
New Data Structures and Algorithms
for Logic Synthesis and Verification

Thèse n. 6863 (2015)
présentée le
à la Faculté Informatique et Communications
Laboratoire des Systèmes Intégrés (IC/STI)
programme doctoral en Informatique, Communications et
Information
École Polytechnique Fédérale de Lausanne

pour l’obtention du grade de Docteur ès Sciences
par

Luca Gaetano Amarú

acceptée sur proposition du jury:

Prof Paolo Ienne, président du jury
Prof Giovanni De Micheli, directeur de thèse
Prof Andreas Peter Burg, codirecteur de thèse
Prof Joseph Sifakis, rapporteur
Prof Subhasish Mitra, rapporteur
Prof Enrico Macii, rapporteur

Lausanne, EPFL, 2015

Success is not final, failure is not fatal:

It is the courage to continue that counts.

— Winston Churchill

To my parents.

Acknowledgements
Firstly, I would like to express my sincere gratitude to my advisor Prof. Giovanni De Micheli for

giving me the opportunity to pursue my research within the Integrated Systems Laboratory

(LSI). His guidance, motivation, and immense knowledge helped me in all time of research.

I could not have imagined having a better advisor and mentor for my PhD studies. I am

thankful to my co-advisor, Prof. Andreas Burg, for his continuous advices and encouragement

throughout the course of my PhD.

Besides my advisors, I would like to thank Dr. Pierre-Emmanuel Gaillardon, who provided me

tremendous support and guidance through my doctoral studies. Without his precious help

this work would not have been possible.

Furthermore, I am very grateful to Prof. Subhasish Mitra for giving me the opportunity to be a

visiting student at Stanford University.

I would like to express my deepest appreciation to Prof. Maciej Ciesielski, Dr. Alan Mishchenko,

Prof. Anupam Chattopadhyay, Dr. Robert Wille and Dr. Mathias Soeken for the great research

collaborations we had.

My sincere thanks also goes the rest of my thesis committee: Prof. Paolo Ienne, Prof. Joseph

Sifakis, Prof. Subhasish Mitra and Prof. Enrico Macii for their their time reading this disserta-

tion, their valuable comments and insightful questions.

Tremendous thanks to all my fellow labmates for the stimulating discussions and great mo-

ments I had at the LSI laboratory. I want to specially thank Christina Govoni for her kind help

and support during my PhD.

Last but not the least, I would like to thank my parents for supporting me throughout my PhD

studies and my life in general.

Lausanne, 5 October 2015

i

Abstract
The strong interaction between Electronic Design Automation (EDA) tools and Complementary

Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement

of modern digital electronics. The continuous downscaling of CMOS Field Effect Transistor

(FET) dimensions enabled the semiconductor industry to fabricate digital systems with higher

circuit density at reduced costs. To keep pace with technology, EDA tools are challenged

to handle both digital designs with growing functionality and device models of increasing

complexity. Nevertheless, whereas the downscaling of CMOS technology is requiring more

complex physical design models, the logic abstraction of a transistor as a switch has not

changed even with the introduction of 3D FinFET technology. As a consequence, modern EDA

tools are fine tuned for CMOS technology and the underlying design methodologies are based

on CMOS logic primitives, i.e., negative unate logic functions. While it is clear that CMOS

logic primitives will be the ultimate building blocks for digital systems in the next ten years, no

evidence is provided that CMOS logic primitives are also the optimal basis for EDA software.

In EDA, the efficiency of methods and tools is measured by different metrics such as (i) the

result quality, for example the performance of an automatically synthesized digital circuit, (ii)

the runtime and (iii) the memory footprint on the host computer. With the aim to optimize

these metrics, the accordance to a specific logic model is no longer important. Indeed, the key

to the success of an EDA technique is the expressive power of the logic primitives handling

and solving the problem, which determines the capability to reach better metrics.

In this thesis, we investigate new logic primitives for electronic design automation tools.

We improve the efficiency of logic representation, manipulation and optimization tasks by

taking advantage of majority and biconditional logic primitives. We develop synthesis tools

exploiting the majority and biconditional logic expressiveness. Our tools show strong results

as compared to state-of-the-art academic and commercial synthesis tools. Indeed, we produce

the best (public) results for many circuits in combinational benchmark suites. On top of the

enhanced synthesis power, our methods are also the natural and native logic abstraction for

circuit design in emerging nanotechnologies, where majority and biconditional logic are the

primitive gates for physical implementation.

We accelerate formal methods by (i) studying core properties of logic circuits and (ii) develop-

ing new frameworks for logic reasoning engines. Thanks to the majority logic representation

theory, we prove non-trivial dualities for the property checking problem in logic circuits. Our

findings enable sensible speed-ups in solving circuit satisfiability. With the aim of exploiting

further the expressive power of majority logic, we develop an alternative Boolean satisfiability

iii

Acknowledgements

framework based on majority functions. We prove that the general problem is still intractable

but we show practical restrictions that instead can be solved efficiently. Finally, we focus on the

important field of reversible logic where we propose a new approach to solve the equivalence

checking problem. We define a new type of reversible miter over which the equivalence test is

performed. Also, we represent the core checking problem in terms of biconditional logic. This

enables a much more compact formulation of the problem as compared to the state-of-the-art.

Indeed, it translates into more than one order of magnitude speed up for the equivalence

checking task, as compared to the state-of-the-art solution.

We argue that new approaches to solve core EDA problems are necessary, as we have reached

a point of technology where keeping pace with design goals is tougher than ever.

Key words: Electronic design automation, new logic primitives, logic synthesis, formal meth-

ods.

iv

Résumé
La forte interaction entre les outils Electronic Design Automation (EDA) et la technologie

Complementary Metal-Oxide Semiconductor (CMOS) a largement contribué à l’avancement

de l’électronique numérique moderne. La réduction d’échelle continue des dimensions des

trasnsitors permi à l’industrie des semi-conducteurs de fabriquer des systèmes numériques

avec une densité de circuit toujours plus élevée à des coûts réduits. Pour suivre le rythme

de la technologie, les outils d’EDA sont mis au défi a fin de gérer a la fois la conception du

circuits numériques avec de plus en plus avances et des modèles à la complexité croissante.

Néanmoins, alors que le réduction d’échelle de la technologie CMOS exige des modèles de

conception physiques plus complexes, l’abstraction logique d’un transistor q’un interrup-

teur n’a pas changé depuis son origine, même avec l’arrivee de la technologie 3D FinFET.

En conséquence, les outils d’EDA modernes sont calibrés pour la technologie CMOS et les

méthodologies de conception sous-jacente sont bases sur les primitives logiques du CMOS, à

savoir, les fonctions logiques négatives unate. Alors qu’il est clair que les primitives logiques

du CMOS resteront les blocs de construction ultimes pour les systèmes numériques dans

les dix prochaines années, aucune preuve n’est fournie que CMOS primitives logiques sont

egalement la base optimale pour les logiciels d’EDA. Dans EDA, l’efficacité des méthodes

et des outils est mesurée par différentes mesures telles que (i) la qualité des résultats, par

exemple la performance d’un circuit numérique synthétisé automatiquement, (ii) le temps

d’exécution de l’outil et (iii) son empreinte mémoire sur l’ordinateur. Dans le but d’optimiser

ces paramètres, l’utilisation d’un modèle logique CMOS n’est plus important. En effet, la clé

de la réussite d’une technique EDA est la puissance d’expression des primitives logiques qui

permettent la manipulation et la résolution du problème, et celle ci détermine la capacité à

atteindre de meilleurs paramètres.

Dans cette thèse, nous étudions de nouvelles primitives logiques pour les outils d’EDA.

Nous améliorons l’efficacité des tâches de représentation de la logique, de manipulation et

d’optimisation en profitant des operateurs majorité et logiques biconditional. Nous dévelop-

pons des techniques et des outils pour la synthèse logique qui exploitent l’expressivité des

operations majorité et biconditionales. Nos outils montrent de solides résultats par rapport à

l’état-de-l’art universitaires et commerciaux. En effet, nous produisons les meilleurs résultats

(publics) pour de nombreux circuits combinatoires. En plus de la puissance de synthèse

améliorée, nos méthodes permettent également l’abstraction logique naturelle et native pour

la conception de circuits avec du nanotechnologies émergentes, où la majorité et de la logique

biconditionele sont des operateurs de base.

v

Acknowledgements

Nous accélérons les méthodes de verification formelles par (i) l’étude des propriétés de base

de circuits logiques et (ii) le développement de nouveaux principes pour les moteurs de

raisonnement logique. Grâce à la théorie supportant la fonction majorité, nous prouvons du

dualités non triviales dans des applications de contrôle de propriété pour les circuits logiques.

Nos résultats permettent une amélioration de performances dans les probleme des circuit

satisfiabilité. Dans le but d’exploiter le pouvoir d’expression de la fonction majorité, nous

développons un nouvelle methode permettent de résoudre les problèmes de satisfiabilité.

Nous prouvons que le problème général est toujours intraitable mais nous montrons des

restrictions pratiques qui peuvent être résolue de manière efficace. Enfin, nous concentrons

sur le domaine important de la logique réversible, ou nous avons proposé une nouvelle

approche pour résoudre le problème de vérification d’équivalence. Nous définissons une

nouvelle formulation reversible sur laquelle la vérification d’équivalence est effectuée. En

outre, nous représentons le problème de contrôle de base en termes de logique biconditionelle.

Cela permet une formulation beaucoup plus compacte du problème par rapport à l’état-de-

l’art. En effet, cela se traduit par plus d’un ordre de grandeur en amélioration de la vitesse

pour la tâche de vérification d’équivalence, par rapport à la solution à l’état-de-l’art.

Nous soutenons que de nouvelles approches pour résoudre les principaux problèmes d’EDA

sont nécessaires, étant donne que suivre l’evolution de la technologies et des objectifs de

conception est plus difficile que jamais.

Mots clefs: Electronic design automation, nouvelles primitives logiques, synthèse logique,

méthodes formelles.

vi

Sommario
La forte interazione tra strumenti per Electronic Design Automation (EDA) e la tecnolo-

gia Complementary Metal-Oxide Semiconductor (CMOS) ha contribuito sostanzialmente

all’avanzamanto della elettronica digitale moderna. La continua riduzione delle dimensioni

dei dispositivi CMOS Field Effect Transistor (FET) ha permesso all’industria dei semiconduttori

di fabbricare sistemi digitali ad alta densità a costi ridotti. Per tenere il passo con la tecnologia,

gli strumenti EDA devono confrontarsi con sistemi digitali sempre più ricchi in funzionalità e

modelli fisici sempre più complessi. Anche se la riduzione delle dimensioni dei dispositivi

CMOS richiede modelli fisici complessi, l’astrazione logica di un dispositivo CMOS non è

cambiata neppure con l’introduzione della tecnologia 3D FinFET. Di conseguenza, gli stru-

menti EDA moderni sono altamente perfezionati per la tecnologia CMOS, e le metodologie di

progettazione sono basate sulle primitive logiche CMOS, ovvero le funzioni logiche negative

unate. Mentre è comunemente accettato che le primitive logiche CMOS saranno i componenti

fisici di base per costruire sistemi digitali nei prossimi dieci anni, non è dimostrato che le

stesse primitive logiche CMOS sono anche le basi teoriche ottime per i metodi e programmi

EDA. Nell’EDA, l’efficienza dei metodi e gli strumenti è misurata da diverse metriche come

(i) la qualità dei risultati, per esempio la velocita di un circuito digitale sintetizzato automati-

camente, (ii) il tempo di esecuzione e (iii) l’occupazione di memoria in un computer. Con

lo scopo di ottimizzare queste metriche, l’accordanza a un modello logico specifico non è

importante. Infatti, la chiave del successo per tecniche EDA sta nell’espressività delle primitive

logiche con le quali il problema è prima descritto e poi risolto. Questa espressività determina

infine la capacità di raggiungere metriche migliori.

In questa tesi studiamo nuove primitive logiche per strumenti EDA.

Miglioriamo l’efficienza della rappresentazione, manipolazione e ottimizzazione logica grazie

ai connettivi logici di maggioranza e bicondizionale. Sviluppiamo tecniche e strumenti di

sintesi sfruttando l’espressività della logica di maggioranza e bicondizionale. I nostri strumenti

mostrano risultati competitivi con strumenti accademici e industriali. Per esempio, produci-

amo i migliori risultati pubblici per diversi circuiti in benchmark suites combinatorie. Inoltre

alla potenza di sintesi maggiorata, i nostri metodi sono anche la naturale astrazione logica

per la progettazione circuitale in nano-tecnologie emergenti, dove la logica di maggioranza e

bicondizionale da origine alle porte logiche di base per l’implementazione fisica.

Accelleriamo metodi formali studiando (i) le proprietà logiche dei circuiti e (ii) sviluppando

nuove strutture base per motori di ragionamento logico. Grazie alla teoria di rappresentazione

logica a maggioranza, proviamo dualità non banali nel controllo di proprietà logiche. Le nostre

vii

Acknowledgements

scoperte permottono di risolvere più velocemente il problema della soddisfacibilità circuitale.

Con lo scopo di sfruttare al meglio l’espressività della logic a maggioranza, sviluppiamo una

struttura teorica alternativa, basata sulle funzioni logiche a maggioranza, per approcciare il

problema della soddisfacibilità Booleana. Dimostriamo che il problema generale è ancora

intrattabile ma proponiamo restrizioni di interesse pratico che invece possono essere risolte

efficientemente. Infine, ci concentriamo sul’importante campo della logica reversibile e pro-

poniamo un nuovo approccio per risolvere il problema dell’equivalenza formale. Definiamo

un nuovo tipo di miter grazie al quale il test di equivalenza è condotto. Inoltre, rappresen-

tiamo il problema di equivalenza in termini di logica bicondizionale. Questo permette una

formulazione molto più compatta del problema rispetto allo stato dell’arte. Infatti, questo

si traduce in un’accellerazione di più di un ordine di grandezza nel verificare l’equivalenza

formale rispetto allo stato dell’arte.

Sosteniamo che nuovi approcci per risolvere problemi EDA sono necessari, in quanto abbiamo

raggiunto un punto della tecnologia dove tenere il passo con gli obbiettivi di progettazione è

più difficile che mai.

Parole chiave: Electronic design automation, nuove primitive logiche, sintesi logica, metodi

formali.

viii

Contents
Acknowledgements i

Abstract (English/Français/Italiano) iii

List of figures xiii

List of tables xv

1 Introduction 1

1.1 Electronic Design Automation . 2

1.2 Modern EDA Tools and Their Logic Primitives . 3

1.2.1 Logic Synthesis . 4

1.2.2 Formal Methods . 4

1.3 Research Motivation . 4

1.3.1 Impact on Modern CMOS Technology . 5

1.3.2 Impact on Beyond CMOS Technologies . 5

1.4 Contributions and Position With Respect to Previous Work 7

1.5 Thesis Organization . 9

Part 1: Logic Representation, Manipulation and Optimization 15

2 Biconditional Logic 17

2.1 Introduction . 17

2.2 Background and Motivation . 19

2.2.1 Binary Decision Diagrams . 19

2.2.2 Emerging Technologies . 22

2.3 Biconditional Binary Decision Diagrams . 23

2.3.1 Biconditional Expansion . 24

2.3.2 BBDD Structure and Ordering . 24

2.3.3 BBDD Reduction . 26

2.3.4 BBDD Complemented Edges . 29

2.3.5 BBDD Manipulation . 30

2.4 BBDD Representation: Theoretical and Experimental Results 35

2.4.1 Theoretical Results . 35

2.4.2 Experimental Results . 38

ix

Contents

2.5 BBDD-based Synthesis & Verification . 40

2.5.1 Logic Synthesis . 40

2.5.2 Formal Equivalence Checking . 40

2.5.3 Case Study: Design of an Iterative Product Code Decoder 41

2.6 BBDDs as Native Design Abstraction for Nanotechnologies 44

2.6.1 Reversible Logic . 45

2.6.2 NEMS . 47

2.7 Summary . 51

3 Majority Logic 59

3.1 Introduction . 59

3.2 Background and Motivation . 61

3.2.1 Logic Representation . 61

3.2.2 Logic Optimization . 62

3.2.3 Notations and Definitions . 64

3.3 Majority-Inverter Graphs . 66

3.3.1 MIG Logic Representation . 66

3.3.2 MIG Boolean Algebra . 67

3.3.3 Inserting Safe Errors in MIG . 72

3.4 MIG Algebraic Optimization . 74

3.4.1 Size-Oriented MIG Algebraic Optimization 74

3.4.2 Depth-Oriented MIG Algebraic Optimization 75

3.4.3 Switching Activity-Oriented MIG Algebraic Optimization 76

3.5 MIG Boolean Optimization . 77

3.5.1 Identifying Advantageous Orthogonal Errors in MIGs 77

3.5.2 Depth-Oriented MIG Boolean Optimization 80

3.5.3 Size-Oriented MIG Boolean Optimization 82

3.6 Experimental Results . 82

3.6.1 Methodology . 82

3.6.2 Optimization Case Study: Adders . 84

3.6.3 General Optimization Results . 84

3.6.4 ASIC Results . 86

3.6.5 FPGA Results . 86

3.7 MIGs as Native Design Abstraction for Nanotechnologies 87

3.7.1 MIG-based Synthesis . 88

3.7.2 Spin-Wave Devices . 88

3.7.3 Resistive RAM . 91

3.8 Extension to MAJ-n Logic . 95

3.8.1 Generic MAJ-n/INV Axioms . 95

3.8.2 Soundness . 96

3.8.3 Completeness . 98

3.9 Summary . 98

x

Contents

Part 2: Logic Satisfiability and Equivalence Checking 105

4 Exploiting Logic Properties to Speedup SAT 107

4.1 Introduction . 107

4.2 Background and Motivation . 109

4.2.1 Notation . 109

4.2.2 Tautology Checking . 110

4.2.3 Motivation . 110

4.3 Properties of Logic Circuits . 111

4.4 From Tautology To Contradiction and Back . 114

4.4.1 Boolean SAT and Tautology/Contradiction Duality 117

4.5 Experimental Results . 118

4.5.1 Verification of SAT Solving Advantage on the Dual Circuit 118

4.5.2 Results for Concurrent Regular/Dual SAT Execution 119

4.6 Summary . 120

5 Majority Normal Form Representation and Satisfiability 123

5.1 Introduction . 123

5.2 Background and Motivation . 124

5.2.1 Notations and Definitions . 124

5.2.2 Two-level Logic Representation . 124

5.2.3 Satisfiability . 125

5.3 Two-Level Majority Representation Form . 125

5.3.1 Majority Normal Form Definition and Properties 125

5.3.2 Representation Examples with DNF, CNF and MNF 126

5.4 Majority Satisfiability . 128

5.4.1 Complexity of Unrestricted MNF-SAT . 128

5.4.2 Complexity of Some Restricted MNF-SAT 128

5.5 Algorithm to Solve MNF-SAT . 130

5.5.1 One-level Majority-SAT . 130

5.5.2 Decide Strategy for MNF-SAT . 132

5.6 Discussion and Future Work . 133

5.7 Summary . 134

6 Improvements to the Equivalence Checking of Reversible Circuits 137

6.1 Introduction . 137

6.2 Background . 138

6.2.1 Reversible Circuits . 139

6.2.2 Boolean Satisfiability . 140

6.3 Mapping Combinational Equivalence Checking for Reversible Circuits to XOR-

CNF SAT . 141

6.3.1 Creating an Identity Miter . 141

6.3.2 XOR-CNF Formulation . 143

xi

Contents

6.4 Experimental Results . 146

6.4.1 Methodology and Setup . 147

6.4.2 Results . 148

6.5 Discussion . 149

6.5.1 Application to the Verification of Conventional Circuits 149

6.5.2 Easy Exploitation of Parallelism . 150

6.6 Summary . 150

7 Conclusions 153

7.1 Overview of Thesis Contributions . 153

7.2 Open Problems . 154

7.3 Concluding Remarks . 155

Curriculum Vitae 159

xii

List of Figures
1.1 Design flow. 2

1.2 Design verification methods. 3

1.3 Common logic abstraction for SiNWFETs, CNFETs, graphene FETs, reversible

logic and nanorelays. Logic model: switch driven by a comparator. 6

1.4 Common logic abstraction for SWD, RRAM, Graphene reconfigurable gates, QCA

and DNA logic. Logic model: majority voter. 6

2.1 BDD non-terminal node (a) canonical BDD for a·b function (b). 19

2.2 Common logic abstraction for emerging devices: controllable polarity double-

gate FETs in silicon nanowires [12], carbon nanotubes [13], graphene [14] but

also six terminal nanorelays [15]. 22

2.3 Sketch structure and fabrication images of controllable polarity double-gate

SiNWFETs from [12]. 23

2.4 BBDD non-terminal node. 25

2.5 Function to be represented: f = a·b + (a ⊕b)·(c ¯d), weak ROBBDD for f (a)

and strong ROBBDD for f (b). 27

2.6 Variable swap i
 i+1 involving the CVO levels (PVi+2 = w , SVi+2 = x), (PVi+1 =
x, SVi+1 = y) and (PVi = y , SVi = z). Effect on nodes at level i +2 (a) i +1 (b) and

i (c). 34

2.7 BBDD for the 7-input majority function. The inclusion of MAJ5 and MAJ3 func-

tions is illustrated. Grey nodes are nodes with inverted children due to n to n −2

majority reduction. 36

2.8 Full adder function with BBDDs, variable order π= (a,b,ci n). 37

2.9 BBDD for the 3-bit binary adder function, variable order π= (a2,b2, a1,b1, a0,b0). 38

2.10 Representations for the bit_comparator circuit in [55] (inverters are bubbles in

edges). a) original circuit b) BBDD re-writing, reduced BDD nodes are omitted

for the sake of illustration. 42

2.11 Target vs. obtained frequency curves and frequency frontiers for CMOS, SiNW-

standard and SiNW-BBDD designs. 44

2.12 Reversible circuit made of Toffoli, CNOT and NOT reversible gates. 45

2.13 Reversible circuit for a BBDD node [56]. 46

2.14 Four-terminals nanorelay structure and fabrication image from [69]. 48

2.15 Six-terminals nanorelay structure and fabrication image from [68]. 48

xiii

List of Figures

2.16 Nanorelay implementation of a full-adder using a BDD-based design approach

[68]. 50

2.17 Nanorelay implementation of a full-adder using a BBDD-based design approach.

Dotted lines represent 6=-edges and solid lines are =-edges. 50

3.1 Relations among various functions extracted from [5]. 60

3.2 MIG representation for f = x3· (x2 + (x ′
1 +x0)′). Complementation is represented

by bubbles on the edges. 67

3.3 Examples of MIG optimization for size, depth and switching activity. 75

3.4 Example of criticality computation and orthogonal errors. 78

3.5 MIG Boolean depth-optimization example based on critical voters errors inser-

tion. Final depth reduction: 60%. 80

3.6 Primitive gate areas and designs for SWD technology. All distances are parame-

terized with the spin wave wavelength λSW [56]. 89

3.7 Optimization of the MIG representing the function g = x· (y +u·v). Initial MIG

counts 3 nodes and 3 levels. Final MIG counts 3 nodes and 2 levels. 90

3.8 SWD circuit implementing function g , (a) from example in Fig. 3.3(left). (b) from

example in Fig. 3.3(right) which is optimized in size and depth. 90

3.9 CRS conceptual structure and sweep properties from [70]. 92

3.10 Resistive majority operation with BRS/CRS devices [58]. 92

3.11 MIG representing the output po0 in the S encryption operator. 94

4.1 Logic circuit example representing the function f = (ab)d+(ab)c+dc . The basis

set is {AND, MAJ, INV}. The gates symbolic representation is shown in the box. 109

4.2 AND/OR configuration of a three-input MAJ. 111

4.3 Logic circuits examples. {AND, OR, INV} logic circuit representing f = ab +
ac + a(b + c)+ a (a). {MAJ, INV} logic circuit emulating the circuit in (a) us-

ing constants (b). {AND, OR, INV} logic circuits derived from (a) by switching

AND/OR operators (c). {MAJ, INV} logic circuit emulating the circuit in (a) using

an fictitious input variable d (d). 112

4.4 Comparison between real inverted and AND/OR switched logic circuits repre-

senting 4-variable Boolean functions. The on-set size ranges from 0 to 24. 115

4.5 Speculative parallel regular/dual circuit SAT flow. 118

4.6 1000 randomized SAT runs for regular and dual circuit. 118

5.1 Two-level representation example for the Boolean function a+ (b ·c) in forms: a)

DNF, b) CNF, c) MNF and d) more compact MNF. 127

6.1 A Toffoli gate. 139

6.2 A reversible circuit composed of Toffoli gates . 140

6.3 Two functionally equivalent reversible circuits. 142

6.4 The resulting identity miter. 143

6.5 The proposed equivalence checking flow. 147

xiv

List of Tables
2.1 Experimental results for DD construction using BBDDs, BDDs and KFDDs. 39

2.2 Experimental results for BBDD-based Design Synthesis & Verification. 43

2.3 Results for reversible circuit synthesis using BBDDs vs. traditional BDDs. 47

2.4 Total Number of Relays, the Number of Relays on the Critical Path, and Ratios

Compared to [68] (MCNC Benchmark Circuits). 49

2.5 Comparison of BDD-based vs. BBDD-based Synthesis of an 8 × 8 Array Multiplier 51

3.1 Adder Optimization Results . 84

3.2 MIG Logic Optimization and LUT-6 Mapping Results 85

3.3 MIG 22-nm ASIC Design Results . 86

3.4 MIG 28-nm FPGA Design Results . 87

3.5 Cost Functions for MIGs Mapped onto SWDs . 89

3.6 Experimental results for SWDs-MIG Synthesis . 91

3.7 Summarizing performance results of SWD and CMOS Technologies 91

3.8 Experimental Results for RRAM-MIG Synthesis PRESENT Implementation Per-

formances . 94

4.1 Switching Rules for Tautology/Contradiction Check 116

4.2 Experimental Results for Regular vs. Dual SAT Solving All runtimes are in seconds119

5.1 Two-Level Logic Representation Comparison. 127

6.1 Experimental results (all run-times in CPU seconds) 148

xv

1 Introduction

The strong interaction between Electronic Design Automation (EDA) tools and Complementary

Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement

of modern digital electronics. The continuous downscaling of CMOS Field Effect Transistor

(FET) dimensions enabled the semiconductor industry to fabricate digital systems with higher

circuit density and performance at reduced costs [1]. To keep pace with technology, EDA

tools are challenged to handle both digital designs with growing functionality and device

models of increasing complexity. Nevertheless, whereas the downscaling of CMOS technology

is requiring more complex physical design models, the logic abstraction of a transistor as

a switch has not changed even with the introduction of 3D FinFET technology [2]. As a

consequence, modern EDA tools are fine tuned for CMOS technology and the underlying

design methodologies are based on CMOS logic primitives, i.e., negative unate logic functions.

While it is clear that CMOS logic primitives will be the ultimate building blocks for digital

systems in the next ten years [3], no evidence is provided that CMOS logic primitives are also

the optimal basis for EDA software. In EDA, the efficiency of methods and tools is measured by

different metrics such as (i) the result quality, for example the performance of an automatically

synthesized digital circuit, (ii) the runtime and (iii) the memory footprint on the host computer.

With the aim to optimize these metrics, the accordance to a specific logic model is no longer

important. Indeed, the key to the success of an EDA technique is the expressive power of the

logic primitives handling and solving the problem, which determines the capability to reach

better metrics.

Overall, this thesis addresses the general question: “Can EDA logic tools produce better results

if based on new, different, logic primitives?”. We show that the answer to this question is

affirmative and we give pragmatic examples. We argue that new approaches to solve core EDA

problems are necessary, as we have reached a point of technology where keeping pace with

design goals is tougher than ever.

1

Chapter 1. Introduction

1.1 Electronic Design Automation

EDA is an engineering domain consisting of algorithms, methods and tools used to design

complex electronic systems. Starting from a high-level description of an electronic system, a

typical EDA flow operates on several logic abstractions and produces a final implementation

in terms of primitive technology components [4]. When targeting an Application Specific

Integrated Circuit (ASIC) technology, the final product is a GDSII file, which represents planar

geometric shapes ready for photomask plotting and successive fabrication [5]. When targeting

a Field-Programmable Gate Arrays (FPGAs) technology, the final product is a binary file, which

is used to (re)configure the FPGA device [6].

The main steps involved in the design flow are high-level synthesis, logic synthesis and physical

design, also called low level synthesis, which consists of placement and routing [4]. They are

depicted by Fig. 1.1. High-level synthesis converts a programming language description (or

Figure 1.1: Design flow.

alike) of a logic system into a Register-Tranfer Level (RTL) netlist. Logic synthesis optimizes

and maps a logic circuit, from an RTL specification, onto standard cells (ASICs) or look-

up tables (FPGAs). Placement assigns physical resources to the mapped logic elements,

i.e., standard cells inside a chip’s core area (ASICs) or programmable logic blocks (FPGAs).

Routing interconnects the placed logic elements, i.e., sets wires to properly connect the placed

standard cells (ASICs) or creates routing paths between programmable logic elements in a

reconfigurable device (FPGAs). All these three steps are subject to area, delay and power

minimization metrics. Nowadays, the clear separation between design steps fade away in

favor of an integrated approach better dealing with design closure [7]. Contemporary design

techniques are fine tuned for CMOS technology. For example, most logic synthesis data

structures and algorithms are based on CMOS logic primitives, e.g., negative unate logic

functions [4]. Placement and routing algorithms matured with the technological evolution of

CMOS down to the nano-scale [3]. Logic or physical characteristics of CMOS technology have

2

1.2. Modern EDA Tools and Their Logic Primitives

been strong progress drivers for modern design flows.

In parallel to the synthesis flow, verification techniques check that the designed system con-

forms to specification [8]. Simulation and formal methods are two popular verification ap-

proaches [8]. Simulation techniques compute the output values for given input patterns using

simulation models [9]. If the output values mismatch the given specification then verification

fails. Simulation-based verification formally succeeds only if the output values match the

specification for all input patterns. Because of the exponential space of input patterns, it is im-

practical to verify overall designs by simulations. Nevertheless, random simulation techniques

are still used as fast bugs hunters. When an exact answer is needed, formal methods precisely

prove whether the system conforms to specification or not. In formal methods, specification

and design are translated into mathematical models [8]. Formal verification techniques prove

correctness with various sorts of mathematical reasoning. It explores all possible cases in the

generated mathematical models. Popular mathematical models used in formal methods in-

clude mainly Boolean functions/expressions, first order logic, and others. The main reasoning

engines used are binary decision diagrams [10] and satisfiability methods [11]. Fig. 1.2 depicts

the aforementioned verification environment by means of a diagram.

Verifica(on++
Techniques+

Formal+Simula(on+

BDD+ SAT+Rand.+Test+
driven+

Figure 1.2: Design verification methods.

In this thesis, we focus on the logic synthesis and formal methods sub-fields of EDA.

1.2 Modern EDA Tools and Their Logic Primitives

Modern EDA tools operate on logic abstractions of an electronic system. These logic asbtrac-

tions are based on some primitive logic operators over which the synthesis and verification

processes are performed. The expressive power and manipulation properties of the logic

primitives employed ultimately determine the quality of the EDA tasks accomplished. We

review hereafter the basic logic primitives driving logic synthesis and formal verification tools.

3

Chapter 1. Introduction

1.2.1 Logic Synthesis

In logic synthesis, the main abstraction is a logic circuit, also called logic network, which

is defined over a set of primitive logic gates. Very popular primitive gates in logic synthesis

are AND, OR and INV. While there are expensive (in terms of runtime) synthesis techniques

operating on truth tables and global functions, most practical synthesis methods exploit the

local functionality of primitive gates over which the circuit itself is described. For example,

two-level AND-OR logic circuits, also called Sum-Of-Products (SOPs), are synthesized by

manipulating cubes and their sum [12]. As cubes are inherently AND functions and their sum

is inherently an OR function, two-level logic synthesis is based on AND/OR logic primitives [12].

Another example is about multi-level logic circuits and their synthesis [13]. In multi-level logic

representations, logic gates may have an unbounded functionality, meaning that each element

can represent an arbitrary logic function. However, these logic elements are often represented

internally as SOP polynomials which are factorized into AND/ORs via algebraic methods [13].

Therefore, also multi-level logic synthesis operates on AND/OR logic primitives [13].

1.2.2 Formal Methods

In formal methods, the main logic abstraction is a formal specification. A formal specifi-

cation can be a logic circuit, a Boolean formula or any other formal language capable of

exhaustively describing the property under test. Ultimately, a formal speficiation is translated

into a mathematical logic formula. To prove properties of the formal specification, two core

reasoning engines are very popular in formal methods: binary decision diagrams [10] and

Boolean satisfiability [11]. Binary decision diagrams are a data structure to represent Boolean

functions. They are driven by the Shannon’s expansion to recursively decompose a Boolean

function into cofactors until the constant logic values are encountered. Reduced and ordered

binary decision diagrams are unique for a given variable order, i.e., canonical. This feature

enables efficient property checking. From a logic circuit perspective, the Shannon’s expansion

is equivalent to a 2:1 multiplexer (MUX), which therefore is the logic primitive driving binary

decision diagrams [10]. Boolean satisfiability consists of determining whether there exists

or not an assignment of variables so that a Boolean formula evaluates to true. The standard

data structure supporting Boolean satisfiability is the Conjunctive Normal Form (CNF), which

is a conjunction (AND) of clauses (OR). In other words, this data structure is a two-level

OR-AND logic circuits, also called a Product of Sums (POS). The CNF satisfiability problem

is solved through reasoning on clauses (ORs) and how they interact via the top conjunction

operator (AND). It follows that standard satisfiability techniques are based on OR/AND logic

primitives [11].

1.3 Research Motivation

Nowadays, EDA tools face challenges tougher than ever. On the one hand, design sizes and

goals in modern CMOS technology approach the frontier of what is possibly achievable. On

4

1.3. Research Motivation

the other hand, post-CMOS technologies bring new computational paradigms for which

standard EDA tools are not suitable. New research in fundamental EDA tasks, such as logic

synthesis and formal verification, is key to handle this situation.

1.3.1 Impact on Modern CMOS Technology

Present-day EDA tools are based on CMOS logic primitives. For example, AND/OR logic

functions, which are the basis for series/parallel gate design rules, drive several synthesis

techniques. Similarly, MUX logic functions, which are the primitives for CMOS pass-transistor

logic, are the building blocks for canonical data structures. While there is no doubt that

these primitives will be the physical building blocks for CMOS digital systems in the next ten

years [3], the use of new, more expressive, logic primitives in design and verification methods

can improve the computational power of EDA tools.

Indeed, the study of new logic primitives can extend the capabilities of logic synthesis and

formal verification tools already in CMOS technology. Exploiting new logic primitives, syn-

thesis tools can reach points in the design space not accessible before [14]. Formal methods

based on different logic primitives can solve faster an important class of problems, e.g., the

verification of arithmetic logic [15], the verification of reversible logic [16], etc.

1.3.2 Impact on Beyond CMOS Technologies

Considering instead post-CMOS technologies, studying new logic primitives is necessary

because many emerging nanotechnologies offer an enhanced functionality over standard FET

switches [17].

For example, double-gate silicon nanowire FETs [18], carbon nanotube FETs [19], graphene

FETs [20, 21] and organic FETs [22] can be engineered to allow device polarity control. The

switching function of these devices is biconditional on both gates (polarity and control) values.

Four-terminals and six-terminals nanorelays in [23] and [24], respectively, operate similarly.

The source to drain connection in these nanorelays is controlled by the gate to body voltage

sign and amplitude. In the binary domain, this corresponds to a bit comparator between

the gate and body logic values. Also reversible logic gates, such as Toffoli gates, embed the

biconditional connective in their operation [25]. Indeed, biconditional (XNOR) operations

are easily reversible while other logic operations, such as conjunctions and disjunctions, are

not. All these devices operate as a switch driven by a single bit comparator. Fig. 1.3 depicts the

common logic abstraction for those comparator-intrinsic nanodevices.

Other promising nanodevices, such as Spin-Wave Devices (SWD) [26–28], Resistive RAM

(RRAM) [29, 30] and graphene reconfigurable gates [31], operate using different physical

phenomena than standard FETs. For example, SWD uses spin waves as information carrier

while CRS logic behavior depends on the previous memory state. In those nanotechnolo-

gies, the circuit primitive is not anymore a standard switch but a three-input majority voter.

5

Chapter 1. Introduction

A B
CNFETs

SiNWFETs

Graphene FETs Reversible Logic

6T Nanorelays

4T Nanorelays

t"

c2"

(c1"c2"…"cn)""""t"⊕

c1"

cn"

c2"

c1"

cn"

Figure 1.3: Common logic abstraction for SiNWFETs, CNFETs, graphene FETs, reversible logic
and nanorelays. Logic model: switch driven by a comparator.

Note that there are other nanotechnologies where majority voters are the circuit primitive.

Quantum-dot cellular automata is one well-known voting-intrinsic nanotechnology [32]. Also,

DNA strand displacement recently showed the capability to implement voting logic [33].

Fig. 1.4 depicts the common logic abstraction for these voting-intrinsic nanodevices.

RRAM

Spin-Wave Device

DNA Logic

QCA

Graphene RG

MAJ$

zyx$

f!$

Figure 1.4: Common logic abstraction for SWD, RRAM, Graphene reconfigurable gates, QCA
and DNA logic. Logic model: majority voter.

In this context, EDA tools capable of natively handling such enhanced functionality are

6

1.4. Contributions and Position With Respect to Previous Work

essential to permit a fair evaluation on nanotechnologies with logic abstractions different than

standard CMOS [34].

1.4 Contributions and Position With Respect to Previous Work

This thesis is centered around logic synthesis and formal methods. For the sake of complete-

ness, we also include our results in the area of nanotechnology design. Our contributions can

be classified into two main categories.

1) Logic Representation, Manipulation and Optimization

Contributions

We develop new compact representations for logic functions, together with powerful manip-

ulation and optimization techniques. The two main topics here are biconditional logic and

majority logic.

Position With Respect to Previous Work

Regarding logic representation, manipulation and optimization, state-of-the-art design tools

make extensive use of homogeneous logic networks. Homogeneous logic networks are directed

acyclic graphs where all internal nodes represent the same logic function and edges are

possibly complemented in order to preserve universality. And-Inverter Graphs (AIGs) are

homogeneous logic networks driven by the AND logic function [35]. AIGs are widely used in

logic optimization. AIG optimization algorithms are typically based on fast and local rewriting

rules, together with traditional Boolean techniques [35–37]. Binary Decision Diagrams (BDDs)

are homogeneous logic networks driven by the MUX logic function [10]. With specific ordering

and reduction rules, BDDs are canonical, i.e., unique for a logic function and variable order [10].

BDDs are commonly employed both as a representation structure and as a logic manipulation

engine for optimization. Indeed, the canonicity of BDDs enables efficient computation of

cofactors, Boolean difference and approximation of don’t care sets, all important features to

logic optimization techniques [38, 39].

Our contributions in this category focus on homogeneous logic networks as well. We propose

Majority-Inverter Graphs (MIGs), an homogeneous logic network driven by ternary majority

logic functions. As majority functions can be configured to behave as AND/ORs, MIGs can

be more compact than AIGs. Moreover, MIG manipulation is supported by a sound and

complete algebraic framework and unique Boolean properties. Such features makes MIG

optimization extremely effective as compared to the state-of-the-art counterparts. We propose

Biconditional Binary Decision Diagrams (BBDDs), a BDD-like homogeneous logic network

where branching decisions are biconditional on two variables per time rather than on only one.

From a theoretical perspective, considering two variables per time enhances the expressive

7

Chapter 1. Introduction

power of a decision diagram. Nevertheless, BBDDs are still canonical with respect to specific

ordering and reduction rules. BBDDs improve the efficiency of traditional EDA tasks based

on decision diagrams, especially for arithmetic intensive designs. Indeed, BBDDs are smaller

than BDDs for notable arithmetic functions, such as binary addition and majority voting.

On the other hand, BBDDs represent the natural and native design abstraction for emerging

technologies where the circuit primitive is a comparator, rather than a simple switch.

2) Boolean Satisfiability and Equivalence Checking

Contributions

We study logic transformations to speed up satisfiability check in logic circuits. We develop

an alternative Boolean satisfiability framework based on majority logic rather than standard

conjunctive normal form. Finally, we propose a new approach to solve sensibly faster the

combinational equivalence checking problem for reversible logic.

Position With Respect to Previous Work

For the Boolean SATisfiability (SAT) problem, the state-of-the-art solution use a Conjunctive

Normal Form (CNF) formulation solved by modern variants of the Davis Putnam Logemann

Loveland (DPLL) algorithm, such as conflict-driven clause learning [11]. For the Combina-

tional Equivalence Checking (CEC) problem, the state-of-the-art solution first creates a miter

circuit by XOR-ing bit-wise the outputs of the two circuits under test. Then, it uses simulation

and BDD/SAT sweeping on the input side (i.e., proving equivalence of some internal nodes

in a topological order), interleaved with attempts to run SAT on the outputs (i.e., proving

equivalence of all the outputs to constant 0) [40].

Our contributions in this category focus on alternative SAT formulations and CEC solving

approaches. We define a Majority Normal Form (MNF), a two-level logic representation form

based on generic n-ary majority operators. When described over a MNF, the SAT problem

has remarkable properties. For example, practical restrictions of the MNF-SAT problem can

be solved in polynomial time. Considering instead circuit satisfiability, we discover circuit

dualities useful to speed-up SAT solving via parallel execution. Moving to CEC, we focus on

the problem of checking the equivalence of reversible circuits. Here, the state-of-the art CEC

solution is still the standard miter-sweeping-SAT one. We propose a different type of miter,

obtained by cascading the two reversible circuits under test in place of XOR-ing them. As a

result, we do not aim at proving the unSAT of the outputs anymore, but we aim at proving that

the outputs all represent the identity function. In this scenario, we propose an efficient XOR-

CNF formulation of the identity check problem which is solvable via Gaussian elimination and

SAT. Such reversible CEC flow decreases the runtime by more than one order of magnitude as

compared to state-of-the-art solutions.

8

1.5. Thesis Organization

In both categories 1) and 2), our research contributions exploit new logic primitives to ap-

proach fundamental EDA problems from a different, unconventional, perspective.

1.5 Thesis Organization

This thesis is divided into two parts: Logic Representation, Manipulation and Optimization

and Boolean Satisfiability and Equivalence Checking. For the sake of clarity and readability,

each chapter comes with separate background, notations and bibliography sections.

Part 1 Logic Representation, Manipulation and Optimization. Chapters 2-3.

Chapter 2 presents Biconditional Binary Decision Diagrams (BBDDs), a novel canonical

representation form for Boolean functions. BBDDs are binary decision diagrams where the

branching condition, and its associated logic expansion, is biconditional on two variables.

Empowered by reduction and ordering rules, BBDDs are remarkably compact and unique

for a Boolean function. BBDDs improve the efficiency of traditional EDA tasks based on

decision diagrams, especially for arithmetic intensive designs. BBDDs also represent the

natural and native design abstraction for emerging technologies where the circuit primitive

is a comparator, rather than a simple switch. Thanks to an efficient BBDD software package

implementation, we validate 1) speed-up in traditional decision diagrams and 2) improved

synthesis of circuits in traditional and emerging technologies.

Chapter 3 proposes a paradigm shift in representing and optimizing logic by using only

majority (MAJ) and inversion (INV) functions as basic operations. We represent logic functions

by Majority-Inverter Graph (MIG): a directed acyclic graph consisting of three-input majority

nodes and regular/complemented edges. We optimize MIGs via a new Boolean algebra, based

exclusively on majority and inversion operations, that we formally axiomatize in this thesis.

As a complement to MIG algebraic optimization, we develop powerful Boolean methods

exploiting global properties of MIGs, such as bit-error masking. MIG algebraic and Boolean

methods together attain very high optimization quality. Furthermore, MIG optimization

improves the synthesis of emerging nanotechnologies whose logic primitive is a majority

voter.

Part 2 Boolean Satisfiability and Equivalence Checking. Chapters 4-6.

Chapter 4 establishes a non-trivial duality between tautology and contradiction check to speed

up circuit satisfiability (SAT). Tautology check determines if a logic circuit is true in every

possible interpretation. Analogously, contradiction check determines if a logic circuit is false

in every possible interpretation. A trivial transformation of a (tautology, contradiction) check

problem into a (contradiction, tautology) check problem is the inversion of all outputs in a

logic circuit. In this work, we show that exact logic inversion is not necessary. We give operator

switching rules that selectively exchange tautologies with contradictions, and viceversa. Our

approach collapses into logic inversion just for tautology and contradiction extreme points

9

Chapter 1. Introduction

but generates non-complementary logic circuits in the other cases. This property enables

solving speed-ups when an alternative, but equisolvable, instance of a problem is easier to

solve than the original one. As a case study, we investigate the impact on SAT. We show a 25%

speed-up of SAT in a concurrent execution scenario.

Chapter 5 introduces an alternative two-level logic representation form based solely on major-

ity and complementation operators. We call it Majority Normal Form (MNF). MNF is universal

and potentially more compact than its CNF and DNF counterparts. Indeed, MNF includes

both CNF and DNF representations. We study the problem of MNF-SATisfiability (MNF-SAT)

and we prove that it belongs to the NP-complete complexity class, as its CNF-SAT counterpart.

However, we show practical restrictions on MNF formula whose satisfiability can be decided

in polynomial time. We finally propose a simple core procedure to solve MNF-SAT, based on

the intrinsic functionality of two-level majority logic.

Chapter 6 presents a new approach for checking the combinational equivalence of two re-

versible circuit significantly faster than the state-of-the-art. We exploit inherent characteristics

of reversible computation, namely bi-directional (invertible) execution and the XOR-richness

of reversible circuits. Bi-directional execution allows us to create an identity miter out of two

reversible circuits to be verified, which naturally encodes the equivalence checking problem

in the reversible domain. Then, the abundant presence of XOR operations in the identity miter

enables an efficient problem mapping into XOR-CNF satisfiability. The resulting XOR-CNF

formulas are eventually more compact than pure CNF formulas and potentially easier to solve.

Experimental results show that our equivalence checking methodology is more than one

order of magnitude faster, on average, than the state-of-the-art solution based on established

CNF-formulation and standard SAT solvers.

Chapter 7 concludes the thesis. A summary of research accomplishments is presented, which

affirmatively answers the question: “Can EDA logic tools produce better results if based on new,

different, logic primitives?”. Possible future works are finally discussed.

10

Bibliography

[1] G. E. Moore, Cramming more components onto integrated circuits, Proceedings of the IEEE

86.1 (1998): 82-85.

[2] D. Hisamoto, et al., FinFET-a self-aligned double-gate MOSFET scalable to 20 nm, IEEE

Transactions on Electron Devices 47.12 (2000): 2320-2325.

[3] M. Bohr, Technology Insight: 14 nm Process Technology - Opening New Horizons, Intel

Developer Forum 2014 - San Francisco.

[4] G. De Micheli, Synthesis and optimization of digital circuits, McGraw-Hill Higher Educa-

tion, 1994.

[5] J. Buchanan, The GDSII Stream Format, June 1996.

[6] S. Brown, et al. Field-programmable gate arrays. Vol. 180. Springer Science & Business

Media, 2012.

[7] A. Kahng, et al. VLSI physical design: from graph partitioning to timing closure, Springer

Science & Business Media, 2011.

[8] E. Clarke, J. M. Wing. Formal methods: State of the art and future directions ACM Comput-

ing Surveys (CSUR) 28.4 (1996): 626-643.

[9] F. Krohm, The use of random simulation in formal verification IEEE International Confer-

ence on Computer Design, 1996.

[10] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans. on

Comp., C-35(8): 677-691, 1986.

[11] A. Biere, et al. eds. Handbook of satisfiability, Vol. 185. ios press, 2009.

[12] R.L. Rudell, A. Sangiovanni-Vincentelli, Multiple-valued minimization for PLA optimiza-

tion, IEEE Trans. CAD, 6(5): 727-750, 1987.

[13] R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli, Multilevel logic synthesis,

Proceedings of the IEEE 78.2 (1990): 264-300.

11

Bibliography

[14] L. Amaru, P.-E. Gaillardon, G. De Micheli, Majority-Inverter Graph: A Novel Data-Structure

and Algorithms for Efficient Logic Optimization, Design Automation Conference (DAC),

San Francisco, CA, USA, 2014.

[15] M. Ciesielski, C. Yu, W. Brown, D. Liu, A. Rossi, Verification of Gate-level Arithmetic Circuits

by Function Extraction In ACM Design Automation Conference (DAC-2015). 2015.

[16] L. Amaru, P.-E. Gaillardon, R. Wille, G. De Micheli, Exploiting Inherent Characteristics of

Reversible Circuits for Faster Combinational Equivalence Checking, DATE’16.

[17] K. Bernstein et al., Device and Architecture Outlook for Beyond CMOS Switches, Proceed-

ings of the IEEE, 98(12): 2169-2184, 2010.

[18] T. Ernst, Controlling the Polarity of Silicon Nanowire Transistors, Science 340, 1414 (2013);

[19] Y.-M, Lin, et al., High-performance carbon nanotube field-effect transistor with tunable

polarities, Nanotechnology, IEEE Transactions on 4.5 (2005): 481-489.

[20] Heejun Yang et al., Graphene Barristor, a Triode Device with a Gate-Controlled Schottky

Barrier, Science 336, 1140 (2012).

[21] S.-L. Li, et al., Complementary-Like Graphene Logic Gates Controlled by Electrostatic

Doping, Small 7.11 (2011): 1552-1556.

[22] S. Iba, et al., Control of threshold voltage of organic field-effect transistors with double-gate

structures, Applied Physics Letters 87.2 (2005): 023509.

[23] D. Lee, et al. Combinational logic design using six-terminal NEM relays, Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on 32.5 (2013): 653-666.

[24] M. Spencer, et al., Demonstration of integrated micro-electro-mechanical relay circuits for

VLSI applications, IEEE Journal of Solid-State Circuits, 46.1: 308-320, 2011.

[25] T. Toffoli, Reversible computing, in Automata, Languages and Programming, W. de Bakker

and J. van Leeuwen, Eds. Springer, 1980, p. 632, technical Memo MIT/LCS/TM-151, MIT

Lab. for Comput. Sci.

[26] T. Schneider, et al., Realization of spin-wave logic gates, Applied Physics Letters 92.2

(2008): 022505.

[27] Khitun, Alexander, and Kang L. Wang. "Nano scale computational architectures with Spin

Wave Bus." Superlattices and Microstructures 38.3 (2005): 184-200.

[28] A. Khitun, et al., Non-volatile magnonic logic circuits engineering, Journal of Applied

Physics, 110:034306, Aug. 2011.

[29] E. Linn, R. Rosezin, C. Kügeler, R. Waser, "Complementary resistive switches for passive

nanocrossbar memories," Nature Materials, 9, 2010.

12

Bibliography

[30] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, R. Waser, "Beyond von Neumann–logic

operations in passive crossbar arrays alongside memory operations," Nanotechnology,

23(305205), 2012.

[31] Sandeep Miryala et al., Exploiting the Expressive Power of Graphene Reconfigurable Gates

via Post-Synthesis Optimization, Proc. GLVSLI’15.

[32] I. Amlani, et al. Digital logic gate using quantum-dot cellular automata, Science 284.5412

(1999): 289-291.

[33] Li, Wei, et al. "Three-input majority logic gate and multiple input logic circuit based on

DNA strand displacement." Nano letters 13.6 (2013): 2980-2988.

[34] L. Amaru, P.-E. Gaillardon, S. Mitra, G. De Micheli, New Logic Synthesis as Nanotechnology

Enabler, accepted in Proceedings of the IEEE, 2015.

[35] A. Mishchenko, S. Chatterjee, R. K. Brayton, DAG-aware AIG rewriting a fresh look at

combinational logic synthesis, In Proceedings of the 43rd annual Design Automation

Conference (pp. 532-535), 2006.

[36] A. Mishchenko, et al. Delay optimization using SOP balancing, Proc. ICCAD, 2011.

[37] A. Mishchenko at al., Using simulation and satisfiability to compute flexibilities in Boolean

networks, IEEE TCAD 25 (5): 743-755, 2006.

[38] O. Coudert, J.C. Madre, A unified framework for the formal verification of sequential

circuits, Proc. ICCAD, 1990

[39] O. Coudert, C. Berthet, J.C. Madre,Verification of sequential machines using boolean

functional vectors, Proc. International Workshop on Ap- plied Formal Methods for Correct

VLSI Design, 1989.

[40] A. Mishchenko, et al. Improvements to combinational equivalence checking, IEEE/ACM

International Conference on. Computer-Aided Design, 2006. ICCAD’06.

13

Part 1: Logic Representation, Manipu-
lation and Optimization

The first part of this thesis is dedicated to logic representation, manipulation and optimization.

It deals with two main topics: biconditional logic and majority logic. For biconditional logic, a

new canonical binary decision diagram is introduced, examining two variables per decision

node rather than only one. For majority logic, a directed-acyclic graph consisting of three-

input majority nodes and regular/complemented edges is presented, together with a native

Boolean algebra.

15

2 Biconditional Logic

In this chapter, we present Biconditional Binary Decision Diagrams (BBDDs), a novel canonical

representation form for Boolean functions. BBDDs are binary decision diagrams where the

branching condition, and its associated logic expansion, is biconditional on two variables.

Empowered by reduction and ordering rules, BBDDs are remarkably compact and unique for

a Boolean function. The interest of such representation form in modern Electronic Design

Automation (EDA) is twofold. On the one hand, BBDDs improve the efficiency of traditional

EDA tasks based on decision diagrams, especially for arithmetic intensive designs. On the other

hand, BBDDs represent the natural and native design abstraction for emerging technologies

where the circuit primitive is a comparator, rather than a simple switch. We provide, in this

chapter, a solid ground for BBDDs by studying their underlying theory and manipulation

properties. Thanks to an efficient BBDD software package implementation, we validate (i)

runtime reduction in traditional decision diagrams applications with respect to other DDs,

and (ii) improved synthesis of circuits in standard and emerging technologies.

2.1 Introduction

The choice of data structure is crucial in computing applications, especially for the automated

design of digital circuits. When logic functions are concerned, Binary Decision Diagrams

(BDDs) [1–3] are a well established cogent and unique, i.e., canonical, logic representation

form. BDDs are widely used in Electronic Design Automation (EDA) to accomplish important

tasks, e.g., synthesis [4], verification [5], testing [6], simulation [7], and others. Valuable ex-

tensions [8] and generalizations [9] of BDDs have been proposed in literature to improve the

performance of EDA applications based on decision diagrams. The corresponding software

packages [10, 11] are indeed mature and supported by a solid theory. However, there are still

combinational designs, such as multipliers and arithmetic circuits, that do not fit modern

computational capabilities when represented by existing canonical decision diagrams [24].

The quest for new data structures handling such hard circuits, and possibly pushing further

the performance for ordinary circuits, is of paramount importance for next-generation dig-

ital designs. Furthermore, the rise of emerging technologies carrying new logic primitives

17

Chapter 2. Biconditional Logic

demands for novel logic representation forms that fully exploit a diverse logic expressive

power. For instance, controllable polarity Double-Gate (DG) transistors, fabricated in silicon

nanowires [12], carbon nanotubes [13] or graphene [14] technologies, but also nanorelays [15],

intrinsically behave as comparators rather than switches. Hence, conventional data structures

are not appropriate to model natively their functionality [16].

In this chapter, we present Biconditional Binary Decision Diagrams (BBDDs), a novel canonical

BDD extension. While original BDDs are based on the single-variable Shannon’s expansion,

BBDDs employ a two-variable biconditional expansion, making the branching condition at

each decision node dependent on two variables per time. Such feature improves the logic

expressive power of the binary decision diagram. Moreover, BBDDs represent also the natural

and native design abstraction for emerging technologies [12–15] where the circuit primitive is

a comparator, rather than a switch.

We validate the benefits deriving from the use of BBDDs in EDA tasks through an efficient

software manipulation package, available online [19]. Considering the MCNC benchmark

suite, BBDDs are built 1.4× and 1.5× faster than original BDDs and Kronecker Functional

Decision Diagrams (KFDDs) [9], while having also 1.5× and 1.1× fewer nodes, respectively.

Moreover, we show hard arithmetic circuits that fit computing capabilities with BBDDs but

are not practical with state-of-art BDDs or KFDDs. Employed in the synthesis of an iterative

decoder design, targeting standard CMOS technology, BBDDs advantageously pre-structure

arithmetic circuits as front-end to a commercial synthesis tool, enabling to meet tight timing

constraints otherwise beyond the capabilities of traditional synthesis. The combinational

verification of the optimized design is also sped up by 11.3% using BBDDs in place of standard

BDDs. Regarding the automated design for emerging technologies, we similarly employed

BBDDs as front-end to a commercial synthesis tool but then targeting a controllable-polarity

Double-Gate (DG) Silicon NanoWires Field Effect Transistors (SiNWFETs) technology [12].

Controllable-polarity DG-SiNWFETs behave as binary comparators [12]. Such primitive is

naturally modelled by BBDDs. Experimental results show that the effectiveness of BBDD

pre-structuring for circuits based on such devices is even higher than for standard CMOS, thus

enabling a superior exploitation of the emerging technology features.

The remainder of this chapter is organized as follows. Section 2.2 first provides a background

on BDDs and then discusses the motivations for the study of BBDDs. In Section 2.3, the formal

theory for BBDDs is introduced, together with efficient manipulation algorithms. Section 2.4

first shows theoretical size bounds for notable functions represented with BBDDs and then

compares the performance of our BBDD software package with other state-of-art packages

for BDDs and KFDDs. Section 2.5 presents the application of BBDDs to circuit synthesis and

verification in traditional technology. Section 2.6 presents the application of BBDDs to circuit

synthesis in emerging technologies. This chapter is concluded in Section 2.7.

18

2.2. Background and Motivation

2.2 Background and Motivation

This section first provides the background and the basic terminology associated with binary

decision diagrams and their extensions. Then, it discusses the motivations to study BBDDs,

from both a traditional EDA and an emerging technology perspectives.

2.2.1 Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are logic representation structures first introduced by

Lee [1] and Akers [2]. Ordering and reduction techniques for BDDs were introduced by Bryant

in [3] where it was shown that, with these restrictions, BDDs are a canonical representation

form. Canonical BDDs are often compact and easy to manipulate. For this reason, they are

extensively used in EDA and computer science. In the following, we assume that the reader

is familiar with basic concepts of Boolean algebra (for a review see [1, 20]) and we review

hereafter the basic terminology used in the rest of the paper.

Terminology and Fundamentals

A BDD is a Direct Acyclic Graph (DAG) representing a Boolean function. A BDD is uniquely

identified by its root, the set of internal nodes, the set of edges and the 1/0-sink terminal nodes.

Each internal node (Fig. 2.1(a)) in a BDD is labeled by a Boolean variable v and has two

out-edges labeled 0 and 1. Each internal node also represents the Shannon’s expansion with

a

0

f=ab

1

b

0 1

1

complemented
attribute

v

0

f(v,w,..,z)

1

f(0,w,..,z) f(1,w,..,z)

a) b)

Figure 2.1: BDD non-terminal node (a) canonical BDD for a·b function (b).

respect to its variable v :

f (v, w, .., z) = v · f (1, w, .., z)+ v ′· f (0, w, .., z) (2.1)

19

Chapter 2. Biconditional Logic

The 1- and 0-edges connect to positive and negative Shannon’s cofactors, respectively.

Edges are characterized by a regular/complemented attribute. Complemented edges indicate

to invert the function pointed by that edge.

We refer hereafter to BDDs as to canonical reduced and ordered BDDs [3], that are BDDs where

(i) each input variable is encountered at most once in each root to sink path and in the same

order on all such paths, (ii) each internal node represent a distinct logic function and (iii) only

0-edges can be complemented. Fig. 2.1(b) shows the BDD for function f = a ·b.

In the rest of this paper, symbols ⊕ and ¯ represent XOR and XNOR operators, respectively.

Symbol ⊗ represents any 2-operand Boolean operator.

Previous BDD Extensions

Despite BDDs are typically very compact, there are functions for which their representation is

too large to be stored and manipulated. For example, it was shown in [24] that the BDD for the

multiplier of two n-bit numbers has at least 2n/8 nodes. For this reason, several extensions of

BDDs have been suggested.

One first extension are free BDDs, where the variable order condition is relaxed allowing

polynomial size representation for the multiplier [22]. However, such relaxation of the order

sacrifices the canonicity of BDDs, making manipulation of such structures less efficient.

Indeed, canonicity is a desirable property that permits operations on BDDs to have an efficient

runtime complexity [3]. Another notable approach trading canonicity for compactness is

parity-BDDs (⊕-BDDs) presented in [25]. In ⊕-BDDs, a node can implement either the

standard Shannon’s expansion or the ⊕ (XOR) operator. Thanks to this increased flexibility,

⊕-BDDs allow certain functions having exponential size with original BDDs to be instead

represented in polynomial size. Again, the manipulation of ⊕-BDDs is not as efficient as with

original BDDs due to the heterogeneity introduced in the diagrams by additional ⊕-nodes.

Considering now BDD extensions preserving canonicity, zero-suppressed BDDs [30] are

BDDs with modified reduction rules (node elimination) targeting efficient manipulation

of sparse sets. Transformation BDDs (TBDDs) [33, 35] are BDDs where the input variables

of the decision diagram are determined by a logic transformation of the original inputs.

When the input transformation is an injective mapping, TBDDs are canonical representation

form [35]. In theory, TBDDs can represent every logic function with polynomial size given

the perfect input transformation. However, the search for the perfect input transformation

is an intractable problem. Moreover, traditional decision diagram manipulation algorithms

(e.g., variable re-ordering) are not efficient with general TBDDs due to the presence of the

input transformation [22]. Nevertheless, helpful and practical TBDDs have been proposed in

literature, such as linear sifting of BDDs [31, 32] and Hybrid Decision Diagrams (HDDs) [34].

Linear sifting consists of linear transformations between input variables carried out on-line

during construction. The linear transformations are kept if they reduce the size of the BDD

20

2.2. Background and Motivation

or undone in the other case. On the one hand, this makes the linear transform dependent

itself on the considered BDD and therefore very effective to reduce its size. On the other hand,

different BDDs may have different transforms and logic operations between them become

more complicated. More discussion for linear sifting and comparisons to our proposed BDD

extension are given in Section 2.3.1. HDDs are TBDDs having as transformation matrix the

Kronecker product of different 2x2 matrices. The entries of such matrices are determined via

heuristic algorithms. HDDs are reported to achieve a remarkable size compression factor (up

to 3 orders of magnitude) with respect to BDDs [34] but they suffer similar limitations as linear

sifting deriving from the dependency on the particular, case-dependent, input transformation

employed.

Other canonical extensions of BDDs are based on different core logic expansions driving the

decision diagram. Functional Decision Diagrams (FDDs) [8] fall in this category employing the

(positive) Davio’s expansion in place of the Shannon’s one:

f (v, w, .., z) = f (0, w, .., z)⊕ v · (f (0, w, .., z)⊕ f (1, w, .., z)) (2.2)

Since the Davio expansion is based on the ⊕ operator, FDDs provide competitive represen-

tations for XOR-intensive functions. Kronecker FDDs (KFDDs) [9] are a canonical evolution

of FDDs that can employ both Davio’s expansions (positive and negative) and Shannon’s

expansion in the same decision diagram provided that all the nodes belonging to the same

level use the same decomposition type. As a consequence, KFDDs are a superset of both

FDDs and BDDs. However, the heterogeneity of logic expansion types employable in KFDDs

makes their manipulation slightly more complicated than with standard BDDs. For problems

that are more naturally stated in the discrete domain rather than in terms of binary values,

Multi-valued Decision Diagrams (MDDs) have been proposed [40] as direct extension of BDDs.

MDDs have multiple edges, as many as the cardinality of the function domain, and multiple

sink nodes, as many as the cardinality of the function codomain. We refer the reader to [22]

for more details about MDDs.

Note that the list of BDD extensions considered above is not complete. Due to the large

number of extensions proposed in literature, we have discussed only those relevant for the

comprehension of this work.

In this chapter, we present a novel canonical BDD extension where the branching decisions are

biconditional on two variables per time rather than on only one. The motivation for this study

is twofold. First, from a theoretical perspective, considering two variables per time enhances

the expressive power of a decision diagram. Second, from an application perspective, there

exist emerging devices better modeled by a two-variable (biconditional) comparator rather

than a single variable switch. In this context, the proposed BDD extension serves as natural

logic abstraction. A discussion about the technology motivation for this work is provided

hereafter.

21

Chapter 2. Biconditional Logic

2.2.2 Emerging Technologies

Many logic representation forms are inspired by the underlying functionality of contemporary

digital circuits. Silicon-based Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs)

form the elementary blocks for present electronics. In the digital domain, a silicon transistor

behaves as a two-terminal binary switch driven by a single input signal. The Shannon’s

expansion captures such operation in the form of a Boolean expression. Based on it, logic

representation and manipulation of digital circuits is efficient and automated.

With the aim to support the exponential growth of digital electronics in the future, novel

elementary blocks are currently under investigation to overcome the physical limitations of

standard transistors. Deriving from materials, geometries and physical phenomena differ-

ent than MOSFETs, many emerging devices are not naturally modeled by traditional logic

representation forms. Therefore, novel CAD methodologies are needed, which appropriately

handle such emerging devices.

We concentrate here on a promising class of emerging devices that inherently implement a

two-input comparator rather than a simple switch. These innovative devices come in different

technologies, such as silicon nanowires [12], carbon nanotubes [13], graphene [14] and nanore-

lays [15]. In the first three approaches, the basic element is a double-gate controllable-polarity

A?B

A?B

A=B
on(off)

A≠B
off(on)

Nanorelays

Graphene-FETsSilicon-Nanowire-FETs

Carbon-Nanotube-FETs

Figure 2.2: Common logic abstraction for emerging devices: controllable polarity double-gate
FETs in silicon nanowires [12], carbon nanotubes [13], graphene [14] but also six terminal
nanorelays [15].

transistor. It enables online configuration of the device polarity (n or p) by adjusting the

voltage at the second gate. Consequently, in such a double-gate transistor, the on/off state is

biconditional on both gates values. The basic element in the last approach [15] is instead a

six-terminals nanorelays. It can implement complex switching functions by controlling the

voltages at the different terminals. Following to its geometry and physics, the final electric way

connection in the nanorelay is biconditional on the terminal values [15]. Even though they

22

2.3. Biconditional Binary Decision Diagrams

are based on different technologies, all the devices in [12–15] have the same common logic

abstraction, depicted by Fig. 2.2.

Figure 2.3: Sketch structure and fabrication images of controllable polarity double-gate SiN-
WFETs from [12].

In this chapter, we mainly focus on double-gate controllable polarity SiNWFETs [12] to show-

case the impact of novel logic representation forms in emerging technology synthesis. A device

sketch and fabrication views from [12] are reported in Fig. 2.3 for the sake of clarity.

Then, we also present results for two other nanotechnologies featuring a two-input comparator

functionality: nanorelays [15] and reversible logic [56].

Without a dedicated logic abstraction and synthesis methodology, the full potential of these

technologies may remain unveiled. We propose in this paper a novel logic representation form,

based on the biconditional connective, that naturally harnesses the operation of a two-input

comparator. Section 2.6 will show the impact of our representation form in the synthesis of

emerging nanotechnologies.

2.3 Biconditional Binary Decision Diagrams

This section introduces Biconditional Binary Decision Diagrams (BBDDs). First, it presents

the core logic expansion that drives BBDDs. Then, it gives ordering and reduction rules that

makes Reduced and Ordered BBDDs (ROBBDDs) compact and canonical. Finally, it discusses

efficient algorithms for BBDD manipulation and their practical implementation in a software

package.

23

Chapter 2. Biconditional Logic

2.3.1 Biconditional Expansion

Logic expansions, also called decompositions, are the driving core of various types of decision

diagrams. In [42], a theoretical study concluded that, among all the possible one-variable

expansions, only Shannon’s, positive Davio’s and negative Davio’s types help to reduce the

size of decision diagrams. While this result prevents from introducing more one-variable

decomposition types, new multi-variable decompositions are still of interest. In this work, we

consider a novel logic expansion, called biconditional expansion, examining two variables

per time rather than one, in order to produce novel compact decision diagrams. The bicondi-

tional expansion is one of the many possible two-variable decompositions. Note that other

advantageous two-variable decompositions may exist but their study is out of the scope of

this work.

Definition The biconditional expansion is a two-variable expansion defined ∀ f ∈ Bn , with

n > 1, as:

f (v, w, .., z) = (v ⊕w)· f (w ′, w, .., z)+ (v ¯w)· f (w, w, .., z) (2.3)

with v and w distinct elements in the support for function f .

As per the biconditional expansion in (2.3), only functions that have two or more variables can

be decomposed. Indeed, in single variable functions, the terms (v ⊕w) and (v ¯w) cannot be

computed. In such a condition, the biconditional expansion of a single variable function can

reduce to a Shannon’s expansion by fixing the second variable w to logic 1. With this boundary

condition, any Boolean function can be fully decomposed by biconditional expansions.

Note that a similar concept to biconditional expansion appears in [31, 32] where linear trans-

formations are applied to BDDs. The proposed transformation replaces one variable xi with

xi ¯x j . In the BDD domain, xi 7→ xi ¯x j transforms a Shannon’s expansion around variable

xi into a biconditional expansion around variables xi and x j . We differentiate our work from

linear transformations by the abstraction level at which we embed the biconditional connec-

tive. Linear transformations in [31, 32] operate as post-processing of a regular BDD, while we

propose to entirely substitute the Shannon’s expansion with the biconditional expansion. By

changing the core engine driving the decision diagram new compact representation opportu-

nities arise. However, a solid theoretical foundation is needed to exploit such potential. We

address this requirement in the rest of this section.

2.3.2 BBDD Structure and Ordering

Biconditional Binary Decision Diagrams (BBDD) are driven by the biconditional expansion.

Each non-terminal node in a BBDD has the branching condition biconditional on two vari-

ables. We call these two variables the Primary Variable (PV) and the Secondary Variable

24

2.3. Biconditional Binary Decision Diagrams

(SV). An example of a BBDD non-terminal node is provided by Fig. 2.4. We refer hereafter to

PV 6= SV and PV = SV edges in a BBDD node simply as 6=-edges and =-edges, respectively.

PV=v

f(v,w,..,z)

f(w’,w,..,z) f(w,w,..,z)

SV=w

PV=SVPV=SV

Figure 2.4: BBDD non-terminal node.

To achieve Ordered BBDDs (OBBDDs), a variable order must be imposed for PV s and a rule

for the other variables assignment must be provided. We propose the Chain Variable Order

(CVO) to address this task. Given a Boolean function f and a variable order π= (π0,π1, ..,πn−1)

for the support variables of f , the CVO assigns PVs and SVs as:{
PVi =πi

SVi =πi+1
with i = 0,1, ..,n −2;

{
PVn−1 =πn−1

SVn−1 = 1
(2.4)

Example CVO Example: From π= (π0,π1,π2), the corresponding CVO ordering is obtained

by the following method. First, PV0 =π0, PV1 =π1 and SV0 =π1, SV1 =π2 are assigned. Then,

the final boundary conditions of (2.4) are applied as PV2 =π2 and SV2 = 1. The consecutive

ordering by couples (PVi , SVi) is thus ((π0,π1), (π1,π2), (π2,1)).

The Chain Variable Order (CVO) is a key factor enabling unique representation of ordered

biconditional decision diagrams. For the sake of clarity, we first consider the effect of the CVO

on complete OBBDDs and then we move to generic reduced BBDDs in the next subsection.

Definition A complete OBBDD of n variables has 2n-1 distinct internal nodes, no sharing, and

2n terminal 0-1 nodes.

Lemma 2.3.1 For a Boolean function f and a variable order π, there exists only one complete

OBBDD ordered with CVO(π).

Proof Say n the number of variables in f . All complete OBBDD of n variables have an identical

internal structure, i.e., a full binary tree having 2n - 1 internal nodes. The distinctive feature

25

Chapter 2. Biconditional Logic

of a complete OBBDD for f is the distribution of terminal 0-1 nodes. We need to show that

such distribution is unique in a complete OBBDD ordered with CVO(π). Consider the unique

truth table for f with 2n elements filled as per π. Note that in a complete OBBDD there are 2n

distinct paths by construction. We link the terminal value reached by each path to an element

of the truth table. We do so by recovering the binary assignment of π generating a path. That

binary assignment is the linking address to the truth table entry. For example, the terminal

value reached by the path (π0 6=π1,π1 =π2,π2 6= 1) corresponds to the truth table entry at the

address (π0 = 1,π1 = 0,π2 = 0). Note that distinct paths in the CVO(π) corresponds to distinct

binary assignments of π, owing to the isomorphism induced by the biconditional expansion.

By exhausting all the 2n paths we are guaranteed to link all entries in the truth table. This

procedure establishes a one-to-one correspondence between the truth table and the complete

OBBDD. Since truth tables filled as per π are unique, also complete OBBDD ordered with

CVO(π) are unique. �

We refer hereafter to OBBDDs as to BBDDs ordered by the CVO.

2.3.3 BBDD Reduction

In order to improve the representation efficiency, OBBDDs should be reduced according to a

set of rules. We present hereafter BBDD reduction rules, and we discuss the uniqueness of the

so obtained ordered and reduced BBDDs.

Reduction Rules

The straightforward extension of OBDD reduction rules [3] to OBBDDs, leads to weak reduced

OBBDDs (ROBBDDs). This kind of reduction is called weak due to the partial exploitation of

OBBDD reduction opportunities. A weak ROBBDD is an OBBDD respecting the two following

rules:

R1) It contains no two nodes, root of isomorphic subgraphs.

R2) It contains no nodes with identical children.

In addition, the OBBDD representation exhibits supplementary interesting features enabling

further reduction opportunities. First, levels with no nodes (empty levels) may occur in

OBBDDs. An empty level is a level in the decision diagram created by the Chain Variable

Order but containing no nodes as a result of the augmented functionality of the biconditional

expansion. Such levels must be removed to compact the original OBBDD. Second, subgraphs

that represent functions of a single variable degenerates into a single DD node driven by the

Shannon’s expansion followed by the sink terminal node. The degenerated node functionality

is the same as in a traditional BDD node. Single variable condition is detectable by checking

the cardinality of the support set of the subgraph.

26

2.3. Biconditional Binary Decision Diagrams

Formally, a strong ROBBDD is an OBBDD respecting R1 and R2 rules, and in addition:

R3) It contains no empty levels.

R4) Subgraphs representing single variable functions degenerates into a single DD node driven

by the Shannon’s expansion.

For the sake of simplicity, we refer hereafter to a single variable subgraph degenerated into a

single DD node as a BDD node.

Fig. 2.5 depicts weak and strong ROBBDDs for the function f = a·b + (a ⊕b)·(c ¯d). The

weak ROBBDD is forced to allocate 4 levels (one for each variable) to fully represent the

target function resulting in 5 internal nodes. On the other hand, the strong ROBBDD exploits

reduction rule R4 collapsing the =-branch of the root node (a = b) into a single BDD node.

Moreover, rule R3 suppresses empty level further compressing the diagram in 3 levels of depth

and 3 internal nodes.

==

==

1

==

==

==

==

1

1

==

0

a
b

b
c

cc
d d

d
1

a
b

b

c
d

f fa) b)

Figure 2.5: Function to be represented: f = a·b + (a ⊕b)· (c ¯d), weak ROBBDD for f (a) and
strong ROBBDD for f (b).

Canonicity

Weak and strong reduced OBBDDs are canonical, as per:

27

Chapter 2. Biconditional Logic

Lemma 2.3.2 For a given Boolean function f and a variable order π, there exists only one weak

ROBBDD.

Proof Weak ROBBDDs are obtained by applying reduction rules R1 and R2, in any combi-

nation, to an OBBDD until no other R1 or R2 rule can be applied. Without loss of generality,

suppose to start from a complete OBBDD. Any other valid OBBDD can be reached during

the reduction procedure. In [44], it is shown that the iterative reduction of general decision

diagrams, based on rules R1 and R2, reaches a unique structure. Since the initial complete

OBBDD is unique, owing to Lemma 2.3.1, and the iterative reduction based on rules R1 and

R2 leads to a unique outcome, owing to [44], also weak ROBBDD are unique for a CVO(π), i.e.,

canonical. �

Theorem 2.3.3 A strong ROBBDD is a canonical representation for any Boolean function f .

Proof strong ROBBDDs can be directly derived by applying reduction rules R3 and R4, in any

combination, to weak ROBBDDs until no other R3 or R4 rule can be applied.

In order to prove the canonicity of strong ROBBDD, we proceed by five succeeding logical

steps. The final goal is to show that any sequence of reductions drawn from {R3,R4}, that

continues until no other reduction is possible, reaches a unique strong ROBBDD structure,

preserving the uniqueness property of the starting weak ROBBDD.

1. Reductions R3 and R4 preserve distinctness. As it holds for rules R1 and R2, also R3 and

R4 preserve distinctness. Rule R3 compacts the decision diagram structure without any

ambiguity in the elimination of levels, i.e., when a level is empty it is uniquely removed. Rule

R4 substitutes single variable functions with a single BDD node (followed by the sink node).

This operation has a specific and unique outcome since it is combined with rules R1 and R2

(each node represents a distinct logic function).

2. The set of applicable rules R4 is fixed. In a given weak ROBBDD, the set of all possible

single variable subgraph collapsing (rule R4) is fixed a priori, i.e., there exists a specific set

of applicable R4 reductions independent of the reduction sequence employed. Consider a

top-down exploration of the starting weak ROBBDD. At each branching condition, the support

sets of the current node children are checked. If the cardinality of the support set is 1 (single

variable) then this subgraph is reducible by R4. Regardless of the particular exploration order,

the support set of all subgraphs remains the same. Therefore, the applicability of rules R4

depends only on the given weak ROBBDD structure.

3. Rules R4 are independent of rules R3. Rules R3 (empty levels elimination) cannot preclude

the exercise of rules R4 (single-variable subgraphs collapsing) because they eliminate levels

with no nodes, where no rule R4 could apply.

28

2.3. Biconditional Binary Decision Diagrams

4. Rules R3 can be precluded by rules R4. Rules R4 can preclude the exercise of rules R3 since

the collapse of subgraphs into a single node can make some levels in the decision diagram

empty (see Fig. 2.5). Nevertheless, each rule R3 is reachable in a reduction sequence that

guarantees to exhaust all the blocking R4 before its termination.

5. Iterative reduction strategy is order independent. We refer to an iterative reduction strategy

as to a sequence of reductions drawn from {R3,R4} applied to a weak ROBBDD, that continues

until no other reduction is possible. At each step of reduction sequence, the existence of a

new reduction R3 or R4 is checked. Following points 2 and 3, all possible R4 are identifiable

and reachable at any time before the end of the reduction sequence, regardless of the order

employed. Consider now rules R3. Some of them are not precluded by rules R4. Those are

also identifiable and reachable at any time before the end of the reduction sequence. The

remaining R3 are precluded by some R4. However, all possible R4, included those blocking

some R3, are guaranteed to be accomplished before the end of the reduction. Therefore, there

always exists a step, in any reduction sequence, when each rule R3 is reachable as the blocking

R4 are exhausted. Consequently, any iterative reduction strategy drawn from {R3,R4} achieves

a unique reduced BBDD structure (strong ROBBDD).

It follows that any combination of reduction rules R3 and R4 compact a canonical weak

ROBBDD into a unique strong ROBBDD, preserving canonicity. �

2.3.4 BBDD Complemented Edges

Being advantageously applied in modern ROBDD2s packages [10], complemented edges

indicate to invert the function pointed by an edge. The canonicity is preserved when the com-

plement attribute is allowed only at 0-edges (only logic 1 terminal node available). Reduction

rules R1 and R2 continue to be valid with complemented edges [22]. Similarly, we extend

ROBBDDs to use complemented edges only at 6=-edges, with also only logic 1 terminal node

available, to maintain canonicity.

Theorem 2.3.4 ROBBDDs with complemented edges allowed only at 6=-edges are canonical.

Proof Reduction rules R1 and R2 support complemented edges at the else branch of canoni-

cal decision diagrams [22]. In BBDDs, the else branch is naturally the 6=-edge, as the bicondi-

tional connective is true (then branch) with the =-edge. We can therefore extend the proof

of Lemma 2.3.2 to use complemented edges at 6=-edges and to remove the logic 0 terminal

node. It follows that weak ROBBDDs with complented edges at 6=-edges are canonical. The

incremental reduction to strong ROBBDDs does not require any knowledge or action about

edges. Indeed, the proof of Theorem 2.3.3 maintains its validity with complemented edges.

Consequently, strong ROBBDDs with complemented edges at 6=-edges are canonical. �

29

Chapter 2. Biconditional Logic

For the sake of simplicity, we refer hereafter to BBDDs as to canonical ROBBDDs with comple-

mented edges, unless specified otherwise.

2.3.5 BBDD Manipulation

So far, we showed that, under ordering and reduction rules, BBDDs are unique and potentially

very compact. In order to exploit such features in real-life tools, a practical theory for the

construction and manipulation of BBDDs is needed. We address this requirement by present-

ing an efficient manipulation theory for BBDDs with a practical software implementation,

available online at [19].

Rationale for Construction and Manipulation of BBDDs

DDs are usually built starting from a netlist of Boolean operations. A common strategy

employed for the construction task is to build bottom-up the DD for each element in the

netlist, as a result of logic operations between DDs computed in the previous steps. In this

context, the core of the construction task is an efficient Boolean operation algorithm between

DDs. In order to make such approach effective in practice, other tasks are also critical, such

as memory organization and re-ordering of variables. With BBDDs, we follow the same

construction and manipulation rationale, but with specialized techniques taking care of the

biconditional expansion.

Considerations to Design an Efficient BBDD Package

Nowadays, one fundamental reason to keep decision diagrams small is not just to successfully

fit them into the memory, that in a modern server could store up to 1 billion nodes, but more

to maximize their manipulation performance. Following this trend, we design the BBDD

manipulation algorithms and data structures aiming to minimize the runtime while keeping

under control the memory footprint. The key concepts unlocking such target are (i) unique

table to store BBDD nodes in a strong canonical form1, (ii) recursive formulation of Boolean

operations in terms of biconditional expansions with relative computed table, (iii) memory

management to speed up computation and (iv) chain variable re-ordering to minimize the

BBDD size. We discuss in details each point hereafter.

Unique Table

BBDD nodes must be stored in an efficient form, allowing fast lookup and insertion. Thanks

to canonicity, BBDD nodes are uniquely labeled by a tuple {CVO-level, 6=-child, 6=-attribute,

=-child}. A unique table maps each tuple {CVO-level, 6=-child, 6=-attribute, =-child} to its

corresponding BBDD node via a hash-function. Hence, each BBDD node has a distinct

1A strong canonical form is a form of data pre-conditioning to reduce the complexity of equivalence test [46].

30

2.3. Biconditional Binary Decision Diagrams

entry in the unique table pointed by its hash-function, enabling a strong canonical form

representation for BBDDs.

Exploiting this feature, equivalence test between two BBDD nodes corresponds to a simple

pointer comparison. Thus, lookup and insertion operations in the unique table are efficient.

Before a new node is added to the BBDD, a lookup checks if its corresponding tuple {CVO-level,

6=-child, 6=-attribute, =-child} already exists in the unique table and, if so, its pointed node is

returned. Otherwise, a new entry for the node is created in the unique table.

Boolean Operations between BBDDs

The capability to apply Boolean operations between two BBDDs is essential to represent and

manipulate large combinatorial designs. Consequently, an efficient algorithm to compute

f ⊗g , where ⊗ is any Boolean function of two operands and { f , g } are two existing BBDDs, is the

core of our manipulation package. A recursive formulation of f ⊗ g , in terms of biconditional

expansions, allows us to take advantage of the information stored in the existing BBDDs and

hence reduce the computation complexity of the successive operation. Algorithm 1 shows the

outline of the recursive implementation for f ⊗ g . The input of the algorithm are the BBDDs

for { f , g }, and the two-operand Boolean function ⊗ that has to be computed between them. If

f and g are identical, or one of them is the sink 1 node, the operation f ⊗ g reaches a terminal

condition. In this case, the result is retrieved from a pre-defined list of trivial operations and

returned immediately (Alg.1α). When a terminal condition is not encountered, the presence

of { f , g ,⊗} is first checked in a computed table, where previously performed operations are

stored in case of later use. In the case of positive outcome, the result is retrieved from the

computed table and returned immediately (Alg.1β). Otherwise, f ⊗ g has to be explicitly

computed (Alg.1γ). The top level in the CVO for f ⊗g is determined as i = maxlevel { f , g } with

its {PVi ,SVi } referred as to {v, w}, respectively, for the sake of simplicity. The root node for

f ⊗ g is placed at such level i and its children computed recursively. Before proceeding in

this way, we need to ensure that the two-variable biconditional expansion is well defined for

both f and g , particularly if they are single variable functions. To address this case, single

variable functions are prolonged down to mi nl evel { f , g } through a chain of consecutive BBDD

nodes. This temporarily, and locally, may violate reduction rule R4 to guarantee consistent

6=- and =-edges. However, rule R4 is enforced before the end of the algorithm. Provided such

handling strategy, the following recursive formulation, in terms of biconditional expansions,

is key to efficiently compute the children for f ⊗ g :

f ⊗ g = (v ⊕w)(fv 6=w ⊗ gv 6=w)+ (v⊕w)(fv=w ⊗ gv=w) (2.5)

The term (fv 6=w ⊗gv 6=w) represents the 6=-child for the root of f ⊗g while the term (fv=w ⊗gv=w)

represents the =-child. In (fv 6=w ⊗ gv 6=w), the Boolean operation ⊗ needs to be updated

according to the regular/complemented attributes appearing in the edges connecting to fv 6=w

and gv 6=w . After the recursive calls for (fv=w ⊗ gv=w) and (fv 6=w ⊗ gv 6=w) return their results,

reduction rule R4 is applied. Finally, the tuple {top-level, 6=-child, 6=-attribute, =-child} is

31

Chapter 2. Biconditional Logic

found or added in the unique table and its result updated in the computed table.

Algorithm 1 : f ⊗ g

INPUT: BBDDs for { f , g } and Boolean operation ⊗.
OUTPUT: BBDD top node R for f ⊗ g , edge attribute (At tr) for f ⊗ g .

if (terminal case)||(f == g) then
{R, At tr } = identical_terminal({ f , g ,⊗});
return {R, At tr };

else if computed table has entry { f , g ,⊗} then
{R, At tr } = lookup computed table({ f , g ,⊗});
return {R, At tr };

else
i = maxl evel { f , g };
{v, w} = {PV ,SV }@(level = i);
if (|supp(f)| == 1)||(|supp(g)| == 1) then

chain-transform(f , g);
end if
{E ,E → At tr } = fv=w ⊗ gv=w ;
⊗D = upd ateop (⊗, fv 6=w → At tr, gv 6=w → At tr);
{D,D → At tr } = fv 6=w ⊗D gv 6=w ;
if reduction rule R4 applies then

R =BDD-node @(level = i);
else if {E ,E → At tr } == {D,D → At tr } then

R = E ;
else

D → At tr = upd ateat tr (E → At tr,D → At tr);
R = lookup_i nser t (i ,D,D → At tr,E);

end if
insert computed table ({ f , g ,⊗},R,E → At tr);
return {R,E → At tr };

end if

α

β

γ

Observe that the maximum number of recursions in Eq. 2.5 is determined by all possible

combination of nodes between the BBDDs for f and g . Assuming constant time lookup in the

unique and computed tables, it follows that the time complexity for Algorithm 1 is O(| f |· |g |),

where | f | and |g | are the number of nodes of the BBDDs of f and g , respectively.

Memory Management

The software implementation of data-structures for unique and computed tables is essential

to control the memory footprint but also to speed-up computation. In traditional logic

manipulation packages [10], the unique and computed tables are implemented by a hash-table

and a cache, respectively. We follow this approach in the BBDD package, but we add some

specific additional technique. Informally, we minimize the access time to stored nodes and

32

2.3. Biconditional Binary Decision Diagrams

operations by dynamically changing the data-structure size and hashing function, on the basis

of a {size×access-time} quality metric.

The core hashing-function for all BBDD tables is the Cantor pairing function between two

integer numbers [45]:

C (i , j) = 0.5· (i + j)· (i + j +1)+ i (2.6)

which is a bijection from N0 ×N0 to N0 and hence a perfect hashing function [45]. In order

to fit the memory capacity of computers, modulo operations are applied after the Cantor

pairing function allowing collisions to occur. To limit the frequency of collisions, a first modulo

operation is performed with a large prime number m, e.g., m = 15485863, for statistical reasons.

Then, a final modulo operation resizes the result to the current size of the table.

Hashing functions for unique and computed tables are obtaining by nested Cantor pairings

between the tuple elements with successive modulo operations.

Collisions are handled in the unique table by a linked list for each hash-value, while, in the

computed table, the cache-like approach overwrites an entry when collision occurs.

Keeping low the frequency of collisions in the unique and computed tables is of paramount

importance to the BBDD package performance. Traditional garbage collection and dynamic

table resizing [10] are used to address this task. When the benefit deriving by these techniques

is limited or not satisfactory, the hash-function is automatically modified to re-arrange the

elements in the table. Standard modifications of the hash-function consist of nested Cantor

pairings re-ordering and re-sizing of the prime number m.

Chain Variable Re-ordering

The chain variable order for a BBDD influences the representation size and therefore its

manipulation complexity. Automated chain variable re-ordering assists the BBDD package to

boost the performance and reduce the memory requirements. Efficient reordering techniques

for BDDs are based on local variable swap [47] iterated over the whole variable order, following

some minimization goal. The same approach is also efficient with BBDDs. Before discussing

on convenient methods to employ local swaps in a global reordering procedure, we present a

new core variable swap operation adapted to the CVO of BBDDs.

BBDD CVO Swap: Variable swap in the CVO exchanges the PV s of two adjacent levels i and

i +1 and updates the neighbor SV s accordingly. The effect on the original variable order π,

from which the CVO is derived as per Eq. 2.4, is a direct swap of variables πi and πi+1. Note

that all the nodes/functions concerned during a CVO swap are overwritten (hence maintaining

the same pointer) with the new tuple generated at the end of the operation. In this way, the

effect of the CVO swap remains local, as the edges of the above portion of the BBDD still point

to the same logical function.

33

Chapter 2. Biconditional Logic

A variable swap i
 i +1 involves three CVO levels (PVi+2 = w , SVi+2 = x), (PVi+1 = x, SVi+1 =
y) and (PVi = y , SVi = z). The level i +2 must be considered as it contains in SV the variable x,

which is the PV swapped at level i +1. If no level i +2 exists (i +1 is the top level), the related

operations are simply skipped. In the most general case, each node at level i +2, i +1 and

i has 8, 4 and 2 possible children on the portion of BBDD below level i . Some of them may

be identical, following to reduction rules R1-4, or complemented, deriving by the 6=-edges

attributes in their path. Fig. 2.6 depicts the different cases for a general node N located at

level i +2, i +1 or i , with all their possible children. After the swap i
 i +1, the order of

comparisons w?x? y?z is changed to w? y?x?z and the children of N must be rearranged

consequently (? ∈ {=, 6=}). Using the transitive property of equality and congruence in the

binary domain, it is possible to remap w ?x? y ? z into w ? y ?x? z as:

? ∈ {=, 6=}, ? : {=, 6=} → { 6=,=}

(w ?i+2 x = y ?i z) → (w ?i+2 y = x?i z)

(w ?i+2 x 6= y ?i z) → (w ?i+2 y 6= x ?i z)

(2.7)

Following remapping rules in Eq. 2.7, the children for N can be repositioned coherently with

the variable swap. In Fig. 2.6, the actual children rearrangement after variable swap is shown.

In a bottom-up approach, it is possible to assemble back the swapped levels, while intrinsically

Nw=x=y=zNw=x=y≠zNw≠x≠y≠zNw≠x≠y=zNw≠x=y=zNw≠x=y≠zNw=x≠y≠zNw=x≠y=z

Nw=y=x=zNw=y=x≠zNw=y≠x=zNw=y≠x≠zNw≠y=x=zNw≠y=x≠zNw≠y≠x=zNw≠y≠x≠z

Nw=x=y=zNw=x=y≠zNw=x≠y=zNw=x≠y≠z

=

=≠

w
x

x
y

≠

N

y
z

=≠

y
z

=≠
Nw≠x=y=zNw≠x=y≠zNw≠x≠y=zNw≠x≠y≠z

=

x
y

≠

y
z

=≠

y
z

=≠

=

=≠

w
y

y
x

≠

N

x
z

=≠

x
z

=≠

=

y
x

≠

x
z

=≠

x
z

=≠

≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡

Nx=y=zNx=y≠zNx≠y≠zNx≠y=z

Nx≠y≠z Nx=y=zNx=y≠zNx≠y=z

≠

x
y

y
z

y
z

=

= =≠≠

N

Ny≠x≠z Ny=x=zNy=x≠zNy≠x=z

≠

y
x

x
z

x
z

=

= =≠≠

N

≡ ≡ ≡ ≡

Ny=z Ny≠z Ny≠z Ny=z

Ny=zNy≠z

x
y

y
z

=≠

Ny≠x≠z Ny=x=zNy=x≠zNy≠x=z

≠

y
x

x
z

x
z

=

= =≠≠

N

≡ ≡ ≡ ≡

N

a)
b)

c)

before swap before swap

before swap
after swap

after swap

after swap

i+2

i+1 i+1

i+2

i i i i

i i i i i i i

i i i i

i+1 i+1

i+1 i+1

i+1

Figure 2.6: Variable swap i
 i +1 involving the CVO levels (PVi+2 = w , SVi+2 = x), (PVi+1 = x,
SVi+1 = y) and (PVi = y , SVi = z). Effect on nodes at level i +2 (a) i +1 (b) and i (c).

respecting reduction rules R1-4, thanks to the unique table strong canonical form.

BBDD Reordering based on CVO Swap: Using the previously introduced CVO swap theory,

global BBDD re-ordering can be carried out in different fashions. A popular approach for

34

2.4. BBDD Representation: Theoretical and Experimental Results

BDDs is the sifting algorithm presented in [47]. As its formulation is quite general, it happens

to be advantageous also for BBDDs. Its BBDD implementation works as follows: Let n be the

number of variables in the initial order π. Each variable πi is considered in succession and the

influence of the other variables is locally neglected. Swap operations are performed to move

πi in all n potential positions in the CVO. The best BBDD size encountered is remembered

and its πi position in the CVO is restored at the end of the variable processing. This procedure

is repeated for all variables. It follows that BBDD sifting requires O(n2) swap operations.

Evolutions of the original sifting algorithm range between grouping of variables [49], simulated

annealing techniques [50], genetic algorithms [51] and others. All of them are in principle

applicable to BBDD reordering. In any of its flavors, BBDD reordering can be applied to

a previously built BBDD or dynamically during construction. Usually, the latter strategy

produces better results as it permits a tighter control of the BBDD size.

2.4 BBDD Representation: Theoretical and Experimental Results

In this section, we first show some theoretical properties for BBDDs, regarding the repre-

sentation of majority and adder functions. Then, we present experimental results for BBDD

representation of MCNC and HDL benchmarks, accomplished using the introduced BBDD

software package.

2.4.1 Theoretical Results

Majority and adder functions are essential in many digital designs. Consequently, their

efficient representation has been widely studied with state-of-art decision diagrams. We study

hereafter the size for majority and adders with BBDDs and we compare these results with their

known BDD size.

Majority Function

In Boolean logic, the majority function has an odd number n of inputs and an unique output.

The output assumes the most frequent Boolean value among the inputs. With BBDDs, the

M AJn function has a hierarchical structure. In Fig. 2.7, the BBDD for M AJ7 is depicted,

highlighting the hierarchical inclusion of M AJ5 and M AJ3. The key concepts enabling this

hierarchical structure are:

M1) 6=-edges reduce M AJn to M AJn−2: when two inputs assume opposite Boolean values

they do not affect the majority voting decision.

M2) dn/2e consecutive =-edges fully-determine M AJn voting decision: if dn/2e over n (odd)

inputs have the same Boolean value, then this is the majority voting decision value.

35

Chapter 2. Biconditional Logic

a

=

==

c
b

1
0

0
1

1

b

c
b

==

==

e
d

d
c

0 1

c

d
c

= = =

e
d

= =

=

g
f

f
e

=

e
d

= =

0 1

d

=

=
MAJ5(a,b,c,d,e)

MAJ3(a,b,c)

MAJ7(a,b,c,d,e,f,g)

Figure 2.7: BBDD for the 7-input majority function. The inclusion of MAJ5 and MAJ3 functions
is illustrated. Grey nodes are nodes with inverted children due to n to n−2 majority reduction.

The M1 condition traduces in connecting 6=-edges to the BBDD structure for M AJn−2, or to

local duplicated nodes with inverted children (see grey nodes in Fig. 2.7).

The M2 condition implies dn/2e consecutive BBDD nodes cascaded through =-edges.

Note that the variable order is not affecting the BBDD structure for a M AJ function as its

behavior is invariant under input permutations [22].

Theorem 2.4.1 A BBDD for the majority function of n (odd) variables has 1
4 (n2 +7) nodes.

Proof The M2 condition for M AJn requires n −1 nodes while the M1 condition needs the

BBDD structure for M AJn−2. Consequently, the number of BBDD nodes is |M AJn | = |M AJn−2|+
n − 1 with |M AJ3| = 4 (including the sink node) as boundary condition. This is a non-

homogeneous recurrence relation. Linear algebra methods [27] can solve such recurrence

equation. The closed-form solution is |M AJn | = 1
4 (n2 +7). �

36

2.4. BBDD Representation: Theoretical and Experimental Results

Note that with standard BDDs, the number of nodes is |M AJn | = dn
2 e(n −dn

2 e+1)+1 [22]. It

follows that BBDDs are always more compact than BDDs for majority, e.g., the BBDD for the

89-inputs majority function has 1982 nodes while its BDD counterpart has 2026 nodes. These

values, and the law of Theorem 3, have been verified experimentally.

Adder Function

In Boolean logic, a n-bit adder is a function computing the addition of two n-bit binary

numbers. In many logic circuits, a n-bit adder is represented as n cascaded 1-bit adders.

A 1-bit binary adder, commonly called full adder, is a 3-input 2-output Boolean function

described as Sum = a ⊕b ⊕ ci n and Cout = M AJ(a,b,ci n). The BBDD for the full adder is

depicted by Fig. 2.8.

==

1

1

0

a
b

cin

Sum

==

a
b

Cout

10

b
1

=

Figure 2.8: Full adder function with BBDDs, variable order π= (a,b,ci n).

With BBDDs, the 1-bit adder cascading concept can be naturally extended and leads to a

compact representation for a general n-bit adder.

In Fig. 2.9, the BBDD of a 3-bit binary adder (a +b), with a = (a2, a1, a0) and b = (b2,b1,b0),

employing variable order π= (a2,b2, a1,b1, a0,b0), is shown.

Theorem 2.4.2 A BBDD for the n-bit binary adder function has 3n+1 nodes when the variable

order π= (an−1,bn−1, an−2,bn−2, .., a0,b0) is imposed.

Proof The proof follows by induction over the number of bit n and expanding the structure in

Fig. 2.9. �

Note that the BDD counterpart for n-bit adders (best) ordered with

π= (an−1,bn−1, an−2,bn−2, .., a0,b0)

has 5n +2 nodes [22]. For n-bit adders, BBDDs save about 40% of the nodes compared to

BDDs. These results, and the law of Theorem 4, have been verified experimentally.

37

Chapter 2. Biconditional Logic

=

a0
b0

S0

==

a0
b0

0

b0
1

=

=

a1
b1

S1

==

a1
b1

10

b1
1

=

=

a2
b2

S2

==

a2
b2

Cout

b2

=

1

0 1

Figure 2.9: BBDD for the 3-bit binary adder function, variable order π= (a2,b2, a1,b1, a0,b0).

2.4.2 Experimental Results

The manipulation and construction techniques described in Section 2.3.5 are implemented

in a BBDD software package [19] using C programming language. Such package currently

counts about 8k lines of code. For the sake of comparison, we consider CUDD [10] (manip-

ulation package for BDDs) and puma [11] (manipulation package for KFDDs). We examine

three categories of benchmarks: (i) MCNC suite, (ii) portion of Open Cores designs and (iii)

arithmetic HDL benchmarks. CUDD and puma packages read BLIF format files while the

BBDD package reads a Verilog flattened onto primitive Boolean operations. The appropriate

format conversion is accomplished using ABC synthesis tool [17]. For all packages, dynamic

reordering during construction is enabled and based on the original sifting algorithm [47]. For

puma, also the choice of the most convenient decomposition type is enabled. The machine

running the experiments is a Xeon X5650 24-GB RAM machine. We verified with Synopsys

Formality commercial tool the correctness of the BBDD output, which is also in Verilog format.

Table 2.1 shows the experimental results for the three packages. Note that the sizes and

runtime reported derives from heuristic techniques, so better results may exist. Therefore, the

following values provide an indication about the practical efficiency of each decision diagram

38

2.4. BBDD Representation: Theoretical and Experimental Results

Table 2.1: Experimental results for DD construction using BBDDs, BDDs and KFDDs.

Benchmarks Inputs Outputs Wires BBDD CUDD (BDD) puma (KFDD)

Node Count Runtime (s) Node Count Runtime (s) Node Count Runtime (s)

MCNC Benchmarks

C1355 41 32 212 27701 1.22 68427 2.70 49785 8.32

C2670 233 64 825 29833 0.99 30329 0.88 36154 0.10

C499 41 32 656 32305 5.07 122019 5.60 49785 18.41

C1908 33 25 279 22410 0.53 18274 0.73 12716 0.08

C5315 178 123 1689 22263 1.03 42151 0.31 26658 0.57

C880 60 26 363 29362 0.40 22077 0.72 7567 0.03

C3540 50 22 1259 99471 8.93 93762 15.53 111324 0.73

C17 5 2 8 12 0.01 14 0.01 9 0.01

misex3 14 14 3268 766 0.08 870 0.02 1853 0.10

too_large 38 3 5398 1234 0.17 1318 0.26 6076 0.45

my_adder 33 17 98 166 0.09 620 0.11 456 0.21

Average 66.0 33.7 1277.7 24138.4 1.7 36351.0 2.4 27489.3 2.6

Combinational Portions of Open Cores Benchmarks

custom-alu 37 17 193 2327 0.06 2442 0.01 2149 0.02

sin 35 64 2745 873 0.13 3771 0.12 1013 0.15

cosin 35 64 2652 851 0.10 3271 0.13 862 0.16

logsig 32 30 1317 1055 0.04 1571 0.09 1109 0.20

min-max 42 23 194 2658 0.40 2834 0.67 26736 0.76

h264-LUT 10 11 690 499 0.02 702 0.02 436 0.01

31-bit voter 31 1 367 242 0.01 257 0.01 256 0.01

ternary-adder 96 32 1064 366 0.32 8389 0.20 8389 0.20

max-weight 32 8 234 7505 0.15 7659 0.35 7610 0.55

cmul8 16 16 693 14374 0.55 12038 0.41 10979 0.21

fpu-norm 16 16 671 4209 0.12 7716 0.37 8608 0.32

Average 34.2 25.6 983.6 3178.1 0.2 4604.5 0.2 4022.2 0.2

Hard Arithmetic Benchmarks

sqrt32 32 16 1248 223340 1145.53 11098772 3656.18 9256912 2548.92

hyperbola20 20 25 12802 126412 281.45 4522101 1805.20 4381924 2522.01

mult10x10 20 20 1123 123768 24.77 91192 15.74 91941 0.95

div16 32 32 3466 3675419 1428.87 7051263 7534.78 7842802 1583.22

Average 26.0 23.2 4659.7 1.0e06 720.1 5.6e06 3253.0 5.4e06 1671.3

but do not give the means to determine if any of them is globally superior to the others.

MCNC Benchmarks: For large MCNC benchmarks, we report that BBDDs have an average

size 33.5% and 12.2% smaller than BDDs and KFDDs, respectively. Regarding the runtime, the

BBDD is 1.4× and 1.5× faster than CUDD and puma, respectively. By handling two variables

per time, BBDDs unlock new compact representation opportunities, not apparent with BDDs

or KFDDs. Such size reduction is responsible for the average runtime reduction. However, the

general runtime for a decision diagram package is also dependent on the implementation

maturity of the techniques supporting the construction. For this reason, there are benchmarks

like C5315 where even if the final BBDD size is smaller than BDDs and KFDDs, its runtime is

longer as compared to CUDD and puma, which have been highly optimized during years.

Open Cores Benchmarks: Combinational portions of Open Cores circuits are considered as

representative for contemporary real-life designs. In this context, BBDDs have, on average,

39

Chapter 2. Biconditional Logic

30.9% and 20.9% fewer nodes than BDDs and KFDDs, respectively. The average runtime is

roughly the same for all packages. It appears that such benchmarks are easier than MCNC,

having fairly small sizes and negligible runtime. To test the behavior of the packages at their

limit we consider a separate class of hard circuits.

Arithmetic HDL Benchmarks: Traditional decision diagrams are known to face efficiency is-

sues in the representation of arithmetic circuits, e.g., multipliers. We evaluate the behavior

of the BBDD package in contrast to CUDD and puma for some of these hard benchmarks,

i.e., a 10×10-bit multiplier, a 32-bit width square root unit, a 20-bit hyperbola and a 16-bit

divisor. On average, BBDDs are about 5× smaller than BDDs and KFDDs for such benchmarks.

Moreover, the runtime of the BBDD package is 4.4× faster than CUDD and puma. These

results highlight that BBDDs have an enhanced capability to deal with arithmetic intensive

circuits, thanks to the expressive power of the biconditional expansion. A theoretical study to

determine the asymptotic bounds of BBDDs for these functions is ongoing.

2.5 BBDD-based Synthesis & Verification

This section showcases the interest of BBDDs in the automated design of digital circuits,

for both standard CMOS and emerging silicon nanowire technology. We consider the ap-

plication of BBDDs in logic synthesis and formal equivalence checking tasks for a real-life

telecommunication circuit.

2.5.1 Logic Synthesis

The efficiency of logic synthesis is key to realize profitable commercial circuits. In most designs,

critical components are arithmetic circuits for which traditional synthesis techniques do not

produce highly optimized results. Indeed, arithmetic functions are not natively supported

by conventional logic representation forms. Moreover, when intertwined with random logic,

arithmetic portions are difficult to identify. Differently, BBDD nodes inherently act as two-

variable comparators, a basis function for arithmetic operations. This feature opens the

opportunity to restructure and identify arithmetic logic via BBDD representation.

We employ the BBDD package as front-end to a commercial synthesis tool. The BBDD restruc-

turing is kept if it reduces the original representation complexity, i.e., the number of nodes

and the number of logic levels. Starting from a simpler description, the synthesizer can reach

higher levels of quality in the final circuit.

2.5.2 Formal Equivalence Checking

Formal equivalence checking task determines if two versions of a design are functionally

equivalent. For combinational portions of a design, such task can be accomplished using

canonical representation forms, e.g., decision diagrams, because equivalence test between two

40

2.5. BBDD-based Synthesis & Verification

functions corresponds to a simple pointer comparison. BBDDs can speed up the verification

of arithmetic intensive designs, as compared to traditional methods, thanks to their enhanced

compactness.

We employ BBDDs to check the correctness of logic optimization methods by comparing an

initial design with its optimized version.

2.5.3 Case Study: Design of an Iterative Product Code Decoder

To assess the effectiveness of BBDDs for the aforementioned applications, we design a real-life

telecommunication circuit. We consider the Iterative Decoder for Product Code from Open

Cores. The synthesis task is carried out using BBDD restructuring of arithmetic operations for

each module, kept only if advantageous. The formal equivalence checking task is also carried

out with BBDDs with the aim to speed-up the verification process. For the sake of comparison,

we synthesized the same design without BBDD restructuring and we also verified it with BDDs

in place of BBDDs.

As mentioned earlier, one compelling reason to study BBDDs is to provide a natural design

abstraction for emerging technologies where the circuit primitive is a comparator, whose

functionality is natively modeled by the biconditional expansion. For this reason, we target

two different technologies: (i) a conventional CMOS 22-nm technology and (ii) an emerging

controllable-polarity DG-SiNWFET 22-nm technology. A specific discussion for each tech-

nology is provided in the following subsections while general observations on the arithmetic

restructuring are given hereafter.

The Iterative Decoder for Product Code consists of 8 main modules, among them 2 are se-

quential, one is the top entity, and 6 are potentially arithmetic intensive. We process the 6

arithmetic intensive modules and we keep the restructured circuits if their size and depth

are decreased. For the sake of clarity, we show an example of restructuring for the circuit

bit_comparator. Fig. 2.10(a) depicts the logic network before processing and Fig. 2.10(b)

illustrates the equivalent circuit after BBDD-restructuring. BDD nodes due to rule R4 are

omitted for simplicity. An advantage in both size and depth is reported. Table 2.2 shows the

remaining results. BBDD-restructuring is favorable for all modules except ext_val that instead

is more compact in its original version. The best obtained descriptions are finally given in

input to the synthesis tool.

CMOS Technology

For CMOS technology, the design requirement is a clock period of 0.6 ns, hence a clock

frequency of 1.66 GHz. The standard synthesis approach generates a negative slack of 0.12 ns,

failing to meet the timing constraint. With BBDD-restructuring, instead, the timing constraint

is met (slack of 0.00 ns), which corresponds to a critical path speedup of 1.2×. However,

BBDD-restructuring induces a moderate area penalty of 9.6%.

41

Chapter 2. Biconditional Logic

b)

one a_igt_ia_ieq_i

b_i
a_i

gt_o
b_i
a_i

lt_o
b_i
a_i

eq_o

b_
i≠

a_
i b_i=a_i b_

i≠
a_

i b_i=a_i b_
i≠

a_
i b_i=a_i

lt_i

lt_i

eq_i

gt_i

b_ia_i

.

.

+

b_ia_i

.

eq_o

.

+

gt_o

.

+

lt_oa)

regular edge

complemented edge

Figure 2.10: Representations for the bit_comparator circuit in [55] (inverters are bubbles in
edges). a) original circuit b) BBDD re-writing, reduced BDD nodes are omitted for the sake of
illustration.

Emerging DG-SiNWFET Technology

The controllable-polarity DG-SiNWFET technology features much more compact arithmetic

(XOR, MAJ, etc.) gates than in CMOS, enabling faster and smaller implementation opportuni-

ties. For this reason, we set a tighter clock constraint than in CMOS, i.e., 0.5 ns corresponding

to a clock frequency of 2 GHz. Direct synthesis of the design fails to reach such clock period

with 0.16 ns of negative slack. With BBDD-restructuring, the desired clock period is instead

reachable. For DG-SiNWFET technology, the benefit deriving from the use of BBDDs is even

higher than in CMOS technology. Indeed, here BBDD-restructuring is capable to bridge a

negative timing gap equivalent to 32% of the overall desired clock period. For CMOS instead

the same gap is just 20%. This result confirms that BBDDs can further harness the expres-

sive power of emerging technologies as compared to traditional synthesis techniques alone.

Furthermore, the area penalty relative to BBDD-restructuring for DG-SiNWFET technology is

decreased to only 3.3%.

42

2.5. BBDD-based Synthesis & Verification

Table 2.2: Experimental results for BBDD-based Design Synthesis & Verification.

Case Study for Design & Verification: Iterative Product Decoder

Optimization via BBDD-rewriting
Logic Circuits Type I/O BBDD-rewriting Original Gain

Inputs Outputs Nodes Levels Nodes Levels
adder08_bit.vhd Comb. 16 9 16 8 78 19 3

bit_comparator.vhd Comb. 5 3 3 1 8 3 3

comparator_7bits.vhd Comb. 14 3 21 7 58 14 3

fulladder.vhd Comb. 3 2 2 1 9 4 3

ext_val.vhd Comb. 16 8 674 16 173 29 7

twos_c_8bit.vhd Comb. 8 8 20 8 29 8 3

ser2par8bit.vhd Seq. 11 64 - - - - -
product_code.vhd Top 10 4 - - - - -

Synthesis in 22-nm CMOS Technology – Clock Period Constraint: 0.6 ns (1.66 GHz)
BBDD + Synthesis Tool Synthesis Tool

Inputs Outputs Area (µm2) Slack (ns) Area (µm2) Slack (ns) Constraint met
product_code.vhd Top 10 4 1291.03 0.00 1177.26 -0.12 3

Synthesis in 22-nm DG-SiNWFET Technology – Clock Period Constraint: 0.5 ns (2 GHz)
BBDD + Synthesis Tool Synthesis Tool

Inputs Outputs Area (µm2) Slack (ns) Area (µm2) Slack (ns) Constraint met
product_code.vhd Top 10 4 1731.31 0.00 1673.78 -0.16 3

Formal Equivalence Checking
BBDD CUDD (BDD)

Inputs Outputs Nodes Runtime Nodes Runtime Verification
product_code.vhd Comb. 130 68 241530 185.11 227416 208.80 3

Post Place & Route Results

Using physical models for both CMOS and DG-SiNWFET technology, we also generated

physical design results for the iterative product code decoder. In this set of experiments,

the maximum clock period is determined by sweeping the clock constraint between 1 ns (1

G H z) and 5 ns (200 M H z) and repeating the implementation process. Fig. 2.11 shows the

post-Place & Route slack vs. target clock constraint curves. Vertical lines highlight the clock

constraint barriers for standard-SiNW (red), CMOS (blue) and BBDD-SiNW (green) designs. In

the following, we report the shortest clock period achieved.

After place & route, the CMOS design reaches 331 M H z of clock frequency with area occupancy

of 4271 µm2 and EDP of 13.4 n J .ns. The SiNWFET version, synthesized with plain design

tools, has a slower clock frequency of 319 M H z and a larger EDP of 14.2 n J .ns, but a lower

area occupancy of 2473 µm2. The final SiNWFET design, synthesized with BBDD-enhanced

synthesis techniques, attains the fastest clock frequency of 565 M H z and the lowest EDP of

8.7 n J .ns with a small 2643 µm2 of area occupancy.

If just using a standard synthesis tool suite, SiNWFET technology shows similar performances

to CMOS, at the same technology node. This result alone would discard the SiNWFET technol-

ogy from consideration because it brings no advantage as compared to CMOS. However, the

use of BBDD abstraction and synthesis techniques enable a fair evaluation on the SiNWFETs

technology, that is indeed capable of producing a faster and more energy efficient realization

43

Chapter 2. Biconditional Logic

1 2 3 4 5
−2

−1

0

1

2

3151.9 µm2

1804.9 µm2

1943.8 µm2

CMOS
Frontier

SiNW
Frontier

SiNW-BBDD
Frontier

Clock Period Constraint (ns)

Sl
ac

k
(n

s)

Figure 2.11: Target vs. obtained frequency curves and frequency frontiers for CMOS, SiNW-
standard and SiNW-BBDD designs.

than CMOS for the Iterative Product Code Decoder.

Combinational Verification

The verification of the combinational portions of the Iterative Decoder for Product Code design

took 185.11 seconds with BBDDs and 208.80 seconds and with traditional BDDs. The size of the

two representations is roughly the same, thus the 12% speed-up with BBDDs is accountable to

the different growth profile of the decision diagrams during construction.

2.6 BBDDs as Native Design Abstraction for Nanotechnologies

BBDDs are the natural and native design abstraction for several emerging technologies where

the circuit primitive is a comparator, rather than a switch. In this section, we test the efficacy

of BBDDs in the synthesis of two emerging nanotechnologies other than the previously con-

sidered silicon nanowires: reversible logic and nanorelays. We start by introducing general

notions on these two nanotechnologies in order to explain their primitive logic operation.

Then, we show how the BBDD logic model fits and actually helps in exploiting at best the

expressive power of the considered nanotechnologies.

Note that many other nanodevices may benefit from the presented biconditional synthesis

44

2.6. BBDDs as Native Design Abstraction for Nanotechnologies

methodologies [53, 54] however a precise evaluation of their performance is out of the scope

of the current study.

2.6.1 Reversible Logic

The study of reversible logic has received significant research attention over the last few

decades. This interest is motivated by the asymptotic zero power dissipation ideally achiev-

able by reversible computation [58, 59]. Reversible logic finds application in a wide range of

emerging technologies such as quantum computing [59], optical computing [60], supercon-

ducting devices and many others [61].

Reversible logic circuits are made of reversible logic gates [62]. Prominent reversible logic

gates are, NOT gate: Not(x) = x ′; CNOT gate: C NOT (x, y) = (x, x ⊕ y), which can be gener-

alized with To fn gate with first n −1 variables acting as control lines: To fn(x1, x2, ..., xn , y) =
(x1, x2, ..., xn , (x1·x2· ...·xn)⊕ y). From a conceptual point of view, a CNOT gate is nothing but a

To fn gate with n = 1. Analogously, a NOT gate is nothing but a To fn gate with n = 0. The To fn

set of reversible logic gates form an universal gate library for realizing any reversible Boolean

function. For the sake of clarity, we report in Fig. 2.12 an example of reversible circuit made of

Toffoli reversible gates. We follow the established drawing convention of using the symbol ⊕

b

a

c

a b

a

(ab) c

⊕

⊕

Figure 2.12: Reversible circuit made of Toffoli, CNOT and NOT reversible gates.

to denote the target line and solid black circles to indicate control connections for the gate. An

⊕ symbol with no control lines denotes a NOT gate.

Whether finally realized in one emerging technology or the other, reversible circuits must

exploit at best the logic expressive power of reversible gates. Being the Toffoli gate the most

known reversible gate, harnessing the biconditional connective embedded in its functionality

is of paramount importance.

The efficiency of reversible circuits strongly depends on the capabilities of reversible synthesis

techniques. Due to the inherent complexity of the reversible synthesis problem, several

heuristics are proposed in the literature. Among those, the ones based on decision diagrams

offer an attractive solution due to scalability and ability to trade-off diverse performance

objectives.

Reversible circuit synthesis based on decision diagrams essentially consists of two phases. First,

45

Chapter 2. Biconditional Logic

the generation of decision diagrams is geared towards efficient reversible circuit generation.

This typically involves nodes minimization or other DD complexity metric reduction. Second,

node-wise mapping is performed over a set of reversible gates.

Figure 2.13: Reversible circuit for a BBDD node [56].

The current standard for DD-based reversible synthesis uses binary decision diagrams genera-

tion via existing packages [10] and a custom node-wise mapping. However, standard BDDs do

not match the intrinsic functionality of popular reversible gates that are comparator(XOR)-

intensive. Instead, BBDDs are based on the biconditional expansion which natively models

reversible XOR operations. In this way, BBDDs enable a more compact mapping into com-

mon reversible gates, such as Toffoli gates [56]. Fig. 2.13 depicts the efficient mapping of a

single BBDD node into reversible gates. The additional reversible gates w.r.t. a traditional

BDD mapping are marked in gray. As one can notice, two extra gates are required. However,

when comparing the functionality of BBDD nodes w.r.t. BDD nodes, it is apparent that more

information is encoded into a single BBDD element. This is because the BBDD core expan-

sion examines two variables per time rather than only one. Consequently, the node count

reductions deriving from the use of BBDDs overcompensate the slight increase in the direct

mapping cost w.r.t. BDDs.

Our novel reversible synthesis flow uses BBDD logic representation and minimization using

the package [19] and a final one-to-one mapping of BBDD nodes as depicted by Fig. 2.13.

As reference flow, we consider the traditional BDD-based reversible synthesis approach. To

validate the BBDD effectiveness, we run synthesis experiments over reversible benchmarks

taken from the RevLib online library [23]. In this context, we estimate the implementation

cost using the Quantum-Cost (QC) [56]. Table 2.3 shows the reversible synthesis results. Out

46

2.6. BBDDs as Native Design Abstraction for Nanotechnologies

Table 2.3: Results for reversible circuit synthesis using BBDDs vs. traditional BDDs.

of 26 benchmarks functions studied, 20 reported improved QC and 13 reported improve-

ment in QC as well as line count. A closer study reveals that some benchmark functions, e.g.,

plus63mod4096, contain major contribution from non-linear sub-circuits, which are repre-

sented in more compact form by BDD. This translates to better performance in BDD-based

synthesis. Nevertheless, future improvement in BBDD construction heuristics may bridge also

this gap.

These results provide a fair perspective on the efficacy of BBDDs in reversible synthesis for

emerging nanotechnologies.

2.6.2 NEMS

Nano-Electro-Mechanical Relay (NEMS), or simply nanorelays, are electrostatically actuated

mechanical switches [65]. The good properties of nanorelays are (i) very low on-state intrinsic

resistance (0.5Ω) and (ii) virtually infinitely large off-state resistance [64]. On the other hand,

the key hurdles of nanorelays are (i) long switching time (hundreds of nanoseconds), (ii)

relatively short lifetime (108 switching cycles) and (iii) limited scalability of minimum feature

size [63, 64]. Nanorelays can be fabricated by top-down approaches using conventional

lithography techniques or bottom-up approaches using carbon nanotubes or nanowire beams

[64].

Nanorelays are a promising alternative to CMOS for ultralow-power systems [63–67] where

their ideally zero leakage current (consequence of the large off-resistance) is a key feature to

47

Chapter 2. Biconditional Logic

be harnessed.

Different nanorelay structures for logic have been proposed in the literature. Most of them

are based on electrostatic actuation and they implement different switching (logic) functions

depending on their number of terminals and device geometry. Mechanical contacts (con-

nections) are enforced via electric fields between the various terminals. Two-terminals (2T)

and three-terminals (3T) nanorelays are simple devices useful to solve preliminary process

challenges. Trading off simplicity for functionality, four-terminals (4T) and six-terminals (6T)

nanorelays are more expressive and desirable for compact logic implementations.

Figure 2.14: Four-terminals nanorelay structure and fabrication image from [69].

In [69], a 4T NEM relay is proposed consisting of a movable poly-SiGe gate structure suspended

above the tungsten body, drain, and source electrodes. Fig. 2.14 shows the 4T relay conceptual

structure and a fabrication microphotograph. When a voltage is applied between the gate

structure and the body electrode a corresponding electric field arises and the relay is turned

on by the channel coming into contact with the source and drain electrodes.

Figure 2.15: Six-terminals nanorelay structure and fabrication image from [68].

In [68], a 6T NEM relay is realized by adding an extra body (Body2) and an extra source (Source2)

contacts to the previous 4T NEM relay. Fig. 2.15 shows the 6T relay conceptual structure and a

fabrication microphotograph. The two body contacts are designed to be biased by opposite

voltages. Either Source1 or Source2 to Drain connection is controlled by the gate to body

positive or negative voltage and its corresponding electric field polarity.

48

2.6. BBDDs as Native Design Abstraction for Nanotechnologies

Because of the electrostatic forces among the different terminals, both 4T and 6T NEM relay

naturally acts as a logic multiplexer driven by a bit comparator.

In this study, we focus on 6T NEM relays. To assess the potential of nanorelays in VLSI, a

BDD-based synthesis flow has been presented in [68]. It first partitions a design in sub-blocks

and then creates BDDs for those sub-blocks. For each local BDD, a one-to-one mapping

strategy generates a netlist of nanorelays implementing the target logic function. Indeed, the

functionality of each BDD node can be realized by a single nanorelay device. We consider this

as the reference design flow for nanorelays.

From the analysis we performed above, we know that nanorelays can implement much more

complex Boolean functions than just 2:1 multiplexers. Indeed, the functionality of these

nanorelays is naturally modeled by a BBDD node. For this reason, we propose a novel design

flow based on BBDDs to take full advantage of the nanorelays expressive power. Analogously

to the BDD design flow, the design is first pre-partitioned if necessary. Then, local BBDDs are

built and each BBDD node is mapped into a single nanorelay device.

Table 2.4: Total Number of Relays, the Number of Relays on the Critical Path, and Ratios
Compared to [68] (MCNC Benchmark Circuits).

Circuit Name Relays Levels R. Ratio [68] L. Ratio [68]
alu4 599 14 0.77 1.00

apex4 992 8 0.90 0.89
des 3130 18 0.78 1.00

ex1010 1047 10 0.94 0.91
ex5p 283 8 0.92 1.00

misex3 846 14 1.29 1.00
pdc 865 14 0.35 0.88
spla 691 16 0.82 1.00

8-b adder 28 9 0.19 0.53
16-b adder 56 17 0.31 0.52

8×8 multiplier 14094 16 1.05 1.00

Average 2057.36 13.09 0.76 0.88

We first test the BBDD-design flow against the MCNC benchmark suite. Table 2.4 shows the

number of relays and the number of relays on the critical path. It compares these numbers

with the corresponding numbers in [68] and shows the BBDD to BDD ratio for the different

benchmark circuits. We also provide the ratios for the number of relays on the critical path.

The BBDD design flow results in an average reduction in NEM relays of 24%. This is due to the

compactness of the BBDD representation relative to the BDD representation. Since BBDDs

require less nodes than BDDs, BBDD circuits require less NEM relays. Furthermore, the BBDD

design flow enables us to obtain circuits with shorter critical paths. On average the critical

path length is reduced by 12%. This decrease in the critical paths is due to the BBDD reduction

rules, which can be leveraged to decrease the height of BBDDs more than the reduction rules

for their BDD counterparts.

49

Chapter 2. Biconditional Logic

x"

z"z"

Carryout" Sum"

1"0" 0"1"

y"

x"

y" y" y"

Figure 2.16: Nanorelay implementation of a full-adder using a BDD-based design approach
[68].

(x,y)&(x,y)&

(z,1)&(z,1)&(y,1)&

Carryout& Sum&

1&0& 1&0& 0&1&

Figure 2.17: Nanorelay implementation of a full-adder using a BBDD-based design approach.
Dotted lines represent 6=-edges and solid lines are =-edges.

We also compare the BBDD-approach in the case of synthesizing an 8×8 array multiplier.

In [68] the BDD-based approach is tested on such a multiplier implemented using a carry-save

adder tree followed by a ripple carry adder. We represent the same multiplier, but using BBDDs

instead of BDDs. The main source of advantage here is that BBDDs represent more compactly

full-adders and half-adders as compared to BDDs. Fig. 2.16 and Fig. 2.17 depicts the nanorelay

implementation of a full-adder using BDD and BBDD approaches, respectively. Each squared

box in the figures represents a six-terminal nanorelay device. We show that this compact

representation allows us to implement the multiplier using a smaller number of NEM relays.

Table 2.5 shows the corresponding results. It is possible to see that the BBDD design flow

requires a smaller number of relays. On average, reduce the number of relays is reduced by

36% w.r.t. the BDD design flow. Furthermore, as the number of mechanical delays decreases,

so does the ratio of the number of relays required by the BBDD representation versus the BDD

representation.

50

2.7. Summary

Table 2.5: Comparison of BDD-based vs. BBDD-based Synthesis of an 8 × 8 Array Multiplier
Mech. Delays BBDD-Relays BDD-Relays Ratio BBDD/BDD

2 2491 4129 0.60
3 1367 2186 0.63
4 647 875 0.74
5 434 590 0.74
6 407 533 0.76

Average 1069.2 1662.6 0.64

These results show the impact of a dedicated logic abstraction to design a comparator-intrinsic

nanotechnology, such as nanorelays.

2.7 Summary

Following the trend to handle ever-larger designs, and in light of the rise of emerging tech-

nologies that natively implement new Boolean primitives, the study of innovative logic repre-

sentation forms is extremely important. In this chapter, we proposed Biconditional BDDs, a

new canonical representation form driven by the biconditional expansion. BBDDs implement

an equality/inequality switching paradigm that enhances the expressive power of decision

diagrams. Moreover, BBDDs natively models the functionality of emerging technologies where

the circuit primitive is a comparator, rather than a simple switch. Employed in electronic

design automation, BBDDs (i) push further the efficiency of traditional decision diagrams

and (ii) unlock the potential of promising post-CMOS devices. Experimental results over

different benchmark suites, demonstrated that BBDDs are frequently more compact than

other decision diagrams, from 1.1× to 5×, and are also built faster, from 1.4× to 4.4×. Consid-

ering the synthesis of a telecommunication circuit, BBDDs advantageously restructure critical

arithmetic operations. With a 22-nm CMOS technology, BBDD-restructuring shorten the

critical path by 20% (14% post place & route). With an emerging 22-nm controllable-polarity

DG-SiNWFET technology, BBDD-restructuring shrinks more the critical path by 32% (22%

post place & route), thanks to the natural correspondence between device operation and logic

representation. The formal verification of the optimized design is also accomplished using

BBDDs in about 3 minutes, which is about 12% faster than with standard BDDs. Results

on other two nanotechnologies, i.e., reversible logic and nanorelays, demonstrate that BB-

DDs are essential to permit a fair technology evaluation where the logic primitive is a binary

comparator.

51

Bibliography

[1] C.Y. Lee2, Representation of Switching Circuits by Binary-Decision Programs, Bell System

Technical Journal 38(4), 985-999, 1959.

[2] S.B. Akers2, Binary Decision Diagrams, IEEE Trans. on Comp., 100(6): 509-516, 1978.

[3] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans. on

Comp., 100(8): 677-691, 1986.

[4] C. Yang and M. Ciesielski, BDS: A BDD-Based Logic Optimization System, IEEE Trans. on

CAD of IC & Syst., 21(7): 866-876, 2002.

[5] S. Malik et al., Logic verification using binary decision diagrams in a logic synthesis envi-

ronment, IEEE Int. Conf. on CAD, pp. 6-9, 1988.

[6] M.S. Abadir et al., Functional test generation for digital circuits using binary decision

diagrams, IEEE Trans. on Comp., 100(4): 375-379, 1986.

[7] C. Scholl, R. Drechsler, B. Becker, Functional simulation using binary decision diagrams,

IEEE Int. Conf. on CAD, pp. 8-12, 1997.

[8] U. Kebschull, W. Rosenstiel, E. Schubert, Multilevel logic synthesis based on functional

decision diagrams, IEEE Euro Conf. on Design Automation, pp. 43-47, 1992.

[9] R. Drechsler et al., Ordered Kronecker functional decision diagrams-a data structure for

representation and manipulation of Boolean functions, IEEE Trans. on CAD of IC & Syst.,

17(10): 965-973, 1998.

[10] CUDD: CU Decision Diagram Package Release 2.5.0, available online at

http://vlsi.colorado.edu/fabio/CUDD/cuddIntro.html

[11] Decision Diagram-Package PUMA, available online at http://ira.informatik.uni-

freiburg.de/software/puma/pumamain.html

[12] M. De Marchi et al., Polarity control in Double-Gate, Gate-All-Around Vertically Stacked

Silicon Nanowire FETs, IEEE Electron Devices Meeting, pp. 8-4, 2012.

[13] Y. Lin et al., High-Performance Carbon Nanotube Field-Effect Transistor with Tunable

Polarities, IEEE Trans. on Nanotech., 4(5): 481-489, 2005.

53

Bibliography

[14] N. Harada et al., A polarity-controllable graphene inverter, Applied Physics Letters, 96(1):

012102, 2010.

[15] D. Lee2 et al., Combinational Logic Design Using Six-Terminal NEM Relays, IEEE Trans.

on CAD of IC & Syst., 32(5): 653-666, 2013.

[16] L.Amaru, P.-E. Gaillardon, S. Mitra, G. DeMicheli, New Logic Synthesis as Nanotechnology

Enabler, accepted in Proceedings of the IEEE, 2015.

[17] L. Amaru, P.-E. Gaillardon, G. De Micheli, Biconditional BDD: A Novel Canonical Repre-

sentation Form Targeting the Synthesis of XOR-rich Circuits, Design, Automation & Test in

Europe, pp. 1014-1017, 2013.

[18] L. Amaru, P.-E. Gaillardon, G. De Micheli, An Efficient Manipulation Package for Bicon-

ditional Binary Decision Diagrams, Design, Automation & Test in Europe, pp. 296-301,

2014.

[19] BBDD package available at: http://lsi.epfl.ch/BBDD.

[20] L. Kathleen, Logic and Boolean Algebra, Barrons Educational Series, February 1979.

[21] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, New York,

1994.

[22] I. Wegener, Branching Programs and Binary Decision Diagrams: Theory and Applications,

Vol. 4. SIAM, 2000.

[23] M. Kreuzer, L. Robbiano, Computational Commutative Algebra, Vol. 1. Berlin: Springer,

2005.

[24] R.E. Bryant, On the Complexity of VLSI Implementations and Graph Representations of

Boolean Functions with Application to Integer Multiplication, IEEE Trans. on Comp., 40(2):

205-213, 1991.

[25] J. Gergov, C. Meinel, Mod-2-OBDDs A data structure that generalizes EXOR-sum-of-

products and ordered binary decision diagrams, Formal Methods in System Design 8(3):

273-282, 1996.

[26] B. Bollig, Improving the variable ordering of OBDDs is NP-complete, IEEE Trans. on Comp.,

45(9): 993-1002, 1996.

[27] T. Koshy, Discrete Mathematics with Applications, Academic Press, 2004.

[28] T.S. Czajkowski, S.D. Brown, Functionally Linear Decomposition and Synthesis of Logic

Circuits for FPGAs, IIEEE Trans. on CAD of IC & Syst., 27(12): 2236-2249, 2008.

[29] J.F. Groote, J. Van de Pol, Equational Binary Decision Diagrams, Logic for programming

and automated reasoning. Springer Berlin Heidelberg, 2000.

54

Bibliography

[30] S. Minato, Zero-suppressed BDDs for set manipulation in combinatorial problems, IEEE

Conf. on Design Automation (DAC), pp. 272-277, 1993

[31] C. Meinel, F. Somenzi, T. Theobald, Linear Sifting of Decision Diagrams, IEEE Conf. on

Design Automation (DAC), pp. 202-207, 1997.

[32] W. Gunther, R. Drechsler, BDD Minimization by Linear Transformations, Advanced Com-

puter Systems, pp. 525-532, 1998.

[33] M. Fujita, Y. Kukimoto, R. Brayton, BDD Minimization by Truth Table Permutation, IEEE

Intl. Symp. on. CAS, pp. 596-599, 1996.

[34] E.M. Clarke, M. Fujita, X. Zhao, Hybrid Decision Diagrams, IEEE Int. Conf. on CAD, pp.

159-163, 1995.

[35] E.I. Goldberg, Y. Kukimoto, R.K. Brayton, Canonical TBDD’s and Their Application to

Combinational Verification, ACM/IEEE Intl. Workshop on Logic Synthesis, 1997.

[36] U. Kebschull, W. Rosenstiel, Efficient Graph-based Computation and Manipulation of

Functional Decision Diagrams, IEEE Euro Conf. on Design Automation, pp. 278-282, 1993.

[37] J.E. Rice, Making A Choice Between BDDs and FDDs, ACM/IEEE Intl. Workshop on Logic

Synthesis, 2005.

[38] R. Drechsler, Ordered Kronecker Functional Decision Diagrams und ihre Anwndung, Ph.D.

Thesis, 1996.

[39] S. Grygiel, M.A. Perkowski, New Compact Representation of Multiple-Valued Functions,

Relations, and Non-Deterministic State Machines, IEEE Conf. on Comp. Design, pp. 168-

174, 1998.

[40] A. Srinivasan, T. Kam, S. Malik, R. Brayton, Algorithms for Discrete Function Manipulation,

IEEE Intl. Conf. on CAD, pp. 92-95, 1990.

[41] S. Minato et al., Shared BDD with Attributed Edges for Efficient Boolean Function Manip-

ulation, IEEE Conf. on Design Automation (DAC), pp. 52-57, 1990.

[42] B. Becker, R. Drechsler, How Many Decomposition Types Do We Need?, IEEE Euro Conf.

on Design Automation, pp. 438-442, 1995.

[43] B. Becker, R. Drechsler, M. Theobald, On the Expressive Power of OKFDDs, Formal Meth-

ods in System Design, 11(1): 5-21, 1997.

[44] R. Drechsler, B. Becker, Binary Decision Diagrams: Theory and Implementation, Kluwer

academic publisher, 1998.

[45] P. Tarau, Pairing Functions, Boolean Evaluation and Binary Decision Diagrams, arXiv

preprint arXiv:0808.0555 (2008).

55

Bibliography

[46] K.S. Brace, R.L. Rudell, R.E. Bryant, Efficient implementation of a BDD package, IEEE

Conf. on Design Automation (DAC), pp. 40-45, 1990.

[47] R. Rudell, Dynamic variable ordering for ordered binary decision diagrams, IEEE Intl.

Conf. on CAD, pp. 42-47, 1993.

[48] An iterative decoder for Product Code – from Open Cores:

http://opencores.org/project,product_code_iterative_decoder.

[49] S. Panda, F. Somenzi, Who are the variables in your neighborhood, IEEE Intl. Conf. on

CAD, pp. 74-77, 1995.

[50] B. Bollig et al., Simulated annealing to improve variable orderings for OBDDs, ACM/IEEE

Intl. Workshop on Logic Synth., 1995.

[51] R. Drechsler et al., A genetic algorithm for variable ordering of OBDDs, ACM/IEEE Intl.

Workshop on Logic Synthesis, 1995.

[52] ABC synthesis tool - available online.

[53] J. Hagenauer, E. Offer, L. Papke, Iterative decoding of binary block and convolutional

codes, Information Theory, IEEE Transactions on 42.2 (1996): 429-445.

[54] A. Picart, R. Pyndiah, Adapted iterative decoding of product codes, Global Telecommuni-

cations Conference, 1999. GLOBECOM’99. Vol. 5. IEEE, 1999.

[55] An iterative decoder for Product Code – from Open Cores:

http://opencores.org/project,product_code_iterative_decoder.

[56] A. Chattopadyay, et al., Reversible Logic Synthesis via Biconditional Binary Decision

Diagrams, Proc. ISMVL 15.

[57] RevLib is an online resource for benchmarks within the domain of reversible and quan-

tum circuit design. http://www.revlib.org

[58] C. H. Bennett, “Logical reversibility of computation,” in IBM Journal of Research and

Development, vol. 17, no. 6, pp. 525–532, 1973.

[59] M. Nielsen and I. Chuang, Quantum Computation and Quantum Infor- mation, Cam-

bridge Univ. Press, 2000.

[60] R. Cuykendall and D. R. Andersen, “Reversible optical computing circuits,” in Optics

Letters, vol. 12, no. 7, pp. 542–544, 1987.

[61] R. C. Merkle, “Reversible electronic logic using switches,” in Nanotech- nology, vol. 4, pp.

21–40, 1993.

[62] A. Barenco et al., “Elementary gates for Quantum Computation,” in Physical Review,

1995.

56

Bibliography

[63] O. Loh, H. Espinosa. Nanoelectromechanical contact switches, Nature nanotechnology

7.5 (2012): 283-295.

[64] Nano-Electro-Mechanical Switches, ITRS, white paper, 2008.

[65] V. Pott, et al., Mechanical computing redux: relays for integrated circuit applications,

Proceedings of the IEEE 98.12 (2010): 2076-2094.

[66] Sharma, P., Perruisseau-Carrier, J., Moldovan, C., Ionescu, A. Electromagnetic Performance

of RF NEMS Graphene Capacitive Switches, IEEE Trans. on Nanotech., 2014.

[67] Weinstein, Dana, Sunil A. Bhave. The resonant body transistor, Nano letters 10.4 (2010):

1234-1237.

[68] D. Lee, et al. Combinational logic design using six-terminal NEM relays, Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on 32.5 (2013): 653-666.

[69] M. Spencer, et al., Demonstration of integrated micro-electro-mechanical relay circuits for

VLSI applications, IEEE Journal of Solid-State Circuits, 46.1: 308-320, 2011.

57

3 Majority Logic

In this chapter, we propose a paradigm shift in representing and optimizing logic by using

only majority (MAJ) and inversion (INV) functions as basic operations. We represent logic

functions by Majority-Inverter Graph (MIG): a directed acyclic graph consisting of three-input

majority nodes and regular/complemented edges. We optimize MIGs via a new Boolean

algebra, based exclusively on majority and inversion operations, that we formally axiomatize

in this work. As a complement to MIG algebraic optimization, we develop powerful Boolean

methods exploiting global properties of MIGs, such as bit-error masking. MIG algebraic and

Boolean methods together attain very high optimization quality. For example, when targeting

depth reduction our MIG optimizer, MIGhty, transforms a ripple carry adder into a carry look-

ahead like structure. Considering the set of IWLS’05 benchmarks, MIGhty enables a 7% depth

reduction in LUT-6 circuits mapped by ABC academic tool, while also reducing size and power

activity, with respect to similar And-Inverter Graph (AIG) optimization. Focusing instead on

arithmetic intensive benchmarks, MIGhty enables a 16% depth reduction in LUT-6 circuits

mapped by ABC academic tool, again with respect to similar AIG optimization. Employed

as front-end to a delay-critical 22-nm ASIC flow (logic synthesis + physical design), MIGhty

reduces the average delay/area/power by 13%/4%/3%, respectively, over 31 academic and

industrial benchmarks. We also demonstrate improvements in delay/area/power metrics

by 10%/10%/5% for a commercial FPGA flow. Furthermore, MIGs are the natural design

abstraction for emerging nanotechnologies whose logic primitive is a majority voter. Results

on two of these nanotechnologies, i.e., spin-wave devices and resistive RAM, show the efficacy

of MIG-based synthesis. Finally, we extend the majority logic axiomatization from 3 to n

inputs, with n being odd.

3.1 Introduction

Nowadays, Electronic Design Automation (EDA) tools are challenged by design goals at the

frontier of what is achievable in advanced technologies. In this scenario, extending the

optimization capabilities of logic synthesis tools is of paramount importance.

59

Chapter 3. Majority Logic

In this chapter, we propose a paradigm shift in representing and optimizing logic, by using

only majority (MAJ) and inversion (INV) as basic operations. We use the terms inversion and

complementation interchangeably. We focus on majority functions because they lie at the

core of Boolean function classification [5]. Fig. 3.1 depicts the Boolean function classification

Setofall$func,ons$
Unate$
Monotone$

Majority$

Threshold$
Self7dual$

Figure 3.1: Relations among various functions extracted from [5].

presented in [5] together with the hierarchical inclusion among notable classes. We give

an informal description of the main classes hereafter. A monotone increasing (decreasing)

function is a function that can be represented by a Sum-Of-Products (SOP) with (without)

complemented literals. A unate function is a generalization of a monotone function. A function

is unate if it can be represented by a SOP using either uncomplemented or complemented

literals for each variable. A threshold function, with threshold k, evaluates to logic one on

input vectors with k or more ones. All threshold functions are unate but necessarily monotone.

A self-dual function is a function such that its output complementation is equivalent to its

inputs complementation. Self-dual functions are not fully included by any of the previous

classes. A majority function evaluates to logic one on input vectors having more ones than

zeros. Majority functions are threshold, unate, monotone increasing and self-dual at the same

time. Together with inversion, majority can express all Boolean functions. Note that minority

gates, which represent complemented majority functions, are common in VLSI because they

natively implement carry functions.

Based on these primitives, we present in this work the Majority-Inverter Graph (MIG), a

logic representation structure consisting of three-input majority nodes and regular/com-

plemented edges. MIGs include any AND/OR/Inverter Graphs (AOIGs), containing also the

popular AIGs [17]. To provide native manipulation of MIGs, we introduce a novel Boolean

algebra, based exclusively on majority and inversion operations [3]. We define a set of five

transformations forming a sound and complete axiomatic system. Using a sequence of these

primitive axioms, it is possible to manipulate efficiently a MIG and reach all points in the

representation space. We apply MIG algebra axioms locally, to design fast and efficient MIG

algebraic optimization methods. We also exploit global properties of MIGs to design slower

60

3.2. Background and Motivation

but very effective MIG Boolean optimization methods [4]. Specifically, we take advantage of

the error masking property of majority operators. By selectively inserting logic errors in a

MIG, successively masked by majority nodes, we enable strong simplifications in logic net-

works. MIG algebraic and Boolean methods together attain very high optimization quality.

For example when targeting depth reduction, our MIG optimizer, MIGhty, transforms a ripple

carry structure into a carry look-ahead like one. Considering the set of IWLS’05 benchmarks,

MIGhty enables a 7% depth reduction in LUT-6 circuits mapped by ABC [17] while also reduc-

ing size and power activity, with respect to similar AIG optimization. Focusing on arithmetic

intensive benchmarks, MIGhty enables a 16% depth reduction in LUT-6 circuits, again with

respect to similar AIG optimization. Employed as front-end to a delay-critical 22-nm ASIC

flow (logic synthesis + physical design), MIGhty reduces the average delay/area/power by

13%/4%/3%, respectively, over 31 academic and industrial benchmarks, as compared to a

leading commercial ASIC flow. We demonstrate improvements in delay/area/power metrics

by 10%/10%/5% for a commercial 28-nm FPGA flow. MIGs are also the native logic abstraction

for circuit design in nanotechnologies whose logic primitive is a majority voter.

The remainder of this chapter is organized as follows. Section 3.2 gives background on logic

representation and optimization. Section 3.3 presents MIGs with their properties and associ-

ated Boolean algebra. Section 3.4 proposes MIG algebraic optimization methods and Section

3.5 describes MIG Boolean optimization methods. Section 3.6 shows experimental results for

MIG-based optimization and compares them to the state-of-the-art academic tools. Section

3.6 also shows results for MIG-based optimization employed as front-end to commercial ASIC

and FPGA design flows. Section 3.7 gives a vision on future nanotechnologies design via MIGs.

Section 3.8 extends the theory results from 3 to arbitrary n-ary majority operators, with n odd.

Section 3.9 concludes the chapter.

3.2 Background and Motivation

This section presents first a background on logic representation and optimization for logic

synthesis. Then, it introduces the necessary notations and definitions for this work.

3.2.1 Logic Representation

The (efficient) way logic functions are represented in EDA tools is key to design efficient

hardware. On the one hand, logic representations aim at having the fewest number of primitive

elements (literals, sum-of-product terms, nodes in a logic network, etc.) in order to (i) have

small memory footprint and (ii) be covered by as few library elements as possible. On the other

hand, logic representation forms must be simple enough to manipulate. This may require

having a larger number of primitive elements but with simpler manipulation laws. The choice

of a computer data-structure is a trade-off between compactness and manipulation easiness.

In the early days of EDA, the standard representation form for logic was the Sum Of Product

61

Chapter 3. Majority Logic

(SOP) form, i.e., a disjunction (OR) of conjuctions (AND) made of literals [1]. This standard

was driven by PLA technology whose functionality is naturally modeled by a SOP [6]. Other

two-level forms, such as product-of-sums or EX-SOP, have been studied at that time [17].

Two-level logic is compact for small sized functions but, beyond that size, it becomes too

large to be efficiently mapped into silicon. Yet, two-level logic has been supported by efficient

heuristic and exact optimization algorithms. With the advent of VLSI, the standard representa-

tion for logic moved from SOP to Directed Acyclic Graphs (DAGs) [5]. In a DAG-based logic

representation, nodes correspond to logic functions (gates) and directed edges (wires) connect

the nodes. Nodes’ functions can be internally represented by SOPs leveraging the proven

efficiency of two-level optimization. From a global perspective, general optimization proce-

dures run on the entire DAG. While being potentially very compact, DAGs without bounds

on the nodes’ functionality do not support powerful logic optimization. This is because this

kind of representation demands that optimization techniques deal with all possible types

and sizes of functions which is impractical. Moreover, the cumulative memory footprint

for each functionally unbounded node is potentially very large. Restricting the permissible

node function types alleviates this issue. At the extreme case, one can focus on just one type

of function per node and add complemented/regular attributes to the edges. Even though

in principle, this restriction increases the representation size, in practice it unlocks better

(smaller) representations because it supports more effective logic optimization simplifying

a DAG. A notable example of DAG where all the nodes realize the same function is Binary

Decision Diagrams (BDDs) [11]. In BDDs, nodes act as 2:1 multiplexers. We refer the reader to

Chapter 2.2.1 for a complete background on BDDs. Another DAG where all nodes realize the

same function is the And-Inverter Graph (AIG) [10, 17] where nodes act as two-inputs ANDs.

AIGs can be optimized through traditional Boolean algebra axioms and derived theorems.

Iterated over the whole AIG, local transformations produce very effective results and scale

well with the size of the circuits. This means that, overall, AIGs can be made remarkably small

through logic optimization. For this reason, AIG is one of the current representation standards

for logic synthesis.

With the ever-increasing complexity of digital design, DAGs with restricted node functionality

(ideally to one) provide a scalable approach to manipulate logic functions. In this scenario,

choosing a node functionality is critical as it determines a representation compactness and

manipulation easiness. In this work, we show that majority operators are excellent candidates

for this role. While having an enhanced expressiveness with respect to traditional AND/ORs,

majority operators also enable more capable optimization strategies leading to superior

synthesis results.

3.2.2 Logic Optimization

Logic optimization consists of manipulating a logic representation structure in order to min-

imize some target metric. Usual optimization targets are size (number of nodes/elements),

62

3.2. Background and Motivation

depth (maximum number of levels), interconnections (number of edges/nets), etc.

Logic optimization methods are closely coupled to the data structures they run on. In two-level

logic representation (SOP), optimization aims at reducing the number of terms. ESPRESSO is

the main optimization tool for SOP [6]. Its algorithms operate on SOP cubes and manipulate

the ON-, OFF- and Don’t Care (DC)-covers iteratively. In its default settings, ESPRESSO uses

fast heuristics and does not guarantee to reach the global optimum. However, an exact

optimization of two level logic is available (under the name of ESPRESSO-exact) and often run

in a reasonable time. The exact two-level optimization is based on Quine-McCluskey algorithm

[18]. Moving to DAG logic representation (also called multi-level logic), optimization aims at

reducing graph size and depth or other accepted complexity metrics. There, DAG-based logic

optimization methods are divided into two groups: Algebraic methods, which are fast and

Boolean methods, which are slower but may achieve better results [21]. Traditional algebraic

methods assume that DAG nodes are represented in SOP form and treat them as polynomials

[5, 19]. Algebraic operations are selectively iterated over all DAG nodes, until no improvement

is possible. Basic algebraic operations are extraction, decomposition, factoring, balancing

and substitution [20, 21]. Their efficient runtime is enabled by theories of weak-division and

kernel extraction. In contrast, Boolean methods do not treat the functions as polynomials

but handle their true Boolean nature using Boolean identities as well as (global) don’t cares

(circuit flexibilities) to get a better solution [1, 21, 24–26]. Boolean division and substitution

techniques trade off runtime for better minimization quality. Functional decomposition is

another Boolean method which aims at representing the original function by means of simpler

component functions. The first attempts at functional decomposition [27–29] make use of

decomposition charts to find the best component functions. Since the decomposition charts

grows exponentially with the number of variables these techniques are only applicable to

small functions. A different, and more scalable, approach to functional decomposition is

based on the BDD data structure. A particular class of BDD nodes, called dominator nodes,

highlights advantageous functional decomposition points [9]. BDD decomposition can be

applied recursively and is capable of exploiting optimization opportunities not visible by

algebraic counterparts [9, 22, 23]. Recently, disjoint support decomposition has also been

considered to optimize locally small functions and speedup logic manipulation [30, 31]. It

is worth mentioning that the main difficulty in developing Boolean algorithms is due to

the unrestricted space of choices. This makes more difficult to take good decisions during

functional decomposition.

Advanced DAG optimization methodologies, and associated tools, use both algebraic and

Boolean methods. When DAG nodes are restricted to just one function type, the optimization

procedure can be made much more effective. This is because logic transformations are

designed specifically to target the functionality of the chosen node. For example, in AIGs, logic

transformations such as balancing, refactoring, and general rewriting are very effective. For

example, balancing is based on the associativity axiom from traditional Boolean algebra [12,13].

Refactoring operates on an AIG subgraph which is first collapsed into SOP and then factored

out [19]. General rewriting conceptually includes balancing and refactoring. Its purpose is to

63

Chapter 3. Majority Logic

replace AIG subgraphs with equivalent pre-computed AIG implementations that improve the

number of nodes and levels [12]. By applying local, but powerful, transformations many times

during AIG optimization it is possible to obtain very good result quality. The restriction to AIGs

makes it easier to assess the intermediate quality and to develop the algorithms, but in general

is more prone to local minimum. Nevertheless, Boolean methods can still complement AIG

optimization to attain higher quality of results [17, 24].

In this chapter, we present a new representation form, based on majority and inversion, with

its native Boolean algebra. We show algebraic and Boolean optimization techniques for this

data structure unlocking new points in the design space.

Note that early attempts to majority logic have already been reported in the 60’s [14–16], but,

due to their inherent complexity, failed to gain momentum later on in automated synthesis.

We address, in this chapter, the unique opportunity led by majority logic in a contemporary

synthesis flow.

3.2.3 Notations and Definitions

We provide hereafter notations and definitions on Boolean algebra and logic networks.

Boolean Algebra

In the binary Boolean domain, the symbol B indicates the set of binary values {0,1}, the

symbols ∧ and ∨ represent the conjunction (AND) and disjunction (OR) operators, the symbol
′ represents the complementation (INV) operator and 0/1 are the false/true logic values.

Alternative symbols for ∧ and ∨ are · and +, respectively. The standard Boolean algebra

(originally axiomatized by Huntington [32]) is a non-empty set (B, ·,+,′ ,0,1) subject to identity,

commutativity, distributivity, associativity and complement axioms over ·,+ and ′ [5]. For the

sake of completeness, we report these basic axioms in Eq. 3.1. Such axioms will be used later

on in this work for proving theorems.

This axiomatization for Boolean algebra is sound and complete [33]. Informally, it means

that logic arguments, or formulas, proved by axioms in ∆ (defined below in Eq. 3.1) are valid

(soundness) and all true logic arguments are provable (completeness). We refer the reader

to [33] for a more formal discussion on mathematical logic. In practical EDA applications,

only sound and complete axiomatizations are of interest.

Other Boolean algebras exist, with different operators and axiomatizations, such as Robbins

algebra, Freges algebra, Nicods algebra, etc. [33]. Binary Boolean algebras are the basis to

64

3.2. Background and Motivation

operate on logic networks.

∆



Identity : ∆.I
x +0 = x

x ·1 = x

Commutativity : ∆.C
x · y = y · x

x + y = y +x

Distributivity : ∆.D
x + (y · z) = (x + y) · (x + z)

x · (y + z) = (x · y)+ (x · z)

Associativity : ∆.A
x · (y · z) = (x · y) · z

x + (y + z) = (x + y)+ z

Complement : ∆.C o
x +x ′ = 1

x · x ′ = 0

(3.1)

Logic Network

A logic network is a Directed Acyclic Graph (DAG) with nodes corresponding to logic functions

and directed edges representing interconnection between the nodes. The direction of the

edges follows the natural computation from inputs to outputs. The terms logic network,

Boolean network, and logic circuit are used interchangeably in this paper. Two logic networks

are said equivalent when they represent the same Boolean function. A logic network is said

irredundant if no node can be removed without altering the Boolean function that it represents.

A logic network is said homogeneous if each node represents the same logic function and has a

fixed indegree, i.e., the number of incoming edges or fan-in. In a homogeneous logic network,

edges can have a regular or complemented attribute. The depth of a node is the length of the

longest path from any primary input variable to the node. The depth of a logic network is the

largest depth among all the nodes. The size of a logic network is the number of its nodes.

Self-Dual Function

A logic function f (x, y, .., z) is said to be self-dual if f = f ′(x ′, y ′, .., z ′) [5]. By complementation,

an equivalent self-dual formulation is f ′ = f (x ′, y ′, .., z ′). For example, the function f = x ′y ′z ′+
x ′y z +x y ′z +x y z ′ is self-dual.

Majority Function

The n-input (n being odd) majority function M returns the logic value assumed by more than

half of the inputs [5]. More formally, a majority function of n variables returns logic one if a

65

Chapter 3. Majority Logic

number of input variables k over the total n, with k ≥ dn
2 e, are equal to logic one. For example,

the three input majority function M(x, y, z) is represented in terms of ·,+ by (x ·y)+(x ·z)+(y ·z).

Also (x + y) · (x + z) · (y + z) is a valid representation for M(x, y, z). The majority function is

self-dual [5].

3.3 Majority-Inverter Graphs

In this section, we present MIGs and their representation properties. Then, we show a new

Boolean algebra natively fitting the MIG data structure. Finally, we discuss the error masking

capabilities of MIGs from an optimization standpoint.

3.3.1 MIG Logic Representation

Definition 3.1: An MIG is a homogeneous logic network with an indegree equal to 3 and

each node representing the majority function. In a MIG, edges are marked by a regular or

complemented attribute.

To determine some basic representation properties of MIGs, we compare them to the well-

known AND/OR/Inverter Graphs (AOIGs) (which include AIGs). In terms of representation

expressiveness, the elementary bricks in MIGs are majority operators while in AOIGs are con-

junctions (AND) and disjunctions (OR). It is worth noticing that a majority operator M(x, y, z)

behaves as the conjunction operator AN D(x, y) when z = 0 and as the disjunction operator

OR(x, y) when z = 1. Therefore, majority is actually a generalization of both conjunction and

disjunction. Recall that M(x, y, z) = x y +xz + y z. This property leads to the following theorem.

Theorem 3.3.1 MIGs ⊃ AOIGs.

Proof In both AOIGs and MIGs, inverters are represented by complemented edge markers.

An AOIG node is always a special case of a MIG node, with the third input biased to logic 0 or 1

to realize an AND or OR, respectively. On the other hand, a MIG node is never a special case of

an AOIG node, because the functionality of the three input majority cannot be realized by a

unique AND or OR. �

As a consequence of the previous theorem, MIGs are at least as good as AOIGs but potentially

much better, in terms of representation compactness. Indeed, in the worst case, one can

replace node-wise AND/ORs by majorities with the third input biased to a constant (0/1).

However, even a more compact MIG representation can be obtained by fully exploiting its

node functionality rather than fixing one input to a logic constant.

Fig. 3.2 depicts a MIG representation example for f = x3· (x2+(x ′
1+x0)′). The starting point is a

traditional AOIG. Such AOIG has 3 nodes and 3 levels of depth, which is the best representation

66

3.3. Majority-Inverter Graphs

possible using just AND/ORs. The first MIG is obtained by a one-to-one replacement of AOIG

nodes by MIG nodes. As shown by Fig. 3.2, a better MIG representation is possible by taking

advantage of the majority function. This transformation will be detailed in the rest of this

paper. In this way, one level of depth is saved with the same node count.

AOIG%!%MIG%
AND%

OR%

OR%

x0%x1%x3% x2%

f%

MAJ%

MAJ%

MAJ%

x0%x1%x3% x2%

f%

1%

1%

1%

MAJ%

MAJ%

f%

MAJ%

x3%

1% 1% x2% x3%x0%x1%

MIG%!%MIGopt%

Figure 3.2: MIG representation for f = x3· (x2 + (x ′
1 +x0)′). Complementation is represented by

bubbles on the edges.

MIGs inherit from AOIGs some important properties, like universality and AIG inclusion. This

is formalized by the following.

Corollary 3.3.2 MIGs ⊃ AIGs.

Proof MIGs ⊃ AOIGs ⊃ AIGs =⇒ MIGs ⊃ AIGs. �

Corollary 3.3.3 MIG is an universal representation form.

Proof MIGs ⊃ AOIGs ⊃ AIGs that are universal representation forms [10]. �

So far, we have shown that MIGs extend the representation capabilities of AOIGs. However,

we need a proper set of manipulation tools to handle MIGs and automatically reach compact

representations. For this purpose, we introduce hereafter a new Boolean algebra, based on

MIG primitives.

3.3.2 MIG Boolean Algebra

We present a novel Boolean algebra, defined over the set (B, M ,′ ,0,1), where M is the majority

operator of three variables and ′ is the complementation operator. The following five primitive

transformation rules, referred to asΩ, form an axiomatic system for (B, M ,′ ,0,1). All variables

belong to B.

67

Chapter 3. Majority Logic

Ω



Commutativity : Ω.C

M(x, y, z) = M(y, x, z) = M(z, y, x)

Majority : Ω.M{
if(x = y): M(x, x, z) = M(y, y, z) = x = y

if(x = y ′): M(x, x ′, z) = z

Associativity : Ω.A

M(x,u, M(y,u, z)) = M(z,u, M(y,u, x))

Distributivity : Ω.D

M(x, y, M(u, v, z)) = M(M(x, y,u), M(x, y, v), z)

Inverter Propagation : Ω.I

M ′(x, y, z) = M(x ′, y ′, z ′)

(3.2)

AxiomΩ.C defines a commutativity property. AxiomΩ.M declares a 2 over 3 decision thresh-

old. AxiomΩ.A is an associative law extended to ternary operators. AxiomΩ.D establishes a

distributive relation over majority operators. AxiomΩ.I expresses the interaction between M

and complementation operators. It is worth noticing thatΩ.I does not require operation type

change like De Morgan laws, as it is well known from self-duality [5].

We prove that (B, M ,′ ,0,1) axiomatized byΩ is a Boolean algebra by showing that it induces a

complemented distributive lattice [34].

Theorem 3.3.4 The set (B, M ,′ ,0,1) subject to axioms inΩ is a Boolean algebra.

Proof The system Ω embed median algebra axioms [35]. In such scheme, M(0, x,1) = x fol-

lows from Ω.M . In [36], it is proved that a median algebra with elements 0 and 1 satisfying

M(0, x,1) = x is a distributive lattice. Moreover, in our scenario, complementation is well

defined and propagates through the operator M (Ω.I). Combined with the previous property

on distributivity, this makes our system a complemented distributive lattice. Every comple-

mented distributive lattice is a Boolean algebra [34]. �

Note that there are other possible axiomatic systems for (B, M ,′ ,0,1). For example, one can

show that in the presence ofΩ.C ,Ω.A andΩ.M , the rule inΩ.D is redundant [37]. In this work,

we considerΩ.D as part of the axiomatic system for the sake of simplicity.

Derived Theorems

Several other complex rules, formally called theorems, in (B, M ,′ ,0,1) are derivable from Ω.

Among the ones we encountered, three rules derived fromΩ are of particular interest to logic

68

3.3. Majority-Inverter Graphs

optimization. We refer to them asΨ and are described hereafter. In the following, the symbol

zx/y represents a replacement operation, i.e., it replaces x with y in all its appearence in z.

Ψ



Relevance –Ψ.R

M(x, y, z) = M(x, y, zx/y ′)

Complementary Associativity –Ψ.C

M(x,u, M(y,u′, z)) = M(x,u, M(y, x, z))

Substitution –Ψ.S

M(x, y, z) =
M(v, M(v ′, Mv/u(x, y, z),u), M(v ′, Mv/u′(x, y, z),u′))

(3.3)

The first rule, relevance (Ψ.R), replaces reconvergent variables with their neighbors. For

example, consider the function f = M(x, y, M(w, z ′, M(x, y, z))). Variables x and y are recon-

vergent because they appear in both the bottom and the top majority operators. In this case,

relevance (Ψ.R) replaces x with y ′ in the bottom majority as f = M(x, y, M(w, z ′, M(y ′, y, z))).

This representation can be further reduced to f = M(x, y, w) by usingΩ.M .

The second rule, complementary associativity (Ψ.C), deals with variables appearing in both

polarities. Its rule of replacement is M(x,u, M(y,u′, z)) = M(x,u, M(y, x, z)) as depicted by Eq.

3.3.

The third rule, substitution (Ψ.S), extends variable replacement to the non-reconvergent case.

We refer the reader to Fig. 3.3 (appearing at page 75 of this disseration) for an example about

substitution (Ψ.S) applied to a 3-input parity function.

Hereafter, we show howΨ rules can be derived fromΩ.

Theorem 3.3.5 Ψ rules are derivable byΩ.

Proof Relevance (Ψ.R): Let S be the set of all possible input patterns for M(x, y, z). Let Sx=y

(Sx=y ′) be the subset of S such that x = y (x = y ′) condition is true. Note that Sx=y ∩Sx=y ′ =;
and Sx=y ∪Sx=y ′ = S. According toΩ.M , variable z in M(x, y, z) is only relevant for Sx=y ′ . Thus,

it is possible to replace x with y ′, i.e., (x/y ′), in all its appearance in z, preserving the original

functionality.

Complementary Associativity (Ψ.C):

M(x,u, M(u′, y, z)) = M(M(x,u,u′), M(x,u, y), z) (Ω.D)

M(M(x,u,u′), M(x,u, y), z) = M(x, z, M(x,u, y)) (Ω.M)

M(x, z, M(x,u, y)) = M(x,u, M(y, x, z)) (Ω.A)

Substitution (Ψ.S): We set M(x, y, z) = k for brevity.

k = M(v, v ′,k) = (Ω.M)

69

Chapter 3. Majority Logic

M(M(u,u′, v), v ′,k) = (Ω.M)

M(M(v ′,k,u), M(v ′,k,u′), v) = (Ω.D)

Then, M(v ′,k,u) = M(v ′,kv/u ,u) (Ψ.R)

and M(v ′,k,u′) = M(v ′,kv/u′ ,u) (Ψ.R)

Recalling that k = M(x, y, z), we finally obtain:

M(x, y, z) = M(v, M(v ′, Mv/u(x, y, z),u), M(v ′, Mv/u′(x, y, z),u′)) �

Soundness and Completness

The set (B, M ,′ ,0,1) together with axiomsΩ and derivable theorems form our majority logic

system. In a computer implementation of our majority logic system, the natural data structure

for (B, M ,′ ,0,1) is a MIG and the associated manipulation tools are Ω and Ψ transformations.

In order to be useful in practical applications, such as EDA, our majority logic system needs

to satisfy fundamental mathematical properties such as soundness and completeness [33].

Soundness means that every argument provable by the axioms in the system is valid. This

guarantees preserving of correctness. Completeness means that every valid argument has a

proof in the system. This guarantees universal logic reachability. We show that our majority

Boolean algebra is sound and complete.

Theorem 3.3.6 The Boolean algebra (B, M ,′ ,0,1) axiomatized by Ω is sound and complete.

Proof We first consider soundness. Here, we need to prove that all axioms in Ω are valid, i.e.,

preserve the true behavior (correctness) of a system. Rules Ω.C and Ω.M are valid because

they express basic properties (commutativity and majority decision rule) of the majority

operator. Rule Ω.I is valid because it derives from the self-duality of the majority operator.

For rules Ω.D and Ω.A, a simple way to prove their validity is to build the corresponding

truth tables and check that they are actually the same. It is an easy exercise to verify that it

is true. We consider now completeness. Here, we need to prove that every valid argument,

i.e., (B, M ,′ ,0,1)-formula, has a proof in the systemΩ. By contradiction, suppose that a true

(B, M ,′ ,0,1)-formula, say α, cannot be proven true usingΩ rules. Such (B, M ,′ ,0,1)-formula

α can always be reduced by Ψ.S rules into a (B, ·,+,′ ,0,1)-formula. This is because Ψ.S can

behave as Shannon’s expansion by setting v = 1 and u to a logic variable. Using ∆ (Eq. 3.1),

all (B, ·,+,′ ,0,1)-formulas can be proven, including α. However, every (B, ·,+,′ ,0,1)-formula is

also contained by (B, M ,′ ,0,1), where · and + are emulated by majority operators. Moreover,

rules inΩ with one input fixed to 0 and 1 behaves as ∆ rules (Eq. 3.1). This means that also Ω

is capable to prove the reduced (B, M ,′ ,0,1)-formula α, contradicting our assumption. Thus

our system is sound and complete. �

As a corollary ofΩ soundness, all rules inΨ are valid.

Corollary 3.3.7 Ψ rules are valid in (B, M ,′ ,0,1).

70

3.3. Majority-Inverter Graphs

Proof Ψ rules are derivable by Ω as shown in Theorem 3.3.5. Then, Ω rules are sound in

(B, M ,′ ,0,1) as shown in Theorem 3.3.6. Rules derivable from sound axioms are valid in the

original domain. �

As a corollary ofΩ completeness, any element of a pair of equivalent (B, M ,′ ,0,1)-formulas, or

MIGs, can be transformed one into the other by a sequence ofΩ transformations. From now

on, we use MIGs to refer to functions in the (B, M ,′ ,0,1) domain. Still, the same arguments are

valid for (B, M ,′ ,0,1)-formulas.

Corollary 3.3.8 It is possible to transform any MIG α into any other logically equivalent MIG β,

by a sequence of transformations inΩ.

Proof MIGs are defined over the (B, M ,′ ,0,1) domain. Following from Theorem 3.3.6, all valid

arguments over (B, M ,′ ,0,1) can be proved by a sequence of Ω rules. A valid argument is

then M(1, M(α,β′,0), M(α′,β,0)) = 0 which reads "α is never different from β" according to

the initial hypothesis. It follows that the sequence of Ω rules proving such argument is also

logically transforming α into β. �

Reachability

To measure the efficiency of a logic system, thus of its Boolean algebra, one can study (i) the

ability to perform a desired task and (ii) the number of basic operations required to perform

such a task. In the context of this work, the task we care about is logic optimization. For the

graph size and graph depth metrics, MIGs can be smaller than AOIGs because of Theorem 3.3.1.

However, the complexity ofΩ sequences required to reach those desirable MIGs is not obvious.

In this regard, we give an insight about the majority logic system efficiency by comparing the

number ofΩ rules needed to get an optimized MIGs with the number of ∆ rules needed to get

an evenly optimized AIGs. This type of efficiency metric is often referred to as reachability, i.e.,

the ability to reach a desired representation form with the smallest number of steps possible.

Theorem 3.3.9 For a given optimization goal and an initial AOIG, the number of Ω rules

needed to reach this goal with a MIG is smaller, or at most equal, than the number of ∆ rules

needed to reach the same goal with an AOIG.

Proof Consider the shortest sequence of ∆ rules meeting the optimization goal with an AOIG.

On the MIG side, assume to start with the initial AOIG replacing node-wise AND/OR nodes

with pre-configured majority nodes. Note thatΩ rules with one input fixed to 0/1 behave as ∆

rules. So, it is possible to emulate the same shortest sequence of ∆ rules in AOIGs withΩ in

MIGs. This is just an upper bound on the shortest sequence ofΩ rules. Exploiting the fullΩ

expresiveness and MIG compactness, this sequence can be further shortened. �

71

Chapter 3. Majority Logic

For a deeper theoretical study on majority logic expresiveness, we refer to [38]. In this work,

we use the mathematical theory presented so far to define a consistent logic optimization

framework. Then, we give experimental evidence on the benefits predicted by the theory.

Results in Section 3.6 show indeed a depth reduction, over the state-of-the-art techniques,

up to 48× thanks to our majority logic system. More details on the experiments are given in

Section 3.6.

Operating on MIGs via the new Boolean algebra is one natural approach to run logic optimiza-

tion. Interestingly enough, other approaches are also possible. In the following, we show how

MIGs can be optimized exploiting other properties of the majority operator, such as bit-error

masking.

3.3.3 Inserting Safe Errors in MIG

MIGs are hierarchical majority voting systems. One notable property of majority voting is

the ability to correct different types of bit-errors. This feature is inherited by MIGs, where

the error masking property can be exploited for logic optimization. The idea is to purposely

introduce logic errors that are succesively masked by the voting resilience in MIG nodes. If

such errors are advantageous, in terms of logic simplifications, better MIG representations

can be generated.

In the immediate following, we briefly review hereafter notations and definitions on logic

errors [1, 39]. Then, we present the theoretical grounds for “safe error insertion” in MIGs. We

define what type of errors, and at what overhead cost, can be introduced. Note that, in this

work, we use the word erroneous to highlight the presence of a logic error. Our notation do not

relate to testing or other fields.

Definition The logic error in function f is defined as the difference between f and its erro-

neous version g and is computed as f ⊕ g .

In principle, a logic error can be determined for any two circuits. In practical cases, a logic

error is interpreted as a perturbation A on an original logic circuit f .

Notation A logic circuit f affected by error A is written f A .

For example, consider the function f = (a +b)·c . An error A defined as "fix variable b to 0 " (A:

b = 0) leads here to f A = ac . In general, an error flips k entries in the truth table of the affected

function. In the above example, k = 1.

To insert safe (permissible) errors in a MIG we consider a node w and we triplicate the

sub-trees rooted at it. In each version of w we introduce logic errors heavily simplifying

the MIG. Then, we use the three erroneous versions of w as inputs to a top majority node

72

3.3. Majority-Inverter Graphs

exploiting the error masking property. Unfortunately, a majority node cannot mask all types

of errors. This limits our choice of permissible errors. Orthogonal errors, defined hereafter,

fit our purposes. Informally, two logic errors are orthogonal if for any input pattern they

cannot happen simultaneously. In the majority voting scenario the orthogonality is important

because it guarantees that no two logic errors happen at the same time which would corrupt

the original functionality.

Definition Two logic errors A and B on a logic circuit f are said orthogonal if (f A ⊕ f)· (f B ⊕
f) = 0.

To give an example of orthogonal errors consider again the function f = (a +b)·c. Here, the

two errors A: a +b = 1 and B : c = 0 are actually orthogonal. Indeed, by logic simplification, we

get (c ⊕ f)·(0⊕ f) = (((a +b)c)′c + ((a +b)c)c ′)·((a +b)c) = ((a +b)c)′c·((a +b)c) = 0. Instead,

the errors A: a +b = 1 and B : c = 1 are not orthogonal for f . This is because the input (1,1,1)

triggers both errors.

Now consider back a generic MIG root w . Let A, B and C be three pairwise orthogonal errors

on w . Being all pairwise orthogonal, a top majority node M(w A , wB , wC) is capable to mask

A,B and C orthogonal errors restoring the original functionality of w . This is formalized in

the following theorem.

Theorem 3.3.10 Let w be a generic node in a MIG. Let A, B and C be three pairwise orthogonal

errors on w. Then the following equation holds: w = M(w A , wB , wC)

Proof The equation w = M(w A , wB , wC) is logically equivalent to w ⊕M(w A , wB , wC) = 0.

The ⊕ (XOR) operator propagates into the majority operator as w ⊕M(w A , wB , wC) = M(w A ⊕
w, wB ⊕w, wC ⊕w). Recalling that M(a,b,c) = ab+ac+bc we rewrite the previous expression

as (w A⊕w)· (wB⊕w)+(w A⊕w)· (wC⊕w)+(wB⊕w)· (wC⊕w). Recall the previously introduced

definition of orthogonal errors (f A ⊕ f)· (f B ⊕ f) = 0. As all errors here are pairwise orthogonal,

we have that each term (wer r1 ⊕w)· (wer r2 ⊕w) is 0 because of the aforementioned definition,

so 0+0+0 = 0. Thus, w ⊕M(w A , wB , wC) = 0. �

Note that a MIG w = M(w A , wB , wC) can have up to three times the size and one more level

of depth as the original w . This means that simplifications enabled by orthogonal errors A,

B and C must be significant enough to compensate for such overhead. Note also that this

approach resembles triple modular redundancy [40] and its approximate variants [13], but

operates differently. Here, we exploit the error masking property in majority operators to

enable logic simplifications rather than covering potential hardware failures. More details on

how to identify advantageous orthogonal errors in MIGs will be given in Section 3.5.1 together

with related Boolean optimization methods.

73

Chapter 3. Majority Logic

In the following sections, we present algorithms for algebraic and Boolean optimization of

MIGs.

3.4 MIG Algebraic Optimization

In this section, we propose algebraic optimization methods for MIGs. They exploit axioms

and derived theorems of the novel Boolean algebra. Our algebraic optimization procedures

target size, depth and switching activity reduction in MIGs.

3.4.1 Size-Oriented MIG Algebraic Optimization

To optimize the size of a MIG, we aim at reducing the number of its nodes. Node reduction can

be done, at first instance, by applying the majority rule. In the MIG Boolean algebra domain

this corresponds to the evaluation of the majority axiom (Ω.M) from Left to Right (L → R), as

M(x, x, z) = x. A different node elimination opportunity arises from the distributivity axiom

(Ω.D), evaluated from Right to Left (R → L), as M(x, y, M(u, v, z)) = M(M(x, y,u), M(x, y, v), z).

By applyingΩ.ML→R and Ω.DR→L to all MIG nodes, in an arbitrary sequence, we can actually

eliminate nodes. By repeating this procedure until no improvement exists, we designed a

simple yet powerful procedure to reduce a MIG size. Embedding some intelligence in the

graph exploration direction, e.g., the sequence of MIG nodes, immediately improves the

optimization effectiveness. Note that the applicability of majority and distributivity depends

on the particular MIG structure. Indeed, there may be MIGs where no direct node elimination

is evident. This is because (i) the optimal size is reached or (ii) we are stuck in a local minimum.

In the latter case, we want to reshape the MIG in order to encode new reduction opportunities.

The rationale driving the reshaping process is to locally increase the number of common

inputs/variables to MIG nodes. For this purpose, the associativity axioms (Ω.A, Ψ.C) allow

us to move variables between adjacent levels and the relevance axiom (Ψ.R) to exchange

reconvergent variables. When a more radical transformation is beneficial, the substitution

axiom (Ψ.S) replaces pairs of independent variables, temporarily inflating the MIG. Once

the reshaping process has created new reduction opportunities, majority (Ω.ML→R) and

distributivity (Ω.DR→L) are applied again over the MIG to simplify it. The reshaping and

elimination processes can be iterated over a user-defined number of cycles, called effort. Such

MIG-size algebraic optimization strategy is summarized in Alg. 2.

Algorithm 2 MIG Algebraic Size-Optimization Pseudocode

INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
Ω.ML→R (α); Ω.DR→L(α);
Ω.A(α); Ψ.C (α);
Ψ.R(α); Ψ.S(α);
Ω.ML→R (α); Ω.DR→L(α);

end for

reshape eliminate

74

3.4. MIG Algebraic Optimization

MAJ$

1$
MAJ$

z1

MAJ$

1z MAJ$

1$
MAJ$

y1x$

MAJ$

1y

f=x!$�!$y!$�!$z!$

MAJ$

1$
MAJ$

z1

MAJ$

1z MAJ$

1$
MAJ$

y1y$

MAJ$

1y

MAJ$

1$
MAJ$

z1

MAJ$

1$ MAJ$

1$
MAJ$

y1y$

MAJ$

1$

MAJ$

x$
MAJ$

x$

MAJ$

x$ y$

f!$

f$x\y!$ f$x\y’!$

MAJ$

MAJ$

f$

MAJ$

x$

y$ x$ zxz$

Ψ.S$ Ω.M$

MAJ$

MAJ$

w$

x$

x$

k=M(x,y,M(x’,z,w))$

y$

z$

Ψ.R$
MAJ$

MAJ$

w$

x$

y$

k$

y$

z$

SW=0.09$

SW=0.09$

SW=0.03$

SW=0.06$

px=0.5$
py=0.1$

pw=0.1$
pz=0.1$px=0.5$

px=0.5$
py=0.1$

pw=0.1$
pz=0.1$py=0.1$

Ω.A$
MAJ$

MAJ$

MAJ$

vux$ y$

g=x(y+uv)$

1$

1$

1$

Ψ.C$

MAJ$

MAJ$

g$

MAJ$

x$

1$ u$ vxy$

MAJ$

MAJ$

MAJ$

vux$ y$

g$

1$

x$

1$

Ω.A$

Ω.M$Ψ.R$

MAJ$

x$
MAJ$

yxz$

MAJ$

xw

h=M(x,M(w,x,z’),M(z,x,y))$

MAJ$

x$

MAJ$

yx

z$

MAJ$

x$

w$

z$

h$

MAJ$

x$

MAJ$

yx

z$

MAJ$

x$

w$

x$

h$ h$

x$

depth&opt.&

size&opt.& depth&opt.&

ac.vity&opt.&

a)& b)&

c)&
d)&

Figure 3.3: Examples of MIG optimization for size, depth and switching activity.

For the sake of clarity, we comment on the MIG-size algebraic optimization of a simple exam-

ple, reported in Fig. 3.3(a). The input MIG is equivalent to the formula M(x, M(x, z ′, w), M(x, y, z)),

which has no evident simplification by majority and distributivity axioms. Consequently, the

reshape process is invoked to locally increase the number of common inputs. AssociativityΩ.A

swaps w and M(x, y, z) in the original formula obtaining M(x, M(x, z ′, M(x, y, z)), w), when

variables x and z are close to the each other. After that, the relevanceΨ.R modifies the inner

formula M(x, z ′, M(x, y, z)), exchanging variable z with x and obtaining M(x, M(x, z ′, M(x, y, x)), w).

At this point, the final elimination process is applied, simplifying the reshaped representation

as M(x, M(x, z ′, M(x, y, x)), w) = M(x, M(x, z ′, x), w) = M(x, x, w) = x by usingΩ.ML→R .

3.4.2 Depth-Oriented MIG Algebraic Optimization

To optimize the depth of a MIG, we aim at reducing the length of its critical path. A valid

strategy for this purpose is to move late arrival (critical) variables close to the outputs. In order

to explain how critical variables can be moved, while preserving the original functionality, con-

sider the general case in which a part of the critical path appears in the form M(x, y, M(u, v, z)).

If the critical variable is x, or y , no simple move can reduce the depth of M(x, y, M(u, v, z)).

Whereas, if the critical variable belongs to M(u, v, z), say z, depth reduction is achievable. We

75

Chapter 3. Majority Logic

focus on the latter case, with order tz > tu ≥ tv > tx ≥ ty for the variables arrival time (depth).

Such an order can arise from (i) an unbalanced MIG whose inputs have equal arrival times, or

(ii) a balanced MIG whose inputs have different arrival times. In both cases, z is the critical

variable arriving later than u, v, x, y , hence the local depth is tz+2. If we apply the distributivity

axiomΩ.D from left to right (L → R), we obtain M(x, y, M(u, v, z)) = M(M(x, y,u), M(x, y, v), z)

where z is pushed one level up, reducing the local depth to tz +1. Such technique is applicable

to a broad range of cases, as all the variables appearing in M(x, y, M(u, v, z)) are distinct and

independent. However, there is a size penalty of one extra node. In the favorable cases for

which associativity axioms (Ω.A, Ψ.C) apply, critical variables can be pushed up with no

penalty. Furthermore, where majority axiom applies Ω.ML→R , it is possible to reduce both

depth and size. As noted earlier, there exist cases for which moving critical variables cannot

improve the overall depth. This is because (i) the optimal depth is reached or (ii) we are stuck

in a local minimum. To move away from a local minimum, the reshape process is useful. The

reshape and critical variable push-up processes can be iterated over a user-defined number of

cycles, called effort. Such MIG-depth algebraic optimization strategy is summarized in Alg. 3.

Algorithm 3 MIG Algebraic Depth-Optimization Pseudocode

INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
Ω.ML→R (α); Ω.DL→R (α); Ω.A(α);
Ω.A(α); Ψ.C (α);
Ψ.R(α); Ψ.S(α);
Ω.ML→R (α); Ω.DL→R (α); Ω.A(α);

end for

reshape push-up

We comment on the MIG-depth algebraic optimization using two examples depicted by

Fig. 3.3(b-c). The considered functions are f = x ⊕ y ⊕ z and g = x(y +u·v) with initial MIG

representations derived from their optimal AOIGs. In both of them, all inputs have 0 arrival

time. No direct push-up operation is advantageous. The reshape process is invoked to move

away from local minimum. For g = x(y +uv), complementary associativity Ψ.C enforces

variable x to appear in two adjacent levels, while for f = x ⊕ y ⊕ z substitutionΨ.S replaces x

with y , temporarily inflating the MIG. After this reshaping, the push-up procedure is applicable.

For g = x(y +u·v), associativity Ω.A exchanges 1′ with M(u,1′, v) in the top node, reducing by

one level the MIG depth. For f = x ⊕ y ⊕ z, majorityΩ.ML→R heavily simplifies the structure

and reduces the intermediate MIG depth by four levels. The optimized MIGs are much shorter

than their optimal AOIGs counterparts. Note that Alg. 3 produces irredundant solutions.

3.4.3 Switching Activity-Oriented MIG Algebraic Optimization

To optimize the total switching activity of a MIG, we aim at reducing (i) its size and (ii) the

probability for nodes to switch from logic 0 to 1, or vice versa. For the size reduction task,

we can run the same MIG-size algebraic optimization described previously. To minimize the

switching probability, we want that nodes do not change values often, i.e., the probability of a

76

3.5. MIG Boolean Optimization

node to be logic 1 (p1) is close to 0 or 1 [42]. For this purpose, relevance Ψ.R and substitution

Ψ.S can exchange variables with undesirable p1 ∼ 0.5 with more favorable variables having

p1 ∼ 1 or p1 ∼ 0. In Fig. 3.3(d), we show an example where relevance Ψ.R replaces a variable x

having p1 = 0.5 with a reconvergent variable y having p1 = 0.1, thus reducing the overall MIG

switching activity.

3.5 MIG Boolean Optimization

In this section, we propose Boolean optimization methods for MIGs. They exploit the safe error

insertion schemes presented in Section 3.3.3. First, we introduce two techniques to identify

advantageous orthogonal errors in MIGs. Second, we present our Boolean optimization

technique targeting depth and size reduction in MIGs. Note that also other optimization goals

are possible.

3.5.1 Identifying Advantageous Orthogonal Errors in MIGs

In the following, we present two methods for identifying advantageous triplets of orthogonal

errors in MIGs.

Critical Voters Method

A natural way to discover advantageous triplets of orthogonal errors is to analyze a MIG

structure. We want to identify critical portions of a MIG to be simplified thanks to these errors.

To do so, we focus on nodes1 that have the highest impact on the final voting decision, i.e.,

influencing a Boolean function most. We call such nodes critical voters of a MIG. Critical

voters can also be primary input themselves. To determine the critical voters, we rank MIG

nodes based on a criticality metric. The criticality computation goes as follows. Consider a

MIG node m. We label all MIG nodes whose computation depends on m. For all such nodes,

we calculate the impact of m by propagating a unit weight value from m outputs up to the

root with an attenuation factor of 1/3 each time a majority node is encountered. We finally

sum up all the values obtained and call this result criticality of m. Intuitively, MIG nodes with

the highest criticality are critical voters.

For the sake of clarity, we give an example of criticality computation in Fig. 3.4. Node m5 has

criticality of 0, since it is the root and does not propagate to any node. Node m4 has criticality

of 1/3 (a unit weight propagated to m5 and attenuated by 1/3). Node m3 has criticality of

1/3 (m4) + (1/3+1)/3 (direct and m4 contribution to m5) which sums up to 7/9. Node m2 has

criticality of 1/3 (m3) + 4/9 (m4) + 7/27 (m5) which sums up to 28/27. Node m1 has criticality

1/3 + criticality of m2 attenuated by factor 3 which sums up to about 2/3. Among the inputs,

1In the context of the critical voters technique we consider also the primary inputs to be a special class of nodes
with no fan-in.

77

Chapter 3. Majority Logic

Cri$cal(Voters:((
{m2,(x1}(

MAJ$

fB#
$

MAJ$

MAJ$

x1$

x2$

x4$x3$ MAJ$

x7$x6$x5$

m1$

m2$ m3&>x1#

m4$

m5$

MAJ$

fC#

MAJ$

MAJ$

x1$

x2$

x4$x3$ MAJ$

x7$x6$x5$

m1$

m2$
m3&>m2#

m4$

m5$

MAJ$

fA#

MAJ$

MAJ$

x1$

x2$

x3$x1$m2&>x1’#

m3$

m4$

m5$
MAJ$

f$

MAJ$

MAJ$

MAJ$

x1$

x2$

x3$x1$

x4$x3$ MAJ$

x7$x6$x5$

m1$$

m2$$

m3#

m4#

m5#

x1$(c:(25/27)(

(c:(0)(

(c:(7/9)(

(c:(1/3)(

(c:(28/27)(

(c:(2/3)(

Cri$cality((
computa$on(
((c:(value)(f(subject(to(error(A:(

m2&>x1’#
f(subject(to(error(B:(

m3&>x1#
f(subject(to(error(C:(

m3&>m2#

f(subject(to(A,B,C(pairwise(orthogonal(errors#

Figure 3.4: Example of criticality computation and orthogonal errors.

only x1 has a notable criticality being 1/3 (m3) + 1/9 (m4) + (1/3+1/9+1)/3 (m5) which sums

up to 25/27. Here the two elements with highest criticality are m2 and x1.

We first determine two critical voters a and b and a set of MIG nodes fed directly by both a

and b, say {c1,c2, ...,cn}. In this context, an advantageous triplet of orthogonal errors is: A:

a = b′, B : c1 = a,c2 = a, ...,cn = a and C : c1 = b,c2 = b, ...,cn = b. Consider again the example

in Fig. 3.4. There, the critical voters are a = m2 and b = x1, while c1 = m3. Thus, the pairwise

orthogonal errors are m2 = x1′ (A), m3 = x1 (B) and m3 = m2 (C), as shown in Fig. 3.4. The

actual orthogonality of A, B and C type of errors is proved in the following theorem.

Theorem 3.5.1 Let a and b be two critical voters in a MIG. Let {c1,c2, ...,cn} be the set of MIG

nodes fed by both a and b in the same polarity. Then, the following errors are pairwise orthogo-

nal: A: a = b′, B: c1 = a,c2 = a, ...,cn = a and C : c1 = b,c2 = b, ...,cn = b.

Proof Starting from a MIG w , we build the three erroneous versions w A , wB and wC as

described above. We show that orthogonality holds for all 3 pairs. Pair (w A , w B): We need

to show that (w A ⊕w)· (wB ⊕w) = 0. The element w A ⊕w implies a = b, being the difference

between the original and the erroneous one with a = b′ (a 6= b). The element wB ⊕w implies

ci 6= a (ci = a′), being the difference between the original and the erroneous one with ci =
a. However, if a = b then ci cannot be a′ because ci = M(a,b, x) = M(a, a, x) = a 6= a′ by

construction. Thus, the two elements cannot be true at the same time, making (w A⊕w)· (wB ⊕
w) = 0. Pair (w A , wC): This case is analogous to the previous one. Pair (w B , wC): We need to

show that (wB ⊕w)· (wC ⊕w) = 0. As we deduced before, the element wB ⊕w implies ci 6= a

(ci = a′). Similarly, the element wC ⊕w implies ci 6= b (ci = b′). By the transitive property of

equality and congruence in the Boolean domain ci 6= a and ci 6= b implies a = b. However, if

a = b, then ci = M(a,b, x) = M(a, a, x) = M(b,b, x) = a = b which contradicts both ci 6= a and

ci 6= b. Thus, wB , wC cannot be true simultaneously, making (wB ⊕w)· (wC ⊕w) = 0. �

78

3.5. MIG Boolean Optimization

Even though focusing on critical voters is typically a good strategy for safe error insertion in

MIGs, sometimes other techniques can be also convenient. In the following, we present one

of these alternative techniques.

Input Partitioning Method

As a complement to critical voters method, we propose a different way to derive advantageous

triplets of orthogonal errors in MIGs. In this case, we focus on the inputs rather than looking for

internal MIG nodes. In particular, we search for inputs leading to advantageous simplifications

when erroneous. Analogously to the criticality metric in critical voters, we use here a decision

metric, called dictatorship [43], to select the most profitable inputs for logic error insertion.

The dictatorship is the ratio of input patterns over the total (2n) for which the output assumes

the same value than the selected input [43]. For example, in the function f = (a +b)·c, the

inputs a and b have equal dictatorship of 5/8 while input c has an higher dictatorship of 7/8.

The inputs with the highest dictatorship are the ones where we want to insert logic errors.

Indeed, they have the largest influence on the circuit functionality and its structure.

Exact computation of the dictatorship requires exhaustive simulation of an MIG structure,

which is not feasible for practical reasons. Heuristic approaches to estimate dictatorship

involve partial random simulation and graph techniques [43].

After exact or heuristic computation of the dictatorship, we select a subset of the primary

inputs with highest dictatorship. Next, for each selected input, we determine a condition that

causes an error. We require these errors to be orthogonal. Since we operate directly on the

primary inputs, we already divide the Boolean space into disjoint subsets that are orthogonal.

Because we need at least three errors, we need to consider at least three inputs to be made

erroneous, say x, y and z. A possible partition is the following: {x 6= y , x = y = z, x = y = z ′}.

The corresponding errors are A: x = y for {x 6= y}, B : z = y ′ when x = y for {x = y = z} and C :

z = y when x = y for {x = y = z ′}. We formally prove A,B and C orthogonality hereafter.

Theorem 3.5.2 Consider the input split {x 6= y, x = y = z, x = y = z ′} in a MIG. Three errors

A,B and C selectively affecting one subset but not the others are pairwise orthogonal.

Proof To prove the theorem it is sufficient to show that the split {x 6= y , x = y = z, x = y = z ′}
is actually a partition of the whole Boolean space, i.e., a union of disjoint (non-overlapping)

subsets. It is an easy exercise to enumerate all the eight possible {x, y, z} input patterns and

associate with each of them the corresponding {x 6= y , x = y = z, x = y = z ′} subset. By doing

so, one can see that no {x, y, z} pattern is associated with more than one sub-set, meaning that

all subsets are disjoint. Moreover, all together, they form the whole Boolean space. �

For the sake of clarity, we report an illustrative example on the input partitioning method.

The function is f = M(x, M(x, y ′, z), M(x ′, y, z)). The input split is {x 6= y , x = y = z, x = y = z ′}

79

Chapter 3. Majority Logic

which is affected by errors A,B and C , respectively. The first error A imposes x = y leading

to f A = M(x, M(y, y ′, z), M(x ′, x, z)) which can be further simplified into f A = M(x, z, z) = z

byΩ.M . The second error B imposes z = y ′ when x = y . This is the case for the bottom level

majority operators M(x, y ′, z) and M(x ′, y, z) which are transparent when x = y . Therefore,

error B leads to f B = M(x, M(x, y ′, y ′), M(x ′, y, y ′)) which can be further simplified into f B =
M(x, y ′, x ′) = y ′ by Ω.M . The third error C imposes z = y when x = y holds. Analogously

to error B , error C leads to f C = M(x, M(x, y ′, y), M(x ′, y, y)) which can be further simplified

into f C = M(x, x, y) = x byΩ.M . A top majority node finally merges the three functions into

f = M(f A , f B , f C) = M(z, y ′, x) which correctly represents the objective function but has 2

fewer nodes and 1 level less than the original representation.

MAJ$

f$

MAJ$

MAJ$

MAJ$

x1$

x2$

x3$x1$

x4$x3$ MAJ$

x7$x6$x5$

m1$

m2$

m3$

m4$

m5$

MAJ$

MAJ$

MAJ$

x1$

x2$

x4$x3$ MAJ$

x7$x6$x5$

m1$

m2$

m4$

m5$

fm3/m2$

MAJ$

MAJ$

x1$

x4$x3$ MAJ$

x7$x6$x5$

m1$

m2$

m5$

fm3/m2$

MAJ$

x4$x3$ MAJ$

x7$x6$x5$

m1$

m2$

fm3/m2$

Ω.M$ Ω.M$

MAJ$

fm2/x1’$ fm3/x1$fm3/m2$

f$

Cri$cal(Voters:((
{m2,(x1}(

MAJ$

MAJ$

MAJ$

x1$

x2$

x4$x3$ MAJ$

x7$x6$x5$

m1$

m2$

m4$

m5$
fm3/x1$

x1$

fm3/x1$

x1$

Ω.M$

MAJ$

MAJ$

MAJ$

x1$

x2$

x3$x1$

m3$

m4$

m5$
fm2/x1’$

x1$

MAJ$

MAJ$ x1$

x2$

m4$

m5$
fm2/x1’$

x1$

x3$

MAJ$

MAJ$

x1$

x2$

m4$

m5$
fm2/x1’$

x1$

x3$

fm2/x1’$

x3$
Ω.M$ Ω.A$ Ω.M$

fm3/x1'

fm2/x1’'

fm3/m2'

Cri$cal(path(

Depth:(5(
Size:(5(

Depth:(2(
Size:(3(

Depth(gain:(60%(
Size(gain:(40%(

Cri$cal(path(

Final(MIG(

Original(MIG(

Last(Gasp(

Alg.(Opt.(

Alg.(Opt.(

Alg.(Opt.(

Top(MAJ(
Masking(Node(

MAJ$

f$

x1$x3$
MAJ$

x4$x3$ MAJ$

x7$x6$x5$

MAJ$

f$

x3$

MAJ$

x4$x3$

MAJ$

x7$x6$x5$x1$

Ω.A$

Figure 3.5: MIG Boolean depth-optimization example based on critical voters errors insertion.
Final depth reduction: 60%.

3.5.2 Depth-Oriented MIG Boolean Optimization

The most intuitive way to exploit safe error insertion in MIGs is to reduce the number of levels.

This is because the initial overhead in w = M(w A , wB , wC), where w is the initial MIG and

w A , wB , wC are the three erroneous versions, is just one additional level. This extra level is

80

3.5. MIG Boolean Optimization

usually amply recovered during simplification and optimization of MIG erroneous branches.

For depth-optimization purposes, the critical voters method introduced in Section 3.3.3

enables very good results. The reason is the following. Critical voters appear along the critical

path more than once. Thus, the possibility to insert simplifying errors on critical voters

directly enables a strong reduction in the maximum number of levels. Sometimes, using an

actual MIG root for error insertion requires an unpractical size overhead. In these cases, we

bound the critical voters search to sub-MIGs partitioned on a depth criticality basis. Once

the critical voters and a proper error insertion root have been identified, three erroneous

sub-MIG versions are generated as explained in Section 3.3.3. On these sub-MIGs, we want

to reduce the logic height. We do so by running algebraic MIG optimization on them (Alg. 3).

Note that, in principle, also MIG Boolean methods can be re-used. This would correspond

to a recursive Boolean optimization. However, it turned out during experimentation that

algebraic optimizations already produce satisfactority results at the local level. Thus, it makes

more sense to apply Boolean techniques iteratively on the whole MIG structure rather than

recursively on the same logic portion. At the end of the optimization of erroneous branches,

the new MIG-roots must be given in input to a top majority voting node. This re-establishes

the functional correctness. A last gasp of MIG algebraic optimization is applied at this point,

to take advantage of the simplification opportunities arosen from the integration of erroneous

branches. This Boolean optimization strategy is summarized in Alg. 4.

Algorithm 4 MIG Boolean Depth-Optimization Pseudocode

INPUT: MIG α OUTPUT: Optimized MIG α.

for (cycles=0; cycles<effort; cycles++) do
{a,b}=search_critical_voters(α);// Critical voters a,b searched

c=size_bounded_root(α, a,b);// Proper error insertion root

xn
1 =common_parents(α, a,b);// Nodes fed by both a and b

c A=cb/a′
;// First erroneous branch

cB =cxn
1 /a ;// Second erroneous branch

cC =cxn
1 /b ;// Third erroneous branch

MIG-depth_Alg_Opt(c A);// Reduce the erroneous branch height

MIG-depth_Alg_Opt(cB);// Reduce the erroneous branch height

MIG-depth_Alg_Opt(cC);// Reduce the erroneous branch height

c=M(c A ,cB ,cC);// Link the erroneous branches

MIG-depth_Alg_Opt(c); // Last Gasp

if depth(c) is not reduced then
revert to previous MIG state;

end if
end for

We comment on the MIG Boolean depth optimization with a simple example, reported in

Fig. 3.5. First, the critical voters are searched and identified, being in this example the input

x1 and the node m2 (from Fig. 3.4). The proper error insertion root in this small example is

the MIG root itself. So, three different versions of the root f are generated with errors f m2/x1′
,

f m3/m2 and f m3/x1. Each erroneous branch is handled by fast algebraic optimization to

81

Chapter 3. Majority Logic

reduce its depth. The detailed algebraic optimization steps involved are shown in Fig. 3.5. The

most common operation isΩ.M that directly simplifies the introduced errors. The optimized

erroneous branches are then linked together by a top fault-masking majority node. A last gasp

of algebraic optimization on the final MIG structure further optimizes its depth. In summary,

our MIG Boolean optimization techniques attains a depth reduction of 60%.

3.5.3 Size-Oriented MIG Boolean Optimization

Safe error insertion in MIGs can be used for size reduction. In this case, the branch triplication

overhead in w = M(w A , wB , wC) imposes tight simplification requirements. One way to

handle this situation is to enforce stricter selection metrics on critical voters. However, the

benefits deriving from this approach are limited. A better solution is to change the type of error

inserted and use the input partitioning method. Indeed, the input partitioning method can

focus on the most influent inputs of a MIG, and introduces selective simplification on them.

The resulting Boolean optimization procedure is similar to Alg. 3 but with depth techniques

replaced by size techniques, and critical voter search replaced by input partitioning methods.

3.6 Experimental Results

In this section, we test the performance of our MIG optimization techniques on academic and

industrial benchmarks. We run logic optimization experiments (comparing logic networks)

and complete design experiments (consisting of logic synthesis and physical design) on

commercial ASIC and FPGA flows.

3.6.1 Methodology

We developed a majority-logic manipulation package, called MIGhty, consisting of about 8k

lines of C code. It embeds various optimization commands based on the theory presented

so far. In this work, we use a particular MIGhty optimization strategy targeting strong depth

reduction interleaved with size recovery phases. The top-level optimization script is depicted

by Alg. 5. This technique starts by reducing the depth by algebraic methods implying a small

size overhead. After a fast reshaping step, it decreases the size of the MIG by level-bounded

size reduction. At this point, Boolean MIG depth optimization is invoked to significantly

reduce the number of levels at the price of a temporary MIG size inflation. Further level

reduction opportunities are exploited in an algebraic depth reduction step. Then, size recovery

is achieved by Boolean intertwined with algebraic size reduction. A small depth overhead

is possible in this phase due to the size reduction. Finally, a last gasp of algebraic depth

optimization further compacts the MIG followed by level-bounded algebraic size reduction.

All optimization steps have a runtime complexity linear w.r.t. the MIG size, i.e., are imposed to

consider each node at least once.

82

3.6. Experimental Results

Algorithm 5 Top-Level MIG-optimization Script

INPUT: MIG α. OUTPUT: Optimized MIG α.

MIG-depth_Alg_Opt(α);// small size overhead

MIG-reshaping(α);// reshuffling

MIG-size_Alg_Opt(α);// no depth overhead

MIG-depth_Bool_Opt(α);// pronounced size overhead

MIG-reshaping(α);// reshuffling

MIG-depth_Alg_Opt(α);// small size overhead

MIG-size_Bool_Opt(α);// small depth overhead

MIG-size_Alg_Opt(α);// no depth overhead

MIG-reshaping(α);// reshuffling

MIG-depth_Alg_Opt(α);// small size overhead

MIG-size_Alg_Opt(α);// no depth overhead

The script in Alg. 5 is a composite optimization strategy, similarly to the class of resyn scripts

in ABC [17].

MIGhty reads files in Verilog or AIGER format and writes back a Verilog description of the

optimized MIG. In order to simplify successive mapping steps, MIGhty reduces majority

functions into AND/ORs if no size/depth overhead is implied. Thus, only the essential majority

functions are written. Also, the number of inversions is minimized byΩ.I before writing.

We consider IWLS’05 Open Cores benchmarks and larger arithmetic HDL benchmarks. As

a case study, we also consider various adder circuits. All the Verilog files deriving from our

experiments can be downloaded at [44], for the sake of reproducibility. In all benchmarks, we

assumed the input signals to be available at time 0. In total, we optimized about half a million

equivalent gates over 31 benchmarks.

For the pure logic optimization experiments, we use as reference tool the ABC academic

synthesizer [17], with the delay oriented script i f − g ; i r es yn. The initial i f − g optimization

strongly reduces the AIG depth by using SOP-balancing [51]. The latter i r es yn optimization

performs fast rewriting passes on the AIG, reducing mostly the number of nodes but potentially

also the number of levels.

We chose the AIG script i f − g ; i r es yn because its optimization rationale is close to our MIG

optimization strategy and the respective runtimes are comparable. Note that ABC offers

many other optimization scripts. Some of them may give better results under determinate

conditions (benchmark type, size etc.). As the purpose of this work is primarily to assess the

potential of MIG optimization w.r.t. to analogous AIG optimization, we neglect considerations

and comparisons related to other ABC commands.

While comparing size and depth of MIGs vs. AIGs already gives some good intuition on a data

structure and optimization effectiveness, we aim at providing results on even grounds. For

this reason, we map both AIG-optimized and MIG-optimized circuits onto LUT6. We perform

83

Chapter 3. Majority Logic

LUT mapping using the established ABC script dch − f ; i f −m −K 6.

For the complete design experiments, we consider a 22-nm (28-nm) commercial ASIC (FPGA)

flow suite. The commercial flow consists of a logic synthesis step followed by place & route.

In this case, we use the MIG-optimized Verilog file as input to the commercial tools in place

of the original Verilog file. In other words, the MIGhty package operates as a front-end to the

flows. Indeed, the efficiency of MIG-optimization helps the commercial tool to design better

circuits. With the final circuit speed being our main design goal, we use an ultra-high delay

effort script in the commercial tools.

3.6.2 Optimization Case Study: Adders

We first test the MIG optimization capabilities for adders, that are known hard-to-optimize

circuits [52]. Results for more general benchmarks are given in the next subsection. Table 3.1

Table 3.1: Adder Optimization Results
Type Bit Orig. AIG Map. AIG Opt. MIG Map. MIG

size lvl lut6 lvl size lvl lut6 lvl
2-op 32 352 96 65 13 610 12 150 4
2-op 64 704 192 132 26 1159 11 272 5
2-op 128 1408 384 267 52 14672 19 3684 7
2-op 256 2816 768 544 103 7650 16 1870 7
3-op 32 760 68 127 14 1938 16 349 8
4-op 64 1336 136 391 27 2212 18 524 7

shows the adder results. Our optimized MIG adders have 4 to 48× smaller depth than the

original AIGs. In all cases, the optimized MIG structure achieves depths close to the ones

of carry-look ahead adders. Considering LUT mapped results, MIG-optimization enables

significantly less deep circuits, having 1.75 to 14× smaller depth than LUT6 circuits mapped

from the original AIGs.

3.6.3 General Optimization Results

Table 3.2 shows general results for MIGhty logic optimization and LUT-6 mapping. For the

IWLS’05 and HDL arithmetic benchmarks, we see a total improvement in all size, depth and

switching activity metrics, w.r.t. to AIG optimized by ABC. The switching activity is computed

by the ABC command ps -p. The same improvement trend holds also for LUT mapped circuits.

Since logic depth was our main optimization target, we notice there the largest reduction.

Considering the IWLS’05 benchmarks, that are large but not deep, MIGhty enables about 14%

depth reduction. At the LUT-level, we see about 7% depth reduction. At the same time, the

size and switching activity are reduced by about 4% and 2%, respectively. At the LUT-level, size

and switching activity are reduced by about 2% and 1%, respectively.

Focusing on the arithmetic HDL benchmarks, we see a better depth reduction. Here, MIGhty

84

3.6. Experimental Results

Table 3.2: MIG Logic Optimization and LUT-6 Mapping Results

MIGhty ABC

Benchmark I/O Opt. MIG Map. MIG Opt. AIG Map. AIG

Open Cores IWLS’05 Size Depth LUT6 Depth Runtime (s) Size Depth LUT6 Depth Runtime (s)

DSP 4223/3953 40517 34 11077 11 7.98 39958 41 11309 12 5.39

ac97_ctrl 2255/2250 10745 8 2917 3 6.52 10497 9 2914 3 8.98

aes_core 789/668 20947 18 3902 4 11.78 20632 19 3754 5 8.22

des_area 368/72 4186 22 735 6 1.04 5043 24 1012 7 2.11

des_perf 9042/9038 67194 15 12796 3 34.22 75561 15 12814 3 25.43

ethernet 10672/10696 57959 15 18108 6 23.69 56882 22 18267 6 36.54

i2c 147/142 971 8 270 3 0.11 1009 10 268 4 0.05

mem_ctrl 1198/1225 7143 19 2333 7 0.38 9351 22 2582 7 0.33

pci_bridge32 3519/3528 18063 16 5294 6 3.28 16812 18 5424 7 2.22

pci_spoci_ctrl 85/76 932 11 276 4 0.04 994 13 287 4 0.02

sasc 133/132 621 6 152 2 0.11 657 7 152 2 0.03

simple_spi 148/147 837 8 206 3 0.05 770 10 211 3 0.01

spi 274/276 3337 19 812 6 3.71 3430 24 854 7 2.28

ss_pcm 106/98 397 6 104 2 0.01 381 6 104 2 0.01

systemcaes 930/819 9547 25 1845 7 5.26 11014 31 2060 8 4.79

systemcdes 314/258 2453 19 515 5 2.21 2495 21 623 5 1.05

tv80 373/404 7397 30 1980 11 6.43 7838 35 2036 11 2.97

usb_funct 1860/1846 12995 19 3333 5 13.45 13914 20 3394 5 9.04

usb_phy 113/111 372 7 136 2 0.11 380 7 136 2 0.05

IWLS’05 total 266613 305 66791 96 120.38 277618 354 68201 103 109.52

Arithmetic HDL Size Depth LUT6 Depth Runtime (s) Size Depth LUT6 Depth Runtime (s)

MUL32 64/64 9096 36 1852 10 2.90 8903 40 1993 11 1.90

sqrt32 32/16 2171 164 544 54 1.02 1353 292 236 55 1.22

diffeq1 354/289 17281 219 4685 45 56.32 21980 235 4939 45 16.88

div16 32/32 4374 102 818 37 4.67 5111 132 806 38 2.44

hamming 200/7 2071 61 517 14 2.01 2607 73 590 17 2.54

MAC32 96/65 9326 41 2095 11 4.30 9099 54 2044 12 7.76

metric_comp 279/193 18493 77 6202 29 16.21 21112 95 6796 31 9.51

revx 20/25 7516 143 1937 40 10.70 7516 162 2176 42 12.02

mul64 128/128 25773 109 6557 31 13.84 26024 186 6751 43 10.09

max 512/130 4210 29 1023 12 1.67 2964 113 818 20 2.23

square 64/127 17550 40 4393 13 18.66 17066 168 4278 35 12.24

log2 32/32 31326 201 8809 59 23.32 30701 272 8223 73 15.54

Arithmetic total 149727 1222 39432 355 155.62 154436 1822 39650 422 94.37

enables about 33% depth reduction. At the LUT-level, it enables about 16% depth reduction.

At the same time, MIGhty reduces size and switching activity by 4% and 0.1%. At the LUT-level,

this corresponds to about 1% size reduction and practically the same switching activity.

The switching activity numbers are not reported in Table 3.2 for space reasons but can be

reproduced using the ABC command ps -p on the files downloadable at [44].

Table 3.2 confirms that the runtime of our tool is similar with that of i f − g ; i r es yn ABC script.

All MIG output Verilog files passed formal verification tests (ABC cec and Synopsys Formality)

with success.

85

Chapter 3. Majority Logic

Table 3.3: MIG 22-nm ASIC Design Results
Benchmark MIGhty+ASIC flow ASIC flow

µm2 ns mW µm2 ns mW
DSP 6958.23 0.57 1.82 1841.76 2.95 1.82

ac97_ctrl 2045.48 0.12 0.55 2070.83 0.15 0.56
aes_core 4599.62 0.29 1.75 4417.46 0.29 1.64
des_area 853.21 0.31 0.59 1084.60 0.36 0.53
des_perf 14417.90 0.20 11.21 15808.09 0.23 11.81
ethernet 10835.31 0.25 1.61 10631.93 0.29 1.59

i2c 210.13 0.10 0.04 210.04 0.11 0.04
mem_ctrl 1359.41 0.30 0.27 1372.58 0.33 0.27
pci_b32 3215.69 0.26 0.79 3259.76 0.29 0.79

pci_spoci 159.34 0.16 0.08 177.47 0.16 0.09
sasc 125.12 0.08 0.02 139.98 0.10 0.02

simple_spi 169.60 0.12 0.04 178.64 0.14 0.04
spi 542.22 0.39 0.21 503.41 0.42 0.18

ss_pcm 85.33 0.08 0.02 89.23 0.08 0.02
systemcaes 1328.08 0.35 0.65 1427.94 0.43 0.66
systemcdes 538.97 0.31 0.37 641.30 0.33 0.45

tv80 1299.34 0.43 0.37 1213.84 0.50 0.40
usb_funct 2269.22 0.25 0.72 2337.65 0.26 0.77
usb_phy 111.15 0.05 0.02 115.73 0.07 0.02
MUL32 1862.55 0.55 1.81 1748.45 0.56 1.90
sqrt32 498.65 2.54 0.62 504.76 2.74 0.62
diffeq1 3460.48 3.19 4.33 3713.87 3.49 4.68
div16 595.86 1.64 0.26 948.66 2.06 0.40

hamming 325.65 0.90 0.56 348.46 1.04 0.58
MAC32 2281.57 0.58 1.95 2194.88 0.60 1.89

metric_c 4274.04 1.36 1.68 4642.09 1.55 1.72
revx 1401.04 2.23 1.42 1451.11 2.63 1.48

mul64 6378.20 1.43 7.01 6330.08 1.82 6.95
max 628.23 0.45 0.33 631.46 0.56 0.33

square 4031.05 0.46 3.69 3895.13 0.67 3.57
log2 6784.70 3.07 7.45 7197.50 3.59 8.03

Total 83645.37 23.02 53.37 86270.09 26.47 55.04

3.6.4 ASIC Results

Table 3.3 shows the results for ASIC design (synthesis followed by place and route) at a com-

mercial 22-nm technology node2. In total, we see that by using MIGhty as front-end to the ASIC

design flow, we obtained better final circuits, in all relevant metrics including area, delay and

power. For the delay, which was our critical design constraint, we observe an improvement of

about 13%. This improvement is not as large as the one we saw at the logic optimization level

because some of the gain got absorbed by the interconnect overhead during physical design.

However, we still see a coherent trend: We obtained 4% and 3% reductions in area and power.

3.6.5 FPGA Results

Table 3.4 shows the results for FPGA design (synthesis followed by place and route) on a

commercial 28-nm technology node3. By employing MIGhty as front-end to the FPGA design

2Design tools and library names cannot be disclosed due to our license agreement.

86

3.7. MIGs as Native Design Abstraction for Nanotechnologies

Table 3.4: MIG 28-nm FPGA Design Results
Benchmark MIGhty+FPGA flow FPGA flow

LUT6 ns W LUT6 ns W
DSP∗ 9599 8.22 7.76 9501 8.54 7.73

ac97_ctrl∗ 2417 4.54 3.91 2444 4.67 3.92
aes_core 4440 5.54 1.93 4788 5.63 1.94
des_area 955 15.24 0.96 1212 15.73 0.98

des_perf∗ 8480 5.22 18.56 11350 5.40 18.75
etherne∗t 14840 6.26 23.89 16343 6.74 23.84

i2c 274 10.58 0.83 264 10.38 0.83
mem_ctrl∗ 1929 6.74 2.00 2044 7.25 1.99
pci_b32∗ 4542 5.76 7.77 4741 6.39 7.78
pci_spoci 260 9.86 0.81 290 9.99 0.81

sasc 141 10.02 0.88 137 10.04 0.88
simple_spi 192 9.91 0.93 200 10.23 0.93

spi 994 15.72 1.32 814 18.57 1.35
ss_pcm 92 9.60 0.78 89 9.58 0.78

systemcaes 1445 6.67 2.31 1445 6.96 2.32
systemcdes 667 14.93 1.31 798 15.90 1.31

tv80 1892 16.44 1.57 1975 17.47 1.57
usb_funct∗ 2988 6.02 3.25 2887 5.79 3.21

usb_phy 97 10.00 0.82 94 10.06 0.82
MUL32 1776 11.05 0.88 1867 12.02 0.89
sqrt32 447 25.46 0.68 560 27.81 0.70
diffeq1 5134 22.36 1.56 6545 30.89 1.82
div16 1160 26.03 0.72 765 28.12 0.70

hamming 519 16.20 13.16 657 17.65 17.81
MAC32 2220 12.47 0.93 2338 15.83 0.94

metric_c 5486 34.57 1.11 6416 38.65 1.13
revx 2010 26.19 0.79 2333 31.04 0.80

mul64 7109 22.54 1.77 6224 25.07 1.41
max 952 20.10 1.04 754 22.19 1.04

square 4327 17.05 1.16 3579 17.56 1.11
log2 9944 44.13 1.42 14166 51.75 1.79

Total 97328 455.41 106.81 107620 503.97 111.88

flow, we obtain better final circuits, in LUT count, delay and power metrics. For the delay, that

was our critical design constraint, we observe an improvement of about 10%. Also here, P&R

absorbs part of the advantage predicted at the logic-level. Regarding LUT number and power,

we see improvements of about 10% and 5%, respectively. Some of the values reported (marked

by∗) are just post synthesis results because the placement and routing on FPGA failed due to

excessive number of I/Os.

In summary, MIG synthesis technology enables a consistent advantage over the state-of-the-

art commercial design flows. It is worth noticing that we employed MIG optimization just as a

front-end to an existing commercial flow. We foresee even better results by integrating MIG

optimization inside the synthesis engine of commercial tools.

3.7 MIGs as Native Design Abstraction for Nanotechnologies

MIGs are the natural and native design abstraction for several emerging technologies where

the circuit primitive is a majority voter, rather than a switch. In this section, we test the efficacy

87

Chapter 3. Majority Logic

of MIGs in the synthesis of spin-wave devices and resistive RAM nanotechnologies. We start by

introducing general notions on these two nanotechnologies in order to explain their primitive

logic operation. Then, we show how the MIG logic model fits and actually helps in exploiting

at best the expressive power of the considered nanotechnologies.

Note that many other nanodevices may benefit from the presented majority synthesis method-

ologies [53, 54].

3.7.1 MIG-based Synthesis

MIGs enable compact logic representation and powerful logic optimization. They already

show very promising results for traditional CMOS technology [3, 4]. Moreover, if the target

technology natively realizes the MIG primitive function, i.e., a majority voter, the use of

MIGs in circuit synthesis produces superior results. We use MIGhty to synthesize circuits in

voting-intrinsic nanotechnologies.

Depending on the target nanotechnology, we either use MIGs for a direct one-to-one map-

ping into nanodevices or as a frontend to a standard synthesis tool. In both cases, no pre-

partitioning is strictly required as MIG are not canonical per se, thus they scale efficiently with

the design size.

More details on MIG-based synthesis are given for each specific nanotechnology.

3.7.2 Spin-Wave Devices

Spin Wave Devices (SWDs) are digital devices where information transmission happens via spin

waves instead of conventional carriers (electrons and holes). The SWD physical mechanism

enables ultra-low power operation, almost two orders of magnitude lower than the one of

state of the art CMOS [63].

SWDs operate via propagated oscillation of the magnetization in an ordered magnetic material

[61]. That oscillation (spin wave) is generated, manipulated and detected though a synthetic

multi-ferroic component, commonly called Magneto-Electric (ME) cell [62]. The characteristic

size of spin-wave devices is the spin wavelength, whose values may range from 30nm up to

200nm [63].

On top of the extremely low power consumption of SWD logic, which is a key technological

asset, the employment of wave computation in digital circuits can enhance its logic expressive

power. SWD logic computation is based on the interference of spin waves. Depending on the

phase of the propagating spin waves/signals, their interference is constructive or destructive.

The final interference result is translated to the output via magneto-electric cells. In this

scenario, an inverter is simply a waveguide with length equal to 1.5× of the spin wavelength

(λSW). In this way, the information encoded in the phase of the SW signal arrives inverted to

88

3.7. MIGs as Native Design Abstraction for Nanotechnologies

the output ME cell, Fig. 3.6(a). The actual logic primitive in SWD technology is the majority

voter, which is implemented by the symmetric merging of three waveguides Fig. 3.6(b). Here,

a) INV

λSW

1.5 * λSW

λSW

b) MAJ

λSW

λSW

NiFe Ni PZT Al/OutAl/In

Figure 3.6: Primitive gate areas and designs for SWD technology. All distances are parameter-
ized with the spin wave wavelength λSW [56].

the lenght of each waveguide is 1.0× the spin wavelength. In the majority voter structure, the

spin wave signal at the output is determined by the majority phase of the input spin waves.

In order to fully exploit the SWD technology potential, we have to leverage the native logic

primitives spin wave logic offer. In SWDs, the logic primitive is a majority voter. Standard

synthesis techniques are inadequate to harness this potential. However, the novel MIG data

structure previously introduced naturally matches the voting functionality of SWD logic. For

this reason, we use MIGs to represent and synthesize SWD circuits. The intrinsic correspon-

dence between MIG elements and SWDs makes MIG optimization naturally extendable to

obtain minimum cost SWD implementations. For this purpose, ad hoc cost functions are

assigned to MIG elements during optimization as per Table 3.5. These cost functions are

derived from the SWD technology implementation of majority and inverter gates in Fig. 3.6.

Table 3.5: Cost Functions for MIGs Mapped onto SWDs
MIG Element SWD Gate Area Cost Delay Cost
Majority node Majority Gate 4 1

Complemented edge Inverter Gate 1 1

For the sake of clarity, we comment on our proposed MIG-based SWD synthesis flow by

means of an example. The objective function in this example is g = x· (y +u·v). This function

is initially represented by the MIG in Fig. 3.7(left), which has a SWD delay cost of 4 and

an SWD area cost of 14. By using Ω transformations, it is possible to reach the optimized

MIG depicted by Fig. 3.7(right). Such an optimized MIG counts the same number of nodes

and complemented edges of the original one but one fewer level of depth. In this way, the

associated area cost remains 14 but the delay is reduced to 3. After the optimization, each MIG

element is mapped onto its corresponding SWD gate. Fig. 3.8 depicts the SWD mapping for

the original (a) and optimized (b) MIGs.

89

Chapter 3. Majority Logic

Associa'vity+
Compl.+

Associa'vity+
MAJ$

MAJ$

MAJ$

vu

x$

y$

g=x(y+uv)$

1$

1$

1$

MAJ$

MAJ$

MAJ$

vu

x$

y$

g=x(y+uv)$

1$

x$

1$

MAJ$

MAJ$

1$ u$ v$

x$

g=x(y+uv)$

MAJ$

y$ x$ 1$

3+
2+

Figure 3.7: Optimization of the MIG representing the function g = x·(y +u·v). Initial MIG
counts 3 nodes and 3 levels. Final MIG counts 3 nodes and 2 levels.

ME cell

SW waveguide

y1

uv

xg1

1

x

u

v

g1

y

x

1

a) b)

INV

INV INV

IN
V

Figure 3.8: SWD circuit implementing function g , (a) from example in Fig. 3.3(left). (b) from
example in Fig. 3.3(right) which is optimized in size and depth.

As one can visually notice, the circuit in Fig. 3.8(b) features roughly the same area occupation

as the one in Fig. 3.8(a) but shorter input-output path. Following the theoretical cost func-

tions employed, the achieved speed-up is roughly 25%. Including the physical models and

assumptions presented in [56], the refined speed-up becomes 18.2%.

We validate hereafter the efficiency of our proposed MIG-based SWD synthesis flow for larger

circuits [57]. We also provide a comparison reference to 10-nm CMOS technology.

In MIG-based SWD synthesis, we employed the MIGhty MIG optimizer [3]. As traditional-

synthesis counterpart, we employed ABC tool [17] with optimization commands resyn2 and

produced in output an AND-Inverter Graph (AIG). The AIGs mapping procedure onto SWDs is

in common with MIGs: AND nodes are simply mapped to MAJ gates with one input biased to

logic 0. For advanced CMOS, we used a commercial synthesis tool fed with a standard-cell

library produced by a 10-nm CMOS process flow. The circuit benchmarks are taken from the

MCNC suite.

The cost functions for MIG optimization are taken from Table 3.5. In addition to the direct

cost of SWD gates, our design setup takes also into consideration the integration in a VLSI

90

3.7. MIGs as Native Design Abstraction for Nanotechnologies

environment given input and output overhead, as presented in [57]. The final synthesis values

presented hereafter are comprising all these costs.

Table 3.6: Experimental results for SWDs-MIG Synthesis
SWD technology - MIG SWD technology - AIG CMOS Technology - Commercial Tool

Benchmarks I/O A (µm2) D (ns) P (µW) A (µm2) D (ns) P (µW) A (µm2) D (ns) P (µW)

C1355 41/32 16.95 5.81 0.12 13.88 5.81 0.10 36.27 0.39 68.06

C1908 33/25 16.13 7.30 0.09 12.81 7.9 0.07 32.68 0.53 61.19

C6288 32/32 77.57 26.05 0.12 70.93 28.43 0.11 131.94 1.32 425.21

bigkey 487/421 152.50 3.14 2.11 170.99 3.14 2.34 238.85 0.32 262.50

my_adder 33/17 9.42 6.11 0.07 5.00 10.28 0.04 17.83 0.44 23.94

cla 129/65 36.57 7.60 0.21 32.21 11.77 0.19 72.49 0.62 88.48

dalu 75/16 50.47 6.71 0.31 39.17 9.39 0.25 46.59 0.36 34.63

b9 41/21 5.60 2.24 0.08 5.60 2.54 0.08 5.92 0.09 4.73

count 35/16 6.36 2.54 0.11 4.67 6.11 0.09 8.90 0.32 6.56

alu4 14/8 47.81 4.62 0.42 49.22 4.62 0.43 87.20 0.34 72.39

clma 416/115 433.59 12.96 1.37 450.15 14.15 1.42 231.69 0.51 177.82

mm30a 124/120 41.57 30.52 0.06 35.70 37.66 0.05 68.40 1.68 47.19

s38417 1494/1571 319.86 7.01 1.92 319.86 7.9 1.88 609.94 0.53 740.73

misex3 14/14 45.84 4.33 0.43 44.14 4.62 0.41 78.02 0.26 59.34

Average 212/176 90.02 9.07 0.53 89.60 11.02 0.53 119.05 0.55 148.06

Table 3.7: Summarizing performance results of SWD and CMOS Technologies
Technology ADP Product (a.u.) Gain vs CMOS Gain vs AIG

CMOS 9707.06 - -
SWD - AIG 526.25 18.45 × -
SWD - MIG 432.59 22.44 × 1.22×

Table 3.6 shows all synthesis results for SWD and CMOS technologies. We summarize in Table

3.7 the performance of the benchmarks in the Area-Delay-Power (ADP) product to better point

out the significant improvement MIG synthesis brings to light. SWD circuits synthesized via

MIGs have 1.30× smaller ADP than SWD circuits synthesized via traditional AIGs. This is

thanks to the SWD delay improvement enabled by MIGs. As compared to the 10-nm CMOS

technology, SWD circuits synthesized by MIGs have 17.02× smaller ADP, offering an ultra-low

power, compact SWD implementation with reduced penalty in delay.

Results showed that MIG synthesis naturally fits SWD technology needs. Indeed, MIGs en-

hanced SWD strengths (area and power) and alleviated SWD issues (delay).

3.7.3 Resistive RAM

Multitude of emerging Non-Volatile Memories (NVM) are receiving widespread research at-

tention as candidates for high-density and low-cost storage. NVMs store information as an

internal resistive state, which can be either a Low Resistance State (LRS) or a High Resistance

State (HRS) [66]. Among the different types of NVMs, Redox-based Resistive RAM (RRAM)

is considered a leading candidate due to its high density, good scalability, low power and

high performance [67, 68]. A different and arguably more tantalizing aspect of RRAMs is their

ability to do primitive Boolean logic. The possibility of in-memory computing significantly

widens the scope of the commercial applications. To undertake a logic computation, RRAM-

based switches are needed. Bipolar Resistive Switches (BRS) [69] and Complementary Resistive

91

Chapter 3. Majority Logic

Switches (CRS) [70] have been presented for this purpose. BRS and CRS are devices with

two terminals, denoted P and Q. BRS can be used in ultra-dense passive crossbar arrays but

suffer from the formation of parasitic currents which create sneak paths. This problem can be

alleviated by constructing a CRS device, which connects two BRS anti-serially [70]. For the sake

of clarity, we report in Fig. 3.9 the CRS device conceptual structure proposed in [70] and its

sweep properties. Their internal resistance state of the device, Z , can be modified by applying

Figure 3.9: CRS conceptual structure and sweep properties from [70].

a positive or a negative voltage VPQ . The functionality of BRS/CRS can be summarized by a

state machine, as shown in Fig. 3.10. Further details can be found in [71]. Transition occurs

only for the conditions P = 0,Q = 1, i.e., VPQ < 0 so Z → 0 and P = 1,Q = 0, i.e., VPQ > 0 so

Z → 1. By denoting Z as the value stored in the switch and Zn the value stored after the

Figure 3.10: Resistive majority operation with BRS/CRS devices [58].

application of signals on P and Q, it is possible to express Zn as the following:

92

3.7. MIGs as Native Design Abstraction for Nanotechnologies

Zn = (P.Q).Z + (P +Q).Z

= P.Z +Q.Z +P.Q.Z

= P.Z +Q.Z +P.Q.Z +P.Q.Z

= P.Z +Q.Z +P.Q

= M3(P,Q, Z)

where M3 is the majority Boolean function with 3 inputs.

The aforementioned resistive RAM technology enables a in-memory computing system, which

exploits memristive devices to perform both standard storage and computing operations,

such as majority voting.

The possibility of in-memory computing for RRAM technology can increase the intelligence

of many portable electronic devices. However, to fully exploit this opportunity, the primitive

Boolean operation in RRAM technology needs to be fully understood and natively handled

by design tools. In this context, the MIG data structure offers a native logic abstraction for

RRAM in-memory computation. To demonstrate the efficacy of the RRAM-MIG coupling, we

map a lightweight cryptography block cipher [59] on a RRAM array using MIG-based design

techniques [58].

The target cryptography block cipher is PRESENT, originally introduced in [59]. We briefly

review its encryption mechanism hereafter.

PRESENT Encryption

A PRESENT encryption consists of 31 rounds, through which multiple operations are per-

formed on the 64-bit plaintext and finally produces a 64-bit ciphertext. The rounds modify the

plaintext, which is referred as STATE internally. The operation of the cipher components are

addRoundKey, sBoxLayer, pLayer, and KeyUpdate [59].

For the sake of brevity, we give here details only on the sBoxLayer operation. We refer the

interested reader to [59] for details on the other operations. The sBoxLayer operation divides

the 64-bit word into 16 parts of 4-bit each. Each 4-bit portion is the processed individually by

a 4-input, 4-output combinational Boolean function, called operator S. In order to map S into

the RRAM memory array, we use MIG representation and optimization. The optimization goal

is to reduce the number of majority operations.

S Operator Mapping

The S operator is nothing but a Boolean function with primary inputs pi0, pi1, pi2, pi3 and

primary outputs po0, po1, po2, po3. For the sake of brevity, we only represent in Fig. 3.11 the

MIG representation for po0 that consists of 11 majority nodes. Then, each majority node is

mapped into a set of primitive RRAM memory/computing instructions. For instance, the

portion highlighted in grey on the network corresponds to the operation M(pi1, pi0,0). As-

93

Chapter 3. Majority Logic

Figure 3.11: MIG representing the output po0 in the S encryption operator.

suming that logic 0 is the previous value stored in the array, an immediate majority instruction

computes the corresponding portion of logic. The total S operator requires a total of 38 cycles

for its operation in the RRAM array.

Using an analogous MIG-mapping approach, all the PRESENT encryption operations can be

performed directly on the RRAM array.

Table 3.8: Experimental Results for RRAM-MIG Synthesis PRESENT Implementation Perfor-
mances

Operation Instructions Cycles
(#M3) (#R/W)

Key copy 80 720
Cipher copy 64 576

AddRoundKey 448 4032
sBoxLayer 608 5472

pLayer 64 576
KeyUpdate 760 6840

Instructions Cycles
PRESENT Block 58 872 455 184

Energy Throughput
(p J) (kbps)

PRESENT Block 5.88 120.7

The overall performance of the MIG-based PRESENT implementation on the RRAM array

has been estimated considering a RRAM technology aligned with the ITRS 2013 predictions.

More precisely, we assume a write time of 1 ns and a write energy of 0.1 fJ/bit. Table 3.8

summarizes the number of M3 instructions and Read/Write (R/W) cycles required by the

different operations of the PRESENT cipher.

94

3.8. Extension to MAJ-n Logic

The total number of primitive majority instructions for the encryption of a 64-bit cipher text is

58872 [58]. The total throughput reachable by the system is 120.7 kbps, making it comparable

to silicon implementations [59]. Finally, the total energy required for one block encryption

operation is 5.88 pJ.

This remarkable design result is enabled by a strong MIG optimization on the critical logic

operations involved in PRESENT. Otherwise, its implementation without MIGs would require

many more primitive RM3 instructions making it inefficient when compared to the state-of-

the-art.

3.8 Extension to MAJ-n Logic

In this section, we extend the axiomatization of MAJ-3 logic to MAJ-n logic. First, we show

the axiomatization validity in the Boolean domain. Then, we demonstrate the axiomatization

completeness by inclusion of other complete Boolean axiomatizations.

3.8.1 Generic MAJ-n/INV Axioms

The five axioms for MAJ-3/INV logic presented in Section 3.3.2 deal with commutativity,

majority, associativity, distributivity, and inverter propagation laws. The set of equations in

Eq. 3.4 extends their domain to an arbitrary odd number n of variables.

Ωn



Commutativity : Ωn .C

Mn(xi−1
1 , xi , x j−1

i+1 , x j , xn
j+1) = Mn(xi−1

1 , x j , x j−1
i+1 , xi , xn

j+1)

Majority : Ωn .M

If(dn
2 e elements of xn

1 are equal to y):

Mn(xn
1) = y

If(xi 6= x j): Mn(xn
1) = Mn−2(yn−2

1)

where yn−2
1 = xn

1 removing {xi , x j }

Associativity : Ωn .A

Mn(zn−2
1 , y, Mn(zn−2

1 , x, w)) = Mn(zn−2
1 , x, Mn(zn−2

1 , y, w))

Distributivity : Ωn .D

Mn(xn−1
1 , Mn(yn

1)) =
Mn(Mn(xn−1

1 , y1), Mn(xn−1
1 , y2), ..., Mn(xn−1

1 , yd n
2 e), yd n

2 e+1, ..., yn) =
Mn(Mn(xn−1

1 , y1), Mn(xn−1
1 , y2), ..., Mn(xn−1

1 , yd n
2 e+1), yd n

2 e+2, ..., yn) =
Mn(Mn(xn−1

1 , y1), Mn(xn−1
1 , y2), ..., Mn(xn−1

1 , yn−1), yn)

Inverter Propagation : Ωn .I

Mn(xn
1)′ = Mn(xn

1
′)

(3.4)

95

Chapter 3. Majority Logic

Commutativity means that changing the order of the variables in Mn does not change the

result. Majority defines a logic decision threshold and a hierarchical reduction of majority

operators with complementary variables. Associativity says that swapping pairs of variables

between cascaded Mn sharing n −2 variables does not change the result. In this context, it is

important to recall that n −2 is an odd number if n is an odd number. Distributivity delimits

the re-arrangement freedom of variables over cascaded Mn operators. Inverter propagation

moves complementation freely from the outputs to the inputs of a Mn operator, and viceversa.

For the sake of clarity, we give an example for each axiom over a finite n-arity.

Commutativity with n = 5:

M5(a,b,c,d ,e) = M5(b, a,c,d ,e) = M5(a,b,c,e,d).

Majority with n = 7:

M7(a,b,c,d ,e, g , g ′) = M5(a,b,c,d ,e).

Associativity with n = 5:

M5(a,b,c,d , M5(a,b,c, g ,h)) = M5(a,b,c, g , M5(a,b,c,d ,h)).

Distributivity with n = 7:

M7(a,b,c,d ,e, g , M7(x, y, z, w,k, t , v)) = M7(M7(a,b,c,d ,e, g , x), M7(a,b,c,d ,e, g , y),

M7(a,b,c,d ,e, g , z), M7(a,b,c,d ,e, g , w),k, t , v).

Inverter propagation with n = 9:

M9(a,b,c,d ,e, g ,h, x, y)′ = M9(a′,b′,c ′,d ′,e ′, g ′,h′, x ′, y ′).

3.8.2 Soundness

To demonstrate the validity of these laws, and thus the validity of the MAJ-n axiomatization,

we need to show that each equation inΩn is sound with respect to the original domain, i.e.,

(B, Mn ,′ ,0,1). The following theorem addresses this requirement.

Theorem 3.8.1 Each axiom inΩn is sound (valid) w.r.t. (B, Mn ,′ ,0,1).

Proof We prove the soundness of each axiom separately.

CommutativityΩn .C Since majority is defined on reaching a threshold dn/2e of true inputs

then it is independent of the order of its inputs. This means that changing the order of

operands in Mn does not change the output value. Thus, this axioms is valid in (B, Mn ,′ ,0,1).

MajorityΩn .M Majority first defines the output behavior of Mn in the Boolean domain. Being

a definition, it does not need particular proof for soundness. Consider then the second part of

the majority axiom. The hierarchical inclusion of Mn−2 derives from the mutual cancellation

of complementary variables. In a binary majority voting system of n electors, two electors

96

3.8. Extension to MAJ-n Logic

voting to opposite values annihilate theirselves. The final decision is then just depending on

the votes from the remaining n −2 electors. Therefore, this axiom is valid in (B, Mn ,′ ,0,1).

AssociativityΩn .A We split this proof in three parts that cover the whole Boolean space. Thus,

it is sufficient to prove the validity of the associativity axiom for each of this parts. (1) the

vector zn−2
1 contains at least one logic 1 and one logic 0. In this case, it is possible to apply

Ωn .M and reduce Mn to Mn−2. If we remain in case (1), we can keep applyingΩn .M . At some

point, we will end up in case (2) or (3). (2) the vector zn−2
1 contains all logic 1. For n > 3, the

final voting decision is 1 for both equations, so the equality holds. In case n = 3, the majority

operator collapses into a disjunction operator. Here, the validity of the associativity axiom

follows then from traditional disjunction associativity. (3) the vector zn−2
1 contains all logic

0. For n > 3, the final voting decision is 0 for both equations, so the equality holds. In case

n = 3, the majority operator collapses into a conjunction operator. Here, the validity of the

associativity axiom follows then from traditional conjunction associativity.

DistributivityΩn .D We split this proof in three parts that cover the whole Boolean space. Thus,

it is sufficient to prove the validity of the distributivity axiom for each of this parts. Note that

the distributivity axiom deals with a majority operator Mn where one inner variable is actually

another independent majority operator Mn . Distributivity rearranges the computation in Mn

moving up the variables at the bottom level and down the variables at the top level. In this part

of the proof we show that such rearrangement does not change the functionality of Mn , i.e.,

the final voting decision inΩn .D . Recall that n is an odd integer greater than 1 so n −1 must

be an even integer. (1) half of xn−1
1 values are logic 0 and the remaining half are logic 1. In

this case, the final voting decision in axiomΩn .D only depends on yn
1 . Indeed, all elements

in xn−1
1 annihilate due to axiomΩn .M . In the two identities ofΩn .D, we see that when xn−1

1

annihilate the equations simplify to Mn(yn
1), according to the predicted behavior. (2) at least

dn/2e of xn−1
1 values are logic 0. Owing to Ωn .M , the final voting decision in this case is logic

0. This is because more than half of the variables are logic 0 matching the prefixed voting

threshold. In the two identities ofΩn .D , we see that more than half of the inner Mn evaluate

to logic 0 by direct application ofΩn .M . In the subsequent phase, also the outer Mn evaluates

to logic 0, as more than half of the variables are logic 0, according to the predicted behavior.

(3) at least dn/2e of xn−1
1 values are logic 1. This case is symmetric to the previous one.

Inverter Propagation Ωn .I Inverter propagation moves complementation from output to

inputs, and viceversa. This axiom is a special case of the self-duality property previously

presented. It holds for all majority operators in (B, Mn ,′ ,0,1). �

The soundness of Ωn in (B, Mn ,′ ,0,1) guarantees that repeatedly applying Ωn axioms to a

Boolean formula we do not corrupt its original functionality. This property is of interest in

logic manipulation systems where functional correctness is an absolute requirement.

97

Chapter 3. Majority Logic

3.8.3 Completeness

While soundness speaks of the correctness of a logic systems, completeness speaks of its

manipulation capabilities. For an axiomatization to be complete, all possible manipulations

of a Boolean formula must be attainable by a sequence, possibly long, of primitive axioms.

We study the completeness ofΩn axiomatization by comparison to other complete axiomati-

zations of Boolean logic. The following theorem shows our main result.

Theorem 3.8.2 The set of five axioms inΩn is complete w.r.t. (B, Mn ,′ ,0,1).

Proof We first recall thatΩ3 is complete w.r.t. (B, M3,′ ,0,1) as proved by Theorem 3.3.6. We

consider then Ωn . First note that (B, Mn ,′ ,0,1) naturally includes (B, M3,′ ,0,1). Similarly,

Ωn axioms inherently extend the ones in Ω3. Thus, the completeness property is inherited

provided that Ωn axioms are sound. However, Ωn soundness is already proven in Theorem

3.8.1. Thus,Ωn axiomatization is also complete. �

Being sound and complete, the axiomatization Ωn defines a consistent framework to operate

on Boolean logic via majority operators. It also gives directions for future applications of ma-

jority/inverters in computer science, such as Boolean satisfiability, repetition codes, threshold

logic, artificial neural network etc.

3.9 Summary

In this chapter, we proposed a paradigm shift in representing and optimizing logic circuits,

by using only majority (MAJ) and inversion (INV) as basic operations. We presented the

Majority-Inverter Graphs (MIGs): a directed acyclic graph consisting of three-input majority

nodes and regular/complemented edges. We developed algebraic and Boolean optimization

techniques for MIGs and we embedded them into a tool, called MIGhty. Over the set of

IWLS’05 (arithmetic intensive) benchmarks, MIGhty enabled a 7% (16%) depth reduction in

LUT-6 circuits mapped by ABC while also reducing size and power activity, with respect to

similar AIG optimization. Employed as front-end to a delay-critical 22-nm ASIC flow, MIGhty

reduced the average delay/area/power by about 13%/4%/3%, over 31 benchmarks. We also

demonstrated improvements in delay/area/power by 10%/10%/5% for a commercial 28-nm

FPGA flow. Results on two emerging nanotechnologies, i.e., spin-wave devices and resistive

RAM, demonstrated that MIGs are essential to permit a fair technology evaluation where the

logic primitive is a majority voter. Finally, we extended the axiomatization of MAJ-3 logic to

MAJ-n logic, with n odd, preserving soundness and completeness properties.

98

Bibliography
[1] T. Sasao, Switching Theory for Logic Synthesis, Springer, 1999.

[2] ABC synthesis tool - available online at http://www.eecs.berkeley.edu/∼alanmi/abc/.

[3] L. Amarú, et al., Majority-Inverter Graph: A Novel Data-Structure and Algorithms for

Efficient Logic Optimization, Proc. DAC’14.

[4] L. Amarú, et al., Boolean Logic Optimization in Majority-Inverter Graph, Proc. DAC’15.

[5] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, New York,

1994.

[6] R.L. Rudell, A. Sangiovanni-Vincentelli, Multiple-valued minimization for PLA optimiza-

tion, IEEE TCAD, 6(5): 727-750, 1987.

[7] R.K. Brayton, et al., MIS: A Multiple-Level Logic Optimization System, IEEE Trans. CAD,

6(6): 1062-1081, 1987.

[8] E. Sentovich, et al., SIS: A System for Sequential Circuit Synthesis, ERL, Dept. EECS, Univ.

California, Berkeley, UCB/ERL M92/41, 1992.

[9] C. Yang and M. Ciesielski, BDS: A BDD-Based Logic Optimization System, IEEE TCAD, 21(7):

866-876, 2002.

[10] R. Brayton, A. Mishchenko, ABC: An Academic Industrial-Strength Verification Tool, Proc.

CAV, 2010.

[11] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE TCOMP,

C-35(8): 677-691, 1986.

[12] A. Mishchenko, S. Chatterjee, R. Brayton, DAG-aware AIG rewriting a fresh look at combi-

national logic synthesis, Proc. DAC 2006.

[13] A. Mishchenko, R. Brayton, Scalable logic synthesis using a simple circuit structure, Proc.

IWLS 2006.

[14] H.S. Miller, R. O. Winder. Majority-logic synthesis by geometric methods IRE Transactions

on Electronic Computers, (1962): 89-90.

99

Bibliography

[15] Y. Tohma, Decompositions of Logical Functions Using Majority Decision Elements, IEEE

Trans. on Electronic Computers, pp. 698-705, 1964.

[16] F. Miyata, Realization of arbitrary logical functions using majority elements, IEEE Transac-

tions on Electronic Computers, (1963): 183-191.

[17] N. Song, et al., EXORCISM-MV-2: minimization of ESOP expressions for MV input incom-

pletely specified functions, Proc. on MVL, 1993.

[18] E. J. McCluskey, Minimization of Boolean Functions, Bell system technical Journal 35.6

(1956): 1417-1444.

[19] R.K. Brayton, et al., The Decomposition and Factorization of Boolean Expressions, Proc.

ISCAS’82.

[20] R.K. Brayton, et al., MIS: A multiple-level logic optimization system, IEEE TCAD 6.6 (1987):

1062-1081.

[21] R.K. Brayton, Multilevel logic synthesis, Proc. IEEE78.2(1990):264-300.

[22] N. Vemuri, et al., BDD-based logic synthesis for LUT-based FPGAs, ACM TODAES 7.4

(2002): 501-525.

[23] L. Amaru, P.-E. Gaillardon, G. De Micheli, BDS-MAJ: A BDD-based logic synthesis tool

exploiting majority decomposition, Proc. DAC, 2013.

[24] A. Mishchenko at al., Using simulation and satisfiability to compute flexibilities in Boolean

networks, IEEE TCAD 25 (5): 743-755, 2006.

[25] S. C. Chang, et al., Perturb and Simplify: multilevel Boolean network optimizer, IEEE

TCAD 15.12 (1996): 1494-1504.

[26] S. C. Chang, L. P. Van Ginneken, M. Marek-Sadowska Circuit optimization by rewiring,

IEEE TCOMP 48.9 (1999): 962-970.

[27] R. Ashenhurst, The decomposition of switching functions, In Proceedings of the Interna-

tional Symposium on the Theory of Switching, pages 74–116, April 1957.

[28] J. P. Roth and R. M. Karp Minimization over boolean graphs, IBM Journal, pages 661–664,

April 1962.

[29] H. A. Curtis, A New Approach to the Design of Switching Circuits, Van Nostrand, Princeton,

N.J., 1962.

[30] V. Bertacco and M. Damiani, Disjunctive decomposition of logic functions, Proc. ICCAD

‘97, pp. 78-82.

[31] A. Mishchenko and R. Brayton, Faster logic manipulation for large designs, Proc. IWLS’13.

100

Bibliography

[32] E. V. Huntington, Sets of Independent Postulates for the Algebra of Logic, Trans. of the

American Math. Society, 5:3 (1904), 288-309.

[33] B. Jonsson, Bjarni, Boolean algebras with operators. Part I., American journal of mathe-

matics (1951): 891-939.

[34] G. Birkhoff, Lattice Theory, Amer. Math. Soc., New York, 1967

[35] John R. Isbell, Median algebra, Trans. Amer. Math. Soc., 319-362, 1980.

[36] G. Birkhoff, A ternary operation in distributive lattices, Bull. of the Amer. Math. Soc., 53

(1): 749–752, 1947.

[37] D. Knuth, The Art of Computer Programming, Volume 4A, Part 1, New Jersey: Addison-

Wesley, 2011

[38] M. Krause, et al., On the computational power of depth-2 circuits with threshold and

modulo gates, Theor. Comp. Sci. 174.1 (1997): 137-156.

[39] S. Muroga, et al., The transduction method-design of logic networks based on permissible

functions, IEEE TCOMP, 38.10 (1989): 1404-1424.

[40] R.E. Lyons, W. Vanderkulk., The use of triple-modular redundancy to improve computer

reliability, IBM Journal of Research and Development 6.2 (1962): 200-209.

[41] A. AC., Gomes, et al. Methodology for achieving best trade-off of area and fault masking

coverage in ATMR, IEEE LATW, 2014.

[42] M.Pedram Power minimization in IC design: principles and applications, ACM TODAES

1.1 (1996): 3-56.

[43] M. Parnas, et al., Proclaiming dictators and juntas or testing boolean formulae, Combina-

torial Optimization, Springer, 2001. 273-285.

[44] http://lsi.epfl.ch/MIG

[45] K. Bernstein et al., Device and Architecture Outlook for Beyond CMOS Switches, Proceed-

ings of the IEEE, 98(12): 2169-2184, 2010.

[46] O. Zografos et al., Majority Logic Synthesis for Spin Wave Technology, Proc. DSD’14.

[47] P. D. Tougaw, C. S. Lent, Logical devices implemented using quantum cellular automata, J.

Applied Physics, 75(3): 1811-1817, 1994.

[48] W. Li, et al., Three-Input Majority Logic Gate and Multiple Input Logic Circuit Based on

DNA Strand Displacement, Nano letters 13.6 (2013).

[49] P.-E. Gaillardon et al., Computing Secrets on a Resistive Memory Array, Proc. DAC’15.

101

Bibliography

[50] L. Amaru et al., Efficient arithmetic logic gates using double-gate silicon nanowire FETs

Proc. NEWCAS 2013.

[51] A. Mishchenko, et al. Delay optimization using SOP balancing, Proc. ICCAD, 2011.

[52] J. P. Fishburn, A depth-decreasing heuristic for combinational logic, Proc. DAC 1990.

[53] D. Nikonov, I. Young, "Benchmarking of Beyond-CMOS Exploratory Devices for Logic

Integrated Circuits", IEEE Journal on Exploratory Solid-State Computational Devices and

Circuits, Volume:PP , Issue: 99, 2015.

[54] Jongyeon Kim et al., "Spin-Based Computing: Device Concepts, Current Status, and a

Case Study on a High-Performance Microprocessor," Proceedings of the IEEE , vol.103,

no.1, pp.106,130, Jan. 2015

[55] K. Bernstein et al., Device and Architecture Outlook for Beyond CMOS Switches, Proceed-

ings of the IEEE, 98(12): 2169-2184, 2010.

[56] Zografos, Odysseas, et al. "System-level assessment and area evaluation of Spin Wave

logic circuits." Nanoscale Architectures (NANOARCH), 2014 IEEE/ACM International

Symposium on. IEEE, 2014.

[57] Zografos, Odysseas, et al. "Majority Logic Synthesis for Spin Wave Technology." Digital

System Design (DSD), 2014 17th Euromicro Conference on. IEEE, 2014.

[58] P.-E. Gaillardon, L. Amaru, A. Siemon, E. Linn, A. Chattopadhyay, G. De Micheli, "Com-

puting Secrets on a Resistive Memory Array", (WIP poster) Design Automation Conference

(DAC), San Francisco, CA, USA, 2015.

[59] A. Bogdanov et al., ”PRESENT: An Ultra-Lightweight Block Cipher,” CHES Tech. Dig.,

2007.

[60] Sandeep Miryala et al., Exploiting the Expressive Power of Graphene Reconfigurable Gates

via Post-Synthesis Optimization, Proc. GLVSLI’15.

[61] Khitun, Alexander, and Kang L. Wang. "Nano scale computational architectures with Spin

Wave Bus." Superlattices and Microstructures 38.3 (2005): 184-200.

[62] A. Khitun, et al., Non-volatile magnonic logic circuits engineering, Journal of Applied

Physics, 110:034306, Aug. 2011.

[63] D.E. Nikonov, et al., Overview of Beyond-CMOS Devices and a Uniform Methodology for

Their Benchmarking, Proc. of the IEEE, 101(12):2498- 2533, Dec. 2013.

[64] R. Fackenthal et al., ”A 16Gb ReRAM with 200MB/s Write and 1GB/s Read in 27nm

Technology,” ISSCC Tech. Dig., 2014.

[65] S.-S. Sheu et al., ”A 4Mb Embedded SLC Resistive-RAM Macro with 7.2ns Read-Write

Random-Access Time and 160ns MLC-Access Capability,” ISSCC Tech. Dig., 2011.

102

Bibliography

[66] G. W. Burr et al., "Overview of candidate device technologies for storage-class-memory,"

IBM J. R&D, 52(4/5), 2008.

[67] R. Fackenthal et al., "A 16Gb ReRAM with 200MB/s Write and 1GB/s Read in 27nm

Technology," ISSCC Tech. Dig., 2014.

[68] S.-S. Sheu et al., "A 4Mb Embedded SLC Resistive-RAM Macro with 7.2ns Read-Write

Random-Access Time and 160ns MLC-Access Capability," ISSCC Tech. Dig., 2011.

[69] H.-S. P. Wong et al., "Metal-Oxide RRAM," Proc. of the IEEE, 100(6), 2012.

[70] E. Linn, R. Rosezin, C. Kügeler, R. Waser, "Complementary resistive switches for passive

nanocrossbar memories," Nature Materials, 9, 2010.

[71] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, R. Waser, "Beyond von Neumann–logic

operations in passive crossbar arrays alongside memory operations," Nanotechnology,

23(305205), 2012.

103

Part 2: Logic Satisfiability and Equiva-
lence Checking

The second part of this thesis is dedicated to formal verification methods. It deals with two

main topics: logic satisfiability and equivalence checking.

For logic satisfiability, a non-trivial circuit duality between tautology and contradiction check is

introduced, which can speed up SAT tools. Also, an alternative Boolean satisfiability framework

based on majority logic is proposed. For equivalence checking, a new approach to verify faster

the combinational equivalence between two reversible logic circuits is presented.

105

4 Exploiting Logic Properties to
Speedup SAT

In this chapter, we establish a non-trivial duality between tautology and contradiction check

to speed up circuit SAT. Tautology check determines if a logic circuit is true in every possible

interpretation. Analogously, contradiction check determines if a logic circuit is false in every

possible interpretation. A trivial transformation of a (tautology, contradiction) check problem

into a (contradiction, tautology) check problem is the inversion of all outputs in a logic circuit.

In this work, we show that exact logic inversion is not necessary. We give operator switching

rules that selectively exchange tautologies with contradictions, and viceversa. Our approach

collapses into logic inversion just for tautology and contradiction extreme points but generates

non-complementary logic circuits in the other cases. This property enables computing benefits

when an alternative, but equisolvable, instance of a problem is easier to solve than the original

one. As a case study, we investigate the impact on SAT. There, our methodology generates a

dual SAT instance solvable in parallel with the original one. This concept can be used on top

of any other SAT approach and does not impose much overhead, except having to run two

solvers instead of one, which is typically not a problem because multi-cores are wide-spread

and computing resources are inexpensive. Experimental results show a 25% speed-up of SAT

in a concurrent execution scenario. Also, statistical experiments confirmed that our runtime

reduction is not of the random variation type.

4.1 Introduction

Inspecting the properties of logic circuits is pivotal to logic applications for computers and

especially to Electronic Design Automation (EDA) [1]. There exists a large variety of properties

to be checked in logic circuits, e.g., unateness, linearity, symmetry, balancedness, monotonicity,

thresholdness and many others [2]. Basic characteristics are usually verified first to provide

grounds for more involved tests. Tautology and contradiction are the most fundamental

properties in logic circuits. A check for tautology determines if a logic circuit is true for all

possible input patterns. Analogously, a check for contradiction determines if a logic circuit

is false for all possible input patterns. While investigating elementary properties, tautology

and contradiction check are difficult problems, i.e., co-NP-complete and NP-complete, re-

107

Chapter 4. Exploiting Logic Properties to Speedup SAT

spectively [3]. Indeed, both tautology and contradiction check are equivalent formulation

of the Boolean SATisfiability (SAT) problem [3]. In this scenario, new efficient algorithms

for tautology/contradiction check are key to push further the edge of computational limits,

enabling larger logic circuits to be examined.

Tautology and contradiction check are dual problems. One can interchangeably check for

tautology in place of contradiction by inverting all outputs in a logic circuit. In this triv-

ial approach, the two obtained problems are fully complementary and there is no explicit

computational advantage in solving one problem instead of the other.

In this chapter, we show that exact logic inversion is not necessary for transforming tautology

into contradiction, and viceversa. We give a set of operator switching rules that selectively

exchange tautologies with contradictions. A logic circuit modified by our rules is inverted just

if identically true or false for all input combinations. In the other cases, it is not necessarily the

complement of the original one. For this reason, our approach is different from traditional

DeMorganization. In a simple logic circuit made of AND, OR and INV logic operators, our

switching rules swap AND/OR operator types. We give a set of rules for general logic circuits

in the rest of this chapter. Note that in this chapter we mostly deal with single output circuits.

For multi-output circuits, the same approach can be extended by ORing (contradiction) or

ANDing (tautology) the outputs that need to be checked into a single one.

Our approach generates two different, but equisolvable, instances of the same problem. In this

scenario, solving both of them in parallel enables a positive computation speed-up. Indeed,

the instance solved first stops the other reducing the runtime. This concept can be used on

top of any other checking approach and does not impose much overhead, except having to

run two solvers instead of one, which is typically not a problem because multi-cores are wide-

spread and computing resources are inexpensive. Note that other pallel checking techniques

exist. For example, one can launch in parallel many randomized check runs on the same

problem instance with the aim to hit the instance-intrinsic minimum runtime [4]. Instead,

in our methodology, we create a different but equi-checkable instance that has a potentially

lower minimum runtime. As a case study, we investigate the impact of our approach on SAT.

There, by using non-trivial and trivial dualities in sequence, we create a dual SAT instance

solvable in parallel with the original one. Experimental results show 25% speed-up of SAT, on

average, in a concurrent execution scenario. Also, statistical experiments confirmed that our

runtime reduction is not of the random variation type.

The remainder of this chapter is organized as follows. Section 4.2 describes some background

and discusses the motivation for this study. Section 4.3 presents theoretical results useful for

the scope of this paper. Section 4.4 proves our main result on the duality between tautology

and contradiction check. Section 4.5 shows the benefits enabled by this duality in SAT solving.

Section 4.6 concludes the chapter.

108

4.2. Background and Motivation

4.2 Background and Motivation

This section first provides notation on logic circuits. Then, it gives a brief background on

tautology checking from an EDA perspective. Finally, it discusses the motivation for this study.

4.2.1 Notation

Similarly to the notation used in Chapter 2 and Chapter 3, a logic circuit is modeled by a

Directed Acyclic Graph (DAG) representing a Boolean function, with nodes corresponding

to logic gates and directed edges corresponding to wires connecting the gates. The on-set

of a logic circuit is the set of input patterns evaluating to true. Analogously, the off-set of a

logic circuit is the set of input patterns evaluating to false. Each logic gate is associated with

a primitive Boolean function taken from a predefined set of basis logic operators, e.g., AND,

OR, XOR, XNOR, INV, MAJ, MIN etc. Logic operators such as MAJ and MIN represent self

dual Boolean functions, i.e., functions whose output complementation is equivalent to inputs

complementation. A set of basis logic operators is said to be universal1 if any Boolean function

can be represented by a logic circuit equipped with those logic gates. For example, the basis

set {OR, INV} is universal while the basis set {AND, MAJ} is not. Fig.4.1 shows a logic circuit for

AND$ MAJ$ INV$

Gate%Symbols%

a$ b$ c$

d$

f$

f=(ab)d+(ab)c+dc$

Figure 4.1: Logic circuit example representing the function f = (ab)d + (ab)c +dc. The basis
set is {AND, MAJ, INV}. The gates symbolic representation is shown in the box.

the function f = (ab)d + (ab)c +dc over the universal basis set {AND, MAJ, INV}.

1In this chapter, the term basis does not share the same properties as in linear algebra. In particular, here not all
the basis are universal.

109

Chapter 4. Exploiting Logic Properties to Speedup SAT

4.2.2 Tautology Checking

Tautology checking, i.e., verifying whether a logic circuit is true in every possible interpretation,

is an important task in computer science and at the core of EDA [5, 7]. Traditionally, tautology

checking supports digital design verification through combinational equivalence checking [7].

Indeed, the equivalence between two logic circuits can be detected by XNOR-ing and checking

for tautology. Logic synthesis also uses tautology checking to (i) highlight logic simplifications

during optimization [5, 6] and to (ii) identify matching during technology mapping [8]. On a

general basis, many EDA tasks requiring automated deduction are solved by tautology check

routines.

Unfortunately, solving a tautology check problem can be a difficult task. In its most general

formulation, the tautology check problem is co-NP-complete. A straightforward method to

detect a tautology is the exhasutive exploration of a function truth table. This naive approach

can declare a tautology only in exponential runtime. More intelligent methods have been

developed in the past. Techniques based on cofactoring trees and binary recursion have

been presented in [9]. Together with rules for pruning/simplifying the recursion step, these

techniques reduced the checking runtime on several benchmarks. Another method, originally

targeting propositional formulas, is Stalmarck’s method [10] that rewrites a formula with a

possibly smaller number of connectives. The derived equivalent formula is represented by

triplets that are propagated to check for tautology. Unate recursive cofactoring trees and

Stalmarck’s method are as bad as any other tautology check method in the worst case but

very efficient in real-life applications. With the rise of Binary Decision Diagrams (BDDs) [11],

tautology check algorithms found an efficient canonical data structure explicitly showing

the logic feature under investigation [12]. The BDD for a tautology is always a single node

standing for the logic constant true. Hence, it is sufficient to build a BDD for a logic circuit and

verify the resulting graph size (plus the output polarity) to solve a tautology check problem.

Unfortunately, BDDs can be exponential in size for some functions (multipliers, hidden-weight

bit, etc.). In the recent years, the advancements in SAT solving tools [13, 14] enabled more

scalable approaches for tautology checking. Using the trivial duality between tautology and

contradiction, SAT solvers can be used to determine if an inverted logic circuit is unsatisfiable

(contradiction) and consequently if the original circuit is a tautology. Still, SAT solving is an

NP-complete problem so checking for tautology with SAT is difficult in general.

4.2.3 Motivation

Tautology checking is a task surfing the edge of today’s computing capabilities. Due to its

co-NP-completeness, tautology checking aggressively consumes computational power when

the size of the problem increases. To push further the boundary of examinable logic circuits, it

is important to study new efficient checking methodologies. Indeed, even a narrow theoretical

improvement can generate a speed-up equivalent to several years of technology evolution.

In this chapter, we present a non-trivial duality between contradiction and tautology check

110

4.3. Properties of Logic Circuits

problems that opens up new efficient solving opportunities.

4.3 Properties of Logic Circuits

In this section, we show properties of logic circuits with regard to their on-set/off-set balance

and distribution. These theoretical results will serve as grounds for proving our main claim in

the next section.

We initially focus on two universal basis sets: {AND, OR, INV} and {MAJ, INV}. We deal with

richer basis sets later on. We first recall a known fact about majority operators.

Property A MAJ operator of n-variables, with n odd, can be configured as an dn/2e-variables

AND operator by biasing bn/2c inputs to logic false and can be configured as an dn/2e-variables

OR operator by biasing bn/2c inputs to logic true.

For the sake of clarity, an example of a three-input MAJ configuration in AND/OR is depicted

by Fig. 4.2. Extended at the circuit level, such property enables the emulation of any {AND, OR,

ANDMAJOR$

abca b$ a$ b$

c=true% c=false%

Figure 4.2: AND/OR configuration of a three-input MAJ.

INV} logic circuit by a structurally identical {MAJ, INV} logic circuit. This result was previosuly

shown in [2] where logic circuit over the basis set {AND, OR, INV} are called AND/OR-INV

graphs and logic circuits over the basis set {MAJ, INV} are called MAJ-INV graphs. An example

of two structurally, and functionally, identical logic circuits over the basis sets {AND, OR, INV}

and {MAJ, INV} is depicted by Fig. 4.3(a-b). The Boolean function represented in this example

is f = ab +ac +a(b + c)+a. MAJ are configured to behave as AND/OR by fixing one input to

false(F)/true(T), respectively. In place of biasing one input of the MAJ with a logic constant, it

is also possible to introduce a fictitious input variable connected in regular/inverted polarity

to substitute true(T)/false(F) constants, respectively. In this way, the function represented

is changed but still including the original one when the fictitious input variable is assigned

to true. Fig. 4.3(d) shows a logic circuit with a fictious input variable d replacing the logic

constants in Fig. 4.3(b). The Boolean function represented there is h with property hd=tr ue = f .

Up to this point, we showed that {AND, OR, INV} logic circuits can be emulated by {MAJ, INV}

logic circuits configured either by (i) logic constants or by (ii) a fictitious input variable. In

111

Chapter 4. Exploiting Logic Properties to Speedup SAT

c" b"

a" a" b" a" c" a"

h"

d"

d" d"

d"

d"
d" d" d"

d"

hd=1=f" hd=0=g"

c" b"

a" a" b" a" c" a"

f"

T"

T" T"

T"

F" F" F"

c" b"

a" a" b" a" c" a"

g!
"

c" b"

a" a" b" a" c" a"

f!
"

f=ab"+"ac"+"a(b+c)!+"a!!

a)# b)#

c)# d)#

Figure 4.3: Logic circuits examples. {AND, OR, INV} logic circuit representing f = ab +ac +
a(b + c)+a (a). {MAJ, INV} logic circuit emulating the circuit in (a) using constants (b). {AND,
OR, INV} logic circuits derived from (a) by switching AND/OR operators (c). {MAJ, INV} logic
circuit emulating the circuit in (a) using an fictitious input variable d (d).

112

4.3. Properties of Logic Circuits

the latter case, {MAJ, INV} logic circuits have all inputs assignable. With no logic constants

appearing and all operators being self-dual, this particular class of logic circuits have a perfectly

balanced on-set/off-set size. The following theorem formalizes this property.

Theorem 4.3.1 Logic circuits over the universal basis set {MAJ, INV}, with all inputs assignable

(no logic constants), have |on-set|=2n−1 and |off-set|=2n−1, with n being the number of input

variables.

Proof MAJ and INV logic operators, with no constants, represent self-dual Boolean functions.

In [5], it is shown that self-dual Boolean functions have an |on-set|=|off-set|=2n−1, with n being

the number of input variables. Also, it is shown in [5] that Boolean functions composed by

self-dual Boolean functions are self-dual as well. This is indeed the case for {MAJ, INV} logic

circuits with no constants in input. As these circuits represent self-dual Boolean functions, we

can assert |on-set|=|off-set|=2n−1. �

{MAJ, INV} logic circuits with no constants have a perfectly balanced partition between on-set

size and off-set size. This is the case for the example in Fig. 4.3(d). Eventually, we know that by

assigning d to true in such example circuit the on-set/off-set balance can be lost. Indeed, with

d=true the {MAJ, INV} logic circuit then emulates the original {AND, OR, INV} logic circuit in

Fig. 4.3(a), that could have different on-set size and off-set size. Still, it is possible to reclaim

the perfect on-set/off-set balance by superposing the cases d=true and d=false in the {MAJ,

INV} logic circuit. While we know precisely what the {MAJ, INV} logic circuit does when d=true,

the case d=false is not as evident. We can intepret the case d=false as an inversion in the MAJ

configuration polarity. This means that where a MAJ is configured as an AND (OR) node in

d=true, it is instead configured as an OR (AND) node in d=false. In other words, d=false in

the {MAJ, INV} logic circuit of Fig. 4.3(d) corresponds to switch AND/OR operator types in the

original {AND, OR, INV} logic circuit of Fig. 4.3(a). The resulting AND/OR switched circuit is

depicted by Fig. 4.3(c).

United by a common {MAJ, INV} generalization, {AND, OR, INV} logic circuits and their

AND/OR switched versions share strong properties about on-set/off-set repartition. The

following theorem states their relation.

Theorem 4.3.2 Let A be a logic circuit over the universal basis set {AND, OR, INV}. Let A′

be a modified version of A, with AND/OR operators switched. The following identities hold

|on-set(A)|=|off-set(A′)| and |off-set(A)|=|on-set(A′)|.

Proof Say M a {MAJ, INV} logic circuit emulating A using an extra fictitious input vari-

able, say d . Md=1 is structurally and functionally equivalent to A, while Md=0 is struc-

turally and functionally equivalent to A′. From Theorem 4.3.1 we know that |on-set(M)|=|off-

set(M)|=2n−1=2m , where m is the number of input variables in A and n the number of input

113

Chapter 4. Exploiting Logic Properties to Speedup SAT

variables in M , with n = m +1 to take into account the extra fictitious input variable in M . We

know by construction that |on-set(Md=1)|+|on-set(Md=0)|=2n−1=2m and |off-set(Md=1)|+|off-

set(Md=0)|=2n−1=2m . Again by construction we know that Md=1 and Md=0 can be substituted

by A and A′, respectively, in all equations. Owing to the basic definition of A and A′ we have

that |on-set(A)|+|off-set(A)|=2m and |on-set(A′)|+|off-set(A′)|=2m . Expressing |on-set(A)| as

2m-|on-set(A′)| from the first set of equations and substituting this term in |on-set(A)|+|off-

set(A)|=2m we get 2m-|on-set(A′)|+|off-set(A)|=2m that can be simplified as |off-set(A)|=|on-

set(A′)|. This proves the first identity of the Theorem. The second identity can be proved

analogously. �

Informally, the previous theorem says that by switching AND/OR operators in an {AND, OR,

INV} logic circuit we swap the on-set and off-set sizes. From a statistical perspective, this

is equivalent to invert Pr (A=true) with Pr (A=false), under uniformly random input string

of bits. While this also happens with exact logic inversion, here the actual distribution of

the on-set/off-set elements is not necessarily complementary. In the next section, we show

the implications of the theoretical results seen so far in tautology and contradiction check

problems.

4.4 From Tautology To Contradiction and Back

Verifying whether a logic circuit is a tautology, a contradiction or a contingency2 is an impor-

tant task in logic applications for computers.

In this section, we show that tautology and contradiction check in logic circuits are dual

and interchangeable problems that do not require exact logic inversion per se. We start by

considering logic circuit over the universal basis set {AND, OR, INV} and we consider richer

basis sets later on. The following theorem describes the non-trivial duality between tautology

and contradiction in {AND, OR, INV} logic circuits.

Theorem 4.4.1 Let A be a logic circuit over the universal basis set {AND, OR, INV} representing

a tautology (contradiction). The logic circuit A′, obtained by switching AND/OR operations in

A, represents a contradiction (tautology).

Proof If A represents a tautology then |on-set(A)|=2m and |off-set(A)|=0, with m being the

number of inputs. Owing to Theorem 4.3.2 |on-set(A′)|=|off-set(A)|=0 and |off-set(A′)|=|on-

set(A)|=2m . It follows that A′ is a contradiction. Analogous reasoning holds for contradiction

to tautology transformation. �

Switching AND/ORs in an {AND, OR, INV} logic circuit is strictly equivalent to logic inversion

only for tautology and contradiction. In the other cases, A and A′ are not necessarily comple-

2A logic circuit is a contigency when it is neither a tautology nor a contradiction [5]

114

4.4. From Tautology To Contradiction and Back

mentary. We give empirical evidences about this fact hereafter. Fig. 4.4 depicts the obtained

results in a graph chart. We examined 17 random Boolean functions of four input variables,

with on-set size ranging from 0 (contradiction) to 16 (tautology). We first compared the on-set

size of the real inverted logic circuits with the on-set size of the AND/OR switched circuits.

As expected, Theorem 4.3.2 holds and switching AND/OR operators results in exchanging

the on-set and off-set sizes. This also happens with the real inverted circuits, but in that case

also the actual on-set/off-set elements distribution is complementary. To verify what is the

on-set/off-set elements distribution in general, we define a distance metric between the real

inverted and AND/OR switched circuits. The distance metric is computed in two steps. First,

the truth tables of the circuits are unrolled, using the same input order, and represented as

binary strings. Second, the distance metric is measured as the Hamming distance3 between

those binary strings. For tautology and contradiction extremes the distance metric between

Figure 4.4: Comparison between real inverted and AND/OR switched logic circuits representing
4-variable Boolean functions. The on-set size ranges from 0 to 24.

AND/OR switched circuits and real inverted circuits is 0, as obvious consequence of Theo-

rem 4.4.1. For other circuits, real inverted and AND/OR switched circuits are different, with

distance metric ranging between 2 and 10.

As a practical intepretation of the matter discussed so far, we can get an answer for a tautology

(contradiction) check problem by working on a functionally different and non-complementary

structure than the original one under test. We explain hereafter why this fact is interesting.

3The Hamming distance between two binary strings, of equal size, is the number of positions at which the
corresponding bits are different.

115

Chapter 4. Exploiting Logic Properties to Speedup SAT

Suppose that the logic circuit we want to check is a contigency but algorithms for tautology

(contradiction) are not efficient on it. If we just invert the outputs of this logic circuit and

we run algorithms for contradiction (tautology) then we would likely face the same difficulty.

However, if we switch AND/ORs in the logic circuit we get a functionally different and non-

complementary structure. In this case, algorithms for contradiction (tautology) do not face

by construction the same complexity. Exploiting this property, it is possible to speed-up

a traditional tautology (contradiction) check problem. Still, Theorem 4.4.1 gurantees that

if the original circuit is a tautology (contradiction) then the AND/OR switched version is a

contradiction (tautology) preserving the checking correctness.

Recalling the example in Fig. 4.3(a), the original logic circuit represents a tautology. Con-

sequently, the logic circuit in Fig. 4.3(c) represents a contradiction. These properties are

verifiable by hand as the circuits considered are small. For an example which is a contingency,

consider the {AND, OR, INV} circuit realization for f = ab′+ c ′ (contingency). By switching

AND/ORs, we get g = (a +b′)c ′ which is different from both f or f ′, as preticted.

We now consider logic circuits with richer basis set functions than just {AND, OR, INV}. Our

enlarged basis set includes {AND, OR, INV, MAJ, XOR, XNOR} logic operators. Other operators

can always be decomposed into this universal basis set, or new switching rules can be derived.

In the following, we extend the applicability of Theorem 4.4.1.

Table 4.1: Switching Rules for Tautology/Contradiction Check
Original Logic Operator Switched Logic Operator

INV INV
AND OR
OR AND

MAJ MAJ
XOR XNOR

XNOR XOR

Theorem 4.4.2 Let A be a logic circuit over the universal basis set {AND, OR, INV, MAJ, XOR,

XNOR} representing a tautology (contradiction). The logic circuit A′, obtained by switching

logic operators in A as per Table 4.1, represents a contradiction (tautology).

Proof In order to prove the theorem, we need to show the switching rules just for XOR, XNOR

and MAJ operators. AND/OR switching is already proved by Theorem 4.4.1. Consider the

XOR operator decomposed in terms of {AND, OR, INV}: f = a ⊕ b = ab′ + a′b. Applying

the duality in Theorem 4.4.1 we get g = (a +b′)(a′+b) that is indeed equivalent to a XNOR

operator. This proves the XOR to XNOR switching and viceversa. Analogously, consider the

MAJ operator decomposed in terms of {AND, OR, INV}: f = ab +ac +bc . Applying the duality

in Theorem 4.4.1 we get g = (a+b)(a+c)(b+c) that is still equivalent to a MAJ operator. Hence,

MAJ operators do not need to be modified. �

116

4.4. From Tautology To Contradiction and Back

Note that in a data structure for a computer program, the operator switching task does not

require actual pre-processing of the logic circuit. Indeed, each time that a node in the DAG is

evaluated an external flag word determines if the regular or switched operator type has to be

retrieved from memory.

In the current subsection, we showed a non-trivial duality between contradiction and tautol-

ogy check. In the next subsection, we study its application on Boolean satisfiability.

4.4.1 Boolean SAT and Tautology/Contradiction Duality

The Boolean SAT problem consists of determining whether there exists or not an interpretation

evaluating to true a Boolean formula or circuit. The Boolean SAT problem is reciprocal to a

check for contradiction. When contradiction check fails then Boolean SAT succeeds while

when contradiction check succeeds then Boolean SAT fails. Instead of checking for Boolean

SAT or for contradiction, one can use a dual transformation in the circuit and check for

tautology. Such transformation can be either (i) non-trivial, i.e., switching logic operators in

the circuit as per Table 4.1 or (ii) trivial, i.e., output complementation. If we use twice any

dual transformation, we go back to the original problem domain (contradiction, SAT). Note

that if we use twice the same dual transformation (trivial-trival or non-trivial-non-trival) we

obtain back exactly the original circuit. Instead, if we apply two different dual transformations

in sequence (trivial-non-trival or non-trivial-trival) we obtain an equisatisfiable but not

necessarily equivalent circuit. We use the latter approach to generate a second equisatisfiable

circuit, which we call the dual circuit. The pseudocode in Alg. 6 shows our speculative SAT

flow. First, the dual circuit is built by first applying our non-trivial duality (switching rules in

Algorithm 6 Speculative parallel regular/dual circuit SAT pseudocode.

INPUT: Logic circuit α. OUTPUT: SAT/unSAT solution for α.

α′=Dual(α);// non-trivial duality from Table 4.1 - can be done while reading α

α′=NOT(α′);// output complementation - can be done while reading α

solution =;;
while solution is ; do

solution=SAT(α) || solution=SAT(α′);// solve in parallel the SAT problem forα andα′, the first finishing

stops the execution

end while
return solution;

Table 4.1). Then, the dual circuit is modified by complementing the outputs (trivial duality).

Note that these two operations can be done while reading the regular circuit itself, thus ideally

require no (or very little) computational overhead, as explained previously. Finally, the dual

circuit SAT is solved in parallel with the regular one in a ”first finishing wins” speculative

strategy. Fig. 4.5 graphycally depicts the flow.

117

Chapter 4. Exploiting Logic Properties to Speedup SAT

SAT$

Solver$

AND$ OR$

INV$ INV$

OR$ AND$

XOR$ XNOR$

MAJ$ MAJ$

XNOR$ XOR$

Dual$$
Circuit$

Regular$
Circuit$

SAT$

Solver$

First&finishing&&
“wins”&

Figure 4.5: Speculative parallel regular/dual circuit SAT flow.

4.5 Experimental Results

In this section, we exercise our non-trivial duality in Boolean SATisfiability (SAT) problems.

First, we demonstrate that the dual instance can be solved faster than the regular one and

the corresponding runtime reduction is not of the random variation type. Second, we show

experimental results for a concurrent regular/dual SAT execution scenario.

4.5.1 Verification of SAT Solving Advantage on the Dual Circuit

In our first set of experiments we focused on verifying whether the dual circuit can be easier to

satisfy than the regular circuit. For this purpose, we modified MiniSat-C v1.14.1 [24] to read

circuits in AIGER format [18] and to encode them in CNF internally via Tseitin transformation.

The dual circuit is generated online during reading if a switch "-p" is given. We considered

a large circuit (0.7 M nodes) and we created 1000 randomized SAT instances by setting the

number generator seed in MiniSat to rand(). The plot in Fig. 4.6 shows the number of instances

Figure 4.6: 1000 randomized SAT runs for regular and dual circuit.

118

4.5. Experimental Results

(Y axis) solved in a given execution time (X axis), for both the dual and regular SAT flows. More

specifically, the two curves Fig. 4.6 represent the runtime distributions for dual and regular SAT.

The dual runtime distribution is clearly left-shifted (but partially overlapping) with respect to

the regular runtime distribution. This confirms that (i) the dual circuit can be solved faster

than the regular one and (ii) the runtime reduction is not of the random variation type.

4.5.2 Results for Concurrent Regular/Dual SAT Execution

In our second set of experiments (downloadable at [19]) we used ABC tool [17] to test our dual

approach together with advanced techniques to speed-up SAT. Our custom set of benchmarks

is derived by (i) unfolding SAT sequential problems (ii) encoding combinational equivalence

check problems. All benchmarks are initially described in Verilog as a netlist of logic gates over

the basis {AND, OR, INV, XOR, XNOR, MAJ}. The dual circuits are obtained by applying switch-

ing rules in Table 4.1 and inverting the output. The ABC script to read and run SAT on these

benchmarks is: read library.genlib; r -m input.v; st; write out.aig; &r out.aig; &ps; &write_cnf

-K 4 out.cnf; dsat -p out.cnf. Apart from standard I/O commands, note that &write_cnf -K 4

out.cnf generates a CNF using a technology mapping procedure and dsat -p calls MiniSat with

variable polarity alignment.

Table 4.2: Experimental Results for Regular vs. Dual SAT Solving All runtimes are in seconds
Benchmark I/O Logic Size Logic Depth Runtime Regular Runtime Dual |∆ Runtime| Best Runtime

hardsat1 4580/1 283539 392 186.35 58.9 127.35 58.9

hardsat2 4580/1 287635 392 51.1 191.87 140.77 51.1

hardsat3 198540/1 920927 267 0.94 1.1 0.16 0.94

hardsat4 2452/1 43962 436 68.82 20.53 48.29 20.53

hardsat5 5725/1 562027 464 40.91 22.72 18.19 22.72

hardsat6 3065/1 86085 437 37.51 64.24 26.73 37.51

hardsat7 372240/1 85596 151 4.8 3.68 1.12 3.68

Total sat 591182/7 2269771 2539 390.43 363.04 27.39 195.38

hardunsat1 61/1 448884 2181 26.72 27.22 0.50 26.72

hardunsat2 61/1 264263 2951 3.70 1.32 2.38 1.32

hardunsat3 61/1 451350 2181 27.8 20.33 7.47 20.33

hardunsat4 540/1 244660 1158 234.88 326.84 91.96 234.88

hardunsat5 2352/1 208221 439 7.61 7.65 0.04 7.65

hardunsat6 550/1 117820 423 142.28 137.94 4.34 137.94

Total unsat 3625/6 1735198 9333 442.99 521.30 78.31 428.80

Total 594807/13 4004969 11872 833.42 884.34 50.84 624.18

Norm. to Regular – – – 1.00 1.06 – 0.75

Table 6.1 shows results for regular vs. dual SAT solving with our setup. For about half of the

benchmarks (7/13) the dual instance concluded first while for the remaning ones (6/13) the

regular instance was faster. The total regular runtime is quite close to the total dual runtime

(just 6% of deviation). However, considering here the speculative parallel SAT flow in Fig. 4.5,

we can ideally reduce the total runtime by about 25%. Note that this is an ideal projection

into a parallel execution environment, with no overhead. We experimentally verified that the

average overhead can be small (few percentage points) thanks to the intrinsic independence

of the two tasks.

119

Chapter 4. Exploiting Logic Properties to Speedup SAT

4.6 Summary

In this chapter, we presented a non-trivial duality between tautology and contradiction check

to speed up circuit SAT. On the one hand, tautology check determines if a logic circuit is true

for all input combinations. On the other hand, contradiction check determines if a logic circuit

is false for all input combinations. A trivial transformation of a (tautology, contradiction)

check problem into a (contradiction, tautology) check problem is the inversion of all the

outputs in a logic circuit. In this work, we proved that exact logic inversion is not necessary. By

switching logic operator types in a logic circuit, following the rules presented in this paper, we

can selectively exchange tautologies with contradictions. Our approach is equivalent to logic

inversion just for tautology and contradiction extreme points. It generates non-complementary

logic circuits in the other cases. Such property enables computing benefits when an alternative

but equisolvable instance is easier to solve than the original one. As a case study, we studied

the impact on SAT. There, our methodology generated a dual SAT instance solvable in parallel

with the original one. This concept can be used on top of any other SAT approach and does

not impose much overhead, except having to run two solvers instead of one, which is typically

not a problem because multi-cores are wide-spread and computing resources are inexpensive.

Experimental results shown 25% speed-up of SAT in a concurrent execution scenario.

120

Bibliography

[1] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, New York,

1994.

[2] T. Sasao, Switching Theory for Logic Synthesis, Springer, 1999.

[3] M. R. Garey, D. S. Johnson, Computers and Intractability– A Guide to the Theory of NP-

Completeness. W. H. Freeman and Company, 1979.

[4] A. E. Hyvarinen, et al., Incorporating clause learning in grid-based randomized SAT solving,

Journal on SAT (JSAT) 6, 223-244, 2009.

[5] R.K. Brayton, Logic minimization algorithms for VLSI synthesis, Vol. 2. Springer, 1984.

[6] R. Rudell, A. Sangiovanni-Vincentelli Multiple-valued Minimization far PLA Optimization,

IEEE Trans. on CAD of ICs and Syst. 6.5: 727-750, 1987

[7] G. Hachtel, F. Somenzi, Logic synthesis and verification algorithms. Springer, 2006.

[8] L. Benini, G. De Micheli, A survey of Boolean matching techniques for library binding, ACM

Transaction on DAES (TODAES), 2(3), 193-226, 1997.

[9] G. D. Hachtel, M. J. Reily, Verification algorithms for VLSI synthesis, IEEE Trans. on CAD of

ICs and Syst. 7.5: 616-640, 1980

[10] G. Stalmarck, A system for determining propositional logic theorems by applying values and

rules to triplets that are generated from a formula, Swedish Patent No. 467,076 (approved

1992); U.S. Patent No. 5,276,897 (approved 1994); European Patent No. 403,454 (approved

1995).

[11] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Trans. on

Comp., C-35(8): 677-691, 1986.

[12] S. Malik, A. R. Wang, R. K. Brayton, A. Sangiovanni-Vincentelli, Logic verification using

binary decision diagrams in a logic synthesis environment, Proc. ICCAD, 1988.

[13] C. P. Gomes, H. Kautz, A. Sabharwal, B. Selman, Satisfiability solvers, Handbook of Knowl-

edge Representation 3 (2008): 89-134.

121

Bibliography

[14] http://www.satcompetition.org

[15] L. Amaru, P.-E. Gaillardon, G. De Micheli, Majority-Inverter Graph: A Novel Data-Structure

and Algorithms for Efficient Logic Optimization, Proc. DAC, 2014.

[16] MiniSat SAT solver available online at http://minisat.se/MiniSat.html

[17] Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis

and Verification, http://www.eecs.berkeley.edu/ alanmi/abc/

[18] AIGER benchmarks available online at http://fmv.jku.at/aiger/.

[19] http://lsi.epfl.ch/DUALSAT

122

5 Majority Normal Form Representation
and Satisfiability

In this chapter, we focus on a novel two-level logic representation. We define Majority Normal

Form (MNF), as an alternative to the traditional Disjunctive Normal Form (DNF) and the

Conjunctive Normal Form (CNF). After a brief investigation on the MNF expressive power, we

study the problem of MNF-SATisfiability (MNF-SAT). We prove that MNF-SAT is NP-complete,

as its CNF-SAT counterpart. However, we show practical restrictions on MNF formula whose

satisfiability can be decided in polynomial time. We finally propose a simple algorithm to

solve MNF-SAT, based on the intrinsic functionality of two-level majority logic. Although an

automated MNF-SAT solver is still under construction, manual examples already demonstrate

promising opportunities.

5.1 Introduction

As shown in the previous chapters of this thesis, Boolean logic is commonly defined in terms

of primitive AND (·), OR (+) and INV (′) operators. Such formulation acts in accordance with

the natural way logic designers interpret Boolean functions. For this reason, it emerged as

a standard in the field. However, no evidence is provided that this formulation, or another,

has the most efficient set of primitives for Boolean logic. In computer science, the efficiency

of Boolean logic applications is measured by different metrics such as (i) the result quality,

for example the performance of an automatically synthesized digital circuit, (ii) the runtime

and (iii) the memory footprint of a software tool. With the aim to optimize these metrics, the

accordance to a specific logic model is no longer important. Majority logic has shown the

opportunity to enhance the efficiency of multi-level logic optimization [1, 2] and reversible

quantum logic synthesis [3].

In this chapter, we extend the intuition provided in Chapter 3 to two-level logic and Boolean

satisfiability. We provide an alternative two-level representation of Boolean functions based

entirely on majority and complementation operators. We call it Majority Normal Form (MNF),

using a similar notation as for traditional Disjunctive Normal Form (DNF) and Conjunctive

Normal Form (CNF) [4]. The MNF can represent any Boolean function, therefore being

123

Chapter 5. Majority Normal Form Representation and Satisfiability

universal, as CNF and DNF. We investigate then the satisfiability of MNF formula (MNF-

SAT). In its most general definition, MNF-SAT is NP-complete, as its CNF-SAT counterpart.

However, there exist interesting restrictions of MNF whose satisfiability can instead be decided

in polynomial time. We finally propose an algorithm to solve MNF-SAT exploiting the nature of

two-level majority logic. Manual examples on such algorithm already demonstrate promising

opportunities.

The remainder of this chapter is organized as follows. Section 5.2 provides relevant background

and notations. In Section 5.3, the two-level Majority Normal Form is introduced and its

features investigated. Section 5.4 studies the satisfiability of MNF formula, from a theoretical

perspective. Section 5.5 proposes a simple algorithm to solve MNF-SAT exploiting the intrinsic

functionality of two-level majority logic. Section 5.6 discusses future research directions.

Section 5.7 concludes the chapter.

5.2 Background and Motivation

This section presents a brief background on two-level logic representation and Boolean satisfi-

ability. Notations and definitions used in the rest of this paper are also introduced.

5.2.1 Notations and Definitions

In the binary Boolean domain, all variables belong to B = {0,1}. The on-set of a Boolean

function is the set of input patterns evaluating the function to logic 1. Similarly, the off-set of

a Boolean function is the set of input patterns evaluating the function to logic 0. Literals are

variables and complemented (′) variables. Terms are conjunctions (·) of literals. Clauses are

disjunctions (+) of literals. A majority function of n (odd) literals returns the Boolean value

most frequently appearent among the inputs. In the context of this chapter, we refer to a

threshold function as to a majority function with repeated literals. Note that this is a restriction

of the more general definition of threshold functions [5].

5.2.2 Two-level Logic Representation

Traditional two-level logic representation combines terms and clauses to describe Boolean

functions. A Conjunctive Normal Form (CNF) is a conjunction of clauses. A Disjunctive Normal

Form (DNF) is disjunctions of terms. Both CNF and DNF are universal logic representation

form, i.e., any Boolean function can be represented by them. For more information about

logic representation forms, we refer the reader to [5].

124

5.3. Two-Level Majority Representation Form

5.2.3 Satisfiability

The Boolean SATisfiability problem (SAT) has been introduced in Chapter 4. In brief, it

consists of determining whether there exists or not an assignment of variables so that a

Boolean formula evaluates to true. SAT is a difficult problem for CNF formula. Indeed, CNF-

SAT was the first known NP-complete problem [6]. Instead, DNF-SAT is trivial to solve [16].

Unfortunately, converting a CNF into a DNF, or viceversa, may require an exponential number

of operations. Some restrictions of CNF-SAT, e.g., 2-SAT, Horn-SAT, XOR-SAT, etc., can be

solved in polynomial time. For more information about SAT, we refer to [16].

5.3 Two-Level Majority Representation Form

In this section, we present a two-level majority logic representation form as extension to

traditional two-level conjunctive and disjunctive normal forms.

5.3.1 Majority Normal Form Definition and Properties

Both CNF and DNF formula require at least two Boolean operators, · and +, apart from the

complementation. Interestingly enough, the majority includes both · and + into a unique

operator. This feature is formalized in the following.

Property The n-input (odd) majority operator filled with bn/2c logic zeros collapses into an

dn/2e-input · operator. Conversely, if filled with bn/2c logic ones it collapse into an dn/2e-input

+ operator.

Example Consider the function M(a,b,c,0,0). Owing to the majority functionality, to evaluate

such function to logic 1 all variables (a,b,c) must be logic 1. This is because already 2 inputs

over 5 are fixed to logic 0, which is close to the majority threshold. Indeed, if even only one

variable among (a,b,c) is logic 0, the function evaluates to 0. This is equivalent to the function

a ·b · c. Using a similar reasoning, M(a,b,c,1,1) is functionally equivalent to a +b + c.

This remarkable property motivates us to define a novel two-level logic representation form.

Definition A Majority Normal Form (MNF) is a majority of majorities, where majorities are

fed with literals, 0 or 1.

Example An MNF is M(M(a,b,1), M(a,b,c,0,e ′),d ′). Another MNF, for a different Boolean

function, is M(a,0,c, M(a,b′,c ′), (a′,1,c)). The expression M(M(M(a,b,c),d ,e),e, f , g ,h) is

not an MNF as it contains three levels of majority operators, while MNF is a two-level repre-

sentation form.

125

Chapter 5. Majority Normal Form Representation and Satisfiability

Following its definition, MNF includes also CNF and DNF.

Property Any CNF (DNF) is structurally equivalent to an MNF, where the n-input conjunction

(disjunction) is a majority operator filled by bn/2c logic zeros (ones) and by n clauses (terms)

of m-inputs, that are theirselves majority operators filled by bm/2c logic ones (zeros) and m

literals.

We give hereafter an example of CNF to MNF translation.

Example The starting CNF is (c ′ + b) · (a′ + c) · (a + b). The · in the CNF is translated as

M(−,−,−,0,0). The clauses are instead translated in the form M(−,−,1). The resulting MNF is

M(M(c ′,b,1), M(a′,c,1), M(a,b,1),0,0).

It is straightforward now to show that CNF and DNF can be translated into MNF in linear time.

However, the inverse translation of MNF into CNF or DNF can be more complex, as MNF are

intrisically more expressive than CNF and DNF.

The MNF is a universal logic representation form, i.e., any Boolean function can be repre-

sented with it. This comes as a consequence of the inclusion of universal CNF and DNF. In

addition to the emulation of traditional conjunction and disjunction operators, a majority

operator features other noteworthy properties. First, majority is a self-dual function [5], i.e.,

the complement of a majority equals to the majority with complemented inputs. The self-

dual property also holds when variables are repeated inside the majority operator (threshold

function). Second, the majority is fully-symmetric, i.e., any permutation of inputs does not

change the function behavior. In addition, the n-input majority where two inputs are one the

complement of the other, collapses into a (n-2)-input majority. In order to extend the validity

of these properties, it is proper to define M(a) = a, which is a majority operator of a single

input, equivalent to a logic buffer.

5.3.2 Representation Examples with DNF, CNF and MNF

We provide hereafter some examples of MNF in contrast to their corresponding CNF and DNF.

Example Boolean function a+(b·c). The form a+(b·c) is already a DNF. A CNF is (a+b)·(a+c).

An MNF is M(a,1, M(0,b,c)). Another, more compact, MNF is M(a,b,c, a,1).

For the sake of illustration, Fig. 5.1 depicts the previous example by means of drawings.

Example Boolean function (a ·d ′)+ (a ·b)+ (a ·c)+ (a′ ·b ·c ·d ′). This form is already a DNF. A

CNF is (a +b) · (a + c) · (a +d ′) · (b + c +d ′). A compact MNF is M(a, a,b,c,d ′).

126

5.3. Two-Level Majority Representation Form

∧

∨

a

∨

b c

f

M

a a 1 b c

f

M

M 1

0 b c

a

f

∧

∨

a

b c

f a) b) c) d)

Figure 5.1: Two-level representation example for the Boolean function a + (b · c) in forms: a)
DNF, b) CNF, c) MNF and d) more compact MNF.

Example Boolean function M AJ (a,b,c,d ,e). A DNF for this function is (a ·b · c)+ (a ·b ·d)+
(a ·b ·e)+(a ·c ·d)+(a ·c ·e)+(a ·d ·e)+(b ·c ·d)+(b ·c ·e)+(b ·d ·e)+(c ·d ·e). As this particular

function is monotonic and self-dual, a CNF can be obtained by swapping · and + operators. A

compact MNF is simply M(a,b,c,d ,e).

Example Boolean function a⊕b⊕c . A DNF is (a ·b ·c)+(a ·b′ ·c ′)+(a′ ·b ·c ′)+(a′ ·b′ ·c). A CNF

is (a′+b′+c)·(a′+b+c ′)·(a+b′+c ′)·(a+b+c) A compact MNF is M(a, M(a′,b,c), M(a′,b′,c ′)).

Table 5.1: Two-Level Logic Representation Comparison.
Boolean Function DNF CNF MNF

Size Size Size
a + (b · c) 2 2 1

(a +b) · (a + c) · (a +d ′) · (b + c +d ′) 4 4 1
(c ′+b) · (a′+ c) · (a +b) 3 3 4

M(a,b,c,d ,e) 10 10 1
a ⊕b ⊕ c 4 4 3

Table 5.1 summarizes the sizes of the DNF, CNF and MNF encountered in the previous exam-

ples. The size of a CNF size is its number of clauses. Similarly, the size of a DNF is its number

of terms. The size of an MNF is the number of majority operators appearing in the formula. As

we can notice, the MNF is often more compact than CNF and DNF, with a size ranging from

1 to 4, while the corresponding CNF and DNF sizes range from 2 to 10. Similar results also

emerged from theoretical studies on circuit complexity [8, 9]. Indeed, it has been shown in [8]

that majority circuits of depth 2 and 3 possess the expressive power to represent arithmetic

functions, such as powering, multiplication, division, addition etc., in polynomial size. On the

other hand, CNF and DNF already require an exponential size for parity, majority and addition

functions, which instead are polynomial with MNF [9].

127

Chapter 5. Majority Normal Form Representation and Satisfiability

So far, we showed that two-level logic can be expressed in terms of majority operators in place

of · and +. This comes at an advantage in representation size as compared to traditional CNF

and DNF. Moreover, the natural properties of the majority function permit a uniform and

efficient logic manipulation [2]. Still, further investigation and development of the topic are

needed, as they will be discussed in Section 5.6. In the next section, we study the promising

application of MNF formula to Boolean satisfiability.

5.4 Majority Satisfiability

Boolean satisfiability, often abbreviated as SAT, is a core problem of computer science. New

approaches to solve SAT, such as [10,11], are of paramount interest to a wide class of computer

applications. This is particularly relevant for Electronic Design Automation (EDA).

SAT is in general trivial for some representation form, such as DNF or Binary Decision Diagrams

(BDDs) [12]. It is instead a difficult problem for CNF formula. For this reason, CNF-SAT is still

actively studied. New SAT formulations are of great relevance when their representation can

be derived from CNF in polynomial (preferably linear) time. The satisfiability of MNF formula

falls in this category as MNF can be derived from CNF in linear time. This fact motivates us to

study the general complexity of MNF-SAT.

5.4.1 Complexity of Unrestricted MNF-SAT

To classify the complexity of unrestricted MNF-SAT, we compare it to the well understood

CNF-SAT.

Theorem 5.4.1 MNF-SAT is NP-complete.

Proof CNF-SAT is the first known NP-complete problem [6]. Since any CNF formula can be

reduced in linear time into a MNF, the complexity of MNF-SAT must also be NP-complete [14].

�

Not surprisingly, MNF-SAT is as complex as CNF-SAT. Interestingly enough, alternative proofs,

showing that MNF-SAT is a difficult problem, do exist. For example, one can make use of Lewis’

representation Theorem [13] or show the reducibility of other NP problems into MNF-SAT [14].

5.4.2 Complexity of Some Restricted MNF-SAT

Even though MNF-SAT is in general a difficult problem, there are restrictions of MNF formula

whose satisfiability can be determined easily. We define hereafter some MNF restrictions of

interest.

Definition MNF0 is an MNF where logic constant 1 is forbidden (also in the form of 0′).

128

5.4. Majority Satisfiability

Example A valid MNF0 is M(M(a,b,0), M(a,b′,c), a). Instead, M(M(a,b,1),c ′,0) is not an

MNF0 as logic 1 appears inside the formula.

Definition MNF1 is an MNF where logic constant 0 is forbidden (also in the form of 1′).

Example A valid MNF1 is M(M(a,1,d), M(a′,b′,e),1). Instead, M(a,1, M(a′,b,0)) is not an

MNF1 as logic 0 appears inside the formula.

Definition MNFpur e is an MNF where both logic constant 1 and logic constant 0 are forbid-

den.

Example A MNFpur e is M(M(a,b,c), M(a,b′,c), a′).

Note that MNF0 ⊃ MNFpur e and MNF1 ⊃ MNFpur e , but we keep them separated for the sake

of reasoning.

Theorem 5.4.2 MNFpur e -SAT is always satisfiable.

Proof In [5], it is proven that a self-dual function fed with other self-dual functions remains

self-dual. This is the case for MNFpur e , which is indeed always self-dual. A notable property of

self-dual functions is to have an on-set of size 2n−1, where n is the number of variables [5]. This

means that an MNFpur e cannot reach an on-set of size 0 and therefore cannot be unsatisfiable.

�

Informally, an MNF1 is an MNFpur e with some input biased to logic 1. As MNFpur e is always

satisfiable as adding more logic 1 to the MNF cannot make it unsatisfiable. Indeed, adding

logic ones to an MNF only helps its satisfiability. It follows that also MNF1 is always satisfiable.

Corollary 5.4.3 MNF1-SAT is always satisfiable.

Proof (by contradiction) Without loss of generality, let us assume that an MNF1 is a fictitious

MNFpur e where logic 1 is an additional variable, but succesively fixed to 1. Suppose that by

moving from the fictitious MNFpur e to a MNF1 we can decrease the on-set of size from 2n−1 to

0, and therefore make it unsatisfiable. Recall that the majority function is monotone increasing,

and that monotonicity is closed under the composition of functions [5]. By construction, all

input vectors to the MNF1 are bitwise greater or equal as compared to the corresponding

input vectors to the fictitious MNFpur e . Owing to monotonicity, also the MNF1 evaluates to

logic values always greater or equal than the ones of the fictitious MNFpur e for the same input

vectors. Hence, the on-set size of MNF1 cannot be smaller than the on-set size of the fictitious

MNFpur e and thus cannot reach 0. Here is the contradiction. It follows that MNF1 formula are

always satisfiable. �

129

Chapter 5. Majority Normal Form Representation and Satisfiability

The problem of MNF1-SAT is dual to MNF0-tautology check1. In the following theorem, which

is conceptually symmetric to the previous one, we establish their relation.

Theorem 5.4.4 MNF0 is never a tautology.

Proof (by contradiction) Without loss of generality, let us assume that an MNF0 is a fictitious

MNFpur e where logic 0 is an additional variable, but succesively fixed to 0. Suppose that by

moving from the fictitious MNFpur e to a MNF0 we can increase the on-set of size from 2n−1 to

2n , and therefore make it a tautology. Recall that the majority function is monotone increasing,

and that monotonicity is closed under the composition of functions [5]. By construction,

all input vectors to the fictitious MNFpur e are bitwise greater or equal as compared to the

corresponding input vectors to the MNF0. Owing to monotonicity, also the fictitious MNFpur e

evaluates to logic values always greater or equal than the ones of the MNF0 for the same input

vectors. Hence, the on-set size of MNF0 cannot be greater than the on-set size of the fictitious

MNFpur e and thus cannot reach 2n . Here is the contradiction. It follows that MNF0 formula

are not tautologies. �

Whenever an MNF can be restricted to MNFpur e or MNF1, its satisfiability is guaranteed, with

no need to check. If instead an MNF can be restricted to MNF0, its tautology check always

returns false. We do not focus on algorithms to solve general MNF-SAT or MNF0-SAT, but we

propose in the following section a general methodolody applicable to solve MNF-SAT.

5.5 Algorithm to Solve MNF-SAT

In order to automatically solve MNF-SAT instances, an algorithm is needed. We provide a

core decide algorithm, with linear time complexity with respect to the MNF size. It exploits

the intrinsic nature of MNF formula and can be embedded in a traditional Decide - Deduce

- Resolve SAT solving approach [16]. We start from a one-level majority case and then we

move to the two-level MNF case. Note that a recent work [19] considered the satisfiability

of two-level (general) threshold circuits. It is proposed to reduce it to a vector domination

problem. We differentiate from [19] by (i) focusing on MNF formula and (ii) developing a

native solving methodology.

5.5.1 One-level Majority-SAT

In the case of a one-level majority function, the satisfiability check can be accomplished

exactly in linear time by direct variable assignment (solely decide task). Informally, considering

a single majority operator, a greedy strategy can maximize the number of logic 1 in an input

pattern. If the pattern with the maximum number of logic 1 cannot evaluate a majority to

1The tautology check problem has been introduced in Chapter 4 of this thesis.

130

5.5. Algorithm to Solve MNF-SAT

1, then no other input pattern can do so, because of the majority function monotonicity. An

automated method for this task is depicted by Algorithm 7 and explained as follows. Each

Algorithm 7 One-level Majority SAT

INPUT: Inputs xn
1 of a majority operator

OUTPUT: Assignment of xn
1 (if SAT this assignment evaluates to true, otherwise unSAT)

for (i=1; i≤n_vars; i++) do
if xi appears more often complemented then

xi = 0;
else

xi = 1;
end if

end for
if M(xn

1) evaluates to 1 then
return SAT;

else
return unSAT;

end if

variable is processed in sequence, in any order. If the considered variable appears more often

complemented than in its standard polarity, it is set to logic 0, otherwise to logic 1. At the end

of this procedure, an assignment for the input variables to the majority operator is obtained. If

this assignment cannot evaluate the majority operator to true, then it is declared unsatisfiable,

otherwise it is declared satisfiable. An example is provided hereafter.

Example The Boolean formula whose satisfiability we want to check is M(a,b, a′, a′,b,c ′,c ′,d ,e).

To find an assignment which evaluates to logic 1, variables are considered in the order

(a,b,c,d ,e).

Variable a appears more often complemented in the MAJ operator, so it assigned to logic 0.

Variable b appears more often uncomplemented in the MAJ operator, so it assigned to logic 1.

Variable c appears more often complemented in the MAJ operator, so it assigned to logic 0.

Variable d appears more often uncomplemented in the MAJ operator, so it assigned to logic 1.

Variable e appears more often uncomplemented in the MAJ operator, so it assigned to logic 1.

The final assignment is then (0,1,0,1,1) which evaluates M(0,1,1,1,1,1,1,1,1) = 1.

We have seen that the satisfiability of a single majority can be exactly decided in linear time,

with respect to the size of the operator. The proposed greedy strategy is appropriate for

such task. We show now how this procedure can be extended to handle two-level majority

satisfiability.

131

Chapter 5. Majority Normal Form Representation and Satisfiability

5.5.2 Decide Strategy for MNF-SAT

For two-level MNF, a single decide may not be enough to determine SAT and it has to be

iterated with deduce and resolve methods [16]. We propose here a decide strategy with linear

time complexity with respect to the input MNF size. The rationale driving such process is to set

each input variable to the logic value, 0 or 1, that maximizes the number of logic 1 in input to

the final majority operator2. A corresponding automated procedure is depicted by Algorithm

8 and explained as follows. A specific variable x j is first passed to the procedure, together with

Algorithm 8 MNF-SAT Decide for a single variable

INPUT: Inputs: variable x j , MNF structure
OUTPUT: Assignment for x j most probably to SAT

compute np , nc ;
compute Cp (x j), Cn(x j);
if Cp (x j) <Cn(x j) then

x j = 0;
else

x j = 1;
end if

the MNF structure information. Then, a metric is computed to decide the assignment of such

variable to logic 0 or 1. The main difference with respect to the one-level majority is indeed

the figure of merit used to drive the variable assignment. The description of a proper metric

is as follows. Say n the number (odd) of inputs of the final majority in an MNF. Thus, there

are n majorities in the MNF. Say mi the number (odd) of inputs of the i -th majority operator,

with i ∈ {1,2, ..,n}. Say np (x j , i) the number of occurence of variable x j uncomplemented,

in the i -th majority operator. Similarly, say nc (x j , i) the number of occurence of variable x j

complemented, in the i -th majority operator. Using these informations, two cost metrics

Cp (x j) and Cn(x j) are created. Such cost metrics range from 0 to 1 and indicate how much a

positive (Cp) or negative (Cn) polarity assignment of a variable contribute to set the MNF to

logic 1. They are computed as

Cp (x j) = (
∑n

i=1 np (x j , i)/mi)/n and

Cn(x j) = (
∑n

i=1 nc (x j , i)/mi)/n.

According to this rationale, variable x j is set to logic 1 if its positive polarity "convenience

metric" Cp (x j) is greater than its negative polarity "convenience metric" Cn(x j). Otherwise,

variable x j is set to logic 0. Finally, a valid assignment for variable x j is obtained. If iterated

over all the variables, Algorithm 8 determines a global assignment to evaluate the MNF. Such

procedure can be used as core decide task in a traditional Decide - Deduce - Resolve SAT solving

approach [16]. Note that also the deduce and resolve methods must be adapted to the MNF

nature. Although, new and ad hoc deduce and resolve techniques are desirable, their study is

2The final majority operator in an MNF is the one in the top layer of the two-level representation form, thus
computing the output MNF function.

132

5.6. Discussion and Future Work

out of the scope of the current chapter. A simple example for the decide task, iterated over all

the variables, is provided hereafter.

Example We want to determine the satisfiability for the MNF formula

M(M(a,b,c ′,d ,1), M(a,b′,c ′,d ,e ′), M(a′,b,0)). Variables are considered in the order (a,b,c,d ,e)

and their cost metrics are computed.

For variable a, Cp (a) = 1/5+1/5+0/3 = 0.4 >Cn(a) = 0/5+0/5+1/3 = 0.33, thus it is assigned

to logic 1.

For variable b, Cp (b) = 1/5+0/5+1/3 = 0.53 >Cn(b) = 0/5+1/5+0/3 = 0.2, thus it is assigned

to logic 1.

For variable c, Cp (c) = 0/5+0/5+0/3 = 0 <Cn(c) = 1/5+1/5+0/3 = 0.4, thus it is assigned to

logic 0.

For variable d , Cp (d) = 1/5+1/5+0/3 = 0.4 >Cn(d) = 0/5+0/5+0/3 = 0, thus it is assigned to

logic 1.

For variable e, Cp (e) = 0/5+0/5+0/3 = 0 <Cn(e) = 0/5+1/5+0/3 = 0.2, thus it is assigned to

logic 0.

The obtained assignment is then (1,1,0,1,0) which evaluates

M(M(1,1,1,1,1), M(1,0,1,1,1), M(0,1,0)) = M(1,1,0) = 1. The initial MNF formula is declared

satisfiable.

Even though a single iteration may not be enough to determine the satisfiability of an MNF,

the proposed linear time decide procedure can be used as core engine in a traditional SAT flow.

In the following section, we discuss the results obtained so far and highlight future research

directions.

5.6 Discussion and Future Work

Two-level logic representation and satisfiability are two linked problems that have been

widely studied in the past years. Nevertheless, the research in this field is still active. New

approaches are continuously discovered and embedded in tools [11, 24], to push further the

horizons of logic applications. The proposed MNF has the potential to enhance two-level logic

representation and related SAT problems.

We demonstrated that any CNF or DNF can be translated in linear time into an MNF. However,

in its unrestricted form, MNF leads to SAT problems as difficult as with CNF. Restricted

versions of MNF exist, whose satisfiability can be decided in polynomial time. Advanced

logic manipulation techniques capable to transform a general MNF into a restricted MNF can

133

Chapter 5. Majority Normal Form Representation and Satisfiability

significantly simplify the MNF-SAT problem. Also, direct MNF construction from general logic

circuits is of interest.

Regarding the MNF representation properties, it is still unclear whether a canonical form

exists for MNF, as it does for CNF (product of maxterms) and DNF (sum of minterms). The

discovery of a canonical MNF can reveal new promising features of majority logic.

In the context of MNF-SAT algorithms, a detailed study for MNF oriented deduce and resolve

techniques is required. In this way, a complete MNF-SAT solver can be developed and its

efficiency tested.

In summary, our next efforts are focused on (i) logic manipulation techniques for MNF, (ii)

canonical MNF representation, (iii) MNF-oriented deduce and resolve techniques and (iv)

development of an MNF-SAT tool.

5.7 Summary

We presented, in this chapter, an alternative two-level logic representation form based solely

on majority and complementation operators. We called it Majority Normal Form (MNF). MNF

is universal and potentially more compact than its CNF and DNF counterparts. Indeed, MNF

includes both CNF and DNF representations. We studied the problem of MNF-SATisfiability

(MNF-SAT) and we proved that it belongs to the NP-complete complexity class, as its CNF-SAT

counterpart. However, we showed practical restrictions on MNF formula whose satisfiability

can be decided in polynomial time. We have finally proposed a simple core procedure to solve

MNF-SAT, based on the intrinsic functionality of two-level majority logic. The theory and

techniques developed in this chapter set the basis for future research on MNF-SAT solving.

134

Bibliography

[1] L. Amaru, P.-E. Gaillardon, G. De Micheli, BDS-MAJ: A BDD-based logic synthesis tool

exploiting majority logic decomposition, Proc. DAC, 2013.

[2] L. Amaru, P.-E. Gaillardon, G. De Micheli, Majority Inverter Graphs, Proc. DAC, 2014.

[3] G. Yang, W. N.N. Hung, X. Song, M. Perkowski, Majority-based reversible logic gates, Theo-

retical Computer Science, 2005.

[4] H. Pospesel, Introduction to Logic: Propositional Logic, Pearson, 1999.

[5] T. Sasao, Switching Theory for Logic Synthesis, Springer, 1999.

[6] S. Cook, The Complexity of Theorem-Proving Procedures, Proc. ACM Symposium on Theory

of Computing, 1971.

[7] A. Biere, M. Heule, H. van Maaren and T. Walsh Handbook of Satisfiability, IOS Press, 2009.

[8] M. Krause, P. Pudlak, On the computational power of depth-2 circuits with threshold and

modulo gates, Theor. Comput. Sci., 174, pp. 137-156, 1997.

[9] AA. Sherstov, Separating AC 0 from depth-2 majority circuits, Proc. STOC, 2007.

[10] N. Een, N. Sorensson, MiniSat - A SAT Solver with Conflict-Clause Minimization, SAT

2005.

[11] N. Een, A. Mishchenko, N. Sorensson, Applying Logic Synthesis for Speeding Up SAT, SAT

2007.

[12] R.E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Transac-

tions on Computers, C-35: 677-691, 1986.

[13] H. R. Lewis, Satisfiability problems for propositional calculi, Mathematical Systems The-

ory 13 (1979), pp. 45-53.

[14] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman, 1979.

135

Bibliography

[15] K. Bernstein et al., Device and Architecture Outlook for Beyond CMOS Switches, Proceed-

ings of the IEEE, 98(12): 2169-2184, 2010.

[16] K. J. Chen, et al., InP-based high-performance logic elements using resonant-tunneling

devices, IEEE Electr. Dev. Lett., 17(3): 127-129, 1996.

[17] P. D. Tougaw, C. S. Lent, Logical devices implemented using quantum cellular automata, J.

Applied Physics, 75(3): 1811-1817, 1994.

[18] M. De Marchi et al., Polarity control in Double-Gate, Gate-All-Around Vertically Stacked

Silicon Nanowire FETs, Proc. IEDM, 2012.

[19] R. Impagliazzo, A Satisfiability Algorithm for Sparse Depth Two Threshold Circuits, Arxiv

2013.

136

6 Improvements to the Equivalence
Checking of Reversible Circuits

Reversible circuits implement invertible logic functions. They are of great interest to cryp-

tography, coding theory, interconnect design, computer graphics, quantum computing, and

many other fields. As for conventional circuits, checking the combinational equivalence of

two reversible circuits is an important but difficult (coNP-complete) problem. In this chapter,

we present a new approach for solving this problem significantly faster than the state-of-the-

art. For this purpose, we exploit inherent characteristics of reversible computation, namely

bi-directional (invertible) execution and the XOR-richness of reversible circuits. Bi-directional

execution allows us to create an identity miter out of two reversible circuits to be verified,

which naturally encodes the equivalence checking problem in the reversible domain. Then,

the abundant presence of XOR operations in the identity miter enables an efficient problem

mapping into XOR-CNF satisfiability. The resulting XOR-CNF formulas are eventually more

compact than pure CNF formulas and potentially easier to solve. As previously anticipated,

experimental results show that our equivalence checking methodology is more than one

order of magnitude faster, on average, than the state-of-the-art solution based on established

CNF-formulation and standard SAT solvers.

6.1 Introduction

Reversible computing is a non-conventional computing style where all logic processing is

conducted through bijective, i.e., invertible, Boolean functions. Reversible circuits implement

invertible Boolean functions at the logic level and are represented as cascades of reversible

gates. In conventional technologies, reversible circuits find application in cryptography [1],

coding theory [2], interconnect design [3], computer graphics [4] and many other fields where

the logic invertibility is a key asset. In emerging technologies, such as quantum computing [5],

reversible circuits are one of the primitive computational building blocks.

Whether they are finally realized in conventional or emerging technologies, the design of

reversible circuits faces two major conceptual challenges: synthesis and verification [6]. Syn-

thesis maps a target Boolean function into the reversible logic domain while minimizing the

137

Chapter 6. Improvements to the Equivalence Checking of Reversible Circuits

number of additional information bits and primitive gates [7, 8]. Verification checks if the final

reversible circuit conforms to the original specification [9].

In this chapter, we focus on reversible circuit verification and, in particular, on combina-

tional equivalence checking. The problem of combinational equivalence checking consists

of determining whether two given reversible circuits are functionally equivalent or not. As

for conventional circuits, this is a difficult (coNP-complete) problem [10]. We present a new

approach for solving this problem significantly faster than the state-of-the-art verification

approaches [9].

For this purpose, our methodology exploits, for the first time, inherent characteristics of re-

versible computation, i.e., its invertible execution and the XOR-richness of reversible circuits.

This stands in contrast to previously proposed solutions such as introduced in [9] which only

adapted established verification schemes for conventional circuits but ignored the potential

of the reversible computing paradigm. Our proposed methodology consists of the following

steps. First, we create an identity miter by cascading one circuit with the inverse of the other.

If the two reversible circuits are functionally equivalent, then the resulting cascade realizes

the identity function. Next, we encode the problem of checking whether the resulting circuit

indeed realizes the identity into a mixed XOR-CNF satisfiability problem. The possibility to ex-

press natively XOR operations, frequently appearing in reversible circuits, reduces significantly

the number of variables and clauses as compared to a pure CNF formulation. Finally, we solve

the XOR-CNF satisfiability problem using CryptoMiniSat [11], a MiniSat-based solver handling

XORs through Gaussian elimination [12]. Experimental results show that, on average, the

proposed methodology is more than one order of magnitude faster than the state-of-the-art

reversible circuit checker based on the established CNF-formulation and MiniSat solver [9].

Besides that, the proposed approach also provides potential for improving combinational

equivalence checking of conventional circuits.

The remainder of this chapter is organized as follows. Section 6.2 provides the background on

reversible circuits and on Boolean satisfiability. Section 6.3 presents the proposed methodol-

ogy for equivalence checking of reversible circuits. Section 6.4 describes the setup applied for

our experimental evaluation and summarizes the obtained results. Section 6.5 discusses the

future research directions – in particular for combinational equivalence checking of conven-

tional circuits. Section 6.6 concludes the chapter.

6.2 Background

In this section, we briefly review the background on reversible circuits and on Boolean satisfia-

bility.

138

6.2. Background

6.2.1 Reversible Circuits

A logic function f :Bni →Bno is reversible if and only if it represents a bijection. This implies

that:

• the number of inputs is equal to its number of outputs (i.e., ni = no) and

• it maps each input pattern to a unique output pattern.

A reversible function can be realized by a circuit G = g1g2 . . . gd comprised of a cascade of

reversible gates gi , where d is the number of gates. Multiple forks and feedback are not

directly allowed [5]. Several different reversible gates have been introduced including the

Toffoli gate [13], the Fredkin gate [14], and the Peres gate [15]. In accordance to the common

approach in reversible circuit design (see e.g., [7, 8]), we focus on Toffoli gates in the following.

Toffoli gates are universal, i.e., all reversible functions can be realized by means of this gate

type alone [13].

A Toffoli gate has a target line t and control lines {c1,c2, . . . ,cn}1. Its behavior is the following: If

all control lines are set to the logic value 1, i.e., c1·c2· . . . ·cn = 1, the target line t is inverted, i.e.,

t ′. Otherwise, the target line t is passed through unchanged. Hence, the Boolean function of

the target line can be expressed as (c1·c2· . . . ·cn)⊕t . All remaining signals (including the signals

of the control lines) are always passed through unchanged. Fig. 6.1 depicts a Toffoli gate with

its respective output functions. We follow the established drawing convention of using the

symbol ⊕ to denote the target line and solid black circles to indicate control connections for

the gate.

t

c2

(c1 c2 … cn) t ⊕

c1

cn

c2

c1

cn

Figure 6.1: A Toffoli gate.

A Toffoli gate with no control lines always inverts the target line and is a NOT gate. A Toffoli

gate with a single control line is called a controlled-NOT gate (also known as the CNOT gate)

and is functionally equivalent to a XOR gate. The case of two control lines is the original gate

defined by Toffoli [13].

1Toffoli gates have bee briefly introduced in Chapter 2. Here, their functionality is presented for the sake of
clarity.

139

Chapter 6. Improvements to the Equivalence Checking of Reversible Circuits

Example Fig. 6.2 shows a reversible circuit composed of m = 3 circuit lines and d = 6 Toffoli

gates. This circuit maps each input pattern into a unique output pattern. For example, it

maps the input pattern 111 to the output pattern 100. Inherently, every computation can be

performed in both directions (i.e., computations towards the outputs and towards the inputs

can be performed).

b

a

c

a b

a

(ab) c

⊕

⊕

Figure 6.2: A reversible circuit composed of Toffoli gates

6.2.2 Boolean Satisfiability

The Boolean Satisfiability (SAT) problem has been defined and discussed in Chapter 4 and

Chapter 5 of this thesis, respectively. For the sake of clarity, we report here an example of

Conjunctive Normal Form (CNF)-SAT as:

(a +b′)(a + c ′)(a′+b + c)

which is satisfiable by (a = 1,b = 1,c = 1).

Even though SAT for generic CNFs is a difficult (NP-complete) problem, modern SAT solvers

can handle fairly large problems in reasonable time [16]. The core technique behind most

SAT solvers is the DPLL (Davis-Putnam-Logemann-Loveland) procedure, introduced several

decades ago [17]. It performs a backtrack search in the space of partial truth assignments.

Through the years, the main improvements to DPLL have been smart branch selection heuris-

tics, a fast implication scheme, and extensions such as clause learning, randomized restarts,

as well as well-crafted data structures such as lazy implementations and watched literals for

fast unit propagation [16].

Recently, researchers considered SAT to solve other important problems in computer science,

for example, cryptographical applications [19]. Here, SAT solvers are often faced with a large

amount of XOR constraints. These XORs are typically difficult to handle using pure CNF

and standard SAT solvers. However, the presence of these XOR constraints can be exploited

within a DPLL solving framework by using on-the-fly Gaussian elimination [12]. Some SAT

solvers have been proposed which exploit this potential and, hence, work on mixed XOR-CNF

140

6.3. Mapping Combinational Equivalence Checking for Reversible Circuits to XOR-CNF
SAT

formulas rather than pure CNF formulas. For example, a mixed XOR-CNF is

(a ⊕b′)(a ⊕ c)(a′+b + c)

which is satisfiable by (a = 1,b = 1,c = 0).

CryptoMiniSat [11] is one of the most popular solvers for XOR-CNF formulas based on MiniSat

[24] and Gaussian elimination to handle XOR constraints [12].

6.3 Mapping Combinational Equivalence Checking for Reversible

Circuits to XOR-CNF SAT

In this section, we present the proposed approach for checking the combinational equivalence

between two reversible circuits. Without loss of generality, we consider reversible circuits

composed only of Toffoli, CNOT, and NOT gates. Since Toffoli gates are universal, any other

primitive reversible gate can be decomposed into a combination of those.

In the remainder of this section, we first describe how to create an identity miter out of two

reversible circuits under test. Then, we propose an efficient encoding of the identity check

problem into XOR-CNF satisfiability.

6.3.1 Creating an Identity Miter

In the considered scenario, two reversible circuits need to be checked for combinational

equivalence. As an example, consider the circuits depicted in Fig. 6.3.

Following established verification schemes, both circuits are fed by the same input signals.

Differences at the outputs are observed by applying XOR operations. This eventually lead

to a new circuit specifically used for equivalence checking which is commonly called miter

circuit [20]. If at least one output of the miter can evaluate to the logic value 1, for some

input pattern, then the two circuits are functionally different. Otherwise, the two circuits are

functionally equivalent.

The very same approach can be used to verify the combinational equivalence of two reversible

circuits (and, in fact, has been done before in [9]). However, just an adaptation of this conven-

tional scheme entirely ignores the potential that comes by following the reversible computing

paradigm. In fact, properties of reversible circuits can be exploited to create a different type

of miter. More precisely, a reversible circuit realizes a function f when considered from the

inputs to the outputs. But thanks to the reversibility, it also realizes the inverse function f −1

when considered from the outputs to the inputs2. Therefore, by cascading one reversible

2This holds since self-inverse reversible gates such as Toffoli gates, CNOT gates, NOT gates, etc. are considered
here.

141

Chapter 6. Improvements to the Equivalence Checking of Reversible Circuits

b

a

c

a b

a

(ab) c

⊕

⊕

Circuit 2

b

a

c

a b

a

(ab) c

⊕

⊕

Circuit 1

Figure 6.3: Two functionally equivalent reversible circuits.

circuit with the inverse (I/O flip) of a functional equivalent one always yields to a circuit

realizing the identity function over all signal lines. This concept is illustrated in Fig. 6.4 which

shows the resulting identity miter comprised from the example circuits of Fig. 6.3.

We call such composite circuit an identity miter. If at least one output of the identity miter

does not represent the identity function, i.e., if f (x) 6= x, then the two reversible circuits are

functionally different. Otherwise, the two circuits are functionally equivalent.

Note that the idea of creating an identity miter out of two reversible circuits is not new per

se. Indeed, it has been already studied in [18]. However, in that work, the use of an identity

miter did not lead to substantial improvements for equivalence checking of reversible circuits.

This is because researchers used canonical data structures, decision diagrams and alike,

to perform the identity checking task. The scaling limitations of canonical data structures

severely confined the potential efficiency of using an identity miter.

Instead, in this work, we propose an innovative SAT formulation to describe the identity miter

checking problem. SAT can handle much larger problems than canonical data structures

before hitting serious scaling limitations. Moreover, we develop an ad-hoc mixed XOR-CNF

formulation to natively handle the identity miter checking problem and significantly expedite

its solving as compared to a pure CNF formulation.

142

6.3. Mapping Combinational Equivalence Checking for Reversible Circuits to XOR-CNF
SAT

b

a

c

b

a

c

e

d
f

g

h
i

l m

Circuit 2 Circuit 1

ID (?)
Figure 6.4: The resulting identity miter.

6.3.2 XOR-CNF Formulation

To test the equivalence of two reversible circuits, we need to check whether their identity miter

actually represents an identity function or not. If such an assignment can be determined, then

the identity miter does not actually represents the identity function and the two reversible

circuits under test are not functionally equivalent (in this case, the determined assignment

works as counterexample). Otherwise, the identity miter represents the identity function and

the two reversible circuits are functionally equivalent.

Besides that, the XOR-richness of the considered circuits can be exploited. In fact, most of the

reversible circuits are inherently composed of XOR operations only – caused by the applied

Toffoli gate library as introduced in Section 6.2.1. This allows for a formulation in terms of a

mixed XOR-CNF satisfiability problem which, as reviewed in Section 6.2.2, can be handled

much better using dedicated solvers rather than the conventionally applied CNF satisfiability.

The resulting formulation is defined as follows: First, corresponding SAT variables are intro-

duced. More precisely, for each primary input of the identity miter as well as for each reversible

gate, a new free variable is introduced.

Example Consider again the identity miter as shown in Fig. 6.4. For the primary inputs, the

variables a,b,c are introduced. The variables d ,e, . . . ,m represent reversible gates outputs.

Afterwards, two types of constraints are introduced: The first type covers the functionality

of the circuit, i.e., symbolically restricts the set of possible assignments to those which are

valid with respect to the given gate functions and connections. The second type covers the

objective, i.e., symbolically restricts the set of possible assignments to those which show, for

143

Chapter 6. Improvements to the Equivalence Checking of Reversible Circuits

at least one circuit line, the non-identity of the input x and the output f (x) (in other words,

assignments which violate x = f (x)).

Considering the functional constraints, there are as many functional constraints as Toffoli,

CNOT, and NOT gates in the circuit. Each of them introduces its particular set of functional

constraints which restrict the output value (denoted by o in the following) of the respective

target lines. More precisely,

• a NOT gate with a target line t is represented by (o = t ′),

• a CNOT gate with target line t and control line c is represented by (o = c ⊕ t), and

• a Toffoli gate with target line t and control lines {c1,c2, . . . ,cn} is represented by (o = p⊕t)

and (p = c1·c2· . . . ·cn).

All these constraints must simultaneously hold in order to properly represent the circuit

functionality.

Example Consider again the identity miter shown in Fig. 6.4. For this circuit, the following

functional constraints are created:

Functionality



d = b ⊕a

e = a ⊕d

f = d ′

g = c ⊕p1

p1 = f ·e
h = f ′

i = e ⊕h

l = h ⊕ i

m = g ⊕p2

p2 = i · l

(6.1)

As an example, consider the variable g which symbolically represents the output value of

the fourth gate from Fig. 6.4. The functionality of this gate is represented by g = c ⊕p1. The

variable p1 represents thereby the controlling part of this Toffoli gate and is accordingly

represented as p1 = f ·e. The remaining constraints in Eq. 6.1 are derived analogously.

Considering the objective constraints, there are as many objective constraints as lines in

the reversible circuit. Here, the functional constraints as described above are utilized. For a

generic l i nei (i ≤ m), the primary outputs in the identity circuit are respectively defined by

the cascade of gates g1g2 . . . gd . The functional constraints represent these gates by means of a

cascade of XOR operations so that l i nei is eventually defined as l i nei = h1 ⊕h2 · · ·⊕hd where

each h j (j ≤ d) is either

144

6.3. Mapping Combinational Equivalence Checking for Reversible Circuits to XOR-CNF
SAT

• the product p = c1·c2· . . . ·cn of the control connections of gate g j (in case the corre-

sponding gate g j is a Toffoli gate),

• the control signal c (in case the corresponding gate g j is a CNOT gate), or

• the logic value 1 (in case the corresponding gate g j is a NOT gate).

Because of this cascade of XOR operations, the objective constraints only have to ensure that,

for at least one l i nei , its corresponding output assumes the logic value 1, i.e., behaves as an

inverter rather than a buffer. This can be formulated as ∃i ∈ {1,2, . . . ,m} : l i nei = 1, where m is

the number of lines.

Example Consider again the identity circuit considered above. For this circuit, the following

objective constraints are added:

Non-Identity


∃i ∈ {1,2,3} : l i nei = 1

l i ne1 = d ⊕h

li ne2 = a ⊕1⊕1⊕ i

l i ne3 = p1 ⊕p2

(6.2)

As an example, consider the bottom (third) line of the reversible circuit from Fig. 6.4. We have

that l i ne3 = p1 ⊕p2. The values of p1 and p2 are derived from the functional constraints, in

particular from control lines of the respective Toffoli gates. The objective constraint asks for at

least one of the three lines to evaluate to the logic value 1, thus to invert the corresponding

input bit (so not being an identity).

As one can visually notice, the set of constraints in Eq. 6.1 and Eq. 6.2 are not yet in XOR-CNF

form. Hence, some further transformations are needed. For this purpose, we exploit the fact

that, in the Boolean domain, (a = b) can equally be represented as (a ⊕b′ = 1). This allows us

to transform most of the equalities directly into XOR clauses. In contrast, special treatment is

required for the AND constraints caused by the representations of the control lines, i.e., for p.

For these ones, it is more efficient to rely on the established Tseitin transformation [21]. Tseitin

transformation sets a particular gate Boolean expression equal to constant 1 and transforms it

into a conjunction of disjunctions. For this reason, Tseitin transformation encodes an AND

function over k inputs into k +1 OR clauses. Finally, the constraint ∃i ∈ {1,2,3} : l i nei = 1 is

naturally mapped into a standard OR clause.

Example Following the example from above, all constraints from Eq. 6.1 and Eq. 6.2 are

145

Chapter 6. Improvements to the Equivalence Checking of Reversible Circuits

eventually transformed into the following single set of XOR-CNF clauses:

XOR-CNF



d ′⊕b ⊕a

e ′⊕a ⊕d

f ′⊕d ′

g ′⊕ c ⊕p1

p1 + f ′+e ′

p ′
1 + f

p ′
1 +e

h ⊕ f

i ′⊕e ⊕h

l ′⊕h ⊕ i

m′⊕ g ⊕p2

p2 + i ′+ l ′

p ′
2 + i

p ′
2 + l

l i ne ′1 ⊕d ⊕h

li ne ′2 ⊕a ⊕1⊕1⊕ i

l i ne ′3 ⊕p1 ⊕p2

l i ne1 + l i ne2 + l i ne3

(6.3)

The resulting XOR-CNF problem is unsatisfiable as the considered identity miter shown in

Fig. 6.4 indeed represents the identity. That means that the two original reversible circuits to

be verified (shown in Fig. 6.3) are combinationally equivalent. This can be proved manually or,

more efficiently, using a XOR-CNF satisfiability solver.

Note that the XOR-CNF formulation in Eq. 6.3 is composed of 18 clauses and 16 variables.

In contrast, the established formulation based on pure CNF requires 82 clauses and 34 vari-

ables [9]. This reduction alone is likely to lead to a solving speed-up. Moreover, the presence

of more than 60% XOR clauses opens even more speed-up opportunities. Mixed XOR-CNF

solvers take advantage of XOR clauses through fast Gaussian elimination. Results showed in

the next section confirm the predicted improvement.

6.4 Experimental Results

In order to evaluate the performance of the proposed approach, we implemented the tech-

niques described above and compared them against the state-of-the-art solution presented

in [9]. In this section, we summarize the respectively obtained results. Details on the applied

methodology as well as the experimental setup are provided.

146

6.4. Experimental Results

CryptoMiniSAT

Identity Miter

XOR-CNF Encoder

file1.real file2.real

EQ/NEQ

Figure 6.5: The proposed equivalence checking flow.

6.4.1 Methodology and Setup

The proposed equivalence checking scheme has been implemented as a tool chain which is

sketched by Fig. 6.5. Two reversible circuits (provided in the *.real-format [23]) are taken and

re-arranged into an identity circuit as well as mapped into an equivalent XOR-CNF formula-

tion. For this purpose, the concepts described in Section 6.3 have been implemented in terms

of a C-program. Afterwards, the resulting formulation is passed to CryptoMiniSAT 2.0 – an

XOR-CNF solver [11]. In case the solver proved the unsatisfiability of the instance, equiva-

lence (EQ) has been proven; otherwise, it has been shown that the considered circuits are not

equivalent (NEQ).

For comparison, we additionally considered the SAT-based reversible circuit checker pre-

sented in [9]. From a high-level perspective, this tool first creates an XOR-miter of the given

reversible circuits. Then, it encodes the XOR-miter into a pure CNF formula which is eventually

solved using MiniSAT [24]. Even though this flow has been explicitly tuned for verification of

reversible circuits in [9], it still employs the state-of-the-art schemes as applied for verification

of conventional circuits. To enable a fair runtime comparison, we downloaded, compiled, and

run the reference tool from [9] for our evaluations.

As benchmarks, we considered reversible circuits (provided in the *.real-format) from the

RevLib benchmark library [23]. We neglected small reversible circuits for which the verification

runtime was less than a second. We focused on complex reversible circuits (with >2k gates) for

which the verification task required more computational effort. In particular, we give results

for two classes of benchmarks: circuits realizing Unstructured Reversible Functions (URF) as

well as circuits realizing arithmetic components of a RISC CPU. These classes are the largest

and toughest benchmarks available at RevLib [23] and, hence, are appropriate to challenge

147

Chapter 6. Improvements to the Equivalence Checking of Reversible Circuits

the proposed verification scheme.

Whenever required, all gates in these circuits have been locally transformed into universal

Toffoli gates. In order to consider both cases of equivalence as well as non-equivalence three

versions of each circuit have been considered, namely (i) the original version, (ii) an optimized

version, and (iii) an erroneous version.

All experiments have been conducted on a Dual Xeon 6 cores X5650 machine with 24GB RAM

running under RHEL 5.8 - 64 bits OS.

Table 6.1: Experimental results (all run-times in CPU seconds)
State-of-the-art [9] Proposed solution

Circuit1 (lines/gates) Circuit2 (lines/gates) Vars/Clauses Answer Runtime Vars/Clauses XOR% Answer Runtime

Unstructured Reversible Functions (from RevLib)

urf3_1 (10/26k) urf3_2 (10/26k) 133609/527485 EQ 98.85 104212/210085 32 EQ 14.20

urf3_1 (10/26k) urf3_bug (10/26k) 133433/526926 NEQ 5.91 104212/210085 32 NEQ 1.69

urf1_1 (9/11k) urf1_2 (9/6k) 58122/229437 EQ 17.89 35847/61885 60 EQ 2.54

urf1_1 (9/11k) urf1_bug (9/6k) 58124/229390 NEQ 2.77 45438/91655 31 NEQ 0.52

urf5_1 (10/10k) urf5_2 (10/10k) 51746/20401 EQ 15.85 40350/81455 31 EQ 3.75

urf5_1 (10/10k) urf5_bug (10/9k) 51810/204249 NEQ 1.54 40312/81377 31 NEQ 0.42

urf6_1 (15/10k) urf6_2 (15/10k) 54888/216888 EQ 5694.22 42565/85526 33 EQ 570.39

urf6_1 (15/10k) urf6_bug (15/9k) 54682/216370 NEQ 2.64 42524/85445 33 NEQ 0.49

urf4_1 (11/32k) urf4_2 (11/31k) 162247/636237 EQ 883.27 127254/255271 55 EQ 92.37

urf4_1 (11/32k) urf4_bug (11/31k) 162349/636563 NEQ 6.04 127245/255252 55 NEQ 2.03

Total URF 921010/3443964 – 6728.98 709959/1418036 39 – 688.40

Components of the RISC CPU (from RevLib)

alu1_1 (756/3k) alu1_2 (756/10k) 82617/281684 EQ 5649.74 23128/99803 28 EQ 670.96

alu1_1 (756/3k) alu1_bug (756/2k) 66182/216644 NEQ 67.84 10625/65921 21 NEQ 6.96

alu2_1 (6204/3k) alu2_2 (6204/3k) 5568/20216 EQ 304.65 21254/22521 79 EQ 186.44

alu2_1 (6204/3k) alu2_bug (6204/3k) 5657/20610 NEQ 369.49 21250/22517 80 NEQ 76.21

alu3_1 (255/10k) alu3_2 (255/11k) 227505/752851 EQ 12751.02 35406/253957 12 EQ 728.98

alu3_1 (255/10k) alu3_bug (155/8k) 209887/691117 NEQ 56.91 30424/232584 12 NEQ 9.90

alu4_1 (757/4k) alu4_2 (757/7k) 28671/111480 EQ 8899.70 20941/40794 42 EQ 320.87

alu4_1 (757/4k) alu4_bug (757/4k) 22140/85537 NEQ 825.71 16496/30987 55 NEQ 169.00

alu5_1 (256/9k) alu5_2 (256/10k) 47290/185110 ? >1 day 33150/65249 45 EQ 6948.86

alu5_1 (256/9k) alu5_bug (256/9k) 43966/171863 NEQ 51.56 30894/60329 51 NEQ 10.36

Total RISC CPU 739483/2537112 – 115376.62 243568/894662 42 – 9128.54

Grand Total 1660493/5981058 – 122105.60 953527/2312698 41 – 9816.94

Improvement compared to [9] 1/1 – 1 1.74/2.58× – – 12.44×

6.4.2 Results

Table 6.1 summarizes the experimental results. Considering the URF-benchmarks, equiva-

lence checking can be conducted approximatively 9 times faster compared to the reference

verification scheme. If the CPU-benchmarks are considered, even better improvements can be

observed; namely speed-ups of a factor of approximatively 12. Here, particular the benchmark

alu_5 is of interest. Applying the reference scheme proposed in [9], no result was obtained

within 24 hours (its contribution to the total runtime nevertheless has been considered as

24 hours, i.e., 86400 in favor to the reference flow). In contrast, the proposed approach was

able to check the equivalence in less than two hours. Over all benchmarks, an improvement of

more than one order of mangitude (more precisely, a factor of 12.44) is observable.

148

6.5. Discussion

We see the two reasons for this significant improvement: On the one hand, the number

of variables and clauses are considerably smaller in the proposed XOR-CNF formulation

compared to the pure CNF formulation (a reduction by the factor of 1.29 and 2.42, respectively).

On the other hand, the richness of XOR-clauses in our formulation helps the solving engine

in simplifying the formula early in the process (e.g., through Gaussian elimination). Further

investigation is needed to numerically separate the contributions for each speedup source.

Besides that, non-equivalent cases have been solved quite faster than equivalent cases for

both, the proposed scheme as well as the reference scheme. This is expected as SAT solvers are

known to be very fast in detecting satisfying assignments rather than proving unsatisfiability.

6.5 Discussion

The proposed solution provides an alternative verification scheme for reversible logic which

leads to significant improvements with respect to the state-of-the-art. Beyond that, it also

opens promising new paths for improving verification of conventional designs. This section

briefly discusses new research opportunities in this direction.

6.5.1 Application to the Verification of Conventional Circuits

The significant speed-up obtained in this work is enabled by intrinsic properties of reversible

circuits such as bi-directional execution and XOR-richness. Conventional circuits usually

do not inherit these particular properties. Hence, at a first glance, the proposed verification

scheme may seem applicable only to reversible computation paradigms.

However, conventional logic can also be represented in terms of reversible logic by using

extra I/Os and extra gates. Previous studies explored this direction in order to (ideally) map

any combinational design into reversible circuits [26] . This motivates us to consider a new

verification flow. The core idea is to convert convential circuits into reversible ones and

perform the verification tasks in the reversible domain. In this way, the efficiency of the

reversible equivalence checking flow proposed in this work can be further exploited. The

conventional-to-reversible mapping may also be inefficient, from an optimization standpoint,

but the benefits demonstrated so far are large enough to absorbe such inefficiency and possibly

leave room for a relevant improvement.

The main issue here is defining a robust and trustable conventional-to-reversible mapping

technique. In this context, existing conventional-to-reversible mapping techniques [26] do

not natively fit the requirements as they are intrinsically developed for logic optimization

purposes. Our future research efforts are focused on the development of such reversible

conversion method starting from arbitrary combinational logic circuits.

Provided that, traditional verification tasks will take full advantage of the reversible computing

149

Chapter 6. Improvements to the Equivalence Checking of Reversible Circuits

paradigm opening new exciting research directions.

6.5.2 Easy Exploitation of Parallelism

The proposed equivalence checking method can be further improved by exploiting concurrent

execution. To speed-up SAT solvers, researchers are studying parallel and concurrent exe-

cution (e.g., [27]). This is motivated by the fact that, nowadays, multi-cores are wide-spread

and computing resources are inexpensive. However, to fully exploit the potential offered by

parallelization, also the respective SAT problems must be formalized in a parallel fashion. This

is usually not obvious for the established equivalence checking solutions proposed in the past.

In contrast, a parallel consideration is simple for the solution proposed in this work. Indeed,

the formulation described in Section 6.3 can easily be split for each circuit line. By this, the

overall equivalence checking problem is decomposed into m separate instances (with m being

the number of circuit lines). These instances are smaller and can be solved independently

from each other. As soon as one of the instances is found satisfiable, non-equivalence has

been proven. Overall, this does not only allow for easier instances to be separately solved,

but also enables the full exploitation of multiple-cores – something which is much harder to

accomplish for almost all (conventional) verification schemes available thus far.

6.6 Summary

Reversible circuits are of great interest to various fields, including cryptography, coding the-

ory, communication, computer graphics, quantum computing, and many others. Checking

the combinational equivalence of two reversible circuits is an important but difficult (coNP-

complete) problem. In this chapter, we presented a new approach for solving this problem

significantly faster than the state-of-the-art. The proposed methodology explicitly exploited

the inherent properties of reversible circuits, namely the bi-directional execution as well as

their XOR-richness. This eventually enabled speed-ups of more than one order of magnitude

on average. While this represents a substantial improvement for the verification of circuit de-

scriptions aimed for reversible computation, it also offers promising potential to be exploited

in the verification of conventional designs.

150

Bibliography

[1] D. Kamalika, I. Sengupta. Applications of Reversible Logic in Cryptography and Coding

Theory, Proc. 26th Intl. Conf. on VLSI Design. 2013.

[2] K. Czarnecki, et al., Bidirectional transformations: A cross-discipline perspective, Theory

and Practice of Model Transformations. Springer Berlin Heidelberg, 2009. 260-283.

[3] R. Wille, R. Drechsler, C. Oswald, A. Garcia-Ortiz, Automatic Design of Low-Power Encoders

Using Reversible Circuit Synthesis In Design, Automation and Test in Europe (DATE), pg:

1036-1041, 2012.

[4] S. Lee, Sunil, C.Dong Yoo, T. Kalker, Reversible image watermarking based on integer-to-

integer wavelet transform, IEEE Transactions on Information Forensics and Security, 2.3

(2007): 321-330.

[5] M. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge

university press, 2010.

[6] R. Wille, R. Drechsler, Towards a Design Flow for Reversible Logic, Springer, 2010.

[7] R. Drechsler, R. Wille, From Truth Tables to Programming Languages: Progress in the Design

of Reversible Circuits, International Symposium on Multiple-Valued Logic, pages 78-85,

2011.

[8] M. Saeedi, I. L. Markov, Synthesis and optimization of reversible circuits – a survey, ACM

Computing Surveys (CSUR) 45.2 (2013): 21.

[9] R. Wille, et al., Equivalence checking of reversible circuits, 39th IEEE International Sympo-

sium on Multiple-Valued Logic, 2009.

[10] S.P. Jordan, Strong equivalence of reversible circuits is coNP-complete, Quantum Informa-

tion & Computation 14.15-16 (2014): 1302-1307.

[11] CryptoMiniSAT tool - http://www.msoos.org/cryptominisat2/

[12] M. Soos, Enhanced Gaussian Elimination in DPLL-based SAT Solvers POS@ SAT. 2010.

151

Bibliography

[13] T. Toffoli, Reversible computing, in Automata, Languages and Pro- gramming, W. de

Bakker and J. van Leeuwen, Eds. Springer, 1980, p. 632, technical Memo MIT/LCS/TM-151,

MIT Lab. for Comput. Sci.

[14] E. F. Fredkin, T. Toffoli, Conservative logic, International Journal of Theoretical Physics,

vol. 21, no. 3/4, pp. 219–253, 1982.

[15] A. Peres, Reversible logic and quantum computers, Phys. Rev. A, no. 32, pp. 3266–3276,

1985.

[16] A. Biere, M. Heule, Hans van Maaren, eds. Handbook of satisfiability, Vol. 185. ios press,

2009.

[17] M, Davis, G. Logemann, D. Loveland, A Machine Program for Theorem Proving, in Com-

munications of the ACM, vol. 5, nº 7, 1962, pp. 394–397.

[18] S. Yamashita, I. L. Markov. Fast equivalence-checking for quantum circuits, Proceedings

of the 2010 IEEE/ACM International Symposium on Nanoscale Architectures. IEEE Press,

2010.

[19] M. Soos, K. Nohl, C. Castelluccia, Extending SAT solvers to cryptographic problems, Theory

and Applications of Satisfiability Testing-SAT 2009. Springer Berlin Heidelberg, 2009. 244-

257.

[20] D. Brand. Verification of large synthesized designs, Proc. ICCAD ’93, pp. 534 -537.

[21] G. S. Tseitin, On the complexity of derivation in propositional calculus, Automation of

reasoning. Springer Berlin Heidelberg, 1983. 466-483.

[22] Reversible CEC flow and experiments of this work: http://lsi.epfl.ch/RCEC

[23] R. Wille, D. Große, L. Teuber, G.W. Dueck, R. Drechsler, RevLib: An Online Resource for

Reversible Functions and Reversible Circuits, International Symposium on Multiple-Valued

Logic, pages 220-225, 2008. RevLib is available at http://www.revlib.org.

[24] MiniSat: open-source SAT solver http://minisat.se

[25] D.M. Miller, R. Wille, G.W. Dueck, Synthesizing Reversible Circuits for Irreversible Func-

tions, In Euromicro Conference on Digital System Design (DSD), pages 749-756, 2009.

[26] R. Wille, O. Keszöcze, R. Drechsler. Determining the Minimal Number of Lines for Large

Reversible Circuits. In Design, Automation and Test in Europe (DATE), 2011.

[27] Y. Hamadi, et al., ManySAT: a parallel SAT solver, Journal on Satisfiability, Boolean Model-

ing and Computation 6 (2008): 245-262.

152

7 Conclusions

In this thesis, we investigated new data structures and algorithms for Electronic Design Au-

tomation (EDA) logic tools, in particular for logic synthesis and verification. Motivated by (i)

the ever-increasing difficulty of keeping pace with design goals in modern CMOS technology

and (ii) the rise of enhanced-functionality nanotechnologies, we studied novel logic connec-

tives and Boolean algebra extending the capabilities of synthesis and verification techniques.

The results presented in this thesis give an affirmative answer to the question “Can EDA logic

tools produce better results if based on new, different, logic primitives?”.

7.1 Overview of Thesis Contributions

The overview proceeds following the order of the presentation.

• We improved the efficiency of logic representation, manipulation and optimization

tasks by taking advantage of majority and biconditional logic expressiveness. Major-

ity logic is a powerful generalization of standard AND/OR logic. Biconditional logic

intrinsically realizes an equality check over Boolean variables. Majority and bicon-

ditional connectives together form the basis for arithmetic logic. We developed syn-

thesis techniques exploiting majority and biconditional logic properties [1–3]. Our

tools showed strong results as compared to state-of-the-art academic and commer-

cial synthesis tools. Indeed, we produced the best (public) results for many circuits

in combinational benchmark suites [4]. On top of the enhanced synthesis power, our

methods are also the natural and native logic abstraction for circuit design in emerging

nanotechnologies, where majority and biconditional logic are the primitive gates for

physical implementation [5].

• We accelerated formal methods by (i) studying core properties of logic circuits and

(ii) developing new frameworks for logic reasoning engines. Thanks to the majority

logic representation theory, we discovered non-trivial dualities in the property checking

problem for logic circuits [6]. Our findings enabled sensible speed-ups in solving circuit

153

Chapter 7. Conclusions

satisfiability. With the aim of exploiting further the expressive power of majority logic,

we developed an alternative Boolean satisfiability framework based on majority func-

tions [7]. We proved that the general problem is still intractable but we showed practical

restrictions that instead can be solved efficiently. Finally, we focused on the important

field of reversible logic and we proposed a new approach to solve the equivalence check-

ing problem [8]. We defined a new type of reversible miter over which the equivalence

check test is performed. Also, we represented the core checking problem in terms of

biconditional logic. This enabled a much more compact formulation of the problem

as compared to the state-of-the-art. Indeed, it translated into more than one order of

magnitude speed up for the overall application, as compared to the state-of-the-art

solution.

7.2 Open Problems

We give some directions for future research.

• Theoretical study on the size of biconditional binary decision diagrams for notable

functions. Multiplier and hidden-weight bit functions are represented by exponential

sized BDDs, no matter what variable order is employed. It would be interesting to study

their size in BBDD representation and prove the gap, if any, with respect to other DD

representations.

• Majority-biconditional logic manipulation. A single data structure merging bicon-

ditional and majority logic together can improve even further the efficiency of logic

synthesis. Indeed, majority and biconditional share interesting properties, e.g., the

propagation of biconditional operators into majority operators and viceversa. Moreover,

majority and biconditional together are the natural basis for arithmetic logic. It would

be interesting to study the properties of majority-biconditional logic manipulation,

especially in light of its application to arithmetic function synthesis.

• Exact majority logic synthesis. In contrast to heuristic methods, exact synthesis meth-

ods determine a minimal circuit implementation in terms of either number of gates or

number of levels. State-of-the-art exact synthesis methods, for AND/OR logic circuits,

deal with functions up to 5 variables by means of smart enumeration techniques. It

would be interesting to exploit Boolean properties of majority logic, e.g., orthogonal

errors masking, to design an exact depth optimization method for MIGs which pushes

further the exact synthesis complexity frontier.

• MNF-SAT solver. A practical MNF-SAT solver has yet to be developed together with

ad-hoc deduce and resolve techniques for majority logic.

• Reversible equivalence checking for conventional designs. Conventional logic can

also be represented in terms of reversible logic by using extra I/Os and extra gates. Previ-

154

7.3. Concluding Remarks

ous studies explored this direction in order to (ideally) map any combinational design

into reversible circuits. In this scenario, it would be interesting to apply the reversible

equivalence checking paradigm to conventional designs post-converted into reversible

circuits. If the conventional-to-reversible mapping is efficient enough, the speedup

observed in Chapter 6 is likely to appear also for the verification of conventional designs.

7.3 Concluding Remarks

In this thesis, we approached fundamental EDA problems from a different, unconventional,

perspective. Our synthesis and verification results demonstrate the key role of rethinking EDA

solutions in overcoming technological limitations of present and future technologies.

In addition to new EDA studies, this thesis opens also other research paths. For example,

MIG logic manipulation can speed up Big Data processing via better mappings of (high-

performance) programming languages. Also, BBDDs can model natively modulo (encrypting)

operations in Data Security applications making secure computation more efficient. We

believe the material presented in this thesis will prove useful in these and many other fields of

computer science.

155

Bibliography

[1] L. Amaru, P.-E. Gaillardon, G. De Micheli, Majority Inverter Graphs, Proc. DAC, 2014.

[2] L. Amaru, P.-E. Gaillardon, G. De Micheli, Boolean Optimization in Majority Inverter

Graphs, Proc. DAC, 2015.

[3] L. Amarù, P.-E. Gaillardon, G. De Micheli, Biconditional Binary Decision Diagrams: A Novel

Canonical Representation Form, IEEE Journal on Emerging and Selected Topics in Circuits

and Systems (JETCAS), 2014.

[4] The EPFL Combinational Benchmark Suite – http://lsi.epfl.ch/benchmarks

[5] L. Amarù, P.-E. Gaillardon, S. Mitra, G. De Micheli, New Logic Synthesis as Nanotechnology

Enabler, Proceedings of the IEEE, 2015.

[6] L. Amarù, P.-E. Gaillardon, A. Mishchenko, M. Ciesielski, G. De Micheli, Exploiting Circuit

Duality to Speed Up SAT, IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

Montpellier, FR, 2015.

[7] L. Amarù, P.-E. Gaillardon, G. De Micheli, Majority Logic Representation and Satisfiability,

23rd International Workshop on Logic & Synthesis (IWLS), San Francisco, CA, USA, 2014.

[8] L. Amaru, P.-E. Gaillardon, R. Wille, G. De Micheli, Exploiting Inherent Characteristics of

Reversible Circuits for Faster Combinational Equivalence Checking, submitted to DATE’16.

157

Curriculum Vitæ Luca Gaetano Amarú

Luca Gaetano Amarú

935 Pomeroy Avenue
95051 – Santa Clara
California
USA
e-mail : luca.amaru@synopsys.com

Via Bracchio 42
28802 – Mergozzo
Verbania
Italy
e-mail : luca.amaru.87@gmail.com

Personal informations:

• Date of birth: 03-09-1987.

• Italian citizen.

• O-1 U.S. work visa - individuals with an extraordinary ability in sciences.

• Marital status: single.

Work Experience:

• Senior II, R&D Engineer, Synopsys Inc., 2016 –.

– Research and Development of EDA tools.
– Core Optimization Group.
– Location: 690 East Middlefield Road, Mountain View, CA.

Education:

• Ph.D. in Computer, Communication and Information Sciences, 2011-2015.

– Institute: Ecole Polytechnique Fédérale de Lausanne (CH).
– Thesis title: New Data Structures and Algorithms for Logic Synthesis and Verification.
– Advisor: Prof. Giovanni De Micheli.
– Co-advisor: Prof. Andreas Peter Burg.

• Visiting researcher, March 2014 - July 2014.

– Institute: Stanford University, Palo Alto, CA, USA.

• Master of Science in Electronic Engineering, 2009-2011.

– Final mark: 110 con Lode/110 (full marks with honors).
– Institute: Politecnico di Torino and Politecnico di Milano (IT).

• Alta Scuola Politecnica, VI cycle, 2009-2011.

– Institute: Politecnico di Torino and Politecnico di Milano (IT).

• Bachelor degree in Electronic Engineering, 2006-2009.

– Final mark: 110 con Lode/110 (full marks with honors).
– Institute: Politecnico di Torino (IT).

Updated at: 26 novembre 2015 pag. 1

159

Curriculum Vitæ Luca Gaetano Amarú

Research Interests:

• Electronic Design Automation: Logic representation forms; Logic optimization; Technology
mapping; Logic synthesis; Verification; Formal equivalence checking; Testing; Floorplanning;
Placement & Routing.

• Beyond CMOS Technologies: Controllable polarity FETs; Silicon nanowires; Carbon nano-
tubes; Graphene, NEMS, QCAs.

• Information Theory: Circuit Complexity, Data compression; Coding theory; Cryptography;
Algorithms and Complexity.

Publications (56 elements):

Book chapters:

B1 : P.-E. Gaillardon, J. Zhang, L. Amaru, G. De Micheli, ”Multiple-Independent-Gate Nano-
wire Transistors: From Technology to Advanced SoC Design,” Nano-CMOS and Post-CMOS
Electronics: Devices and Modeling (Eds.: S. P. Mohanty, A. Srivastava), IET, 2015, In press.

Journal Papers:

J2 : L. Amaru, P.-E. Gaillardon, A. Chattopadhyay, G. De Micheli, A Sound and Complete
Axiomatization of Majority-n Logic, accepted in IEEE Transactions on Computers (TC), 2015.

J3 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Majority-Inverter Graph: A New Paradigm for
Logic Optimization”, accepted in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2015.

J4 : L. Amaru, P.-E. Gaillardon, S. Mitra, G. De Micheli, New Logic Synthesis as Nanotechnology
Enabler, Proceedings of the IEEE, Vol. 103, Issue 11, 2015.

J5 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Biconditional Binary Decision Diagrams: A Novel
Canonical Representation Form”, IEEE Journal on Emerging and Selected Topics in Circuits
and Systems (JETCAS), Vol. 4, Issue 4, 2014.

J6 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”A Circuit Synthesis Flow for Controllable-Polarity
Transistors”, IEEE Transactions on Nanotechnology, Vol. 13, Issue 6, 2014.

J7 : L. Amaru, P.-E. Gaillardon, J.Zhang, G. De Micheli, ”Power-Gated Differential Logic Style
Based on Double-Gate Controllable Polarity Transistors”, IEEE Transactions on Circuits and
Systems II (TCAS-II), Vol. PP, Issue 99, pp. 1-5, Aug. 2013.

J8 : P.-E. Gaillardon, L. Amaru, S. Bobba, M. De Marchi, D. Sacchetto, Y. Leblebici, G. De
Micheli,, ”Nanosystems: Technology and Design”, Invited, Philosophical Transactions of the
Royal Society of London. A, 2013.

J9 : L. Amaru, M. Martina, G. Masera, ”High Speed Architectures for Finding the First two Maxi-
mum/Minimum Values”, IEEE Transactions on Very Large Scale Integration (TVLSI) Systems,
Vol. 20, Issue 12, pp. 2342-2346, Dec. 2012.

Conference Papers:

C10 : P.-E. Gaillardon, M. Hasan, A. Saha, L. Amaru, R. Walker, B. Sensale-Rodriguez, Digital,
Analog and RF Design Opportunities of Three-Independent-Gate Transistors, Invited, IEEE
International Symposium on Circuits and Systems (ISCAS) Montreal, Canada, 2016.

C11 : L. Amaru, P.-E. Gaillardon, R. Wille, G. De Micheli, ”Exploiting Inherent Characteristic of
Reversible Circuits for Faster Combinational Equivalence Checking,” Design, Automation & Test
in Europe Conference (DATE), Dresden, Germany, 2016.

C12 : M. Soeken, L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Optimizing Majority-Inverter Graphs
with Functional Hashing ,” Design, Automation & Test in Europe Conference (DATE), Dresden,
Germany, 2016.

Updated at: 26 novembre 2015 pag. 2

160

Curriculum Vitæ Luca Gaetano Amarú

C13 : P.-E. Gaillardon, L. Amaru A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, G. De Mi-
cheli, ”The PLiM Computer: Computing within a Resistive Memory Array,” Invited, Design,
Automation & Test in Europe Conference (DATE), Dresden, Germany, 2016.

C14 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Majority-based Synthesis for Nanotechnologies”,
invited, Asia and South Pacific Design Automation Conference (ASP-DAC 2016), Macao, China,
2016.

C15 : I. P. Radu, O. Zografos, A. Vaysset, F. Ciubotaru, J. Yan, J. Swerts, D. Radisic, B. Briggs, B.
Soree, M. Manfrini, M. Ercken, C. Wilson, P. Raghavan, C. Adelmann, A. Thean, L. Amaru, P.-
E. Gaillardon, G. De Micheli, D. E. Nikonov, S. Manipatruni, I. A. Young, ”Spintronic majority
gates”, IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015.

C16 : W. Haaswijk, L. Amaru, P.-E. Gaillardon, G. De Micheli, Unlocking NEM Relays Design
Opportunities with Biconditional Binary Decision Diagrams”, IEEE/ACM International Sym-
posium on Nanoscale Architectures (NANOARCH), Boston, MA, USA, 2015.

C17 : O. Zografos, B. Soree, A. Vaysset, S. Cosemans, L. Amaru, P.-E. Gaillardon, G. De Micheli, C.
Adelmann, D. Wouters, R. Lauwereins, S. Sayan, P. Raghavan, D. Verkest, I. Radu, A. Thean,
”Design and Benchmarking of Hybrid CMOS-Spin Wave Device Circuits Compared to 10nm
CMOS”, IEEE Conference on Nanotechnology (IEEE-NANO), Rome, Italy, 2015.

C18 : L. Amaru, P.-E. Gaillardon, A. Mishchenko, M. Ciesielski, G. De Micheli, ”Exploiting Circuit
Duality to Speed Up SAT”, IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
Montpellier, FR, 2015.

C19 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Boolean Logic Optimization in Majority-Inverter
Graphs”, Design Automation Conference (DAC), San Francisco, CA, USA, 2015.

C20 : P.-E. Gaillardon, L. Amaru, A. Siemon, E. Linn, A. Chattopadhyay, G. De Micheli, ”Computing
Secrets on a Resistive Memory Array”, (WIP poster) Design Automation Conference (DAC),
San Francisco, CA, USA, 2015.

C21 :O. Zografos, B. Soree, A. Vaysset, S. Cosemans, L. Amaru, P.-E. Gaillardon, G. De Micheli, C.
Adelmann, D. Wouters, R. Lauwereins, S. Sayan, P. Raghavan, D. Verkest, I. Radu, A. Thean,
”Design and Benchmarking of Hybrid CMOS-Spin Wave Device Circuits Compared to 10nm
CMOS”, (WIP poster) Design Automation Conference (DAC), San Francisco, CA, USA, 2015.

C22 S. Miryala, V. Tenace, A. Calimera, E. Macii, M. Poncino, L. Amaru, P.-E. Gaillardon, G. De
Micheli, ”Exploiting the Expressive Power of Graphene Reconfigurable Gates via Post-Synthesis
Optimization”, Great Lake Symposium on VLSI (GLSVSLI), Pittsburgh, PA, USA, 2015.

C23 : A. Chattopadhyay, A. Littarru, L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Reversible Lo-
gic Synthesis via Biconditional Binary Decision Diagrams”, IEEE International Symposium on
Multiple-Valued Logic (ISMVL 2015), Waterloo, Canada, 2015.

C24 : L. Amaru, A. Petkovska, P.-E. Gaillardon, D. Novo, P. Ienne, G. De Micheli, ”Majority-
Inverter Graph for FPGA Synthesis”, Workshop on Synthesis And System Integration of Mixed
Information technologies (SASIMI 2015), Yilan, Taiwan, 2015.

C25 : J. Broc, L. Amaru, J. J. Murillo, P.-E. Gaillardon, K. Palem, G. De Micheli, ”A Fast Pruning
Technique for Low-Power Inexact Circuit Design”, IEEE Latin American Symposium on Circuits
and Systems (LASCAS 2015), Montevideo, Uruguay, 2015.

C26 : P.-E. Gaillardon, L. Amaru, G. Kim, X. Tang, G. De Micheli, ”Towards More Efficient Logic
Blocks by Exploiting Biconditional Expansion”, (Abstract) International Symposium on Field-
Programmable Gate Arrays (FPGA), Monterey, CA, USA, 2015.

C27 : L. Amaru, G. Hills, P.-E. Gaillardon, S. Mitra, G. De Micheli, ”Multiple Independent Gate
FETs: How Many Gates Do We Need?”, Asia and South Pacific Design Automation Conference
(ASP-DAC 2015), Chiba/Tokyo, Japan, 2015.

C28 : O. Zografos, L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Majority Logic Synthesis for Spin
Wave Technology”, Euromicro Conference on Digital System Design (DSD 2014), Verona, Italy,
2014.

Updated at: 26 novembre 2015 pag. 3

161

Curriculum Vitæ Luca Gaetano Amarú

C29 : O. Zografos, P. Raghavan, L. Amaru, B. Soree, R. Lauwereins, I. Radu, D. Verkest, A.
Thean, ”System-level Assesment and Area Evaluation of Spin Wave Logic Circuits”, IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH 2014), Paris, France, 2014.

C30 : P.-E. Gaillardon, L. Amaru, G. De Micheli ”Unlocking Controllable-Polarity Transistors Op-
portunities by Exclusive-OR and Majority Logic Synthesis”, IEEE Computer Society Annual
Symposium on VLSI (ISLVSI), Tampa, Florida, 2014

C31 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Majority-Inverter Graph: A Novel Data-Structure
and Algorithms for Efficient Logic Optimization”, Design Automation Conference (DAC), San
Francisco, CA, USA, 2014.

C32 : L. Amaru, A. B. Stimming, P.-E. Gaillardon, A. Burg, G. De Micheli, ”Restructuring of
Arithmetic Circuits with Biconditional Binary Decision Diagrams”, Design, Automation and
Test in Europe (DATE), Dresden, Germany, 2014.

C33 : P.-E. Gaillardon, L. Amaru, J. Zhang, G. De Micheli, ”Advanced System on a Chip Design
Based on Controllable-Polarity FETs”, Design, Automation and Test in Europe Conference
(DATE), Dresden, Germany, 2014.

C34 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”An Efficient Manipulation Package for Bicondi-
tional Binary Decision Diagrams”, Design, Automation and Test in Europe (DATE), Dresden,
Germany, 2014.

C35 : P.-E. Gaillardon, L. Amaru, G. De Micheli, ”A New Basic Logic Structure for Data-Path Com-
putation”, International Symposium on Field-Programmable Gate Arrays (FPGA), Monterey,
CA, USA, 2014.

C36 : L. Amaru, P.-E. Gaillardon, A. Burg, G. De Micheli, ”Data Compression via Logic Synthesis”,
Asia and South Pacific Design Automation Conference (ASP-DAC 2014), Singapore, 2014

C37 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Efficient Arithmetic Logic Gates Using Double-
Gate Silicon Nanowire FETs”, Invited, 11th IEEE NEWCAS Conference (NEWCAS 2013),
Paris, France, 2013

C38 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”BDS-MAJ: A BDD-based Logic Synthesis Tool
Exploiting Majority Logic Decomposition”, 50th Design Automation Conference (DAC 2013),
Austin, Texas (USA), 2013.

C39 : P.-E. Gaillardon, M. De Marchi, L. Amaru, S. Bobba, D. Sacchetto, Y. Leblebici, G. De
Micheli, ”Towards Structured ASICs Using Polarity-Tunable SiNW Transistors”, Invited, 50th
Design Automation Conference (DAC 2013), Austin, Texas (USA), 2013.

C40 : O. Turkyilmaz, L. Amaru, F. Clermidy, P.-E. Gaillardon, G. De Micheli, ”Self-Checking Ripple-
Carry Adder with Ambipolar Silicon Nanowire FET”, IEEE International Symposium on Circuits
and Systems (ISCAS 2013), Beijing, China, 2013.

C41 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Biconditional BDD: A Novel Canonical BDD
for Logic Synthesis targeting XOR-rich Functions”, Design, Automation & Test in Europe
Conference (DATE 2013), Grenoble, France, 2013.

C42 : P.-E. Gaillardon, L. Amaru, S. Bobba, M. De Marchi, D. Sacchetto, Y. Leblebici, G. De
Micheli, ”Vertically Stacked Double Gate Nanowires FETs with Controllable Polarity: From
Devices to Regular ASICs”, Invited, Design, Automation & Test in Europe Conference (DATE
2013), Grenoble, France, 2013

C43 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”MIXSyn: An Efficient Logic Synthesis Methodo-
logy for Mixed XOR-AND/OR Dominated Circuits”, Asia and South Pacific Design Automation
Conference (ASP-DAC 2013), Yokohama, Japan, 2013.

C44 : A. Mishra, A. Raymond, L. Amaru, G. Sarkis, C. Leroux, P. Meinerzhagen, A. Burg, W.
Gross, ”A Successive Cancellation Decoder ASIC for a 1024-Bit Polar Code in 180nm CMOS”,
IEEE Asian Solid-State Circuits Conference (A-SSCC 2012), Kobe, Japan, 2012.

C45 : S. Frache, L. Amaru, M. Graziano, M. Zamboni, ”Nanofabric power analysis: Biosequen-
ce alignment case study”, IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH 2011), San Diego, California, 2011.

Updated at: 26 novembre 2015 pag. 4

162

Curriculum Vitæ Luca Gaetano Amarú

C46 : M. Vacca, D. Vighetti, M. Mascarino, L. Amaru, M. Graziano, M. Zamboni, ”Magnetic
QCA Majority Voter Feasibility Analysis”, Conference on PhD Research in Microelectronics
and Electronics (PRIME 2011), Trento, Italy, 2011 .

Workshops Papers:

W47 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”The EPFL Combinational Benchmark Suite,”
24th International Workshop on Logic & Synthesis (IWLS), Mountain View, CA, USA, 2015.

W48 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Majority Logic Representation and Satisfiability”,
23rd International Workshop on Logic & Synthesis (IWLS), San Francisco, CA, USA, 2014.

W49 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Biconditional BDD: A Novel BDD Enabling
Efficient Direct Mapping of DG Controllable Polarity FETs”, Functionality-Enhanced Devices
Workshop (FED), Lausanne, Switzerland, 2013.

W50 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Logic Synthesis for Emerging Technologies”,
FETCH conference 2013, Leysin, Switzerland, 2013.

Patents:

P51 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Boolean Logic Optimization in Majority-Inverter
Graphs”, US 14/668,313, 1 June 2015.

P52 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”A Method and a System for Checking Tautology
or Contradiction in a Logic Circuit, US 62/049,435, 12 September 2014.

P53 : P.-E. Gaillardon, L. Amaru, G. Kim, X. Tang, G. De Micheli, ”Towards More Efficient Logic
Blocks by Exploiting Biconditional Expansion”, PCT IB2014/064659, 19 September 2014.

P54 : L. Amaru, P.-E. Gaillardon, G. De Micheli, ”Majority Logic Synthesis”, PCT IB2014/059133,
20 February 2014.

P55 : P.-E. Gaillardon, L. Amaru, G. De Micheli, ”A New Basic Logic Structure for Data-path
Computation”, PCT IB2014/059123, 20 February 2014.

P56 : L. Amaru, P.-E. Gaillardon, G. De Micheli, Controllable Polarity FET based Arithmetic and
Differential Logic”, EP 12179928.2, 9 August 2012, US 13/960,964 11, 7 August 2013, US 2014-
0043060 A1, 13 February 2014.

Invited Talks (11 elements):

• L. Amaru, ”The Majority Logic Optimization Paradigm”, EPFL Workshop on Logic Synthesis,
December 2015, Lausanne, Switzerland.

• L. Amaru, ”Synthesis and Verification of Arithmetic Circuits”, Tutorial, International Confe-
rence on Computer Design (ICCD’15), October 2015, New York City, New York, USA.

• L. Amaru, ”Exploiting New Logic Primitives: Opportunities for Synthesis and Verification”,
Italian Annual Seminar Day on Logic Synthesis, June 2015, Rome, Italy.

• L. Amaru, ”Exploiting New Logic Primitives: Opportunities for Synthesis and Verification”, UC
Berkeley (Prof. R. Brayton), June 2015, Berkeley, California, USA.

• L. Amaru, ”Exploiting New Logic Primitives: Opportunities for Synthesis and Verification”,
Synopsys Inc., June 2015, Mountain View, California, USA.

• L. Amaru, ”Electronic Design Automation for Nanotechnologies”, Tutorial, Asia and South
Pacific Design Automation Conference (ASPDAC’15), January 2015, Tokyo, Japan.

• L. Amaru, ”Majority and Biconditional Logic: Extending the Capabilities of Modern Logic
Synthesis”, International Workshop on Emerging Technologies of Synthesis and Optimization,
December 2014, Shanghai, China.

• L. Amaru, ”Majority and Biconditional Logic: Extending the Capabilities of Modern Logic
Synthesis”, Italian Annual Seminar Day on Logic Synthesis, August 2014, Verona, Italy.

Updated at: 26 novembre 2015 pag. 5

163

Curriculum Vitæ Luca Gaetano Amarú

• L. Amaru, ”Majority and Biconditional Logic: Extending the Capabilities of Modern Logic
Synthesis”, UMIC Center (Prof. A. Chattopadhyay), July 2014, RWTH, Aachen, Germany.

• L. Amaru, ”Majority and Biconditional Logic: Extending the Capabilities of Modern Logic
Synthesis”, UC Berkeley (Prof. R. Brayton), May 2014, Berkeley, California, USA.

• L. Amaru, ”Majority and Biconditional Logic: Extending the Capabilities of Modern Logic
Synthesis”, Synopsys Inc., May 2014, Mountain View, California, USA.

Software Packages (6 elements):

• Biconditional Binary Decision Diagrams Software Package, Software package to manipulate Boo-
lean functions using a novel type of canonical decision diagrams. Available at http://lsi.epfl.ch/BBDD.

• MIGFET Synthesis Package, Software package to perform synthesis and optimization targeting
Multiple-Independent Gate Field Effect Transistors with enhanced logic functionality. Available
at http://lsi.epfl.ch/MIGFET.

• Majority-Inverter Graph Synthesis, A large set of logic benchmarks optimized via our Majority-
Inverter Graph (MIG) synthesis tool (MIGhty). Other MIG synthesis samples and dedicated
runs are available under email request (for academic, non-commercial purposes). Available at
http://lsi.epfl.ch/MIG.

• The EPFL Combinational Benchmark Suite consists of 23 natively combinational benchmarks
designed to challenge modern logic optimization tools. It is divided into arithmetic, random-
control and more-than-ten-million gates parts. Available at http://lsi.epfl.ch/benchmarks.

• The Dual SAT package, Experimental setup and benchmarks used to speedup SAT solvers. It
exploits non-trivial circuit dualities. Available at http://lsi.epfl.ch/DUALSAT.

• Reversible Combinational Equivalence Checking, Setup and benchmarks used for reversible CEC
experiments. Available at http://lsi.epfl.ch/RCEC.

Awards and Honors

• O-1 U.S. work visa - individuals with an extraordinary ability in sciences.

• EPFL award for outstanding contributions in research, 2015.

• Top 10 popular (Jan.-Feb. 2015) IEEE JETCAS article.

• Best thesis presentation award at FETCH 2013 conference.

• Best paper award nomination at ASP-DAC 2013 conference.

• EPFL, I&C School PhD fellowship, 2011.

• Full tuition fee waiver scholarship as part of the top M.Sc. (all fields) students at PoliTO and
PoliMI, 2009.

Teaching Assistantships

• Assistant Lecturer, Design Technologies for Integrated Systems, M.Sc. course, Fall 2015, EPFL.

• Design Technologies for Integrated Systems, M.Sc. course, Fall 2014, EPFL.

• Design Technologies for Integrated Systems, M.Sc. course, Fall 2013, EPFL.

• Design Technologies for Integrated Systems, M.Sc. course, Spring 2013, ALaRI.

• Mathematical Analysis III, B.Sc. course, Fall 2012, EPFL.

Professional Service

• Logic synthesis session chair at DSD’14 conference.

• Program Committee for the Special Session On Emerging Technologies and Circuit Synthesis,
18th Euromicro Conference on Digital System Design.

Updated at: 26 novembre 2015 pag. 6

164

Curriculum Vitæ Luca Gaetano Amarú

• Program Committee for the Special Session On Emerging Technologies and Circuit Synthesis,
17th Euromicro Conference on Digital System Design.

• Reviewer for the journal IEEE Transactions on Nanotechnology.

• Reviewer for the journal IEEE Transactions on Computer-Aided Design for Integrated Circuits.

• Reviewer for the journal IEEE Transactions on Very Large Scale Integration Systems.

• Reviewer for the journal IEEE Transactions on Circuits and Systems-Part II.

• Reviewer for the Journal of Circuits, Systems, and Computers.

• Reviewer for the Elsevier Journal on Microprocessors and Microsystems.

• Reviewer for the IEEE International Conference on Circuits and Systems (ISCAS), 2016.

• Reviewer for the Design, Automation and Test in Europe (DATE) conference, 2016.

• Member of the IEEE.

• Member of the ACM.

Languages

• Italian, first language.

• English, fluent.

• Spanish, receptive bilingual.

• French, good receptive knowledge and active command.

• German, elementary knowledge.

Other activities

• Mensa member, “The High IQ Society”.

Updated at: 26 novembre 2015 pag. 7

165

	Acknowledgements
	Abstract (English/Français/Italiano)
	List of figures
	List of tables
	Introduction
	Electronic Design Automation
	Modern EDA Tools and Their Logic Primitives
	Logic Synthesis
	Formal Methods

	Research Motivation
	Impact on Modern CMOS Technology
	Impact on Beyond CMOS Technologies

	Contributions and Position With Respect to Previous Work
	Thesis Organization

	Part 1: Logic Representation, Manipulation and Optimization
	Biconditional Logic
	Introduction
	Background and Motivation
	Binary Decision Diagrams
	Emerging Technologies

	Biconditional Binary Decision Diagrams
	Biconditional Expansion
	BBDD Structure and Ordering
	BBDD Reduction
	BBDD Complemented Edges
	BBDD Manipulation

	BBDD Representation: Theoretical and Experimental Results
	Theoretical Results
	Experimental Results

	BBDD-based Synthesis & Verification
	Logic Synthesis
	Formal Equivalence Checking
	Case Study: Design of an Iterative Product Code Decoder

	BBDDs as Native Design Abstraction for Nanotechnologies
	Reversible Logic
	NEMS

	Summary

	Majority Logic
	Introduction
	Background and Motivation
	Logic Representation
	Logic Optimization
	Notations and Definitions

	Majority-Inverter Graphs
	MIG Logic Representation
	MIG Boolean Algebra
	Inserting Safe Errors in MIG

	MIG Algebraic Optimization
	 Size-Oriented MIG Algebraic Optimization
	Depth-Oriented MIG Algebraic Optimization
	Switching Activity-Oriented MIG Algebraic Optimization

	MIG Boolean Optimization
	Identifying Advantageous Orthogonal Errors in MIGs
	Depth-Oriented MIG Boolean Optimization
	Size-Oriented MIG Boolean Optimization

	Experimental Results
	Methodology
	Optimization Case Study: Adders
	General Optimization Results
	ASIC Results
	FPGA Results

	MIGs as Native Design Abstraction for Nanotechnologies
	MIG-based Synthesis
	Spin-Wave Devices
	Resistive RAM

	Extension to MAJ-n Logic
	Generic MAJ-n/INV Axioms
	Soundness
	Completeness

	Summary

	Part 2: Logic Satisfiability and Equivalence Checking
	Exploiting Logic Properties to Speedup SAT
	Introduction
	Background and Motivation
	Notation
	Tautology Checking
	Motivation

	Properties of Logic Circuits
	From Tautology To Contradiction and Back
	Boolean SAT and Tautology/Contradiction Duality

	Experimental Results
	Verification of SAT Solving Advantage on the Dual Circuit
	Results for Concurrent Regular/Dual SAT Execution

	Summary

	Majority Normal Form Representation and Satisfiability
	Introduction
	Background and Motivation
	Notations and Definitions
	Two-level Logic Representation
	Satisfiability

	Two-Level Majority Representation Form
	Majority Normal Form Definition and Properties
	Representation Examples with DNF, CNF and MNF

	Majority Satisfiability
	Complexity of Unrestricted MNF-SAT
	Complexity of Some Restricted MNF-SAT

	Algorithm to Solve MNF-SAT
	One-level Majority-SAT
	Decide Strategy for MNF-SAT

	Discussion and Future Work
	Summary

	Improvements to the Equivalence Checking of Reversible Circuits
	Introduction
	Background
	Reversible Circuits
	Boolean Satisfiability

	Mapping Combinational Equivalence Checking for Reversible Circuits to XOR-CNF SAT
	Creating an Identity Miter
	XOR-CNF Formulation

	Experimental Results
	Methodology and Setup
	Results

	Discussion
	Application to the Verification of Conventional Circuits
	Easy Exploitation of Parallelism

	Summary

	Conclusions
	Overview of Thesis Contributions
	Open Problems
	Concluding Remarks

	Curriculum Vitae

