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Abstract

Since 1965, the size of transistors has been halved and their speed of operation has been
doubled, every 18 to 24 months, a phenomenon known as Moore’s Law. This has allowed
rapid increases in the amount of circuitry that can be included on a single die. However, as
the availability of hardware real estate escalates at an exponential rate, the complexity
involved in creating circuitry that utilizes that real estate grows at an exponential, or higher,
rate. Component-based design methodologies promise to reduce the complexity of this task
and the time required to design integrated circuits by raising the level of abstraction at
which circuitry is specified, synthesized, verified, or physically implemented. This thesis
develops algorithms for synthesizing integrated circuits by mapping high-level
specifications onto existing components. To perform this task, word-level polynomial
representations are introduced as a mechanism for canonically and compactly representing
the functionality of complex components. Polynomial representations can be applied to a
broad range of circuits, including combinational, sequential, and datapath dominated
circuits. They provide the basis for efficiently comparing the functionality of a circuit
specification and a complex component. Once a set of existing components is determined to
be an appropriate implementation of a specification, interfaces between these components
must be designed. This thesis also presents an algorithm for automatically deriving an HDL
model of an interface between two or more components given an HDL model of those
components. The combination of polynomial representations and interface synthesis
algorithms provides the basis for a component-based design methodology.
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1Chapter 1 Introduction

Chapter 1
Introduction

1.1 Design of Hardware Systems

Modern general-purpose and application-specific hardware is restricted practically by

two factors: (1) the amount of circuitry that can physically be placed on a printed circuit

board or silicon die and (2) the amount of time required to determine and implement these

structures. Since 1965, the semiconductor industry has, following Moore’s Law, reduced

the size of transistors by a factor of two, and doubled their speed of operation, every 18 to

24 months. This has allowed rapid increases in the amount of circuitry that can be included

on a single die. Furthermore, this trend is expected to continue through the year 2012

[SIA97]. However, as the availability of hardware real estate escalates at an exponential

rate, the complexity involved in creating circuitry that utilizes that real estate also grows at

an exponential, or higher, rate. As a result, during periods in which design methodologies

remain constant, the time required to determine and implement integrated circuits has

grown quickly. The ratio between the availability of silicon real estate and the amount of

circuitry that can be developed for that real estate in a single year is termed thedesign gap.
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The current dominant design methodology for general-purpose and application-specific

systems has existed for nearly ten years, and a corresponding design gap has developed

(Figure 1). As a result, systems that were designed in a matter of months five years ago now

take several years. Following this trend, by the year 2001, a completely new integrated

circuit that utilizes all available silicon die space will take ten years to get to market.

Hardware design methodologies are characterized by the language used to specify

the design, the techniques used to transform that specification into a format from which an

integrated circuit can be fabricated, and the techniques used to verify that design has been

specified and transformed correctly. The current dominant methodology, in a simplified

view, is one in which a design is specified at the Register Transfer Level (RTL) with a

Hardware Design Language (HDL), such as Verilog HDL or VHDL. The design is then

transformed into logic gates, such as NAND or NOR gates, a task termedlogic synthesis. A

Fig. 1 Thedesign gap[Da98]
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plan for placing and connecting the resulting logic gates on the silicon die is then

developed, a task termedlayout. During each one of these steps, the design, in its

corresponding state, is verified. In the specification stage, this generally requires simulation

of the design. During logic synthesis and layout, formal techniques can be used, in addition

to simulation, to prove that the design implements the same functionality as it did prior to

the transformation performed in that stage.

As transistor sizes shrink, the complexity of specification and synthesis, verification,

and physical design increases exponentially. When a transistor is reduced in size by half,

four times as many transistors can theoretically be placed on an integrated circuit. This

means that the amount of circuitry that must be specified goes up by a factor of four.

Similarly, the number of logic gates, or other implementation constructs, that must be

simulated or proven to be correct increases by a factor of four. For physical design, not only

does the number of gates increase by a factor of four, but the number of interconnects

increases by an even greater factor, and the physical characteristics of silicon and metal are

altered. In each of these three areas (specification/synthesis, verification, and layout) a body

Fig. 2Transformed design methodology
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of research has been undertaken to address the exponential increase in design complexity.

High level synthesis and design reuse aim to alleviate the specification and synthesis

problem. Formal verification and symbolic simulation attempt to simplify the complexity of

verification. Research in deep submicron layout, floorplanning, and device characterization

seeks to address the physical design issues and couple them tightly to logic synthesis. This

work targets the first of these research topics, high level synthesis and design reuse.

1.1.1  High Level Synthesis and Design Reuse

High level synthesis and design reuse promise to shorten the time required to specify

a design, perform synthesis and layout, and verify that the design is correct. Specification

can be performed at a level of abstraction greater than RTL, allowing more functionality to

be specified more quickly. Furthermore, by mapping a specification onto blocks that are

more complex than logic gates, synthesis can be performed more quickly, allowing for

wider design space exploration. In addition, optimizations can be performed at the

architectural or algorithmic level, rather than the logic level, allowing for improvements

that have a much greater impact on system performance. In using existing designs, an

engineer can reuse layouts, floorplans, logic synthesis scripts, or initial cell placements,

allowing highly optimized layouts to be created quickly. Finally, by specifying a design

with higher level constructs and mapping that specification onto existing designs,

simulation and formal verification can be performed at a higher level, reducing the time

required to verify that the design is correct.

Hardware systems are frequently composed of datapath blocks that perform

mathematical operations, such as multiplication, Fast Fourier Transform (FFT), or Discrete

Cosine Transform (DCT), and control blocks that determine when these operations are
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performed. In order to take advantage of the benefits conferred by higher level

specifications, we propose altering the current design methodology such that the datapath

blocks are specified by mathematical operations, while preserving the ability to specify

control at the register-transfer or behavioral level. In addition, to take advantage of the

benefits conferred by design reuse, this methodology performs synthesis with complex

blocks that are at the level of multiplication, FFT, or DCT, rather than basic logic gates

(Figure 2).

While synthesis with complex blocks promises to reduce the complexity of design

specification, verification, and layout, the synthesis task itself becomes much more difficult.

The problem of mapping a design specification to library elements, termedallocation, or

binding, requires comparisons of functionality between a high level specification and

library elements that may be described at a low level. The problem of choosing the best

mapping, termedoptimization, requires evaluation of the impact that a mapping has on the

rest of the system. Furthermore, the problem of connecting two complex blocks, termed

interface synthesis, requires computation of logic that allows blocks to communicate

despite having different communication paradigms. The body of this work focuses on the

first and third of these problems, allocation and interface synthesis.

1.1.2  Levels of Abstraction

RTL design methodologies today operate at the logic, or gate, level of abstraction. At

the logic level, systems are specified by signal bits, logic operations, and a subset of

mathematical expressions (generally restricted to addition, subtraction and multiplication).

This specification is mapped to logic gates. If a system, or subsystem, is combinational, it

can be seen as a partial order of logic gates and modeled by alogic network. A common
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abstraction for combinational circuits is alogic function. If a system, or subsystem, is

sequential, it can be seen as a partial order of logic gates and synchronous elements, such as

registers. Sequential circuits can be modeled by asynchronous logic network. A common

abstraction for sequential circuits are Finite State Machines (FSMs).

At higher levels of abstraction, systems can be specified, created, and verified more

quickly. At the arithmetic level of abstraction, a system is specified by collections of

associated signal bits, also known as words, control operations, and the complete set of

mathematical expressions including division, exponentiation, transcendental functions, and

combinations of those operations. This specification is mapped to blocks that perform

arithmetic operations. At this level, a system can be seen as a partial order of arithmetic

operations and can be modeled by adataflow graph. Sequences of arithmetic operations

may be executed conditionally, a situation that can be modeled as aguarded dataflow

graph. Sequences of arithmetic operations may also be executed many times, a situation

that can be modeled as a loop with embedded guarded dataflow graphs.

1.2 Component Matching

Reusing existing circuitry can significantly reduce the time required to construct new

systems. The proliferation of reusable blocks has promised opportunities to complete new

designs more quickly and with fewer errors. However, searching the space of existing

implementations is time consuming and fraught with pitfalls, as the suitability of existing

blocks is determined by manual methods or verbal descriptions. This search promises to

become more complex as the number and need for reusable designs increases ([Ma98],

[DaBoBe99]). The models and methods presented in this research enable automation of this

search by generating circuit representations that are at the arithmetic level of abstraction.
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This enables efficient and accurate functionality comparisons of high-level specifications

and complex components.

Traditional matching applications operate at the logic level, allocating logic gates

given an HDL specification. Current extensions to logic level matching include arithmetic

macrocells to handle simple, commonly used arithmetic operations such as addition and

multiplication. Macrocell mapping is performed manually or by comparing symbolic

descriptions. Macrocells are considered to behard if they are physically a piece of

hardware, are considered to besoft if they are an HDL specification of functionality, and are

considered to befirm if they are described by logic gates that have been placed and routed.

Component matching is the problem of allocating complex blocks given a system

specification. This problem reduces to determining whether or not the functionality of a

library element is the same as the functionality of part of a specification. For example, in

designing the baseline JPEG encode block of Figure 3, subblocks are required to perform a

Discrete Cosine Transform, quantization, DC (zero frequency) encoding, and AC (non-zero

DCT Quantize

DC Encode

AC Encode

Arithmetic Specification

Implementation Library

4x4 DCT

8x8 DCT

 Constant Q

Variable Q

AC Code

Coeff Code

DC Code

Fig. 3Mapping JPEG encode onto existing designs
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frequency) encoding. A library of existing complex blocks is provided by Intellectual

Property (IP) vendors. The elements of the library range in level of complexity from adder

or multiplier to DCT, quantizer, or encoder. This is in contrast to traditional libraries that

contain simple elements that range in complexity from NAND or NOR gates to adders or

multipliers. In performing component matching, complex library elements are searched for

to implement the functionality described by each sub-block of this specification. This match

can be determined by deriving a single word-level representation for both the system

specification and the Boolean equations that describe the functionality of library elements.

The JPEG system can then be synthesized by matching the arithmetic specification of each

of these functions to the word-level representation of each library element.

Component matching is closely related to verifying that a specification and an

implementation match exactly, but presents important differences. In matching a component

to a specification, it is valuable to detect components that implement functionality that is

similar to, but not necessarily the same as, that of the specification. For example, in

performing DCT operations, a specification may require computation of the cos(x). One

possible implementation may be a function that does not implement cos(x) exactly, but

instead implements an approximation of the function to preserve area and increase

performance. Furthermore, a specification may indicate that computation of cos(x) can take

up to three cycles; however, existing implementations may exist that require only two

cycles. Thus, the specification and implementation are similar, but do not match exactly,

allowing for tradeoffs in execution time, silicon area, power consumption, precision and

other qualities.

The complex components discussed to this point can be specified very efficiently

with polynomial models. For example, cos(x) can be approximated by:
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1 - x2/2! + x4/4! - x6/6! + ... + xn/n!

This research derives methods for computing analogous word-level polynomial models for

existing components given a bit-level description of the component. These methods are

ideally suited for circuits that implement arithmetic functions and can be applied to

combinational and sequential circuits.

This comparison often must be performed between arithmetic and bit-level

abstractions of the functionality. Polynomial methods provide a means for generating word-

level polynomial representations, given bit-level descriptions of an implementation. In

generating a mathematical structure common to both levels of abstraction, allocation of

complex components can be performed, closing the semantic gap between specifications

and implementations. A common example of such a process is comparing a specification

generated in MATLAB against implementations modeled with Boolean logic or HDLs. This

technique is used by thePOLYSYS synthesis tool to map arithmetic specifications onto

existing designs that are described by Boolean equations.

The techniques presented here are most effective for allocating blocks that are

arithmetic intensive, but may contain significant control logic. Common application

domains that fit this description include computer graphics and digital signal processing. To

illustrate the application of the polynomial methods developed in this research, we map a

JPEG encode specification to complex elements and compare the specification of a filter

suitable for controlling the velocity of a tape through a tape drive to an existing filter. The

arithmetic specification for the JPEG encode block and the Infinite Impulse Response (IIR)

filter are derived from MATLAB, while the existing components are described by Boolean

equations.
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1.3 Interface Synthesis

After determining the space of valid implementations of a specification, the

components that make up these implementations must be tied together. In traditional logic

level synthesis, this is simply a matter of instantiating a wire between two logic elements.

However, when synthesizing with libraries of complex components or manually reusing

existing designs, communicating blocks must transmit data using compatible protocols. For

example, a CPU frequently implements a bus protocol that requires a vastly different set of

port operations to send and receive data than a synchronous DRAM. The problem of

interface synthesis is generating logic that allows two such components to communicate

with one another.

An industrial consortium, the Virtual Socket Interface Alliance (VSIA), has

recognized the importance of automating the connection of system components. To this

end, VSIA and has proposed standardization of data formats, test methodologies, and

interfaces ([VSIA99]). However, fragmentation and competition within the IP design

industry is likely to preserve the need for synthesizing interfaces between complex

components.

Components may communicate asynchronously or synchronously and each

component may operate at the same or different frequencies. Furthermore, multiple

components may communicate with a single component through a single port or through

many ports. Each of these options presents a unique challenge in automating interface

generation. The techniques presented here target interface generation for synchronous

components that may or may not operate at different frequencies and that connect two or

more components.
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1.4 Thesis Contributions

This research develops algorithms that enable synthesis of integrated circuits using

libraries of complex components. To achieve this goal, this work develops algorithms for

matching high level specifications to complex components and for generating interfaces

between the chosen components. Within the topic of component matching, we develop

algorithms for matching circuits that implement predominantly arithmetic functionality, but

may contain control operations. Within the topic of interface synthesis, we automatically

generate logic that allows communication between two or more synchronous components

that have different, built-in communication protocols.

The problem of matching high-level specifications to complex components is

attacked by comparing the functionality of the specification, which is described with both

arithmetic and control operations, against that of the component, which is described by

logic operations and synchronous elements. Matching algorithms can be classified

according to several factors: (1) the level of abstraction at which matching is performed, (2)

the size of the representation, (3) the time complexity of computing the representation, (4)

the canonicity of the representation used for matching, and (5) the quantification of

differences between specification and implementation.

We develop polynomial methods for performing component matching. These

methods rely on representing component functionality with polynomial expressions. These

expressions are at the word level, requiring transformation of bit level circuit descriptions

into word-level polynomials. This transformation allows for comparisons of specifications

which are described at the arithmetic level and implementations which are described at the

bit level. Furthermore, by using a polynomial representation to perform matching, the

complexity of the representation is independent of the number of circuit input bits. As
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demonstrated in Chapter 3, polynomial representations can be computed in polynomial time

with respect to the number of input bits. This representation is also canonical, guaranteeing

that valid matches will not be interpreted as invalid matches. Using polynomial

representations, differences between a specification and an implementation can be

computed according to two metrics: (1) the maximum numerical magnitude of the

difference between the specification and implementation polynomials, or (2) the polynomial

representation of a component that could compensate for their differences. This allows

detection of components that approximately implement a specification and of components

that partially implement a specification.

The problem of generating a synchronous interface between complex components is

attacked by generating a finite state machine that converts each component protocol into a

standard protocol. This allows the two components to communicate by simply connecting

the appropriate ports. The techniques presented in this work can be implemented to

synthesize interfaces between synchronous components that may or may not operate at the

same frequency. In addition, these techniques allow the generation of multi-way interfaces

in which multiple components communicate over the same bus. The input to the interface

generator is the HDL model or the logic equations that describe the component. The output

is an HDL model of the state machine that enables conversion to the standard protocol.

The component matching algorithms that are described in this work are best suited to

datapath dominated circuits. Though these techniques can detect those circuits that are

control dominated, they will be come exponentially complex if used to represent this class

of circuits. The interface synthesis algorithms are best suited to combining components that

have complex built-in communication protocols. These techniques focus on generating an

interface that enables correct communication, rather than optimizing the frequency of
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operation, area, or power consumption of the interface. Thus, for those circuits with simple

built-in protocols, for which interface generation is not a complex task, the related

algorithms described in Section 2.3 are likely to be superior.

1.5 Thesis Outline

Chapter 2 provides a background on the techniques that others have developed to

represent and verify circuits and to generate interfaces between circuits. Several of these

techniques are used in this research. Representation mechanisms include Binary Decision

Diagrams, Directed Acyclic Graphs, Binary Moment Diagrams, Multi-Terminal Binary

Decision Diagrams, and Object Oriented Methods. The interface synthesis techniques

reviewed in this chapter span specification languages, computation of glue logic for similar

interfaces, and high-level optimization of communication.

Chapter 3 derives polynomial methods for combinational circuits. Polynomial

methods provide a mechanism for deriving the arithmetic functionality of a circuit that is

described by logic equations. We prove that polynomial representations can be derived for

any circuit and are guaranteed to be canonical. We also derive a mechanism for detecting

control operations within a component. In many cases, this allows control functionality to

be represented and matched by the techniques of Chapter 2 and datapath functionality to be

represented and matched using polynomial methods. This results in a compact

representation for circuits with both arithmetic and control. Finally, we develop a technique

for efficiently implementing polynomial methods.

Chapter 4 develops extensions to polynomial methods for representing and

comparing circuits that contain synchronous elements and feedback paths. In addition, a

mechanism for generating approximate polynomial representations, which are more
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compact than the exact representation, and the error associated with that representation is

computed. Two examples are then completed, one in which the DC path of a JPEG Encode

block is mapped to complex elements, and one in which a filter which controls a tape drive

compensator is mapped to an existing component. Finally, experiments that illustrate the

performance of polynomial methods are described.

Chapter 5 derives the algorithm for computing interfaces between synchronous

components. We specify a standard communication protocol to which the built-in protocols

of existing components are mapped. We also describe the interface architecture in which

this communication is implemented. The algorithm for generating the state machine that

converts a component’s protocol into the standard protocol is then presented. An example

illustrating the synthesis of an interface to a MIPS CPU is then completed.

Chapter 6 describes thePOLYSYS synthesis suite.POLYSYS uses the techniques

described in Chapters 3, 4, and 5 to synthesize systems given libraries of complex blocks.

This software implements Internet protocols to create of libraries of complex blocks, match

a design specification to vendor components which are remotely distributed, and synthesize

interfaces to those same components. The distributed nature ofPOLYSYS, allows publication

of vendor libraries and evaluation of implementation choices without disclosure of

intellectual property.

Chapter 7 describes the synthesis of an Antialiasing Line Rasterizer using the

algorithms presented above. The rasterizer specification includes control operations and

complex mathematical operations. The library to which this specification is mapped is

composed of complex elements that perform mathematical operations, such as

multiplication, square root, and combinations of multiplication and addition, as well as

branching operations. Interfaces are then generated between the chosen components.
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Chapter 8 summarizes the contributions of this research and proposes future research

directions. These directions include potential improvements of the techniques presented in

this research and extensions to enable high-level synthesis of hardware/software systems.
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Chapter 2
Background

2.1 Introduction

In this chapter, we will provide a background on the structures that this research

employs. This includes Binary Decision Diagrams and Binary Moment Diagrams. We will

also describe why these structures alone are not suitable for comparing the functionality of a

specification to complex components. Furthermore, we will review the existing techniques

for representing the functionality of complex blocks, including additional decision diagram

structures, state based representations, and less precise representations of functionality. We

will describe the domains of research within interface synthesis, including modeling

languages, synthesis of glue logic, and high-level optimization of communication. Finally

we will compare and contrast existing work to the algorithms presented in this work.

2.2 Functional Representations

Reusable blocks have traditionally been characterized by verbal descriptions

([BaRo99], [Se99]), such as “ethernet core” or “rasterizer”, combined with component-
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specific attributes, such as “floating point” or “integer”, and waveforms. Precise

descriptions of functionality are usually restricted to smaller blocks such as combinational

logic gates or simple arithmetic operations (e.g. addition or multiplication). For example, in

allocating a JPEG block, current techniques may require that the specification and

implementation both be described by the keyword “JPEG”. This description is imprecise,

however, as potential JPEG implementations may implement different compression

schemes, different levels of accuracy, or operations on data sets of different sizes.

Component matching has historically been restricted to matching bit-level circuit

specifications to logic gates. Many structures have been used to represent and manipulate

Boolean functions. Early techniques used structures such as truth tables, Karnaugh maps,

and canonical sum of products forms [HiPe74]. These forms of representation are always of

exponential size with respect to the number of input bits. For some functions, reduced and

factored transformations of these structures may alleviate the exponential nature of the

representation, but result in a non-canonical representation. Lack of canonicity makes

component matching very difficult, as a failed comparison of specification and

implementation is no guarantee that the two are incompatible.

2.2.1  Directed Acyclic Graph Representations

Binary Decision Diagrams ([Br86]) are ideal for mapping classes of combinational

logic onto a library of gates. A BDD is a directed acyclic graph with two sink nodes,

representing logic values 0 and 1. Non-sink nodes are labeled with a Boolean input variable

and are the roots of two edges, representing the assignments of 0 and 1 to that variable

([BrRuBr90]). This is the equivalent of recursively expanding a function F(x): , B

= {0, 1} about each of its cofactors (Boole-Shannon Expansion):

B
m

B→
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F(x) =

A reduced BDD with fixed variable ordering is a canonical form of Boolean logic and, for

many functions, is not of exponential complexity with respect to input size [Br92].

Furthermore, the ease of composition of BDDs enables efficient computation of

combinations and complements of Boolean equations. However, for other functions, such

as integer addition and multiplication, the potentially exponential size of BDD structures

makes comparison of BDDs time consuming and memory intensive.

BDDs can yield information on whether or not a Boolean specification and

implementation match at the bit level, but offer no path for quantifying the degree to which

the two differ at the arithmetic level. That is, two functions that have similar, but not equal,

BDD structures may implement drastically different arithmetic functions, while two very

different BDDs may implement approximately the same mathematical operation. For

example, the Verilog HDL assignments:

y[15:0] = {0, x[15:1]};

y[15:0] = {0, x[15:1]+x[0]’};

have very different BDD representations. The first assignment requires only one BDD node

per output bit while the second representation requires at least 136 total BDD nodes to

represent the operation. However, in the integer domain, these two assignments specify

very similar functionality ( ). BDDs are an efficient

mechanism for performing simple component matching when both specification and

implementation are described by Boolean equations, but become prohibitively complex for

many arithmetic operations.

Multi-Terminal BDDs ([ClFu93]), also known as Algebraic Decision Diagrams

x′m 1– Fx′ m 1–, x( )⋅ xm 1– Fx m 1–, x( )⋅+

x 2⁄ and x 2⁄ respectively
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([BaFrGa93]), provide a mechanism for expressing a mapping from the binary domain to

the integer domain. This is similar to a binary decision tree in which the leaves are integer

values. Such a decomposition is the equivalent of an implicit enumeration of input/output

pairs. By placing a strict ordering on vertices during tree traversal, MTBDDs do guarantee

the canonicity of the representation. However, for even simple circuits, MTBDDs do

require an exponential number of vertices relative to the number of input bits.

Binary Moment Diagrams (BMDs) ([BrCh95]) have been developed to ease the

memory and time required to manipulate mathematical structures. BMDs are word-level

representations of Boolean functionality. If the Boole-Shannon Expansion used to generate

BDDs is altered by replacing x’m-1 with (1-xm-1), the following expansion results forF(x):

, B = {0, 1}:

F(x) =

For functions F(x) that implement linear mathematical functionality, the difference

 is always constant. Thus, the decomposition is guaranteed to be of

linear complexity for functions such as addition and multiplication. Furthermore, by

factoring constants out of the expressions for  and ,

common sub-expressions frequently arise with the BMD structure. BMDs with edges

weighted according to the constant that has been factored, is termed a *BMD. By sharing

common sub-expressions, *BMDs are of linear complexity for many mathematical

operations, including F(x) = 2x. However, for most functions that implement non-linear

operations, the complexity of BMD structures scale with the degree of non-linearity. For

functions that do not implement mathematical operations, BMD structures are potentially of

B
m

B
k

→

Fx′m 1–
x( ) xm 1– Fxm 1–

x( ) Fx′m 1–
x( )–

 
 ⋅+

Fxm 1–
x( ) Fx′m 1–

x( )–

Fx′m 1–
x( ) Fxm 1–

x( ) Fx′m 1–
x( )–
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exponential complexity. *BMDs have been used to verify the functionality of circuits that

implement linear functionality [ChBr96] and could be adapted to perform component

matching for those circuits. However, *BMDs are unsuitable for use in many non-linear

functions because of the resulting complexity. Furthermore, composition of BMD structures

is an exponentially complex operation. This complicates quantifying the difference between

a specification and implementation and matching a specification to multiple components.

Hybrid Decision Diagrams ([ClFu95]) attempt to overcome some of the limitations

of BMDs and BDDs. HDDs are similar to BMDs and BDDs, however, the expansion for a

function F(x) can be different for each input bit xi. The expansion for each input bit is

chosen from one of the following:

F(x) =

F(x) =

F(x) =

F(x) =

F(x) =

F(x) =

Note that the first expansion is the equivalent to that of a traditional BDD. The second

expansion is equivalent to that of BMD structures.

A greedy algorithm is used to choose the appropriate set of decompositions that

reduce the size of the resulting HDD. That is for each variable, the expansion that gives the

smallest HDD size is selected. Thus, a function is canonically represented by its resulting

1 x– m 1–( ) Fx′m 1–
x( )

 
 ⋅ xm 1– Fxm 1–

x( )
 
 ⋅+

Fx′m 1–
x( ) xm 1– Fxm 1–

x( ) Fx′m 1–
x( )–

 
 ⋅+

Fxm 1–
x( ) 1 x– m 1–( ) Fx′m 1–

x( ) Fxm 1–
x( )–

 
 ⋅+

1 xm 1– 1 Fxm 1–
x( )–

 
 ⋅– 1 x– m 1–( ) 1 Fx′m 1–

x( )–
 
 ⋅+

1 F– x′m 1–
x( ) xm 1– Fx′m 1–

x( ) Fxm 1–
x( )–

 
 ⋅+

1 F– xm 1–
x( ) 1 x– m 1–( ) Fxm 1–

x( ) Fx′m 1–
x( )–

 
 ⋅+
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HDD and the expansions used to construct the HDD. Composition operations are less

complex than those performed with BMDs and *BMDs. However, it requires not only the

composition of the HDDs of the functions being composed, but also of the expansions used

to construct each HDD. HDDs are effective for some linear equations, such as addition, but

is exponentially large for operations such as multiplication and non-linear operations.

Furthermore, HDDs are canonical with a fixed expansion, but are not when expansions are

not fixed. Two blocks that specify or implement the same functionality with different logic

operations may be expanded differently using a greedy algorithm, resulting in incorrectly

failed matches.

Power Hybrid Decision Diagrams, developed in [ChBr97], are similar to HDDs, in

that the transformations used to expand a function can vary between input bits. However,

PHDDs reduce the number of transformations to three (simply because the last three

transformations rarely provide any benefits) and re-introduce the concepts of factoring and

edge weights used by *BMDs. The edge weights represent factors that are a power of 2 and

negation edges are allowed. This makes PHDDs well suited to handling the non-linearities

associated with floating point multiplication, but causes exponentially large data structures

for floating point addition. Furthermore, PHDDs present similar canonicity problems to

those inherent to HDDs and are extremely complex to compose.

Methods have been introduced for modeling and manipulating circuits that

implement polynomial functions using Zero-suppressed BDDs ([Mi93]). Zero-suppressed

BDDs remove BDD branches which lead to the zero leaf, reducing the number of nodes in

the representation. In modeling polynomial functions, ZBDD graph edges are associated

with a weight ([Mi96]). In traversing the directed acyclic graph, the exponent of a particular

input is computed by multiplying the weights encountered in going from the root node to a
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leaf. Leaves are integer values that indicate the coefficient of a term. This structure provides

an efficient representation for those circuits for which a polynomial description is specified,

but becomes exponentially large if discontinuities exist in the function. Furthermore, no

construction method exists for this structure, preventing computation of polynomial ZBDDs

for components described only with Boolean equations.

2.2.2  Higher-Level Representations

The techniques discussed thus far provide detailed information not only about circuit

functionality, but also implementation details. Higher-level representations describe

functionality, but hide details of the actual implementation. A formalism for representing

the functionality of sequential circuits is a finite state machine. An FSM is a high-level

representation in the sense that it describes a circuit based on the states of internal and

external signals. More formally, it is described by a 6-tuple {I, O, S,λ, γ, ρ} where:

I is the set of inputs

O is the set of outputs

S is the set of states

λ is the next state relation, λ: I x S→ S

γ is the output relation:γ: I x S→ O

ρ is the initial state.

Such a description may hide details such as state encodings, providing a more intuitive

structure for representing system functionality. However, state machine representations are

not unique, as many sets of states can implement equivalent functionality. Furthermore,

FSM complexity is proportional to the number of states. Thus, a state machine may be

extremely complex for simple arithmetic operations. For example, if a counter is
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represented by an FSM, and the state space corresponds to the current value of the counter,

an exponential number of states are required. To combat state explosion, states can be

represented implicitly. For example, in the case of the counter, state enumeration may be

replaced by the next state expressionλ = λ + 1. The techniques described in Section 4.3 can

be used to compute implicit representations of the next state relation.

Similar to FSM representations, instruction set representations hide implementation

details while describing component functionality. An instruction set is classified as an

architectural-level representation because it is a symbolic description of component

resources. An instruction set hides implementation details by labeling execution options.

For example, the label ADD may represent an option in which addition is performed. More

formally, an instruction set is specified by the 2-tuple {I, O}, where I is the set of

instructions and O is the operation performed by each instruction. Instruction sets are a

compact form of representation, however they may not uniquely represent component

functionality. For example, the label given to an instruction may not match the label used in

specification, even though functionality is equivalent. In this work, we will use polynomials

as a common description of component operations. An operation can be included in an

instruction set by labeling the polynomial representation. For example, the cosine

polynomial given in Chapter 1 may be given the label COS in an instruction set, allowing a

high-level specification to be created by specifically calling the COS instruction.

2.2.3  Inexact Representations

In implementing design reuse, many industrial and academic synthesis tools have

focused on object-oriented techniques ([KuAyJo94], [VaGi98]). These techniques are a

mechanism for classifying component functionality according to keywords or concepts.
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Such a classification scheme enables fast comparison of a specification and its potential

implementations. However, this technique is not canonical, as many keywords or classes

could be used describe functionality. It requires that the same taxonomy be used to specify

the design that is used to classify components in the library of implementations.

Furthermore, comparison requires that the properties of a specification and implementation

be the same. For example, a specification for a DCT may include a characteristic indicating

the function is performed on a 4x4 block. A library element, however, may assume that

block size is the traditional 8x8 pixels and include characteristics such as latency and

frequency of operation. Furthermore, unlike the techniques presented above, object oriented

matching provides no rules for composing library elements, preventing the derivation of

larger blocks from smaller components.

In order to raise the complexity of blocks for which a functional characterization can

be generated, algorithms have been developed to reduce the size of circuit representations.

This can be achieved by generating data structures that represent an approximation of

circuit functionality. For example, in [RaMc98], a compact circuit approximation is derived

that minimizes the number of input assignments for which the approximation and the actual

circuit differ. In contrast, our work generates a compact circuit approximation that

minimizes the numerical distance between the functionality of the representation and the

actual block. Similarly, the allocation mechanism presented in this research determines the

accuracy of a match by the numerical distance between a specification and a possible

implementation.

Efficient component matching requires data structures that are canonical,

constructible in polynomial time, and allow for simple composition. This dissertation will

demonstrate methods for determining polynomial representations for circuits that are
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described at the bit level. Furthermore, we will prove that a unique minimum order

polynomial representation exists for all circuitry without feedback. In representing

hardware as polynomials, blocks can be efficiently compared with one another to determine

if they implement the same functionality. In addition, polynomials are easily composable,

allowing efficient determination of the functionality of hierarchical or partitioned blocks.

2.3 Interface Synthesis

Interface synthesis research can be broadly categorized in three areas. One body of

research has focused on creating interface specification languages. These languages define

constructs that allow swift creation of synthesizable interface specifications. A second

research thrust has targeted synthesis of “glue logic” that allows two otherwise

incompatible components to communicate. This logic is generated not from a specification

of the interface, but from the implementation details of the communicating components. A

third body of work has focused on improving the performance of systems of components by

optimizing component communication at a high level. Work in each of these areas presents

solutions for synthesizing interfaces between hardware components and between hardware

and software components.

In [RoVi97], the authors proposed a design methodology in which the design of

communication subsystems is separated from that of computational subsystems. This

methodology, termed Interface-Based Design, incorporates a token passing abstraction for

communication at the earliest stages of the design cycle. This allows high level simulations,

with IP blocks, to be performed early in the design cycle without implementing low level

communication logic. As the design moves to the implementation phase, a framework is

provided for transforming the high level token passing scheme into actual bus protocols,
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such as PCI or EISA. In performing functionality-based partitioning (i.e. communication

functionality and computational functionality), this work proposes to speed simulation and

enable more effective synthesis and verification by completing these tasks with smaller,

more well-defined blocks.

The research presented here focuses on generating low-level, synthesizable

description of synchronous interfaces between hardware components. Although we focus

on the synthesis of glue logic, hooks are included to easily control the interface at a high

level. This provides a means for implementing static or dynamic schedules determined by

higher-level optimization algorithms.

2.3.1  Interface Modeling Languages

Interface modeling languages allow a designer to explore the interface design space

and generate a synthesizable description of the interface. The most commonly used

industrial tool that encompasses this functionality is the Synopsys Protocol Compiler, based

on the research of [SeHoMe96]. Protocol Compiler provides a framework for graphically

defining an interface using state and data-frame based semantics. This specification is

transformed into an HDL model and synthesized using traditional gate level synthesis

techniques.

Many interface modeling languages are simply a means of representing Protocol

Flow Graphs (e.g. AMICAL from [GaVaNa94]). PFGs describe how and when to provide

input and receive output ([MaHa95]). Nodes in a PFG may indicate an operation to be

performed (e.g. assignment), a decision to be made (e.g. a branch), or a synchronization

point. Many high level optimization algorithms are based on abstract PFGs in which details

of a node operation is hidden. Many lower-level interface synthesis techniques require
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concrete PFGs, in which the logic executed at each node is specified. Edges of a PFG

indicate the dependencies between node operations.

The PRO-GRAM (protocol grammar) language, developed by [ObKuHe96],

provides constructs that are particular to interfaces. These constructs include port

definitions which declare the directions of interface signals, the width of communication

busses and the frequency at which they operate. Communication operations are abstractions

that are described in detail by the patterns of bits that are written to or read from a port

during that operation. Grammar rules describe legal operation alternatives based on the state

of the interface. PRO-GRAM also allows for the description of memory constructs for

buffering data transactions.

2.3.2  Synthesis of Glue Logic

An algorithm for synthesizing glue logic is described in [PaRoSa98], enabling

generation of interfaces between hardware blocks that implement incompatible protocols.

Given a state-based description of each communicating component, this algorithm

computes the product of the two state machines. This product represents a superset of the

state machine that maps one component protocol onto the other and vice-versa. This set of

states is pruned according to the following rules:

(1) Remove states that are the result of an illegal sequence of operations

(prunes states that are the product of unrelated states).

(2) Remove states that output a piece of data that has not been received (i.e.

states that introduce a data hazard).

(3) Remove redundant, non-minimum latency paths to the data transfer state.

Non-deterministic state transitions that remain after the above rules are exercised are
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resolved arbitrarily. This algorithm is guaranteed to return a minimum latency interface

between two components. However, it requires that components perform data transfers in

single transactions, rather than stream data, to prevent blowup of the product state machine.

Furthermore, this algorithm restricts communication to two components that operate at the

same frequency and bandwidth.

System level interface synthesis expands the problem of interface generation from

communication between hardware components to communication between hardware and

software components. Work presented in [ChOrBo95] utilizes detailed timing, operational,

and bandwidth information to generate glue logic and device drivers that enable hardware/

software communication. Specification information includes a control flow graph that

describes systems components, including the processor, any peripheral devices and the

desired operations. For example, for the processor, access routines and their associated I/O

resources must be described. For peripherals, signal sequences that represent port

assignments required to read and write the device must be described. Ports of

communicating components must also be classified as address, data, or guard ports. Guard

ports are control signals that must be activated to cause a component to be sensitive to

address and data ports. From this information, processor I/O ports are assigned to peripheral

ports and logic is generated that mimics the signal sequences. If an assignment to an I/O

port can not be achieved (for example, in the case of a software block), logic generation is

aborted and a memory-mapped I/O interface is attempted. Memory-mapped I/O requires a

range of addresses be reserved for I/O operations. Load/store operations can then be

performed by the processor to communicate with the peripheral device. This effectively

allows an algorithm that is implemented in software to exercise hardware functionality

through a device driver.
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2.3.3  High Level Optimization of Communication

Optimization of communication at a high level can be separated into three problems:

(1) determining which components can share busses and bus control signals; (2)

determining the constraints imposed in communication; and (3) scheduling interface

operations. This section will review related work that covers combinations of these three

areas.

Much work has been presented on optimizing communication between subsystems

given a set of communication constraints ([ErHeBe93], [JeElOb94], [KaLe94]). In

[CoDe94], a subsystem’s communication protocol and constraints are transformed from

Verilog HDL to an algebraic systems called Control-Flow Expressions (CFEs). This algebra

represents dataflow symbolically as either an action or condition and focuses on the control

flow of the interface. Control flow constructs represent sequential operations, alternative

operations, parallel operations, loops, and unconditional repetition. In addition, two special

symbols represent no operation over a single cycle and a zero delay null operation.

Constraints such as timing constraints, resource bindings, and synchronization are

represented using the same control constructs. If the interface of each communicating

component is described in common terms (i.e. the CFE symbol for an data read operation in

one component is the same as the symbol for a data write operation in another component),

then a CFE compactly and completely represents the possible operations that can be

performed in communicating data between components. From this algebraic expression, a

state machine that enables communication between components is derived using integer

linear programming techniques.

Research presented in [GaGl96], investigated techniques for computing

communication constraints, clustering data transfers of multiple components to a common
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bus, and determining an optimal schedule for bus accesses within each cluster. This is

performed assuming a memory mapped communication structure in which communicating

subsystems transfer information through a shared memory block. The communication

paradigm is specified by high-level constructs such assend and receive. From this

specification, analysis of mobility of send and receive operations within a control/data flow

graph is performed. From the derived mobility rules, transfers that do not overlap are

clustered. A minimum cost bus implementation is then determined for each cluster using

branch and bound techniques. This requires computation of communication costs for many

possible schedules. Once a minimum cost implementation is determined, these techniques

attempt to merge generated busses to reduce the complexity of the implementation.

Rather than build a new specification language, [GuRo94] uses a subset of VHDL

constructs to describe low level interface signal assignments in a manner that allows

synthesis tradeoffs to performed at the behavioral level. This requires encapsulation of

interface semantics within a VHDL procedure. These semantics are described by signal

assignments and wait statements. This reduces the interface synthesis problem into a well

defined scheduling problem that can be handled in high level synthesis. Constraints can be

determined from data dependencies within the VHDL specification. The resulting schedule

is then mapped into an interface architecture that is comprised of a resource set that includes

registers, ALUs, busses, and multiplexors. By specifying the interface as a sequence of

atomic operations, performance optimizations can be made at the behavioral level, rather

than the logic level, having a greater impact on system performance. This provides a

mechanism for partitioning interface functionality from algorithmic functionality and

optimizing the sequence of steps required to perform a data transfer.
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2.4 Comparison with Related Work

Polynomial representations are a stateless, word-level, functional description of

existing components. The representation is computed assuming that a polynomial can

represent the component’s functionality. It also provides a mechanism for detecting

components or parts of a component for which this assumption does not hold. Being a

word-level representation, polynomial representations provide a much more efficient means

for performing component matching than bit level representations do. Furthermore, not

only are polynomial representations more efficient for performing matching than existing

word-level structures, but they also provide a mechanism for approximating component

functionality, performing inexact matching, and detecting control operations. Imprecise

representations of component functionality potentially are more compact, enabling faster

comparisons of specification and implementation, but allow for the possibility of inaccurate

implementations of a specification and undetected implementation possibilities. Polynomial

representations do become complex for control dominated components. However, control

operations can be detected, as shown in Section 3.3, and then be represented by state-based

structures or BDDs.

The interface synthesis algorithms presented here are geared to determine glue logic

between two hardware components. These algorithms extend other glue logic synthesis

techniques, as they allow synthesis of multi-way interfaces between components that

operate at different frequencies and have multiple data transfer states. Synthesis of glue

logic, in many cases, precludes the need for interface modeling languages, as the interface

logic is automatically determined. Furthermore, the interface architecture proposed in this

work provides hooks for implementing schedules and priorities determined by high-level

optimization algorithms.
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Chapter 3
Polynomial Methods

3.1 Introduction

Polynomial methods provide a means for comparing a specification, given at the

arithmetic level, with components that are described at the bit level. To perform this

comparison, a specification is partitioned into groups of arithmetic operations. Meanwhile,

a polynomial representation is determined for a component, given its Boolean description.

A numerical comparison is then performed between the groups of arithmetic operations

extracted from the specification and the component’s polynomial representation. This

process is depicted in Figure 4. This chapter will focus on the task of determining the

polynomial representation of a component given the Boolean equations that describe its

functionality.
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3.2 Polynomial Representations

To map an arithmetic specification to a complex element that is described at the logic

level, a word-level polynomial that encapsulates the element’s functionality is derived. To

begin, we consider completely-specified Boolean functions for the sake of simplicity. This

assumption will be removed in Section 3.4. Generating a word-level polynomial

representation for a Boolean function may appear to be an inconsistent problem because

Boolean functions are inherently discontinuous. However, a Boolean function,y = F(x):

, B = {0, 1}, wherex andy are bit vectors of lengthm andk, respectively, can be

treated as a set of coordinates (x, y), where :

x = Encode(x) x = Decode(x)

y = Encode(y) y = Decode(y)

Thus, “Encode” is an integer interpretation of a Boolean vector, such as two’s

complement or sign magnitude, and “Decode” is the inverse transformation. The following

encoding examples will be referred to in succeeding sections:

0 = Encode(0) 0 = Decode(0) = 00...00

1 = Encode(1) 1 = Decode(1) = 00...01

Arithmetic

Fig. 4 Illustration of the application of polynomial methods

Specification Polynomials

Boolean
Implementations Polynomials

Partitioning

Polynomial Computation

Comparison

B
m

B
k

→

x y, Z∈
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-1 = Encode(-1) -1 = Decode(-1) = 11...11

-2 = Encode(-2) -2 = Decode(-2) = 11...10

A minimum order polynomial can be determined that fits the set of coordinates (x, y).

If the order of this polynomial is known to ben, thenn+1 coordinates can be extracted from

the function and a set ofn+1 equations and variables (the coefficients of the polynomial)

can be constructed and solved. Thus, the problem of generating a word level polynomial

representation for a Boolean function reduces to determining the order of the polynomial.

Example 3.2.1 Consider a 3-input, 4-output combinational circuit that can be specified as

the following set of coordinates (x, y) in the Boolean domain where , :

{(000, 0000), (001, 0001), (010, 0100), (011, 1001)}. The corresponding encoding for

 is {(0,0), (1, 1), (2, 4), (3, 9)}. The minimum order polynomial that passes through

these points is of order 2. Thus the polynomial representation is of the formy = c2x
2 + c1x +

c0. Extracting 3 coordinates yields the following set of linear equations:

0c2 + 0c1 + c0 = 0

1c2 + 1c1 + c0 = 1

4c2 + 1c1 + c0 = 4

Solving this set of linear equations yields the polynomial representationF(x) = x2. Thus, the

circuit implements a squaring function.

3.2.1  Existence and Uniqueness

The following theorem is the basis for determining the polynomial representation of

circuits described at the bit level. This theorem, derived from the binomial distribution from

traditional calculus, is proven for integers and used to prove the existence and uniqueness of

polynomial representations of Boolean functions.

Theorem 3.1

Given a polynomial functionF(x) of order n, where , the functionF(x+1) - F(x) is of

x B
3

∈ y B
4

∈

x y, Z∈

x Z∈
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order exactlyn-1.

Proof

Let

Each term of orderi in F(x) contributes a polynomial of order exactlyi-1 to F(x+1) - F(x):

Thus, whenF(x+1) - F(x) is computed, the polynomial term cnx
n of F(x) contributes a

polynomial of order exactlyn-1 and is the only term to do so. Therefore,F(x+1) - F(x) is of

order exactlyn-1. ❑

Although this research will focus on integer encodings of Boolean vectors, note that

Theorem 3.1 holds for any domain ofx in which addition, subtraction, and multiplication

are defined and the associative, distributive, and identity properties hold (e.g. ).

Furthermore, the theorem is independent of the details of the encoding of  (e.g.

two’s complement, sign magnitude, fixed point, floating point). To illustrate Theorem 3.1

for , note that if F(x) = x3, thenF(x+1) - F(x) = x3 + 3x2 + 3x + 1 - x3 = 3x2 + 3x + 1.

From Theorem 3.1, a useful corollary can be derived.

Corollary 3.1.1

For all , the following set of row vectors is linearly independent:

F x( ) ci x
i⋅

i 0=

n

∑=

F x 1+( ) F x( )– ci x 1+( ) i⋅ ci x
i⋅–

i 0=

n

∑=

ci x 1+( ) i
cix

i
– ci

i
j 

  x
j⋅ x

i
–

j 0=

i

∑
 
 
 

⋅ ci
i
j 

  x
j⋅

j 0=

i 1–

∑
 
 
 

= =

x R∈

x B
m

∈

x Z∈

x m, Z∈
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Proof

The set of row vectors can be reduced by multiplying it by nonsingular matrices. The

matrices shown in the following computation are nonsingular (the determinant of each is 1):

The rows of matrix B are linearly independent. Therefore the original set of vectors A are

linearly independent❑.

Example 3.2.2 To illustrate Corollary 3.1.1, notice that, forx = 0 and m = 3:

A

x( ) m
x( ) m 1–

... x
0

x 1+( ) m
x 1+( ) m 1–

... x 1+( ) 0

... ... ... ...

x m+( ) m
x m+( ) m 1–

... x m+( ) 0

=

B

1 0 0 .. 0 0

1– 1 0 .. 0 0

0 1– 1 .. 0 0

.. .. .. .. .. ..

0 0 0 .. 1– 1

1 0 0 .. 0 0

0 1 0 .. 0 0

0 1– 1 .. 0 0

.. .. .. .. .. ..

0 0 0 .. 1– 1

...

1 0 0 .. 0 0

0 1 0 .. 0 0

0 0 1 .. 0 0

.. .. .. .. .. ..

0 0 0 .. 1– 1

x( )
m

x( )
m 1–

.. x
0

x 1+( )
m

x 1+( )
m 1–

.. x 1+( )
0

.. .. .. ..

x m+( )
m

x m+( )
m 1–

.. x m+( )
0

=

x( ) m
x( ) m 1–

... x
0

x 1+( ) m
x( ) m

– x 1+( ) m 1–
x( ) m 1–

– ... 0

... ... ... ...

(x+m)
m m

1 
  (x+m-1)

m⋅ 
 – ... (-1)

m
+ + 0 ... 0

=

0 0 0 1

1 1 1 1

8 4 2 1

27 9 3 1

0 0 0 1

1 1 1 0

7 3 1 0

19 5 1 0

0 0 0 1

1 1 1 0

6 2 0 0

12 2 0 0

0 0 0 1

1 1 1 0

6 2 0 0

6 0 0 0

⇒ ⇒ ⇒
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Thus, the initial set of vectors is linearly independent.

The following theorems establish the existence of polynomial representations for

combinational univariate functions and the uniqueness of the minimum order polynomial

representation.

Theorem 3.2 (Existence)

Let , , and  be the integers corresponding tox, y. Given a

Boolean functiony = F(x): , there exists a polynomialy = cnx
n + cn-1x

n-1 + ... +

c0, where n < 2m, that defines the corresponding functionF: .

Proof

If , then there are 2m possible values thatx can take on {0, 1, ..., 2m-1} and 2m

corresponding values thaty can take on {F(0), F(1), ...,F(2m-1)}. The solution to the set of

linear equations (µ = 2m-1):

exists if no row of the matrix:

x B
m

∈ y B
k

∈ x y, Z∈

B
m

B
k

→

x y→

x B
m

∈

0( ) µ
0( ) µ 1–

... 1

1( ) µ
1( ) µ 1–

... 1( ) 0

... ... ... ...

µ( ) µ µ( ) µ 1–
... µ( ) 0

cµ

cµ 1–

...

c0

•

F 0( )
F 1( )

...

F µ( )

=

0( ) µ
0( ) µ 1–

... 1

1( ) µ
1( ) µ 1–

... 1( ) 0

... ... ... ...

µ( ) µ µ( ) µ 1–
... µ( ) 0
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is a linear combination of the others. We know this is true from Corollary 3.1.1. Note that

the dimension ofy does not affect the polynomial representation ofF. ❑

Theorem 3.3 (Uniqueness)

The minimum order polynomial representation of a Boolean functiony = F(x): ,

is unique.

Proof

Assume there exist two minimum order polynomial representations forF(x),

where  are the integers corresponding tox, y:

y = anx
n + an-1x

n-1 + ... + a0

y = bnx
n + bn-1x

n-1 + ... + b0

 => there are two possible solutions to the set of linear equations:

=> there exists a row in the matrix:

that is a linear combination of the others. But from Corollary 3.1.1 we know that this is not

B
m

B
k

→

x y, Z∈

0( ) n
0( ) n 1–

... 1

1( ) n
1( ) n 1–

... 1( ) 0

... ... ... ...

n( ) n
n( ) n 1–

... n( ) 0

cn

cn 1–

...

c0

•

Encode F 00...00( )( )
Encode F 00...01( )( )

...

Encode F Decode n( )( )( )

=

0( ) n
0( ) n 1–

... 1

1( ) n
1( ) n 1–

... 1( ) 0

... ... ... ...

n( ) n
n( ) n 1–

... n( ) 0
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possible and we have a contradiction. Therefore, the minimum order polynomial is

unique.❑

Example 3.2.3 An example of the application of Theorems 3.2 and 3.3 is the following set

of Boolean equations (input widthm = 2 and output widthk = 5) that model an existing

circuit:

F0(x) = x0

F1(x) =

F2(x) = 0

F3(x) = x1

F4(x) =

y = x3 is the unique, minimum order polynomial (n = 3) that represents this circuit, and

would match a specification that requires the computation of the third power ofx.

3.2.2  Polynomial Computation

In the previous section, we have proven that any combinational circuit can be

uniquely represented by a minimum-order polynomial. Once the order of this polynomial is

determined, then the coefficients of the polynomial can be calculated by examining a finite

number of circuit outputs. Thus, the problem of determining a canonical polynomial

representation for a circuit can be reduced to finding the order of the polynomial that

represents that circuit.

To begin deriving a method for determining the order of a Boolean function,

remember from Theorem 3.2 that a polynomial representationF(x), where , always

exists for a Boolean functiony = F(x): , Furthermore, from Theorem 3.1, we

might deduce that the order ofF(x) will be reduced by exactly one by computingF(x+1) -

F(x). Therefore, the order ofF(x) could be determined exactly by recursively performing

x1 x0⋅

x1 x0⋅

x Z∈

B
m

B
k

→
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F(x) = F(x+1) - F(x) until this difference is identically zero for all values ofx. In the

algorithm discussed here, two’s complement arithmetic is employed to compute this

difference. The number of iterations required to setF(x+1) - F(x) = 0 is the order of the

unique, minimum-order polynomialF(x) that represents the circuit.

In computing the order of a Boolean function, we assume that each output bit (y0, y1,

..., yk-1) of the functiony = F(x) is represented as a Binary Decision Diagram. While this

does present an exponentially-sized data structure for some functions, we will show a

heuristic in Section 4.6 that reduces this data structure to linear complexity with respect to

the number of input bits. In Sections 3.2.2.1 to 3.2.2.4, we derive, in detail, the steps

required to computeF(x+1) - F(x) and determine ifF(x+1) - F(x) = 0. These sections

provide the rationale for the order computation algorithm shown in Figure 7.

3.2.2.1  DeterminingF(x+1)

The first step in computingF(x+1) - F(x) is to determineF(x+1). This can be

performed in polynomial time by replacing each bit {xi: i = 1, 2, ..., m-1) ofx

with  and x0 by x0’ in the BDD ofF(x).

3.2.2.2  Determining-F(x)

The next step in computingF(x+1) - F(x) is determining-F(x). Using two’s

complement arithmetic, this could be performed by inverting each output bit Fi(x) of F(x)

and adding one (-F(x) = F’(x) + 1, whereF’(x)  is the bitwise complement ofF(x) and1 is

the vector 00..01). Computation ofF’(x)  is simple as it only requires inverting each leaf of

each BDD that represents the output Fi(x). However, if we make the assumptions thatF(x)

is an m bit function, x is an m bit word, and the BDD of Fi(x) has at leastm nodes,

xi xi 1– xi 2– ... x0⋅ ⋅ ⋅⊕( )
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computingF’(x) + 1 is of complexity O(m4), due to the propagation of the carry (carry

computation requiresm(m+1)/2 logic operations each of which is of complexitym2).

To reduce the complexity the negation, we transform the problem of recursively

computingF(x) = F(x+1) - F(x) until F(x) = 0 to the problem of recursively computingF(x)

= F(x+1) + F’(x) until F(x) = -1. This is the equivalent of computingF(x+1) - F(x) - 1 in

two’s complement encoding. This computation reduces the order ofF(x) by one on each

iteration, but avoids the complexity introduced by incrementation. This is possible because,

on successive computations ofF(x+1) - F(x) - 1, the subtraction of one does not

accumulate:

1st iteration:F(x) = F(x+1) - F(x) - 1

2nd iteration:F(x) = (F(x+2) - F(x+1) - 1) - (F(x+1) - F(x) - 1) - 1

= (F(x+2) - F(x+1)) - (F(x+1) - F(x)) - 1

Thus, instead of computingF(x+1) - F(x) to reduce the order ofF(x) by one, we

computeF(x+1) + F’(x) which is a computationally simpler way to reduce the order ofF(x)

by one.

3.2.2.3  PerformingF(x+1) + F’(x)

Once F(x+1) and F’(x)  have been determined, the two functions are summed to

produce the new, reduced orderF(x). If this summation is performed in ripple carry fashion,

it is an exponentially complex operation with respect to word length, due to the propagation

of the carry (for the ith bit, the carry computation requires 3i logic operations). To eliminate

the computation of the carry, a carry-save addition can be performed. Let us define:

Fsum(x) = F x 1+( ) F′ x( )⊕
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Fcarry(x) =

where  and  are applied bitwise. Thus,F(x) is uniquely specified as:

F(x) = Fsum(x) + (Fcarry(x) << 1)

Note that there are now two terms that must be complemented when recursively

computing F(x) = F(x+1) + F’(x). These terms areFsum(x) and Fcarry(x)<<1.

Complementing both terms requires, according to two’s complement arithmetic, a bitwise

inversion and an increment of each term. In order to avoid these increments and their

associated carry operations, order reduction can be performed by recursively computing:

F(x) = Fsum(x+1) + (Fcarry(x+1) << 1) + F’sum(x) + (F’carry(x) << 1)

until F(x) = -2. The condition for terminating recursion has changed toF(x) = -2 because

the equivalent computation in two’s complement arithmetic is:

Fsum(x+1) + (Fcarry(x+1) << 1) - (Fsum(x) + (Fcarry(x)<< 1)) - 2

= F(x+1) - F(x) - 2

SinceF(x+1) andF’(x)  are specified as the summation of a sum and carry term, their

summation can be performed in two steps, as if two carry-save additions (Figure 5) were

F x 1+( ) F′ x( )⋅

⊕ ⋅
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executed.

With these transformations, the order ofF(x) is successively being reduced by one by

recursively computingF(x) = F(x+1) + F’(x). This computation is of polynomial

complexity with respect to the size of the BDD representation ofF(x).

3.2.2.4  Checking ifF(x) = -2

Using a two’s complement encoding, the following transformations can be used to

determine if the recursively computedF(x) = -2, without performing a ripple carry addition:

F(x) = -2

<=> Fsum(x) + (Fcarry(x) << 1) = - 2

<=> Fsum(x) + (Fcarry(x) << 1) + 1 = - 1

To avoid performing the ripple carry addition, a two-stage carry-save increment is

performed at the end of each recursive step:

Fsum(x) + (Fcarry(x) << 1) + 1 = Stest + Ctest

a b c

c s

F’carry,i(x)

F’sum,i(x)

Fcarry,i(x+1)

Fsum,i(x+1)

F’carry,i-1(x)

F’sum,i-1(x)

Fcarry,i-1(x+1)

Fcarry,i(x)

Fig. 5Physical visualization of the two stage carry-save addition

Fsum,i(x)

a b c

c s

a b c

c s

for computation ofF(x+1) + F’(x)
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by performing the following logic operations (i = 1, 2, ... , k-1):

Each bit of the resulting sum (Stest) is checked for tautology and each bit of the

resulting carry (Ctest) is checked whether it is tautologically zero. We refer to this test as the

tautology check, and it is necessary and sufficient to guaranteeFsum(x) + (Fcarry(x) << 1) +

1 = - 1 as proven in Theorem 3.4. As a result, the ripple carry computation does not need to

be performed.

Theorem 3.4

Given three Boolean vectors , whereG = Gsum + (Gcarry<<1),

thenG = -1 iff ,  = 1 and  = 0 for all i = 1,

2, ..., k-1.

Proof

Forward implication (by induction):

Base Case: G = Gsum + (Gcarry<<1) => G0 =  and G1 =

G = -1 => G0 = 1 =>

G = -1 => G1 = 1 =>  = 1 and  = 0

Stest0
x( ) F′sum0

x( )=

Ctest0
x( ) Fsum0

x( )=

Stesti
x( ) Fsumi

x( ) F′carryi 1–
x( )⊕ 

  Fsumi 1–
x( ) Fcarryi 2–

x( )+
 
 ⊕=

Ctesti
x( ) Fsumi

x( ) F′carryi 1–
x( )⊕ 

  Fsumi 1–
x( ) Fcarryi 2–

x( )+
 
 ⋅=

Gsum Gcarry G, , B
k

∈

Gsum0
1= Gsumi

Gcarryi 1–
⊕ Gsumi

Gcarryi 1–
⋅

Gsum0
Gsum1

Gcarry0
⊕

Gsum0
1=

Gsum1
Gcarry0

⊕ Gsum1
Gcarry0

⋅
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Assume:  = 1 and  = 0 for all

Inductive step: Gj+1 = 1 and  = 0 for all

=>  = 1 and  = 0.

Reverse implication:

 => G0 = 1.

 = 1,  = 0 for all i => Gi = 1.

=> G = -1. ❑

The following assignments allow Theorem 3.4 to be used to perform the tautology

check:

.

In summary,F(x) = -2 if and only if  and  for all i = 0, 1,

..., k-1.

3.2.2.5  Bounding Function

A function y = F(x): has a corresponding Boolean functiony = F(x):

, x = Decode(x), andy = Decode(y), defined only over the domain [0, 2m-1]. This

Gsumj
Gcarryj 1–

⊕ Gsumj
Gcarryj 1–

⋅ j i≤

Gsumj
Gcarryj 1–

⋅ j i≤

Gsumj 1+
Gcarryj

⊕ Gsumj 1+
Gcarryj

⋅

Gsum0
1=

Gsumi
Gcarryi 1–

⊕ Gsumi
Gcarryi 1–

⋅

Gsumi
x( ) Fsumi

x( ) F′carryi 1–
x( )⊕ 

 =

Gcarryi
x( ) Fsumi 1–

x( ) Fcarryi 2–
x( )+

 
 =

Stesti
x( ) Gsumi

x( )= Gcarryi 1–
x( )⊕

Ctesti
x( ) Gsumi

x( ) Gcarryi 1–
x( )⋅=

Stesti
x( ) 1= Ctesti

x( ) 0=

Z Z→

B
m

B
k

→
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is important to consider when performing order computations becauseF(x+1) - F(x)

actually corresponds toF(0) - F(2m-1) if x = -1 (e.g. 11...11). In performing order

computations, this may result inF(x) appearing to be non polynomial over the

domain  even ifF(x) does have a polynomial representation over the range of

possible values forx (Figure 6). Thus, in executing order computations, it is necessary to

determine a bounding function that specifies which values do not need to be considered

when performing tautology checks.

Definition 3.1 Given a functionF(x), where , the bounding function B(x) on the nth

order iteration is:

In words, this is the sum of the Boolean vectors whose corresponding integer values are

greater than2m-n. For example, after one iteration of order reduction with respect to anm

∞– ∞[ , ]

000 111

0 8 16 24

Fig. 6A Boolean function that is polynomial that appears to be

Boolean functionF(x)

Integer functionF(x)

(polynomial over the
Boolean domain)

(non-polynomial over
the integer domain)

 non-polynomial in the integer domain

x B
m

∈

B x( ) x Decode i( )=( )
i 2

m
n–=

2
m

1–

∑=
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bit vector x, the bounding function would be B = . After two

iterations, the bounding function would be B =  +

.

If the input is out of range when incremented, i.e.x = 11...11, then the resulting

F(x+1) - F(x) is immaterial, since the input pattern can not be applied. Thus,F(x+1) + F’(x)

= -1 requires that ifStest is not a tautology, the bounding function must be true. Similarly, if

Ctest is not tautologically zero, the bounding function must be true ifF(x+1) + F’(x) = -1.

The tautology check requires that:

 = 1 for all i= 0, 1, ... , k-1.

Example 3.2.4If, after two order computations,  = ( )’ and

all other bits of Stest and C’ test are a tautology, then  + B =

( )’ +  +  = 1 and the

bit satisfies the tautology check. Thus, within the interval x = [0, 2m-1], the original Boolean

functionF(x) is of order 2.

3.2.2.6  The Complete Algorithm

The complete algorithm for computing the order of a Boolean functionF(x), given its

BDD representation, is shown in Figure 7. Step (1) initializes the functionFsum(x) to F(x)

xm 1– xm 2– ... x0⋅ ⋅ ⋅

xm 1– xm 2– ... x0⋅ ⋅ ⋅

xm 1– xm 2– ... x′0⋅ ⋅ ⋅

Stesti
x( ) B x( )+

 
  C′testi

x( ) B x( )+
 
 ⋅

Stest0
x( ) xm 1– xm 2– ... x0⋅ ⋅ ⋅

Stest0
x( )

xm 1– xm 2– ... x0⋅ ⋅ ⋅ xm 1– xm 2– ... x0⋅ ⋅ ⋅ xm 1– xm 2– ... x′0⋅ ⋅ ⋅
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and the functionFcarry(x) to 0, an operation of linear complexity with respect to the size of

the BDD representation ofF(x). Step (2) computesF’(x)  by complementingFsum(x) and

Fcarry(x), an operation of constant complexity with respect to BDD size. Step (3) computes

the functionF(x+1) by replacingx with x+1 in the functionsFsum(x) andFcarry(x), an

operation of quadratic complexity with respect to BDD size. Step (4) then reduces the order

of F(x) by exactly one by computing the sumF(x+1) + F’(x) . This computation is

performed by adding the results of Steps (2) and (3) with a two-stage carry-save addition,

producing a newFsum(x) andFcarry(x). This step is of quadratic complexity with respect to

BDD size. Step (5) computes the bounding function B(x) that restricts the domain over

which the sumF(x+1) + F’(x)  is evaluated, an operation that is of constant complexity

relative to BDD size. Step (6) then checks the sumF(x+1) + F’(x)  to see if each output bit is

(2) Calculate
F’sum(x)

F’carry(x)

(1) Initialize
Fsum(x) = F(x)

Fcarry(x) = 0

(3) Calculate
Fsum(x+1)

Fcarry(x+1)

(4) Calculate
F(x+1) + F’(x)

(5) Calculate

B(x)
(6) Tautology

Check

Fsum(x)

Fcarry(x)

Order =
Number of
Interations

(7) Set New

No

Yes

Fig. 7Algorithm for computing the order of a Boolean function F(x)
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a tautology within the bounds specified by B(x), an operation of constant complexity with

respect to BDD size. If the tautology check is unsuccessful, then Step (7) setsFsum(x) and

Fcarry(x) to the result of Step (5) and initiates a new recursion, an operation of linear

complexity with respect to BDD size. Otherwise, the order of the minimum order

polynomial representation is one less than the number of recursive computations that were

performed.

Example 3.2.5 Consider the functiony = F(x), where  and , that

implementsF(x) = x2. Initializing the sums to F(x) and the carryc to zero yields the

following input vectors:

s0 = x0 c0 = 0

s1 = 0 c1 = 0

s2 = c2 = 0

s3 = c3 = 0

s4 = 0 c4 = 0

The following steps are followed to determine the order of these input vectors:

(1) F(x+1):

s0 = x0’ c0 = 0

s1 = 0 c1 = 0

s2 = c2 = 0

s3 = c3 = 0

s4 = 0 c4 = 0

(2) F’(x) :

s0 = x0’ c0 = 1

s1 = 1 c1 = 1

s2 = x0 + x1’ c2 = 1

s3 = x0’ + x1’ c3 = 1

x B
2

∈ y B
5

∈

x0′ x1⋅

x0 x1⋅

x0 x1 x0⊕ 
 ⋅

x0′ x1 x0⊕ 
 ⋅
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s4 = 1 c4 = 1

(3) F(x+1) - F(x) (1st iteration)

s0 = 1 c0 = 0

s1 = x0’ c1 = 1

s2 = c2 =

s3 = x0 + x1  c3 = x1’

s4 = c4 = 1

(4) Tautology Check

s0 = 0 c0 = 0 fails

(5) F(x+1) - F(x) (2nd iteration)

s0 = 0 c0 = 1

s1 = 1 c1 = 0

s2 = 1 c2 = 0

s3 = x0’ + x1’ c3 = x0

s4 = c4 =

(6) Tautology Check

s0 = 1 c0 = 0

s1 = 0 c1 = 0 fails

(7) F(x+1) - F(x) (3rd iteration)

s0 = 0 c0 = 1

s1 = 0 c1 = 0

s2 = 1 c2 = 1

s3 = x1  c3 = x1’

s4 = c4 = x0 + x1

(8) Tautology Check

s0 = 1 c0 = 0

s1 = 1 c1 = 0

s2 = 1 c2 = 0

s3 = 1 c3 = 0

s4 = 1 c4 = 0

x1 x0⊕ x1′ x0⊕

x0′ x1⋅

x0′ x1⊕ x0′ x1⋅

x0 x1′⋅
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Three iterations reduceF(x) to 0 for allx. Thus,F(x) is of order 2.

Each step within the order computation algorithm is of polynomial complexity with

respect to the number of nodes in the BDD representation ofF(x). However, the minimum-

order polynomial representation may be of exponential order with respect to the number of

bits in the input wordx. Thus, the number of recursions that are performed may be

exponential. Sections 3.3 and 4.4 detail partitioning and approximation algorithms for

efficiently generating polynomial representations for those circuits whose representations

would otherwise be of exponential order.

Once the order of the function has been determined to ben, F(x) is evaluated atx =

00...00,x = 00...01, ... ,x = Decode(n). Solving the following set of linear equations for c0,

c1, ... , cn yields the polynomial representation of the Boolean function:

3.2.3  Extension to Multivariable Functions

The techniques described above consider only univariable functions. However,

multivariable polynomials exhibit the same features that allow order computation to be

performed recursively. That is,F(x, y) = F(x+1, y) + F’(x, y) recursively reduces the order

of F(x, y) with respect tox by one on each iteration ify is held constant. Thus, the order of

F(x, y) can be determined with respect tox and with respecty. However, the unique,

minimum-order polynomial computation requires solving a set ofnxny simultaneous linear

0( ) n
0( ) n 1–

... 1

1( ) n
1( ) n 1–

... 1( ) 0

... ... ... ...

n( ) n
n( ) n 1–

... n( ) 0

cn

cn 1–

...

c0

•

Encode F 00...00( )( )
Encode F 00...01( )( )

...

Encode F Decode n( )( )( )

=
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equations, wherenx is the order with respect tox andny is the order with respect toy.

3.3 Representation of Functions Containing Branches

To this point, the methods we have described allow computation of a polynomial

representation for combinational circuits. As proven in Theorem 3.2, polynomial

representations exist for all combinational circuits. For those circuits that implement

arithmetic functions, such as those generated by composing addition and multiplication

operations, this representation is of very low order (e.g. one term to represent

multiplication, two terms to represent addition). Consider, however, models of

combinational circuits that contain branches, i.e. discontinuities. For such circuits,

polynomial representations, if computed using only the techniques described above, are

usually of exponential order with respect to input word size. This is because a branch in the

Boolean domain usually describes a set of coordinates in the integer domain that can only

be fit to an exponentially-large polynomial. However, a high order polynomial

representation is an indicator that a branch exists within a circuit. This indicator can be use

to partition circuit inputs into domains in which polynomial representations of low

complexity exist. The boundaries of these domains are termeddiscontinuities.

Example 3.3.1 Consider the JPEG Coefficient Encodercoefficient = F(q), with a 16 bit

input and 4 bit output, which selects an output based on the range of the quantized input

values.

if ( q == 0000000000000000) coefficient  = 0000;

else if ( q < 00000000000000010) coefficient  = 0001;

else if ( q < 00000000000000100) coefficient  = 0010;

...

else coefficient  = 1111;

The encoder is performing an operation within each branch that is represented by
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polynomials of order zero. However, using the order computation methods described above,

the discontinuities at the integer valuesq = 2i cause the overall circuit to have a polynomial

representation of order 216.

To prevent an exponential number of order computation recursions from being

performed on functions that contain branches, we use a heuristic based on adiscontinuity

threshold. Once the number of iterations has reached this threshold, the function is assumed

to contain branches. The threshold is determined heuristically and enables efficient

detection of discontinuities. Discontinuity detection, in turn allows order computation to be

performed on each branch of the circuit model.

Given a functiony = F(x): , with order greater than the discontinuity

threshold, discontinuities can be detected by performing order computation onF(x) for the

case xm-1 = 0 and the case xm-1 = 1. If the orders for each computation are different, and

below the discontinuity threshold, a discontinuity has been detected and exists betweenx =

01...11 andx = 10...00. If the order ofF(x), for xm-1 = 0 or xm-1 = 1, is still above the

threshold, then a discontinuity exists within the corresponding domain. Within that domain,

an order computation is then performed onF(x) for the case xm-2 = 0 and the case xm-2 = 1.

Domain partitioning continues until the discontinuity is detected.

Similar to performing a binary search, detection of a single discontinuity is of linear

complexity with respect to the number of input bits, not considering the complexity of the

order computation.

Example 3.3.2 Consider the functiony = F(x), where , that is implemented by the

following Verilog code:

if ( x > 4’b1011)

B
m

B
k

→

x B
4

∈
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then y = x*x*x ;

else y = x*x;

If we proceed blindly, computing the order ofF(x) will generate an order of 24 because of

the discontinuity atx = 1011. However, if we start with an initial discontinuity threshold of

4, then after four order iterations, the uppermost bit of x will be set to zero, then one, and the

order computations will be performed for each case. The order computation for x3 = 0 will

result in an order of 2. The order computation for x3 = 1 will again reach the fourth iteration

without passing the tautology check. The second most significant bit is set to zero, then one,

and the order computation is performed again. Then order computation for x3x2 = 11 will

result in an order of 3 and the computation for x3x2 = 10 will result in an order of 2. Since

both computations converged, but converged to different values, there is a discontinuity on

the interval boundary. Thus, over the integer interval [0, 11] an order of 2 is determined and

over the intriguer interval [12, 15] an order of 3 is determined.

Performing discontinuity detection is the equivalent of detecting the control

operations of a circuit. Each discontinuity represents a branch within a circuit. This

effectively splits a circuit into control operations (the conditions under which a branch is

executed) and datapath operations (the functionality executed within a branch). Thus, a high

order polynomial is indicative of control operations while a low order polynomial is

indicative of datapath operations. Each operation type can then be represented by the

structure that is smallest in size for that class of operations. The conditions under which a

branch is executed can be represented by a BDD, while the branch functionality is

represented by a polynomial.

Example 3.3.3 The function of Example 3.3.2 has been partitioned into two branches. The

BDDs that represent the conditions for executing each branch comprise the control

operations. The polynomials that represent the functionality within each branch represent

datapath the datapath operations:
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3.4 Don’t Care Sets

Sub-blocks within a specification are frequently conditionally executed. Example

3.2.2 illustrated a specification in which the operationx3 is performed whenx > 11 andx2 is

performed whenx < 12. If no library element matches the complete specification, it may be

advantageous to map the blocks performingx3 andx2 to existing components. However, an

existing component need not exactly match the polynomial functionality of the sub-blocks.

Under conditions during which the sub-blocks are not executed, the output of a component

used to implement that functionality is immaterial. This is the equivalent of an

Controllability Don’t Care (CDC) set. Similarly, output values of the sub-block for which

the output is immaterial are the equivalent of the Observability Don’t Care set (ODC).

These relaxed functionality constraints can be incorporated into the computation of the

polynomial representation.

When bounding the domain over which the polynomial representation was computed

(Section 3.2.2.5), the tautology check was performed on the function:

x3

x2

0 1

x3

x2

1 0

y = x3 y = x2

Control BDD

Datapath Polynomial

Branch 0 Branch 1
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This equation restricts order computation to the input domain that does not include

those values that satisfy B(x). Similarly, CDC(x) defines values of the input domain that do

not need to be considered when performing order computation. Thus, the CDC set can be

accounted for by performing the tautology check on the following equation:

The ODC set is a function of output values. Thus, to incorporate ODC(F) into the

tautology check computation, each bit ofF must be replaced in the ODC expression with

the BDD that describes that bit, resulting in the expression ODC(x). Thus, the following

tautology check takes into account Don’t Care sets:

3.5 Summary

Design reuse is an effective method for reducing the time required to design large

systems. However, in order automate such a methodology, a means of representing reusable

components compactly and canonically is required. In addition, implementation of a large

system is made easier if component representations provide rules for composition, allowing

synthesis of larger systems from individual components.

The techniques presented in this chapter allow construction of mathematical,

specifically polynomial, models of existing components given only a logic level description

of the component’s functionality. Polynomial models are guaranteed to exist for all

combinational blocks and each block is guaranteed to have a unique representation. By

generating a polynomial representation for an existing component, comparison with a

Stesti
x( ) B x( )+

 
  C′testi

x( ) B x( )+
 
 ⋅

CDC x( ) S+ testi
x( ) B x( )+

 
  CDC x( ) C′testi

x( ) B x( )+ +
 
 ⋅

ODC x( ) CDC x( ) S+ + testi
x( ) B x( )+

 
  ODC x( ) CDC x( ) C′testi

x( ) B x( )+ + +
 
 ⋅
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mathematical specification can be performed at the word level, speeding the allocation

process. These techniques can be applied to components that perform control and datapath

operations, through domain partitioning. In addition, components with any number of input

words can be represented by polynomial models.

Computation of polynomial representations can performed by determining the order

of the minimum order representation. This figure is then used to extract the appropriate

number of coordinates from a component to compute polynomial coefficients. Separation of

control from datapath operations within a component can be performed based on the order

of polynomial used to represent a component or sub-block of a component. High order

representations indicate that a block contains control functionality while low order

representation are indicative of datapath operations.

The techniques presented to this point are applicable to combinational blocks.

Introduction of synchronous elements in a design removes the guarantee of the existence of

a polynomial representation, though not the uniqueness of those that do exist. Furthermore,

although the techniques presented to this point are of quadratic complexity with respect to

the size of the component’s BDD, the input domain may be partitioned an exponential

number of times for certain classes of functions. The resulting polynomial representation

would then be exponentially complex. Chapter 4 will present solutions to the limitations of

the techniques presented in this chapter.



58Chapter 4 Advanced Polynomial Methods

Chapter 4
Advanced Polynomial

Methods

4.1 Introduction

The techniques presented in Chapter 3 provide a means of constructing a word level

polynomial that represents the functionality performed by a block of combinational logic.

Furthermore, a means of detecting branches, or control operations, within a block was

presented. This allowed component matching to be performed efficiently for combinational

circuits that contained few branch operations. However, many circuits implement

synchronous elements and contain many branch operations. In this chapter, we present a

mechanism for determining the polynomial representation of components that contain

synchronous elements. In allowing synchronous elements, we introduce the possibility that

a block may contain a feedback path, or loop. While such blocks do not always have

polynomial representations, we derive methods for performing component matching using

polynomials. Furthermore, for a subset of components that contains many control

operations, we develop a technique for computing a polynomial that approximates the

component’s functionality. The error of this approximation is also determined.
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4.2 Synchronous Acyclic Circuits

In Chapter 3 (specifically Theorem 3.2) it was established that polynomial

representations,y = F(x), exist for all combinational circuits. This was due to the fact that

combinational circuits specify a finite number of input/output pairs (x, y) with

corresponding integer values(x, y) that can be treated as coordinates to which a polynomial

can be fit. Synchronous circuits pose an additional problem because circuit outputs are not

only a function of the current inputs but also previous inputs. Thus, the polynomial

representation of a synchronous circuit contains terms that are dependent on previous input

values:y = F(x, x@1, x@2, ..., x@p). The symbolx@i indicates the value ofx that is

delayed byi cycles [De94].

4.2.1  Determining Combinational Equivalents

A polynomial representation for synchronous acyclic circuits can be computed by

computing the polynomial representation for the equivalent combinational circuit with

delayed input values. Consider a synchronous circuit represented by a synchronous logic

network - i.e. a directed acyclic graph whose vertices represent combinational logic

functions, whose edges represent function dependencies, and whose edge-weights represent

synchronous delays introduced by registers. The sequential depth of the network,p, is the

weight of the longest path. A synchronous logic network can be transformed into a

combinational function of delayed input variables with delay less than or equal top.

A synchronous logic network can be defined as the multi-graph {V, E, W}, where

(1) V is the set of vertices vi that represent operations;

(2) E is the set of edges eijk that represent node connectivity, where eijk is an edge that

connects nodes vi and vj (note that a third subscript k is necessary as there can be
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multiple edges connecting two nodes);

(3) W is the set of weights wijk that indicate the number of synchronous elements

between two nodes.

A synchronous logic network is transformed into an equivalent combinational

network by duplicating all subgraphs in the synchronous network that end with a sink node

with outgoing edges of different weight. The duplicated nodes are renamed to reflect the

delay incurred on the associated outgoing edge (e.g. vi becomes vi@wijk). The outgoing

edge in the duplicated subgraph is re-weighted to have zero delay (e.g. eijk = 0). The

following algorithm details this transformation and is initialized by setting vcurrent to be the

input nodes of the synchronous logic network:

synch_to_comb(v current , V, E, W) {

w = minimum(w current jk );

for each e current jk  {

if (w current jk  != 0) {

duplicate_predecessors(v current , w current jk , V, E, W);

/* Duplication requires creation of a new node

vcurrent @wcurrent jk , and its associated edges.

Associated edge weights are zero. */

}

}

if (w == 0) {

remove_predecessors(v current , V, E, W);

}
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for each e current jk  {

synch to comb(v j , V, E, W);

}

}

An example of the transformation of a synchronous network into its equivalent

combinational network is shown in Figure 8.

Given an acyclic synchronous network with depthp, the equivalent combinational

function isF(x, x@1, x@2, ..., x@p). Note thatp is finite due to the restriction that the

circuit does not have feedback. A polynomial representation forF(x) can now be

determined fromF(x, x@1, x@2, ..., x@p). The order ofF(x, x@1, x@2, ..., x@p) is

+

x y

Fig. 8Transformation of a sequential adder into a combinational circuit
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determined with respect to eachx@j, for , as independent variables, and the

coefficients of the polynomial representation are determined. In the example of Figure 8,

this would result in the polynomial representationF(x) = x + 2x@1 + x@2.

4.3 Synchronous Cyclic Circuits

The method for determining polynomial representations for sequential acyclic

circuits relied on the acyclic nature of the circuit to guarantee that a finite number of time-

shifted inputs were required. However, by breaking the feedback path of a cyclic circuit

F(x), the previous techniques can be used to derive the order of the cyclic circuit. This is

achieved by introducing an inputFfeedback, and determining the order of F(x, Ffeedback)

with respect tox andFfeedback.

A synchronous cyclic circuit can be modeled as a Mealy/Moore finite state machine

(FSM) that may or may not have an initial state. For example, a rasterizer is a synchronous

cyclic circuit with an initial state and an Infinite Impulse Response filter is a synchronous

cyclic circuit with no initial state. For the sake of this analysis, we consider three different

topologies of synchronous cyclic circuits: (1) an FSM with no initial state, (2) an FSM with

an initial state that does not reach a steady state, and (3) an FSM with an initial state that

reaches a steady state after a finite number of cycles. In the terminology of Section 1.1.2

each of these cases can be seen as a loop of guarded dataflows. As shown in Figure 9, we

can represent each of these topologies as a functionF(x) that may have up to three

branches: a branch corresponding to an initialization state (f1(x)), a branch corresponding to

the transient states (f2(x, Ffeedback)), and a branch corresponding to a steady state (labeled

=).

0 j p≤ ≤
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The initialization branch is a dataflow guarded by the signalinitialize, the transient branch

is a dataflow guarded by the expressioninitialize + steady, and the steady-state branch is a

dataflow guarded by the signalsteady.

Using the techniques described previously, we can compute a polynomial

representation for each branch. An initialization branch has a polynomial representation that

contains no terms with the variableFfeedback. A steady-state branch has the polynomial

representationF(x, Ffeedback) = Ffeedback. If the function contains no initialization branch or

no steady state branch (topology (1) or (2)), then no polynomial representationF(x) exists.

However, the circuit is uniquely represented by the polynomialF(x, Ffeedback). In the case

of topology (1),F(x, Ffeedback) is simply f2(x, Ffeedback). In the case of topology (2),F(x,

Ffeedback) is comprised of two domains (corresponding toinitialize = 1 andinitialize = 0 in

Figure 9), and isf1(x) within the first domain andf2(x, Ffeedback) within the second domain.

Example 4.2.1 illustrates computation of a polynomial representation for FSM with

initialize

1

0

F(x)

f1

f2

x

Ffeedback

Fig. 9Synchronous cyclic circuit models: (1) with only a transient feedback branch,

F(x)f2
x

Ffeedback

Uniquely represented

by f2(x, Ffeedback)
Uniquely represented

by f1(x) and f2(x, Ffeedback)

R

R

initialize

1

0 F(x)

f1

f2

x

Ffeedback

steady

0

1

=

Uniquely represented byF(x)

R

(2) with a transient and an initialization path
(3) with a transient, initialization, and steady state branch.
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topology (2).

Example 4.3.1 Consider the finite state machine with a one bit input (initialize) and a three

bit outputF(initialize) = {enableA, enableB, enableC} that provides round-robin access to

memory for three clients:

Breaking the feedback loops yields the functionF(initialize, Ffeedback). Performing order

computation results in the detection of four branches, each of which is order zero (i.e

constant). For example, in the branch that is executed under the condition initialize = 1, the

outputF(initialize, Ffeedback) = {enableA, enableB, enableC} = 100. Thus the polynomial

representation for this branch isF(initialize, Ffeedback) = 4. Coefficient computation for each

branch yields the following order zero polynomial representations forF(initialize, Ffeedback):

An initialization branch exists, but no steady-state branch exists, thusF(initialize, Ffeedback)

uniquely represents the finite state machine (although other finite state machines exist that

perform the same operation with different state encodings).

The remainder of this analysis focuses on circuits for whichF(x, Ffeedback) is not a

unique representation, i.e. those circuits that contain both an initialization state and steady

state (topology (3)).

Domain Polynomial

initialize = 1 F(initialize, Ffeedback) = 4

initialize = 0 AND 3 < Ffeedback F(initialize, Ffeedback) = 2

initialize = 0 AND 1 < Ffeedback < 4 F(initialize, Ffeedback) = 1

initialize = 0 AND Ffeedback < 2 F(initialize, Ffeedback) = 4

enableA = 1
enableB = 0
enableC = 0

enableA = 0
enableB = 1
enableC = 0

enableA = 0
enableB = 0
enableC = 1

initialize
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4.3.1  Order Computation with Feedback

Assume functiony = F(x):  implements three branches, one initialization

branch (f1(x)), one steady state branch, and one transient feedback branch (f2(x, Ffeedback)).

We assume that a signal controls the number of iterations through the transient feedback

path. We can then evaluate the circuit based on the number of iterations of the transient

feedback branch.

The order off1(x) with respect tox, referred to asnx1, can be determined by

computing the equivalent combinational circuit and using the techniques presented in

Chapter 3. As a result, the polynomial representation of this branch,f1(x), can be

determined. Furthermore, ify = Ffeedback(x) is treated as an input tof2(x, y), then the order

of f2(x, y) with respect tox, referred to asnx2, and with respect toy, referred to asny, can

also be determined. As a result, the polynomial representation of this branch,f2(x, y), can be

determined. After initialization, the order ofF(x) is nx1, and after the first iteration of the

non-steady-state feedback branch, the order ofF(x) is less than (nynx1 + nx2) and greater

thannynx1. In general, if the order ofF(x) is nt aftert iterations, then the order ofF(x), after

one more iteration of the non-steady-state feedback branch, is less thannynt + n2 and greater

thannynt. Thus, the upper bound on the order ofF(x) aftert iterations is:

To determine the order ofF(x) there are three cases that need to be considered:

(1) t is known,

(2) t is not known,ny = 1, and there is noxy term inf2(x,y),

B
m

B
k

→

ny
t

nx1⋅ ny
i

nx2⋅
i 0=

t 1–

∑+
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(3) t is not known, and (  or there is anxy term inf2(x,y)).

In case (1), the order ofF(x) can be bounded according to the equation above. Incase (2),

since there is noxy term in f2(x,y), the order ofF(x) does not increase on successive

iterations, and is simply the greater ofnx1 andnx2. For both of these cases, since the order of

F(x) is bounded, a polynomial representation exists forF(x). If the upper bound on the

order isnu, this representation can be determined by extractingnu+1 points from the circuit

to create the system of linear equations that determine the polynomial coefficients. Incase

(3), the order ofF(x) is dependent ont and is therefore unbounded and has no polynomial

representation. However, like the cyclic circuits with no initialization or steady state branch,

the polynomial representationF(x, Ffeedback) uniquely specifies the functionality of the

circuit, and can be used to perform matching as shown in Section 4.5.3.

Example 4.2.2 Consider a Boolean circuitF(x, y) with inputsx, y, outputz, that performs

multiplication through iterative addition by executing the following initialization branch

and feedback branches:

initial begin always @ ( z  or x  or d) begin

z = x ; if ( d) z = z + x ;

d = y ; if ( d) d = d - 1 ;

end end

Breaking the feedback loops introduces variableszfeeback and dfeedback and results in

computation of the following set of polynomials:

Since the feedback polynomialz = zfeedback + x is of order one with respect to zfeedback and

contains noxzfeedbackterm,case (2) is satisfied, and the order ofF(x, y) with respect tox is

initialize = 1 initialize = 0 and d  0 initialize = 0 and d = 0

z = x z = zfeedback + x z = zfeedback

d = y d = dfeedback - 1 d = dfeedback

ny 1≠

≠
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the greater ofnx1 and nx2, both of which are 1. Since the feedback polynomiald = dfeedback

- 1 is of order one with respect todfeedbackand contains noydfeedbackterm,case (2) is also

satisfied for this polynomial, and the order ofF(x, y) with respect toy is the greater ofny1

and ny2, which are one and zero respectively. ThusF(x, y) is of order one with respect to

both inputs (i.e.nx = 1 andny = 1) , requiring (nx+1)(ny+1) = 4 points to be extracted from

the circuit. The points (x, y, z) = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)} can be extracted,

yielding the following system of equations:

The solution to the system of equations yields the polynomial representationF(x, y) = xy.

4.4 Approximations

Polynomial representations are an efficient way to encapsulate the functionality of

arithmetic circuits. Furthermore, circuits that implement non-arithmetic operations can be

modeled efficiently by determining subdomains over which the circuit implements

functionality that has a low-order polynomial representation, as shown in Section 3.3.

However, this representation becomes very complex when the number of subdomains is

large. For example, as illustrated in Figure 10, circuits that approximate arithmetic

functions frequently generate many subdomains.

0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 1

c3

c2

c1

c0

•

0

0

0

1

=
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Example 4.4.1 Consider a circuit that implementsF(x) = (x >> 1), wherex is anm bit word,

requires 2m-1 subdomains (Figure 10) in its polynomial representation. Rather than represent

F(x) as a list of subdomains ofx and corresponding polynomialsF(x) that describeF(x)

exactly over those subdomains, it is much more efficient to representF(x) as the polynomial

x/2 and specify the maximum error between the continuous functionx/2 and the exact

polynomial representationF(x).

Given a Boolean functiony = F(x): , with corresponding integer values

(x, y), an approximate polynomial representationyapprox = Fapprox(x) can be determined.

The approximate polynomial representation is determined such that

for all x, where ∆ is a given accuracy. Approximation allows a low-order polynomial

representation to be generated for a Boolean function that would otherwise have a

polynomial representation of high order. Sections 4.4.1 through 4.4.4 derive in detail the

approximate polynomial representationFapprox(x) and the tolerance∆ within which the

Fig. 10Subdomains generated by the function F(x) = x >> 1.

Domain Polynomial
F(x) = 0
F(x) = 1
F(x) = 2
F(x) = 3
F(x) = 4

[0, 1]
[2, 3]
[4, 5]
[6, 7]
[8, 9]

0
0

5

12x

F(x)

... ...

B
m

B
k

→

F x( ) Fapprox x( )– ∆≤
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approximation is accurate.

4.4.1  Computing Approximations

As proven in Theorem 3.1, the order of a function is reduced by one by computing

the differenceF(x+1) - F(x). The algorithms to this point have relied on the resulting fact

that, if the order ofF(x) is n, then recursively performing this differencen+1 times will

reduce the function to zero. Now we relax the requirement thatF(x+1) - F(x) be exactly

zero. If performing this differencen times results in a function that is not zero, but is

numerically close to zero, then the polynomial representationF(x) of F(x) can be

approximated well by a polynomial of degreen.

To translate this to approximating a Boolean functionF(x) with a polynomial, again

consider the functiony = F(x): . If the most significantq bits ofy are 1, then for

the two’s complement integer encoding of ,y = Encode(y), the inequality -2k-q < y

holds. Similarly, if the most significantq bits of y - Decode(2k-q) (performed using two

complement arithmetic) are 1, then the inequalityy < 2k-q holds. As, a result, ifF- is defined

to beF(x+1) - F(x) andF+ is defined to beF(x+1) - F(x) -Decode(2k-q), then the following

statement holds: if the upperk bits of the bitwise or ofF- and F+ are 1, then-2k-q< F(x+1)

- F(x) < 2k-q. The bound onF(x+1) - F(x), allows us to derive an approximation ofF(x):

Let F(x+1) - F(x) = G(x)

GivenF(0)

=> F(1) = G(0) + F(0)

=> F(2) = G(1) + F(1) = G(1) + G(0) + F(0)

...

B
m

B
k

→

y Z∈
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=>

If Encode(G(i)) is small (e.g.-2k-q <  Encode(G(i)) < 2k-q, for suitableq), the polynomial

representation of  is well approximated by the line

.

F(x) can then be approximated by:

Example 4.4.2 Consider the eight-bit functiony = F(x) where  and :

y0 = x1; y4 = x5;

y1 = x2; y5 = x6;

y2 = x3; y6 = x7;

y3 = x4;  y7 = 0;

This circuit could be partitioned into 64 subdomains and represented exactly with 64

order-0 polynomials (similar to Figure 10). However, the first difference iteration reveals

that the upper 7 bits ofF(x+1) + F’(x) are 1, yielding the bound-1 < F(x+1) - F(x) < 1.

Therefore, F(x) can be approximated by the first order polynomialFapprox(x) =

x(Encode(F(11...11) - F(0)))/28 = .498x.

4.4.2  Computing Error for the Linear Approximation

In this section, we will compute a bound on the accuracy∆ of a linear approximation

to the polynomial representationF(x). The difference betweenF(x) andFapprox(x), termed

∆(x), is:

F x( ) G i( )
i 0=

x 1–

∑
 
 
 

F 0( )+=

G i( )
i 0=

x 1–

∑
 
 
 

x EncodeF 11...11( ) F 0( )– 2
m⁄ 

 
⋅

Fapprox x( ) x Encode F 11...11( ) F 0( )–( ) 2
m⁄ 

 
⋅ Encode F 0( )( )+≈

x B
8

∈ y B
8

∈
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Since -2k-q < Encode(G(i)) < 2k-q, it requires only k-q bits to representG(i).

Assuming  for a good approximation, computation of (Encode(G(i)) -

Encode(F(11...11) - F(0))/2m) need only be performed only over a short word length (k-q

bits). Since the Encode operation is distributive (i.e. Encode(A) + Encode(B) = Encode(A +

B)), the following equivalence holds:

2m(Encode(G(i)) - Encode(F(11...11) - F(0))/2m)

= Encode((G(i) << m) - (F(11...11) - F(0)))

Definingδ(i) = (G(i) << m) - (F(11...11) - F(0)) yields:

Replacingδ(i) by the sum of its bitsδj(i) ( ) yields:

An upper bound on∆(x) can then be determined from each bitδ+
j(i) of the positive values

of δ(i):

∆ x( ) Encode G i( )( ) Encode F 11...11( ) F 0( )–( ) 2
m⁄– 

 

i 0=

x 1–
∑=

k q≈

∆ x( ) 2
m⋅ Encode δ i( )( )

i 0=

x 1–

∑=

i.e. Encodeδ i( ) 2
j δj i( )⋅

j 0=

m k q– 1–+

∑=

∆ x( ) 2
j m– δj i( )( )⋅

j 0=

m k q– 1–+

∑
 
 
 

i 0=

x 1–

∑=

∆ x( ) 2
j m– δ+

j i( ) 0≠ 
 

⋅
j 0=

m k q– 1–+

∑
 
 
 

i 0=

x 1–
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Similarly, a lower bound can be determined from each bitδ-
j(i) of the negative values of

δ(i):

Following two’s complement arithmetic, if the most significant bit ofδ(i) is zero, thenδ(i)

is positive and, if the most significant bit ofδ(i) is one, thenδ(i) is negative. Since the most

significant bit ofδ(i) is δm+k-q-1(i), the bitsδ+
j(i) andδ-

j(i) can be determined by computing

the positive and negative cofactor ofδj(i) with respect toδm+k-q-1(i) .

Computing∆(x) for all 2m values of x is prohibitively complex due to the size of the

domain and the fact that∆(x) is a summation of x values. However the equivalence holds:

Therefore, to circumvent this summation and determine a bound on∆(x), the maximum

values for the following are determined:

∆(x+1) - ∆(x) where bit x0 of x is 0

∆(x+2) - ∆(x) where bits x0, x1 of x are 0

...

∆ x( ) 2
j m– δ-

j i( ) 0≠ 
 

⋅
j 0=

m k q– 1–+

∑
 
 
 

i 0=

x 1–

∑>

∆ x( ) ∆ 0( ) xo ∆ x 1+( ) ∆ x( )–( )⋅ xo x1 ∆ x 2+( ) ∆ x( )–( )⋅ ⋅ ...+ + +=

xo x1 ... xm 1– ∆ x 2
m 1–

+( ) ∆ x( )– 
 

⋅ ⋅ ⋅ ⋅+

Thus ∆, x( ) xi
j 0=
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∏
 
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 
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∆(x+2m-1) - ∆(x) where bits x0, x1, ..., xm-1 of x are 0

The maximum value of the computation∆(x+2j) - ∆(x), where bits x0, x1, ..., xj of x

are 0, yields the maximum error contributed by bitj of the input. The sum of the maximum

values of each of the above equations provides the maximum error contributed by all bits,

which is a bound on the error of the approximation. Thus, a bound on the accuracy of the

linear approximation is:

∆ < [∆(x+1) - ∆(x)] + [∆(x+2) - ∆(x)] + ... + [∆(x+2m-1) - ∆(x)]

As shown in Example 4.4.3, values of∆(x) are be reached by summing a subset of the

above equations.

Example 4.4.3 ∆(0) = 0 ∆(1) = [∆(0+1) − ∆(0)]

∆(2) = [∆(0+2) − ∆(0)] ∆(3) = [∆(1+2) − ∆(1)] + [∆(0+1) − ∆(0)]

∆(7) = [∆(6+1) -∆(6)] + [∆(4+2) -∆(4)] + [∆(0+4) -∆(0)].

Example 4.4.4 For the approximation computed in Example 4.3.2, the resultingδ(i) is:

δ0 = 1; δ5 = 0;

δ1 = 0; δ6 = 0;

δ2 = 0; δ7 = 1;

δ3 = 0; δ8 = i0’;

δ4 = 0; δ9 = i0’;

The error contributed by∆(x+1)-∆(x) when x0 = 0 is Encode(δ(x))/28. This is always

negative because the most significant bit ofδ(x) is 1 when x0 = 0: Encode(δ(x))/28 = -127/

28 = -.5 units. The error contributed by∆(x+2)-∆(x), when x1x0 = 00, is Encode(δ(x+1) +

δ(x)). This is always positive because the most significant bit ofδ(x+1) + δ(x) is 0 when

x0 = 0: Encode(δ(x+1) + δ(x)) = (129 - 127)/28 = .008 units. Similarly, other differences

∆(x+2i)-∆(x) contribute only positive error. Other differences∆(x+2i)-∆(x) contribute a

total of .5 units of positive error, resulting in the error bound: -.5 <∆ < .5. Thus, the circuit

implements the polynomialF(x) = .498x within .5 units. This approximate representation
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is far less complex than the 64 polynomials that would be required to represent the circuit

exactly.

4.4.3  Non-Linear Approximations

A functionF(x) may implement a non-linear operation (e.g.F(x) = (x2 >> 1)) that is

well approximated by a non-linear polynomial representation (e.g.F(x) = x2/2). In this case,

the first iteration ofF(x+1) - F(x) may not satisfy the condition-2k-q< F(x+1) - F(x) < 2k-q.

If a suitable bound is found for thenth iteration ofF(x+1) - F(x), termedGn(x), instead of

the first iteration, then a non-linear approximation forF(x) can be computed from Newton’s

forward difference interpolating formula ([KhTo86]):

The following paragraphs derive this formula and the algorithm for computing Gapprox,i.

Performing the difference F(x+1) - F(x)n times, over the range of all possible input

values, would yield the following values:

F(0) F(1) F(2) F(3) ... F(11..11)

G0(0) G0(1) G0(2) ... G0(11..11)

G1(0) G1(1) ... G1(11..11)

...

Gn(0) ... Gn(11..11)

Note that F(0), G0(0), ..., Gn(0), Gn(1), ..., Gn(11.11) uniquely specify a function. We

Fapprox x( ) Encode F 0( )( ) x
1 

  Encode F 11...11( ) Gapprox 0, 0( )–( )

2
m

1–
-----------------------------------------------------------------------------------------⋅ ...+ +=

x
n 1– 

  Encode Gn 2– 11...11( ) Gapprox n, 1– 0( )–( )

2
m

n 1–( )–
------------------------------------------------------------------------------------------------------------⋅+ +

x
n 

  Encode Gn 1– 11...11( ) Gapprox n, 0( )–( )

2
m

n–
-----------------------------------------------------------------------------------------------------+
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approximate the last row, as in the linear case, with the equation y = Gn(0) + x(Gn-1(11..11)-

Gn(0))/2m. Replacing the values Gi(0) with the values Gapprox,i(0) would yield the following

values (M = (Gn-1(11..11)-Gn(0))/2m):

Fapprox(0) Fapprox(1) Fapprox(2) Fapprox(3) ... Fapprox(11..11)

Gapprox,0(0)Gapprox,0(1)Gapprox,0(2) ... Gapprox,0(11..11)

Gapprox,1(0)Gapprox,1(1) ... Gapprox,1(11..11)

...

Gapprox,n-1(0) ... Gapprox,n-1(11..11)

M M ... M

The difference between the expression represented by this set of forward differences and

those of the original function is:

[F(0) + Σ(G0(0) + Σ(G1(0) + ...+Σ(Gn(0)))] -

[Fapprox(0) + Σ(Gapprox,0(0) + Σ(Gapprox,1(0) + ...+ΣM)]

(limits not shown for readability)

This difference can be minimized by the assignments:

Gapprox,n(0) = (Gn-1(11..11) - Gn(0) - ΣM)/(2m-n)

Gapprox,n-1(0) = (Gn-2(11..11) - Gn-1(0) - ΣGapprox,n-1(i))/(2
m-n+1)

Gapprox,n-2(0) = (Gn-3(11..11) - Gn-2(0) - ΣGapprox,n-2(i))/(2
m-n+2)

...

Gapprox,0(0) = (F(11..11) - G0(0) - ΣGapprox,0(i))/2
m

Note thatΣGapprox,j(i) can be computed explicitly and compactly:

ΣGapprox,j(i) = ΣGapprox,j(0) + ΣΣGapprox,j+1(i)
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= ΣGapprox,j(0) + ΣΣGapprox,j+1(0) + ΣΣΣGapprox,j+2(i)

...

= ΣGapprox,j(0) + ΣΣGapprox,j+1(0) + ΣΣΣGapprox,j+2(0) + ... +ΣΣ...ΣM

Example 4.4.5 Consider the circuit that implements (F(x) = (x2>>1)) where x is an 8 bit

input. After two difference iterations, G2(x) <= 2. By computing (G1(11..11)-G2(0))/2m we

obtain the assignment M = 254/256. We then obtain the values Gapprox,0(0) = (F(11..11) -

G0(0) - ΣM)/2m-1 = 32512-0-32385 = 127/255. Thus, the approximation of the circuit is:

= .496x2 + .002x

4.4.4  Computing Error for the Non-Linear Approximation

In Section 4.4.2, for the linear case, the error was determined by computing an upper

bound for the equation:

If we expand this to the general, nonlinear case, and define Gapprox,j(x) - Gj(x) = δj(x) and

Fapprox(x) - F(x) =∆(x), the forward difference representation of the total error is:

∆(0) ∆(1) ∆(2) ∆(3) ... ∆(11..11)

δ0(0) δ0(1) δ0(2) ... δ0(11..11)

δ1(0) δ1(1) ... δ1(11..11)

...

δn-1(0)/2m ...δn-1(11..11)/2m

x
1 

  Gapprox j, 0( )⋅ x
2 

  Gapprox j 1+, 0( )⋅ ... x
2 

  M⋅+ + +=

x
i 

 

i 0=

n

∑ Gapprox j i+, 0( )⋅=

Fapprox x( ) 0 x
1 

  127
255
---------⋅ x

2 
  254

256
---------⋅+ +=

∆ x( ) 2
m⋅ Encode δ i( )( )

i 0=

x 1–

∑=
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Thus, given∆(0) = 0, the worst case error is the maximum value of the expression:

∆(x) = Σ δ0(0) + ΣΣ δ1(0) + ΣΣΣ δ2(0) + ... +ΣΣ...Σ Encode(δn(x))/2m

(limits not shown for readability)

Similar to the linear case,ΣΣ...ΣEncode(δn(x))/2m can not be computed directly, as it

requires an exponential number of addition operations. In the linear case, this was handled

by using the following equivalence:

∆(x) = ΣEncode(δ(x)) was computed by performing a number of Boolean additions that is

equivalent to the input length (i.e. of linear complexity with respect to input length). For the

casen=2, ∆(x) = Σ δ0(0) + ΣΣEncode(δ1(x))/2m, can similarly be computed by first

explicitly computing∆1(x) = ΣEncode(δn(x))/2m from the above equation, then computing

∆(x) = Σ (δ0(0) + ∆1(x)) as in the linear case. For the general case, the approximation error

can be determined by the following iterative computations:

(1) Compute∆1(x) = ΣEncode(δn(x))/2m

(2) Compute∆2(x) = Σ (δn-1(0) + ∆1(x))

(3) Compute∆3(x) = Σ (δn-2(0) + ∆2(x))

...

(n-2) Compute∆n-2(x) = Σ (δ1(0) + ∆n-3(x))

(n-1) Compute∆(x) = Σ (δ0(0) + ∆n-1(x))

∆ x( ) xi
j 0=

i

∏
 
 
 

∆ x 2
i

+( ) ∆ x( )– 
 

⋅
i 0=

m

∑=
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Note that the number of addition operations performed is linearly proportional to the order

of the approximation multiplied by the number of input bits (i.e.m*n). Example 4.3.6

illustrates this computation.

Example 4.4.6 Consider the circuit of Example 4.4.5 that implements (F(x) = (x2>>1))

where x is an 8 bit input. The circuit is approximated by the order two polynomialF(x) =

.496x2 + .002x. The resultingδn(i) (n=2) is:

δn,0 = 0; δn,5 = 0;

δn,1 = 0; δn,6 = 0;

δn,2 = 0; δn,7 = 0;

δn,3 = 0; δn,8 = 1;

δn,4 = 0; δn,9 = i0’;

δn,10 = i0’;

Computing∆1(x) = ΣEncode(δn(i)) by performingm additions yields:

∆1,0 = 0; ∆1,5 = 0;

∆1,1 = 0; ∆1,6 = 0;

∆1,2 = 0; ∆1,7 = 1;

∆1,3 = 0; ∆1,8 = i0’;

∆1,4 = 0; ∆1,9 = i0’;

∆1,10 = i0’;

Computation of an upper bound on∆(x) = Σ (δ0(0) +∆1(i)) is then performed as in the linear

case. Each of∆(x+2i)-∆(x), where i = 0, 1, ...,m-1 is computed. For each of the 8 resulting

differences, the cofactor with respect to the high order bit yields an expression for maximum

negative error. Summing up these values yields a maximum negative error of -0.5 units.

Computing the cofactor with respect to the complement high order bit yields an expression

for maximum positive error. Summing up these values yields a maximum positive error of

0.5 units. Thus, the approximationF(x) = .496x2 + .002x models the circuit accurately with

error bounds -0.5 <∆ < 0.5.
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4.5 Matching

Consider a circuit specification S(x) that defines the functionality of a circuit. Given a

library of existing components, where each component is described by a Boolean function

F(x), polynomial representations provide a means for quantifying the difference between

the specification S(x) and a potential implementationF(x). This can be achieved by

computing the polynomialε(x) = S(x) - F(x) + ∆, where F(x) is the polynomial

representation ofF(x) within an accuracy of∆, and using traditional numerical methods to

find the maximum value ofε(x). In quantifying the maximum errorε of an implementation

and guaranteeing thatε is within a given tolerance, system traits such as performance,

power, and area can be optimized by selecting faster or smaller designs that implement less

accurate arithmetic.

Example 4.5.1 Consider the specification for an eight bit 3x3 sharpening filter used for

processing grayscale images:

S(x[0, 0], x[0, 1], x[0, 2], x[1, 0], x[1, 1], x[1, 2], x[2, 0], x[2, 1], x[2, 2]) =

(- x[0, 0] - x[0, 1] - x[0, 2]

- x[1, 0] + 8x[1, 1] - x[1, 2]

- x[2, 0] - x[2, 1] - x[2, 2])/9;

Consider an implementationF(x) with the following approximate polynomial

representation:

F(x, x@1, x@2, x@3, x@4, x@5, x@6, x@7, x@8)

(- x - x@1 - x@2

- x@3 + 8x@4 - x@5

- x@6 - x@7 - x@8)/8;

∆ = .875;

For 0 < x < 28, ε(x) < 29 grayscale units. This implementation yields a sharpening filter that

yields an image that is of similar quality to that specified, but likely smaller and faster than

≈
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an exact implementation, since division by 8 can be performed much more efficiently than

division by 9.

4.5.1  Transcendental Specifications

A means of approximating a specification for transcendental functions can be derived

from the results of Taylor series approximation. Given a specification S(x), with Taylor

series Sapprox(x) = 1 + (dS(0)/dx)x/1! + (d2S(0)/dx2)x2/2! + ... + (dnS(0)/dxn)xn/n!, the

difference between Sapprox(x) and S(x) isε(x) = (dn+1F(c)/dxn+1)xn+1/(n+1)! where 0 < c <

x. Thus, if the error in a Taylor series approximation to a function can be bounded, then the

difference between an implementation that matches that approximation and the

specification can be bounded.

Example 4.5.2 An implementation that is determined to be of order 4 and yields the

polynomial representationF(x) = 1 - x2/4 + x4/24 matches the cosine function used in DCT

with an errorε < .0083 over the interval [0, 1].

4.5.2  Composition

The ease with which polynomials can be composed, using traditional algebraic

manipulations, can allow seemingly inappropriate implementations to be combined to fulfill

a specification.

Example 4.5.3 The Boolean functionF(x) with polynomial representationF(x) = x2 may

appear to be a completely inappropriate match for the polynomial specification of cos(x)

derived in Example 4.5.2. However, if an adderFsum(x, y) (Fsum(x) = x + y), negation

elementFneg(x) (Fneg(x) = -x), and shifterFshift(x, y) (Fshift(x,y) = x/2y) exist in the

implementation library,F(x) can be allocated and composed with the adder to approximate

the cos(x):

Fsum(1, Fsum(Fneg(Fshift(F(x), 2)), Fshift(F(F(x)), 5)))
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The polynomial representation that results from this composition isF(x) = 1 - x2/4 + x4/32.

The specification derived in Example 4.5.2 andF(x) differ only in the coefficient of the 4th

order term. For0 < x < 1, this altered coefficient yields a polynomial that is within 1.3% of

the specification.

4.5.3  Cyclic Circuits

As discussed in Section 4.3.1, when the order of a circuit with feedback can be

bounded, a polynomial representation for that circuit can be determined exactly and the

matching techniques described above can be used. Given a specification with bounded order

ns and a cyclic componentF(x) with unbounded order, the inequality:

can be solved fort (wherenx1 is the order of the initialization branchf1(x), nx2 is the order

of feedback branchf2(x, Ffeedback) with respect tox, ny is the order of the feedback branch

with respect to the feedback input, andt is the number of times the feedback branch is

executed). The solution to this inequality provides the bounds ont within which F(x) can

have the same order as S(x), and therefore possibly implement S(x).

If S(x) has unbounded order, then S(x) is implemented byF(x) if and only if the

specification of the initialization branch of S(x), s1(x) = f1(x) and the specification of the

feedback branch of S(x), s2(x, Sfeedback(x)) = f2(x, Ffeedback(x)). Thus, if a functionF(x)

does not have a bounded order, and therefore no polynomial representation, it can still be

compared to a specification S(x) by comparing the initialization and feedback polynomials

of S(x) andF(x). An example of this is shown in Section 4.7.2.

ny
t

nx1⋅ ns ny
t

nx1⋅ ny
i

nx2⋅
i 0=

t 1–

∑+≤ ≤
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4.6 Complexity Issues

The order computation techniques described for combinational circuits in Chapter 3,

as well as the extension described thus far in Chapter 4, are of quadratic complexity with

respect to the size of the BDD representation ofF(x) and output word length. Solving the

set of linear equations for polynomial coefficients is of cubic complexity with respect to the

order of the polynomial, and we assume this order is small (less than the discontinuity

threshold). However, the underlying BDD data structure can be of exponential complexity

for common functions. Thus, reducing the complexity of polynomial computation requires

reducing the complexity of the order computation which, in turn, requires reduction of the

complexity of the BDD.

Assume a functionF(x) has a BDD with 2m intermediate nodes, wherex is anm bit

word. If x is partitioned into two words (xm-1xm-2...xm/200...0) and (00...0xm/2-1xm/2-2...x0),

the BDDs that describe each partition will require no more than two sets of2m/2

intermediate nodes. Similarly, partitioningx into C words will result in a worst case total

node count of T =C2m/C. Minimizing T with respect to m yields:

Partitioningx into words of length  will minimize BDD complexity. This

will result in overall BDD complexity of .

Input partitioning reduces the complexity of computing polynomial representations

dT/dC 2
m C⁄

m C⁄( )–= 2
m C⁄

210log⋅

= 2
m C⁄

1 m C⁄( ) 210log⋅–( )⋅ 
 

C m 210log⋅=⇒

1 210log⁄( ) 4≈

m 4⁄( ) 2
4⋅ 4m=
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by performing curve fitting with a subset of the points within an input domain. These points

are spread logarithmically across the input domain.

Example 4.6.1 If the input to the functionF(x) = x2:  is partitioned into 8

input words, each of length 4, the following input values, expressed with an integer

encoding, are considered when performing order computation:

[20 . 1, 20 . 2, ..., 20 .15], [24 .1, 24 .2, ..., 24 .15], ..., [228 .1, 228 .2, ..., 228 .15].

Thus, inputs outside of this subdomain are not considered when performing order

computation. For the majority of complex elements that implement mathematical

operations, this does not introduce inaccuracies in the representation, as the curve that is

described by the subdomain exactly matches that described by the complete domain.

However, if a circuit implements an input/output pair that satisfies the following conditions:

(1) the input value is excluded from the subdomain (e.g.x = 24 + 1 = 17 in Example 4.6.1)

and (2) that input/output pair does not lie on the polynomial (e.g. ifF(17)  289) that is

determined from the subdomain, the polynomial representation is not accurate. OnceF(x)

has been computed from the restricted domain, possible inaccuracies can be detected by

determining ifF(x) -F(x) is identically zero. Since this difference is likely to be nonzero for

few input points, we assume the *BMD representation for this difference is of low

complexity. Thus, the accuracy of the polynomial representation, and the points at which it

is inaccurate, can be determined efficiently by computing the maximum value ofF(x) - F(x)

from its *BMD representation.

Example 4.6.2Consider the following component description with a single 8 bit input:

F(x) = x7x6x5x4x3x2x1x0 +

(x7+x6+x5+x4+x3+x2+x1+x0)(128x7+64x6+32x5+16x4+8x3+4x2+2x1+x0)
2

B
32

B
64→

≠



84Chapter 4 Advanced Polynomial Methods

Using the complexity reduction technique, the input word is split into two wordsxu =

x7x6x5x4 andxl = x3x2x1x0. Order computation with respect to each word yields an order

two polynomial. Coefficient computation results in the polynomial representationF(x) = x2.

To determine the accuracy of the polynomial representation the *BMD forF(x) - F(x) is

computed:

From the *BMD, the polynomial representation is determined to contain a single inaccuracy

atx = 255 that is in error by -65024 units.

Note that partitioning will guarantee that the order of the polynomial representation

for a component is less 24. For those circuits implementing functions of order greater than

24, a polynomial representation is determined through domain partitioning and

approximation, as explained in Sections 3.3 and 4.4. In practice, very few circuits

implement functions of order greater than 24.

x7

x6

x5

x4

x3

x2

x1

x0

-650240
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4.7 Applications

To illustrate the application of polynomial methods, the synthesis of two applications

using thePOLYSYS synthesis suite is described.POLYSYS implements polynomial methods

to perform component matching. A JPEG Encode block is first synthesized to demonstrate

order computation and discontinuity detection. An IIR filter is then mapped to an existing

filter to demonstrate synthesis with synchronous library elements and approximation.

4.7.1  JPEG Encode Application

Generating polynomial descriptions allows a specification and implementation to be

compared by computing the numerical difference between the polynomials. Consider the

DC path for the JPEG encode system described in Figure 3 and specified in more detail in

Figure 11. The inputs x(i, j) describe grayscale values for an 8x8 pixel block and output DC

represents the encoded DC value for that pixel block.
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Specifications for four system blocks are described: (1) DCT, (2) Quantize, (3)

Coefficient Coding, and (4) DC Coding. Three library elements were generated by

synthesizing the Verilog code shown in Figure 12. Polynomial representations were

computed from the resulting netlists.

DC = (BaseCode<<C) + (Q mod 2C)

Fig. 11Arithmetic specification of the blocks for the DC path of JPEG encode
(inputs: x(i, j), output: DC).

C BaseCode Length

0 010 3

1 011 4

2 100 5

3 00 5

4 101 7

5 110 8

6 1110 10

7 11110 12

8 111110 14

9 1111110 16

10 11111110 18

11 111111110 20

DCT x i j,( )
j 0=

7

∑
i 0=

7

∑=

Q DCT 128⁄ DCprevious–=

C Q2log=

(1) DCT

(3) Coefficient Code

(4) DC Code

(2) Quantize



87Chapter 4 Advanced Polynomial Methods

The first component requires that an order computation be performed for each input.

The order of elementF1(x1, x2, .., x64) with respect to each input is determined to be one

and, after coefficient computation, the polynomial representation is:

F1(x1, x2, ..., x64) = x1 + x2 + ... + x64.

The order of elementF2(x1, x2) block is similarly determined to be one with respect tox1

andx2 and the resulting polynomial representation is:

F2(x1, x2) = x1 - x2.

Order computation for elementF3(x1) yields an order greater than the discontinuity

threshold of 4. As a result, the upper bits of the inputs to each block are successively set to 0

and 1, as described in Section 3.3, and the following partitions and corresponding

Component 1
assign F1 = x1 + x2 + x3 + ... + x64;

Component 2
assign F2 = x1 - x2;

Component 3
always @ (x1) begin

if (x1[11]) begin
F3 = {9’b11111110, x1[10:0]};

end elsif x1[10] begin
F3 = {8’b1111110, x1[9:0]};

end elsif x1[0] begin
F3 = {3’b011, x1[0]};

...
end else begin

F3 = 3’b010;
end

Fig. 12Verilog implementations synthesized to produce library elements F1, F2, and F3.
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polynomial representations are determined:

Performing a numerical comparison between the specification for DCT andF1(x1,

x2, ..., x64), the specification for Quantization andF2(x1, x2), and the specification for

Coding andF3(x1) reveals an exact match for each (ε = 0). Thus, the specification can be

implemented by composing the complex components that exist in the library.

4.7.2  IIR Filter Application

Many embedded applications require digital filters to control mechanical operations.

Common examples include altitude control systems for satellites, yaw dampers in airplanes,

and fuel injection controllers in automobiles. We will apply polynomial methods to

determine an existing filter, from a library of filters, suitable for reuse in a tape drive

controller (Figure 13). Although reuse is not commonly implemented in tape drive design,

tape drive compensation filters provide a compact, illustrative example of how

approximation, synchronous elements, and feedback are handled by polynomial methods.

Domain DC Polynomial

x1 = 0 F3(x1) = 2 + x1

0<x1<2 F3(x1) = 6 + x1

1<x1<4 F3(x1) = 16 + x1

3<x1<8 F3(x1) = x1

7<x1<16 F3(x1) = 80+ x1

15<x1<32 F3(x1) =192 + x1

31<x1<64 F3(x1) = 896 + x1

63<x1<128 F3(x1) = 3840 + x1

127<x1<256 F3(x1) = 15872 + x1

255<x1<512 F3(x1) = 64512 + x1

511<x1<1024 F3(x1) = 26e4 + x1

1023<x1<2048 F3(x1) = 1e6 + x1
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The velocity of the tape with the tape drive is controlled by a voltage applied to the reel

motor. This voltage is a function of past velocities, and therefore past voltages, as well as

the displacement required to position the tape properly. An existing circuit implementation

within the library of filters is shown in Figure 14, with combinational blocks already

described by polynomials.

Fig. 13Digital filter used as a compensator for
controlling the move of a tape through a tape drive

Transfer Function:

.094 - .28z-1 + .19z-2 + .19z-3 - .28z-4 + .094 z-5

1 - 5z-1 + 10z-2 - 10z-3 + 5z-4 - z-5H(z) =

Compensator

Tape
Drive
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The challenge is to determine if the circuit can be allocated to implement the following

specification, generated from MATLAB:

S(x) = 5S(x@1) - 10S(x@2) +

10S(x@3) - 5S(x@4) + S(x@5) +

.09375x - .28125(x@1) + .1875(x@2) +

.1875(x@3) - .28125(x@4) + .09375(x@5)

The first step in generating a polynomial representation for the circuit described in

Figure 14 is to break the feedback paths. This results inFfeedback replacingF in the list of

equations and being added to the list of inputs. The next step in generating a polynomial

representation requires generation of the equivalent combinational circuit. Progressing

down directed acyclic graph that representsF(x, Ffeedback), the first rooted subgraph

represents the assignmentx_q = REG(x). This subgraph is duplicated, generating an

input: x

x_q = REG(x)
x_qq = REG(x_q)
x_qqq = REG(x_qq)
x_qqqq = REG(x_qqq)
x_qqqqq = REG(x_qqqq)

H1 = 160F_q - 320F _qq + 320F_qqq
H2 = - 160F_qqqq + 32F_qqqqq
H3 = x - 3x_q + 2x_qq + 2x_qqq
H4 = 3x_qqqq + x_qqqqq
H = H1 + H2 + H3 + H4
F = H>>5

Fig. 14Circuit description for library element to be compared to tape controller
specification.

output: F

F_q = REG(F)
F_qq = REG(F_q)
F_qqq = REG(F_qq)
F_qqqq = REG(F_qqq)
F_qqqqq = REG(F_qqqq)



91Chapter 4 Advanced Polynomial Methods

additional circuit inputx@1, and the original subgraph is removed. Subsequently, the

rooted subgraph ending withx_qq is duplicated, generating an additional circuit inputx@2

and the original subgraph corresponding to the assignment tox_qq is removed. Continuing

this process, the equivalent combinational circuit is generated, resulting in a circuit with the

following inputs: {x, x@1, ..., x@5, Ffeedback, Ffeedback@1, ..., Ffeedback@5}. The nodes

in the original graph that represented assignments to each of {x_q, ..., x_qqqqq, F_q, ....,

F_qqqqq} were removed as they have been replaced by {x@1, ...,x@5, Ffeedback@1, ...,

Ffeedback@5}. The complete set of resulting equations is:

H1 = 160Ffeedback@1 - 320Ffeedback@2 + 320Ffeedback@3

H2 = - 160Ffeedback@4 + 32Ffeedback@5

H3 = x - 3x@1 + 2x@2 + 2x@3

H4 = 3x@4 + x@5

H = H1 + H2 + H3 + H4

F = H>>5

At this point, the circuit description has no feedback paths and no registers.

Order computation with respect to each of {Ffeedback, Ffeedback@1, ...,Ffeedback@5}

results in an order of one for each input. However, the order of the circuit with respect to

each of {x, x@1, ..., x@5} is very large, indicating that a representation of an

approximation of this circuit will be more efficient. Computation ofF(x+1, x@1, ...) - F(x,

x@1, ... ) reveals that-1 < F(x+1, x@1, ...) - F(x, x@1, ...) < 1. A similar result is

determined forx@1, ...,x@5. Thus, the term that each of {x, x@1, ...,x@5} contributes to

the polynomial representation of the circuit can be represented by an approximation of

order 1, of the formx(Encode(F(11.11) - F(0)))/2n. Following the error quantification steps
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outlined in Section 4.4.2, the bound on the error contributed by approximating each term of

the polynomial that contains one of {x, x@1, ...,x@5} is -.968 <∆ < .968. After performing

coefficient computation, the following polynomial representation for the circuit is

determined:

F(x) = 5Ffeedback(x@1) - 10Ffeedback(x@2) +

10Ffeedback(x@3) - 5Ffeedback(x@4) +

Ffeedback(x@5) + .093749x - .281246(x@1) +

.18749(x@2) + .18749(x@3) - .281246(x@4) +

.093749(x@5)

After closing the loop by settingFfeedback = F, the specification S(x) and

implementationF(x) can be compared by comparing their representative polynomials. The

coefficients of S(x) andF(x) do not match exactly, due to the approximation ofF(x), but are

the same within 10-4. Thus, the existing component can be allocated to implement the

specification if the circuit tolerance of 10-4 is acceptable.

4.8 Experimental Results

To quantify the performance of order computation, a combinational multiplier, with

input lengths ranging from 4 bits to 64 bits, was constructed out of combinational 4 bit

multipliers, and the polynomial representation determined usingPOLYSYS. Multiplier logic

was synthesized from Verilog to construct the Boolean equations that implement the

Synopsys DesignWare multiplier. These equations were then ported to the Cal-2.0 BDD

package which was used to perform BDD operations inPOLYSYS. Experiments were

performed on a 200MHz R4400 Indy Workstation with 256MB of memory.

The time required to determine the order of this circuit is shown in Figure 15(a) and,
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for the 64 bit multiplier, the order was computed in under 80 seconds. Note that by using the

complexity reduction methods from Section 4.6, order computation was performed on

successive 4 bit chunks of each input word. This yielded a maximum BDD size of 61 nodes

which fit completely in the 16KB cache.

As expected, execution time varied with the square of the size of the input word. This

is due to the functionF(x, y) being of order one with respect to each input and having two

inputs. Note that a similar computation for a function with polynomial representationF(x)

= x + K would have been of linear complexity with respect to the size ofx and a more

complex function such as that with polynomial representationF(x) = x2y2 would have

varied with the fourth power of the size of the input word.

To quantify the performance of polynomial methods for synchronous circuits,

experiments were conducted, to gauge the relationship between the execution time required

to generate equivalent combinational circuits and the number of registers (Figure 15(c)).

The circuits on which this was performed were 16 bit accumulators with between one and 5

register stages (i.e.F(x) = x + x@1, F(x) = x + x@1 + x@2, ..., F(x) = x + x@1 + ... +

x@5). Execution time varied quadratically with the number of registers. Note that the

register removal tool is written in Perl and the execution times in Figure 15(c) can be

reduced greatly using compiled code.

Further experiments were conducted to determine the execution time of circuit

approximation relative to input bit width. Polynomial approximations were computed for

the circuit that implements the functiony = (x >> 1) for input bit widths ranging from 4 to

128 bits (Figure 15(d)). While of high order complexity, approximations completed quickly,

even for the widest datapaths. The accuracy of circuit approximation was determined for

several circuits of bit width 16 (Figure 15(e)), all of which resulted in an error of less than 2



94Chapter 4 Advanced Polynomial Methods

units over the integer range [0, 216-1]. These experiments were performed with compiled

code.

Fig. 15(a) Execution time required to determine F(x, y) = xy is of linear complexity with
respect to x and y.

Word Sizes Logic Ops Exec. Time

4 2003207 0.41s

8 8012236 1.34

16 32050480 4.76

32 128197824 19.31

64 512783104 79.30

4 64Word Size (bits)
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Fig. 15(b)Graph of execution times in 15(a).
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4.9 Summary

In performing high level synthesis with complex components, automating component

matching requires a means for quickly determining whether an existing block performs the

function outlined in the specification. Current methods for completing this task become

prohibitively memory intensive or time consuming for circuits that implement complex

functions. Chapters 3 and 4 have described an algorithm for performing component

Fig. 15(d)Execution time for determining an approximation to the function x/2

Word
Sizes

Exec.
Time

4 0.01s

8 0.05

16 0.19

32 1.11

64 9.14

128 76.80

Circuit
Function

Approx.
Error

x/8 0.87

x/4 0.75

x/2 0.50

3x/4 1.75

7x/8 1.87

(e) Accuracy of approximation for several 16 bit functions

Fig. 15(c) Execution time required for register removal on 16 bit accumulators.

Accumulator
Stages

Number of
Registers

Exec. Time

1 16 7.76s

2 32 25.84

3 48 79.47

4 64 177.50

5 80 326.19
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matching with complex library elements by constructing word-level polynomial

representations for combinational and sequential circuits.

Circuit specifications can be efficiently matched to existing implementations by

generating the unique minimum order polynomial functions for the specification and the

implementation and comparing those polynomials. These functions can be generated with

quadratic complexity with respect to the number of input bits to each function.

Discontinuities in the specification or implementation can be detected, allowing polynomial

representations to be computed for intervals between discontinuities. For sequential

circuits, the equivalent combinational circuit can be derived, from which a polynomial

representation can be computed. Furthermore, an approximate polynomial representation

can be derived for those circuits that contain many discontinuities and the error of that

approximation can be quantified. An application of these techniques was demonstrated in

mapping the specification of a JPEG Encode block and an IIR filter to existing complex

blocks.

Using polynomial representations, differences between a specification and

implementation can be quantified, allowing tradeoffs between precision and speed. In

addition, the ease with which polynomials can be composed can allow such differences to

be compensated for by combining multiple existing blocks or constructing logic around a

single block.

The methods presented in this chapter are well suited to matching blocks that have

compact arithmetic representations, such as those found in DSP, computer graphics, and

ALUs. Furthermore, these methods provide a means for separating control operations, such

a branches, from arithmetic operations and detecting blocks that contain many

discontinuities, such as controllers, based on the order of the polynomial representation.
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Chapter 5
Interface Synthesis

5.1 Introduction

 In order to automate design reuse, methods for connecting system components must

be developed. The goal of this chapter is to develop an algorithm to automate the process of

generating interfaces between hardware subsystems. The algorithm presented here can be

used to generate a cycle-accurate, synchronous interface between two hardware

subsystems, that communicate with different protocols, given an HDL model of each

subsystem. It is important to note that the techniques presented here provide hooks for

implementing arbitration algorithms that can be determined from higher level optimization

algorithms. The algorithms presented here have been implemented inPOLYSYS to generate

interfaces between complex library components. In particular, these techniques can be used

to generate interface between elements that have been allocated using the techniques of

Chapters 3 and 4. For example,POLYSYS has been used to generate an interface between a

MIPS microprocessor and the SRAM that comprises its secondary cache. Interface

generation for the MIPS R4000 is described.
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The basic purpose of an interface is to facilitate the movement of data. Data could be

addresses, commands, values destined for a memory location, or some combination of these

descriptions. In order to allow hardware subsystems that follow different protocols for

moving data to communicate with one another, the algorithms presented here map these

protocols into a standard communication scheme. This scheme is then implemented in an

interface architecture that is general enough to accommodate the requirements of any target

interface. The terminologyclient is used in this chapter to indicates a component that is

sending data andresource indicates a component that is receiving data. Note that a

component may, at times be a client (e.g. a CPU sending a read request to memory), and at

times be a resource (e.g. the same CPU receiving data from memory).

5.2 Overview

 The algorithms presented here are used to generate synchronous component

interfaces. The components may operate at different frequencies and may employ

unidirectional or bidirectional busses. Bidirectional busses, such as those employed by PCI

or VME, are handled by treating the bus as two unidirectional busses and computing two

interface controllers. Combining the resulting controllers yields a state machine that

governs communication over the bidirectional bus. Multi-way interfaces that allow multiple

clients to interact with multiple resources are synthesized by dynamically establishing a

point to point link between the client and the resource (Figure 16). This work assumes that

the datatype that a client is sending matches the datatype that the resource expects to

receive. It further assumes that the built-in component protocols arewell-posed in that the

component is deterministically drivable into a data transfer state or the data transfer states

can be detected from the current and previous values of component control signals.
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 The interface architecture is described in Section 5.3. From the component model

described in Section 5.4.1, a state machine is synthesized to map the component’s

communication protocol into a standard protocol that other interfaces can understand

(Section 5.4.2). The data formats that a client component employs are translated into

formats that the resource component can understand (Section 5.4.3).

 The POLYSYS hardware composition tool requires the user to supply an HDL

description of the component being interfaced to, the name(s) of the ports across which data

is transferred, and the names of ports that the interface does not have access to

(uncontrollable ports). The names of the uncontrollable ports (e.g. reset) must be supplied

so thatPOLYSYS does not manipulate these ports when creating a component interface.

5.3 The Interface Architecture

 Unlike most hardware interface synthesis techniques, this research links hardware

components through a standard architecture rather than by attempting to map one

component interface into another. This allows interfaces to be synthesized for a broad range

of components. In addition, it allows multiple components to be linked via the same

interface.

5.3.1  Architectural Blocks

 The interface architecture includes a state machine for protocol conversion, a send

and receive buffer for transaction information (which must be saved while a resource is
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unavailable), and an arbiter to govern access to a resource (Figure 16). Although hooks are

provided to allow the implementation of an optimized arbitration algorithm, the details of

the arbitration scheme are not required for interface synthesis.

 When the state machine for protocol conversion detects that a component is sending

data, the data is placed in the receive buffer for that interface. This data will be passed to the

send buffer for the resource interface. Correspondingly, when the state machine detects that

there is data in its send buffer, it executes the necessary signal assignments to transfer the

data to the resource component. Sizing of these queues is currently a manual task, but could

be automated in the manner of [AmBo91]. The default arbiter implements a round robin

ComponentComponent

Component

SM SM

SM

Arbiter

Fig. 16High level view of a three component implementation of the interface architecture
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arbitration scheme to select a client receive buffer that will transfer its data into the

appropriate resource send buffer.

5.3.2  Communication Scheme

 The standard protocol employs four control signals each for the receive buffer and

the send buffer (Figure 17). For the each buffer, the signals are implemented as follows:

Request - input to the buffer controller that indicates data is being sent to the

interface;

Stall - output from the buffer controller that indicates that the buffer is full

(the state machine must prevent other components or interfaces from

sending any more data);

Valid - output from the buffer controller that indicates that valid data is in the

buffer and ready to be transferred;

Acknowledge - input to the buffer controller that indicates that data has been

read from the buffer (the buffer controller will increment the read

address).

Resources are scheduled in the arbiter by selectivelyAcknowledgeing the clientValid

signal. Data is transferred within the interface through four unidirectional busses: two for

sending data to and receiving data from the arbiter, and two for sending data to and

receiving data from the external component.



102Chapter 5 Interface Synthesis

5.4 State Machine Generation

 Given a component model that describes bus functionality (or a superset of bus

functionality), conditions for transferring data to or from that component are determined. A

sequence(s) of assignments to component ports is determined that will cause these

conditions to become true. After the required assignments to component ports have been

determined, they are executed on the component model, so as to resolve the values of

control ports that are inputs to the synthesized interface. Once the values of all necessary

input and output ports have been resolved, a state machine is generated that executes the

Fig. 17Interface communication scheme
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required assignments and monitors the necessary control ports. This state machine provides

a mapping from the communication protocol for a system component to the standard

protocol that allows inter-component communication. The collection of operations

necessary to perform a data transfer is referred to as a function.

5.4.1  Component Model

The component is abstracted as a list of assignments to variables and conditions for

each assignment to be executed. This is similar to a guarded dataflow graph in which the

guard is the condition for assignment execution and the dataflow is the set of assignments

that share a guard.

Definition 5.1 A component is described by the list of tuples {Ci := <ni, Ci, Ai, si>} where

Ci = {cij } are the conditions under which the values Ai = {aij } are assigned to the variable

ni. For the assignment to ni, we assume there are ni possible values {aij , j= 1,2, ... , ni} each

selected by one and only one condition cij  {0, 1}, and si indicates whether the

assignment is combinational or synchronous. Thus,

ni = Σ cij
.aij

Variables that are not component ports are referred to as internal variables.

5.4.2  Protocol Conversion Algorithm

 The state machine for protocol conversion is represented, analogous to the Moore

model, as a collection of state assignments and conditions for state transitions.

Definition 5.2 Thestate machine for protocol conversion is described by the tuple SM :=

<S, T > where:

S := {Si} is a list of states

∈
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T := {(tij  = 1) => Si -> Sj} is a list of conditions governing state transitions.

The algorithm for generating the state machine for protocol conversion is completed in five

steps: (1) generate a sequence Sf of functional states that cause a function to be executed,

(2) generate a sequence Sx of exit states that cause an executing function to be halted (S = Sf

U Sx), (3) generate the conditions {tij } that govern the state transitions, (4) combine state

sequences for multiple functions, and (5) reduce the number of states. The name of the

component’s data bus, referred to as the target variable, is supplied to initiate generation of

the interface state machine. The algorithm is outlined in Figure 18.
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 If the target variable is an input or bidirectional port, the component model is

searched for a use of this variable such as:

if signalA = valueA then

signal <= target

if target = value and

signalB <= valueB then ...

Make an

Search componentIs
No

Fig. 18Algorithm for generating the state machine for protocol conversion
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The conditions under which the target variable (target) is used are the 0th order input

conditions.

Definition 5.3 The set of0th order input conditions for the target variable nx is I0 := {cij }

where either cij  or aij  is dependent on nx.

In the previous example, nx = {target} and I0 = {signalA = valueA, signalB = valueB}

If the target variable is an output or bidirectional port, the component model is

searched for an assignment to this port such as:

if signalA = valueA then

target <= signal

The conditions for these assignments are the 0th order output conditions.

Definition 5.4 The set of0th order output conditions for the target variable nx is O0 := {cxj}.

In the previous example, nx = {target} and O0 = {signalA = valueA}.

5.4.2.1  Executing a Function

 Assignments that satisfy 0th order conditions must be executed as part of the

functional state sequence. That is, if I0 = {signalA = valueA}, then state S0 must contain the

assignments {signalA <= valueA}. If signalA is a component port, then a single assignment

can be made to allow that function to be completed. However, if signalA is an internal

variable of the component, then conditions must be determined that will cause that variable

assignment. For example, if a component description contained the sequential statements:

if externalSignalA = valueA and

internalSignal = value then

signal <= target
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if externalSignalB = valueB then

internalSignal <= value

then the following state sequence is generated:

State 1:   extSignalB <= valueB

/* causes intSignal <= value in State 0 */

State 0:   extSignalA <= valueA

These conditions that must be satisfied to cause the internal variable assignment are the nth

order conditions.

Definition 5.5 The set ofnth order input conditions for the target variable nx is In := {ckl}

where, given the (n-1)th order input conditions for nx, i.e. In-1,

there exists an cij In-1

such that (ckl = 1) => (cij  = 1).

In the previous example, nx = {target}, I0 = {externalSignalA = valueA and internalSignal =

value} and I1 = {externalSignalB = valueB}. An analogous definition applies to nth order

output conditions. If conditions of all orders can be satisfied by a sequence of assignments

to component ports, the interface state machine can deterministically drive a component

into functional states.

 If an internal variable assignment requires an nth order condition that in turn requires

the same assignment, the variable assignment is uncontrollable and can not be

deterministically driven to that value. For example, if a component description contained

the sequential statements:

if reset = TRUE or intSignalA = valueA then

∈
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target <= value

intSignalB <= valueB,

if intSignalB = valueB then

intSignalA <= valueA,

then intSignalA <= valueA is uncontrollable if reset is uncontrollable.

Definition 5.6 An internal variable assignment (nk = akl) is uncontrollable if ckl  In and

(1) ckl Im where m < n, or

(2) ckl is dependent on another uncontrollable assignment.

If an uncontrollable internal variable assignment is encountered, no nth order conditions for

that assignment are generated. The thread of states that sought to cause execution of the

assignment is aborted since the internal assignment can not be caused deterministically.

This prevents the algorithm from looping indefinitely on a component description such as

the one described in the previous example.

 A component can not be deterministically driven to a functional state when an

uncontrollable signal is encountered. However, given the original assumption that a

component’s built-in protocol is well-posed, the functional states can be detected by

examining component control signals (Section 5.4.2.3).

5.4.2.2  Exiting a Function

 In the same way that a sequence of states is determined to execute a function,

another sequence of states is determined to end that function. That is, when the data transfer

is completed, the interface must exit its corresponding data transfer state.

 A component exits a data transfer state when an assignment is made that contradicts

∈

∈
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a 0th order condition. This can be achieved with assignments to component ports or internal

variables. For example, if a component description contained the statement:

if externalSignalA = valueA and

internalSignal = value then

signal <= target

then satisfying the condition not (externalSignalA = valueA and internalSignal = value)

must cause the data transfer state in the interface to be exited. Such conditions are the 0th

order exit conditions.

Definition 5.7 The set of0th order exit conditions for the target variable nx is E0 := {ckl}

where, given the 0th order input (or output) conditions for nx, i.e. I0,

there exists an cxj I0,

such that (ckl = 1) => (cxj = 0).

nth order exit conditions are generated and satisfied in the same manner that nth order input

and output conditions are generated and satisfied.

 The exit state sequence is combined with the data transfer state sequence to obtain a

complete state machine that can execute a function and be reset.

5.4.2.3  Generating State Machine Conditions

 After the conditions for executing and exiting a function have been completely

satisfied or found to be uncontrollable, the required assignments are executed on the

component model. If the component drives a port to a valid value in a cycle, then a

conditional statement governing the state transition must be added to the state

corresponding to that cycle. For example, if the component description contained the

∈
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sequential statements:

if externalSignalA = valueA and

internalSignal = value then

signal <= target

if uncontrollableSignal = valueX and

externalSignalB = valueB then

internalSignal <= value

externalSignalC <= valueC

then the condition τ10 = {externalSignalC = valueC} must be satisfied to allow the state

transition from state S1 = {externalSignalB <= valueB} to state S0 = {externalSignalA <=

valueA}.

Fig. 19Conditions governing state transitions.

Thus, if the interface state machine can not deterministically drive a component into a

particular state (in the example above, the component state corresponding to S1), it will be

able to determine when the component has reached that state by evaluating its control

signals. For example, in Figure 19, the interface state machine can not make an assignment

that will force the component to enter a data transfer state. Thus, the interface waits in state

S1 until the component asserts the port signals (externalSignalC) associated with condition

S1 S0

τ10

τ’10
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τ10. All components with well-posed built-in protocols must either be deterministically

drivable into data transfer states or must assert control signals that can be decoded to detect

data transfer states. A component that does not satisfy this condition can never be

communicated with reliably, as it is impossible to determine when it is transferring or

receiving data.

5.4.2.4  Combining Multiple Threads of Execution

 A function’s execution may require or allow more than one sequence to be executed

in parallel. For example, the component description,

if internalSignalA = valueA and

internalSignalB = valueB then

signal <= target

requires multiple variables (internalSignalA, internalSignalB) to be set in tandem. This

results in multiple threads of execution being generated, which must be combined into a

single state machine.

 ANDing two state sequences is a straightforward combination of state assignments

and state transition conditions. The final states in a sequence and their predecessors are

ANDed. An example is shown in Figure 20.

S4

S1τ43

τ’43
(τ10 and τ32)’

(τ10 and τ32)
and
S3

S0
and
S2

Fig. 20The results of ANDing the state sequences (S0, S1) and (S2, S3, S4).
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If any two ANDed states contain contradictory assignments the threads are discarded.

In ORing two threads, only the head states are combined. Previous states are not

ORed to prevent state sequences that contain a portion of each thread from being executed.

An example is shown in Figure 21.

Fig. 21The results of ORing the state sequences (S0, S1) and (S2, S3, S4).

Duplicated states are removed as shown in the next section.

5.4.2.5  State Reduction

 A component will frequently share states between execution threads. For example, a

component may contain a state in which it polls its subsystems for writes, and executes a

different sequence for each write:

if state = POLL_STATE then

case (subsystem)

subA_write:

state <= subA_WRITE_STATE

subB_write:

S4

τ43
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S3
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or
S2

τ10

τ32



113Chapter 5 Interface Synthesis

state <= subB_WRITE_STATE

The number of states is reduced by joining threads of execution at points where their

respective states are congruent.

 There are two sets of requirements that states can satisfy to be considered congruent.

First, two states are congruent if they stem from congruent previous states and the

conditions for entry into both states are the same. Second, two states are considered to be

congruent if they contain the same variable assignments and one of them is an exit state.

The second requirement allows a state machine to be reset once it has executed a functional

sequence.

Definition 5.8 States Si and Sj are congruent if either

(1) for all x, there exists a y such that τxi = τyj and Sx and Sy are congruent, or

(2) assignments of Si = assignments of Sj and Si satisfies E0.

Congruent states are combined by creating a state in which the assignments of both states

are executed. If one of the states is an exit state, then the conditions for entrance into the

newly created state are ORed.

5.4.3  Datapath Translation

 The state machine for protocol conversion allows two components to communicate

by translating their control signals into the standard interface. However, components often

employ different datapaths that must be reconciled if they are to communicate with one

another. Two components may communicate through busses of different widths.

Additionally, components may have multiple data transfer states, each of which is sending

or receiving a different datatype. Thus, translating datapaths between interfaces imposes

two requirements: (1) datapath widths must be reconciled, and (2) datatypes must be
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extracted from a transaction so that client “data-send” states can be matched with the

appropriate resource “data-receive” states.

 Datapath widths can be determined from the component description. When data is

read from a client receive buffer, it is read into a register that is the width of the resource

datapath. If the resource datapath is wider than the client datapath, anAcknowledge is

returned to the client interface for every word that is popped off the client receive buffer. If

the resource datapath is thinner than the client datapath, anAcknowledge is returned to the

client interface when the resource register is filled.

Datatype extraction can be performed using a simplified version of the structures that

([ChOrBo95], [MaHa95]) used to achieve interface synthesis. These two employed signal

sequences (SEQs) and protocol flow graphs (PFGs), respectively, to model the bit patterns

that are required to interact with a component. In the case ofPOLYSYS, a sequence of higher

level descriptions can be provided to allow the interface to detect which cycles or bits are

transmitting an address.

Example 5.4.1 A component may write data to another by transferring a base address

followed by a burst of data words. The other component may read data by reading an

address followed by a single word of data. The data transfer states may be matched by

specifying datatypes with the simplified PFGs shown in Figure 22.
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The PFGs shown in Figure 22 are simplified in that nodes describe only data transfers, not

control operations.

An alternative mechanism for performing datatype extraction is to label the data

transfer states for communicating components. For example, if a client contains two

transfer states, one with the label DATA0 and another with label DATA1, the client interface

input buffer will contain not only the data corresponding to that transfer, but also an

encoding of the DATA0 or DATA1 label. This data and label is then transferred to the

resource output buffer of the interface. When the data and label are popped from the

resource output buffer, the interface state machine for the resource will drive the resource

component into the data transfer state that has an equivalent label.

5.4.4  Hooks for Arbiter Implementation

The effect of an interface on system performance can be quite severe ([KnMa98])

due to the frequency of operation of the interface, communication overhead, bus widths

and, in the case of multiway interfaces, arbitration of access to system resources. However,

Address Data

Address Data

Address + 1

Component 1

Component 2

Fig. 22 Simplified PFGs that specify datatypes.
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when reusing existing components, the frequency of operation of the interface and the bus

width are fixed by the component. For example, a MIPS R4000 CPU communicates at

100MHz over a 32 bit bus and these characteristics are fixed regardless of the

implementation. Furthermore, the communication overhead introduced in mapping a

component protocol onto the standard protocol is exactly 6 cycles:

(1) assertion of the clientRequest signal to load data to the client input buffer.

(2) assertion of the clientValid signal to indicate data is in the client input

buffer.

(3) assertion of the arbiterRequest signal to load data to the resource output

buffer.

(4) assertion of the arbiterAcknowledge signal to signal data has been

transferred to the resource output buffer.

(5) assertion of the resourceValid signal to indicate data is in the resource

output buffer.

(6) assertion of the resourceAcknowledge signal to indicate that data has

been read from the resource output buffer.

Thus, system performance is most impacted by the relationship of this additional overhead

to the size of data transfers and the scheduling of access to system resources.

The size of data transfers and the scheduling of access to system resources are both

controlled by the arbiter. Both of these characteristics are directly affected by the assertion

of the arbiterRequest signal. The arbiter can force all data transfers to be of a certain length

by not assertingRequest until the client input buffer is appropriately full. Furthermore, the

arbiter can implement a scheduling order or priority by assertingRequests to a resource

based on the provided schedule. Furthermore, pre-emption can be performed simply by
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deasserting theAcknowledge to a client in the middle of a data transfer. However, the client

input buffer does not maintain data once it has been sent. Thus, pre-emption requires that a

transfer can be completed by sending data in parts.

Example 5.4.1 The following Verilog code illustrates an arbiter that governs access to a

resource by two prioritized clients and allows preemption.

if (Valid_Client0) begin

Request_Client0 <= 1;

Request_Client1 <= 0;

Acknowledge_Client0 <= Acknowledge_Resource;

Acknowledge_Client1 <= 0;

end else if (Valid_Client1) begin

Request_Client0 <= 1;

Request_Client1 <= 0;

Acknowledge_Client0 <= 0;

Acknowledge_Client1 <= Acknowledge_Resource;

end else begin

Request_Client0 <= 0;

Request_Client1 <= 0;

Acknowledge_Client0 <= 0;

Acknowledge_Client1 <= 0;

end

5.5 Example - Simple MIPS SysAD Interface

 This example demonstrates howPOLYSYS generates a state machine that converts

the communication protocol of a MIPS processor with a simplified SysAD interface to the

standard protocol. This generated interface can communicate with a similarly synthesized

interface for another component such as RAM, a DSP, etc. In this section, however, we

derive only the state machine that maps the MIPS bus protocol onto the standard protocol.

The HDL model of the SysAD interface (not including the bidirectional buffer for SysAD)

is given in Appendix A. In addition to the HDL model, the bus for data transferral (SysAD)
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and a list of uncontrollable ports (Reset, CPUwr, CPUrd, etc.) is supplied to the tool.

 Upon determining that the target variable (SysAD) is a bidirectional port,POLYSYS

first creates the state machine for input through the target variable. The component model is

searched for the for the assignment * <= SysAD. The set of 0th order input conditions I0 =

{Reset = 0 and bus_state = S_RECV and Valid_In = 1 and SysCmdi[8] = 1} is returned.

State S0 = {Reset = 0, bus_state = S_RECV, Valid_In = 1, SysCmdi[8] = 1} is created.

Since bus_state is an internal variable and not uncontrollable, it is made the new target bus

and the component model is searched for the assignment bus_state <= S_RECV. The set of

first order input conditions I1 = {Reset = 0 and bus_state = S_RECV_SPIN} is returned.

State S1 = {Reset = 0, bus_state = S_RECV_SPIN} is created, and the component model is

searched for the assignment bus_state <= S_RECV_SPIN. The set of second order input

conditions I2 = {Reset = 0 and bus_state = S_SEND_IDLE and ((CPUwr and WrRdy) or

(CPUrd and RdRdy)) = 0 and ExtRqst = 1} is returned and states S2 = {Reset = 0, bus_state

= S_SEND_IDLE, WrRdy = 0, ExtRqst = 1} and S3 = {Reset = 0, bus_state =

S_SEND_IDLE, RdRdy = 0, and ExtRqst = 1} are created (note that CPUwr and CPUrd are

uncontrollable and states corresponding their assignment are not generated). This process

continues until nth order conditions can be completely controlled from external ports or

require uncontrollable assignments (e.g. Reset = 0, bus_state = S_SEND_IDLE).

 The 0th order exit conditions are determined by negating the 0th order input

conditions. The set of 0th order exit conditions is E0 = {ValidIn = 0 or SysCmd[8] = 0 or

bus_state != S_RECV or Reset = 1}. This exit condition generates three exit states, two of

which satisfy the first congruency criteria ({ValidIn=0} and {SysCmd[8] = 0}).

 Now that all possible complete sequences of states have been determined, the state
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assignments are executed to determine the valid values on external ports during each state.

Since Release and ValidOut are driven to valid values during state S1, condition τ10 =

(Release = 0 and ValidOut = 0) must be satisfied to complete the transition S1 -> S0.

Similarly, τ21 = τ31 = (Release = 1 and ValidOut = 0) must be satisfied to complete the

transitions S2 -> S1 and S3 -> S1.

 Given the assignments for each state S and the conditions T for transitioning

between states, the state sequences are joined at congruent states. The three sequences

generated by the exit states all contain congruent states leading up to the functional state.

Thus, the threads are joined at each of these states. However, the exit states that perform

{ValidIn = 0} and {ValidIn = 1, SysCmd[8] = 0, SysCmd[6:5] = H_NULL} are mutually

exclusive, thus there are multiple branches exiting the functional state. According to the

second congruency criteria, the exit state from {ValidIn = 0} is congruent to state S_0 and

the exit state from {ValidIn = 1, SysCmd[8] = 0, SysCmd[6:5] = H_NULL} is congruent to

state S_3. The state machine for transferring data to the MIPS processor is shown in Figure

23.
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if (Reset) begin

state = S_0;

end else begin

case (state)

 S_3: begin

if (valid) state = S_2;

end;

S_2: begin

WrRdy = 0;

RdRdy = 0;

ExtRqst = 1;

if (Release && !ValidOut) state = S_1;

end;

S_1: begin

if (!Release && !ValidOut) state = S_0;

end;

S_0: begin /* label DATA0 */

ValidIn = 1;

SysCmd[8] = 1;

SysAD = Data_Out;

acknowledge = 1;

if (!valid) begin if (...) begin

ValidIn = 1;

SysCmd[8] = 1;

SysCmd[6:5] = H_NULL;

state = S_3;

end else begin

ValidIn = 0;

end;

end;

endcase;

end;

Fig. 23State machine for transferring data to the MIPS CPU



121Chapter 5 Interface Synthesis

The process above is repeated for data transferred from the MIPS processor to the

interface. The only difference being that, initially, the functional states are determined by

searching the expression list for SysAD <= *. The output state machine and input state

machine are joined at states S_2 and S_3 in state reduction. The physical characteristics of

the synthesized interface, not including the send and receive buffers, are shown in Figure

24. The speed, area and power consumption of the bus control logic synthesized above is

not optimized in this research because this logic is rarely a significant factor in the overall

speed, area and power consumption of the interface.

5.6 Summary

Composing blocks that are developed by different design groups with different

communication protocols is an imperative in automating design reuse and IP sharing. This

chapter has focused on converting the communication protocols of one or more components

into a standard protocol. The interface architecture presented here provides a mechanism for

implementing communication through the standard interface. This architecture enables the

composition of synchronous blocks and provides hooks for optimizing system performance

by prioritizing component communication. The example provided illustrates its ability to

generate an interface to the standard protocol for a hardware block.

Library

Gate Count

Max. Operating Frequency

Est. Area

Est. Power Consumption

LSI LCB007

1464

166MHz

0.92 mm2

348mW

Fig. 24Physical characteristics of automatically generated interface to MIPS R400
(Does not include 256B receive and send buffer)
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The techniques described above allow a designer to automatically generate an HDL

model of an interface between two or more blocks given an HDL description of the

corresponding blocks. We have assumed that communicating components utilize the same

datatypes. In implementing these techniques, parsing of the input HDL has been completed

in a front end module that can be adapted to different coding styles or representations.

Interfaces between blocks with multiple busses can be generated when the control of these

busses is separate. Furthermore, by communicating data through input and output buffers

with separate read and write functionality, components can be connected that operate at

different frequencies.
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Chapter 6
POLYSYS Implementation

6.1 Introduction

In order for hardware engineers to follow a design methodology that incorporates

reuse of complex components, the engineer must be able to search for usable components

and evaluate the impact of their incorporation. However, the space of usable components is

not only large and growing, but these components have been developed by many different

vendors. Furthermore, vendors are loath to disclose intellectual property prior to purchase,

complicating the search and evaluation process ([DaBoBe99]). ThePOLYSYS synthesis

suite implements a client-server based search mechanism allowing designers to locate

components and evaluate their functionality. These components are maintained at remote

vendor sites, removing the need to transfer many large vendor libraries to customer sites

and protecting the vendor’s intellectual property. The distributed nature of this approach to

synthesis allows for scalability in the number of components and vendors, adaptability in

terms of the operations performed during synthesis, and robustness in terms of availability

and security ([SpNe97]).
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The POLYSYS synthesis client allows engineers to create hardware specifications,

map these specifications onto existing blocks, and generate interfaces between these blocks

without downloading the HDL or Boolean model of the block. The client partitions a

specification into blocks that are likely to have existing implementations within a vendor

library. The polynomial model for each block is then derived in the form of C functions.

This model is then transferred to vendor sites to determine components that implement the

functionality specified by the C functions. Upon discovery of a match to this model, the

client requests generation of an interface to the component that implements the desired

functionality.

This POLYSYS synthesis server allows vendors who create reusable components to

publish the functionality of these components without disclosing implementation details.

The server creates polynomial models of component functionality given a Boolean

description of the component, using the techniques described in Chapters 3 and 4. This

models is derived in the form of C functions. When the server receives a request to find a

match for a given specification, component C models are compared numerically against the

C models of the specification. The maximum numerical distance between these two C

models is returned as well a key that indicates the matching component. Upon receiving an

interface generation request that includes a component key, the server computes and returns

an interface to the corresponding component, using the techniques described in Chapter 5.

The complete client server implementation ofPOLYSYS is pictured in Figure 25.
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6.2 Client

A client allows entry of the system specification textually or by assembling

functionality graphically. Textual specification is completed with RTL or behavioral Verilog

HDL with extensions. Extensions include arithmetic operations such as division,

exponentiation, and transcendental functions and a synthesis directive to indicate how a

specification should be partitioned when allocation is performed (Section 6.2.1).

A client is composed of collection of input/output threads. When performing

allocation, an output thread delivers specifications to vendor sites for allocation and an

input thread awaits the results of the allocation. When requesting interface generation, an

output thread delivers a key that indicates the component for which an interface is being

requested and an input thread receives the resulting interface. To remove the need for

tracking which response is associated with which request, a single input and output thread is

Fig. 25POLYSYS synthesis suite
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established between each client and each vendor for each operation.

6.2.1  Specification Partitioning

In order to match a complex element to a system block, the polynomial model for the

block’s specification must be constructed. Performing this task requires that the input and

output points of the block be determined. This is equivalent to partitioning a design into

blocks which are candidates for mapping to an existing design. One very simple approach

to this partitioning problem is presented.

A system partition is generated by each of the following constructs: (1) pragma begin

and end blocks; (2) module begin and end blocks; and (3) the order and input/output

characteristics of library elements. This policy is chosen because each of these constructs

provides a semantic indication that the code contained within the partition is likely to be

mapped to a reusable module.

While the first two policy decisions are based on the system specification, the order

and input/output characteristics are determined from vendor libraries. The library element

that has the highest order polynomial representation, the one with most inputs, and the one

with most outputs is determined for each vendor library. A partition is created within a

specification only if it is of lower order than the maximum order of library elements, has

fewer inputs than the maximum number of inputs for library elements, and has fewer

outputs than the maximum number of outputs for library elements. For example, in the

specification of an antialiased line rasterizer (Section 7.1.1), in which the library maximums

for order, number of inputs, and number of outputs were 2, 3, and 2 respectively, a partition

would not be created that contained the following statements, as it would have an order of 1,

4 inputs, and 2 outputs:
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dx = x2 - x1;

dy = y2 - y1;

A partition would be created, however, that contained the following statements (order 1, 2

inputs, 2 outputs):

incrE = 2*dy;

incrNE = 2*dy - dx;

All partitions for the computation ofincrE and incrNE are shown in Figure 26. A

polynomial representation is determined for each partition that does not contain another

partition, termed anatomic partition. These representations are then composed to determine

polynomial representations for larger partitions. For example, the polynomial representation

for the non-atomic partition:

dy = y2 - y1;

incrE = 2*dy;

would be constructed by substituting fordy in the polynomial representation forincrE,

yielding incrE = 2*(y2 - y1).

dy

incrNEincrE

dx

Fig. 26Partitions for the computation ofincrE andincrNE
in the antialiased line rasterizer.
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6.2.2  C Model Generation

In order to allow efficient computation of the numerical difference between a

specification and a potential implementation, a partition is translated into a corresponding

set of C functions. A partition is described by a set of functions with integer outputs that

implement the mathematical operations performed in that partition and a set of

corresponding functions with Boolean outputs that indicate within which domain those

mathematical operations are performed.

Example 6.2.1, a specification requesting that multiplication always be performed yields the

following C functions:

int polynomial0 (int x[]) { BDD domain0 (int x[]) {

return x[1] * x[0]; return trueBDD;

} }

The specification for the coefficient coding portion of the JPEG encode example of Chapter

4 yields the following C functions:

int polynomial0 (int x[]) { BDD domain0 (int x[]) {

return 2; return (x[0] == 0);

} }

int polynomial1 (int x[]) { BDD domain1 (int x[]) {

return 6 + x[0]; return (x[0]>0)&&(x[0]<2);

} }

...

int polynomial15 (int x[]) {

return 1000000 + x[0];

}

BDD domain15 (int x[]) {

return ((x[0] > 1023) && (x[0] < 2048));

}
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Upon completing computation of the C model for each system partition, the client

requests a connection with the allocation server of each vendor. The C models are then sent

to the vendor and the client awaits the results of component matching.

6.3 Server

Servers that perform computation of polynomial models of complex components,

matching of polynomial models against system specifications, and interface generation are

maintained at vendor sites. This allows designers to search for components without

requiring vendors to release libraries.

6.3.1  Library Server

The library server computes a polynomial representation of a complex component

given the Boolean equations that describe that component. When computation of a

polynomial representation is performed, the server is programmed by four variables: (1) one

that indicates whether an approximation should be computed for this function, (2) the

discontinuity threshold to be used when separating arithmetic functionality from control

operations, (3) the input word width, and (4) the output word width.

This representation is recorded, as described in Section 6.2.2 as a set of functions

with integer outputs that implement the mathematical operations performed in that partition

and a set of corresponding functions with Boolean outputs that indicate when those

mathematical operations are performed.

When an element is added to the library, characteristics can be associated with that

element. These characteristics include formulas or figures that enable computation of: (1)

the power consumed by the component (2) the latency of operation, (3) the maximum

operational frequency, and (4) an estimate of area (in gates) required by the component.
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These figures can be a function of minimum feature size or operational frequency and are

the basis for selecting a component from a group of valid implementations.

6.3.2  Allocation Server

The allocation server determines if any library elements match a specification by

computing the numerical distance between the specification and each component in the

library. Both the specification and library elements are represented by C functions that

describe the operations that they perform and the domains within which those operations

are performed.

6.3.2.1  Domain Computation

For each component, each domain of the specification (denoted SDi) is compared

against each domain of the component (denoted CDj) by computing . If the

result of this computation is the zero BDD, then the two domains do not overlap, and the

numerical distance between the corresponding arithmetic functions need not be computed.

If the result of  is a non-zero BDD, then the two domains do intersect

and the integer bounds within which these two functions overlap must be computed. Since

the domains SDi and CDj are constructed such that each domain is defined uniquely by a

single upper and lower bound in the integer domain, the overlap of any two domains can be

determined by performing a binary search for the upper and lower bound of the domain.

The following pseudocode illustrates these searches for a BDD with input words x[] where

each input word x[i] contains input bits x[i][j]:

int[] generateUpperBound(BOOL x[][], BDD bdd) {

foreach x[i] {

upperBound = 0;

SDi CDj⋅( )

SDi CDj⋅( )
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foreach x[i][j] {

bddPos = cofactorPos (bdd, x[i][j]);

bddNeg = cofactorNeg (bdd, x[i][j]);

if ((bddPos != false) || (bddNeg == false)) {

bdd = bddPos;

upperBound += (1<<j);

} else

bdd = bddNeg;

}

upperBounds[i] = upperBound;

}

return upperBounds;

}

int generateLowerBound(BOOL x[][], BDD bdd) {

foreach x[i] {

lowerBound = 0;

foreach x[i][j] {

bddPos = cofactorPos (bdd, x[i][j]);

bddNeg = cofactorNeg (bdd, x[i][j]);

if ((bddPos == false) || (bddNeg != false))

bdd = bddNeg;

else {

bdd = bddPos;

lowerBound += (1<<j);

}

}

lowerBounds[i] = lowerBound

}

return lowerBounds;

}

6.3.2.2  Numerical Distance Computation

Comparing a component and a specification now boils down to computing the

numerical distance between two polynomialsF(x) andS(x) over a domainlowerBound < x
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< upperBound. This computation can be performed by finding the maximum value ofF(x) -

S(x) and S(x) - F(x) over the computed domain. Since the polynomial expressions

implemented in digital systems tend to be simple and of low order, we rely on low-overhead

methods that are completely numerical (i.e. require no symbolic derivative computations) to

compute local extrema. Note that computing global extrema of polynomials is an NP-

complete problem. Heuristic techniques, do not guarantee determination of global extrema.

However, they are very effective in practice. This problem alone is an active and broad field

of research. Methods for computing local and global maxima are reviewed in this section.

Computation of the maximum value of a function can be performed in many ways.

For univariable functions, classic calculus would direct computation of the first derivative

of that function. Points at which the first derivative is zero are local extrema. Furthermore,

all local extrema are guaranteed to be found by this method. However, for multivariable

functions, the computations required for derivative-based methods require the solution of

systems of potentially nonlinear equations. There are many efficient techniques for finding a

solution to systems of nonlinear equations, including the Newton-Raphson Method

([BoKr99]). However, finding a single solution guarantees only a local maximum. The

problem of finding all solutions to such a system, thus guaranteeing a global maximum, is

an NP-complete problem. A classic technique for finding all roots of a system of

polynomial equations is provided in [GaZa79]. This technique solves a trivial system of

equations, and iteratively introduces small perturbations into the system to make it similar

to the system in question. A review of techniques for finding all roots of a system of

polynomial equations can be found in [Mo98].

A commonly used technique for computing local maxima, without solving systems

of nonlinear equations, is the Gradient Method. The Gradient Method is a search based
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technique that requires computation of the gradient vector G (the partial derivatives) of

M(x) at a particular point P. From this vector, the direction of the search S is computed by

the equation S = G/||G||. Single parameter minimization is then performed for M(x) in the

direction of S by computing the maximum value of M(P + tS). A new point P’ = P+tS is

then computed an the search begins again. This continues until M(P’) == M(P).

A completely numerical method for computing the maximum value of a polynomial

is to evaluate the function M(x) = S(x)-F(x) many times and search for a local minimum.

However, this requires intelligent selection of points at which to evaluate the function. One

such method is simulated annealing ([KiGeVe83]). Simulated annealing requires

computation of an initial value of M(x). A semi-random displacement from that initial value

is then generated and the polynomial evaluated at the new location. If the value at the new

location is greater than the previous location, the search position is updated. If the value at

the new location is not greater than the previous location, the new location is accepted

probabilistically. This method computes a global maximum, but is not guaranteed to find

the maximum within a finite time period.

POLYSYS employs a technique developed by Nelder and Meade, known as Downhill

Simplex Minimization ([NeMe65]). A simplex is a generalized triangle in N dimensions.

This technique is initialized by generating a non-degenerate simplex that is specified by N

points that are coordinates through which M(x) passes. From this simplex, the point with

maximum M(x), denoted B, and second greatest M(x), denoted G, are determined. The

minimum point, denoted W, is also determined. From these five points, three additional

points are computed:

R = B+G-W

E = 3*(B+G)/2 - W
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C = Minimum((B+G)/4 + W/2, 3*(B+G)/4 - W/2)

M = (B+G)/2

S = (B+W)/2

M(x) increases as x moves from W to B and from W to G. Thus, it is feasible that M(x)

takes on greater values at points away from W on the line between B and G. Thus, a simplex

that is obtained by replacing W by R may be closer to the maximum of M(x). If the

maximum lies far beyond R, determined by testing if R is greater than W, the simplex may

be extended by replacing W by E. If the maximum lies between W and R, determined by

testing if R and W are of equal value, then the simplex may be contracted by replacing W

by C. If the function at point C is not greater than the value at W, then the simplex contains

the maximum, and can be shrunk by replacing W with S and G with M. This technique

converges when B and W are the same within some bounds. Downhill Simplex

Minimization requires no symbolic manipulation and computationally compact.

The numerical methods described above do not guarantee convergence to a global

maximum. However, since the order of M(x) is known, an upper limit on the number of

local minima and maxima can be determined. Iterative determination of extrema can be

concluded when this limit is reached.

6.3.3  Interface Server

The interface server generates a state machine that maps a component’s protocol onto

the standard protocol. This process is initiated by remote method invocation on the client

that specifies a key indicating the component for which an interface is desired and the bus to

which an interface is desired. The key is used to lookup the HDL or Boolean model in the

vendor and a state machine for protocol conversion is synthesized for the appropriate bus.
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By generating interfaces to a standard interface, the interface server does not require

knowledge of a remote component with which the local component will communicate. The

output thread returns an HDL model of the state machine for protocol conversion.

6.4 Summary

POLYSYS is a distributed system for mapping a specification, provided as control and

arithmetic operations, to complex components. A system is specified locally by the designer

while the components to which it is mapped are maintained remotely at vendor sites. When

a viable mapping is determined, an interface between communicating components in the

mapping is synthesized. This system implements polynomial methods to perform

component matching efficiently. This allows component vendors to publish the

functionality of their blocks without disclosing implementation details. Furthermore, it

allows designers to determine potential system implementations and characteristics without

integrating the libraries of many vendors. In addition, by converting component protocols to

the standard protocol of Chapter 5, and implementing the standard architecture, interface

synthesis can be performed on vendor sites. This removes the necessity for vendors to

disclose interface implementation details prior to component purchase.
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Chapter 7
Case Study: Rasterizer

7.1 Overview of Antialiasing Line Rasterizer

Rasterization is a common hardware operation and is basic to all 2-dimensional and

3-dimensional graphics processors perform. It is the task of drawing a line between two

points on a screen [FoVaFe90]. However, points on a screen are discrete regions, and a line

can only be drawn by illuminating these regions. As a result, simple line rasterization yields

a line with an undesirable visual effect known asstaircasing. Antialiasing is a technique by

which this visual effect is reduced or eliminated. This can be achieved by partially

illuminating pixels that are immediately adjacent to the line. This technique yields lines that

appear to smooth and continuous to the human eye (Figure 27).
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7.1.1  Specification

The methodology proposed here utilizes an HDL specification of the target system in

which the synthesizable subset of HDL constructs is expanded to include arithmetic

operations such as division, exponentiation, and transcendental functions. This

accommodates traditional HDL design flows, allows for fast simulation of complex

arithmetic blocks, and provides a mechanism for reusing existing blocks. The following

Verilog HDL model, with arithmetic extensions, specifies a block that performs antialiased

line rasterization:

Antialias(init, x1, y1, x2, y2, x, y, yinc, ydec, I, Iinc, Idec)

begin

input [7:0] x1, x2;

input [7:0] y1, y2;

output [7:0] x, y, yinc, ydec;

output [7:0] I, Iinc, Idec;

reg [7:0] dy, dx;

reg [7:0] incrE, incrNE;

reg [7:0] invDenom, twoVdx;

Fig. 27Results of drawing an antialiased line between two circular pixels on a screen.
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dx = x2 - x1;

dy = y2 - y1;

incrE = 2*dy;

incrNE = 2*dy - dx;

invDenom = 1/(2*((dx^^2 + dy^^2)^^(1/2)));

if (init) begin

twoVdx = 0;

{x, y} = {x1, y1};

end else begin

if (d<0) begin

twoVdx = d + dx;

d = d + incrE;

end else begin

twoVdx = d - dx;

d = d + incrNE;

y = y + 1;

end

x = x + 1;

end

yinc = y + 1;

ydec = y - 1;

I = twoVdx*invDenom;

Iinc = 2*dx*invDenom - twoVdx*invDenom;

Idec = 2*dx*invDenom + twoVdx*invDenom;

end

Arithmetic operators, such as ^^ (exponentiation) and / (division), are combined with

traditional synthesizable Verilog operators and statements, such as +, -, *, and “if”, to allow

arithmetic specification of complex blocks.

Latency, timing, area, and precision constraints, can be applied to elements of the

specification through pragma statements. Additional operation specific constraints can also

be applied to design subblocks. For example, consider the following constraints on the
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computation ofinvDenom in the specification of Antialias:

// pragma begin latency = 4, period = 10, precision = 1

invDenom = 1/(2*((dx^^2 + dy^^2)^^(1/2)));

// pragma end

The pragma block constrains the circuitry within the block to complete in no more than four

100 MHz clock cycles, and the result must match the specification to within 1 bit.

Local and global system parameters, as well as objective functions for design

optimization, may be defined within pragma statements. For example, if part of a

specification is to be mapped to a .25 micron process, and optimized for area, then the begin

end block may contain the local parameter and objective function definition:

// pragma begin lamba = .25, objective = area

If the entire design is to be mapped to a .25 micron process, the specification should contain

the global parameter definition:

// pragma global lamba = .25

Local parameter and objective function definitions supercede global parameter definitions.

7.1.2  Library

The synthesis library includes traditional logic gates and complex elements for which

a polynomial representation has been determined. A traditional logic gate is characterized

by Boolean functionality, delay, and area. Complex blocks are characterized by 8 equations:

(1) polynomial functionality, (2) domain over which each functionality equation is valid, (3)

latency, (4) operational frequency, (5) area, (6) precision, (7) input word width, and (8)

output word width. Parameters that are used to compute the value of these equations are
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determined from the specification and can be either block specific or global. For example, a

library element that is an 8 bit multiplier and is to be implemented in a process with

minimum feature sizelambda may be described as follows:

Multiplier8 {

domain0 = 1;

function0 = xy;

period = 10*lamba;

latency = 3;

precision = 0;

area = 1e6*lambda 2;

input_width = {8, 8};

output_width = {16};

}

The argumentlambda must be defined within a pragma statement as a global or as a block-

specific variable.

Additional parameters may be added to library elements. Constraints can then be

added to blocks that contain these user defined parameters. For example, power

consumption may be defined within a library element as a function of system operating

frequency and supplyvoltage. Use of this attribute would then require definitions for the

parametersfrequency andvoltage within the system specification.

Note that the library may be indexed according to the order of the polynomial

representation of the implementation. Thus, when existing designs are allocated to

implement a specification, only designs with polynomial representations that are of the

same order as the specification need to be considered.
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7.2 Traditional Design Flow

A traditional design flow would require detailed specification of several complex

blocks. Without performing a mapping to high level blocks, the operations of division and

square root would need to be specified at the logic level. Furthermore, complex operations

such as combinations of multiplication and addition would likely need to be specified

independently to achieve good synthesis results.

Mapping the specification of the antialiased line rasterizer to logic gates is a time

consuming process, as decomposition to the logic level and the resulting optimization is

extremely complex for division, multiplication, addition, and square root. With fully

specified division and square root operations, synthesis using design compiler required

nearly one hour to complete. Furthermore, sharable resources, such as the structures used to

compute2*dx*invDenom andtwoVdx*invDenom are not detectable at the logic level.

In synthesizing at the logic level, a netlist is produced with 14,064 gate equivalents.

No knowledge of the regularity of structures within the block, such as the multipliers,

dividers, and root structures is available. In addition, since high level resource sharing could

not be performed with low level objects, multiple copies of2*dx*invDenom and

twoVdx*invDenom must be placed and routed, further extending design time.

7.3 Design with Reuse

The techniques presented above for allocating reusable designs have been

implemented in thePOLYSYS high level synthesis tool and are used here to synthesize the

antialiased line rasterizer. The library of reusable designs contains elements that perform

multiplication, addition, inversion, and square root. These elements are characterized in the

library, as shown in Figure 28, from their Verilog implementation.
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The Verilog module for each reused design, along with the Verilog code for logic that is not

be mapped to a complex library element, is passed to the Synopsys Design Compiler for

gate level synthesis.

The first partition for which a match to an existing component is sought is {dx = x2 -

x1}. While there is no exact match for this specification, the polynomial representation for

Adder8,x + y, matches the specification ifx = x2 andy = -x1. In order to complete this

match, a component is then sought with polynomial representation-x. Since no such

Adder8 {
domain0 = 1;
function0 = x + y;
period = 5*lamba;
latency = 1;
precision = 0;
area = 5e4*lambda2;
input_width = {8, 8};
output_width = {9};

}

Divider8 {
domain0 = [1, 2];
function0 = 384-128x;
domain1 = [3, 4];
function1 = 1-(x-2)/2+(x-2)2/22-(x-2)3/23;
domain2= [5, 8];
function2 = 1-(x-4)/4+(x-4)2/42-(x-4)3/43;
domain3 = [9, 16];
function3 = 1 - (x-8)/8+(x-8)2/82-(x-8)3/23;
domain4 = [17, 32];
function4 = 1- (x-16)/16+(x-16)2/162-(x-16)3/163;
domain5 = [33, 64];
function5 = 1- (x-32)/32+(x- 32)2/322-(x-32)3/323;
domain6 = [65, 128];
function6 = 1-(x-64)/64+(x-64)2/22-(x-64)3/643;
domain7 = [129, 255];
function7 = 1-(x-128)/128+(x-128)2/1282-(x-128)3/1283;

}

Multiplier8  {
domain0 = 1;
function0 = xy;
period = 5*lamba;
latency = 3;
precision = 0;
area = 1e6*lambda2;
input_width = {8, 8};
output_width = {16};

}

Fig. 28Library elements used to synthesize an antialiased line rasterizer

SquareRoot8 {
domain0 = 1;
function0 = 8 + (x-64)/16 - (x-64)2/212 + (x-64)3/219;
period = 10*lamba;
latency = 5;
precision = 2;
area = 4e6*lambda2;
input_width = {8};
output_width = {8};

}

BasicGates {
And
Or
Nand
Nor

}
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component exists, synthesis using logic gates is performed to invertx1. A similar set of

steps is required to synthesize the next partition {dy = y2 - y1}.

The partition {incrE = 2*dy} is matched to Multiplier8 under the conditionx = 2.

Furthermore, the partition {incrNE = 2*dy - dx} is matched to Adder8 under the conditions

x = 2*dy andy = -dx. Multiplier8 and basic gates are then allocated to implement2*dy and

dx = x2 - x1;

dy = y2 - y1;

incrE = 2*dy;

incrNE = 2*dy - dx;

invDenom = 1/(2*((dx^^2 + dy^^2)^^(1/2)));

if (init) begin

twoVdx = 0;

{x, y} = {x1, y1};

end else begin

if (d<0) begin

twoVdx = d + dx;

d = d + incrE;

end else begin

twoVdx = d - dx;

d = d + incrNE;

y = y + 1;

end

x = x + 1;

end

yinc = y + 1;

ydec = y - 1;

I = twoVdx*invDenom;

Iinc = 2*dx*invDenom - twoVdx*invDenom;

Idec = 2*dx*invDenom + twoVdx*invDenom;

Fig. 29 Matched partitions of the designAntialias
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-dx. The partition {invDenom = 1/(2*((dx^^2 + dy^^2)^^(1/2)))} is not in polynomial form,

thus the first step is to create a polynomial representation of that specification. Computing

the Taylor series expansion about2*((dx^^2 + dy^^2)^^(1/2))) reveals a match to Divider8

under the conditions x = 2*((dx^^2 + dy^^2)^^(1/2))). This statement is matched to

Multiplier8 under the conditionsx = 2 andy = (dx^^2 + dy^^2)^^(1/2)). The latter condition

is not in polynomial form, requiring Taylor expansion aboutdx^^2 + dy^^2. The resulting

polynomial matches SquareRoot8 under the conditionsx = dx^^2 + dy^^2. This condition is

then satisfied by allocating Adder8 and two instances of Multiplier8.

The next partitions for which a complex element is sought are those that specify the

computation oftwoVdx, d, x, y, yinc and ydec. Adder8 is allocated to implement each

summation and additional logic gates are required to implement subtraction, as performed

earlier. The last three atomic partitions that are bound are those for computingI, Iinc, and

Idec.

In attempting to bind non-atomic partitions, such as {dx = x2 - x1, dy = y2 - y1}, no

elements are found. Thus, the existing allocation is retained, and logic level synthesis is

performed to implement the partitions with unbound logic, such as {if (init) ... else ...}.

Scheduling the operations to be performed and sharing resources among partitions

results in the binding shown in Figure 30. In this case, since components do not employ
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complex communication protocols, interface synthesis is reduced to connecting the ports of

the complex elements. The physical characteristics of the synthesized antialiased line

rasterizer are shown in Figure 31.

SquareRoot8

Multiplier8

Divider8

Adder8 Adder8

Multiplier8 Multiplier8

Multiplier8

Multiplier8 Multiplier8

Adder8

Adder8

Adder8

Adder8 Adder8

Adder8Adder8

Multiplier8

Adder8

Adder8

Logic

Logic

Logic

LogicLogic

Fig. 30Antialiased line rasterizer mapped to reusable designs
and optimized through scheduling and resource sharing.

x2 x1 y2 y1

dx dy

2*dy

2*dy - dx

1/(2*((dx^2 + dy^2)^(1/2)))

twoVdx d y

Adder8

x

yinc ydec

I

Idec

Iinc
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The rasterizer synthesized using reusable soft elements achieved approximately the

same frequency performance metrics with slightly lower area as compared to a traditional

design methodology. The area difference was due primarily to sharing of complex

mathematical operations between assignments. However, since the complex library

elements SquareRoot8 and Division8 did not have to be redesigned, the number of lines

required to specify the design was reduced from 159 to 51.

As compared to an RTL methodology, polynomial methods require significantly less

effort in design specification. In addition, since mapping is performed at the arithmetic

level, rather than the gate-level, design tasks such as scheduling and resource sharing can be

performed at a higher level. In the case of the rasterizer, this resulted in a smaller design

than that produced by an RTL methodology. Furthermore, in using polynomial methods to

perform component matching rather than symbolic techniques, we are able to build and

represent complex operations, such as that describinginvDenom, that have no common

symbolic representation. Polynomial representations provide a formalism for canonically

describing and efficiently allocating the components that implement an antialiasing line

rasterizer.

Library

Gate Count

Max. Operating Frequency

Est. Area

Est. Power Consumption

LSI LCB007

12851

25MHz

8.85mm2

3.35W

Fig. 31Physical characteristics of antialiased line
rasterizer synthesized from reusable blocks.
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Chapter 8
Conclusion

8.1 Summary of Contributions

As transistor sizes shrink by a factor of two every 12 to 18 months, the struggle to

maintain reasonable design cycles becomes ever more difficult. Incremental improvements

in CAD algorithms and improved computing power provide only temporary relief. New

CAD methodologies are required to stimulate discontinuous reductions in design cycles.

Design reuse promises to spark this reduction as it is a paradigm change that can affect all

stages of the design cycle: specification, synthesis, layout, and verification. However, this

paradigm change requires new algorithms for automating stages of the design cycle.

In automating design reuse, the synthesis stage is radically transformed, as vendor

libraries no longer contain logic blocks that can be represented compactly and canonically

with existing data structures. Canonical decision diagrams and graph based structures tend

to be exponentially large for arithmetic functions or control functions. Classification

techniques, on the other hand, are compact, but are not canonical, as terminology varies

between vendors and relevant component functionality is not described.
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Polynomial methods provide a means for compactly and canonically representing

circuits that implement arithmetic and control functionality. This is achieved by partitioning

circuits into arithmetic and control sub-blocks based on the order of the polynomial that

represents circuit functionality exactly. For low order partitions, the polynomial itself is an

efficient representation of the circuit. For high order partitions, traditional structures are

effective for representing circuit functionality. Polynomial methods allow a specification to

be compared against potential implementations by computing the numerical distance

between the two. This not only enables fast allocation of exact implementations, but also

allows for detection of approximate and partial implementations.

Connection of allocated library elements in current synthesis algorithms is achieved

simply by instantiating a wire between the appropriate ports on communicating elements.

However, when allocating complex blocks, this mechanism is no longer valid, as these

blocks may implement vastly different communication paradigms. To solve this problem,

standardized interfaces have been encouraged. However, this approach ignores the body of

components that already exist and requires cooperation among design teams who are often

in competition with one another. Other techniques enable the generation of glue logic

between interfaces that have similar communication paradigms, but break down when two

dissimilar components attempt to communicate. Dissimilar components can be connected

by designing interfaces using high-level interface specification languages, but this requires

additional user intervention to generate this specification.

In order to enable this communication, we have presented a mechanism for

transforming a component’s communication protocol into a standard protocol and

architecture. This technique introduces minimal logic overhead and rarely affects the

frequency of operation of the system. In addition, the algorithm we have presented allows
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for generation of multi-way interfaces and interfaces between synchronous components that

operate at different frequencies.

The techniques we have presented have been implemented in thePOLYSYS synthesis

suite. This software allows vendors to create polynomial models of the components they

have developed. As a result, they are able to publish component functionality while hiding

the implementation details that are the intellectual property. Designers, in turn, are able to

locally create system specifications, map them to elements in component libraries that are

located at vendor sites, and generate interfaces between the components. This tool suite has

been used to synthesize the DC path of a JPEG encode block, a filter for controlling the

speed of a tape drive, and a Bresenham antialiasing line rasterizer.

8.2 Future Directions

An important part of matching a specification to existing components is determining

which parts of the specification are likely to have been implemented as individual

components. InPOLYSYS, this is performed based on the semantic characteristics of the

specification such as partitioning directives, individual module declarations, and

“begin...end” blocks. It is further based on the ratio of inputs to outputs within a group of

assignments. Partitioning may be better performed using knowledge of the component

library. For example, elements in the library have an upper limit on the number of domains

used in their polynomial representation and an upper limit on the order of the polynomial

representation. These limits can be as a decision metric in selecting specification partitions.

In representing circuit functionality as polynomials, detection of partial

implementations is possible. In the simplest case, this can be achieved simply by

subtracting or dividing the polynomial representation of a component from that of the
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specification. In addition, constant substitution also provides a simple means of

transforming a library element to generate a match to a specification. However these simple

operations do not detect all possible partial implementations of a specification.

Improvements on these techniques can allow the determination of combinations of library

elements that result in a valid implementation of a specification.

 In the area of interface synthesis, future research will seek to expand the techniques

presented here to generate interfaces between software and hardware components in a

system that implements memory mapped I/O. The communication protocol for software

interfaces is restricted by the instruction set architecture of the microprocessor on which the

software is running. Instead of communicating with a hardware subsystem by assigning

values to and reading values from ports, the software driver communicates by writing and

reading hardware registers. Thus, the hardware/software composition requires the interface

state machine generator described above and another layer, similar to [BoDeLi96], that

encapsulates port assignments in microprocessor operations.

This research has focused on the problems of component matching and interface

synthesis. Significant inroads have been made in solving the specification and optimization

stages of high level synthesis. Behavioral HDLs have raised the level of abstraction of

system specifications over traditional register transfer level HDLs. Synthesis from C

language specifications also promises to raise the level of abstraction at which systems are

specified. Incorporation of these, or other specification languages intoPOLYSYS promises to

shorten the design cycle. Similarly, in the optimization stage, algorithms for performing

scheduling, resource sharing, and estimation of system performance promise to return more

effective results when selecting components from the space of valid implementations.

The work presented here has focused on synthesis of hardware systems. However,
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algorithms implemented in software can similarly be partitioned into arithmetic operations

and control operations. This provides the potential to map a system specification not only to

hardware components, but also to software components. Such a mapping would also require

generation of interfaces between hardware and software blocks. This problem can

potentially be solved by abstracting the port assignments generated in computing the state

machine for protocol conversion into microprocessor operations.
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Appendix A - Verilog Model of MIPS CPU Interface

module r4600_interface (SysADi, SysADCi, SysCmdi, SysCmdPi,

SysADo, SysADCo, SysCmdo, SysCmdPo,

RdRdy, WrRdy, ExtRqst, Release, ValidIn, ValidOut,

Reset, Clock, SysOe,

CPUwr, CPUrd, CPUrsp, CPUdataI,

CPUdataO, CPUack, CPUvalid, CPUaddr);

input [63:0] SysADi;

input [7:0] SysADCi;

input [8:0] SysCmdi;

input SysCmdPi;

output [63:0] SysADo;

output [7:0] SysADCo;

output [8:0] SysCmdo;

output SysCmdPo;

input RdRdy, WrRdy;

input ExtRqst;

output Release;

input ValidIn;

output ValidOut;

input Reset;

input Clock;

output SysOe;

input CPUwr;

input CPUrd;

input CPUrsp;

input [63:0] CPUdataI;

output [63:0] CPUdataO;

output CPUack;

output CPUvalid;

input [63:0] CPUaddr;

reg [63:0] SysADo;
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reg [7:0] SysADCo;

reg [8:0] SysCmdo;

reg SysCmdPo;

reg Release;

reg ValidOut;

reg SysOe;

reg [63:0] CPUdataO;

reg CPUack;

reg CPUvalid;

reg [3:0] bus_state;

parameter S_SEND_IDLE = 4’b0000, S_SEND_ADDR = 4’b0001,

S_SEND_DATA = 4’b0010, S_SEND_SPIN = 4’b0011,

S_RECV = 4’b0100, S_RECV_SPIN = 4’b0111;

parameter H_READ = 2’b00, H_WRITE = 2’b01, H_NULL = 2’b10;

always @ (posedge Clock) begin

ValidOut = 0;

Release = 0;

SysOe = 1;

CPUack = 0;

if (Reset) begin

bus_state = S_SEND_IDLE;

end else begin

case (bus_state)

S_SEND_IDLE: begin

if ((CPUwr && WrRdy) || (CPUrd && RdRdy)) begin

bus_state = S_SEND_ADDR;

end else if (ExtRqst) begin

Release = 1;

bus_state = S_RECV_SPIN;

SysOe = 0;

end
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end

S_SEND_ADDR: begin /* label ADDRESS */

if (CPUwr) begin

SysCmdo = 9’b001000000;

bus_state = S_SEND_DATA;

end else if (CPUrd) begin

SysCmdo = 9’b000000000;

bus_state = S_SEND_IDLE;

end

end

S_SEND_DATA: begin /* label DATA1 */

SysADo = CPUdataI;

if (!CPUwr) begin

SysCmdo = 9’b100000000;

bus_state = S_SEND_IDLE;

end else begin

SysCmdo = 9’b110000000;

end

ValidOut = 1;

CPUack = 1;

end

S_SEND_SPIN: begin

SysOe = 0;

bus_state = S_SEND_IDLE;

end

S_RECV: begin /* label DATA0 */

SysOe = 0;

if (ValidIn) begin

if (SysCmdi[8]) begin

CPUdataO = SysADi;

end else case (SysCmdi[6:5])

H_NULL:

bus_state = S_SEND_SPIN;

endcase
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end

end

S_RECV_SPIN: begin

SysOe = 0;

bus_state = S_RECV;

end

endcase

end

end

endmodule;
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Appendix B - List of Acronyms

AC - Alternating Current

ALU - Arithmetic Logic Unit

ADD - Algebraic Decision Diagram

BDD - Binary Decision Diagram

BMD - Binary Moment Diagram

*BMD - Multiplicative Binary Moment Diagram

CDC - Controllability Don’t Care

CFE - Control Flow Expression

CPU - Central Processing Unit

DC - Direct Current

DCT - Discrete Cosine Transform

DRAM - Dynamic Random Access Memory

EISA - Extended Industry Standard Architecture

FFT - Fast Fourier Transform

FSM - Finite State Machine

HDD - Hybrid Decision Diagram

HDL - Hardware Design Language

IIR - Infinite Impulse Response

IP - Intellectual Property

I/O - Input/Output

JPEG - Joint Photographic Experts Group

MATLAB - Mathematics Laboratory
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MTBDD - Multi-Terminal Binary Decision Diagram

ODC - Observability Don’t Care

PCI - Peripheral Component Interconnect

PFG - Protocol Flow Graph

PHDD - Power Hybrid Decision Diagram

RTL - Register Transfer Level

SEQ - Signal Sequences

VME - Versa Module Eurocard

VSIA - Virtual Socket Interface Alliance

ZBDD - Zero-suppressed Binary Decision Diagram
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