the automaton recognizes a set of patterns
representing portions of target treesq. state 27 recognizes string.1, which represents
half of a NAND2 gate).

t1.1,t4.1,
t5.1,t6B.1

t2.1,t6A.1,
t7.1

12.2,t6A.2,
7.2

t4.2,t5.2,
t6A.3

t2.1,t6B.2,
t7.3

12.2,t6B.3,
t7.4

Figure 2.8: Aho-Corasick automaton for patterns of a simple library
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Given a technology-independent network to transform into a target technology, the
matchingoperation becomes a problem of finding library trees equivalent to tree structures
in the network. Twigwas used to match the network trees with library trees. For example,
Figure 2.9 shows how a NAND2-decomposed network is represented by a tree, called the
subject graph. The strings generated from the subject graph are passed to the automaton
in Figure 2.8. At each node of the tree, if all strings of a pattern are detected, then that
pattern is a match. It is assumed that a NAND2 gate is always available in the library,
therefore there is guaranteed to be at least one match at each node of the tree. Each
match is evaluated as the cost of the matching gate plus the cost of the best matches at
the inputs. In the example of Figure 2.9, all nodes have a single matching gate except
for nodeo, which has three matches.

Network | Subject graph | Vertex |Match Gate Cost

X t2 NAND2(b,c) | NAND2

y t1 INV(a) INV

Z 2 NAND2(x,d) | 2 NAND2

w t2 NAND2(y,z) | 3 NAND2 + INV
(0] i1 INV(w) 3 NAND2 + 2 INV

t3 AND2(y,z) 2 NAND2 + AND2
+INV

6B AOI21(x,d,a) | NAND2 + AOI21

Figure 2.9: Example of pattern-based covering
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Twig uses dynamic programming to find the best set of library elements to represent
the subject tre&7. The algorithm operates on the tree from the leavesiofowards the
root. At each vertex of the S7, all library patterns isomorphic to sub-trees rooted at
are detected, and the library element yielding the best cost is selected. The cost of vertex
vis calculated as the cost of the matching library element plus the cost of all vertices of
ST corresponding to inputs of the matching pattern. It is assumed that there is always at
least one matching pattern for any vertesf S7. The use of dynamic programming in
twig ensures that each tree in the network is optimally covered by library elements. It is
important to note that NAND2 tree decompositions are in general not unique. Therefore,
the quality of the overall solution depends on the particular NAND2 decomposition of a
network tree, as well as on the partition of the network into trees.

Keutzer’s approach, although very efficient, was limited by the very operation that
made it effective. NAND tree matching did not allow recognition of gates with repeated
literals such as exclusive-ors (XOR), multiplexers, and majority gates. Another limitation
is centered around generation of complement signals. In logic circuits, complements of
signals play an important role. It is sometimes better to complement a signal, and
propagate the new value to the fanouts of the original signal. The DAGON formulation
in terms of NAND2 pattern trees made it difficult to change the polarity of signals,
because inverters were not easily added to the strings processed by the string automaton.

In MIS, Rudell built on the ideas of Keutzer by looking at graph-matching [D8R
Rud89a]. He proposed an algorithm for graph-matching that relies on tentative binding
between pattern graphs and the subject graph, using back-tracking when subject graphs
failed to match complete pattern graphs. The graph-matching algorithm was applied only
to leaf-DAG patterns, that is, graphs where only leaves can have outdegree greater than
one (Figure 2.10).

Given the set of matches found by the graph-matching algorithm for each node in
the Boolean network, Rudell studied how to choose the best set of matches, that is, the
covering problem. Since graph-covering is NP-complete, Rudell used a tree-covering
approximation. Invoking theprinciple of optimality he based his covering technique
on dynamic programming, which is guaranteed to find the optimum solution for trees.
Rudell also addressed the problem of modifying the polarity of signals to find better
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DAG Leaf-DAG Tree

Figure 2.10: Example of a DAG, a leaf-DAG and a tree

solutions. He proposed anverter-pair heuristic, which consisted of adding inverter
pairs at the output of each gate in the original network. This allowed phase assignment
to be done automatically by the dynamic programming-based covering. A special gate
consisting of an inverter pair with no cost was also added to the library, making possible
the elimination of unnecessary inverter pairs. Tiheerter-pair heuristic produced the

best phase assignment for every single-fanout vertex. However, this did not guarantee
optimality because it is not possible to locally find the best phase assignment at multi-
fanout vertices. For all systems following Keutzer’s partitioning approach, optimality is
lost at multi-fanout vertices.

To alleviate that problem, Rudell proposed ttress-tree phase assignmdrguristic,
which simply indicated at multi-fanout points if an inverter had already been allocated.
In that case, further use of the inverter came without any area penalty.

Finally, Rudell chose a different partitioning scheme to isolate the pattern trees. Start-
ing from one primary output, he isolated a logic cone going all the way to the primary
inputs. Then all the other primary outputs were processed in turn, each one becoming the
tip of a logic cone whose support consisted of primary inputs or gates within the cones
already processed. The advantage of this partitioning method is that very large trees are
processed initially. However, the results that produced are dependent on the order in
which the primary outputs are processed.

In addition to area-driven technology mapping, Rudell studied delay-driven transfor-
mations. He first considered gates with one fixed load, then extended the idea to gates
with variable input loads. One solution is to extract all possible input loads from the cells
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in the library, and extend the covering to find the best cost for each possible input load
at each vertex in the subject graph. This extension guarantees that the final solution will
produce the best arrival times. Since some libraries have cells with many different input
loads, Rudell introduced the idea lwfad binning which discretizes all possible input
loads into a finite set of bins. Then, only the loads selected for the bins are considered
during covering. A final extension to the delay-driven algorithm is to take area into
account. Then among the bins with solutions meeting a given timing constraint, the one
with the smallest area is chosen. If no solution meets the timing constraint, the minimum
area solution is chosen among all minimum delay solutions.

Many other technology mappers have used pattern matching to determine logic equiv-
alence. TECHMAP , from University of Colorado at Boulder, also uses structural com-
parisons. TECHMAP differs from DAGON and Berkeley’'s MIS in that it tries two
different NAND2 decompositions to get better results for delay. It also uses algebraic
symmetries to reduce the number of comparisons during the matching step. Its results
are comparable to those of MIS [MJH89].

SKOL, written by Bergamaschi [Ber88], partitions library cells by the number of
cubes in the corresponding logic function. The technology mapping step is done on
Boolean factors instead of on an AND/OR decomposed network. It applies a peephole
optimization where the best library element is chosen for each sub-circuit.

McMAP, developed by Lisanket al. [LBK88], starts from the same ideas as
DAGON and MIS. It breaks the initial network into simple AND/OR gates and then
operates on trees. A specigate phaseoperation is used to minimize the number of
inverters. It also uses gate merging to create larger gates from smaller ones. However,
the merge operation is highly dependent on the order in which the vertices are processed.
Therefore, a number of random orderings are tried to improve the quality of the results.

MACDAS, introduced in 1986 by Sasao [Sas86], is a multi-level synthesis system
that uses two-bit encoding and multi-valued simplification. Its main goal is to reduce the
number of AND/OR gates under fanin constraints. The fanin constraints are applied as
a last step, usingactorization on the networkwhich divides AND/OR gates with large
fanins into an interconnection of smaller AND/OR gates. This step can be viewed as
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a simplified technology mapping step since the resulting circuit conforms to a technol-
ogy dependent constraint (fanin limitation). However, it is limited in scope since only
AND/OR gates are generated, and in general, target technologies include more complex
functions than AND/OR gates. Therefore the usefulness of the technology mapper in
MACDAS is limited when used stand-alone.

CARLOS, by Mathony and Baitinger, is a multi-level logic design system which
includes a technology mapper [MB88]. The cells in the target technologies are restricted
to NAND and NOR gates, inverters, and combinations of AND and OR gates with a
maximum fanin of 4. As in MACDAS, the technology mapping operation is limited to
very simple libraries.

Recently, a technology mapping system using Binary Decision Diagrams (BDDs) has
been presented by Sagval. [STMF90]. It is based on the use of permissible functions
coupled with Boolean operations.

Most of the algorithmic systems exposed earlier are based on recognizing similar
structures between the Boolean network and cells in the library. Although efficient,
this has the disadvantage of making difficult and sometimes impossible to recognize
logic gates with repeated inputs. For example the majority gate (representgd-by
d+ e+ «) cannot be found by any of these pattern-based systems.

In the following chapters, a new method for matching will be presented which will
allow finding such matches. Based purely on Boolean operations, it operates as easily
with functions involving repeated literals as it does with functions of single literals.

2.3 Comparison of rule-based and algorithmic methods

In principle, rule-based approaches can find solutions very close to the global optimum.

Given powerful enough rules, and enough trials and modifications of these rules on the

network, it is possible for the network to reach a state where no more rules can be applied
without increasing the overall cost. Obviously, the rules and rule-application mechanism

must be be powerful enough so that the system can escape a local optimum. But that
comes at the price of having to run these systems for a very long time, without a clear

idea of how close to optimum a solution is. Rule creation is also a difficult process,
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especially when rules begin to interact with one another. The completeness of the rule
set is necessary if solutions that are close to the global optimum are to be found (or
equivalently, to avoid local minima). The performance of rule-based systems is closely
tied to the quality of the rule set for the particular technology. The creation of rules for
new technologies can be a difficult task, especially when some unusual configurations
are made possible by new technologies.

Algorithmic based approaches on the other hand, rely on provable properties of al-
gorithms and logic functions. Their execution time is typically much shorter than that
of rule-based systems, with results of comparable or better quality. One advantage of
algorithmic approaches is that it is possible to study beforehand the type and quality of
solutions. Therefore bounds on both the run time and the quality of the resulting im-
plementation can be found. However, this characteristic of algorithmic-based approaches
turns the advantage to rule-based systems for problems that are not well-defined. There-
fore, rule-based systems are well suited for problems which requireoctechniques,
and algorithmic-based systems are preferred for solving problems with provable proper-
ties. In this dissertation, we consider technology mapping of combinational logic, which
is a problem with known characteristics. We therefore base our operations on algorithms.

Most current algorithmic-based technology mapping systems use pattern matching to
recognize logic equivalence between library cells and portions of Boolean networks. The
advantage of pattern matching is fast execution, but it restricts the number of possible
matches. Therefore, the optimality of the overall implementation is limited, when library
cells with repeated literals (or equivalently, non series-parallel gates) are employed.

We propose a more powerful method for detecting logic equivalence. Our method is
based on Boolean operations, and therefore is not limited by expressions with repeated
literals. We further introduce the use @bnt careinformation during logic equivalence
detection, to allow further improvement in the number of detected equivalences. The
resulting number of successful matches gives better quality solutions.



Chapter 3

An algorithmic approach to technology
mapping

It was shown in the previous chapter that there exist two intrinsically difficult problems
to technology mappingnatchingandcovering The two problems are intertwined within
technology mapping: the goal ebveringis to produce the best set ofatchinglibrary
cells that implements the functionality of a given Boolean network. Therefore, any
solution to the technology mapping problem must integrate solutions torbatbhing
and covering

Since solving thegeneral coveringoroblem is computationally intractable, we will
solve therestricted coveringoroblem presented in the last chapter. We follow the as-
sumption made by previous systems [Keu87, Rud89a] that dwavgring inputs to
chosen cells correspond to existing vertices in the Boolean network. This has the ad-
vantage of eliminating the need to restructure the Boolean networks for each possible
matching element. Since the structure of the initial Boolean network does not change,
it is then possible to decouple the solutionsntatchingand covering coveringhas no
effect on the structure of the Boolean network, and therefore has no influence on the set
of library cells found during thenatchingprocess.

We now present a divide-and-conquer approach to the technology mapping problem,
where matchingand coveringare handled in separate steps. Given an initial Boolean
network, we first find the set of subnetworks that match library cekls (ve solve the

38
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matchingproblem first). Then, we select a set of matching library cells which, when
properly connected, produce a Boolean network equivalent to the initial ianewe

then solve theoveringproblem). The remainder of this chapter focuses on the approach
of solving thecovering problem. Algorithms formatchingare explained in detail in
Chapters 4, 5 and 6.

In addition to decoupling thenatchingand covering steps, therestricted covering
problem also has some implications on the types of network that are amenable to tech-
nology mapping. Since each matching library element must establish a correspondence
between its inputs and existing vertices in the Boolean network, each element must be
related to an integer number of vertices in the network. Otherwise, the logic function of
some matching element would not correspond to the subnetwork induced by any subset
of the vertices. As a result, the use of such elements would require an adjustment of the
Boolean network by adding to it additional vertices to cover the mismatch. However,
this addition of vertices would contradict the initigstricted coveringoremise, which
assumed a constant set of vertices.

The Boolean behavior of a network must be preserved across the technology map-
ping process. Assuming that every vertex of the original network is necessary in the
expression of its Boolean behavior, and given that vertices are involved as indivisible
objects in matches with library elements, this implies that every Boolean function as-
signed to a vertex must be included in at least one Boolean function corresponding to
a library element. This condition precludes vertices representing very complex Boolean
functions from being matched. Therefore, Boolean networks must be preprocessed so
that therestricted coveringoroblem can be solvable. In particular, vertices representing
large Boolean functions are broken into interconnections of vertices representing smaller
Boolean functions. This preprocessing step is called decomposition.

3.1 Decomposition

The need for decomposition is a side-effect of choosing to solve the restricted covering
problem. Decomposition is a necessary pre-processing step applied to the Boolean net-
work beforehand, making possible the solution of the covering problem on a fixed set of
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vertices.

The ultimate goal of technology mapping is to obtain the best solution possible.
Because of the inherent complexity of the problems involved in technology mapping, an
exact solution is not possible. Therefore, heuristics are used to arrive at a good solution.
One sensible assumption is that finding more matches will produce better solutions.
Therefore, a secondary goal of decomposition is to break the initial network into vertices
that represent the smallest possible Boolean functions. We call these Boolean functions
base functionsand they consist of two-input functions with unate inpatg. two-input
AND/OR/NAND/NOR functions. Most target libraries contain the base functions. In the
remainder of this thesis we assume that the library under consideration includes the base
functions.

As a result of decomposition, each function assigned to a vertex of the Boolean
network can be represented by at least one, but possibly many elements of the library.
Decomposition increases the granularity of the network, provides the covering step with
more possibilities, and thus, leads to a better final mapping.

Decomposition can be viewed as a restructuring of the initial Boolean network. For
any given network, there are many ways to create an equivalent network where the ver-
tices correspond only to base functions. Since the covering operation will not change
the structure of the network it is operating on (inputs to matches correspond to existing
vertices in the network), the results of decomposition will bias the quality of the final solu-
tion. The problem is that it is difficult to evaluate the quality of the final implementation,
since decomposition is performed independently of the target technology.

Different techniques can be used to decompose the network. Both disjoint and non-
disjoint Boolean decompositions are possible [Ash59, Cur62, RK62]. Algebraic meth-
ods, involving for example kernel extraction, are another technique [BM82]. Recently,
Bochmanet al. introduced still another technique, a restricted non-disjoint Boolean
decomposition method based famctional groupability{BDS91].

If we assume technology-independent restructuring has already taken place, then the
decomposition does not need to be so powerful that it would radically change the initial
structure. Therefore all that is needed is to break factored forms into two-input functions.
For example{x= b+ ¢) } becomes = ajy= b+ ¢}. But even simple splitting of
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existing structures often has more than one solution. For exafiptea+ b+ ¢+ d

can be expressed d3=a+ y 1,91 = bty y2 = c+d, oras{z=y 1+ y2;y1 =

a+ by » = ¢+ d. Depending on the target library and on the input arrival times, one
decomposition can lead to a better solution than the other.

In the technology mapping system presented in this thesis, we use two different
decomposition algorithms. The first one is used as a preprocessing step before covering.
The second decomposition algorithm is used during delay optimization, and its goal is to
restructure a portion of a network such that time critical paths in the network are shortened.
This algorithm, more specific to iterative performance improvement, is presented in detail

in Chapter 7.
decomposell(network) { /* Network-wide decomposition */
(V vertexv; € N) { I* Process every vertex */
f; = functionof(v ;) /* Get function assigned to vertex */
v; = decompf;) } /* Decompose function and return new assigned vertex */
return}
decomp(f){ /* Function decomposition procedure */
op = operataof(f) /* Get operator of top factor */
if (op == LITERAD { /* If top element is a literal, return */
return(vertexof(f)) }
g = setof_factorsof(f) [* Get factors immediately under top one */
(% €9 { /* Decompose all factors found above */
g; = functionof(decompg;)) }
while (| g|> 1) { /* Process factorlist until only one left */
g1 = nextelementof(g) [* Get first two factors of the list */
g2 = nextelementof(g)
n = newvertex(op,g1,92) /* Create a new vertex with function ((g1) op (g2)) */

addat the end(,functionof(n)) } /* Add new literal corresponding to new vertex */
/* Note: adding at the end of the list generates a balanced decomposition, */
/* adding at the beginning of the list produces an unbalanced decomposition. */
return(vertexof(nextelementof(g))) }

Figure 3.1: Algorithm for network decomposition

The first decomposition algorithm performs a simple splitting of the large equations
generated by technology-independent logic synthesis operations. Each vertex that has a
corresponding equation with more than 2 inputs is broken between factored forms, or
between elements of factored forms (Figure 3.1). Additional vertices are added when
needed in the Boolean network. This simple splitting reduces all vertices of the Boolean
network to vertices representing simple two-input equations. This modified network is
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then used as the starting point for covering.

EN
data[0][0]

Figure 3.2: Two-input decomposition

Decomposition is recursively applied to each vertexof the Boolean Network that
is expressed by a complex Boolean functién i.e. F; is not a base function. De-
composition yields an equivalent Boolean network, where each vertekasefunction
(Figure 3.2).
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3.2 Partitioning

Even solving the simplified restricted covering problem is computationally complex. In
particular, to solve the restricted covering problem one must solve the binate covering
problem, which was shown in Chapter 2 to be harder than SATISFIABILITY. Algorithms
have been proposed to solve the binate covering problem, but they are restricted to binate
clauses with at most a few hundred variables [PS90, LS90]. Boolean networks can contain
tens of thousands of vertices. Each vertex will match at least once, but more likely more
than once with an element of the library. Therefore, in the worst case, the binate clauses
encountered during technology mapping can contain on the order®ofartables. This

is clearly beyond the capabilities of current binate covering solvers. Therefore, more
simplifications must be introduced to solve the fixed network covering problem.

It has been shown [Keu87] that polynomial-time solutions to the binate covering
problem exist when the clauses representing matching library elements come from a
Boolean network that is a tree. When dealing with trees instead of with DAGs, a
polynomial-time solution to the binate covering problem exists, for the following reason:
DAGs differ from trees in that DAGs have vertices with multiple fanouts, and trees do
not. Recall the clauses that need to be satisfied in the general binate covering problem.
If DAGs are covered, then multi-fanout vertices will possibly be represented by more
than one variable being set to 1 in the set of clauseg. (vertex Ain Figure 2.2 is
represented twice, by both variables, and ms, in the best solutionny m; mzmams).

More than one matching gate of the library can be used to represent the functionality of
a multi-fanout vertex. Given that each of these matches can be chosen at the same time,
then the number of possibilities is a product of all the matches coming from different
multi-fanout branches. In the case of a tree, only one match will be chosen to represent
any one vertex. Therefore, the number of possibilities is a sum of the possible matches
at a certain vertex.

Isolating trees within a Boolean network ensures that polynomial algorithms can
be used to find the best cover for each tree. Therefore, the goal of partitioning is to
isolate subnetworks for which the binate covering problem can be solved efficiently. The
limitation of this simplification is that finding an exact solution to subsets of a larger
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problem does not guarantee an exact solution to the larger problem. Therefore, covering
trees exactly does not guarantee an optimal cover for the overall circuit.

After decomposition has been applied to the entire Boolean network, we have a
network consisting of interconnected 2-input, single-output Boolean functions. The circuit
to be transformed must then be partitioned into single-output subnetworks. Partitioning
is a heuristic step that transforms the technology mapping problem for multiple-output
networks into a sequence of sub-problems involving single-output networks. Partitioning
is performed initially before covering, and also as a part of the iterative improvement of
a mapped network. We comment briefly here on the former case. The latter is described
in Chapter 7.

Single-output subnetworks are created by traversing the network from the primary
outputs to the primary inputs, creating new partitions for every primary output, and for
every multi-fanout vertex traversed (Figure 3.3).

partitionall(network) { /* Network-wide partitioning */
(Vverticesv ; eN'{ /* Process every vertex */
markas.notin_partition@;) } /* Used to insure each vertex belongs to a single partition */
(VPrimary output vertex , e { /* Process every vertex */
I, = createpartition() /* New empty partition */
partition( 5,v0) } /* Start a new partition */
return}
partition(;2) { /* Recursive partitioning */
if (is_primary.input@) { /* Do not include Pl in partitions */
return}
insertin_partition(l;v) /* Insert vertex in partition */
s = faninsetof(v) /* Get fanin list of vertex */
(% ; €9 { /* Process each fanin */
if (fanoutnumberg;) >1) { /* Break partitions at multi-fanout vertices */
if (not.in_partition(s;) { /* Make sure vertex is free */
Iy = createpartition()
partition(,s;) } } /* Recur */
else{
I.=Tr
partition(-,s;) } } /* Recur */
return}

Figure 3.3: Algorithm for network partitioning
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The partitions generated by the previous algorithm are subnetworks. When partition-
ing is done, each vertex of a subnetwork has either a single fanout or is the output of the
subnetwork. Ad hoctechniques are used to map sequential elements and 1/0Os. There-
fore, partitioning is also used to isolate the combinational portion of a network from
the sequential elements and 1/0Os. The circuit connections to the sequential elements
are removed during the partitioning step. This effectively creates two distinct classes of
partitions, combinational and sequential. At the end of the partitioning step, the circuit
is represented by a set of combinational circuits that can be modeleddpgct graphs
and a set of generic sequential elements (Figure 3.4).
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Figure 3.4: Circuit partitioning
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3.3 Covering

Given that Boolean networks are first decomposed into a set of vertices whose correspond-
ing Boolean functions are two-input base-functions, and that single-output subnetworks
with no non-reconverging multi-fanout vertices are isolated, it is now possible to solve
the restricted covering problem. Note that the subject graphs thus isolated are not neces-
sarily trees, as in [Keu87, Rud89a]. We call the vertices of the subject graph with zero
indegreeleaves

A minimum cost cover is found for each decomposed subject graph. The chosen
cover represents the best set of library elements that is logically equivalent to the subject
graph. Our solution to the covering problem is based on dynamic programming. Starting
at the leaves of the subject graph, which represent the subnetwork inputs, the best solution
at each vertex of the subject graph is found. At each vestesib-graphs rooted at
are isolated (Figure 3.5).

During the covering step, matching is used to establish if there is an entry in the
library that is functionally equivalent to that sub-graph. After resolving whether there is
a logically equivalent element in the library, equivalent library elements are evaluated,
and the best one is chosen. Choosing the best set of library elements representing a
sub-graph is done as follows.

We denote byl; a subject graph whose single output vertex s We consider here
the covering of a subject gragh that optimizes some cost criteria.g. area or timing).
For this purpose we use the notionsahfisterand cluster function.

A clusteris a connected sub-graph of the subject gréaphhaving only one vertex
with zero out-degree; (i.e. having only a single output). It is characterized by its depth
(longest directed path to;) and number of inputs. The associateldster functionis
the Boolean function obtained by collapsing the Boolean expressions associated with the
vertices into a single Boolean function. We denote all possible clusters rooted at vertex
viof I'y by {r;1,...,5;N}.

As an example, consider the Boolean network (after an AND/OR decomposition):

f = Jj+t
J = zy
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e+ z
a—+c
c+d

no@ &

Figure 3.5: Graph covering
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There are six possible cluster functions containing the verteof the subject graph
I'; (Figure 3.6):

K;1 = oy

K2 = a(a+c)

ki3 = (e+2)y

kja = (e+2) (ato)
kisg = (edc+d)y

kje = (edc+d) (a+c)

Figure 3.6: Graph of all possibles coversjof

The covering algorithm attempts to match each cluster functipn to a library
element. A cover is a set of clusters matched to library elements that represents the
subject graph, which optimizes the overall area and/or timing. The area cost of a cover is
computed by adding the cost of the clusters corresponding to the support variables in the
cluster function ofx ; ;, to the cost of the library element corresponding to the cluster
under consideration. For each vertexin a subject grapli’y, there is always at least
one cluster function; ; that matches, because the base functieng. AND/OR) exist
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in the library, and the network was decomposed accordingly during the decomposition
phase. When matches exist for multiple clusters, for any tree-like decomposition the
choice of the match of minimal area cost guarantees minimality in the total area cost of
the matched sub-graph [Keu87, DG&7]. The covering algorithm is implemented by
procedurecover shown in Figure 3.7.

cover(top,equation,list,depth) /* Reached search depth: stop recursive expansion */
if (depth = maxdepth){
return
¥
if (equation is empty) /* First recursion on vertex 'top’ */
if (top not yet mapped}
equation = gekquationfrom(top) /* Copy equation defining top originally */
list = getsupportfrom(equation) /* Copy original support variables */
cover(top,equation,list,1) /* Start expanding the equation */
setvertexmapped(top) /* Covering of top is done */
}
return}
while list is not empty{ /* Expand all input variables sequentially */
if (vertex(list) is a primary input) skip this one /* Do not try to expand primary inputs */
if (vertex(list) is not mappedj /* Condition for evaluating the best cost */
cover(vertex(list), NULL,NULL,depth) /* Map input if it's not mapped already */

else if (any fanout(vertex(list)) does not reconverge at #p) /* Stop at non-reconverging multi-fanout vertices */
cover(vertex(list), NULL,NULL,depth)

else{ /* Expand the current input variable */
new/list = getsupportfrom(equation(vertex(list)) [* Support of the equation for the current variable */
replace current list element by ndist /* Augment the current list of support variables */
new_equation = merge(equation,vertex(list)) /* Eliminate current variable into current equation */
cover(top,newequation,newist,depth+1) /* Recur on the new (expanded) equation */
put back list in original staté /* Get back the input variable list before expansion */

list = nextelementfrom(list) } /* Get next input variable */

checkif _in_library(top,equation,list) /* Matches equation and a library element */

/* and updates best cost cover */
return’}

Figure 3.7: Algorithm for network covering

The cost of any required inverters is also taken into account during the covering step.
Each vertexv;, when mapped, is initially annotated with two library elements: the first
one,Coy, gives the best cost for generating the ON getand the second oné€q-r ,
gives the best cost for generating the OFF et As soon as variablg is used as an
input to a gate that is being mapped, thepy or Cqr is selected according to the
required phase of. If the same variablg is needed at a later stage with the opposite
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phase, then an inverter is automatically taken into account in the cost computation.

The timing cost of a cover can be computed in a similar way by considering a constant
delay model. To compute the local time at the vertexthe propagation delay through
a cluster is added to the maximum of the arrival times at its inputs [Rud89a]. When
matches exist for multiple clusters, then for any tree-like decomposition, the choice of
the match of minimal local time guarantees minimality of the total timing cost of the
matched sub-graph.

When considering a more realistic load-dependent delay model, the problem becomes
more complex. The propagation delay through a library cell matching a particular vertex
now depends on the load on its output. Since covering is solved using dynamic program-
ming, a vertex is always processed before its fanouts, so the output load of a vertex is not
known when it is being processed. One solution is to use load-binning [Rud89a, Rud89b].
Then, dynamic programming is used to find the best match at a viEnteadl possible
load values This can be done by determining beforehand the number of different input
loads among all inputs of all elements of a given target technology.

The above covering method, based on load-dependent delay model, will find the
fastest implementation. A more important goal is to find the smallest implementation that
meets given timing constraints. This was also considered in [Rud89a], but the proposed
solution requires arrival time binning, which for exact results implies very large numbers
of bins. Approximate solutions are therefore proposed, which relax the number of bins,
at possibly a cost in the precision of the delay calculation.

The binning methods are compatible with the covering algorithm presented here. But
we opted for a simpler, possibly more powerful method for dealing with load-dependent
delay. We propose an iterative refinement technique, where circuits are first mapped for
area, and then successively remapped for delay along critical paths. The iterative method
is presented in more detail in Chapter 7.



Chapter 4

Boolean matching

Matchingis one of the two intrinsically complex problems in technology mapping. In
Chapter 3, we showed howoveringand matchingare decoupled through thestricted
coveringassumption. The quality of the solution found during covering is contingent
on the number and quality of matches. Matching is used during the covering phase to
verify that a particular single-output subnetwork is logically equivalent to an element of
the library. Therefore, the algorithm adopted to solve the matching problem is of prime
importance to the quality of the final implementation.

In this chapter, we consider the matching operation. We define more clearly the
general problem to be solvede. logic equivalence in the presenceadn't careinfor-
mation. We introduce and justify the use of Boolean techniques as a powerful method
for matching. We briefly review binary decision diagrams (BDD), since they constitute
the most appropriate logic representation for the logic operations involved in the Boolean
matching process. We introduce a simple algorithm for Boolean matching, which is pow-
erful enough to accept both completely and incompletely specified logic functions. The
requirements for efficiency when operating on functions with large number of inputs lead
to the more powerful methods introduced in Chapters 5 and 6.
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4.1 Matching logic functions

We formulate the matching problem as a problem of checking for logic equivalence
between a given Boolean subnetwork (ttlaster function introduced in Section 3.3)
and the Boolean function representing a library element. Since the support of the cluster
function differs from that of the library element, we must find a one-to-one assignment
between the variables in the support of the cluster function and the variables in the support
of the library function. In general, any variable in one support can be assigned to any
variable in the other support. Therefore, all permutations of the variables are possible.

We also consider phase-assignment in conjunction with the matching problem, because
they are closely interrelated in affecting the cost of an implementation. In digital circuits
it is often possible to change the polarity of a signal at no or low cost, and therefore it is
important to detect logic equivalence between two functions after eliminating the input
and output phase information. The need to account for inverters thus shifts from the
matching step to the covering step, where the cost of additional inversion is considered.

Finally, we want to exploitlont careconditions during the matching operation. The
importance of the use adon't care conditions in multiple-level logic synthesis is well
recognized [BBH88]. Since cluster functions are extracted from Boolean networks, their
environmenti(e. the rest of the network) will often creattont care conditions on the
inputs or the output of the cluster. We consider hdwa't careconditions specified at the
network boundary or arising from the network interconnection itself [MB89]. Taking
thedon't careinformation into account during matching broadens the class of equivalent
logic functions to which a cluster function belongs. This translates into more possible
matches with library elements, and more degrees of freedom during covering.

We denote the cluster functiof': 5" —Bby: A « 1,...,x,) . Itis anrinput,
single-output logic function. We denote the phase of variablby: ¢, € {0, 1}, where
ef = for ¢; = 1, 27" = 7, for ¢; = 0. We denote thelont care set of thecluster
functionby: TC( 1,...,x,) . We assuméX is a given for now, and defer its calculation
to Chapter 6. We denote the library bg:= {G, : B —=B,i=1,...,| L]}, where
K is the number of inputs for library elemeg@t. The elementsj; (or G for short) are
multiple-input, single-output functions. We then define the matching problem as follows:
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Given a cluster functio u,...,z,) , an associatedont caresetT®( g,...,z,) ,
and a library elemen§( y,...,y,) , matching consists of finding an orderigg.. ., j}
and a phase assignmeft, ..., ¢, } of the input variables off, such that either equa-
tion (4.1) or (4.2) is true:

Hoa'senwy’) =4
Hoa's.a) =4

for each value of u,...,y,) and eachcare value Of(f:fz,...,xf]) /€T, i.e. either
equation (1) or (2) holds for all minterms in tlvare set of 7.

If no such ordering and phase assignment exists, then the eléhum@s not match
the cluster functior7. Furthermore, if no element in the libra= {G ; : BY: —B,i =
1,....| £]} matchesF, thenF cannot be covered by the librad/ Note that when the
library contains the base function, then any vert@{ the Boolean network must have

s Un) (4.2)
s Un) (4.2)

:1;;5] Oy
:1;;5] gy

at least one associated cluster function that is covered by a library element: the base
function into whichv was initially decomposed.
Let us define theNPN-equivalentset of a functionF as the set of all the func-
tions obtained by input variable Negation, input variable Permutation and function Nega-
tion [Mur71]. We then say that a functiaA matches a library elemest when there
exists an NPN-equivalent function that is tautologicatmodulo thedon't careset.
For example, any functio «b) inthe set:{a+b4 a+bat+ b a+bd, abab ab
can be covered by the library elemeri @, x2) = 1 + x2. Note that in this example
G( m,x2) hasn= 2 inputs, and can match- 2" = 8 functions [MJH89].

4.2 Use of Binary Decision Diagrams

The matching algorithms presented here are all based on Boolean operations. The advan-
tage of using Boolean operations over the structural matching algorithm used by others is
that logic equivalence can be established regardless of the representation. For example,
fi=d+at+kandf , =d &+ k) + kare logically equivalent, but structurally
entirely different. Previous approaches used matching on trees or graphs representing
the AND/OR (or equivalent) decomposition of a Boolean Factored Form (BFF). These
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algorithms could not detect logic equivalence, since no graph operation can transform
the BFF of f; into f, without taking advantage of the function’s Boolean properties.
It is important to note that different representations of Boolean functions arise because
factoring is not unique, and even different canonical forms, suchuas of products
can represent the same function. Therefore, a covering algorithm recognizing matches
independently from the representation can yield matches of better quality than matches
obtained through structural matching techniques.

Our algorithms use Binary Decision Diagrams (BDDs) as the basis for Boolean
comparisons. BDDs are based on Shannon cofactors. A logic fungtignitera-
tively decomposed by finding the Shannon cofactors of the variablgst@fform the
BDD [Ake78, Bry86]. We use BDDs in the form proposed by Bryant, where a fixed
ordering of the variables is chosen during Shannon decomposition [Bry86]. Elsewhere,
these have been calleddered binary decision diagramsr OBDDs for short [BRB90].
Bryant also introduced procedures to reduce the size of BDDs. For the purposes of
technology mapping, where a BDD representation of a portion of the circuit to map is to
be used only once, the computational cost of reducing BDDs is comparable to the cost
of doing a single comparison between unreduced BDDS. Therefore we exploit a simple
way of comparing unreduced, ordered BDDs.

4.3 A simple Boolean matching algorithm

A Boolean match can be determined by verifying the existence of a match of the input
variables such that the cluster functidghand the library elemeng are a tautology.
Tautology can be checked by recursive Shannon decomposition [BHMSV84]. The two
Boolean expressions are recursively cofactored generating two decomposition trees. The
two expressions are a tautology if they have the same logic value for all the leaves of
the recursion that are not in tlton't careset. This process is repeated for all possible
orderings of the variables ¢f, or until a match is found.

The matching algorithm is described by the recursive procesiomgle booleanmatch
shown in Figure 4.1, which returns TRUE when the arguments are a tautology for some
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variable ordering. At leveh of the recursion, procedur@mplebooleanmatchis in-

voked repeatedly, with arguments the cofactors ofitHevariable ofg and the cofactors

of the variables ofF, until a match is found. In this case the procedure returns TRUE.

If no match is found, the procedure returns FALSE. The recursion stops when the ar-

guments are constants, in the worst case when all variables have been cofactored. The

procedure returns TRUE when the corresponding values match (modutiotttecare

condition). Note that when a match is found, the sequence of variables used to cofactor

Fin the recursion levels 1 tdrepresents the order in which they are to appear in the

corresponding library element. The algorithm is shown in Figure 4.1.

simple.booleanmatch(f,g,dc,vatist_f,var_list_g,whichvar.g) {
if (dc == 1) return(TRUE)
if (fand g are constant 0 or 1) retu( f ==g)
gvar = pickavariable(vadist_g,whichvar.g)
remainingvar.g = getremaining(vadist_g,which.var_g)
whichwvarf =1
while ( whichwvarf < sizeof(varlist_f)) {
fvar = pickavariable(vadist_f,which_var.f)
remainingvarf = getremaining(vadist_f,which_var.f)
fO = shannomecomposition(f,fvar,0)
f1 = shannomecomposition(f,fvar,1)
g0 = shannomecomposition(g,gvar,0)
g1 = shannomlecomposition(g,gvar,1)
dc0 = shannomlecomposition(dc,fvar,0)
dcl = shannomlecomposition(dc,fvar,1)

if (simple_booleanmatch(f0,g0,dcO,
remainingvarf,remainingvar.g,whichvar.g+1)
and simplebooleanmatch(fl,g1,dcl,

remainingvar_f,remainingvar.g,whichvar.g+1)) {

return(TRUE) }

else if (simplebooleanmatch(f1,g0,dcO,
remainingvarf,remainingvar.g,whichvar.g+1)
and simplebooleanmatch(f0,g1,dc1,

remainingvar_f,remainingvar.g,whichvar.g+1)) {

return(TRUE) }
which.varf = which_varf + 1 }
return(FALSE)}

/* If leaf value of DC = 1, local match */

/* If leaf value of f and g, matches if f == g */

/* Get next variable from the list of variables of g */

/* Get list of unexpanded variables of g */

[* Starting pointer for variables of f */

/* Try all unexpanded variables of f in turn */

/* Get next variable to expand */

/* Update the list of unexpanded variables of f */
/* Find Shannon cofactor of f with (fvar = 0) */
/* Find Shannon cofactor of f with (fvar = 1) */
/* Find Shannon cofactor of g with (gvar = 0) */
/* Find Shannon cofactor of g with (gvar = 1) */
/* Find Shannon cofactor of dc with (fvar = 0) */
/* Find Shannon cofactor of dc with (fvar = 1) */

/* Verify that the cofactors of f and g */
/* are logically equivalent */

[* If the previous check failed, */
[* verify that f is equivalent to the complement of g */

Figure 4.1: Simple algorithm for Boolean matching

Note that in the worst-case all permutations and phase assignments of the input

variables are considered. Therefore, uplt®™ different ordered BDDs may be required

for each match. Furthermore, all library elements withr fewer inputs need to be
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considered in turn, sincdont care information might reduce the effective number of
inputs. The worst-case computational complexity of the algorithm makes the matching
procedure practical only for small valuesofTherefore, better algorithms for Boolean
matching are required for more general cases when logic functions with larger number
of inputs are considered.

In the following two chapters, we introduce new matching methods based on Boolean
operations, which are computationally more efficient than the algorithm just described. In
Chapter 5 we consider completely specified cluster functioas e assume? = ().

We show that we can exploit the symmetry and unateness properties of the Boolean
function to significantly reduce the search space, yielding an average computational com-
plexity which is much lower than the upper bound discussed earlier. Chapter 6 expands
this method to takelont careinformation into consideration during matching operations

to improve the quality of the final result.



Chapter 5

Matching completely specified

functions

In this chapter we consider the matching problem for completely specified fundtiens,

we neglectdon't careinformation. This simplification makes possible the use of some
properties of Boolean functions that otherwise would not be usable. In particular, there
are invariants in completely specified functions that are not in the presedomdtares
Unateness and symmetry are two such properties. We propose to use these two properties
of Boolean functions to speed-up the Boolean matching operation, without hampering the
accuracy or completeness of the results. We introduce the two properties as key elements
to search space reduction in Section 5.1. We explain how the properties are extracted in
Section 5.2. We conclude the chapter with benchmark results.

5.1 Search space reduction

The simple Boolean matchinglgorithm presented in Chapter 4 is computationally ex-
pensive for two reasons. First, permutations ofninputs are needed before two
functions can be declared non-equivalent. Second, for each permutatiort, iap@&
phase-assignments are required before logic equivalence is asserted. Since all input per-
mutations and phase-assignments must be tried before two logic functions are declared
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different, then for any arbitrarginput cluster function this implies that - 2 * com-
parisons are necessary in the worst case, whenever a match to a library element
fails.

We now look into methods for reducing both the number of permutations and the
number of phase-assignments during the process of determining logic equivalence. The
number of required phase-assignments is reduced by taking the unateness property into
account. The number of input permutations is reduced by using symmetry information.
Note that the computational complexity is intrinsic to the Boolean matching problem;
therefore, the worst case number of comparisons isstilR™ for any arbitrary cluster
function. However, we will show that the upper bound on complexity is related to the
functionality of the library elements, and that most commercially available libraries are
constituted of elements that imply much smaller upper bounds. Therefore, for most
cluster functions, the worst-case bound is much less #ha®". In addition, the average
cost of Boolean matching is much lower than the worst-case bound and it is shown
experimentally to be competitive with other matching techniques.

5.1.1 Unateness property

To increase the efficiency of the Boolean matching process, we take advantage of the
fact that the phase information of unate variables is not needed to determine the logic
equivalence. Therefore we define a transformaltidhat complements the input variables
that are negative unate. For example, any func#ony, y) in the set:{y + y2, 71 +
Y2, Y1 + U2, U1 + Y2, Y12, Y1v2, Y1¥2, Y1yz} can be represented by the seyu + vz, y1y2 .
Note that the phase information still must be kept for binate variables, where both the
positive and negative phases are required to expfe®®y using the transformatioif
we reduce the information required for the matching operation and therefore also reduce
its computational cost. In particular, since the phase of unate variables is predefined, the
number of input phase-assignments required for:arput Boolean function decreases
from 2" to 2°, wherebis the number of binate variables.

As a result of using the unateness property, we redefine the matching problem as
follows:
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Given a cluster functiotf x1,...,2,) and a library elemen§( y...,y,) , find an
ordering{z, ..., j} and a phase assignmet ;, ..., ¢;} of the binate variable$k . . ., [}
of F, such that either (5.1) or (5.2) is true:

N K :1;,...,xfk,...,xfl,...,xj) ) =N 61y Yn) ) (5.1)
WA el 2) ) =T Glae o) ) 5.2

The unateness property is also important for another aspect of search space reduction.
Since unate and binate variables clearly represent different logic operations in Boolean
functions, any input permutation must associate each unate (binate) variable in the cluster
function to a unate (binate) variable in the function of the library element. This obviously
affects the number of input variables permutations when assigning variables of the cluster
function to variables of the library element. In particular, it implies that if the cluster
function hasb binate variables, then only- ( n— b) ! permutations of the input variables

are needed. Therefore the worst-case computational cost of matching a cluster function
with & binate variables i# - ( n—0) ! - 2.

5.1.2 Logic symmetry

One additional factor can be used to reduce the number of required input permutations.
Variables or groups of variables that are interchangeable in the cluster function must be
interchangeable in the function of the library element. This implies that logic symmetry
can be used to simplify the search space.

Variables are symmetric if they can be interchanged without affecting the logic func-
tionality [McC56a]. Techniques based on using symmetry considerations to speed-up
algebraic matching were also presented by Morrison in [MJH89], in a different context.

Definition 5.1 Logic symmetry is represented by the binary relat®R » on the set
of inputs{z1,...,x,} of ; whereSR » = {{zi,2;} | H a,..., ¢, ), ...,2,) =
H oo,y @y, e, @iy..0,2,) +. In the following, we writeSR-( ¢, ;) to indicate that
{x;,z;} belongs toSR r.

Theorem 5.1 The symmetry property of completely specified functions is an equivalence
relation.
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Proof: An equivalence relation is reflexive, symmetric and transitive [Liu77a]. From
the definition of SR £, it is obvious that relatiolSR =( #,x;) is true, thusSR- is re-
flexive. By definition,SR » is symmetric. Finally, if bottSR »( #,z;) andSRe( &, xx)
are true, therSR #( %, x) is also true, becaus8R-( 1, ;) meanssy can replacer,
in 7, and in that caseSR #( ¢, 2;) =SRr( %,x;) . Therefore SRr is transitive.m

Corollary 5.1 The symmetry propertyR » of the input variables of Boolean equation
Fimplies a partition of the variables gfinto disjoint subsets.

Proof: It follows from SR » being an equivalence relatiom.

Definition 5.2 A symmetry setf a functionFis a set of variables af that belongs to
the binary relationSR r.

Two variablesz; andz; of Fbelong to the same symmetry setSiR »( ¢, z;) .

Let us consider for example functich= = 1223+ x425+ xex7. The input variables
of F can be partitioned into three disjoint sets of symmetric variablesy, x5, x3},
{4, x5} and{we, x7}.

Symmetry sets are further grouped into symmetry classes.

Definition 5.3 A symmetry clas€’;,: € {1,2,...} is an ensemble of symmetry sets with
the same cardinality and S; =| ¢} | is the cardinality of a symmetry clags.

In the previous example, there are two symmetry claségs= {{z4, x5}, {z6, 27} }
and C3 = {x1, 22,23}, with S, = 2, S3 = 1. Note that all the other symmetry classes
are empty, and thereforg., 3 S; = 0.

The symmetry properties are exploited in technology mapping as follows. Before
invoking the mapping algorithm, the symmetry classes of each library element are cal-
culated once. Symmetry classes are used in three different ways to reduce the search
space during the matching phase. First, they are used as a filter to quickly find good
candidates for matching. A necessary condition for matching a cluster fun€taith
a library element is that both have exactly the same symmetry classes. Hence only a
small fraction of the library elements must be checked by the full Boolean comparison
algorithm to see if they match the cluster function.
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Second, symmetry classes are used during the variable ordering. Once a library
elementg that satisfies the previous requirement is found, the symmetry sefsaoé
compared to those @. Then, only assignments of variables belonging to symmetry sets
of the same size can possibly produce a match. Since all variables from a given symmetry
set are equivalent, the ordering of the variables within the set is irrelevant. This implies
that permutations need only be done over symmetry sets of the sameesiagmmetry
sets belonging to the same symmetry cl@ssThus the number of permutations required
to detect a match is[]’_;( $!') , whereq is the cardinality of the largest symmetry set,
and S; was defined above as the cardinality of a symmetry afgss

For example, let us enumerate the permutations for matching functieng 1y2( 3+
ya) +yys andg = i1ip + ( 3 + 14) 826. FUNCtionF has one non-empty symmetry class,

Ca( F) , which contains three symmetry setg,v2}, {ys, va}, and{ys, y¢}. We associate

a name,n;, with each of the symmetry set€l>2( F) = {{gv2}, {v3, ya}, {ys, 6} } =
{n1,m2,n3} (i.e. we represent the pair of symmetric variablgs, v} by ni1, the pair
{ys,ya} by n, etc.). Similarly, functionG has only one non-empty symmetry class,
C, with cardinality S; = 3. We associate a namg;, with the symmetry sets of:

Co G) = {12}, {is,ia}, {15,106} } ={€1,£2,£3}. We then use the labelsand ¢ to
represent the different permutations of symmetry sets. The cardinality of the symmetry
classC, is S, = 3, and therefore there ar®! = 6 possible assignments of symmetry
sets of Fandg:

(&) 5 (9€2) 5 (3783)
(m,6) ,(29€s) 5 (3782)
(1) (&), (39&)
(1) (&), (3&)
(m:&3) (&), (39&2)
(m:&3) » (&) , (&)

Only the last assignment, where the variablegahdg are paired a${y 1,v2}, {5, 26} },

{{ys, ya}, {1324} }, {{ys, s}, {71,172} }, make functionsFandg logically equivalent.
The third use of symmetry classes is during the Boolean comparison itself. Boolean
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comparisons are based on iterative Shannon cofactoring. Without symmetry considera-
tions, for anrinput functionF, up to 2 " cofactors are needed. But since variables of a
symmetry set are freely interchangeable, not alc@factors are different. For example,
given F= dx, where{a b ¢} are symmetric, then the cofactor fi=0,b6=1,¢= 0}

is equivalent to the cofactor dlu=1,b= 0, c= 0}.

Theorem 5.2 Given a function 7 with a symmetry set containing:variables
{y1,---,ym}, ONly m+ 1 of the2 ™ cofactorsF| PLyom A€ different.
1 m

Proof: We defineA,( nw) , an assignment whereout of themvariables are set

to 1, and the remainingsv variables are set to 0. There are such Ax( nw)
v

assignments. By definition, thewariables are symmetric. Therefore, any pair of
variables of the symmetry set can exchange their values without chahgifg a result,

any assignmenfd,( nw) ;( k=1,..., " ) will correspond to the same value &f
v

because any assignmedi,( nw) can be transformed into any assignmefif( nw)

by simple pairwise permutations of the assigned values. Therefore, only assignments
Ai( nw) with different values ob can potentially make different. Since 0<v <m

thenwv can take onlynt+ 1 different valuesi(e. 0,1,..., nvariables can be set to 1),

and consequently there are at most1 different cofactorsm

Assuming thenvariables ofF are partitioned intdsymmetry sets of size 1,...,n;
(where>"%_on; = 1), then the number of necessary cofactors[{§ o( 7+ 1) <2'.

Although in the worst case, logic equations have no symmetry at all, our experience
with commercial standard cells and (programmable) gate array libraries shows that the
library elements are highly symmetric. We computed the symmetry cl&sset every
element of three available libraries (CMOS3, LSI Logic and Actel), and established the
cardinality S; of each symmetry class; extracted. We found that the average cardinality
S; of all the symmetry sets of the library cells in the three libraries is less than 2, as
shown in Figure 5.1. Therefore, the number of permutatighs( $!) on the average is
close to 1.

Unateness information and symmetry classes are used together to further reduce the
search space. Unate and binate symmetry sets are distinguished, since both unateness and
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Figure 5.1: Distribution of symmetry classé$

LSI Logic (LMA9000) &Q cMOos3

symmetry properties must be the same for two variables to be interchangeable. We now
compute the worst case bound. We separate symmetry cl@ssa® disjoint subclasses

C* and C? of unate and binate variable§'{ UC'? = C; andC* NC'? = (). Therefore,

we split the symmetry classes cardinality iffo= S* + S?, whereS¥ is the cardinality

of C* € C; and S! is the cardinality ofC? € C';. This further reduces the number

of permutations to[[?_; S#! - ! =[], S - ( §—S¥) ! <IIL,S;!. Hence, when
considering the phase assignment of the binate variables, at[fiosf*! - ( S—S ¥) !-
2¢(3-5¢) Boolean comparisons must be made in order to find a match.

As an example, in the Actel librarctl, the worst case occurs for the library element
MXT = docics + dicics + dacocz + dscacz, whereS; = 7, and Sy = 4. In that case,
4. 3. 2 =1152 « T7!- 2 = 645120, where 7' 2 represents the number of
comparisons needed if no symmetry or unateness information is used.

Procedurébooleanmatch a variation on procedurg&mplebooleanmatch is shown
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in figure 5.2. It incorporates the symmetry and unateness information to reduce the
search space: permutations are done only over symmetry sets of the same size. In
addition, symmetry sets of unate and binate variables are separated into distinct classes
C* andC?. Then only symmetry sets with the same unateness property are permuted.

booleanmatch(f,g,fsymmetrysets,gsymmetrysets){

if (fand g are constant 0 or %) /* If leaf value of f and g, matches if f == g */
return (f=g)}
if ( f_symmetrysets is emptyY /* All variables of current symm set are assigned */
f_symmetrysets = gehextf_symmetryset() /* Get next symm set in the list */
symmetrysize = sizeof(f_symmetrysets)
while ( symmetry sets of g with /* Try all symm sets of g with the same size */
sizesymmetrysizehave still to be tried) /* and the same unateness property */

g-symmetrysets = gehextavailableset(g,symmetngize)
booleanmatch(f,g,fsymmetrysets,gsymmetrysets)
if (it is a match) return(TRUE)
else return(FALSE) }
fvar = pickavariable(fsymmetrysets) /* Get variables from compatible symm sets */
gvar = pickavariable(gsymmetrysets)

fO = shannomecomposition(f,fvar,0) /* Find Shannon cofactor of f with (fvar = 0) */
f1 = shannomecomposition(f,fvar,1) /* Find Shannon cofactor of f with (fvar = 1) */
g0 = shannomlecomposition(g,gvar,0) /* Find Shannon cofactor of g with (gvar = 0) */
g1 = shannomlecomposition(g,gvar,1) /* Find Shannon cofactor of g with (gvar = 1) */

if ((booleanmatch(f0,g0,fsymmetrysets,gsymmetrysets))

and (booleamatch(fl,g1,fsymmetrysets,gsymmetrysets))){

return(TRUE)} [* \erify that the cofactors of f and g are equivalent */
else if ((booleammatch(f0,g1,fsymmetrysets,gsymmetrysets))

and (booleamatch(f1,g0,fsymmetrysets,gsymmetrysets))){

return(TRUE)} /* Verify that f is equivalent to the complement of g */
else return(FALSE})}

Figure 5.2: Algorithm for fast Boolean matching

5.2 Determination of invariant properties

Unateness and logic symmetry are the two invariant properties we utilize for search space
reduction during Boolean matching. Since cluster functions represent arbitrary portions of
Boolean networks, we preprocess every cluster function to detect possible simplification
before the unateness and symmetry properties are extracted.
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In particular, the preprocessing step recognizes and eliminates vacuous variables.
Recall that an equatiot'is vacuous in a variable ; if the equation can be expressed
without the use of); [McC86].

Vacuous variables are detected by checkingjf =F 5, for any given variable;.

When this condition is true, variable is vacuous, and therefore does not influence the
value of F In that case, we arbitrarily set variable to O or to 1, to simplify the
expression of functior= Shannon decomposition is used for this detection. Sifice
and 73, are derived from the same equatidnboth of their supports are subsets of the
support of 7. Hence the variable ordering ¢f ,, and.F3, is unique, and no permutation
(nor phase assignment) is needed during the Shannon decomposition.

5.2.1 Unateness extraction

Unateness is the first property to be extracted from Boolean functions. For efficiency
reasons, the unateness determination is done in two successive steps.

The first step consists of considering a decomposition of the functiomo base
functions represented by a leaf-DAG and detecting the phase of each variab|d oé
phase detection proceeds as follows. Starting at the root of the leaf-DAG representing
function F, a token representing a positive phase is propagated depth first towards the
leaves of the DAG. When a vertex corresponding to a negative unate function is traversed,
the phase of the token passed down is complemented. Each variable reached during the
graph traversal is annotated with the phase of the current token. This phase-detection
operation is implemented in proceduetunate (Figure 5.3), where we assume that all
base functions are unate. It would be possible to extend procegiteateto allow
binate vertices as well (by extending the possible values of the token to positive, negative
andboth), but it is unnecessary: we use 2-input unate functions as base-functions during
the decomposition step, therefore the leaf-DAG cannot contain binate vertices.

The traversal of the leaf-DAG in procedugetunate takes at most 2—1 steps,
wherenis the number of leaves: since the network is decomposed into 2-input gates,
then each level in the levelized DAG has at most half the number of vertices of the
previous level. Therefore, such a DAG witlnputs has at most+ 5 +%+--- +1=
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Y om —Yoa +1=20—2+1 = 21 vertices.
All variables used in only one phase are necessarily unate. However, the first operation

can falsely indicate binate variables, because the algorithm relies on structure, not on

Boolean operations. For example, it would indicate that variableF = a ¢+ &+ ale

is binate, whereas it is unaté (s simply a multiplexetF= a ¢+ &). The first step is

used because it is a linear complexity operation. But when binate variables are detected,

a more powerful technique is required to determine that the variables are really binate.
In the second step, the unateness property of the remaining variables (those which the

first step labeled as binate) is detected verifying implications between cofactors [McC86].

The unateness property of thepessibly binate variables is detected by verifying if

F., = F5, (negative unate variable) or #;, =F ,, (positive unate variable). If neither

implication is true, then variable; is binate (Figure 5.3).

5.2.2 Symmetry classes determination

Once the unateness information has been determined, symmetry properties are extracted.
The transformatiort; presented in Section 5.1.1, is applied to ensure that symmetry will

be detected between unate variables regardless of phase. By definition, two variables
are symmetric if interchanging them in the expression of a function does not change the
original function. We detect that two variables are symmetric simply by verifying that
SR #( x,2;) Iis true for that pair of variables. Since logic symmetry is an equivalence
relation, as we established in Section 5.1.2, it is transitive. Therefosejsfsymmetric

to v;, andv; to vy, the symmetry ob,; andv;, is established without further verification.
Similarly, if v; is symmetric tow;, andv; is not symmetric ta,, theny; is not symmetric

tov,. As aresult, when two variables are symmetric, the symmetry relations of the second
variable are identical to those of the first variable, and do not need to be established
through additional verification. This implies that it is not always necessary to verify all
pairs of variables for symmetry. All pairs of variables must be processed (by verifying
that SR »( ¢,z;) is true) only when there is no symmetry. This is the worst case, and
) swaps must be done, whengs the number of inputs to the equation. When a

2
function is completely symmetrid,e. when all inputs to a functiorF are symmetric,
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then onlyn—1 swaps are needed (Figure 5.4).
The unateness property is used to reduce the number of swaps needed. Assuming
b out of theninput variables are binate, then at worst%. + () ()

swaps are
required. At best:—2 swaps are needed, when both binate and unate variables are
maximally symmetric. In order to verify that swapping two variables,v;} leaves

JF unchanged, it is sufficient to verify tha ,.5, =F 5..;. As in the first step, this is

done using Shannon decomposition, and a single ordering (and phase assignment) of the
variables is sufficient.

Since the phase information is relevant to binate variables, two swaps must be done
for each pair of binate variables, one swap for each phase assignment of one of the two
variables. Again, Shannon decomposition is used to check if the two instances of the
equation are the same, and, as in the first step, only one variable ordering is used.

From an implementation standpoint, symmetry classes are established once for each
library element. Each library element is then inserted into a database, using its symmetry
sets as the key. Library elements with the same symmetry sets are further grouped by
functionality €.9. G1 = y1y2 andG, = y1 + y, are grouped together in a new entryof
the database corresponding to functions of 2 equivalent, unate inputs).

5.3 Results

Tables 5.1, 5.2 and 5.4 show mapping results for a set of benchmark circuits which are
optimized for areaj.e. a weighted sum of the matches is minimized. Note that the
algorithms presented in this chapter can be used for delay optimization when assuming a
constant load model, or when using load-binning, as explained at the end of Chapter 3.
However, we decided to use an iterative method to specifically deal with timing issues,
and we defer the presentation of the iterative method until Chapter 7.

Ceres was run using various covering depths, which allow trade-offs between run-
times and quality of results. We noted that remapping (extracting the logic from a
mapped network, and applying technology mapping again) often improves the results.
Ceres allows for an arbitrary number of remapping operations. The following results
represent the best of two successive mapping operations. Run-times reflect the use of



CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 69

two complete mapping steps and one logic extraction.

Table 5.1 represents circuits bound to the Actel library, which has a large number of
elements with repeated literals. In this case, results show that using Boolean operations
for matching leads both to better implementation and faster run-times when compared to
pattern matching based comparisons: results range from 3% smaller area with more than
12X faster run-time, to 10% smaller area with 4X faster run-time.

Table 5.2 shows mapping results using the complete Aéietly library, which com-
prises over 700 elements

Table 5.3 gives mapping results using the complete A&etd) library, which com-
prises over 730 elements

Note that in Tables 5.2 and 5.3 we did not include results from progriaf8SM*92],
for two reasons. First, pattern matching, which is the core matching algoritsig in
does not utilize complex gates with repeated literals. Since most gates in thcfill
and Act2 libraries have repeated literals, the majority of the gates would not have been
usable. Second, the number of patterns generatesidoyeeded to encompass all the
possible representations would be excessively large. We indeed tried to use psigram
with the full Actl library, but stopped it after 20 hours, as it was still working on the
pattern generation for the internal library representation.

Table 5.4 shows results using the LSI Logic 10K library. This table shows again how
Ceres can trade-off quality of results for run-time. In particular, results comparable in
area to those ddis are obtained with 30% faster run-times, or 4% smaller area at a cost
of a 2X increase in run-time.

Table 5.5 gives results using a library derived from the Quick Logic master cell [Bak91].
For that technology, as for the full actel libraries, we do not compare the results to those
of sis because it was not possible to build and use the entire library in progisam

1The elements of the Actel libramctl are all derived from the master equatigh= (a + b)(cd +
ed) 4 (a +b)(fg +h 7), using any possible input bridge or stuck-at combination.

2The elements of the Actel libra#ct2 are derived from the master equatidn=(a 46 )(cdg 4¢ dg)+
(a +b)(fdg +h dg), using any possible input bridge or stuck-at combination.
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extractunateness(equatiot)
inputvars = support(equation)
foreach¢ €inputvars) {
resetunateness(v}
getunate(f,POSITIVE)
foreach¢ €inputvars) {
if (is_binate(v){
getbinate(f,v)} } }

getunate(f,phasej

if (is_empty(f)) {
return’}

if (is-.annotated(f) .AND. (annotation(f) == phasg)

return}
lower_levelphase = phase
if (type(f) == VARIABLE) {
setunateness(variable(f),phase)
else if (type(f) == INVERSION){

lower_levelphase = complement(phase)

setunate(nextevel(f), lowerlevelphase)
setunate(samdevel(f), phase)
annotate(f,phase)

return}

getbinate(f,v){
resetunateness(v)
fo = shannomecomposition(equation)
/1 = shannomecomposition(equationl)

fou = f1+ fo

if (fou == 1) {
setunateness(v,POSITIVE)
return}

fau=fo+ f1

if (fnu==1) {
setunateness(v,NEGATIVE)
return}

setunateness(v,BINATE)

return}

/* Get the list of inputs of eq */
/* Process each variable */
/* Initialize +/s unateness to unknown */
/* First step */
/* Process each variable */
/* Leave unate variables */
/* Second step */

/* no more factored forms (FF) */
/* f already reached with that phase */

/* Phase underneath FF */
/* Reached a leaf */
[* Tag the variable with current phase */
/* Phase is inverted underneath FF */

/* Process lower level FF */
/* Process same level FF */
/* Mark f as processed with that phase */

/* Find Shannon cofactor of f withu(= 0) */
/* Find Shannon cofactor of f withu(= 1) */
[* Establish implication */
/* fpu is a tautology */

/* v is positive unate */

[* Establish implication */
/* fnu is a tautology */
[* v is negative unate */

/* v is binate */

Figure 5.3: Algorithm for unateness extraction
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extractsymmetry(equationj
symmclasses = newlasses()

inputvars = support(equation) /* Get the list of inputs of eq */
foreach¢ €inputvars) { /* Process each variable */
if (is-tagged()) {continue} /* Skip v if already in a set */
tag@) /* Mark v as processed */

symmset = newset()
addto_symmset(symmset, v)

foreach{euntaggednputvars){ /* Compare with remaining variables */
g1 = shannomecomposition(equationl) /* Find Shannon cofactor of eq with & 1) */
go = shannomecomposition(equation) /* Find Shannon cofactor of eq with, & 0) */
g10 = shannomecomposition{ 1,.,0) /* Find Shannon cofactor of 1 with (u= 0) */
go1 = shannomecompositionf o,21) /* Find Shannon cofactor of o with (u= 1) */
if (910 = go1) { * Condition for ( v, «) symmetry */
addto_symmset(symmset, ) /* Add to current set */
tag@ }} /* Mark was processed */
addsetin_classes(symmlasses,symmset) }
return}

Figure 5.4: Algorithm for symmetry extraction
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Circuit SIS Ceres
depth 3 depth 4 depth 5
cost | rtime cost | rtime cost | rtime cost | rtime

C6288 1649 139.0 1425 85.6 1425 86.5 1425 87.1

k2 1308 | 4408.0 | 1209 | 1319 | 1209 | 170.5 | 1209 | 253.3
C7552 1250 | 501.3 1117 97.4 1100 | 123.6 | 1062 | 178.3
C5315 957 264.8 899 79.2 887 107.2 831 151.2

frg2 941 869.3 1049 | 103.9 | 1045 | 1416 844 193.1
pair 823 179.9 872 69.3 813 90.3 716 120.7
x1 761 630.1 827 95.4 825 150.6 807 328.5
C3540 658 295.0 641 45.3 628 62.0 608 101.9
vda 651 3103.5 543 46.1 543 61.4 543 91.7
x3 637 288.1 639 54.8 620 74.9 527 108.1
rot 570 254.7 583 48.4 582 73.8 551 137.5

alu4 521 1702.5 561 44.9 559 72.0 550 147.7
C2670 431 177.3 379 28.4 359 39.0 317 64.4
apex6 378 65.2 399 23.2 400 30.5 399 45.6
C1355 371 53.2 176 125 178 151 178 22.2
terml 360 368.0 380 29.3 365 44.6 302 73.0

x4 346 160.9 433 32.5 428 49.0 368 79.5
alu2 297 623.8 325 24.3 329 41.2 320 90.1
frgl 286 83.9 277 30.1 277 51.6 271 120.6
C1908 283 87.2 266 15.9 265 215 263 34.0
ttt2 217 167.9 283 23.4 283 37.5 249 69.0

C880 193 47.0 191 11.0 182 14.9 178 23.0
C499 178 51.8 176 9.9 176 14.1 168 21.1
example2| 175 50.8 179 111 179 14.5 175 215
apex? 147 44.6 149 9.8 150 13.3 142 19.3

my_adder| 128 38.6 112 8.8 96 11.8 64 14.4
C432 125 35.9 93 7.5 93 10.4 93 17.2
f51m 124 120.0 132 12.2 131 21.2 129 44.7
z4ml| 106 96.8 113 10.2 113 17.4 91 33.7

c8 103 45.9 143 111 136 15.9 116 22.7

Total 14974 | 14955.0| 14571 | 1213.4| 14376 | 1677.9| 13496 | 2715.1
100 % 1.0 97.3% | 0.08 | 96.0% | 0.11 | 90.1% | 0.18

Table 5.1: Mapping results for area (Mont cares, Actel library Actl, restricted set of
gates commercially distributed)
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Circuit Ceres
depth 3 depth 4 depth 5
cost | rtime cost | rtime cost | rtime
C6288 1425 89.3 1425 89.2 1425 89.0
k2 1195 158.0 1195 205.4 1195 306.7
C7552 1119 116.8 1085 150.1 1045 250.2
C5315 908 102.0 765 141.8 715 245.8
frg2 1021 129.1 889 174.5 836 270.1
pair 842 88.7 769 122.3 686 180.2
x1 834 121.4 827 200.0 807 140.8
C3540 638 60.0 620 84.9 585 152.8
vda 526 59.4 526 81.3 526 124.2
X3 598 71.3 531 99.8 486 155.3
rot 563 65.3 536 100.3 521 190.3
alud 559 60.4 546 99.0 520 203.4
C2670 377 39.8 337 56.6 304 106.1
apex6 368 31.2 357 41.2 347 62.2
C1355 178 18.5 178 22.1 176 37.0
terml 369 41.6 305 63.1 272 105.3
x4 396 45.5 360 66.8 342 110.3
alu2 321 35.1 312 58.5 312 122.7
frgl 285 41.3 284 715 272 162.5
C1908 270 23.8 269 31.7 265 56.4
ttt2 272 33.7 258 53.1 230 96.0
C880 184 17.9 182 23.5 178 37.1
C499 178 16.8 174 21.4 160 44.4
example2| 173 17.4 168 22.4 162 32.1
apex7’ 146 16.3 134 21.4 125 30.8
my_adder| 112 15.1 64 18.9 64 29.1
C432 100 13.3 100 17.6 100 27.8
f51m 128 19.5 123 32.1 112 65.0
z4ml 108 16.6 101 26.7 82 50.4
c8 131 17.9 117 24.4 111 35.6
Total 14324 | 1583.0| 13537 | 2221.6| 12961 | 3519.6
100 % 1.0 94.5 % 1.4 90.5 % 2.2

Table 5.2: Mapping results for area (Mion't cares, Complete Actl library)
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Circuit Ceres
depth 3 depth 4 depth 5
cost | rtime cost | rtime cost | rtime
C6288 1454 89.9 1454 90.1 1454 89.9
k2 1285 156.8 1051 201.1 1051 304.7
C7552 1155 117.8 1061 154.2 1019 302.8
C5315 960 101.1 826 138.2 745 248.2
frg2 1122 132.8 822 193.2 696 291.2
pair 865 88.6 756 124.2 647 193.0
x1 850 124.7 769 199.6 747 442.7
C3540 600 58.8 574 91.3 540 162.4
vda 585 61.8 539 86.8 539 133.0
X3 670 74.2 526 107.0 449 162.0
rot 606 67.4 504 107.1 473 200.6
alud 565 69.7 497 106.8 478 215.4
C2670 404 41.6 331 59.7 304 121.5
apex6 337 31.4 299 45.8 297 69.5
C1355 180 19.4 154 22.4 154 46.9
terml 407 43.3 295 69.1 252 116.8
x4 416 46.7 342 73.5 308 118.0
alu2 324 36.3 280 64.6 274 132.7
frgl 277 41.4 274 77.4 277 170.5
C1908 281 24.6 242 33.2 240 75.2
ttt2 293 35.3 235 58.5 207 103.0
C880 162 18.2 143 25.7 141 44.1
C499 178 16.8 140 22.4 130 62.5
example2 179 18.1 161 23.7 156 34.3
apex7’ 156 17.2 130 23.2 119 31.5
my_adder 127 15.9 64 20.7 64 27.7
C432 101 13.9 102 19.7 101 30.3
f51m 128 20.3 111 35.1 97 70.5
z4ml 98 17.4 89 29.1 80 58.0
c8 146 18.8 106 26.4 93 38.7
Total 14911 | 1620.2| 12877 | 2329.8| 12132 | 4097.6
100.0 % 1.0 86.4 % 1.4 81.4 % 2.5

Table 5.3: Mapping results for area (Mont cares, Complete Act2 library)
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Circuit SIS Ceres
depth 3 depth 4 depth 5
cost | rtime cost | rtime cost | rtime cost | rtime
C6288 2429 73.7 2241 53.6 2241 52.4 2241 55.9
k2 2182 149.0 2302 110.5 2302 185.3 2302 340.5
C7552 2699 127.1 2797 95.0 2780 139.0 2749 234.2
C5315 1959 86.1 2103 49.0 2002 114.7 1987 192.3
frg2 2045 122.7 1915 90.5 1869 149.1 1712 254.7
pair 1505 68.7 1529 61.4 1525 96.2 1483 165.7
x1 1410 103.1 1498 85.6 1498 175.7 1491 459.4
C3540 1192 67.6 1208 48.1 1201 78.5 1186 155.8
vda 1039 71.6 1090 45.6 1090 71.7 1090 119.5
X3 1285 68.0 1250 52.0 1254 81.2 1095 130.4
rot 1108 70.7 1120 50.7 1121 91.1 1122 107.1
alud 1009 78.8 1015 48.5 1015 94.6 999 229.5
C2670 862 45.8 909 22.0 887 49.8 893 93.2
apex6 714 33.6 680 24.5 680 35.2 680 59.3
C1355 561 27.9 404 15.5 404 20.4 402 32.9
terml 721 44.9 706 33.6 687 57.3 573 107.2
x4 690 43.6 734 33.2 734 56.9 643 96.8
alu2 565 44.3 588 29.8 587 56.7 576 140.2
frgl 579 45.3 595 37.2 595 77.2 592 210.0
C1908 592 39.4 600 21.6 600 30.9 587 56.5
ttt2 429 33.5 425 23.1 421 39.2 377 73.3
C880 342 22.5 314 16.8 314 25.0 309 44.7
C499 421 24.6 406 14.0 406 18.7 404 29.2
example2| 354 23.6 371 14.7 371 20.9 352 33.1
apex7’ 283 20.0 285 14.0 285 19.0 268 28.7
my_adder| 242 17.8 224 13.4 223 18.1 216 24.4
C432 221 17.8 215 12.4 215 17.9 215 32.9
f51m 234 21.1 197 14.5 197 25.0 191 55.0
c8 237 19.1 221 12.6 218 16.7 215 23.7
cht 211 16.6 204 11.5 204 14.5 188 18.8
Total 28120 | 1628.5| 28146 | 1154.9| 27926 | 1928.9| 27138 | 3604.9
100 % 1.0 100.0 % 0.7 99.2 % 1.2 96.3 % 2.2

Table 5.4: Mapping results for area (Mon't cares, LSI Logic library)

75



CHAPTER 5. MATCHING COMPLETELY SPECIFIED FUNCTIONS 76

Circuit Ceres
depth 3 depth 4 depth 5
cost | rtime cost | rtime cost | rtime

C6288 1424 | 1129 | 1424 | 112.8 | 1424 | 112.7

k2 1071 | 135.0 860 178.1 696 271.9
C7552 1017 | 110.8 917 141.8 845 289.6
C5315 823 89.4 667 118.4 566 240.8

frg2 953 115.4 701 159.8 580 247.3
pair 747 78.7 629 106.6 510 171.4
x1 779 100.6 595 163.9 479 370.5
C3540 539 51.8 467 75.0 439 165.5
vda 491 50.7 410 70.0 314 103.1
x3 599 64.2 431 85.6 367 138.3
rot 514 55.8 395 86.8 332 177.4

alu4 473 511 378 86.2 328 194.4
C2670 347 36.4 276 49.2 241 102.3
apex6 287 28.4 252 40.0 239 71.1
C1355 170 18.3 154 20.1 152 36.0
terml 339 35.7 251 55.1 200 98.1

x4 349 38.6 263 59.9 232 104.1

alu2 276 29.9 222 52.4 183 117.8

frgl 275 35.2 231 61.2 189 147.8
C1908 260 21.6 212 28.3 207 67.4

ttt2 240 29.6 189 51.0 168 93.2
C880 151 17.0 138 23.4 133 42.7
C499 170 15.4 154 19.4 152 47.5

example2| 155 16.3 131 21.0 121 32.9

apex? 123 15.3 101 20.4 85 29.8

my_adder| 112 14.5 64 18.0 64 25.6

C432 82 13.4 77 16.8 75 28.5
f51m 116 17.8 90 29.4 76 65.6
z4ml| 96 15.2 66 24.6 60 51.8

c8 126 16.8 95 22.4 77 33.1

Total 13104 | 1431.8| 10840 | 1997.6| 9534 | 3678.2
100% | 1.0 827%| 14 |728% | 2.6

Table 5.5: Mapping results for area (lont cares, Library derived from the Quicklogic
Master cell)



Chapter 6

Matching incompletely specified

functions

We explained in Chapter 4 that powerfulatchingalgorithms correlate to better quality
solutions. One possible enhancement is to exploitt careinformation while asserting

logic equivalence. We presented in Chapflea conceptually simple, albeit compu-
tationally complex matching algorithm, whed®nt care information is incorporated.
Chapter 5 introduced a method to efficiently use Boolean techniques when matching
completely specified functions. In the present chapter, we present an efficient method for
matching logic functions in the presencedwnt careinformation.

The topology of the Boolean network changes during the covering stage. As a result,
dont care conditions must be dynamically established. Therefore a technology mapping
algorithm that exploitglon't care conditions must involve two tasks: i) computing and
updating localdont care sets and ii) using thelon't care information to improve the
guality of the mapped circuit. We first present the usaloft care sets and we defer
their computation to Section 6.3.
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6.1 Usingdon't careinformation

We have considered two approaches to usioigt careconditions in technology mapping.

One uses Boolean simplification before matching a function to a library element, and the
other merges simplification and matching in a single step. The former is motivated
by the following rationale:don't care conditions are usually exploited to minimize the
number of literals (or terms) of each expression in a Boolean network. While such a
minimization leads to a smaller (and faster) implementation in the case of pluri-cell design
style [BCD*88] (or PLA-based design), it may not improve the local area and timing
performance in a cell-based design. For example, cell libraries exploiting pass-transistors
might be faster and/or smaller than other gates having fewer literals. A pass-transistor
based multiplexer is such a gate. Let us assume a function defined doy stst 7 and

its don't caresetTC:

DC = be

Then ( a+ b) ¢ is the representation that requires the least number of literals (3),
and the corresponding logic gate is implemented in CMOS pass-transistor logic by 4
transistors plus two buffers.e. 8 transistors total. On the other hand,+ i requires
one more literal (4), but it is implemented by only 4 pass-transistors and one inverter,
i.e. 6 transistors total (Figure 6.1). Note also that in most cell-libraries- b ¢ would
be implemented as an AND-OR-INVERT gate, followed by an inverter, usir@6= 8
transistors. Howeverb+ i would still be implemented by pass-transistor logic.

A second example, taken from the Microelectronic Center of North Carolina (MCNC)
benchmarkmajority, is also representative of the usesdufnt caresduring matching
(Figure 6.2). In that example, the usedn't caresyields better matches, and gives an
overall lower cost for the resulting circuit. Consider the cluster func@ofi = aedt+ T
that has an associatatbnt careset ¥ = 7+ 17 Thus it can be re-expressed as
@T = & a+ 1) . The two expressions have the same number of literals (4), and
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a
f
C
b_—q
_|
f=(a+b)c f=ab+bc

Figure 6.1: Two pass-transistor implementationsFet ( a+ b) ¢ TC = be

therefore are equally likely to be chosen by a technology-independent simplify operation
(which relies on literal count). But only one of the two exists in the library, and that
match is essential in finding the best overall cost.

These examples show that applying Boolean simplification before matching may lead
to inferior results, as compared to merging the two steps into a single task. For this
reason, we directly usdont care sets in the Boolean matching step to search for the
best implementation in terms of area (or timing).

6.2 Compatibility graph

Boolean matching that incorporates ttent care information can be done using the
simple matching algorithm presented in Section 4.3. Unfortunately, \wbai carecon-

ditions are considered, the cluster functiBreannot be uniquely characterized neither by
unateness properties nor by symmetry classes. Therefore the straightforward techniques,
based on symmetry sets, presented in the previous section no longer apply. The simple
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Figure 6.2: Mappingnajority with LSI Logic library elements

matching algorithm would require in the worst case 2" variable orderings, each or-
dering requiring up to 2 Shannon cofactorings. Therefore the algorithm is likely to be
inefficient.

Another straightforward approach is to consider all the completely specified functions
‘Hthat can be derived frorfand itsdon't caresetI. FunctionsHare easily computed
by adding successively all possible subsBise TC to function F. In this case, the
symmetry sets can be used to speed-up matching. Unfortunately, ther& gmes&ible
subsetsD; € TC, where Nis the number of minterms ifiC. Therefore this approach
can be used only for smadlon't caresets. For largeont caresets, a pruning mechanism
must be used to limit the search space.

We consider in this section a formalism that allows us to efficientlydese caresets
during matching. We first introduce a representation\edriable functions that exploits
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the notion of symmetry sets and NPN-equivalence (defined in Section 4.1) and that can
be used to determine matches while exploiting the notiodasft care conditions. For

a given number of input variables let ¢ 1/ F be a graph whose vertex sEtis in
one-to-one correspondence with the ensemble of all different NPN equivalent classes of
functions. The edge séi= {( v;,v;) } of the graph@ VF denotes the vertex pairs
such that adding a minterm to a function included in the NPN-class represented by
leads to a new function belonging to the NPN-class represented .bysuch a graph

@ VB for n= 3 is shown in Figure 6.3.

j
/l\
g & g6
g i o
M
g J d F g
@ ®

Figure 6.3: Matching compatibility graph for 3-variable Boolean space

Each vertexv; in the graph is annotated with one functi@nbelonging to the cor-
responding NPN-equivalence class «@f The functiond, is chosen arbitrarily among
the members of the NPN-equivalence class that have the least number of minterms. For
example, vertex, in Figure 6.3 corresponds to functiofgc+ abe, abe+ a be, abe+
¢, abc+ @be} and their complements. The four functions listed contain 2 minterms,
and their complements 6. The representative funaliofor vertexv, is {dc+ @bz}, but
could be any of the 4 functions just enumerated. The set of funciprsused as the
basis for establishing relations between verticesEach vertex; is also annotated with
the library elements, if any, that match the corresponding funationWhen multiple
library elements are NPN-equivalent, they all correspond to the same wveriexthe
compatibility graph.
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The graph@ VB is calledmatching compatibilitygraph, because it shows which
matches areompatiblewith the given function. Note that the size of the compatibility
graph is small for functions of 3 and 4 variables, where there are 14 and 222 different
NPN-equivalent functions respectively [Mur71], representing the 256 arisB65p0ssible
functions of 3 and 4 variables. Unfortunately, for functions of more than 4 variables, the
number of NPN-equivalent functions grows very quickly (functions of 5 and 6 variables
have 616126 and~ 2 x 10* NPN-equivalent classes respectively [HMM85]), although
it is very sparse in terms of the vertices corresponding to library elements. At present,
we have implemented techniques for technology mapping wond care conditions for
cluster functions of at most 4 variables. From experimental results of mapped networks,
we found that the majority of the library elements used have 4 or less variables (see
Figure 6.1 for the distribution of the number of inputs of cells used for mapping 30
benchmarks). Therefore, it is a reasonable implementation decision tdomtecares
only for cluster functions whose fanin is less or equal to 4.

Number of inputs| Number of cells used Percentage of tota

Actl | LSI Actl | LSl
1 305 2110 29% | 129%
2 3176 6816 30.7 %| 41.8%
3 2998 2705 29.0 %| 16.6 %
4 3685 4583 35.6 %| 28.1 %
5 182 103 1.8% | 0.6 %
6 0 3 00% | 00%

Table 6.1: Number of-input cells used in mapping 30 benchmarks with the full Actl
and the LSI Logic libraries (depth = 5)

For functions of 4 variables and less, the compatibility graph is constructed once and
annotated with the library elements. Each vertexn the graph is also annotated with
the pathsp;; from vertexwv; to a vertexv; corresponding to library elemet; € L
The set of path®,; = {p.o, pi1,---,pim } represents all the paths from vertexto all
the vertices corresponding to library elements. Each path represents the set of additional
minterms differencing the functiofi; corresponding ta; from the functiond; of v;,
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wherev; corresponds to a library element. Therefore, checking if a fundfisriogically
equivalent (modulo the&on't careset7l) to a library element; ; € Lis the same as
verifying that vertexv, (corresponding to functiotf) has some patlp ;; to vertexv;
(corresponding to library elemet;), such that the corresponding minterms are in the
dont caresetT¥.

For example, Figure 6.4 illustrates all the paths of the vertex labeled 5 makehing
compatibility graph The 8 minterms of the 3-dimensional Boolean space are lakeled
throughf. The paths represent all the possible additions of minterms to the furtgtion
corresponding to vertexs. Note that some paths correspond to the complement of the
representative functiof; associated to the reached vertgx This is indicated by a-”
preceding the vertex number. For this example, vertiges,, vs, vg, vg, v17 and vy, are
assumed to correspond to library elements. Therefore, of all the paths of vertex 5, only
the shaded ones lead to vertices corresponding to library elements.
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Figure 6.4 Paths from vertex 5 in the matching compatibility graph
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Let us define¥ v ;) as the number of minterms of the representative fundiofi
vertexv; in a givenNdimensional Boolean space, and the distance between two vertices
v; andv; asTl v,v;) =| My) —Mwv ;) |. Then the number of paths from verteto
any other vertex (including itself) of the compatibility graph i€"2-*(). This number
simply indicates that a Boolean function d¥ariables can have at most 2 minterms,
of which Mo ;) are already allocated. Therefore ony2¥v ;) minterms can be
added, and there aré22-Mv ) possible permutations of these additional minterms.

For a 4-variable compatibility graph, the total number of paths for the entire network
is 375,552. This is reasonable from an implementation point of view, since each path
is represented by 16 bits, and thus the entire set of paths occupies approximately 750
KBytes. Note that in general not all paths must be stored, since the elements of the
library usually represent only a subset of all possible NPN-equivalent classes.

If we consider all possible combinations of minterms, the maximum number of paths
| B; | between verticeg andv; is

|B;«|=(2N‘M””)+( 2" ~Atv ) )
I w,v)) 2V —Mo ;) —Mo ;)

The first term of the expression forP; | represents all the combinations of minterms
that can make a function offv ;) minterms into a function of¥/v;) minterms, in a
N-dimensional Boolean space. The second term of the expression represents the com-
binations of minterms that yield a function of*2- ¥v ;) , i.e. the complement of

the functions computed for in the first part. Although this upper bound function grows
exponentially, experimental results show that the actual number of paths between any
pair of vertices is much smaller. For the 4-variable compatibility graph, the maximum
number of paths between any two vertices is 384, corresponding to vesticesid

andv; = dadd+ @ U+ ed . Given thatMv;) =1 andMwv;) =5, itis clear that the
actual number of paths is much smaller than the worst case of 4004 calculated with the
above formula. This is due to the fact that not all combinations of added minterms will
make functiord; logically equivalent t&;. In some cases, it is even impossible to reach
some library element; from vertexv,. For example, in Figure 6.3, vertex cannot

reach verticessg, v11,v13. In addition, some paths do not need to be recorded, because
their head vertex does not correspond to a library cell.
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The matching of a cluster functiof to a library element is redefined in terms of
the compatibility graph as follows. For cluster functions with no applicaladet care
set, only procedurbooleanmatchis used. Otherwise, procedupeoleanmatchis used
to find the vertexor € @ VB corresponding to the NPN-equivalence class of cluster
function 7N T (i.e. , the ON-set of cluster functiorf). Since the graph represents
all possible functions of 4 or less variables, there exists a vertex in the graph which is
NPN-equivalent toF. At the same time vertex ~ is found, the algorithm computes the
transformatiori/ representing the input ordering and phase assignment on the inputs and
output such that ( F) = #. The transformatiorf is applied to thedont caresett,
to generate a new expressidh, IT) , consistent with the representative functigrof
vr. There exists a match to the library céllif there is a path in the grap& 1/ B
from vz to vg (possibly of zero length) whose edges are included in the iffagér)
of thedont caresetTC of F It is necessary thaton't caresets are transformed by the
operator? before the path inclusion is checked, because paths ioadimpatibilitygraph
are computed between representative functyns

The algorithm for graph traversal is shown in Figure 6.5. It is invoked with the vertex
found by algorithmbooleanmatchingand the image€ ( 7€) of the correspondingon't
care set as parameters. When finished, the algorithm returns the list of all the matching
library elements, among which the minimum-cost one is chosen to cBver

dc_match(f,dcy

vertex = getvertex(f) /* Find starting point in the compatibility graph */
NPN_orientation = casto_sameNPN_class(vertex,f) /* Find how f and the vertex are related */
NPN_dc = changeNPN(dc,NPNorientation) /* Transform dc as f was into the vertex function */
for (all pathsp; in vertex){ /* Find paths to library elements covered by dc */

if (included(p;,NPN.dc)) {
updatecovetlist(vertex,covetist) } }
return(covetist) }

Figure 6.5: Algorithm for compatibility graph traversal usidgnt cares
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6.3 Computation of relevantdont caresets

Dont care sets are classified into two major categories: external DCs, and internal
DCs. External DCs are assumed to be provided by the user along with the network
specification. They represent conditions that never occur on the primary inputs of the
circuit, and conditions that are never sampled on the primary outputs. Internal DCs occur
because of the Boolean network structure. They are further classifiedantmllability

dont caresandobservability dont caresControllabilitydon't caresrepresent impossible
logic relations between internal variables. Observabdiy't caresrepresent conditions
under which an internal vertex does not influence any primary output.

The existence of controllability and observabilityn't caresets represents two differ-
ent (but complementary) aspects of a network. Controllakdldgt caresets are related
to the logic structures in the transitive fanin of a vertex, whereas observatulity care
sets are related to the logic structures in the transitive fanout of a vertex in the Boolean
network. The dynamic programming formulation of technology mapping implies the net-
work to map is modified starting at the primary inputs, and is completed when all primary
outputs are processed. The technology mapping operation modifies the logic structure of
the network, and potentially modifies the intermi@int care sets. Thereforedont care
sets should be calculated dynamically, as the boundary of the mapped network moves
from primary inputs to primary outputs (Figure 6.6).

Controllability don't care sets are conceptually easily computed: a vertex is being
mapped only when all its predecessors are mapped. Then all the logic functions express-
ing a vertex are known, and it is straightforward to extract the controllalubtyt care
sets from them. For a subset of variabl¢shat are inputs to a gate or a subnetwork, the
controllability don't care sets (J0) represent the impossible patterns for the variables
Y. The (0sets can be derived from the satisfiabilityn't caresets Q0 by taking
the iterated consensus 800on the variables different froi !, where the satisfiability
don't careset is defined asli?= Y :@&F ; [BBH88]. For example, for= o, the
satisfiabilitydont careis 90' , = x#( &) = Td+4 @+ b) . Controllabilitydont care
sets can be computed in a straightforward manner f@@for a particular subset of

IRecall that a Boolean network is defined by a set of equatioas F;. Therefore the condition
(i /=iF = i@ X can never occur.
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unmapped

mapped

Figure 6.6: Example of a partially mapped network

variables{a b ¢, ...}. Given the satisfiabilitglont careset S0= > 1&F ;, each vari-
able 5 of 90'not in the cutsefa b ...} is eliminated by intersectingl| ; with
0\ =0 (ape D ALijeqane o IEF ;) 4 CJEF ;) 4 The controllability
dont caresets are computed dynamically as the mapping operation proceeds through the
network (Figure 6.7).

Observabilitydon't care sets deal with the successors of vertices. They denote con-
ditions under which a variable does not influence any primary output. For example,
in the following network: ©+ = ¢,t = b+ ¢ t is unobservable when = 0 (in that
case,r= 0 regardless of the value of. By the very nature of dynamic programming
techniques, when a vertex is being processed, its successors are not yet mapped. This
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updatecdc(vertex,currentdc) {

sdc = recursivexor(vertex,support(currergdc)) /* Add all SDCs between vertex and CDC cut set */
unusedsupport = unusedupportrecursive(vertex,support(currecdic) /* Get list of cut set vertices now covered by vertex */
new.cdc = sdoJ currentcdc /* Update CDC with SDC previously calculated */
new.cutset = vertexJ { support(currentdc)\ unusedsuppor} /* Update CDC cut set */
for (v € support(newcdc), but / € new.cutset)

new.cdc = consensus(needc, V) /* Eliminate unused variables */
return(newcdc) }

recursivexor(eq,vertex,listy
eq = equation(vertex)
sdc = xor(eq,vertex)
for (v € support(eq), but not in list)
sdc = sdaJ recursivexor(v,list)
return(sdc)}

unusedsupportrecursive(vertex,list]
eq = equation(vertex)
for (v € support(eq) and in list)
if (last_fanout(v) = vertex)
unusedsupport = unusedupportJ v
for (v € support(eq) and not in list)
unusedsupport = unusedupportu unusedsupportrecursive(v,list)}

Figure 6.7: Algorithm for dynamic controllabilitdont carescalculation

implies the exact observability of a vertex is known only after the mapping is com-
pleted. Note that unless the observabitiignt caresare recomputed each time a vertex

is modified, it is not possible to use the full?’set for all the vertices [CM89].
Therefore, compatible subsets of t8'must be used, as described in [SB90]. Al-
though good algorithms have been proposed to compute compatible obsenddniltty

care sets [DM91, DM90, SB91], efficient implementations are far from trivial, and we
decided not to include them at present. The results reported in Section 6.4 therefore
represent only the use of controllabilition't care sets.

6.3.1 Image-based computation oflon't caresets

Procedureupdatecdc of Figure 6.7 has exponential complexity. This exponential behav-
ior occurs because the iterated consensus operation involves recursively establishing the
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productF,, - 7 for every variabler; to be eliminated frons. Note that the consensus
operation is also known as the universal quantification; F=F .- %-. We callF the
function derived fromF using that proceduré.e. F is obtained fromF by eliminating
a subset of the input variables #f The final expression ofF involves the product of up
to 2"« multiplicands, where:. is the number of variables eliminated fraf As a result,
the consensus operation is not usable for functions with a large number of variables to
eliminate.

Coudertet al. introduced in 1989 an efficient method for implicit state enumeration
in finite state machines [CBM90b, CBM90a], which can be adapted for calculdting
care conditions. The method is based on image computation, and it is an efficient way
of establishing the characteristic function of the image of a Boolean function. Touati
and Savoj have also presented work inspired by the method of Ccetdart [TSL*90,
SBT91, Sav9l]. We will now review this method and its foundations, and present a
useful extension for efficiently calculating subsets(iof

When matching a cluster functiaf « 1,. .., z,, ), we considered aassociateccon-
trollability dont caresetTC(« 1,...,x, ) both in algorithmssimplebooleanmatchand
dc.match The dont care information used in those algorithms must ultimately be
expressed as the impossible relations between the inputs of the cluster function being
matched. Given thaHz 4,...,z,,) belongs to azinput Boolean networld the set of
inputs {z1,...,2,,} of Fcan be expressed as th@rimary outputs of a subnetwork
N’ of A; where the Boolean behavior df ’ is a multi-output function?: B » —B ™
(Figure 6.8).

Since cluster functiorf takes as its inputs the outputs of subnetwafK, the dont
caresetTU is simply the set of vectors @ ™ that are not in theangeof ¢ the routput
logic function representing the Boolean behavior of the subnetivofke characteristic
function y(@ is a function of B8 ™ —3, whose value is 1 for vectors & ™ in the range
of ¢ and O otherwise. Therefore, tlmnt care information can be expressed simply
asTC = \@.

Let us representp: B " —B ™ by a vector of single-output Boolean functions:
&=[h 1,hy,...,h,], each individual function defined ds : B" —B (the inputs to

2Recall therangeof a function is defined as the image of its entire domain, ire
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Figure 6.8: Subnetwork generating the inputsFof

each function:; are thenprimary inputs of network\j. Recall that therfunctions
{h1,...,h,} correspond to thewertices{v 1,...,v,,} of the Boolean network which
are related to the inputs{xzy,...,z,,} of cluster function7. Therefore, ; represents
the functionality of its associated variable as a function of the primary inputs of the
Boolean network. The algorithm introduced by Coudsral. is an efficient method to
extract the characteristic functiofi given the vector expressiab=[~ 1, h2,..., hy).

It finds all the minterms:{*25% - - - %~ of the characteristic functiogd corresponding

to every point of3™ that is in the range o®=[h 1, ha,..., h,].

The characteristic functiogg is expressed agz 1,...,, ), a function of them
inputs of cluster functiors¥. Each variabler ; of ycorresponds to a functioh ; in &
The mintermse{*z5? - - - 4~ of yare extracted by establishing the possible values of
functions; of @ Variablez ; is 1 (0) if its corresponding function; is 1 (0), but
function %, is 1 (0) only for a subset; of the domainB™. Therefore, whem; has a
certain value (say 1), it implies a restriction of its domain. Restrictionr; applies to
all the other functions:; of ¢ since all functions offare evaluated in parallel. This
restriction of the domains of functioris; of #given the value of one functioh ; is the
basis for the calculation of the characteristic function

3In the rest of this section, we usg andv; interchangeably, for the sake of simplicity.
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The extraction of{g from &involves two operations. The first one involves the
successive assertion of the functionsof #to 1 (0), and the derivation of an expression
for the minterms ofyin terms of the variables ;. This effectively computes the range of
¢ The second operation occurs during the range extraction, and involves the calculation
of a function’; given the value of another function.

The first operation can be formally described as follows. CaliRfgthe transfor-
mation of a function®: B * —B * into its characteristic functioNd : B * —B, then
RE([hay ey hy)) =2 6 - REY([Pa nps ooy Pt |n)) +75 - REY([ M s b 7))
[CBM90b]. The previous equation indicates that follows the value ofh,, and
that the portion of the domain for which; has that value restricts the domain of
the remaining functions:;,; /=% TransformationR * is applied recursively until
k=1. Note that in the particular case that functibn, is a tautology ite. h; =1),
RE([hy ooy (b =1)]) =2 - R7Y([ M, ..., hi1]), because when, is tautologically
true, z; cannot be 0. Furthermoré, being a tautology implieg; is 1 regardless of its
inputs, and therefore imposes no constraint on its domain. Similarly,feautologically
false {.e. hy =0), R *([h1, ..., (hx =0)]) = T - RY([hay .-, ha])-

The second operation was callednstraintin [CBM90b, CBM90a]. Touatiet al.
realized the operation is analogous to Shannon cofactor extraction, and rengeeek it
alized cofactofTSL*90]. In a traditional Shannon cofactor, the domain of a funcfion
is reduced in half by considering only the subset of the domain where a particular variable
xis 1 (or 0). The value of the functioAfor the other half of the original domain.€.
corresponding t@) becomes irrelevant, and is assumed to take the same value as that of
the restricted domain (Figure 6.10). Then, the traditional fornft#a- F| . +7- F|=
is obtained. This concept is extended to restricting the domakt@the subset making
a given functionGequal to 1 (or 0). In that casé=G F] ¢ +G F| # (Figure 6.10).
Note that in generaF|  containsdont cares, because the domain & ; is the subset
of the domain ofFfor which Gis equal to 1. Therefore, the subset of the domaiiof
for which Gis equal to O corresponds tont caresin F| . Thesedont caresare used
to simplify the expression of’| . For example, in Figure 6.10, the general cofactor
F| # is simplified to F'| z=1 when considering thdon't cares We summarize the al-
gorithm for thed@computation in the following pseudocode, adapted from [TSLE 90]
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(Figure 6.9). Note that BDDs are the preferred representation for all the operations on
logic functions carried out in the algorithm.

getcdc(F) {
inputlist = support) /* Get list of inputs of 7
@ = bdd.vector(inputlist) /* Get BDDs of inputs ofF in terms of Primary Inputs */
careset =R F-transform@) /* Get characteristic function of
DC = complement(carset) * DC set is complement of( 9 }
RF-transform{hy, . . ., kx]) { /* @is an array of single-output functions */
if (k == 0) return(1) /* The transformation is complete */
foreach;) { /* If any function is a constant, eliminate it */
if (hi =1)4 /* K is the constant 1 */
returng; - F-transform{1f .., b —ghi 41..., k] ) }
if (hi =0){ /* K is the constant 0 */
return@z; - F-transform{1h .., b —ghi 41.... 8] )} }
returngy, - F-transform{iAn, , .-, e —1ln, ] )
+z - F-transform{iAy, ..., e —1ln, ] ) }

generalcofactor(F,G ) {

Fg=F G /* Restrict domain ofF'to that of G*/

DC =G /* What is not in the domain ofsis don't care*/
if (FU DC = 1) return(l)

return(simplify@<,DC ) } /* Try to eliminate variables fronf: */

Figure 6.9: Algorithm for image-basetbn't care calculation

As an example of the above algorithm, let us assdme [ &, k] , wherek = ab
andh, = a +b. We assume variablgsandz, correspond to functions; and%,. Then,

X(®) = R[ibh)
= w20 R[] ) #2- RO [diz] )
= w20 R([abl] ) %= R [abg])
= w2 RO[dh) % RO[O)
= 2+ (12-71) +72- 71

2+ 71

=DC = x(®) =172

I
8

Therefore, we see that it is impossible for the two-input AND= a5 to be 1 when the
two-input ORAy; =a + b is 0.
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Figure 6.10: Shannon cofactor and generalized cofactor
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6.3.2 Approximations in image computations

There is one problem with the image-based computation as presented in the previous
section. We assumed that the functignswere expressed as a function of the primary
inputs of the network. Unfortunately, for many Boolean networks, it is impossible to
express the function of every vertex in the network as a function of the primary inputs. In
particular, even for a very efficient logic representation like the BDDs, it was shown that
certain functions require a BDD whose size is exponential in the number of inputs [Bry86].
Recently, Berman related the size of a BDD to the topology of the Boolean network
it represents [Ber91b]. He established a bound on the number of nodes in a BDD, based
on thewidth of a network. Specifically, the size of the BDD cannot exceed m x
2@(N) whereA is a Boolean network with. inputs and» outputs, and a width( A") .
The widthw( N') represents the cardinality of the largest cutset through the network
(Figure 6.11).

N

w (:N)

Figure 6.11: Width of a Boolean netwoyX

For matching purposeslon't careinformation represents a source of additional de-
grees of freedom. It provides a mean of possibly finding more matches, and therefore
of potentially improving the quality of the results. Although the use of the ediret
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care information entails the most benefits, the matching method does not require the
dont caresto be complete. Therefore, when BDDs cannot be efficiently calculated, we
propose a simplification which reduces the size of the BDDs, at the cost of relinquishing
the completeness of ti#on't careinformation.

Since the bound on the size of a BDD grows rapidly with the width of a Boolean
network, we propose a simple heuristic to reduce the width of the networks from which
BDDs are calculated. Assume a network whose vertices are topologically ordered. The
cutset through the vertices at a certain lekeak larger than the cutset at the previous
level £ — 1 only if some vertices at levél — 1 have more than one fanout. This means
multiple-fanout vertices contribute to the increase of the width of a circuit, and therefore
to the increase in the size of the corresponding BDD. Our simple heuristic consists of
expressing the functioris using the closest multi-fanout vertices in their transitive fanins.
This simplification effectively uses only subnetworks with limited width to extract the

BDDs used during the image calculation (Figure 6.12).

~
~

(
ROLLLLL Y TP T

pc= X([h ol hohghg)

hi expressed
as a function of

multi-fanout vertices

Figure 6.12: lllustration oflon't careslimiting heuristic
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6.3.3 Relations to testability

Note that whenDC U F =1) (or (DC UF =1), then the algorithm finds a match

with the constant value 1 (0 in the second case). This is always preferred to any other
match, since it has a cost of 0. As a result, for every cell mapped to a library element
there exists at least twoontrollable input patternsi(e. it is possible to generate these
patterns from the primary inputs), such that the output of the cell is O for one pattern and
1 for the other. This is a necessary condition to make a network testable. Assume that
the library cells consist of testable gate®.( such that internal nodes are controllable
and observable from the cell input/output pins). Then our method guarantees that the
mapped circuit is 100% testable for stuck-at faults with the recently proposgd
testing method [FSTH90, CBL91]. However, cell controllability is not sufficient for
achieving 100% testability by using standard testing methods. Indeed, it is possible that
the output of a cell is nobbservableat the primary outputs when tlentrollable input
patterns are applied to that cell. But by using a post-processing step involving standard
ATPG and redundancy removal techniques [BBL89], the mapped network can be made
100% testable for single stuck at faults. The post-processing step could in principle be
eliminated by computing observabilidont careconditions. In practice this goal is hard

to achieve, since the network is mapped from primary inputs to primary outputs and the
observability of a vertex being mapped depends on portions of the network yet to be
mapped.

6.4 Results

Tables 6.2 and 6.3 show mapping results for area, talimgt care information into

account. For both technologies, the results show that usomy caresduring the tech-

nology binding operation improves the quality of the results when operating on both
optimized and unoptimized circuits. Circuits in the first category were optimized using
UC Berkeley’'ssiswith the standard script, which involves technology independent oper-
ations. It is worth noticing that the results of operating on non-optimized circuits using
dont careinformation sometimes are better than the ones of optimized circuits mapped



CHAPTER 6. MATCHING INCOMPLETELY SPECIFIED FUNCTIONS 98

without usingdont cares This indicates that the use dbn't careduring the technology
mapping phase effectively allows logic restructuring, which is traditionally thought of as
a technology-independent operation. Calculatiomanh't careis computationally inten-
sive, and in some cases we used subsets of theldult careset. Note that most of the
execution times, when usindpnt cares is spent calculating thdon't careinformation.
In Tables 6.2 and 6.3, the top portion represents results using subsetsdufritheare
sets, and the bottom portion represents results using thdduoll care sets.

Note that we used UC Berkeley’s BDD package for calculatingdibiet cares We
found the operations on BDDs to be very efficient. Unfortunately, the use we made of
that code, creating and freeing tens of thousands of BDDs during the dydamicare
set extraction, unveiled major memory leaks. The leaks eventually made many processes
too large to be handled on our machines. Therefore, we report here only the results of a
subset of the benchmarks used in tables 5.1 and 5.4.
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Original circuits Optimized circuits
No DC With DC No DC With DC
Circuit | area| rtime | area| rtime | area| rtime | area| rtime

t481 1867 | 748.9 | 1495 | 12520.0| 31 3.4 28 28.6
frg2 844 | 194.7 | 774 | 2960.7 | 369 | 33.4 | 361 | 463.3
x1 807 | 3275 | 761 | 2979.2 | 172 | 35.3 | 166 171.9
alu4 550 | 147.5 | 443 | 1356.9 | 457 | 111.3| 410 | 1151.3
apex6 399 | 459 | 387 | 4318 | 451 | 77.0 | 420 | 682.2

i6 348 | 25.0 | 346 | 607.7 | 150 | 18.0 | 150 | 199.8
C1908 | 263 | 34.1 | 248 | 7687.3 | 195 | 26.2 | 193 | 72795
x4 368 | 794 | 329 | 5174 | 182 | 139 | 179 140.1

terml 302 | 73.2 | 237 | 721.0 | 104 | 27.2 | 102 146.7
frgl 271 | 120.0 | 249 | 715.2 | 106 | 37.4 | 106 181.2
alu2 320 | 90.1 | 254 | 369.2 | 253 | 65.0 | 212 | 303.7
ttt2 249 | 70.9 | 147 | 262.2 92 143 | 89 74.3

i5 178 18.7 | 178 67.8 66 4.1 66 9.2
example2| 175 | 22.0 | 150 92.5 160 | 17.9 | 149 105.9
c8 116 10.8 74 92.5 66 5.6 54 57.2

apex7 142 194 | 122 105.6 | 129 | 18.9 | 102 166.9
cht 124 | 22.2 111 116.5 84 5.0 84 32.9
9symml| 94 33.2 94 114.8 | 101 | 36.8 | 103 116.4

z4ml| 91 34.6 35 119.5 33 8.5 25 34.5
sct 83 17.2 80 53.3 35 6.1 33 65.2
lal 77 12.7 75 35.3 39 5.9 37 50.8

Total 7668 | 2148.0| 6589 | 31926.4| 3275| 571.2| 3069 | 11461.6
1.0 1.0 0.86 14.9 0.43 | 0.27 | 0.40 5.3
1.0 1.0 | 0.94 20.1

Table 6.2: Mapping results for area (Usidgnt cares, Actel library)
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Original circuits Optimized circuits
No DC With DC No DC With DC
Circuit | area | rtime | area | rtime | area| rtime | area| rtime
t481 3637 | 944.3 | 3463 | 12581.9| 61 11.8 65 22.7
frg2 1754 | 229.4 | 1525 | 2928.9 | 594 | 40.9 | 578 408.2
x1 1695 | 382.2 | 1560 | 2939.7 | 327 | 43.8 | 317 169.2
alud 999 174.3 894 1302.2 | 836 | 130.8| 785 | 1060.7
apex6 680 52.2 679 335.8 803 | 93.0 | 799 646.3
i6 581 62.3 579 400.0 318 | 24.8 | 318 213.7
C1908 596 40.7 588 7701.7 | 462 | 32.6 | 464 | 7322.0
x4 670 88.7 595 481.9 317 | 18.7 | 313 125.7
terml 598 81.7 450 651.3 219 | 34.0 | 217 138.6
frgl 583 144.1 506 705.4 227 | 46.6 | 226 182.3
alu2 570 102.6 431 328.1 470 | 75.7 | 425 264.2
ttt2 453 73.7 302 188.1 193 | 18,5 | 186 63.8
i5 356 23.5 356 67.4 198 7.3 198 12.0
c8 249 27.2 182 77.9 128 | 14.0 | 123 59.5
apex7’ 269 23.4 244 192.2 265 | 23.2 | 227 139.7
cht 231 26.6 200 83.7 127 7.9 127 22.8
9symml | 214 37.6 215 100.3 216 | 43,5 | 216 116.5
z4ml 181 42.7 180 127.6 68 12.3 65 39.6
sct 144 20.3 142 47.0 86 9.6 83 61.4
lal 156 16.2 157 36.9 94 9.6 96 48.8
Total 14616 | 2593.7| 13248 | 31278.0| 6009 | 698.6 | 5828 | 11117.7
1.0 1.0 0.91 12.1 0.41| 0.27 | 0.39 4.3
1.0 1.0 0.97 15.9

Table 6.3: Mapping results for area (Usidgnt cares, LSI Logic library)
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Chapter 7

Performance-driven technology

mapping

Previous chapters introduced methods to improve the quality of the matching operation.
We also presented a covering algorithm, whose goal is to find a good circuit implementa-
tion given a set of matches. The covering method presented in Chapter 3 can base its cost
evaluation on area or delay, if a fixed gate-delay model is chosen. For the more general
cases where load-dependent delays are considered, we now introduce an ensemble of
operations that deal specifically with the optimization of delays through the network, in
conjunction with technology mapping.

We first define the delay model we are using to evaluate the quality of the solutions
during optimization. We then explain why taking delay into account is different and more
difficult than optimizing for area. We follow with a presentation of three operations,
repartitioning, redecomposition and re-covering, which are integrated together within an
iterative refinement procedure. We conclude the chapter with results demonstrating the
area-delay trade-off.

101
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7.1 Delay model

Most commercial libraries use a delay model which is a linearization of the load-
dependent gate delay. We base our delay calculation on the same idea, and in the
remainder of this chapter, we consider the following delay model for the evaluation of
timing characteristics of the network. Let us consider a vettex; ={ 1, 2, ...} of the
network.

e 0; Is the intrinsic (unloaded) gate delay;
e ( is the load capacitance at a gate output;

e §+a ;- ('is the total gate delay, where; is a parameter of the library element
representing its drive capability.

e g =(0 4o ; g?erax a;) is the arrival time at the output of the gate corresponding
to v;, whereaq; is the arrival time at a gate input, with gatee PI = Faning).

In our formulation of the problem, we are given the set of arrival tifhes ¢ € PI}

of the primary inputsPI, together with the set of required timgs;,, o € PO} of the
primary outputsPO. For synchronous circuits with periofl, we assume the input
arrival times to be 0, and the required times at the outpugs (egister inputs) to be

T — tsey - We use the concept of slack [HSC82, De 87, De 89], where the slaaka
certain vertexv; corresponds to the difference between the required’tamehat vertex

r; and the arrival timey;, i.e. (s; =r ; — a;). Therefore, time critical nets are those
with negative slacks. Note that we do not consider false paths [DKM91, MSSB91] in
our delay calculations. Therefore, the critical paths reported are an upper bound on the
real critical delays through the circuits. Note also that in the current implementation, we
do not distinguish between rise and fall delay, although the algorithms presented can be
easily extended to deal with separate rise and fall times. We use the worst of the rise
and fall delays, and therefore, use a conservative model.

INote that required time at an internal vertex is calculated by back-propagating through the network
the required times at the primary outputs.
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7.2 The difficulty with timing-driven technology mapping

We already mentioned in Section 3.3 that dynamic programming techniques can be used
to optimize timing as well as area. But there is an important difference between the
two optimizations: evaluating the area cost of a particular vertex mapping involves only
vertices already mapped (predecessors of the vertex), whereas evaluating the timing cost
involves also the successors of the vertex being mapped. Successors are needed because
the capacitive load on the output of a gate influences its delay. Since the dynamic
programming technique implies the successors of a vertex being processed are not yet
mapped, then the capacitive load on its output is not known.

Therefore specific methods to deal with delay have to be introduB&shing has
been proposed by Rudell [Rud89b], where each vertex is (possibly) mapped for all the
possible capacitive loads on its output. We propose a different heuristic solution, involv-
ing iterative mapping of the network. The first mapping of the network includes only
the optimization of area. Then, the portions of the network that do not meet the timing
constraints are iteratively remapped. This method has the advantage that the entire envi-
ronment of a vertex is known when it is remapped. In particular, the capacitive load the
vertex is driving is known exactly.

It is important to remark that a solution under given timing constraints may not
exist. Therefore our strategy is to perform a set of transformations that lead to a mapped
network that either satisfies the constraints or that cannot be further improved by the
transformations themselves.

In order to be efficient, iterative remapping has to be powerful enough to modify
substantially the portions of the network that do not meet the timing constrastthe
vertices with negative slack. To converge to a good solution in a finite number of steps,
it must also be monotonic. We propose an ensemble of three techniques to achieve this
goal:

e repartitioning modifies the original partition of multi-fanout vertices.

e redecompositiorchanges the two-input decomposition, taking into account delay
information.
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e re-coveringapplies covering using delay as the cost metric.

We now describe repartitioning and redecomposition in detail. We briefly review
re-covering, and then explain how the three operations are integrated in an iterative
operation.

7.3 Repartitioning

Repartitioning takes place after a first mapping has been done, using the traditional
partitioning technique outlined in Section 3.2. Repartitioning targets multiple-fanout
vertices that do not meet the timing constraints. The goal is to change partition block
boundaries, by merging subject graphs, to have other (and possibly more) choices when
matching (and redecomposing) the vertices along the critical paths. Merging multiple
fanout subject graphs means the merged portions have to be duplicated for the other
fanouts to achieve the original functionality.

Consider for example the subcircuit in Figure 7.1, where a gate corresponds to a
multiple-fanout vertexy; on the critical path. The original arrival time; at its output
IS a; :m%x (a;) +0 j +a ;- G, whereg; is the arrival time on the inputs of gaje ¢;
is the intrinsic delay of gatg, «; is the fanout-dependent delay factor of gateand C;
is the fanout.

Assumingq; is the latest arriving input, we can reexpressas: a; =6 ; +o ;- ¢4
6, +a ;- ¢'Then if we assume one of the fanouts (sayis on the critical path, it is
possible to isolate the critical fanout from the other fanouts of vertex; by making a
copywv, of v;, and using, as the only fanout of;,. The operation keeps the other fanouts
of v; in their original position. This duplication of vertex;, with the new gate driving
the critical path only, is shown in Figure 7.2} =6 ; +o ;- (¢4C ;) +0 ; +a ;- G,
anda? =6 | +a ;- (¢4C ;) +6 ; +o ;- (¢~ Ci), where:

a’; is the new arrival time for the critical path,

a’ is the new arrival time for the other fanouts pof

C; is the input capacitance gf at input/,
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g = (C crit
: 5 =1 "
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aj:?Sj +0(J-°Cj+max(ai)

:6] +aj.Cj+6|+G| .CI

Figure 7.1: Delays in a subcircuit

C: 1s the input capacitance of gate which is the gate corresponding to the fanout of
J on the critical path.

Then, the difference in delay isd} =a ! — a; =a ;- ¢ +o ;- (G — C;), and
M =a’—a;=a ;- ¢—a;- G. The arrival time of the fanin-vertices of are also
modified by the duplication process. The difference in delayki$ =¢ | — a; =« ;- (.

This example shows some important properties for vertices with multiple fanouts:

¢ Duplicating gateger sereduces delay along the critical paths, wheg-( ¢ —

aj - G <0).
This is usually the case, and it can be verified on a case by case basis.

e The fanins of the duplicated vertex are slowed down by the addition of one gate
load (. - ).

For a particular vertex which does not meet the timing constraints, it is therefore sim-
ple to verify how much can be gained by duplication, and whether or not the duplication
affects other critical nets. In particular, if all the inputs of the vertex to duplicate have
a single fanout, then duplication is always a good solution. In addition, the duplicated
vertex can now be merged forward into the next partition (it is now a single fanout ver-
tex). Mapping can be redone at this point on the modified partition, possibly improving
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Figure 7.2: Delays in a subcircuit after gate duplication

delay even more.

7.4 Redecomposition

Redecomposition is used alone or in combination with repartitioning. The goal is to
restructure the Boolean network in such a way that late arriving signals of a partition are
used as inputs of vertices that are closer to the output of the partition. Redecomposition
has (like decomposition) two important side effects:

¢ It influences the list of library elements that may cover a subject graph.

¢ It influences the critical path through the Boolean network.

The first point is related to the fact that different decompositions might give rise to dif-
ferentpossiblecovers. For example, giveh= a4+ bz + be, the following decompositions
imply very different covers:

fi = a+tzx fa = x4y
xr = y+z xr = be
y = be y = a+z

z = ZC z :ZC
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In particular, the decompositiofy allows the Exclusive-OR: = b¢ + be to be mapped,
whereas in decompositiof, the Exclusive-OR gate cannot be found (because variable
appears as an input to the same gate asbc). We address the first point by heuristically
trying to keep repeated literals together during the decomposition. The second point is
important because decomposition can be used to push late arriving signals closer or
further from the outputpossiblyreducing or lengthening the critical path. This problem
has been addressed by Singh [SWBSV88] and Paulin [PP89].

Redecomposition implies unmapping a portion of mapped network, changibgsés
functiondecomposition, and then remapping the modified block. It is a tentative process,
in that mapping the redecomposed partition does not necessarily give better results. We
therefore isolate subgraphs being redecomposed, and use the new decomposition only
when it produces better results. The evaluation of the value of a redecomposed (and
remapped) partition is fairly simple and it involves two steps. First, since the subcircuit
under consideration has a single output, we can just compare the arrival times of the
original and re-decomposed partition blocks. Second, we check if the input loads have
increased, and, if so, if any other critical net was created.

The redecomposition algorithm we are using follows the same principle that Singh
proposed [SWBSV88]. One significant difference is that we use BDDs instead of kernel
extraction for the decomposition. After a subgraphs isolated for redecomposition,
its inputs are ordered in decreasing order of their arrival times. That input list then
specifies the order in which the variables are processed during the BDD extraction. After
the BDD is reduced, it is then retransformed into a standard Boolean network, which is
finally mapped. Procedunedecomposéransforms a Boolean network into one where
the latest arriving inputs are closer to the output (Fig. 7.3).
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redecomp(eq
eqlist = getinputlist(eq)
ordecinputlist(eq.list)
bdd = creataeducedbdd(eq,edist)
getnetworkfrom_bdd(bdd)}

getnetworkfrom_bdd(bdd){
if (low(bdd) == ZERO){
if (high(bdd) == ONE)
return(createequation(LITERAL,contralvar(bdd))
else{
eq = creatgroductof(controLvar(bdd),
getnetworkfrom_bdd(high(bdd))
return(eq)} }
else if (low(bdd) == ONEY
if (high(bdd) == ZERO)
eq = createcomplement(contravar(bdd))
return(eq)
else{
eq = createsumof(complement(contravar(bdd)),
getnetworkfrom_bdd(low(bdd))
return(eq)} }
else{
if (high(bdd) == ZERO){
eq = creatgroductof(complement(contravar(bdd)),
getnetworkfrom_bdd(high(bdd))
return(eq)}
else if (high(bdd) == ONEY
eq = createsum.of(controlLvar(bdd),
getnetworkfrom_bdd(low(bdd))
return(eq)} }
else{
sl = creatgproductof(complement(contrabar(bdd)),
getnetworkfrom_bdd(low(bdd))
s2 = creategproductof(controlvar(bdd),
getnetworkfrom_bdd(high(bdd)))
eq = createsumof(s1,s2)

return(eq)} }

/* Get support of equation */

/* Order support by arrival times (latest first) */
/* Create BDD with previous order */

/* Transform BDD into Boolean Factored form */

Ff=x*

Ff=xh?*

tf=x*

Ff=x +h*

HFf=x1*

Ff=x+1*

Ff=x1+xh?*

Figure 7.3: Algorithm BDD to Boolean network conversion
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For example, let us reconsider the Boolean network described in Section 3.3:

[ = Jj+t
J o=y

T = e+ =z
y = a+c
z = ¢+d

Assume vertex; does not meet its timing requirement, and that the arrival times of the
inputs to the partition block rooted hy are: {a, = 10.0, ¢ =120, ¢ = 5.0, ¢ = 7. 0}.
The variable ordering used for creating the BDD representiwguld be{c, a, ¢, d}. The
resulting BDD is shown in Figure 7.4, together with the two-input gate decomposition
derived from the BDD.

0 1

Figure 7.4: BDD and corresponding Boolean network

7.5 Re-covering

After each modification of the network (repartitioning or redecomposition), we apply
timing-driven covering. The goal is to find better implementations that take advantage of
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the modified network structure. The operation is carried out as follows. All time-critical
gates of the modified network are isolated. We then extract the corresponding logic of
these time-critical gates, and represent them with unmapped, combinational logic. At
this point, the network represents a hybrid of mapped logic (netlist of library elements)
and unmapped combinational logic. We then apply the matching and covering techniques
described in the previous chapters.

Since the goal of this re-covering step is to optimize the circuit for delay, we use
timing as a cost metric. We explained previously that fanout-dependent delays are difficult
to evaluate during the covering step, since in general the load on the output of a vertex is
not known when it is being matched. During re-covering, some loads are known: those
corresponding to gates that are still mapped. For the loads that are not known, we use an
estimation of the load which is the number of fanout edges times the average input load
of the gates in the library. Therefore, during the re-covering process, the cost evaluation
is an approximation of the actual delay.

7.6 lterative mapping

The techniques outlined above, repartitioning and redecomposition, are integrated in an
iterative operation. After a first area-oriented mapping, arrival times and required times
are computed for each gate in the network. The required times on the outputs are assumed
to be given, and so are the arrival times on the inputs. The difference between arrival
time and required time, or slack, is computed for each gate. The gates that have negative
slacks are then operated upon in reverse topological order, where primary output gates
appear first, and primary input gates appear last.

Redecomposition and repartitioning are used iteratively until the constraints are sat-
isfied (.e. no negative slack) or no more improvement is possible. After each of the
two operations, re-covering is applied to take advantage of the modified structure of the
network. Since each step is accepted only if it speeds up the target gate without affecting
negatively the slacks on surrounding gates, this process is guaranteed to complete in a
finite number of steps. Figure 7.5 shows the pseudocode for the iterative operation.
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iterativemap(network){
networkchanged = TRUE /* lteration proceeds until no improvement is found */
while (networkchanged)
networkchanged = FALSE
computetiming(network)
/* Compute slacks for each vertex */

currentbest = duplicate(network) /* Keep a copy of current network */
(V critical verticese network){
repartition(vertex)
unmapcritical_vertices(network) /* Get combinational logic of all critical vertices */
re-covetfor_delay(network) /* Map all vertices that were just unmapped */

if (cost(network)< cost(currenbest){
networkchanged = TRUE

currentbest = duplicate(network) /* Update bets solution */
(V critical verticese network){

redecompose(vertey)
unmapcritical_vertices(network) /* Get combinational logic of all critical vertices */
re-coverfor_delay(network) /* Map all vertices that were just unmapped */

if (cost(network)<cost(currenbest){
networkchanged = TRUE
currentbest = duplicate(network) /* Update bets solution */

i

Figure 7.5: Pseudocode for iterative delay optimization

7.7 Buffering/repowering

In addition to the operations outlined in this chapter, buffering and repowering can be
used as a last resort to improve timing. Repowering should be used first, using gates
with more drive capability for vertices with high fanout that are on critical paths. After
repowering, buffering can be used to speed up nets with large fanouts, when neither
redecomposition nor repartitioning can be applied, or they would modify other critical
nets.

Buffering was studied by Bermaet al. [BCD89], who proved that the problem
is NP-complete even in its simplest form. In their formulation, buffer trees are used as
a mean to reduce the required times at gates which drive large capacitive loads. They
proposed a polynomial time algorithm for a simplified problem, #ugacent output
buffering problem, where gates are ranked by required times, and adjacent gates in that
rank are adjacent in the buffer tree. Unfortunately, the complexity of the mefkié} (
although polynomial, makes it impractical for large number of fanouts.
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Touati proposed a simplified buffer tree structure, the LT-tree, noting that the depth
of buffer trees is usually limited, and that fully general solutions are seldom neces-
sary [TMBW90, Tou90]. Singlet al. proposed a heuristic approach to buffering, based
on a divide-and-conquer formulation [SSV90]. Recently, etral. proposed a heuristic
solution which tries to minimize the area of buffer trees under timing constraints [LMS91].

Buffering is currently done as a postprocess after all the other modifications fail. We
rely on external systems to carry that operation, for example Touati’s buffering strategy
in Berkeley’'ssis Note that the results presented in the last section of this chapter do not
include any buffering.

7.8 Results

Figure 7.6 shows the area/delay trade-off curve for different circuits. Note that all the
points on these curves are obtained as successive results during the delay optimization
iterations. It is possible for the user to chose between any of these implementation during
a single run of the program. When area as well as delay are constrained, the program
stops the delay optimization iterations to limit the area increase. Tables 7.1 and 7.2 show
the results for the fastest (and usually largest) implementations. Results from program
Ceresare compared to those 8is where both systems where used in delay optimization
mode.
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Figure 7.6: Example of area/delay tradeoffs
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Sis Ceres
Smallest Fastest
Circuit | delay | area | rtime | delay | area | delay | area | rtime

C6288 | 1063.8| 2414 | 147.0 | 891.9 | 1425 | 835.7 | 2028 | 608.7
C7552 346.0 | 2349.0| 214.3 | 172.7 | 1062 | 148.8 | 1567 | 433.1
Cb315 | 203.8 | 1775 | 179.2 | 197.8 | 831 186.3 | 960 | 230.5
frg2 164.4 | 1243 | 146.5 | 272.2 | 844 110.9 | 918 370.2
pair 169.4 | 1518 | 138.8 | 1509 | 716 130.2 | 1074 | 271.8
x1 70.8 308 54.1 | 102.3 | 807 93.0 851 349.2
C3540 | 287.4 | 1066 | 120.6 | 290.8 | 608 | 265.8 | 682 155.6
vda 139.0 810 162.7 | 95.2 543 79.4 669 127.4
x3 106.2 770 103.6 | 117.2 | 527 87.0 668 140.0
rot 180.6 617 64.4 | 318.5 | 551 1929 | 1133 | 398.1
alu4 250.0 685 714 | 3120 | 550 | 258.9 | 1183 | 188.0
C2670 | 229.2 697 89.9 | 215.2 | 317 179.8 | 342 83.6
apex6 90.0 818 66.0 | 104.6 | 399 83.7 583 47.7
C1355 | 208.2 695 51.2 | 126.4 | 176 116.4 | 253 40.4
terml 96.0 356 589 | 128.1 | 302 124.8 | 313 85.8

x4 95.8 444 61.5 | 101.4 | 368 65.1 397 104.1
alu2 220.8 339 47.3 | 287.2 | 320 | 199.8 | 1214 | 208.5
frgl 77.4 104 28.7 79.4 271 74.4 299 133.4
C1908 191.4 | 529 66.9 | 1956 | 263 170.6 | 457 50.8
ttt2 64.4 197 40.7 | 115.2 | 249 83.7 306 85.2

€880 139.8 330 46.3 | 1711 | 178 1451 | 318 50.9
C499 123.0 327 456 | 128.3 | 168 114.3 | 233 27.2
example2| 90.6 296 38.8 | 109.9 | 175 65.1 251 38.7
apex7 96.8 237 358 | 117.8 | 142 107.3 | 177 39.3
my_adder| 188.2 160 29.8 | 157.8 64 148.8 | 129 29.6
C432 195.0 223 35.7 | 200.6 93 182.1 | 168 56.2
f51m 192.0 115 27.5 56.5 129 56.5 129 47.9
c8 55.0 168 33.2 49.4 116 46.5 173 66.4
i10 399.0 | 2445 | 247.4 | 518.1 | 1232 | 305.2 | 2002 | 348.9
dalu 341.8 | 1776 | 161.0 | 213.0 | 909 169.2 | 1224 | 344.7
count 165.2 144 28.1 | 166.5 63 83.7 119 12.7
comp 110.2 150 28.2 111.4 60 95.7 250 46.6

i4 49.2 198 43.5 57.8 122 57.8 122 36.1
cht 56.8 188 32.4 32.9 124 32.9 124 22.5
cc 39.4 58 24.6 27.9 31 27.9 31 4.6

Total 7067.0| 25735 | 3000.9| 6614.4| 15603 | 5228.3| 22394 | 5522.9
1.0 1.0 1.0 0.94 0.61 0.74 0.87 1.8

Table 7.1: Mapping results for delay (Mmn't cares, Actel library)
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Sis Ceres
Smallest Fastest
Circuit | delay| area | rtime | delay | area | delay | area | rtime

C6288 | 84.2 | 5963 | 92.0 | 106.9| 2263 | 106.9| 2263 | 206.9
C7552 | 43.0 | 5210 | 133.0 | 34.1 | 2611 | 25,5 | 3072 | 438.8
C5315 | 22.7 | 4113 | 107.1 | 30.7 | 1981 | 28.6 | 2208 | 169.5
x1 7.9 764 290 | 114 | 1695 | 9.0 1709 | 462.8
C3540 | 329 | 2423 | 69.7 | 421 | 1214 | 32.3 | 2951 | 462.5
vda 143 | 2260 | 141.6 | 19.9 | 1078 | 10.7 | 1432 | 214.7
x3 11.6 | 2013 | 56.7 | 158 | 1125 | 85 1423 | 211.9
rot 18.6 | 1345 | 398 | 374 | 1117 | 20.1 | 1866 | 341.6
alu4 29.7 | 1434 | 405 | 455 | 993 | 27.8 | 2399 | 332.8
C2670 | 23.8 | 1705 | 54.7 | 329 | 864 | 226 | 1225 | 90.0
apex6 9.7 1339 | 38.3 | 127 | 674 | 108 | 721 62.8
C1355 | 19.6 | 1373 | 320 | 159 | 404 | 159 | 404 21.8
terml 11.0 | 861 320 | 150 | 598 12.7 | 745 114.4

x4 10.1 | 1014 | 34.2 | 140 | 670 6.7 765 142.2
alu2 275 | 747 264 | 36.8 | 568 | 22.1 | 1261 | 250.8
frgl 9.3 223 159 | 159 | 583 9.0 613 237.8
C1908 | 20.8 | 1234 | 394 | 29.3 | 596 | 239 | 1348 | 106.4
ttt2 7.4 528 224 | 15.0 | 452 8.2 572 113.3

C880 171 | 737 26.0 | 223 | 309 12.7 | 1444 | 124.0
C499 13.6 | 935 26.8 | 17.1 | 406 16.4 | 884 93.6
apex? 9.6 485 20.1 | 135 | 270 8.1 516 74.3
my_adder| 21.0 | 348 16.3 | 39.1 | 256 17.8 | 682 97.2
C432 20.1 | 524 19.8 | 28.3 | 202 | 25.6 | 256 36.3
f51m 7.6 257 15.4 7.3 244 6.5 248 62.9
c8 6.05 | 321 18.3 7.3 249 6.1 338 45.6
i10 40.6 | 5529 | 143.6 | 81.3 | 2638 | 58.4 | 2731 | 283.0
dalu 36.4 | 3855 | 94.7 | 31.9 | 2090 | 23.8 | 3015 | 535.8
count 18.0 | 243 154 | 28,5 | 112 7.6 279 43.2
comp 11.8 | 251 155 | 116 | 151 11.3 | 219 19.3

i4 7.2 500 24.8 5.7 208 5.0 300 22.9
cht 6.4 507 18.4 9.5 231 3.8 254 55.0
cc 4.6 163 13.3 55 74 3.4 87 10.6

Total 662.3| 52420| 1580.1| 869.0| 28268 | 614.4 | 39693 | 5723.9
1.0 1.0 1.0 1.3 0.54 | 093 | 0.76 3.6

Table 7.2: Mapping results for delay (Nton't cares, LS| Logic library)



Chapter 8

Conclusion and future directions

Technology mapping is an important operation in automatic synthesis of digital circuits.
The usefulness of automatic tools hinges ultimately on the quality of their results. Tech-
nology mapping is the operation that bridges the gap between abstract logic descriptions
and electronic gate implementations. Therefore, the quality of the technology mapping
step is essential in obtaining a good implementation.

There are two difficult problems intrinsic to technology mapping: covering and match-
ing. In this dissertation a general covering problem was described, and we showed that
every technology mapping system, including this one, solves a simpler, restricted covering
problem.

We have presented new algorithms for matching, which proved to be more powerful
than other existing methods. In particular, we introduced the idea of using Boolean
techniques for establishing logic equivalence between two logic functions, which is key
to the solution of the matching problem. In a first set of algorithms, we presented
a technique for efficiently dealing with completely specified functions, using Boolean
operations. These algorithms were based on the use of Binary Decision Diagrams and
exploit invariant logic properties, unateness and logic symmetry.

We also introduced an extension of the previous method, which allowed the detection
of logic equivalence between incompletely specified functions. This second method,
based on thenatching compatibility graphextended the capabilities of Boolean matching,
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making possible the use dbn't careinformation. In general, usindont caresincreases
the number of matches, which usually imply better quality solutions, as shown by the
experimental results.

We finally presented an iterative framework for performance-driven technology map-
ping. We showed how we can iteratively use local transformations, changing the structure
of the circuit by duplication and decomposition, and obtaining faster implementations.
Results showed that, as the iterations proceeded, it was possible to trade-off area for
delay.

The work presented in this dissertation is based on many assumptions and simplifi-
cations, which had to be made for efficient algorithms to be found. The simplifications
included the restricted covering problem, partitioning at multi-fanout vertices, and match-
ing single-output logic functions. Furthermore, we assumed circuits to be synchronous.
We also adopted a delay model based on the worst-case delay through combinational cir-
cuits. As new techniques emerge for logic synthesis, some of these simplifications might
become unnecessary, and their elimination will open up new possibilities for technology
mapping.

Given the current knowledge on technology mapping and logic synthesis, some new
developments are possible. Among these, there are two avenues which show promises
for the near future. The first one regards asynchronous digital circuits. The use of asyn-
chronous digital circuitry has recently proved to be area-competitive, with improved per-
formance, compared to traditional, synchronous digital design [WH91, Wil90, MBI
Research on automatic synthesis of asynchronous circuits has progressed to the point
where systems for technology-independent description and optimization are now pos-
sible [THYMMS89, ND91]. One problem is in the translation to technology-dependent
implementations, which currently needs to be done by hand. A natural extension to actual
technology mapping systems would be handling that transformation automatically. How-
ever, this application of technology mapping to the asynchronous world is not simple,
since logic gates in the final implementation have to be carefully chosen to prevent logic
hazards from occurring.

The second promising direction for technology mapping systems is to incorporate false
paths information during performance optimization. False paths occur in a combinational
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network when the structure of the network makes impossible the sensitization of certain
paths through the network. In that case, the evaluation of the critical delays through the
circuit has to take into account the existence of false paths in order to obtain the true crit-
ical delay [DKM91, MSSB91]. False paths have recently begun to be considered during
digital circuit synthesis [Ber91a, MBSVS91]. One pending difficulty is the complexity
of identifying which paths are the true critical paths in a given implementation [Wan91].
Given an efficient algorithm for false paths identification, the quality of performance-
driven technology mapping could be improved by limiting iterative operations to true
critical paths.

Technology mapping represents one step in the automatic synthesis of digital cir-
cuits. As the design process changes, the requirements on synthesis systems will evolve.
New technologies will require different constraints on technology-specific optimizations.
New design paradigms will imply modifying synthesis systems to allow different user-
interaction models. Looking at the history of digital circuits tools from the first layout
editors to the current use of hardware description languages, one can only guess the
possibilities for the next generation of synthesis systems.
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