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Abstract
Practical realizations of quantum computers are poised to deliver outstanding computational

capabilities far beyond the reach of any classical supercomputer. While classical systems are

reliably implemented using CMOS technology, the fabrication of quantum hardware has not

yet reached a commercially viable level of maturity. Nowadays, many different technologies are

being developed as competing candidates to build the first error-corrected quantum computer.

Among the software resources required to operate such a system, quantum compilers trans-

late a high-level description of a quantum algorithm into low-level, technology-dependent

quantum instructions.

Many quantum algorithms, including Shor’s and Grover’s algorithms, require to compute some

classical logic functions on the quantum computer. The first part of this thesis deals with the

problem of compiling quantum circuits that perform such classical Boolean functions, called

oracles, into a fault-tolerant set of instructions. Oracle circuits often demand many resources in

terms of the number of qubits and gates. The focus is on compiling quantum circuits starting

from multi-level logic networks representing large Boolean functions while minimizing the

resource footprint of the obtained quantum circuits. At the same time, the trade-off between

memory resources and the number of operations typical of such a compilation process is

explored. As part of the effort in reducing the resources required to perform a given quantum

program, I also present some quantum circuit optimization techniques.

The researched algorithms leverage data structures and techniques borrowed and adapted

from classical logic synthesis, e.g., SAT solvers, LUT mapping, and multi-level logic networks.

I implemented all the compilation algorithms presented in this thesis as part of open-source

projects. In particular, I develop and maintain caterpillar—a C++ header-only library dedi-

cated to the quantum compilation of oracles and quantum memory management.

The second part of this thesis describes how to equip quantum programming language compil-

ers with automatic accuracy management. Despite the availability of many of such languages,

resource estimation of quantum algorithms does not yet support taking approximation errors

into account. This general methodology is applicable to any programming language and I

demonstrate its integration into the Q# compiler. The technique consists of providing lan-

guage support to ease the accuracy-aware programming task. The user can define accuracy

parameters that will be automatically optimized according to a constraint and a cost function

directly generated from the source code. In the presented practical evaluations, the constraint

function is the overall allowed accuracy, while the cost function is application-dependent and

related to the number of operations. During the optimization process, such functions are eval-
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Abstract

uated hundreds of times. For this reason, they are extracted as (near-)symbolic expressions,

whose evaluation time does not depend on the quantum algorithm size.

The algorithms and the methodologies presented in this thesis are part of a widespread effort

of the research community to build a complete and efficient software stack to program and

control the first practical universal quantum computer.

Keywords: logic synthesis, quantum computing, quantum compilation, quantum program-

ming, resource estimation
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Estratto
I futuri computer quantistici promettono capacità di calcolo eccezionali, ben al di là della

portata di qualsiasi supercomputer classico. Mentre i sistemi classici possono essere imple-

mentati in modo affidabile utilizzando la tecnologia CMOS, la fabbricazione di hardware

quantistico non ha ancora raggiunto un livello di maturità commercialmente sostenibile. Al

giorno d’oggi, diverse tecnologie sono in fase di sviluppo e sono in competizione tra loro per

costruire il primo computer quantistico con correzione degli errori. Tra le risorse software nec-

essarie per far funzionare un tale sistema, i compilatori quantistici traducono una descrizione

ad alto livello di un algoritmo quantistico in istruzioni quantistiche a basso livello, dipendenti

dalla tecnologia.

Molti algoritmi quantistici, compresi gli algoritmi di Shor e Grover, richiedono che il computer

quantistico calcoli alcune funzioni logiche. La prima parte di questa tesi affronta il problema

della compilazione di circuiti quantistici che eseguono tali classiche funzioni Booleane, de-

nominati oracle, in un insieme di istruzioni supportato dai codici di correzione degli errori. I

circuiti oracle spesso richiedono molte risorse in termini di numero di qubit e di operazioni.

Per questo, la mia ricerca si focalizza su minimizzare tali risorse attraverso un’efficiente com-

pilazione di circuiti quantistici a partire da reti logiche multilivello. Allo stesso tempo, la tesi

esplora il trade-off tra la memoria e il numero di operazioni, tipico di un tale processo di

compilazione. Nel quadro dello sforzo volto a ridurre le risorse necessarie per eseguire un

dato programma quantistico, presento inoltre alcune tecniche di ottimizzazione dei circuiti

quantistici.

Gli algoritmi oggetto di questa ricerca sfruttano strutture di dati e tecniche prese in prestito e

adattate dalla sintesi logica, ad esempio: SAT solvers, LUT mapping e reti logiche multilivello.

Ho implementato tutti gli algoritmi presentati in questa tesi come parte di progetti open-source.

In particolare, sviluppo e mantengo una libreria C++ dedicata alla compilazione quantistica

degli oracle e alla gestione della memoria quantistica.

La seconda parte di questa tesi descrive come dotare i compilatori dei linguaggi di pro-

grammazione quantistica di una gestione automatica della loro accuratezza. Nonostante la

disponibilità di molti di questi linguaggi, la stima delle risorse degli algoritmi quantistici non

prende ancora in considerazione gli errori di approssimazione. Questa metodologia è gen-

eralmente applicabile a qualsiasi linguaggio di programmazione e ne dimostro l’integrazione

nel compilatore del linguaggio Q#. La tecnica consiste nel fornire, attraverso il linguaggio,

un supporto per facilitare il compito di tenere in considerazione l’accuratezza. L’utente può

definire parametri di accuratezza che saranno automaticamente ottimizzati secondo una
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funzione di vincolo e una funzione di costo generati direttamente dal codice sorgente. Nelle va-

lutazioni pratiche presentate, la funzione di vincolo è l’errore complessivo consentito, mentre

la funzione di costo dipende dall’applicazione e si riferisce al numero di operazioni. Durante

il processo di ottimizzazione, tali funzioni vengono valutate centinaia di volte. Per questo

motivo, vengono estratte come espressioni (quasi) simboliche, il cui tempo di valutazione non

dipende dalla dimensione dell’algoritmo quantistico.

Gli algoritmi e le metodologie presentate in questa tesi fanno parte di uno sforzo diffuso della

comunità scientifica per costruire uno stack software completo ed efficiente per programmare

e controllare il primo computer quantistico universale.

Parole chiave: sintesi logica, calcolo quantistico, compilazione quantistica, programmazione

quantistica, stima delle risorse
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1 Introduction

1.1 History of quantum computing

1.1.1 The rise of quantum mechanics

At the beginning of the twentieth century, what we now call classical physics was no more

capable of explaining observed phenomena in nature. For this reason, it was common to

formulate an ad-hoc corrective hypothesis to justify experimentally observed phenomena in

radiation and atoms theory, and such a hypothesis needed continuous updates.

Theories in physics were predicting absurdities such as the ultraviolet catastrophe, a phe-

nomenon for which ideal black bodies should emit an arbitrarily high energy with decreasing

emitted wavelength. Consider Rutherford’s atomic model [4], theorized in 1911 and based on

the well-known gold foil experiment performed in 1909. According to Rutherford, the atomic

mass is concentrated at the center of the atom, in the so-called nucleus (Rutherford did not use

this term in his paper). The nucleus is characterized by a positive charge. Electrons, negatively

charged, orbit around the nucleus. According to Maxwell’s theory of electromagnetism [5],

orbiting negative charges should emit radiation and lose energy. As a consequence, if atoms

were subject to the laws of classical physics only, electrons should quickly and inexorably

collapse into the nucleus following a spiral trajectory. The amount of time it would take an

electron to crash into the nucleus of its atom is about ten picoseconds [6].

It is from similar observations that pioneer scientists developed the wave-particle duality

theory. Plank and Einstein showed how light waves could exhibit particle-like properties. In

1900, Plank deduced that electromagnetic radiation could only be emitted and absorbed in

discrete packets, i.e., quanta, of energy, hence deriving the right intensity spectral distribution

for the black body [7]. In 1905, Einstein postulated that Plank’s quanta were actual localized

particles, later called photons [8]. This theory also explained the photoelectric effect: a

phenomenon for which a material hit by electromagnetic radiation emits electrons, only if

the radiation’s frequency exceeds a given threshold, and independently from its intensity.

Besides, De Broglie hypothesized in his doctoral thesis that particles also could have wave-like
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properties [9]. In 1926, Schrödinger proposed that electrons in the atoms behave like waves

and follow Schrödinger’s equation [10], which is solved by a series of wave functions associated

with a specific energy. This theory led to the quantum mechanical model of the atom, which is

still state-of-the-art.

This duality is reflected in the well-known Copenhagen interpretation of quantum mechanics.

This interpretation states that a quantum system is modeled by wave functions and evolves

according to the Schrödinger equation. Certain observable quantities, e.g., the position of

electrons in an atom, can be measured and the result obtained will depend on the square of

the amplitude of the wave function. Measurements cause the wave function to collapse on

the obtained result. This interpretation is the one currently accepted and taught to physics

students, even if many questioned the distinction between the microscopic quantum world

and the macroscopic classical world that the Copenhagen interpretation implies. This distinc-

tion suggests that one should not even try to understand quantum behavior [11]. Using Bohr’s

words: “We must be clear that when it comes to atoms, language can be used only as in poetry.

The poet, too, is not nearly so concerned with describing facts as with creating images and

establishing mental connections.”.

A new interpretation is gaining increasing consent: the Many Worlds Interpretation (MWY),

proposed in 1957 by Hugh Everett [12] and named by Bryce DeWitt [13]. This interpretation,

which exists in many variants, does not make a distinction between the microscopic quantum

world, led by the rules of quantum mechanics and the Schrödinger equation, and the macro-

scopic world that we experience. On the opposite, it states that all the possible outcomes of a

quantum experiment exist at the same time in different worlds.

1.1.2 Computing with quantum physics

In the 1980s researchers started to look at the opportunity of using quantum mechanics

to boost computing. Feynman postulated that quantum systems could be simulated by

quantum computers [15]. In 1985 Deutsch [16] theorized an “universal quantum computer”,

with properties that are not reproducible by any Turing machine. Using his words during an

interview at Wired Magazine in 2007: “The most important application of quantum computing

in the future is likely to be a computer simulation of quantum systems, because that is an

application where we know for sure that quantum systems in general cannot be efficiently

simulated on a classical computer. This is an application where the quantum computer is

ideally suited”. Later, together with Jozsa, he formulated the Deutsch-Jozsa algorithm [17]. He

was a supporter of the MWY, which he calls the multiverse.

In 1994 Peter Shor proposed an algorithm that solves prime factorization exponentially faster

than classical computers [18]. The advent of Shor’s algorithm suggested that problems clas-

sically considered hard to solve and consequently used in encryption algorithms, e.g., the

Rivest–Shamir–Adleman (RSA) algorithm [19], may be solved on a quantum computing system

within hours, but would take billions of years on a classical system. In 2001 IBM demonstrated
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(a) Left: Artist’s rendition of Google’s Sycamore processor mounted in the cryostat. (Forest Stearns,
Google AI Quantum Artist in Residence) Right: Photograph of the Sycamore processor. (Erik Lucero,
Research Scientist and Lead Production Quantum Hardware)

(b) System One quantum computer (Image Credit IBM [14]

Shor’s algorithm on a 7 qubits system [20]. In 1996 Grover introduced a quantum search

algorithm with a quadratic speed-up with respect to classical solutions. Unfortunately, a

quantum system capable of performing such an algorithm for sizes that cannot be classically

simulated is not available at the time of writing this manuscript.

In 2000 David DiVincenzo laid out the requirements that a quantum system must comply with

to be able to perform computation [21]. These criteria are known as DiVincenzo’s criteria. The

first five are necessary for quantum computation: (i) an extensible register of two-level systems,

usable as qubits; (ii) the ability to initialize the state of the qubits to a simple fiducial state; (iii)

long relevant decoherence times; (iv) a "universal" set of quantum gates; (v) a qubit-specific

measurement capability. The remaining two are necessary for quantum communication: (i)

the ability to interconvert stationary and flying qubits; (ii) the ability to faithfully transmit flying

qubits between specified locations. According to these criteria, new hardware technologies
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Figure 1.1 – NISQ systems per year of release. Labels: <name> Q<number of qubits>
QV<quantum volume>.

are developed as candidates to build scalable quantum computers.

1.2 Quantum computing systems

In the last few years, different computing systems have been developed, known as Noisy

Intermediate-Scale Quantum (NISQ) computers. They owe their name to some shared features:

few noisy qubits and low-fidelity operations.

Even if current quantum systems are decades of development away from becoming error-

corrected universal quantum computers, research is focusing on proving that they are capable

of performing tasks beyond the reach of ordinary digital computers. This milestone, called

quantum supremacy, has been proposed for the first time by Preskill in 2012 [22]. Quantum

complexity theory shows that it is not necessary to develop a universal quantum computer

to demonstrate quantum supremacy [23]. Besides quantum supremacy, the term quantum

advantage is often used. Nevertheless, according to Preskill [24]: “In a race, a horse has an

advantage if it wins by a nose. In contrast, the speed of a quantum computer vastly exceeds

that of classical computers, for certain tasks. At least, that’s true in principle.".

IBM has recently proposed the Quantum Volume (QV) [25] as a metric to evaluate the ability

of a quantum computer to perform complex computation. The complexity of an algorithm is

relative to the circuit width, i.e., the number of qubits and to the circuit depth, i.e., the number

of operations performed. The latter depends on many factors such as decoherence time, qubit
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fidelity, interconnections, etc.. Randomized model circuits are used to evaluate the system’s

capabilities: the metric represents the largest squared-shaped model circuit that the system

can perform successfully. The QV is now used to compare different quantum computers and

enables researchers to quantify the impact of new solutions and design choices.

In the following sections, I will describe four different generations of quantum computers [2],

characterized by technologies with promising scalability. The ultimate goal is to fabricate

an universal quantum computer, characterized by a large number of qubits, supporting

error correction, and long coherence time. Such computer would be capable of performing

quantum algorithms promising exponential speed-ups. Fig. 1.1 reports the currently available

systems by year of release, showing their number of qubits (Q) and quantum volume (QV),

when known.

1.2.1 Trapped ions

The first generation is led by the trapped-ion technology [26]. In an ultra-high vacuum,

individual atoms are ionized and trapped using controlled electrical fields. Ions are then used

to perform quantum computation by means of an array of individual laser beams (one per ion)

and a global beam: the interference between the beams gives the required energy to switch a

qubit’s state.

The idea of computing with trapped ions and the demonstration of fundamental quantum

logic gates date back to 1995 [27, 28]. One approach to build a large computing system is

the monolithic design proposed in [29], in which segmented ion traps are fabricated and

connected together to build the overall system. Segmented ion traps [30, 31] are architectural

models that use DC electrodes to move the ion along trapping pathways and enabling inter-

action between qubits, i.e., multi-qubit gates. Opposite to the monolithic approach is the

fabrication of many Elementary Logic Unit (ELU), optically interconnected [32].

Trapped ions exhibit very long qubits’ coherence times, up to 600 seconds [33]. Another

advantage of this technology is that both single and two-qubit gates can be implemented

with very high fidelity [34]. The achieved state preparation and readout fidelities are better

than the one demonstrated by any other technology [35]. Finally, they do not require long

calibration steps, as, e.g., superconducting qubits. Even if trapped ions have the highest

coherence time over gate time ratio, performing each operation is an order of magnitude

slower when compared to the superconducting technology, i.e., typically between 1 to 100 µs

against tens of nanoseconds. Another drawback is size, as the scaling is slowed down by the

fabrication of the required optical control. Finally, this technology is characterized by a high

fabrication cost.

Honeywell has presented a 10-qubit system, called H1, with a quantum volume of 128 [36]. The

company IonQ develops trapped ions quantum computers with configurable architectures of

fully connected qubits. In particular, it has tested single-qubit gates on 79 qubits [37]. IonQ
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has recently released its 32-qubit quantum computer achieving the quantum volume of 4

millions [38], which is the highest ever tested.

1.2.2 Superconducting circuits

One of the leading technology to build quantum computing systems is based on supercon-

ducting qubits. The first superconducting qubit has been demonstrated in 1999 [39].

Google, Intel, and IBM are developing superconducting quantum technology. IBM is one of

the leading companies in quantum computing hardware and since the realization of the first

computer in 2016, with 5 qubits, makes the system available on a cloud service, i.e., IBM’s

quantum experience1. In 2017, IBM released on its platform other two quantum computers

with 16 and 20 qubits. In January 2018, Intel presented its 49-qubit superconducting quantum

processor, Tangle Lake. In March 2018, Google Quantum AI Lab announced its new processor

Bristlecone with 72 qubits [40]. In January 2019, IBM announced the first commercial circuit-

based integrated 20-qubit quantum computer “IBM Q System One” and the "IBM Q Network"

platform [41]. In October 2019, IBM made its 53-qubit system available [42]. At the same

time, Google announced the achievement of quantum supremacy, intended as the ability to

outperform classical computers on a specific task [43]. Such results were demonstrated on a 53-

qubit superconducting computer called Sycamore. Sycamore completed in few seconds a task

that a state-of-the-art supercomputer would require approximately 10,000 years to perform,

according to Google. Later, IBM expressed some criticism on Google’s achievement [44],

pointing out that the task can be performed faster on certain classical computing processors,

i.e., in only 2.5 days. IBM also pointed out that according to the first formulation of quantum

supremacy, as by Preskill [22], this is only achieved if the selected task is unfeasible on classical

computers.

IBM has computed the QV of several of its quantum computers, namely the 5-qubit Tenerife

(2017), the 20-qubit Tokyo (2018), the 20-qubit Johannesburg (2019), and the 27-qubit Montreal

(2020), showing an exponential growth resembling the well known Moore’s law. The Montreal

quantum computer achieves a quantum volume of 64 [45].

In addition to IBM, Intel, and Google, the start-up company Rigetti focuses on building

superconducting quantum computers. The company has released in 2019 a quantum system

called Aspen-4, for which a quantum volume of 8 has been demonstrated [46]. Rigetti’s latest

quantum computer, called Aspen-7 features 28 qubits and average gate times of 80ns-340ns,

depending on if it is a single- or a two-qubit gate.

Supercomputing qubits have a smaller footprint and faster intrinsic gate times with respect to

ion traps, reaching physical speeds of MHz. Nevertheless, fabrication and placement of the

necessary control wiring for large qubits array is an unsolved engineering problem, that may

compromise the scalability of these systems. Finally, this technology requires many calibration

1https://web.archive.org/web/20160927160441/http://www.research.ibm.com/quantum/
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steps, due to the device mismatch which characterizes the fabrication process.

1.2.3 Nitrogen vacancies and quantum dots

The third generation of quantum computers counts extremely promising but less developed

technologies with respect to the previous generations. The technologies in this generation

promise high speed, in the order of the GHz and small sizes (nm-um). Impurities in diamond

have long been of interest as a potential technology for both large-scale quantum computing

and communications, in particular the one based on the Nitrogen Vacancy (NV) [47]. Diamond-

based quantum technology do not require high infrastructure cost, a vacuum is not needed,

and it works at a temperature of only 4K, rather than the 4mK needed by the superconducting

qubits.

Another promising technology is the one based on quantum dots, which traps electrons at

the boundary between different superconductors. The single qubit has been demonstrated

in [48], and a two-qubit gate is realized in [49]. Quantum dots have the potential speed and

integration density, thanks to the advanced silicon fabrication technology. This technology has

demonstrated sufficient thermal robustness to enable computing a universal set of quantum

gates, hence including two-qubit gates, at temperatures greater than 1K [50]. Intel is currently

researching this technology, which promises small physical sizes, stability, and duration.

1.2.4 Anyonic particles

The fourth and last generation consists of the anyonic or topological quantum computers [51].

Such systems aim at suppressing errors using the fundamental physics of the system, with

states naturally protected from decoherence. Even if this technology promises easy-to-scale

systems with low error rates, the existence of anyonic (or Majorana) particles in engineered

systems has not been yet demonstrated.

1.3 Software requirements

Previous sections have discussed the requirements of quantum computing hardware according

to DiVincenzo’s criteria and described state-of-the-art computing systems. This section

focuses on the software resources necessary to operate a quantum computer. It starts with a

description of the model of computation using a Quantum Processing Unit (QPU) and gives

details on the required control software.

1.3.1 Model of computation

A quantum computer is not to be considered as an independent computing system but as a co-

processor to classical computation [1], integrated into a future High-Performance Computing
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Figure 1.2 – Sequence diagram illustrating how the QPU interacts with a host CPU, image
from [1].

(HPC) architecture. Fig. 1.2 (from [1]) shows a sequence diagram that models the interaction

between the Central Processing Unit (CPU) and the Quantum Processing Unit (QPU).

The computing core of the QPU is the Quantum Random Access Machine (QRAM), a ma-

chine with the ability to perform a set of operations on quantum registers: quantum state

preparation, unitary operations, and measurements [52]. Computation on a quantum register

consists of operations modifying the state of the qubits. Such states are in a superposition of

the classical states |0〉 and |1〉 and are represented by two complex coefficients which encode

the probability to obtain the classical 0 or 1 upon measurement in the computational basis.

Any gate operating on a qubit state has to guarantee that the probabilities of measurement

outcomes sum up to one, and as such, they are represented by norm-preserving unitary ma-

trices. Hence, any quantum operation is reversible. The QRAM receives instructions from a

predefined set of unitary operations. The set of unitaries is a universal quantum library, as it

must allow the QRAM to perform any quantum algorithm with arbitrary precision.

In addition to the QRAM, the QPU includes: an interface layer with the CPU, which parses the

high-level description of the quantum program sent by the CPU; and the Quantum Control

Unit (QCU), which compiles the program to an Instruction Set Architecture (ISA), describing

the technology-independent instruction set available to perform on the quantum computer.

The QRAM receives this program and executes it on the quantum registers. At the end of the

instruction sequence, the QRAM performs measurements whose classical results are returned

to the QCU and may be used to determine the quantum program to perform next. This is

repeated until the final results of the program are available to the QCU, which sends them to

8



1.3. Software requirements

the CPU to conclude the process.

1.3.2 Control software

Fig. 1.3 (from [2]) represents the software requirements to programming a large-scale quantum

computer. The identified four elements of the software design stack are responsible for the

quantum compilation of the algorithm, the optimization of the resulting quantum circuit and

the mapping into the hardware. They are part of the resources needed for the so-called offline

control of quantum computation. When operating the quantum computer, software libraries

are required to enable working in tandem with the classical controller. Such libraries define

the online control, which includes, e.g., dynamically decoding and correcting errors.

Initially, a high-level quantum programming language is used to describe the algorithm.

To date, several of such languages have been developed [53, 54]. Relevant examples are: Q#

(Microsoft) [55], Qiskit (IBM) [56], PyQuil/Quil (Rigetti) [57], Circ (Microsoft) [58], Quipper [59],

Scaffold/ScaffCC [60], and ProjectQ [61]. Some of these frameworks provide domain-specific

languages with the necessary abstractions, libraries, simulators, and cloud access to small-

scale quantum computers. Some of them are embedded in classical host languages.

The first element of the stack, called algorithmic design, is responsible of expressing the

high-level specification of the algorithm as a quantum/reversible circuit, optimized for space

(number of qubits/inputs) and time (number of quantum/reversible gates). Please note that

all quantum gates are reversible, as they represent unitary matrices, and for this reason, most

software stacks use reversible networks as intermediate representations. In the second element

of the stack, the circuit is converted into quantum gates. Large-scale quantum computation

requires error-correcting codes. For this reason, the gate sequences that the QRAM receives

must be compatible with fault-tolerant error correction. Then, the sequence is minimized with

respect to typical cost functions for fault-tolerant circuits. In Chapter 3, further details on such

cost functions are provided. Once the quantum circuit is specified using a fault-tolerant library,

the third stack element performs topological optimization. This consists of converting the

circuit into geometric structures for topological QEC [62]. The last stack element is responsible

for the final mapping into the hardware, including selecting native operations on each specific

qubit set and measurements.

1.3.3 Debugging and testing

Another fundamental challenge of quantum software is debugging and testing. In general,

the characteristic superposition capabilities of quantum systems make them ill-suited to

be simulated by classical machines. Nevertheless, there are some solutions that are being

currently explored. The most straightforward is to run test problems that are small enough to

be classically simulated. For example, Microsoft found errors in state-of-the-art circuits for

quantum chemistry by automatically generating small circuits [63]. There are some quantum
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Figure 1.3 – Different stages of the offline software stack. Image from [2].

computations that can be efficiently simulated even with large problem sizes. For example,

the time to simulate the quantum circuit grows quadratically with the size of the circuit, if

some (difficult to simulate) gates are not present in the quantum circuit.

For example, IBM has a standard state vector simulator that “only” goes up to 32 qubits. To

be able to simulate larger systems, it recently developed new simulation methods based on

the stabilizer formalism [64] and demonstrated them by simulating quantum algorithms with

40-50 qubits without resorting to high-performance computers [65].

Alternative approaches to check the correctness of a quantum algorithm and to verify some

specific properties is to use the compiler to annotate known properties of the quantum state

at different levels of abstraction and checking such annotations using formal verification, e.g.,

Satisfiability Modulo Theory (SMT) solvers [66].

1.4 Quantum compilers

Quantum compilers have the crucial role of bridging advances in quantum algorithm theory

with the ones achieved in fabrication technology. They are responsible of analyzing and opti-

mizing the code while mapping it into native hardware operations. The input of the process is

the quantum circuit high-level description and the output is a set of mapped quantum gates. It

is important to note that quantum gates are a way to describe quantum operations performed

on the qubits. They indeed describe a quantum program, i.e., a sequence of instructions,

and not an actual physical implementation as, e.g., an Application Specific Integrated Circuit

(ASIC) design.

It is possible to distinguish between static compilation and dynamic compilation, depending
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on if it is part of the offline or the online software stack. Dynamic compilation deals with

information measured at runtime. This includes rotation operations with angles depending

on measured data [67] and control measurements to verify hardware physical conditions

at runtime. Static quantum compilation, instead, is performed before execution. It has

several advantages with respect to classical compilation [68]. The first advantage is that

more detailed information offered by quantum computing programming models allows us to

perform advanced optimization. In addition, quantum systems enable much more parallelism

than classical hardware. Another difference with respect to classical compilation is that the

quantum compiler requires to know the problem size prior to compilation. The compiler

optimization of quantum programs is crucial as quantum systems suffer from severe resource

constraints. Indeed, given the high optimization level required, it is customary to repeat

the compilation for different input sizes. On the other hand, such aggressive optimization

requires substantial computation resources. It follows that one crucial challenge for quantum

compilers is to being capable of tackling large-scale algorithms.

As introduced in the previous section, there are several programming languages that have been

developed to program quantum computers. Among all, popular ones are IBM’s Qiskit [56] and

Microsoft’s Q# [55]. Both languages are equipped with quantum compilers targeting real and

simulated quantum computers. Obviously, the Qiskit compiler targets IBM’s superconducting

systems through the IBM Q Experience, while the Q# compiler target hardware from partner

companies such as Honeywell, IonQ, and Quantum Circuits, Inc., through Azure Quantum.

Other companies are developing software solutions to bridge advances in NISQ technology,

e.g., Zapata Computing and Cambridge Quantum Computing (CQC).

1.5 Thesis contribution

In this thesis, I develop algorithms and methodologies for the static compilation of quantum

algorithms. In particular, my research focuses on two main problems in quantum compilation:

(1) automatic compilation of quantum circuits implementing Boolean functions (commonly

called oracles), including quantum memory management, and (2) automatic accuracy man-

agement in quantum programs.

1.5.1 Compilation of combinational logic

Several quantum algorithms have been proposed, and are currently being researched to

exploit the computational capabilities of the future, large-scale quantum computing systems.

Applications span, among others: cryptography [69, 70], quantum chemistry [71, 72, 73],

material science [74], machine learning [75], satisfiability solving [76], and algorithms for

quantum linear systems [77, 78] and prime factorization [18].

Many quantum algorithms require the computation of some combinational logic functions,

e.g., arithmetic functions, which usually need large amounts of resources to be computed.
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Methods that are capable of generating quantum circuits for such logic designs are needed to

run these algorithms on a quantum computer. For example, Harrow-Hassidim-Lloyd (HHL)

requires the reciprocal operation, which causes a significant overhead in the number of qubits

with respect to the other components of the algorithm. In some cases, the resources required

to perform logic operations may dominate the overall resources and exceed the available

computing power.

Quantum circuits performing combinational logic are also required in post-quantum cryptog-

raphy. It has been shown how Grover’s algorithm can be used to break symmetric encryption

schemes such as the Advanced Encryption Standard (AES), if the quantum circuit for the

encryption function is known [79, 80]. The number of resources required to break a newly

proposed post-quantum encryption scheme depends on the resources required to build the re-

quired quantum oracle. Consider for example the categories for public-key schemes proposed

by the National Institute of Standards and Technology (NIST) in their proposal to standardize

post-quantum cryptography [81]. Shor’s algorithm also requires combinational logic and

can be used to construct quantum algorithms for integer factorization, finite field discrete

logarithms, and elliptic curve discrete logarithms. As a consequence, cryptosystems based on

these problems cannot be considered secure in a post-quantum environment.

Even if the technology is nowadays still far from achieving the system sizes and performances

that these applications require, estimating the resources needed to perform combinational

functions has a relevant impact on the design and applicability of advanced quantum algo-

rithms. The resource footprint of these operations, e.g., a large number of quantum operations

and qubits, can exceed the actual resources available, hence preventing some algorithms to

be computed on constrained quantum hardware. Consequently, there is a large interest in

compilation methods that minimize the impact of combinational logic on the cost of quantum

algorithms.

Several research works focus on improving (often manually) quantum implementations of

cryptographic functions. As Shor’s algorithm can be used to break elliptic curve cryptography,

authors of [82] have optimized the required quantum circuit that computes the costly elliptic

curve scalar multiplication. In [83], authors present resource estimations of quantum pre-

image attacks on SHA-2 and SHA-3 based on Grover’s algorithm. They present quantum

oracles for SHA-256 and SHA3-256. They improve the reversible implementations derived

in [84] and evaluate the cost of running the attack on a surface code based fault-tolerant

quantum computer. In [85] authors focus on improving the implementation of the S-box of

AES to simplify Grover based key search. Similarly, authors in [86] provide implementations

for SHA-256 and AES-128, results successively improved by [80].

Compiling logic functions into quantum circuits is related to the classical problem of synthe-

sizing electronic circuits from a description of their behavior given in a hardware description

language. In classical logic synthesis [87], the high-level description of the Boolean function

is parsed into a scalable representation, which is optimized for the application-specific cost
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functions (typically delay and area) and then the logic is mapped into a library of gates. Com-

pared to this process, compiling quantum oracles imply the additional step of embedding the

possibly non-reversible Boolean function into a reversible intermediate representation, which

can be implemented using quantum gates. In addition, typical cost functions considered in

quantum compilation are related to the quantum circuit width (number of qubits) and depth

(number of quantum gates), the latter being constrained by the quantum state’s coherence

time. Another difference is that, while an electrical circuit is a fabricated object, a quantum

circuit is a representation of a set of instructions performed on the quantum registers.

Data structures and optimization methods from classical logic synthesis can be borrowed and

adapted to the synthesis of quantum oracles. This is generally performed in two steps. The

first one consists of generating a reversible network, to comply with the native reversibility of

quantum operations. In this step, the function is transformed into a garbage-free reversible

circuit figuring universal reversible gates. The most common examples are the Toffoli and

the Fredkin gates [88]. Using one of these two gates is enough to represent any reversible

Boolean function. The second step consists of mapping each reversible gate using the native

quantum operations of the targeted hardware. Often this step has to start with transformations

allowing an easier mapping. Typical examples are the transformations presented in [89, 90] to

decompose large reversible gates.

Many automatic methods to synthesize reversible networks exist in literature. Some methods

take reversible functions as input, so they require the preliminary step of embedding a possibly

non-reversible function into a permutation. The Boolean function representation required by

each method also impacts its scalability. Indeed, some representations do not scale efficiently

with respect to the number of inputs, making the methods based on them ill-suited to syn-

thesize large networks. For example, the method in [91], referred to as Transformation-Based

Synthesis (TBS), requires to represent Boolean functions using truth tables—a representation

that grows exponentially in the number of inputs. Other methods are based on the Reed-Muller

spectra [92], Boolean satisfiability [93] and decision diagrams [94]. Decomposition-Based

Synthesis (DBS) [95] uses Young-subgroup based reversible synthesis [96] to compile quantum

state permutations into quantum circuit. Finally, the method proposed in [97] is based on

Exclusive Sum-Of-Products (ESOP) decomposition.

There are also methods for the synthesis of programmable networks that can be used to

synthesize oracles without passing through the intermediate reversible network, e.g., [98, 99,

100]. They end up only being applicable to relatively small logic designs, as the generated

number of gates grows exponentially with the number of inputs. More scalable methods are

based on symbolic representation [101, 102], and hierarchical methods [103, 104, 105, 106],

which proved to be applicable to large designs being based on multi-level logic representations.

Once quantum circuits are expressed with respect to a native set of quantum operations,

optimization methods can be applied to reduce the used resources. At the quantum circuit

level, optimization techniques may rely on the specific properties of the selected gate set.
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In [107] authors propose heuristic methods to minimize the number of qubits and gates in

large-scale designs. Relevant works on optimization have focused on reducing the number of

expensive quantum gates [108, 109]

Specific contributions

This thesis concerns hierarchical methods for the compilation of quantum circuits implement-

ing Boolean functions, with a focus on leveraging the capabilities of less scalable compilation

techniques using specifically-designed decomposition methods. The presented algorithms

are inspired by methods currently applied in classical logic synthesis—a 30 years old research

field focused on optimization and mapping of combinational designs [87]. The algorithms

focus on exploring the trade-off between width and depth in quantum circuit compilation.

On this topic, I show how the problem of managing the quantum memory can be cast as a

satisfiability problem and, as such, can be solved using conventional SAT solvers. The thesis

also deals with the problem of decomposing functionally-controlled reversible gates, also

called single-target gates, into quantum circuits. A study of the applicability of exact and

heuristic advanced ESOP synthesis techniques is presented. In addition, the thesis presents

a database of optimal circuits that could be used in tandem with the described hierarchical

methods.

1.5.2 Accuracy management

Various modern quantum programming languages provide some support for resource esti-

mation. That is, given a completely specified quantum program, they estimate the number

of quantum operations and qubits necessary to run it on a quantum computer. Examples

are methods embedded in Q#, ProjectQ, and Quipper [110], which are based on circuit-

description languages, and QuRE, which is capable of evaluating different technologies and

error-correcting codes. Nevertheless, the provided support does not suffice to reduce the (still

significant) amount of manual work involved in resource estimation [111, 112]—one reason

being the lack of built-in support for handling approximation errors.

Approximation errors occur in most of the decomposition steps characterizing the compilation

of a quantum program. One relevant example is the approximated decomposition of arbitrary

rotation gates into a fault-tolerant library. Indeed, because of the discrete nature of any fault-

tolerant set [64], such approximation cannot be avoided. When a rotation gate is mapped

into this native fault-tolerant set, it is possible to reduce the approximation by increasing the

number of obtained operations. This is a trade-off that the designer has to keep into account

when building a quantum algorithm with a desired upper-bound on the overall approximation.

With the current frameworks, the designer will have to test different settings of decomposition

parameters, and for each one synthesize the quantum circuit, estimate the available resources

and eventually find the best parameter setting. As an alternative, it is possible to manually

derive the mathematical expressions of how the total error and the resources are affected by
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the algorithm parameters.

In the related work by [113], a theoretical framework is presented to reason about the robust-

ness of quantum programs when executed on noisy quantum hardware. Specifically, the

authors develop a logic that enables them to characterize the distance between an ideal quan-

tum program and its noisy counterpart, given a noise model of the target hardware. Several

case studies consisting of small quantum circuits (between 1 and 6 qubits) are presented

in [113]. Computing the (Q,λ)-diamond norm, which is used to measure the distance between

the ideal and the erroneous program, involves solving a semidefinite programming problem

(as is the case for the regular diamond norm [114]). This becomes computationally intractable

for large systems (and their corresponding noise models) due to the exponential scaling of the

dimension with the number of qubits.

Specific contributions

In this thesis, I propose a methodology to manage approximation errors automatically during

the compilation of the quantum program. It considers approximation errors that occur at the

algorithmic level, which may be decreased by using more quantum resources. The methodol-

ogy provides language support for expressing accuracy parameters and automatically solves

(during compilation) the optimization problem of finding values for such parameters that

minimize the total error while not exceeding a given bound on the resources or vice versa.

This approach requires fast resource estimation methods to achieve scalability. As a conse-

quence, the thesis proposes to achieve symbolic resource estimation by exploiting compiler

optimization passes. A prototype implementation in Low-Level Virtual Machine (LLVM) is

presented together with the description of how the methodology can be integrated into the

compiler of any existing quantum programming language.

1.6 Thesis organization

The thesis is organized as follows:

Chaper 2 introduces the field of classical logic synthesis. It defines Boolean functions and

their representations. Then, it discusses how it is possible to classify Boolean functions into

equivalent classes. This chapter also presents a method that is used in classical logic synthesis

to perform multi-level logic optimization and technology mapping, i.e., Look-Up Table (LUT)

mapping. Finally, satisfiability problems are defined.

Chapter 3 provides all the background notions on quantum computing that are necessary

to understand the remainder of the thesis. After a digression on basic quantum computing

concepts as qubits, gates, and measurement, this chapter contains a description of the phase

polynomial representation of quantum circuits.
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Chapter 4 introduces reversible circuits and the existing methods to decompose them into

quantum gates. This chapter concludes the background part of this thesis.

Chapter 5 introduces and analyses the k-LUT-based hierarchical synthesis of reversible net-

works. The chapter details the way this thesis contributes to improving the state-of-the-art

hierarchical method. In particular, in this thesis I present quantum memory management

and a novel quantum-aware LUT decomposition method. The result section shows improved

results with respect to state-of-the-art.

Chapter 6 introduces novel synthesis algorithms that perform hierarchical synthesis of Xor-

And-inverter Graph (XAG), a specific type of k-LUT networks. The result section reports

the statistics of compiled quantum circuits for many publicly available benchmarks with

application in cryptography and fault-tolerant quantum computing.

Chapter 7 elaborates on the problem of decomposing reversible gates into quantum circuits.

For small Boolean functions, it is possible to store pre-computed optimal results in a database

compressed using spectral classification. This chapter also presents a study on the application

of advanced ESOP synthesis methods to this decomposition problem. In particular, it presents

a SAT-based synthesis method that minimizes to define arbitrary cost functions. Finally, it

explores methods that can be used to perform such decomposition with the support of a fixed

number of helper qubits.

Chapter 8 discusses two different methods for the optimization of quantum circuits. The first

one aims to reduce the number of T gates of quantum circuits derived from the decomposition

of reversible networks. The method includes solving instances of the maximum weight graph

matching problem. The second technique aims to reduce the number of two-qubit gates by

rewriting parts of the original network exploiting an exact SAT-based synthesis method.

Chapter 9 describes the first framework with the ability to automatically manage approxima-

tion errors and generating (near-)symbolic resource estimates. The methodology integrates

language support for approximation errors to facilitate the task of programming a quantum

algorithm in an approximation-aware fashion. Besides, it automates the process of optimiz-

ing accuracy parameters at the compiler level. The chapter lists the features that a quan-

tum programming language and its compiler must support in order to enable the proposed

methodology and demonstrates integration into the Q# compiler. Finally, it demonstrates

that a symbolic resource estimation is the only applicable strategy to solve the optimization

problem for large-scale examples.
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Chapter 10 presents an open-source C++ library dedicated to the quantum compilation of

logic networks and to quantum memory management. By using this library, called caterpil-

lar it is possible to experiment with many of the compilation algorithms presented in this

manuscript.
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2 Logic synthesis

Modern processors are designed, tested, and fabricated with the support of Electronic Design

Automation (EDA) tools. Hardware components are initially specified using a high-level

description language. Then, they are automatically compiled into the Register Transfer Level

(RTL) abstraction by a process called High Level Synthesis (HLS). An RTL description is typically

given in a hardware description language such as Verilog or VHDL. These languages can

describe the behavior of a component in terms of sequential and combinational logic. The

RTL specification is the starting point of the logic synthesis process, which generates a logic gate

netlist and optimizes it in terms of the required cost functions. Commonly used cost functions

are area, delay, and power consumption. The final step of the entire process, schematized

in Fig. 2.1, is the physical design. This last process outputs the Integrated Circuit (IC) layout,

providing the geometrical instructions necessary to manufacture a chip.

Logic synthesis is the process of generating and optimizing a gate netlist, starting from an

RTL description. In this chapter, I focus on the techniques that can be used to represent and

synthesize combinational logic (implementing Boolean functions).

2.1 Logic representations

2.1.1 Boolean functions

This section defines Boolean functions and their properties.

Definition 2.1.1 A function f :Bn →B is called a n-input Boolean function, whereB= {0,1}

is the two-element finite field with addition defined by the logical exclusive-OR (XOR) operation

and multiplication defined by the logical AND operation.

Definition 2.1.2 A Boolean function f :Bn →Bm is reversible if and only if f is a bijection,

i.e., n = m and f performs a permutation of the set of input patterns.
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specification high level synthesis RTL logic synthesis gate netlist physical design IC layout

Figure 2.1 – Electronic Design Automation (EDA) flow.

Definition 2.1.3 A Boolean function f :Bn →B is linear if and only if:

f (x1 ⊕x2) = f (x1)⊕ f (x2).

Any linear Boolean function can be written as

f (x1, . . . , xn) = a1x1 ⊕a2x2 ⊕ ·· ·⊕an xn (2.1)

for constants a1, . . . , an ∈B. Given this notation, one can write any linear function f as a row

vector of the n constant Boolean coefficients: (a1 . . . an).

Example 2.1.1 Given the linear Boolean function f (x1, x2, x3) = x2 ⊕ x3 it corresponds to the

row vector: (0 1 1).

Definition 2.1.4 A multi-output Boolean function f :Bn →Bm is linear if and only if each

component function fi is linear, for i = 1, . . . ,m.

A multi-output linear Boolean function f :Bn →Bm can be represented using a m ×n matrix,

in which each row is the row vector representing a component linear function fi . If the multi-

output function is linear and reversible the representative matrix is a non-singular matrix

n ×n.

2.1.2 Truth tables

A Boolean function can be represented by its truth table, which is a table that shows the output

values corresponding to each input assignment. Such ordered output values correspond to a

bitstring b2n−1b2n−2 . . .b0 of size 2n where bx = f (x1, . . . , xn) when x = (x1x2 . . . xn)2. For large

functions, it is convenient to use a hexadecimal encoding of the bitstring.

Example 2.1.2 The truth table of the majority-of-three function 〈x1x2x3〉 = (x1 ∧ x2)∨ (x1 ∧
x3)∨ (x2 ∧ x3), where ∨ represents the OR operation and ∧ represents the AND operation, is

1110 1000 or #e8 in hexadecimal encoding.

2.1.3 ESOP representation of Boolean function

Every Boolean function can be represented in terms of an Exclusive Sum-Of-Products (ESOP)

expression.
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Definition 2.1.5 An ESOP over n Boolean variables, x1, . . . , xn ∈B, is an expression of form t1 ⊕
·· ·⊕tk , where each ti = li ,1 · · · li ,li is a product term (or cube) of literals li , j ∈ {x1, . . . , xn , x̄1, . . . , x̄n}

for 1 ≤ i ≤ k and 1 ≤ j ≤ li . The symbol ⊕ denotes the XOR operation, and x̄i denotes the negated

Boolean variable xi for 1 ≤ i ≤ n.

Example 2.1.3 An ESOP for the majority-of-three function 〈x1x2x3〉 is x1x2 ⊕x1x3 ⊕x2x3.

An ESOP expression can be interpreted as a two-level logic circuit realizing the Boolean

function f (x1, . . . , xn) = t1 ⊕·· ·⊕ tk . This representation is not unique, hence many heuristic

and exact minimization methods have been proposed [115, 116, 117, 118].

2.1.4 Multi-level logic networks

Multi-level logic networks are scalable representations of Boolean functions. A logic network

is represented by a graph in which each node performs a Boolean operation and edges define

data dependencies. The inputs of the function are the primary inputs of the graph. Networks

are characterized by their size, i.e., the number of nodes, and by their depth, i.e., the number of

levels in the graph. Two nodes are in the same level if they have the same maximum distance

from the primary inputs. For internal nodes, the indegree and outdegree are referred to as

fan-in and fan-out, respectively. The transitive fan-in cone of a node n is the set of all the

nodes for which there is a path between the primary inputs and n.

According to the characteristics of the network, it is possible to define different graph represen-

tations. For example, the And-Inverter Graph (AIG) is a network widely used in logic synthesis

and verification, by both academic and industrial tools (see e.g., [119, 120]). In this thesis, I

present algorithms that apply to different logic networks:

• And-Inverter Graph (AIG), with nodes implementing the 2-input AND and inversion;

• Majority-Inverter Graph (MIG)[121], with nodes implementing the 3-input majority

function (MAJ) and invertion;

• Xor-And-inverter Graph (XAG), with nodes implementing the 2-input XOR, the 2-input

AND and inversion;

• Xor-Majority-inverter Graph (XMG), with nodes implementing the 2-input XOR, the

3-input MAJ and inversion;

• Look-Up Table (LUT), with nodes implementing arbitrary Boolean functions.

Please note that the choice of the best network representation depends on the specific algo-

rithm. Synthesis algorithms for post-silicon technologies exploit networks that feature the

technology’s native logic operation [122]. For example, Quantum Cellular Automata (QCA)
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Figure 2.2 – An XAG for the majority of 3-inputs.

or superconducting quantum-flux circuits naturally implement the majority operation, as a

consequence, the MIG network is usually preferred. Programs to be run on Resistive Random

Access Machine (RRAM) should also be expressed using the majority operation [123].

When developing algorithms for the synthesis of reversible and quantum circuits, networks

based on the reversible XOR operation are preferred, such as the XAG. Fig. 2.2 shows the XAG

network for the majority-of-three function #e8, where dashed edges represent inversion.

2.2 Classification of Boolean functions

Classification of Boolean functions is the process of partitioning all functions with a specified

number of inputs into equivalence classes. Every function inside a given class can be trans-

formed into any other function in the same class by a specific set of transformations, called

invariant operations. Different transformation sets define different classification methods.

Example applications of Boolean classification in logic synthesis are network rewriting [124]

and hierarchical reversible synthesis [125, 126].

A popular classification is the so-called Negation-Permutation-Negation (NPN) classification.

The allowed invariant operations are: swapping two variables, complementing a variable and

complementing the function [127, 128, 129]. There are 22n
n-input Boolean functions. By

means of these transformation the Boolean functions with 1, 2, 3, 4 and 5 inputs are grouped

into 2, 4, 14, 222 and 616 126 NPN equivalent classes.

Another very popular classification method is the spectral classification, described in detail

later in this section. The operations that are used to partition Boolean functions into spectral

equivalence classes are defined. Please note that the NPN invariant operations are a subset of

the spectral invariant operations.

Definition 2.2.1 (Spectral invariant operations [130])

1. Swapping two variables. One obtains g = f (x1, . . . , x j , . . . , xi , . . . , xn) from f (x1, . . . , xi ,

. . . , x j , . . . , xn) by swapping variables xi and x j . We denote this operation as f
xi↔x j−−−−→ g .

2. Complementing a variable. One obtains g = f (x1, . . . , x̄i , . . . , xn) from f (x1, . . . , xi , . . . , xn)

by complementing variable xi . We denote this operation as f
x̄i−→ g .

3. Complementing the function. One obtains g = f̄ from f by complementing the whole
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function. We denote this operation as f
¬−→ g .

4. Translational operation. One obtains g = f (x1, . . . , xi ⊕x j , . . . , xn) from f (x1, . . . , xi , . . . , xn)

by replacing xi with xi ⊕x j . We denote this operation as f
xi⊕x j−−−−→ g .

5. Disjoint translational operation. One obtains g = xi ⊕ f from f by XOR-ing it with input

xi . We denote this operation as f
⊕xi−−→ g .

These operations partition all n-input Boolean functions into equivalence classes by means of

the following equivalence relation.

Definition 2.2.2 (Spectral equivalence [131]) We say that two n-input Boolean functions f

and g are spectral-equivalent if there exist operations o1, . . . ,ok from Definition 2.2.1 such that

f
o1−→ ·· · ok−→ g .

One can readily verify that spectral equivalence is an equivalence relation. In the remainder, I

write f
.= g , if f is spectrally equivalent to g . Further, I refer to the equivalence class of f as

[ f ] = {g | f
.= g }.

Example 2.2.1 It is possible to show that 〈x1x2x3〉 .= x1 ∧x2, where x1 ∧x2 is a 3-input Boolean

function in which the third variable x3 is a don’t care input.

x1 ∧x2
x̄2−→ x1 ∧ x̄2

x2⊕x3−−−−→ x1 ∧ (x̄2 ⊕x3)
x1⊕x2−−−−→

(x1 ⊕x2)∧ (x̄2 ⊕x3) = x1x̄2 ⊕x1x3 ⊕x2x3
⊕x1−−→

x1 ⊕x1x̄2 ⊕x1x3 ⊕x2x3 = x1x2 ⊕x1x3 ⊕x2x3 = 〈x1x2x3〉

Using this equivalence relation the set of all n-input Boolean functions for n = 1,2,3,4,5,6

collapses into just 1,2,3,8,48,150357 equivalence classes [132, 133].

Spectral techniques can be used to determine to which equivalence class a function belongs.

For this purpose, the Rademacher-Walsh spectrum and the auto-correlation spectrum are

defined.

Definition 2.2.3 The Rademacher-Walsh spectrum of an n-input Boolean function f is a

mapping S f : Bn 7→Z defined as

S f (x) = 2n − ∑
b∈Bn

(〈b, x〉⊕ f (x)
)

(2.2)

where 〈b, x〉 is the inner product of b and x, with x ∈Bn (see, e.g., [134]).
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The Rademacher-Walsh spectrum S f of the function f expressed as a truth table in the {1,−1}

encoding F can be computed applying the following formula:

S f = HnF

Each coefficient of the spectrum represents the correlation with a parity function of a subset

of the inputs. Hn is the Hadamard transform matrix over n variables and is defined as:

Hn =
(

Hn−1 Hn−1

Hn−1 −Hn−1

)
, H0 = 1

Each row of the Hadamard transform matrix is equal to the truth table of the parity function

between a subset of the n variables. For example, the last row of an n-variable Hadamard

matrix will be the truth table of the parity function x1 ⊕x2 ⊕·· ·⊕xn .

Example 2.2.2 Given the 3-input majority Boolean function f (x1, x2, x3) = 〈x1x2x3〉, its truth

table in the {1,−1} encoding is:

F =
(
1 1 1 −1 1 −1 −1 −1

)
The Rademacher-Walsh spectrum of f is:

S = H3F =
(
0 4 4 0 4 0 0 −4

)
Definition 2.2.4 The auto-correlation spectrum of an n-input Boolean function f is a map-

ping B f : Bn 7→Z and defined as

B f (x) = 2n − ∑
b∈Bn

(
f (x ⊕b)⊕ f (x)

)
(2.3)

for x ∈Bn .

Edwards [130] has shown how to derive a canonical representative f̂ ∈ [ f ] for some Boolean

function f , by applying the operations in Definition 2.2.1 directly to the Rademacher-Walsh

spectrum of f (see also [135]). The operations perform sign changes and rearrangements to

the spectral coefficients (see [130, 135, 136, 137] for details). The procedure can be efficiently

implemented and returns a sequence of operations o1, . . . ,ok such that f
o1−→ ·· · ok−→ f̂ . The

same algorithm can be used to derive a sequence of operations for two functions f1, f2 such

that f2 ∈ [ f1]. Note that both functions have the same representative f̂ and two sequences

of operations are obtained such that f1
o1−→ ·· · ok−→ f̂ and f2

o′
1−→ ·· · o′

l−→ f̂ . Therefore f1
o1−→ ·· · ok−→

f̂
o′

l−→ ·· · o′
1−→ f2, since all operations are self-inverse.

To check whether two functions f and g with up to 4 variables are spectrally equivalent without

computing their representatives and order sequences is even simpler. It has been shown that
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n1 n2

n3

n4

x1 x2 x3 x4

f

cut1

cut2

(a)

x1 x2 x3 x4

f

(b)

x1 x2 x3 x4

f

(c)

Figure 2.3 – (a) An AIG graph performing the function f = (x1 + x2)x3x4 with two possible
3-feasible cuts; (b) 3-LUT network generated by cut1; (c) 3-LUT network generated by cut2.

it is sufficient to check whether the distributions of the coefficients in |S f | and |Sg | are equal,

where |S f | and |Sg | take the element-wise absolute value on S f and Sg . For functions with up

to 5 variables one needs to check whether the distributions of the coefficients in |B f | and |Bg |
are equal as well [134]. For further information on spectral classification the reader is referred

to the literature (see, e.g., [138, 139, 140, 137]).

2.3 Look-Up Table (LUT) mapping

Look-up table (LUT) mapping is a method to decompose a network into many single-output

sub-networks with an upper bound on the number of inputs of each sub-network. It has

originally been used to map logic designs into the components of Field Programmable Gate

Array (FPGA) that are capable of computing any Boolean function up to a given number of

inputs, i.e., look-up tables. Later, LUT mappers found a successful application in logic syn-

thesis and circuits optimization [124], thanks to their ability to decompose large functionality

into smaller components. Several efficient state-of-the-art mappers are available and they are

traditionally designed to minimize delay and area of the resulting circuit, e.g., [141, 142, 143].

The input of the LUT mapping is a multi-level logic network representing a Boolean function.

The k-LUT mapper decomposes the multi-level network using k-feasible cuts. A cut for a

node n is a set of leaves l1, . . . , lk such that each path from n to a primary input includes one of

the leaves. A leaf is a node or a primary input of the network. A k-feasible cut is a cut that has

at most k leaves.

An AIG representing the function f = (x1 + x2)x3x4 is shown in Fig. 2.3(a). All nodes of

this network perform the 2-input AND operation between the node’s inputs, dashed edges

represent Boolean inversion, and x1, x2, x3 and x4 are the primary inputs. Fig. 2.3(a) shows

two 3-feasible cuts for the node n4. The first cut has leaves n1, x3 and n2, while the second cut

has leaves n1, x3 and x4. Fig. 2.3(b) and (c) show the 3-LUT networks generated by the first

and the second cut, respectively. In the first graph, the node highlighted in blue is a LUT with 3

inputs that performs the combined operations of nodes n4 and n3, while in the second graph,
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prime6

x1 x3x2 x5x4 x6

(a) And-inverter graph.

x1 x3x2 x5x4 x6

prime6

(b) 3-LUT mapping.

x1 x3x2 x5x4 x6

prime6

(c) 4-LUT mapping.

Figure 2.4 – LUT mappings for the function prime6.

the LUT highlighted in red performs the combined operations of three nodes. Comparing the

two networks, generated by two different cuts, it is clear how the choices made during the

mapping process affect the number of nodes of the resulting LUT network and the complexity

of the function performed by each LUT.

A larger-scale example, with k-LUT mappings generated by several cuts, is shown in Fig. 2.4.

The AIG in Fig. 2.4 (a) represents the function prime6(x1, . . . , x6) = [(x6 . . . x1)2 is prime]. Fig. 2.4

(b) and Fig. 2.4 (c) show a 3-LUT and 4-LUT mapping of the AIG, respectively. Note that nodes

with the same color belong to the same LUT. There are cases in which nodes of the initial AIG

are copied so that they can belong to two different LUTs. The 3-LUT and 4-LUT mappings

contain 12 and 4 LUTs, respectively.

2.4 Boolean satisfiability (SAT) problem

Definition 2.4.1 (SAT problem) Given a Boolean function f (x1, ..., xn), the Boolean satisfia-

bility problem consists of determining an assignment x̂ to the variables x1, ..., xn such that

f (x̂) = 1. If such an assignment exists, it is called a satisfying assignment, otherwise the problem

28



2.5. Summary

is unsatisfiable.

The function f is specified as a Conjunctive Normal Form (CNF): a conjunction of clauses

where each clause is a disjunction of literals. A literal is an instance of a variable or its

complement. SAT can be summarized as follows: given a list of clauses, determine if there

exists a variable assignment that satisfies all of them.

The SAT problem is well known to be an intractable NP-complete problem [144, 145]. In-

deed, any other problem in this category can be reduced into a SAT problem, maintaining

the number of solutions unchanged. Nevertheless, modern SAT solvers [146, 147, 148] are

software programs capable of solving large instances of the problems, characterized by tens of

thousands of variables and millions of constraints [149].

In order to use SAT solvers for practical applications, the decision problem to be solved must

first be expressed in terms of a SAT formula in CNF. Such an encoding is crucial and can have

a significant impact on the overall runtime of the SAT solver. In this thesis, problems arising

from various steps of the quantum compilation flow are solved using state-of-the-art solvers,

once an encoding of the original domain problem into a SAT formula is defined [150].

2.5 Summary

This chapter introduced classical logic synthesis—a process embedded into Electronic De-

sign Automation (EDA) tools and flows, which deals with logic optimization and technology

mapping. In particular, I described Boolean functions and their properties, while introducing

various representations, i.e., truth tables, Exclusive Sum-Of-Products (ESOP) expressions, and

multi-level logic networks (see Section 2.1). In the remainder of this thesis, Boolean functions

will be classified using spectral equivalence classes, as described in Section 2.2. Besides, many

of the algorithms presented in this thesis use the described k-LUT mapping—a technique to

decompose a graph used in logic optimization and technology mapping. Finally, some of the

problems characterizing quantum compilation can be cast as Boolean satisfiability problems,

described in Section 2.4, and solved using SAT solvers.
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3 Quantum computing

3.1 Quantum computing principles

3.1.1 Qubits

Qubits are the computational units of quantum computers. Thanks to some of their properties,

such as superposition and entanglement, quantum systems are capable of extraordinary

computational performances.

Qubits do not only exist in the two classical states |0〉 and |1〉, but can be described by a

linear combination of these states: |φ〉 = a0|0〉+ a1|1〉, where a0, a1 ∈ C. Each qubit is in a

superposition of the classical states, which enables parallelism in quantum computation.

Measurements destroy this superposition forcing the state to collapse according to the relative

probabilities |a0|2 and |a1|2. Entanglement is a global property of two or more states that

cannot be accounted for classically [151]. Thanks to this property, two qubits in a superposition

can be correlated with one another: the state of one depends on the state of the other even

when separated.

Fig. 3.1 shows a commonly-used 3-dimensional representation of a qubit state, namely the

Bloch sphere. Considering the real and the imaginary parts of each complex coefficient a0

and a1, the condition |a0|2 + |a1|2 = 1 only leaves three degrees of freedom. The two poles

of the sphere represent the two classical states, while all the points on its surface represent

superposed states. On the equator of the Bloch sphere there are all the superposed states with

|a0|2 = |a1|2 = 1/2 characterized by different angles with respect to the Z-axis.

A 2-qubit system can be defined as:

|φ〉 = a00|00〉+a01|01〉+a10|10〉+a11|11〉

where a00, a01, a10, a11 ∈C and |a00|2 + |a01|2 + |a10|2 + |a11|2 = 1. As a consequence, 4 com-

plex coefficients are needed to represent a two-qubit state, while 8 complex coefficients are

necessary to describe a 3-qubit system. In general, to represent the state of n qubits and to
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Figure 3.1 – The Bloch sphere.

simulate the quantum system behavior on a classical computer, 2n complex coefficients are

required. The state of a system is often represented using a vector notation, where each entry

is the amplitude of the corresponding state |φ〉 = (a0, a1, . . . , a2n )T .

3.1.2 Gates

The state of a qubit can be modified by applying quantum gates. Following the vector rep-

resentation of quantum states, quantum gates can be described as matrices. For example,

applying the quantum gate performing inversion X to a qubit in the state |φ〉 = a0|0〉+a1|1〉
corresponds to the following matrix multiplication:

X

(
a0

a1

)
=

(
0 1

1 0

)(
a0

a1

)
=

(
a1

a0

)

A gate acting on a single qubit can be described by 2×2 matrices, in general, a gate acting on

a n-qubit system is described by a 2n ×2n matrix. The transformed state must also comply

to the normalization condition, which requires |a0|2 +|a1|2 = 1 for a single qubit. It follows

that only unitary matrices, i.e., norm-preserving linear transformations, can describe a valid

quantum state transformation.

Definition 3.1.1 A matrix U is unitary if U †U = I , where U † is the adjoint (complex conjugate)

of U , obtained by transposing and then complex conjugating U , and I is the identity matrix.

3.1.3 Universal quantum libraries

The universal library typically-considered for fault-tolerant quantum computing is the Clifford+T

gate library, which consists of the reversible CNOT gate, the Hadamard gate, abbreviated H , as

well as the T gate, and its inverse T †.

• H gate. The Hadamard gate is often used to create superposition. It transforms a |0〉 into
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a (|0〉+ |1〉)/
p

2 and a |1〉 into a (|0〉− |1〉)/
p

2. The resulting state is halfway between |0〉
and |1〉 and collapses into one of these classical states with 50% probability. For example,

given n qubits initialized to |0〉, if a H gate is applied to each of them, the following state

is obtained:
1

n
p

2
(|00. . .0〉+ |00. . .1〉+ · · ·+ |11. . .0〉+ |11. . .1〉)

This means that the system is in all the possible input combinations at the same time,

with the same probability 1/ n
p

2.

• controlled-NOT (CNOT). This operation is the only 2-qubit operation in the library.

It complements the state of one qubit called target accordingly to the state of the

other qubit called control. It performs the mappings: |00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→
|11〉, |11〉 7→ |10〉.

• T gate. This gate leaves the basis state |0〉 unchanged and maps |1〉 to e iπ/4 |1〉. It does

not belong to the Clifford library and it is necessary to achieve universality. This means

that adding this gate to the Clifford ones makes it possible to approximate any unitary

matrix with arbitrary precision.

The unitary matrices of the Clifford+T gates are:

CNOT =
(1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

)
, H = 1p

2

(
1 1
1 −1

)
, T = (1 0

0 e iπ/4

)
.

In fault-tolerant quantum computing, each logical qubit is encoded into several physical

qubits using error-correcting codes. Operations must be performed on the encoded state,

which may require several operations on the physical qubits. Clifford gates can be imple-

mented using a reasonable amount of resources, for example the popular surface code comes

with a set of efficient generators for the Clifford group [152]. Nevertheless, non-Clifford gates

require both teleportation, which includes measurements, and state distillation [153], which

requires many operations on many dedicated qubits. It follows that the number of T gate

(T -count) is evaluated to determine the implementation cost of a quantum algorithm imple-

mented with the Clifford+T library. In addition, fault-tolerant computations can be performed

in time proportional to one round of measurement per layer of T gates (or T -stage), as demon-

strated in [154]. As a consequence, the number of T -stages (called T -depth) in a Clifford+T

circuit is another relevant cost function.

IBM’s quantum computers, which are examples of Noisy Intermediate-Scale Quantum (NISQ)

systems, natively support the U gate, U (θ,ψ,λ) = Rx (ψ)Ry (θ)Rz (λ), which is parameterized

over 3 continuous variables, and the CNOT gate. Usually, 2-qubit gates are more error-prone

than single qubit gates. For this reason, a good measure for the cost of a quantum circuit

synthesized for NISQ machines is the number of CNOT gates. The same is also valid for the

Controlled-Z gate that is used, e.g., in Rigetti’s NISQ systems.
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For more details on quantum gates the reader is referred to [64].

3.1.4 Measurements

Quantum measurements are described by a collection {Mm} of measurement operators [64].

The index m refers to the measurement outcomes that may occur in the experiment. If the

state of the quantum system is |φ〉, the probability that the measurement has outcome m is:

p(m) = 〈φ|M †
m Mm |φ〉

After measurement the state of the system is:

Mm |φ〉√
〈φ|M †

m Mm |φ〉

The measurement operators satisfy the completeness equation, which reflects the fact that

the sum of probabilities is one: ∑
m

M †
m Mm = I

Example 3.1.1 Consider a measurement of a qubit in the computational basis. The two mea-

surement operators are : M0 = |0〉〈0| , M1 = |1〉〈1|. The probability of obtaining measurement

outcome |0〉 for the initial state |φ〉 = a0|0〉+a1|1〉 is

p(0) = 〈φ|M †
0 M0|φ〉 = 〈φ|M0|φ〉 = |a0|2

3.1.5 Quantum circuits

The Quantum Random Access Machine (QRAM), described by the computational model

in Section 1.3.1, is capable of executing quantum instructions. A sequence of quantum

instructions can be visualized using circuit diagrams, so-called quantum circuits.

An example quantum circuit is shown in Fig. 3.2. This circuit generates a Greenberger–Horne–

Zeilinger state on three qubits, i.e., the state

1p
2

(|000〉+ |111〉).

In a quantum circuit, each qubit is represented by a horizontal line. Operations are denoted by

boxes or other symbols on the qubit(s) they are being applied to. Time advances from left to

right. The first operation is a Hadamard gate (H) applied to the first qubit, which maps |000〉
to 1p

2
(|000〉+ |100〉). The next gate is a controlled-NOT or CNOT, which entangles the first and

the second qubit by flipping the latter if the first qubit is |1〉. After the two CNOT gates, the
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|0〉
|0〉
|0〉

H

(a) (b)

Figure 3.2 – (a) A quantum circuit computing an entangled state and (b) the corresponding
expected measurement outcomes.

three qubits are in the state 1p
2

(|000〉+ |111〉). Finally, all three qubits are measured. There is a

50% probability of measuring all 0s and a 50% probability of measuring all 1s.

A particular type of quantum circuits are the so-called quantum oracles, which for example are

included into Grover’s algorithms. Grover’s oracles perform single-output Boolean functions.

Here, the term is extended to quantum circuits implementing multi-output Boolean functions.

Definition 3.1.2 A quantum oracle is defined as a “black box” unitary operation performing a

multi-output Boolean function f :Bn →Bm . The effect of an oracle O f performing the function

f over two registers (one of n qubits to store the inputs, |x〉, and one of m qubits to store the

outputs, |y〉) can be described as follows:

O f : |x〉⊗ |y〉⊗ |0〉l 7→ |x〉⊗ |y ⊕ f (x)〉⊗ |0〉l

were |0〉l is a register of l qubits, which are internally used by the oracle and restored to their

initial state. These qubits are called helper qubits. Helper qubits initialized to |0〉 are referred to

as clean.

The implementation cost of a quantum circuit depends on the number of qubits required

for the computation, and on the number of gates. Automatic tools can be used to synthe-

size quantum circuit with a reduced implementation cost to take into account technology

constraints.

3.2 Phase polynomial representation

This section introduces a useful representation of quantum circuits that only consists of

CNOT and T gates. A {CNOT, T } n-qubit quantum circuit implements a unitary matrix U

that can be expressed using a linear reversible function g and a polynomial p(x1, . . . , xn)

defining a diagonal phase transformation. This circuit description is called phase polynomial

representation [108] and more than one {CNOT, T } circuit can share the same representation.
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x1

x2

x3

T

T †
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x1 ⊕x2

x1 ⊕x2 ⊕x3

Figure 3.3 – A {CNOT, T } circuit.

Lemma 3.2.1 The action of a {CNOT, T } circuit on the initial states |x1, . . . , xn〉 has the form:

|x1, . . . , xn〉 7→ e
π
4 ip(x1,...,xn )|g (x1, . . . , xn)〉,

with p(x1, . . . , xn) =
l∑

i=1
(ci mod 8) fi (x1, . . . , xn), (3.1)

where g :Bn →Bn is a linear reversible function, p is a linear combination of linear Boolean

functions fi :Bn →Bwith the coefficients reduced modulo 8. The coefficients ci ∈Zmeasure

the number of rotations of π/4 that are applied to the corresponding fi , e.g., each T gate gives

a π/4 rotation (ci = 1), an S gate gives a π/2 rotation (ci = 2), a T † gate gives a 7π/4 rotation

(ci = 7). The phase polynomial notation is uniquely specified by:

g , fi ,ci for i = 1, . . . , l

where l is the number of phase gates.

Example 3.2.1 The circuit in Fig. 3.3 implements a transformation on the input qubit states

x1, x2, x3 characterized by the linear reversible function

g : |x1〉|x2〉|x3〉 7→ |x1〉|x1 ⊕x2〉|x1 ⊕x2 ⊕x3〉

and by a phase polynomial

p(x1, x2, x3) = 1(x1 ⊕x2)+7(x1 ⊕x2 ⊕x3)

with c1 = 1,c2 = 7, f1 = x1 ⊕x2, f2 = x1 ⊕x2 ⊕x3.

The T gate gives a phase of π/4 while its complex conjugate T † gives a phase of 7π/4.

3.3 Summary

This chapter introduced some basic concepts of quantum computing needed in the remainder

of this thesis. In particular, I defined qubits and their possible states in Section 3.1, as well

as superposition and entanglement. Then, I described how such states can be modified

using unitary gates to perform computation. The gates belong to a universal quantum library,

which enables every possible unitary computation. In fault-tolerant quantum computing,

the selected library consists of the Clifford+T discrete set, described in Section 3.1.3. When
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error-correcting codes are used to generate logic qubits, the T gate is more expensive to be

executed when compared to the other gates of the library. For this reason, the methods for

quantum compilation developed in the context of this thesis aim to minimize the number

of T gates, or T -count, and the number of T -stages, also called T -depth. This chapter also

illustrated the phase polynomial representation (Section 3.2), which is used to describe a

category of quantum circuits that only consists of CNOT and T gates. The representation is

used in this thesis to generate the SAT encoding for the exact synthesis of {CNOT, T } circuits

with the minimum number of CNOT gates.
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4 Reversible circuits

4.1 Reversible gates

This section describes the building blocks of reversible computation. I use the following

notation to describe reversible gates. A reversible gate performs an n-input reversible function

which is applied to qubits (lines) X = {1, . . . ,n}. I further consider literals based on the elements

in X , i.e., given x ∈ X , l is the positive literal and l̄ is the negative literal of x. Note that ¯̄l = l and

|l | = |l̄ | = x. Finally, let l ⊕0 = l and l ⊕1 = l̄ . Also, for a given set of literals L, let |L| = {|l | | l ∈ L}

be the set of all variables of L.

Definition 4.1.1 (Single-target gate) Let c :Bk →B be a Boolean function, called the control

function. Also, let C = {c1, . . . ,ck } ⊂ X be a set of control lines and let t ∉C be a target line. Then

the single-target gate Tc (C , t ) :Bn →Bn is a reversible Boolean function which maps

(x1, . . . , xn) 7→ (x ′
1. . . . , x ′

n) where

x ′
i =

xi if i 6= t ,

xt ⊕ c(xc1 , . . . , xck ) otherwise.

In other words, a single-target gate inverts the target, if and only if the control function

evaluates to true. An example is shown in Fig. 4.1 (a).

Definition 4.1.2 (Multiple-controlled Toffoli gate) If c can be expressed as a single product

term

c =
k∧

i=1
(xci ⊕pi )

in a single-target gate Tc (C , t), with pi ∈B giving the polarity of control i , then the gate is a

multiple-controlled Toffoli gate.

The 2-controlled Toffoli gate, simply known as Toffoli, is shown in Fig. 4.1 (b). A particular case
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x1
...

xn

xt

c

x1
...
xn

xt ⊕ c(x1, . . . , xn)

(a) Single-target gate

x1

x2

x3

x1

x2

x3 ⊕ (x1 ∧x2)

(b) Toffoli

x1

x2

x1

x1 ⊕x2

(c) CNOT

Figure 4.1 – Examples of reversible gates.

1
2
3

Figure 4.2 – Notations for the multiple-controlled Toffoli: the left gate is T1∧2({1,2},3) in the
complete notation and T ({1,2},3) in the special notation; for the second gate T1∧2({1,2},3) and
T ({1,2},3).

is the CNOT gate, in Fig. 4.1 (c), which has a single control line. A special notation T(C ′, t ) is

introduced for these gates, where C ′ = {l ⊕pl | l ∈C }. This notation is explained by Fig. 4.2.

4.2 Synthesis of reversible circuits

This section reports state-of-the-art algorithms to synthesize a garbage-free reversible circuit

implementing a possibly non-reversible Boolean function f . This is the first step of several

automatic algorithms for the compilation of a quantum oracle for f .

Some state-of-the-art algorithms require to represent the input function f as a truth table that

lists all input-output mappings explicitly [91, 96, 155]. Further, these algorithms require f to

be already reversible, and they realize the reversible mapping without using any helper qubit,

i.e., additional qubits initialized to |0〉. However, being truth-table based, such approaches

are not suited to the compilation of large functions. If the target Boolean function is non-

reversible, a preliminary step of embedding it into a reversible function is required to apply

these algorithms. The embedding generates garbage outputs that are not compatible with

quantum computation. For this reason, more gates are needed to uncompute such garbage

outputs. There exist symbolic variants of these truth table based algorithms (see, e.g., [101,

156, 157]), in which the input function is represented symbolically, e.g., as binary decision

diagram (BDD [158]) or using SAT encoding [146]. These methods can be applied to larger

functions, but are not robust and still require a long runtime. In the remainder of this section,

I will discuss two state-of-the-art methods that either are used by algorithms presented in this

thesis or inspired them.
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Figure 4.3 – Example of mapping a single-target gate into Toffoli gates using ESOP decomposi-
tion.

4.2.1 ESOP-based reversible logic synthesis

One can always decompose a single-target gate controlled by the function to synthesize

Tc ({x1, . . . , xk }, xk+1) into a cascade of Toffoli gates

Tc1 (X1, xk+1)◦Tc2 (X2, xk+1)◦ · · · ◦Tcl (Xl , xk+1),

where c = c1 ⊕c2 ⊕·· ·⊕cl , each ci is a product term or 1, and Xi ⊆ {x1, . . . , xk } is the support of

ci . This decomposition of c is also referred to as ESOP decomposition [116, 117, 115]. ESOP

minimization techniques can be applied to reduce the size of the ESOP expression.

ESOP-based reversible synthesis methods derive from the observation that an ESOP can be

directly translated into a reversible circuit, as each term of the expression corresponds to a

multiple-controlled Toffoli gate [97, 159]. The method generates as many Toffoli gates as cubes

in the expression, performed in sequence and targeting the same line. By construction, the

generated circuits are garbage-free.

Example 4.2.1 The Toffoli network in Fig. 4.3 corresponds to the ESOP expression of the pr i me6

function:

pr i me6 = x1x2x3x5x6 ⊕x1x5x6 ⊕x1x2x4x6 ⊕x1x4x5 ⊕x1x2x3x4x5 ⊕x1x2x3 ⊕x2x3x4x5x6

The decomposed circuit reflects the quality of the ESOP expression, so the synthesis process is

crucial for this application.

4.2.2 Hierarchical reversible synthesis

Hierarchical reversible synthesis starts from a multi-level logic network representation im-

plementing the function to be synthesized. It exploits helper qubits to store intermediate

results computed by the logic network’s nodes. A simple variant of this approach was already

presented by Tommaso Toffoli himself [160]. The starting gate-level netlist consisted of AND

and NAND gates and the result of each gate was computed by a corresponding Toffoli and

saved on an helper line. The approach has been picked up and integrated into the quan-

tum programming language Quipper [161]. Based on the synthesis idea from Toffoli, other
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hierarchical synthesis approaches were presented that mainly differ in the underlying logic

network representation, e.g., decision diagrams [162, 94, 163], functional decomposition [103],

fanout-free regions in And-Inverter Graphs [104], or XOR-majority graphs [105].

The main drawback of these methods is the redundancy of the obtained reversible circuit and

the large number of required helper qubits. Restructuring and optimizing the underlying logic

network can lead to a significant reduction in the number of nodes and consequently in the

number of qubits and gates of the resulting circuit.

4.3 Decomposing reversible gates into quantum circuits

Given that all quantum circuits must be reversible, often the quantum circuit implementation

of combinational logic functions is derived from an intermediate reversible representation.

4.3.1 Gray synthesis

In this section, I describe a state-of-the-art method to synthesize a quantum circuit composed

of CNOT, H and Rz (θ) gates from a single-target gate [95]. Any unitary matrix U f realizing

the single-target gate on qubit xn with control function f (x1, . . . , xn−1) can be decomposed as

follows:

U f = (I2n−1 ⊗H) ·di ag (ĝ0, . . . , ĝ2n−1) · (I2n−1 ⊗H)

where ĝ0 . . . ĝ2n−1 is the truth table of the function g = xn ∧ f in the {−1,1} encoding. The

authors of [99] proved that the matrix di ag (ĝ0, . . . , ĝ2n−1) can be implemented only using

CNOT and Rz gates. The matrix is equivalent to the unitary performing the mapping

|x〉 7→ e iπs(x)/2n |x〉 ,

where the phase polynomial s(x) assigns to each parity combination of the inputs a coefficient

equal to the corresponding coefficient in the Rademacher-Walsh spectrum of the Boolean

function g . Authors of [98] presented an efficient heuristic algorithm for the synthesis of

small parity networks, which is capable of generating all the parity functions in the phase

polynomial s(x) with a reduced amount of CNOT gates. The described synthesis approach

owes its name to this algorithm. For each parity function generated, a rotation gate Rz (θi ) is

performed, where θi =πsi /2n and si is the spectral coefficient corresponding to that parity

function. It follows that, the more zero coefficients in the Rademacher-Walsh spectrum, the

fewer rotation gates in the generated quantum circuit.

4.3.2 Quantum circuits for the Toffoli gate

This section describes state-of-the-art quantum implementations of the cited Toffoli gate. The

2-control Toffoli gate has a Clifford+T implementation that requires 7 T gates [90], which is
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4.3. Decomposing reversible gates into quantum circuits

optimum [164, 165], i.e., minimum T -count and T -depth:

|x1〉
|x2〉
|x3〉

=
H

T

T

T

T †

T †

T †

T H

|x1〉
|x2〉
|x3 ⊕x1x2〉

(4.1)

When the Toffoli gate is computed on a qubit initialized to |0〉, it can be implemented using 4

T gates, with a T -depth of 2, and without requiring any additional qubit [166, 167]:

|x1〉
|x2〉
|0〉

|x1〉
|x2〉
|x1x2〉

=
|x1〉
|x2〉
|T 〉

T †

T †

T HY

|x1〉
|x2〉
|x1x2〉

(4.2)

where HY = SH , S = T 2 and |T 〉 = T H |0〉. Besides, when the result of the Toffoli is uncomputed,

meaning that a qubit storing |x1x2〉 is brought back to |0〉, this can be performed without the

use of any T gate, exploiting measurement-based uncomputation, as shown:

|x1〉
|x2〉

|x1x2〉

|x1〉
|x2〉
|0〉

=
|x1〉
|x2〉

|x1x2〉 H X

|x1〉
|x2〉
|0〉

(4.3)

There exists also another AND gate implementation with a T -depth equal to 1, which combines

the AND circuit from [167] and the Toffoli gate implementation in [168] characterized by a

T -depth of 1. The circuit requires one extra qubit with respect to the implementation in (4.2):

|x1〉
|x2〉
|+〉
|0〉

T †

T †

T

T

HY

|x1〉
|x2〉
|x1x2〉
|0〉

(4.4)

where |+〉 = H |0〉.

Several works from the literature describe how to map multiple-controlled Toffoli gates into

Clifford+T gates (see, e.g., [90, 164, 168, 169]). Among them, a method proposed by Barenco

et al. [89] allows us, provided an additional qubit, to map any multiple-control Toffoli gate

into a sequence of 2-control Toffoli gates, which can be implemented using the optimum

circuits in (4.1) and (4.2). In general, a k-controlled Toffoli gate can be realized with at most

16(k −1) T gates. If the number of helper lines is larger or equal to bk−1
2 c, then 8(k −1) T gates

suffice [90, 89]. Future improvements to the decomposition of multiple-controlled Toffoli

gates into Clifford+T circuits will have an immediate positive effect on some of the algorithms

proposed in this thesis.
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Chapter 4. Reversible circuits

4.4 Summary

This chapter introduced reversible circuits and described the reversible gates used in the

remainder of this thesis. Indeed, methods to generate quantum circuits implementing non-

reversible Boolean functions take advantage of reversible circuits as intermediate represen-

tations. In Section 4.2, I reported state-of-the-art methods to synthesize reversible circuits

for non-reversible Boolean functions, including hierarchical methods largely investigated in

this thesis. Finally, Section 4.3 illustrated state-of-the-art decomposition techniques to map

reversible gates into Clifford+T quantum circuits.
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5 Hierarchical reversible synthesis

This chapter addresses the problem of compiling a particular category of quantum circuits,

i.e., quantum oracles, which implement classical Boolean functions. I describe a method

capable of synthesizing quantum circuits from high-level definitions of Boolean functions,

i.e., multi-level logic networks. This method, called hierarchical reversible synthesis, generates

a reversible network that serves as intermediate representation. Each reversible gate of this

network is further decomposed into a quantum circuit.

I first give an overview of the hierarchical synthesis process, which is characterized by three

main steps: (1) decomposing the network, (2) mapping the decomposed logic into qubits

using reversible gates, and (3) decomposing each reversible gate into a quantum circuit.

Then, I propose and describe new methods for steps (1) and (2) to improve the state-of-

the-art flow: Section 5.2 proposes a decomposition method specifically designed for this

application, and Section 5.3 discusses a SAT-based technique to optimally perform the second

step according to a given constraint in the number of qubits. Chapter 7 will focus on step (3),

which is a self-contained problem.

5.1 Method overview

Given an n-input m-output Boolean function f (x1, . . . , xn) = (y1, . . . , ym) with x = x1 . . . xn and

y = y1 . . . ym , the mapping

O f : |x〉|y〉|0l 〉 7→ |x〉|y ⊕ f (x)〉|0l 〉, (5.1)

describes a 2n+m+l ×2n+m+l unitary operation, which permutes the amplitudes of a quantum

state according to f (x). It can be seen that the n inputs are passed through n qubits |x〉 that

can be in an arbitrary quantum state. The outputs are computed onto m qubits, which can be

in an arbitrary state |y〉. Note that ‘⊕’ refers to the bitwise XOR operation. Finally, there are l

qubits that are all in state |0〉 before and after the computation. These are called helper qubits

and can be used to store intermediate temporary results.
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Figure 5.1 – (a) Circuit computing y = g ( f (x1, x2), x3) with two single-target gates generating
an unknown intermediate result. (b) Garbage-free circuit where the intermediate result has
been uncomputed by applying f twice.

The described unitary operations are used in many quantum algorithms, e.g., Shor’s algorithm

for integer factorization [18] and Grover’s algorithm for unsorted database search [76]. Com-

piling such unitaries means finding a quantum circuit that realizes the function without the

need to explicitly represent O f but only based on a symbolic representation of f , e.g., given as

a logic network. Restoring the helper qubits to the |0〉 state is crucial, since intermediate com-

putation results that remain in the output quantum state are perceived as noise by subsequent

operations in the quantum algorithm, eventually leading to wrong results. The number of

additional qubits is application- and hardware-specific. As an example, in order to realize an

oracle performing an 8-input, 8-output Boolean function on a 20-qubit quantum computer,

one can use at most l = 4 helper qubits.

k-LUT-based hierarchical synthesis uses k-LUT decomposition as the first step of the synthesis

flow and is capable of finding a quantum circuit for O f when f is represented as a logic

network. The method is called hierarchical because it starts from a multi-level logic network

representation of the Boolean function and then hierarchically traverses the graph translating

it into a reversible network. The reversible network is built using single target gates—a gate that

complements the target if its Boolean control function evaluates to true, see Definition 4.1.1.

To comply with Equation 5.1, intermediate reversible networks are required to be garbage-free,

which means that all intermediate results need to be uncomputed.

Example 5.1.1 Fig. 5.1 (b) shows a garbage-free reversible circuit that performs the mapping

|x1x2x3〉 |02〉 |0〉 7→ |x1x2x3〉 |02〉 |g ( f (x1, x2), x3)〉, in which the intermediate state | f (x1, x2)〉 is

uncomputed by repeating a single-target gate controlled by f .

As illustrated by Fig. 5.2, k-LUT-based hierarchical reversible synthesis is performed in three

steps:

1. k-LUT mapping. The step decomposes f into a k-LUT network using k-LUT mapping.

Fig. 5.2 shows a 2-LUT mapping performed on the logic network representing f in

Fig. 5.2 (a), generating the network with LUTs n1, . . . ,n4 in Fig. 5.2 (b). This initial

step has a relevant impact on the result of the compilation. The k parameter allows

us to control the maximum permissible number of inputs of each sub-network: a

smaller k will generate many sub-networks controlled by small functions, which can
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Figure 5.2 – k-LUT-based hierarchical quantum compilation flow illustrating the example of a
three-input multi-level logic network performing the Boolean function f (a), mapped into a
2-LUT network for f (b), translated into the reversible circuit for the 2-LUT network using the
Bennett clean-up strategy (c) then decomposed into a quantum circuit (d).

be synthesized by mapping methods that do not scale well with the function size. At

the same time, having many sub-networks leads to many intermediate results to be

allocated in the quantum memory, hence more helper qubits.

2. Qubit mapping. This step assigns the logic gates of the k-LUT network to the n +m + l

qubits in the resulting quantum circuit, making sure that no more than l temporary

values are stored at any time. This step is illustrated in Fig. 5.2: one single-target gate

is created for each LUT in Fig. 5.2 (b) and placed on the reversible circuit in Fig. 5.2 (c).

Each single-target gate computes on a helper line an intermediate value using the logic

function of the corresponding LUT. There are several possible strategies to perform this

step [170, 171], which explore the trade-off between helper lines and single-target gates.

3. Single-target gate (STG) decomposition. The step maps each single-target gate into

a quantum circuit of elementary gates supported by the targeted quantum device. It

requires compilation methods capable of generating quantum circuits with a limited

T -count, T -depth and number of qubits, when the Clifford+T library is selected. Fig. 5.2

(d) shows a well known decomposition of a single-target gate controlled by the 2-input

AND function, i.e., a Toffoli gate, into a quantum circuit with 7 T gates.

Hierarchical methods for the synthesis of quantum circuits have shown the ability to synthesize

large functions and enable a certain control over the number of helper qubits, through the

parameter k of the decomposition. In the next sections, I will introduce new techniques

that improve the described state-of-the-art hierarchical synthesis method, which is called

LUT-based Hierarchical Reversible Synthesis (LHRS) and was initially proposed in [106]. In

particular, I describe a new k-LUT mapper to be used to perform the first step of the synthesis

flow, and a memory management technique to be used in the second step of the described

flow to explore the trade-off between number of operations and number of qubits.
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5.2 Quantum-aware k-LUT mapping

Hierarchical reversible synthesis exploits k-LUT mapping to decompose the initial network.

The state-of-the-art hierarchical synthesis method LHRS [106] exploits an area-oriented LUT

mapper called mf, which is part of the logic synthesis framework abc [119], to generate a

LUT network that is used as a starting representation for the synthesis flow. In LHRS, k-LUT

mapping is performed considering metrics such as delay and area, which do not directly

impact the cost functions of quantum circuits. When k-LUT mapping is used in the context

of quantum circuit synthesis, the classical metrics must be changed to relevant ones in this

application. In this thesis, this criticality is addressed by developing a new quantum-aware k-

LUT mapper that aims at minimizing the number of gates required to synthesize the quantum

circuit of each LUT.

As already described, the choice of the k parameter defines the number and the complexity

of the obtained sub-networks, which are then translated into single-target gates. Besides, it

is possible to tune this decomposition step to select sub-networks implementing functions

which can be “easily” translated into quantum circuits, meaning that the compilation method

produces better results.

Consider the case in which the framework uses a specific decomposition method to decom-

pose each single-target gate into Clifford+T circuits: the Gray synthesis method [98, 99]. This

technique decomposes each single-target gate with control function f into a quantum cir-

cuit that consists of the following quantum operations: CNOT, H , Rz (θ) (see section 4.3.1).

The method is characterized by a direct dependence between non-zero coefficients in the

Rademacher-Walsh spectrum of the function f (see Definition 2.2.3) and number of CNOT

and Rz gates to be synthesized. This dependence is exploited by selecting the number of non-

zero coefficients as cost function for each LUT, trying to obtain LUTs with as fewer non-zero

coefficients as possible.

5.2.1 Cut enumeration and costing

The logic network used as input of the proposed mapping method is the Xor-And-inverter

Graph (XAG): a graph in which each node performs the XOR or the AND operation and edges

can be complemented to perform inversion. The choice of this data structure reflects the

fact that it is relatively inexpensive to perform the XOR operation in fault-tolerant quantum

circuits. Only one CNOT gate is needed to perform the XOR between two qubits, and in general

m −1 CNOT gates are needed to perform an m-input XOR gate. If the result is stored on a

helper qubit, m CNOT gates are needed in total.

The first step performed by the k-LUT mapper is the so-called cut enumeration. This step

consists of enumerating all possible cuts for each node of the input graph, traversing the

graph from the bottom to the top. Only the best cuts are stored for each node, a technique

called priority cuts that reduces the memory requirement of cut enumeration [172]. During cut

50



5.2. Quantum-aware k-LUT mapping

f1 f2 f3

f

(a) XOR LUT

0
0
0
0

f1 f2 f3

f

f3 f2 f1

0
0
0
0

(b) Conventional mapping into qubits

0

f1 f2 f3

f

f3 f2 f1

0

(c) Improved mapping into
qubits

Figure 5.3 – Mapping into qubits LUTs performing the XOR function.

enumeration, each node is assigned to a set of p cuts that are ordered following a user defined

cost criterion. As this mapper is developed in the context of a quantum synthesis framework,

the number of non-zero spectral coefficients of the function performed by the selected cut is

used as cost function. As previously pointed out, the Gray synthesis method generates smaller

quantum circuits when the input function presents a spectrum with many zeros. At the end of

the cut enumeration step, each node of the XAG is assigned with an ordered set of p cuts, with

the order criteria defined according to the spectrum of the corresponding function.

5.2.2 XOR-block matching

After cut enumeration, the mapper has to extract the LUT mapping. This corresponds to

marking certain nodes of the graphs, which will be the output nodes of the sub-networks. A

standard mapper would start by marking each output node and by selecting the first cut in the

ordered set of cuts relative to that node. Then, it would mark all the leaves of the selected cuts

and find the best cut for these leaves as well. This is repeated until all the primary inputs are

marked.

The quantum-aware mapping identifies the cuts performing the parity function and makes

sure to always select them during the mapping extraction, as they can be conveniently synthe-

sized as multi-input XOR gates. For this reason, after cut enumeration, cuts are adjusted to

isolate multi-input XOR operations, called XOR blocks.

If some leaves of an XOR block have a fan-out size of 1, i.e., they only fan-in into the XOR

block, an alternative mapping strategy is possible, which leads to reduction of qubits and

gates. Fig. 5.3 illustrates the improved mapping strategy for an XOR cut with three inputs.

In Fig. 5.3 (a) this LUT is drawn as an XOR symbol. The conventional mapping into qubit,
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shown in Fig. 5.3 (b), maps each child into a clean helper qubit, and then uses another clean

qubit to map the result of the XOR cut. The result of that cut, f , can then be used as input by

subsequent gates. Fig. 5.3 illustrates this fact by simply annotating the circuit line where it

represents the value f . However, since in this case the child cuts f1, f2, and f3 are composed

via the XOR operator, one can directly map them in to a single qubit without the need of

requiring an additional qubit for each child LUT, see Fig. 5.3 (c).

Note that the size of the XOR gates does not need to be bounded by the LUT size k. In order to

build XOR blocks in XAGs, first 2-input XOR gates are detected. Then, sub-trees of XOR gates

are grouped together. Finally, the modified cut enumeration assigns cost 0 to the XOR cuts, in

order to force the LUT mapping to prefer XOR blocks.

5.3 Quantum memory management

Single-target gate quantum circuits, used as reversible intermediate representation by the k-

LUT hierarchical synthesis, are required to be garbage-free, which means that no intermediate

result is accessible from the outputs. Otherwise, as many states can be entangled together,

measurement of intermediate results may compromise the computation. This requirement is

enforced in step (2) of the hierarchical synthesis flow described in Section 5.1, which aims at

mapping the logic functions performed by each LUT into the qubits.

Example 5.3.1 In the remainder of this section, consider the example of a quantum algorithm

that performs the following mapping: |x1〉|x2〉|x3〉|x4〉|0〉|0〉 7→ |x1〉|x2〉|x3〉|x4〉|y1〉|y2〉 where

z1 = A(x2, x3) z2 =C (z1, x3) z3 = B(x3, x4)

z4 = D(z3, x3) y1 = E(z2, z4) y2 = F (x1, z1)

with A,B ,C ,D,E ,F being some generic 2-input Boolean operations and z1, z2, z3, z4 the inter-

mediate results. Such computation is represented in Fig. 5.4 (a) using a Directed Acyclic Graph

(DAG), in which each node corresponds to one part of the operations, and edges define data

dependencies: an edge is drawn from a node v to a node w if w requires the value of v (see

Fig. 5.4 (a)).

The hierarchical synthesis method traverses the DAG and maps each logic operation to the

available helper qubits. There are several ways of performing this mapping, leading to a

different number of required helper qubits. Three different reversible circuits resulting from

the DAG in Fig 5.4 (a) are shown in Fig. 5.4 (b-d).

The three circuits are different in the order in which each single-target gate is performed.

Values stored on helper qubits can be computed and uncomputed more than once, such that

when the results y1 and y2 have been computed, all the intermediate values z1, z2, z3, z4 are

cleaned up. A simple solution is the one proposed in Fig. 5.4 (b), which is referred to as the
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Figure 5.4 – (a) Example of a DAG. (b)(c)(d) Three different uncomputing strategies: (a) Bennett
strategy; (b) space-optimized by reordering; (c) space-optimized by increasing the number of
gates.

Bennett strategy [170]. It consists of computing all the operations in a bottom-up order, and

then uncomputing the intermediate results in a top-down fashion, so that all the nodes have

their inputs available. This strategy always leads to the minimum number of single-target

gates, and to the maximum number of helper qubits. The order in which the DAG is converted

into a reversible circuit can have a significant effect on how the memory is managed. For

example, the strategy illustrated in Fig. 5.4 (c) saves one qubit only by changing the order of

the operations, without increasing their number. Finally, the number of helper qubits can

be further reduced to 4 by allowing an increase in the number of gates. In this case, some

functions are computed several times, see Fig. 5.4 (d).

In Fig. 5.4 (b-d) lines are drawn in red whenever their corresponding qubit is storing an

intermediate result. The first two strategies store values for a long time during which they are

not needed, whereas the last strategy makes a better usage of fewer memory locations. The

three circuits are useful to visualize the trade-off between space (i.e., qubits) and time (i.e.,

gates).

This section introduces a memory management technique that enables to select the best

strategy to perform the mapping into qubits, achieving a garbage-free reversible circuit using

the minimum number of single-target gates, while relying on a fixed number of helper qubits.
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5.3.1 Reversible pebbling game

Finding the best strategy to uncompute all intermediate results corresponds to solving the

reversible pebbling game problem. For this reason, the term pebbling strategy is used in the

remainder of this thesis.

The reversible pebbling game problem was introduced by Bennett in [170], in the context of

exploring space/time trade-off in reversible computation. The game is played by placing and

removing pebbles from the nodes of a DAG modeling the computation. When a pebble is

placed on a node, the node is pebbled, meaning that the value computed by the operation

carried out by that node is available on a qubit. Initially, no node is pebbled. A pebble can be

placed on a node if all its children are pebbled. While a pebble can be removed from a node

at any time according to the rules of the “standard” pebbling game, the reversible version

requires that all the children of the nodes are pebbled to perform such a move. The game

ends if all the outputs are pebbled and all the other nodes are unpebbled. Solving the problem

returns a valid strategy to clean up intermediate results stored on helper qubits.

The problem complexity has been studied in [173], where the author proves that finding the

minumum number of pebbles for a given DAG is PSPACE-complete, as in the case of the

non-reversible pebbling game. Besides, the problem is PSPACE-hard to approximate up to

an additive constant [174]. An explicit asymptotic expression for the best time-space product

is given in [175]. Asymptotic space bounds are known for chain graphs [171] and complete

binary trees [176]. The asymptotic behavior on trees is studied in [177]. Complexity trade-off

results for the problem applied to general DAGs are given in [178].

Solving the reversible pebbling game corresponds to finding a reversible pebbling strategy,

which is a sequence of reversible pebbling configurations.

Definition 5.3.1 (Reversible pebbling configuration) A reversible pebbling configuration of

a DAG G = (V ,E) is a subset P ⊆V of all the pebbled vertices.

Definition 5.3.2 (Reversible pebbling strategy) A reversible pebbling strategy of a DAG G is

a sequence of reversible pebbling configurations P = (P1, ...,Pm) such that P1 = {} and Pm =O,

where O is the set of all the outputs of G. For each 1 < i ≤ m, we have that if Pi = Pi−1 ∪ {v} or

Pi = Pi−1/{v} and Pi 6= Pi−1, all the children of v are in Pi−1.

Fig. 5.5 shows two possible pebbling strategies for the algorithm in Example 5.3.1, described

by the DAG in Fig. 5.4 (a). Each row of the grids represents a node and each column, from left

to right, corresponds to a single step. A black square means that the corresponding node is

pebbled. In accordance with the rules of the game, the initial configuration is empty and the

last only contains output vertices. In these examples only one move per step is allowed. The

first strategy is the one reported by Bennett [170], which naively computes all the nodes and

then uncomputes the intermediate results. This pebbling requires a number of pebbles equal
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Figure 5.5 – Two different pebbling strategies for a given DAG.

to the number of nodes, 6 in the example, and only 10 steps, that is minimum. The complete

sequence of pebbling configurations for the first example is:

P0 = {} P6 = {A,B ,C ,D,E ,F }

P1 = {A} P7 = {A,B ,C ,E ,F }

P2 = {A,B} P8 = {A,B ,E ,F }

P3 = {A,B ,C } P9 = {A,E ,F }

P4 = {A,B ,C ,D} P10 = {E ,F }

P5 = {A,B ,C ,D,E }

The second approach is a strategy that only uses 4 pebbles. To reduce the number of pebbles,

it computes twice the nodes a and b, increasing the number of steps to 14. The complete

sequence of pebbling configurations for the second example is:

P0 = {} P8 = {A,C ,D,E }

P1 = {A} P9 = {A,D,E }

P2 = {A,C } P10 = {A,D,E ,F }

P3 = {C } P11 = {D,E ,F }

P4 = {B ,C } P12 = {B ,D,E ,F }

P5 = {B ,C ,D} P13 = {B ,E ,F }

P6 = {C ,D} P14 = {E ,F }

P7 = {C ,D,E }

I have shown here two possible pebbling configurations, which correspond to valid uncom-

puting strategies for all intermediate results. The problem of finding the best configuration

is encoded as a Boolean satisfiability problem and can be solved using state-of-the-art SAT

solvers.

5.3.2 SAT-encoding

In [179], we proposed to solve the reversible pebbling game by casting it as a satisfiability

problem and by exploiting state-of-the-art SAT solvers. In particular, we aimed at minimizing

the number of steps of a valid pebbling strategy while constraining the maximum number of

pebbles per step, which corresponds to the required number of helper qubits.
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Problem 5.3.1 (Optimal reversible pebbling) Given a DAG and P pebbles, find a valid peb-

bling strategy using the minimum number of steps.

To use SAT solvers to extract a solution, this problem has to be decomposed into many SAT

problems.

Problem 5.3.2 (Bounded reversible pebbling) Given a DAG and P pebbles, does a valid peb-

bling strategy with K steps exist?

The solver can either find a solution and return a pebbling strategy, or state that no solution

exists. In this case the number of steps is increased to K +1 until a satisfying solution is found.

Following the definition of a reversible pebbling game given in Section 5.3.1, this section

describes the SAT encoding of Problem 5.3.2. The set of declared Boolean variables and the

constraints (clauses) describing a valid solution to the problem are defined. The input DAG

G = (V ,E) is characterized by a set O ⊆ V of nodes that compute output values. Note that

the primary inputs are not nodes of the DAG. Also, C (v) = {w | w → v} is defined as the set

containing all the children of node v .

Example 5.3.2 The DAG in Fig. 5.4 (a) has six nodes {A,B ,C ,D,E ,F } and two outputs O = {E ,F }.

Note that, e.g., C (A) = {}, since the primary inputs are not part of the DAG.

Variables

Problem 5.3.2 is encoded in terms of the pebble state variables pv,i . For v ∈V and 0 ≤ i ≤ K ,

these are Boolean variables that evaluate to true if the node v is pebbled at time i . Note that

the SAT formula encodes K +1 pebble configurations with K steps describing the transition

from one configuration to the next.

Clauses

The following set of clauses describes the reversible pebbling problem.

• Initial and final clauses: at time 0 all the nodes are unpebbled, and at time K all the

outputs need to be pebbled and all the intermediate results unpebbled∧
v∈V

p̄v,0 ∧
∧

v∈O
pv,K ∧ ∧

v 6∈O
p̄v,K

• Move clauses: if a node is pebbled or unpebbled at time i +1, then all its children are
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pebbled at time i and time i +1

K∧
i=1

∧
w∈C (v)

((pv,i ⊕pv,i+1) → (pw,i ∧pw,i+1))

• Cardinality clauses: at each step, at most P pebbles are used

K∧
i=0

(
∑

v∈V
pv,i ≤ P )

5.3.3 Show-cases

This section illustrates how quantum memory management, achieved by solving the reversible

pebbling game using the open-source SAT solver Z3 [148], allows us to optimally exploit limited

qubit resources.

Show-case: Straight-line programs

The first example illustrates how the proposed method can be applied to the synthesis of

straight-line programs used in cryptographic applications. Such programs are combinations

of modular arithmetic operations, e.g., addition, subtraction, multiplication, and squaring.

One can assume that for each operation a quantum implementation exists, and will have a

given cost in terms of quantum gates and qubits. The method allows us to estimate the cost of

an algorithm implementation of these functions in terms of number of different operations,

according to a fixed number of available qubits.

A straight-line program that implements the addition between two points of an Edward curve

in projective coordinates from [180] is selected as benchmark. The resulting DAG is pebbled

using different numbers of pebbles, corresponding to different numbers of qubits. Fig. 5.6

shows the pebbling strategies obtained with 24, 20, 16, 12, and 10 pebbles. The figure reports,

for each case, a different number of operations. For example, the first implementation per-

forms a total of 74 operations: 28 additions, 20 subtractions, 15 squaring and 11 multiplication.

It is clear how the tool manages to fit the desired computation into limited number of qubits,

by increasing the number of required steps. As a consequence, the last implementation has a

higher cost in terms of operations: 110 in total. The overall cost of the algorithm on different

hardware can be evaluated, provided some estimates of the real cost of each operation. The

dynamic change in the memory employed during the computation is shown at the top of each

grid. A flat dynamic suggests that a constant number of qubits is used through the whole

computation. While a solution with a lower peak requires fewer qubits.
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Figure 5.6 – Illustration of how pebbling maps the given computation into a fixed number of
helper qubits: respectively 24 (Add:28, Sub:20, Sqrt:15, Mult:11), 20 (Add:36, Sub:32, Sqrt:21,
Mult:9), 16 (Add:28, Sub:24, Sqrt:17, Mult:13) , 12 (Add:24, Sub:34, Sqrt:19, Mult:13) and 10
(Add:34, Sub:38, Sqrt:25, Mult:13).

Show-case: Comparison with Bennett strategy

The second show-case has the purpose of quantifying the ability of the program to map

a design into a limited number of qubits. As benchmark, consider the operator called H

(different from the Hadamard gate) that is used internally to the algorithm that computes

the doubling of two points referred before [180]. This operator is a composition of modular

additions (+) and modular subtraction (−); it has a,b,c,d as inputs and four outputs x, y, z, t ,

where:

t1 = a +b t2 = c +d t3 = a −b t4 = c −d

x = t1 + t2 y = t1 − t2 z = t3 + t4 t = t3 − t4

Experiments reported in Table 5.1 show a comparison between the Bennett pebbling method

and the strategy obtained pebbling the corresponding DAG. The different designs correspond

to the H operator with different bitwidths and modulus, and to the well known ISCAS bench-

mark. The graph representation for the function has been extracted from an XOR-majority

graph using the open-source tool mockturtle [181]. The number of pebbles reported in Ta-

ble 5.1 corresponds to the minimum one for which the solver could find a solution within 2

minutes. Even with this short timeout, the algorithm finds a solution for a significantly reduced

number of pebbles. The average percentage reduction is 52.77%. As the pebbles are reduced,

the number of steps (single-target gates) is in average 2.68× the one of the Bennett method.

With the increase of the size of the DAG, the obtained pebble reduction is smaller. The reason

is in the chosen timeout, as the solver requires more time to deal with larger designs: the

number of variables of the SAT problem is proportional to n2, where n is the number of nodes

of the DAG. Besides, more steps are required to pebble a design with a larger number of nodes.

This also depends on the timeout. Indeed, the algorithm is capable of finding many solutions
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Table 5.1 – Comparison between the Bennett and the pebbling strategy.

Bennett Pebbling strategy
pi po nodes P K P K runtime %P ×K

b2_m3 8 8 74 66 124 30 186 0.17 54.55 1.5
b3_m4 12 12 59 47 82 20 117 121.37 57.45 1.43
b4_m5 16 16 203 187 358 83 778 55.75 55.61 2.17
b5_m7 20 20 256 236 452 106 888 31.15 55.08 1.96
b6_m7 24 24 310 286 548 130 1132 35.72 54.55 2.07
b8_m7 32 32 422 390 748 187 1884 11.59 52.05 2.52
b10_m7 40 40 535 495 950 264 2938 28.66 46.67 3.09
b12_m7 48 48 646 598 1148 331 4228 56.33 44.65 3.68
b16_m23 64 64 881 817 1570 480 6218 133.45 41.25 3.96

c17 5 2 12 7 12 4 12 0.01 42.86 1
c432 36 7 208 172 337 60 685 23.70 65.12 2.03
c499 41 32 219 178 324 77 610 60.08 56.74 1.88
c880 60 26 334 274 522 82 1280 43.52 70.07 2.45
c1355 41 32 219 178 324 77 594 2.63 56.74 1.83
c1908 33 25 220 187 349 70 875 57.97 62.57 2.51
c2670 157 63 554 397 731 160 1948 47.94 59.7 2.66
c3540 50 22 856 806 1590 416 5434 111.20 48.39 3.42
c5315 178 123 1257 1079 2035 498 7635 118.38 53.85 3.75
c6288 32 32 1011 979 1926 640 10232 101.31 34.63 5.31
c7552 207 108 1151 944 1780 540 7757 124.1 42.8 4.36

Average percentage reduction of pebbles = 52.77
Average multiplicative factor for the number of steps = 2.68

with different number of pebbles but same number of steps, while more constrained solutions

(in number of steps) require a longer runtime.

5.4 Results

This section presents a comparison between the the state-of-the-art flow LHRS [106] and the

hierarchical synthesis method equipped with the techniques described in this chapter, called

Resource-constrained Oracle Synthesis (ROS) [182]. The efficiency of the proposed approach

is demonstrated by synthesizing some quantum oracles.

By combining the quantum-aware mapping method, SAT-based quantum memory manage-

ment, together with the Gray synthesis method, the results show that it is possible to improve

both the number of qubits and the number of gates, compared to the state-of-the-art method.

The two compared flows are shown in Fig. 5.7. Fig. 5.8 shows a qualitative description of the

expected performance advantages. In the plot, the state-of-the-art result is the one marked

as M/B (corresponding to the LHRS synthesis framework). If one only applies the memory

management technique in Section 5.3, but not the new mapper proposed in Section 5.2, then

a circuit with fewer qubits and more gates is obtained, which corresponds to M/P in the

figure. If instead one embeds into LHRS the quantum aware k-LUT mapper, but no quantum

memory management, then a circuit with fewer gates but more qubits is obtained: S/B . Only

the combination of both techniques (S/P ) can beat the state-of-the-art tool in both qubits and

gates. Indeed, the approach can be tuned to only improve the qubit count while not increasing
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Figure 5.7 – (a) LHRS flow; (b) ROS flow.
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Figure 5.8 – Qualitative description of ROS’s capability.

the gate count, or vice versa. This qualitative description is supported by the results described

in this section.

The experimental evaluation consists of synthesizing oracle circuits for Grover’s algorithm,

assuming to perform equivalence checking between two logic designs. Equivalence checking

is a well-known problem in logic synthesis that has been addressed by many logic synthesis

tools, as for example abc [119] or Formality®. The function f performed by an oracle circuit is

satisfied when the two graphs perform different operations. The algorithm would either prove

that the two circuits are equivalent, or would provide the input set for which the two functions

evaluate differently.

The synthesized Boolean functions are represented using XAGs. Each graph represents an

equivalence checking miter of two circuits that perform the same function but using a different

network structure. The miter of two networks is a network built by joining their input sets

and by computing the 2-input XOR between their outputs. Furthermore, one or more injected

faults (a node performing a different computation) are injected in one of the two circuits.

Three types of oracles are synthesized: addassoc, where the algorithm should verify the validity

of the associative property of addition; multassoc, where the two designs should be equivalent

thanks to the associativity of the multiplication, and multdistr, to prove the distributivity of the

multiplication. Each benchmark is considered with bitwidths w from 4 to 10. Consequently,

each benchmark has 3×w inputs and 1 output.

The experimental results are reported in Table 5.2. The first two columns show the results of
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M/B S/B S/P_match_q S/P_match_g M/P

gates qubits gates qubits gates qubits gates qubits gates qubits

addassoc4 1376 25 1029 34 1141 25 1371 22 1904 19
addassoc5 2987 36 1586 49 1798 36 1804 31 5365 24
addassoc6 2394 43 1445 58 1513 42 1729 35 8268 26
addassoc7 3243 51 1941 70 2201 50 2361 44 4383 36
addassoc8 3221 62 2018 79 2312 57 2430 49 4787 40
addassoc9 3603 70 2385 89 2453 67 2773 56 5569 42
addassoc10 4528 80 2835 97 3575 70 3549 58 6142 50
multassoc4 6682 34 2751 60 3057 34 3193 33 10834 19
multassoc5 10519 54 4811 104 5321 55 5321 55 16687 31
multassoc6 17653 93 7395 172 8565 96 8565 96 22933 53
multassoc7 25395 138 11099 240 15425 135 14607 128 37717 74
multassoc8 32443 181 13781 323 20713 179 22997 166 51757 94
multassoc9 37599 212 17881 394 34305 203 32489 200 66267 110
multassoc10 47795 289 22843 525 41825 281 41081 262 101627 143
multdistr4 4812 29 2368 54 3262 29 3694 25 5034 19
multdistr5 9011 54 4569 94 5441 54 5441 54 22717 25
multdistr6 13327 78 6092 143 7138 80 7138 80 15169 46
multdistr7 18268 110 8771 200 13849 109 13849 109 21746 63
multdistr8 26151 149 11888 276 17896 149 17520 143 39449 81
multdistr9 30427 184 14477 332 22917 182 22445 181 43819 99
multdistr10 37571 226 17808 414 29714 214 31570 219 55583 122

S/P vs M/B average results -32.31% -1.86% -29.77% -8.38%

Table 5.2 – Comparison between ROS and LHRS.

the state-of-the-art (M/B) synthesis flow, that uses a classic k-LUT mapper and the Bennett

strategy to deal with garbage results (LHRS).

As expected, data show that only changing the k-LUT mapper (S/B) always reduces the number

of gates, paying in an increased number of qubits. On the other hand, by only applying the

quantum garbage management technique (M/P), the number of qubits is always reduced, and

the number of gates is increased.

In the S/P_match_q experiment ROS is used with a number of qubits that matches M/B. In

most of the cases, an improvement in both qubits and gates is obtained, with the exception

of multassoc5, multdistr6 and multassoc6. For the latter cases, the SAT solver used in the

quantum garbage management technique reached the limit of 50000 conflicts. For this reason,

the number of qubits has been slightly increased, still obtaining in all cases a reduction in

gates with respect to M/B. ROS in this setting reduces the number of gates of 32.31% and the

number of qubits of 1.86% on average.

The S/P_match_g experiment starts from the results in S/P_match_q and tries to beat them,

by decrementing the number of qubits, as long as the number of gates does not exceed the

one in M/B. Also here ROS manages to obtain better results than the state-of-the-art flow both

in gates and qubits. Gates are reduced of 29.77% on average, while qubits are reduced of 8.38%

on average, with respect to M/B.

Most of the synthesis runs completed within a few seconds, none required more than one

minute in the worst-case.
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5.5 Summary

This chapter introduced the hierarchical reversible synthesis, which can compile quantum

circuits implementing large Boolean functions. Section 5.1 defined the problem of oracle

compilation and detailed the various steps of the state-of-the-art hierarchical compilation

process. Section 5.2 explained how this thesis improved the state-of-the-art method by

integrating of a k-LUT mapper that performs a decomposition tailored to reduce the final

quantum circuit cost. Section 5.3 focused on a second proposed improvement: exploting SAT-

based quantum memory management to reduce the number of qubits. Finally, Section 5.4

highlighted the performances of the new hierarchical synthesis method, featuring both a

quantum-aware k-LUT mapper and quantum memory management, if compared to the state-

of-the-art solution. Experimental results prove the ability of the proposed method to break the

border of the Pareto-point synthesis results, beating the state-of-the-art framework in both

numbers of qubits and gates. Gates are reduced by 29.77% while qubits are reduced by 8.38%

on average. This technology can enable certain computations on systems with a constrained

number of qubits, when this would not be possible using the compilation strategies available

in the literature.

The memory management technique can also be applied whenever designing a quantum

algorithm composed of several interconnected parts. Indeed, to deal with the complexity

of a quantum algorithm, it is customary to decompose it into several parts that are then

independently optimized. A DAG can be defined to describe data dependency between the

parts, and it can be pebbled to find the best strategy to compose such parts together, given

a limit on the number of pebbles (helper qubits). Being able of evaluating the resources

required to optimally perform such composition, see e.g., the show-case in Section 5.3.3, is a

fundamental step to draw conclusions on the applicability of certain quantum algorithms on a

given system and to identify critical components. Future work could focus on a general toolkit

to perform resource estimation related to the composition of database components, based on

solving the reversible pebbling game. In this application, variations of the classical problem

may provide a tighter estimation. For example, the toolkit may be capable of performing

a weighted pebbling problem, where each node of the DAG is characterized by a weight

representing its implementation cost and the solution is a pebbling strategy with a minimized

total weight. A variation of this problem is used in Section 6.3.1 to optimize an already found

pebbling strategy. Exactly solving the weighted pebbling using SAT is impractical, hence such

resource estimation toolkit should rely on heuristic strategies.
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This chapter describes hierarchical synthesis algorithms specifically designed to work on

2-LUT networks, where each node performs the 2-input XOR, the 2-input AND and inversion.

This network is equivalent to an Xor-And-inverter Graph (XAG). The proposed algorithms

compile into the Clifford+T universal library and focus on minimizing the following cost func-

tions, typical of fault-tolerant quantum computing: the T -count—the number of generated

T gates; the T -depth—the maximum number of T gates to be performed sequentially, also

referred to as number of T -stages; and the number of qubits.

The characteristics of the initial network impact the resource footprint of the compiled circuit

and this chapter elaborates on how the network could be modified to achieve better com-

pilation results using, e.g., state-of-the-art minimization strategies [183, 184]. Finally, The

trade-off between qubits and gates is explored by leveraging a memory management SAT-

based technique specifically designed to work with the XAG representation. The XAG-based

compilation techniques are used to synthesize quantum circuits implementing cryptographic

and arithmetic logic functions with application in post-quantum cryptography and fault-

tolerant quantum computing.

6.1 Methods overview

Chapter 5 presented an automatic hierarchical synthesis method that leverages network

decomposition into arbitrary LUTs. Such method has the advantage of being applicable

to any logic network, independently of the Boolean function implemented by its nodes.

More importantly, it enables us to control the number of generated qubits: the network is

decomposed into several single-output sub-networks whose results are stored into extra qubits.

By controlling the size of the sub-networks, it is possible to control the number of extra qubits.

However, the method is not able to efficiently optimize the gate count. Typically, when the

number of qubits is heavily constrained, the number of gates significantly increases. This

happens because large sub-networks will be generated and, with no control on the Boolean

functions they implement, they will likely be compiled into a large circuit. In addition, LUT
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decomposition causes a windowing effect: parts of the networks are prevented from being

synthesized together, resulting into more gates. This issue is addressed by the new LUT

decomposition strategy proposed in Section 5.2, which allows some control on the grouped

logic, reducing the number of gates.

In this chapter, I introduce a different approach to enable better control over all the cost

functions. This approach is based on identifying repeated patterns in the XAG network, which

conveniently translate into quantum circuits characterized by few gates. In particular, the

method works by isolating the parts of the graph that can be implemented by one single Toffoli

gate. By doing so, it identifies a direct correlation between the features of the network and the

cost in terms of T gates (T -count and T -depth) and number of qubits.

The first XAG-based compilation algorithm is a method that targets the minimization of the

T -count, which we published in [185]. It correlates the number of AND nodes in the XAG

(multiplicative complexity) with the T -count. The final circuit achieves the upper-bound

in the number of T gates of four times the multiplicative complexity of the input network.

Indeed, each AND node can be implemented by a Toffoli gate acting on a helper line initialized

at state |0〉 using the implementation in Section 4.3 (4.2), which needs 4 T gates.

The second constructive algorithm minimizes the T -depth by relating it to (i) the maximum

number of levels in the graph with AND nodes, i.e., the multiplicative depth, and (2) the

number of AND nodes in the same level sharing input signals. This second algorithm achieves

a T -depth that is equal to the multiplicative depth of the graph.

Finally, the third compilation algorithm performs quantum memory management to explore

the trade-off between qubits and T -count. In particular, it exploits SAT solvers to find a strategy

to fit the logic into a constrained number of qubits. Section 5.3 introduced the problem of

quantum memory management and presented a solution based on SAT. The idea is to enable

re-utilization of helper qubits by uncomputing intermediate results, solving the reversible

pebbling game. Here, this method is expanded to work at a wider level of granularity. In other

words, while the previous method was enabling computation and uncomputation of every

single node in the XAG separately, in this new approach selected sets of nodes are grouped

together. This allows us to control the overhead in the number of gates generated when

constraining the number of qubits. In addition, it simplifies the SAT problem by reducing

variables and clauses allowing us to find an optimized solution with respect to the T -count.

I also present in this chapter an optimization method to further improve the compilation

results. The number of helper qubits can be selected as a parameter of the compilation, the

SAT solver will return a valid compilation solution to not exceed the given qubit constraint,

then the number of T gates is optimized.
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6.2 Xor-and-inverter graphs

In classical logic synthesis, a good method is based on the synergy between data structure and

algorithm, working together to minimize the target functions. The methods presented in this

chapter rely on the convenient representation of the logic as an Xor-And-inverter Graph (XAG).

This network has been already introduced in Section 2.1.4, but a more formal description is

here provided.

An XAG is a logic network over the gate basis {∧,⊕,¬}, meaning that each node of the network

either computes the 2-input AND operation, the exclusive-OR operation, i.e., the 2-input XOR,

or the invertion operation ¬x = 1⊕x = x̄. x̄ denotes the Boolean complement of x = 1−x, and

x0 = x̄ and x1 = x. A simple XAG computing the majority-of-three Boolean function is shown

in Fig. 6.2 (a).

The logic network for an n-variable Boolean function with inputs x1, . . . , xn is modeled as a

Boolean chain with steps

xi = x j (i ) ⊕xk(i ) or xi = xp(i )
j (i ) ∧xq(i )

k(i ) , (6.1)

for n < i ≤ n + r , depending on whether the step computes the XOR or the AND operation,

where r is the number of steps. The constant values 1 ≤ j (i ) < k(i ) < i point to input or

previous steps in the chain. When a step computes the AND operation, the Boolean constants

p(i ) and q(i ) are used to possibly complement the gate’s fan-in. Note that complemented

inputs of XOR gates can be propagated to their outputs, hence it is not necessary to define p(i )

and q(i ) for the XOR steps. The value of a single-output function is computed by the last step

of the chain f = xp
n+r , which may be complemented. In the case of multi-output functions,

there will be a set of steps which computes the function’s values: fo = xp
o where o ∈O—the list

of all the output indices. I write ◦i =∧, if step i computes an AND gate, and ◦i =⊕, if step i

computes an XOR gate.

Definition 6.2.1 (Multiplicative complexity) The multiplicative complexity of the logic net-

work is the number of AND gates it contains: c̃ = |{i | ◦i =∧}|. The multiplicative complexity of

the Boolean function is the minimum number of AND nodes required to represent it using an

XAG.

Clearly, the multiplicative complexity of a network is an upper bound on the multiplicative

complexity of the Boolean function it realizes.

Every AND node acts on two multi-input parity functions. When the input to the AND node is

either a primary input, another AND node, or a network’s output, the arity of this function is

equal to 1.

Definition 6.2.2 (Linear transitive fan-in) Let the linear transitive fan-in (ltfi) of a step xi in
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∧
xi

⊕ ⊕
ltfi(x j (i )) ltfi(xk(i ))

p(i ) q(i )

(a) AND step in logic
network

ltfi(x j (i ))

ltfi(xk(i ))

|0〉

t1

t2

...

...

|xi 〉
(b) Quantum circuit construc-
tion for AND step

Figure 6.1 – Illustration of the compilation of an AND step of an XAG into a quantum circuit
computing its linear transitive fan-in cones in-place using CNOT gates.

x1 x2 x3

+ +
∧
+〈x1x2x3〉 =

Figure 6.2 – An XAG graph representing the majority-of-three Boolean function.

the logic network be defined using the recursive function

ltfi(xi ) =
{

{xi } if i ≤ n or ◦i =∧ or i ∈O,

ltfi(x j (i ))4 ltfi(xk(i )) otherwise,
(6.2)

where ‘4’ denotes the symmetric difference of two sets.

It is easy to see that all elements in ltfi(xi ) are either inputs, outputs, or steps that compute the

AND function. Fig. 6.1 illustrates an AND node and its two linear transitive fan-in cones.

Example 6.2.1 Consider the network in Fig. 6.2 (a), which implements the majority-of-three

function 〈x1x2x3〉 = x1x2 ∨x1x3 ∨x2x3 in four steps:

x4 = x1 ⊕x2, x5 = x2 ⊕x3,

x6 = x̄4 ∧x5, x7 = x2 ⊕x6.

For this network
ltfi(x4) = {x1, x2}

ltfi(x5) = {x2, x3}

ltfi(x6) = {x6}

ltfi(x7) = {x2, x6}.

Finally, I introduce the concept of level in the XAG network. Every step xi of the network, with

66



6.3. Methods

1 ≤ i ≤ n + r is characterized by a quantity called level and defined as:

L(xi ) =
max

t∈C
(L(t ))+1 with C := ltfi(x j (i ))∪ ltfi(xk (i )), if i > n

0, otherwise
(6.3)

In other words, a network’s node xi is at level L(xi ) = l only if the node with the maximum

level among all the ones in the linear transitive fan-in cones of xi is at level l −1. This means

that only AND nodes and outputs “count" to define the depth of the network, because only

AND and output nodes appear in the ltfi sets.

Definition 6.2.3 (Multiplicative depth) The multiplicative depth of the network is defined as

d̃ = max
n<i≤n+r

L(xi )

as the maximum level among the steps of the Boolean chain.

In addition, to provide a very compact representation for Boolean functions, XAG networks

have another characteristic that makes them excellent data structures for quantum com-

pilation: each node represents a logic function for which a convenient quantum circuit

implementation exists. This allows us to recognize the existence of a dependency between

the network characteristics, e.g., the multiplicative complexity, and the synthesized quantum

circuit. It is indeed possible to derive an upper bound on the number of expensive gates from

characteristics of the XAG.

6.3 Methods

6.3.1 Algorithm 1: minimizing the T-count

The first described algorithm achieves an upper bound on the number of T gates that is pro-

portional to the multiplicative complexity of the input network c̃. Indeed, the final quantum

circuit has 4c̃ T gates.

The key insight is that each AND node in the logic network is driven by two multi-input parity

functions of variables which are either inputs or other AND nodes in the lower levels of the

logic network. Fig. 6.1 shows the node xi and the two parity functions with the respective linear

transitive fan-ins. The polarity variables p(i ) and q(i ) take into account possible inversion of

the inputs of the AND node. The pseudo-code of the algorithm is given in Alg. 6.1. Lines 19–22

show that, at first, all the steps of the network that perform the AND function (or compute

an output) are compiled using the function ‘compute’. Then, all the intermediate results

are restored to |0〉 by uncomputing ‘compute’. The function compute (lines 1–18) builds the

circuit for each step xi as illustrated in Fig. 6.1. In particular, it identifies two signals in the

ltfi cones that are not shared between the cones, namely t1 and t2. Then, the parity functions
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are computed in-place onto the qubits corresponding to t1 and t2. In the next steps, the

complemented edges are evaluated and X gates are applied if necessary (see Fig. 6.1). In

lines 12–13 the step xi is finally computed on a new qubit, using a CNOT gate (XOR output) or

the implementation of the AND node described in (4.2), which has T -count equal to 4 and

T -depth equal to 2. Finally, the parity functions are uncomputed.

Algorithm 6.1 Low T-count compilation algorithm.

Input: Logic network with gates xn+1, . . . , xn+r

Output: Quantum circuit for U f

1: function COMPUTE(xp
i )

2: j ← j (i ), k ← k(i )
3: L1 ← ltfi(x j ), L2 ← ltfi(xk )
4: xi ← request_helper
5: if L1 ⊆ L2 then swap L1 ↔ L2 and p ↔ q

6: let t1 be some element in L1 \ L2

7: let t2 be some element in L2

8: CNOT(x, t1) for all x ∈ L1 \ {t1}
9: CNOT(x, t2) for all x ∈ L2 \ {t2}

10: if p(i ) then NOT(t1)
11: if q(i ) then NOT(t2)
12: if oi =∧ then ANDT−depth=2(t1, t2, xi )
13: else XOR(t1, t2, xi )

14: if i ∈O and p then NOT(xi )
15: if p(i ) then NOT(t2)
16: if q(i ) then NOT(t1)
17: CNOT(x, t2) for all x ∈ L2 \ {t2}
18: CNOT(x, t1) for all x ∈ L1 \ {t1}

19: for i = n +1, . . . ,n + r where ◦i =∧ or i ∈O do
20: compute(xp

i )

21: for i = n + r, . . . ,n +1 where ◦i =∧ do
22: compute†(xp

i )

Note that I assume that L1 6= L2. If this is not the case, it means that the parity functions that

are input to the AND node are equal, making AND node itself redundant. Also, note that the

intersection of L1 and L2 may not be empty. Since the value of L1 is computed in-place on

some signal t1 ∈ L1, then it must be ensured that L1 6⊆ L2. If the latter condition applies, it is

sufficient to swap L1 and L2.

In addition, when L2 ⊆ L1, the value computed by L2 could be reused to compute L1. This

is achieved by modifying the elements in L1 such that L1 = (L1 \ L2)∪ {xk }. An example is

shown in Fig. 6.3. In this case ltfi(x j ) includes ltfi(xk ) and ltfi(x j ) \ ltfi(xk ) = {t0}. This leads to a

reduction in the number of CNOT operations.
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(a)

ltfi(xk(i ))

t0 |0〉

...

t0|xi 〉
(b)

Figure 6.3 – Example in which one transitive fan-in is included in the other and the computed
intermediate value can be reused.
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ltfi(xk(i )) = ltfi(x j (s)) = {t0}

(a) A level with two AND nodes and a
shared input

ltfi(x j (i ))

t0

ltfi(xk(s))

|0〉

t1

t2

...

|xi 〉
...

|xs〉
(b) Quantum circuit construction
for the level.

Figure 6.4 – Illustration of how algorithm 6.2 compiles one level with two AND nodes, xi and
xs , into a quantum circuit with one single T -stage.

6.3.2 Algorithm 2: minimizing the T-depth

The second algorithm targets the reduction of the T -depth. Compared to the previous one, it

uses implementation (4.4) of the AND operation that has 4 T gates, 4 qubits and 1 T -stage.

I refer to Xl = {xi | L(xi ) = l }, as the set of all the nodes at level l . The key idea is that if two

AND nodes in the same level do not share any of their input in the ltfi sets, then they can be

computed with only one T -stage using implementation (4.4). Obviously, this is not always the

case, as AND nodes often share the same inputs. To overcome this problem, the algorithm

copies every overlapping set of inputs on a new helper qubit. This procedure, described in

Alg. 6.2, obtains circuits with a number of T -stages equal to the multiplicative depth d̃ of the

networks. While the previously described algorithm proceeds in topological order, this one

proceeds level by level (see lines 11–15). For each level, the function copy_overlaps will assign

to each node a set of two qubits on which the parities of the two fan-in cones are computed.

If the node shares some inputs with another, a new qubit will be assigned to compute the

corresponding parity function. This means that if a node xi ∈ Xl has inputs t1, t3, t5 (on qubits

q1, q3, q5) in common with node x j ∈ Xl , then a new qubit qi will be used as target of three

CNOT gates with the shared input qubits as controls. As it can be seen in line 12, the copies are
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Algorithm 6.2 Low T-depth compilation algorithm.

Input: Logic network with gates xn+1, . . . , xn+r

Output: Quantum circuit for U f

1: function COMPUTE_ON_COPIES(xp
i ,C P )

2: t1, t2 ←C P [i ]
3: xi ← request_helper
4: if p(i ) then NOT(t1)

5: if q(i ) then NOT(t2)

6: if oi =∧ then ANDT−depth=1(t1, t2, xi )
7: else XOR(t1, t2, xi )

8: if i ∈O and p then NOT(xi )

9: if p(i ) then NOT(t2)

10: if q(i ) then NOT(t1)

11: for l = 1, . . . , d̃ do
12: C P ← copy_overlaps(Xl )
13: for xp

i ∈ Xl do

14: compute_on_copies(xp
i ,C P )

15: copy_overlaps†(Xl )

16: for l = d̃ , . . . ,1 do
17: for xp

i ∈ Xl where i ∉O do

18: compute†(xp
i )

performed before compiling any of the AND nodes in the level, thus allowing the actual AND

implementations to act on non-overlapping qubits, resulting in a single T -stage. Once the

copies are being computed each node is passed to the function compute_on_copies (lines 1–

10) which uses the qubits associated by the mapping C P to each fan-in parity function as

controls to compute the AND. Once all AND nodes in the level are computed, the parities are

uncomputed (lines 15). Finally the levels in the XAG are uncomputed from higher to the lower

level. Every node, independently from having shared fan-ins can be uncomputed without

using copies (lines 16–end), using the function compute as defined in Alg. 6.1. An illustrative

example is shown in Figure 6.4, where the algorithm is applied to a simple level Xl = xi , xs with

one overlapping input t0, such that ltfi(x j (i ))∩ ltfi(xk(s)) = {} and ltfi(x j (s)) = ltfi(xk(i )) = {t0}.

The figure shows how the overlapping input is copied to a new qubit before computing the

parity functions: then the two AND can be computed in parallel with a T -depth equal to 1.

6.3.3 Algorithm 3: minimizing the number of qubits

All the algorithms described so far compute and uncompute every AND node at most once,

and the compiled circuit is uniquely determined by the features of the input network. This

section presents a method that, instead, allows us to explore the solution space, by computing

and uncomputing nodes several times.

The third algorithm seeks the best strategy to uncompute the intermediate results in order

to optimize the memory usage. The problem is equivalent to the reversible pebbling game
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Figure 6.5 – Illustration of a pebbling strategy for the input DAG (a) using 3 pebbles and 6
moves (b)-(g), and the corresponding compiled reversible circuit of Toffoli gates (h).
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Figure 6.6 – Illustration of how sections of the XAG are compressed in a box node of the abstract
network.

introduced in Section 5.3.

Example 6.3.1 Fig. 6.5 illustrates how a network with only AND nodes can be compiled as a

reversible network of Toffoli gates out of a pebbling solution with 3 pebbles and 6 steps. Note

that the final circuit will use only 2 helper qubits, that is the number of pebbles used, minus the

number of outputs. The overall width will be equal to 7: the number of inputs plus the number

of pebbles.

XAGs are DAG in which each node computes the AND or the XOR function. It follows that it is

possible to play the reversible pebbling game directly on the XAG. Nevertheless, this does not

exploit the structural properties of the XAG. For this reason, a different DAG is constructed

from the XAG, called abstract graph. Each AND node (and its two input parity functions)

corresponds to a ‘box’ node of the abstract graph, as shown in Fig. 6.6. Once a strategy for

pebbling the abstract graph is found, each time a pebble is placed on a box node which

compresses xi the ‘compute(xi )’ function will be called, while whenever a pebble is removed

from a node, the ‘compute†(xi )’ function will be called to uncompute the node.
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Optimizing the pebbling solution

While the XAG is compressed into the abstract graph, some information about the number of

quantum gates required to compute each node is lost. Indeed, the strategy found by playing

the reversible pebbling game on the abstract graph would not take into account the fact that

each box node requires a different number of gates to be performed. In addition, the SAT

encoding of the standard reversible pebbling game does not include any clause that controls

the number of moves, which reflects in the number of generated T gates. An optimization

step is introduced to overcome both problems.

The key idea is that it is possible to associate a weight with each box node of the abstract graph

wv , which is equal to the number of inputs to the node itself. Indeed, the number of inputs are

related to the number of CNOT gates that are needed to compute the parity functions “hidden”

in the compressed node.

If every node v is characterized by a weight wv , it is possible to define the following problem.

Problem 6.3.1 (Weight-bounded pebbling) Given a DAG G = (V ,E ), K steps and a total weight

W , find a reversible pebbling strategy P = (P0, . . .Pk+1) such that
∑K

i=1

∑
v∈Pi

wv ≤W .

A new set of variables are defined for the SAT encoding of this problem: activation variables

av,i . For v ∈V and 0 < i ≤ K , those are Boolean variables that evaluate to true if the node v

has changed its state at time i . Once a weight-agnostic solution has been found, the following

quantity represent the total weight of the strategy:

Ws =
K∑

i=1

∑
v∈V

wv av,i (6.4)

The SAT solver is then asked to solve problem 6.3.1 with a total weight W = Ws − 1. This

procedure is repeated until the solver returns unsat or hits a timeout.

As shown in the result section, this optimization procedure succeeds at reducing the number

of T gates with respect to the initial solution. This result can be achieved even if every node

has weight equal to one. Indeed, the optimization introduces a cardinality constraint on the

activation variables, hence eliminates all the pebbling moves that are not fundamental to

terminate the game. If the weights are set to reflect the actual size of the parity functions, then

the number of CNOT in the solution can be reduced.

6.4 Results

This section reports the statistics of quantum circuits generated by the described XAG-based

algorithms. Results are presented for two publicly available benchmark suites, including

arithmetic, cryptographic, e.g., AES, and floating point operations with application in post-

quantum cryptography and fault-tolerant quantum computing.
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The first benchmark contains the best-known logic networks, in terms of multiplicative com-

plexity and depth, collected by the Computer Security Resource Center (CSRC) at the National

Institute of Standards and Technology (NIST) and by the University of Yale1. The benchmark

includes: (i) finite field multiplication in GF (26) using irreducible polynomial x6 + x3 + 1

(mx6x31), multiplication in GF (27) using irreducible polynomial x7 + x4 +1 (mx7x41) and

using x7 +x3 +1 (mx7x31); (ii) binary multiplication with different input sizes n (bm_n); (iii)

a 16-bit and a 8-bit S-box (s16, s8); (iv) finite field multiplication in GF (28) using the AES

polynomial x8 +x4 +x3 +x +1 (x8x4x31).

In addition, the method is evaluated on a set of circuits used in the context of Multi-Party

Computation MPC and Fully Homomorphic Encryption FHE, collected by the Department of

Electrical Engineering (ESAT) at KU Leuven2 optimized for the number of AND gates using

the technique proposed in [183] and available online3. The benchmark includes: (i) block

ciphers DES in its expanded and non-expanded variant (the latter meaning that the input

key is assumed non-expanded); (ii) block cipher AES with 128, 192 and 256 key length; (iii)

cryptographic hash functions MD5, Keccak, SHA-256 and SHA-512; (iv) arithmetic functions

such as adders, multipliers, and comparators; (v) IEEE floating point operations.

6.4.1 Improving the T-count versus T-depth

Table 6.1 shows the synthesis result of the first two proposed algorithms. Alg. 6.1 minimizes

the T -count, while Alg. 6.2 minimizes the T -depth without increasing the number of T gates,

but relying on an increased number of additional qubits. The number of T gates achieved is

equal to 4 times the multiplicative complexity of the network for both algorithms. The second

algorithm reduces the T -depth to be equal to the multiplicative depth of the network. The

last two columns of Table 6.1 show a comparison between the two algorithms: the percentage

improvement in T -count and in number of qubits of Alg. 6.2 with respect to Alg. 6.1.

6.4.2 Qubits/T-count trade-off

This section reports the results obtained by the third algorithm to control the memory re-

sources during the compilation of the logic design. The method allows us to force the compi-

lation to synthesize a circuit with a limited number of helper qubits. Fig. 6.7 shows different

compilation results obtained setting the number of available helper qubits to different values,

for a selection of designs. The plots show on the x axis the number of qubits, and on the y

axis the obtained T -count. For every fixed number of qubits two points are reported: the

non-optimized and the optimized results. The latter obtained by running a post-optimization

procedure encoded as a SAT problem on the initial (non optimized) result. It can be seen how

the procedure allows us to choose between different qubit/T -count trade-off solutions and

1http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
2https://homes.esat.kuleuven.be/~nsmart/MPC/
3https://github.com/lsils/date2020_experiments
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Alg.1 Alg.2 Comparisons

benchmark I O AND XOR Tc* Td Q Tdld Qld %Td %Q

mcustom 16 8 27 79 108 8 51 1 116 87.50 -127.45
mx6x31 12 6 27 30 108 6 45 1 112 83.33 -148.89
mx7x41 14 7 40 44 160 7 61 1 164 85.71 -168.85
mx7x31 14 7 40 45 160 7 61 1 164 85.71 -168.85
s16 17 16 113 333 452 48 146 8 283 83.33 -93.84
bm-10 20 19 52 102 208 12 89 1 218 91.67 -144.94
bm-11 22 21 78 108 312 12 119 1 322 91.67 -170.59
bm-12 24 23 81 126 324 12 126 1 332 91.67 -163.49
bm-15 30 29 117 195 468 18 174 1 482 94.44 -177.01
bm-20 40 39 208 314 832 24 285 1 850 95.83 -198.25
bm-30 60 59 351 687 1404 36 468 1 1448 97.22 -209.40
bm-40 80 79 624 1079 2496 48 781 1 2554 97.92 -227.02
bm-50 100 99 676 1847 2704 72 873 1 2774 98.61 -217.75
bm-60 120 119 1053 2253 4212 72 1290 1 4284 98.61 -232.09
bm-70 140 139 1432 2985 5728 72 1709 1 5856 98.61 -242.66
bm-80 160 159 1872 3494 7488 96 2189 1 7582 98.96 -246.37
bm-90 180 179 1989 4561 7956 126 2346 1 8104 99.21 -245.44
bm-100 200 199 2704 5143 10816 144 3101 1 10950 99.31 -253.11
s8 9 8 32 81 128 28 49 6 63 78.57 -28.57
x8x4x31 16 8 48 69 192 8 72 1 194 87.50 -169.44

DES-exp 832 64 9205 13136 36820 2070 10101 214 10352 89.66 -2.48
DES-non-exp 128 64 9048 13092 36192 2186 9240 202 9464 90.76 -2.42
adder-32bit 64 33 32 150 128 33 129 32 130 3.03 -0.78
adder-64bit 128 65 64 284 256 65 257 64 258 1.54 -0.39
comp-32bit-lt 64 1 92 95 368 21 156 20 182 4.76 -16.67
comp-32bit-lteq 64 1 92 97 368 20 156 19 182 5.00 -16.67
md5 512 128 9367 29729 37468 7561 10007 1283 10619 83.03 -6.12
mult-32x32 64 64 1689 4723 6756 324 1816 64 1816 80.25 0.00

Keccak-f 1600 1600 38400 115200 153600 30209 41600 24 44798 99.92 -7.69
aes-128 256 128 6400 28176 25600 874 6976 60 7133 93.14 -2.25
aes-192 320 128 7168 32080 28672 830 7808 72 7870 91.33 -0.79
aes-256 384 128 8832 39008 35328 900 9536 84 9598 90.67 -0.65
sha-256 768 256 22573 109746 90292 14411 23597 1607 23597 88.85 0.00
sha-512 1536 512 57947 284286 231788 40172 59995 3304 59995 91.78 0.00

FP-add 128 64 5346 5629 21384 2460 5538 235 5541 90.45 -0.05
FP-div 128 64 70599 44959 282396 25649 70792 3604 72563 85.95 -2.50
FP-eq 128 64 315 356 1260 10 506 9 526 10.00 -3.95
FP-f2i 64 64 1458 1421 5832 593 1586 94 1683 84.15 -6.12
FP-mul 128 64 18874 10290 75496 1988 19066 118 20907 94.06 -9.66
FP-sqrt 64 64 76925 57165 307700 44782 77054 6498 79589 85.49 -3.29

* Both algorithms achieve the same T -count.

Table 6.1 – Compilation results for several arithmetic, floating point and cryptographic designs.

how the optimization achieves Pareto-optimal results.

6.4.3 Discussion

The first two techniques achieve results that are predictable by inspecting the characteristics of

the logic network. In details, given a logic network characterized by a multiplicative complexity

c̃, i.e., the number of AND nodes, and by a multiplicative depth:

• both algorithms achieve a T -count equal to 4c̃;
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Figure 6.7 – Optimized and non-optimized pebbling results using different number of pebbles
for selected logic networks.

• Alg. 6.2 achieves a T -depth equal to the multiplicative depth;

• the qubit overhead to achieve such T -depth depends on the number of shared inputs in

the linear transitive fan-ins of the AND nodes in a level.

This suggests that improving a network with respect the named parameters can strongly

and positively impact the synthesized quantum circuits, e.g., as done in [184], to reduce the

T -depth by reducing the multiplicative depth of the network.

Inspecting the results shown in the comparison columns of Table 6.1 reveals a trade-off

between T -depth and number of qubits. Indeed, while Alg. 6.1 is far from achieving the T -

depth performances of Alg. 6.2, it requires fewer qubits. There are two reasons for the increase

in qubits which characterizes Alg. 6.2. The first one is that it employs the AND implementation

characterized by a single T -stage and presented in Section 4.3 (4.4), which requires one qubit

more than the implementation (4.2) used by Alg. 6.1. This means that the compilation will

request this extra qubit whenever a AND node is computed. In addition, the implementation
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of AND nodes used by the second algorithm is characterized by a T gate applied to the controls,

as well as to the target qubit. For this reason, if two AND nodes share the same input signal, the

corresponding quantum circuit will have a T -depth equal to 2, as each AND implementation

will add a T gate to the shared qubit. If all the AND nodes at the same level of an XAG do not

share any input, they can be computed within a single T -stage. In order to achieve this result,

the second algorithm “copies” inputs that are shared among more AND nodes in a level on new

qubits. Hence, the compilation will request a new qubit whenever inputs are shared among

AND nodes at the same level in the XAG. In conclusion, summing the number of AND nodes

in a level with the number of shared inputs among them, one obtains the number of helper

qubits claimed to compile that level. Since helper qubits are cleaned-up after all the nodes in

the level are computed, the level for which this amount is greater will dominate and give the

total number of helper qubits for the synthesis of the entire network. Further details on the

algorithm, including detailed pseudo-code, can be found in Section 6.3. Table 6.1 reports the

two extremes that can be reached using XAG-based constructive algorithms. It is also possible

to obtain results “in-between”, i.e., a smaller improvement in T -depth and a smaller qubit

overhead with respect to Alg. 6.2, e.g., by modifying Alg. 6.1 to use the implementation with

T -depth equal to one. In addition, as the connectivity of each AND node in a level has an

impact on the T depth, different results can be found by changing how the level of each node

is computed.

The third algorithm focuses on exploring the trade-off between T -count and number of

qubits. Fig. 6.7 shows how the method is capable of providing different compiled solutions,

by taking the number of helper qubits as a parameter. The method finds the best way of

reusing memory space, by solving the reversible pebbling game. This is a global problem, hard

to approximate and decompose [174], hence difficult to be tackled by heuristic techniques.

Here, the problem is encoded as a SAT problem and solved globally, returning a valid memory

clean-up strategy that guarantees the upper bound on the number of helper qubits while also

aiming to minimize the T -count.

Fig. 6.7 shows non-optimized versus optimized pebbling solutions. The non-optimized solu-

tion is provided by the SAT solver without any constrains on the number of T -count generated.

The optimized solution is obtained starting from the initial solution and running optimization

rounds, which iteratively add clauses to the SAT problem to minimize the T -count. The more

time is spent in the optimization procedure the better the solution. The optimized points

shown in Fig. 6.7 are either optimal or the best result found after 1 and a half hours of running

the optimization procedure on a machine with two Intel Xeon E5-2680 v3 (Haswell) CPUs with

2.5 GHz clock frequency and 16 GB of main memory.

The optimization procedure removes unnecessary steps that the solver may insert in the

solution. Indeed, none of the clauses used to encode the problem prevents the solver to

uncompute nodes even if the limit in pebbles is not reached. Preventing this at the encoding

level requires a non-practical increase in the size of the SAT problem. The optimization

“reveals” the trade off between qubits and T -count, showing Pareto-optimal solutions.
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6.5 Summary

In this chapter, I introduced three different algorithmic methods to perform hierarchical

reversible synthesis (see the overview in Section 6.1) of a particular type of LUT network,

i.e., the Xor-And-inverter Graph (XAG) formalized in Section 6.2. The three methods were

explained in detail in Section 6.3. Section 6.4 reported the statistics of the quantum circuits for

the selected benchmark designs and compared the performances of the different techniques.

The described algorithms are all based on deriving, from the initial XAG, an abstract graph that

groups together the logic that can be compiled using one Toffoli gate and some CNOT gates.

By doing so, they provide a direct correspondence between the T -count and the T -depth

of the compiled quantum circuit and some structural properties of the XAG. In particular,

Alg. 6.1 and Alg. 6.2 achieve a T -count that is four times the multiplicative complexity of the

graph, while Alg. 6.2 achieves a T -depth that is equal to the multiplicative depth of the graph.

This suggests that future works should focus on optimizing such graph’s properties, providing

an optimization toolkit that leverages many logic network optimization techniques such as

rewriting, refactoring, and resubstitution, targeting the reduction of both the multiplicative

complexity and the multiplicative depth. Also, the distribution of the XOR nodes in the graph

plays an important role by affecting the number of CNOT gates in the compiled quantum

circuits, the reduction of which can also be tackled in such a toolkit.

A logic synthesis toolkit already exists that only targets the multiplicative complexity of XAG

graphs [183]. The experiments in this chapter provide compilation results for XAGs already

optimized by such a toolkit.
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7 Single-target gate decomposition

The previous chapters have shown how hierarchical reversible synthesis methods use, as

intermediate representation, a reversible circuit built using single-target gates. Such reversible

circuit is derived from a k-LUT decomposition of the initial network representing the Boolean

function to be compiled into a quantum oracle. This chapter discusses the problem of decom-

posing each single-target gate into the Clifford+T universal quantum gate library.

Problem 7.0.1 Given a single-target gate Tc (C , t), where c :Bk →B is the control function,

C = {c1, . . . ,ck } is the set of control lines and t ∉ C is the target line, and given a set of helper

qubits Xclean, find a Clifford+T network that realizes the function c on line t and restores the

initial values on all other lines.

Two cases are discussed separately. The first case considers single-target gates controlled by

Boolean functions with a number of input variables smaller than or equal to 5. In this case, it

is possible to precompute optimal results and store them into a database compressed using

spectral classification. Section 7.1 describes the characteristics of the proposed database and

specifies the algorithms used to generate its entries. The second case considers methods which

are capable of decomposing boolean functions independently from their number of inputs.

One approach is to apply ESOP-based decomposition. A study on how advanced methods

for the synthesis of ESOP expressions can be used in the compilation of oracle circuits is

presented in Section 7.2.1. Another approach, applicable to larger Boolean functions, involves

using successive k-LUT mappings to fully distribute the computation over all the available

helper qubits, presented in Section 7.3.

7.1 Precomputed quantum circuits

This section considers the problem of synthesizing quantum circuits implementing single-

target gates characterized by a control function with maximum 5 inputs. Optimized imple-

mentations can be precomputed and collected into a database that can serve two purposes:
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Figure 7.1 – Reversible circuits implementing the five spectral invariant operations.

(1) derive a quantum circuit for any Boolean function up to 5 inputs and (2) be used in the

k-LUT-based hierarchical synthesis process.

In general, such a precomputation approach requires a large amount of memory, since the

number of Boolean functions grows double-exponentially. For example, there are 256 3-input

Boolean functions, 65536 4-input Boolean functions, 4294967296 5-input Boolean functions,

and more than 10 quintillion (1019) 6-input Boolean functions. However, Boolean function

classification, which has been introduced in Section 2.2, can be used to reduce the memory

requirements and compress the size of the database. Indeed, there are only 2, 3, 8, and 48

spectral equivalent classes for Boolean functions over 2, 3, 4, and 5 inputs, respectively.

The database contains Clifford+T quantum circuits, optimized for the T -count, for the T -

depth or for the number of qubits, according to the cost functions of fault-tolerant quantum

computing.

7.1.1 Spectral equivalence in quantum compilation

In this section, I explain how a database containing an optimized quantum circuit for each

spectral equivalent class can be used to compile any Boolean function, without requiring any

extra T gates or qubits than the spectral equivalent representative in the database.

Theorem 7.1.1 Given two Boolean functions f and f ′ such that f
.= f ′, then t( f ) = t( f ′),

where t ( f ) maps the Boolean function f into the minimum number of T gates required by the

quantum oracle implementing f .

To prove this theorem, recall Definition 2.2.2: two n-input Boolean functions f and g are

spectral-equivalent ( f
.= g ), if there exists a set of spectral invariant operations o1, . . . ,ok from
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Figure 7.2 – Synthesized reversible circuit for the function f , obtained performing all the
spectral operations to retrieve f from the optimal implementation available in the database
fd (#0x0888).

Definition 2.2.1 such that

f
o1−→ ·· · ok−→ g .

Since all five spectral invariant operations can be implemented by X (negation) and CNOT

(controlled-negation) gates, hence without any T gates, it follows that, for any invariant

operation o, if f
o−→ g then t ( f ) = t (g ).

The spectral invariant operations are illustrated by the reversible circuits in Fig. 7.1, which

clearly shows how none of them require T gates. The circuit in Fig. 7.1 (a) performs a SWAP

gate, which can be implemented using three CNOT gates.

Consider the problem of compiling a quantum circuit implementing f starting from a database

entry which computes fd , such that f
.= fd . As discussed in Section 2.2, it is possible to derive a

canonical representative f̂ ∈ [ f ] for any Boolean function f , by applying the spectral invariant

operations directly to the Rademacher-Walsh spectrum of f [130, 135]. This procedure can be

efficiently implemented and applied to both f and fd : it returns two sequences of operations

o1, . . . ,ok and o′
1, . . . ,o′

l , such that f
o1−→ ·· · ok−→ f̂ and fd

o′
1−→ ·· · o′

l−→ f̂ . Since f
.= fd the procedure

will return the same representative f̂ . Therefore, since all operations are self-inverse, it is

possible to transform f into fd :

f
o1−→ ·· · ok−→ f̂

o′
l−→ ·· · o′

1−→ fd .

Example 7.1.1 Assume we want to map the single target gate T f ({x1, x2, x3, x4}, x5) with control

function f = #acab. Knowing that f ∈ [#0888], let fd = #0888 be the database entry for this

class. The spectral canonization algorithm in [130] finds the operation sequences to transform

f and fd in a canonical representative function of the equivalent class (#8880).

f
⊕x1−−→ #0601

x1↔x3−−−−→ #1401
x2⊕x3−−−−→ #4401

x2⊕x4−−−−→ #1101
x̄1−→ #2202

x̄2−→ #8808
x̄3−→ #8880

fd
x̄3−→ #8088

x̄4−→ #8880

Respectively, o1 = ⊕x1,o2 = x1 ↔ x3,o3 = x2 ⊕ x3,o4 = x2 ⊕ x4,o5 = x̄1,o6 = x̄2,o7 = x̄3 and

o′
1 = x̄3,o′

2 = x̄4. We obtain a circuit as illustrated in Fig. 7.2. First, the operations o′
1,o′

2 are

81



Chapter 7. Single-target gate decomposition

applied to transform fd → #8880 then o7, . . . ,o1 to transform #8880→ f .

7.1.2 Algorithms for the synthesis of the database

The database contains three entries for each representative of the spectral equivalent classes

with 4 and 5 inputs. One entry is optimized for the number of qubits, one for the T -count

and one for the T -depth. Each different representation was synthesized using a different

procedure. In this section, I describe the three procedures selected to synthesize each different

quantum circuit in the database.

ESOP-based algorithm to optimize the number of qubits

An ESOP-based procedure has been used to generate the database circuits optimized for the

number of qubits. Indeed, ESOP decomposition enables us to generate quantum circuits with

at most one helper qubit. The procedure also targets, as a second objective, the minimization

of the T -count.

For a spectral class [ f ], the following procedure is used to find a database entry for this class:

1. Pick any g ∈ [ f ].

2. Use ESOP-based decomposition to generate a network of multiple-controlled Toffoli

gates, as described in Section 4.2.1.

3. Optimize the multiple-controlled Toffoli network in order to reduce the T -count. This

step includes the application of some optimization properties that were initially pro-

posed in [3] and that are reported in this thesis in Section 8.1.1. These properties

target the minimization of the number of controls of each multiple-controlled Toffoli,

which corresponds to a T -count reduction. Some spectral invariant operations may be

performed to enable the application of such properties, leading to a different g ∈ [ f ].

4. Map each multiple-controlled Toffoli gate into the Clifford+T library using Barenco

decomposition [89] and relative-phase Toffoli mapping [90], enabling only one clean

helper line.

5. Optimize the resulting Clifford+T network using the open-source optimization script T-

par, which has been proposed in [108]. It exploits the phase polynomial representation

to reduce the number of T gates, while it uses matroid partitioning to reduce the T -

depth. The script is applied repeatedly until no further improvement can be obtained.

XAG-based algorithm to optimize the T -count

The procedure employed to generate circuits with minimal T -count is the constructive hierar-

chical method based on Xor-And-inverter Graphs XAGs [185] described in Section 6.3.1.
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7.1. Precomputed quantum circuits

The selected compilation algorithm is capable of generating a quantum circuit using O(N )

qubits and O(N ) gates, where N is the size of the XAG. The method guarantees an upper

bound on the T -count that depends on the multiplicative complexity c̃ of the Boolean function

representation. Recall that the multiplicative complexity, defined in Section 6.2, represents

the number of AND nodes in the network. In particular, the T -count is at most equal to 4× c̃.

The algorithm takes advantage of the low T-count implementation of the AND function

and of measurement-based uncomputation shown in (4.2), (4.3) and proposed in [166, 167].

The pseudo-code is given in Alg. 6.1, while here a high-level description of the procedure is

provided.

For each AND node in the XAG, Alg. 6.1 calls the function compute, which:

1. finds the parity functions that are input to the AND node;

2. computes the parity functions in-place using CNOT gates;

3. implements inversions using X gates;

4. implements the AND node using the implementation (4.2).

Once the outputs are computed, the iteration is repeated, this time performing the function

compute† to restore all helper qubits to their initial state. This function will use the implemen-

tation (4.3), which performs measurement based uncomputation. Hence, it does not require

any T gate.

Please refer to Algorithm 6.3.1 and to Section 4.3 for a more detailed description of the algo-

rithm and the quantum circuits implementing the AND operation, respectively.

XAG-based algorithm to optimize T-depth

The database also contains quantum circuits optimized with respect to their T -depth. These

database entries are synthesized using the hierarchical constructive algorithm presented in

Section 6.3.2, described by the pseudo-code in Alg. 6.2.

The algorithm generates a circuit with a T -depth equal to the multiplicative depth d̃ of the

XAG, which corresponds to the number of levels containing at least one AND node. Each AND

node is implemented using the circuit with T -depth = 1 described in Section 4.3 (4.4) and

reported here for completeness:

|x1〉
|x2〉
|+〉
|0〉

T †

T †

T

T

HY

|x1〉
|x2〉
|x1x2〉
|0〉
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Figure 7.3 – Bar plots showing the cost functions characterizing the three different implemen-
tations for the database functions (Q, TC, TD). The y-axes report: (a) average ratio between
number of qubits and best number of qubits in the database, (b) average ratio between T -
count and best T -count in the database, (c) average ratio between T -depth and best T -depth
in the database. Numbers on the bars show average values of the respective cost function for
the three implementations.

where |+〉 = H |0〉. If compared to the circuit (4.2) used by the previously described algorithm

to compute the AND function, this circuit requires one more helper qubit.

The following procedure is performed by Alg. 6.2 for each level of the XAG:

1. finds the parity functions that are input to the AND nodes in the level;

2. computes the parity functions in-place using CNOT gates;

3. if the same parity function is input to more AND nodes, uses a CNOT gate to copy it on

a helper qubit initialized to |0〉;

4. implements inversions using X gates;

5. implements all AND nodes in the level using (4.4).

By copying some of the qubits, this procedure enables parallel computation of all the AND

nodes in one level. Please refer to Alg. 6.3.2 for a more detailed explanation of the algorithm.

7.1.3 Database of optimized quantum circuits

The obtained database is available online1. The optimized circuits can be downloaded in Q#

format (Microsoft’s quantum programming language). The database has a total of 162 circuit

1https://github.com/gmeuli/stg-benchmark
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Table 7.1 – Specifications of the quantum circuits in the open-source database.

T-count-optimized T-depth-optimized qubit-optimized
truth-table qubits T-count T-depth qubits T-count T-depth qubits T-count T-depth

8000 8 12 4 12 12 3 6 24 12
8080 7 8 3 9 8 2 5 16 8
0888 8 12 4 11 12 3 6 31 14
8888 6 4 2 8 4 1 5 7 3
7080 7 8 3 10 8 2 5 19 8
7880 9 12 4 12 12 3 6 36 13
7888 8 8 2 9 8 1 5 12 3
6ac06ac0 9 8 2 10 8 1 6 12 3
6ac8e000 11 16 5 16 16 2 6 63 28
80008000 9 12 4 13 12 3 6 24 12
80808080 8 8 3 10 8 2 6 16 8
88808000 10 12 4 12 12 3 6 26 11
88808080 10 16 4 13 16 3 7 48 24
88808880 9 12 4 12 12 3 6 31 14
88888888 7 4 2 9 4 1 6 7 3
a8808000 11 16 5 14 16 3 7 56 24
a8808080 9 12 4 12 12 3 6 40 20
a8808880 11 16 5 13 16 3 7 55 26
a880a880 8 8 3 11 8 2 6 15 6
a8888880 9 12 4 12 12 3 6 27 12
a888a080 9 12 4 12 12 3 6 55 24
a8e0c800 11 16 5 13 16 3 7 87 38
aa808080 10 16 4 13 16 3 7 63 30
b884a880 10 12 4 12 12 3 6 32 13
bc88a080 11 16 5 14 16 3 6 55 21
e0a8c880 11 16 5 14 16 2 6 27 13
e1808880 10 12 4 13 12 3 6 70 33
e8808000 9 12 4 13 12 3 6 42 18
e8808002 11 16 5 13 16 3 7 83 37
e8808080 11 16 4 14 16 3 7 64 32
e8808880 10 12 4 13 12 3 6 55 26
e880a880 11 16 5 13 16 3 7 49 20
e880e880 10 12 4 13 12 3 6 36 14
e8818880 11 16 4 13 16 3 7 65 31
e881e880 11 16 5 14 16 3 7 40 15
e8888880 11 16 5 14 16 3 7 63 28
e8a08880 11 16 5 14 16 3 7 87 40
e8c0a880 11 16 5 13 16 3 6 47 21
e9a0c088 11 16 5 14 16 3 7 63 26
e9c0a880 11 16 5 14 16 3 7 79 36
ea808080 10 12 3 13 12 2 6 42 18
eca08880 11 16 5 14 16 3 6 47 22
f8808880 11 16 4 14 16 3 7 79 36
f8888880 10 12 4 13 12 3 6 29 11
fca08880 11 16 5 14 16 3 7 70 29
2888a000 9 12 3 12 12 2 6 32 16
6ac8e240 11 16 5 13 16 3 6 44 17
78888888 10 12 4 14 12 2 6 19 8
80000000 10 16 4 12 16 3 7 32 16
80808000 10 16 4 12 16 3 7 56 28
88888880 11 16 4 12 16 3 7 39 16
e9808080 9 12 4 14 12 2 6 27 13
eac86240 10 12 4 12 12 3 6 19 8
ee84a060 11 16 5 16 16 2 6 43 20
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implementations, three for each representative of the spectral equivalent classes of Boolean

functions with 4 and 5 inputs.

Table 7.1 details the obtained number of qubits, T-count and T-depth for each different

implementation and for each spectral class.

The characteristics of the original benchmark are compressed in Fig. 7.3. The three im-

plementations are named: Q, the one targeting a small number of qubits; TC targeting a

low-T -count; TD, targeting a low-T -depth. For each cost function c, a plot reports on the

y-axis c/cBEST averaged on the entire benchmark, where cBEST is the best value of c among all

three implementations. For example, the T-count plot reports for Q, TC, and TD the average

T -count/T -countTC over all the 54 entries. In addition, each bar in the plots reports the

average value for the respective cost function and implementation.

Any improvement of a single entry in the benchmark would be transferred to all the STGs

controlled by functions that are spectral-equivalent to the entry’s function. In fact, a quantum

circuit for any Boolean function can be built from an instance in the benchmark. Note that the

limited size of the benchmark entries does not reduce the impact of optimization results on

bigger combinational designs, as these can be compiled from the circuits in the benchmark

using decomposition-based techniques.

7.2 ESOP-based decomposition

In this section, I consider the problem of synthesizing a quantum circuit for Boolean functions

with a number of input variables that can be bigger than 5. Section 4.2.1 already described

how ESOP expressions are used to decompose a single-target gate into a cascade of multiple-

controlled Toffoli gates. ESOP expressions are not canonical representations, meaning that

there are several ESOPs representing the same Boolean function. For this reason, there are

many exact and heuristic methods that aim to minimize such expressions, typically targeting

the reduction of the number of product terms, or cubes. This section proposes a study of how

advanced ESOP synthesis and optimization techniques can impact quantum compilation

processes, which we publised in [186].

7.2.1 Optimal ESOP for quantum compilation

Traditionally, ESOP synthesis techniques aim to minimize the number of product terms, i.e.,

cubes, in the expression. A question arises: Is the number of cubes the right cost function for

the ESOP expressions used in quantum compilation?

In the following, I introduce the problem of finding the right cost function to synthesize

ESOP expressions used in quantum compilation, which leads to optimal quantum circuit

characteristics, e.g., reduced number of T gates. The following example illustrates how the
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Figure 7.4 – Synthesis results for two different ESOPs representing the same function f .

classical cost function may not be suited for this application.

Example 7.2.1 Given the Boolean function f (x) = x1x3x4∨x2x3x4∨x1x2x3x4∨x1x2x3x4 with

x = x1, . . . , x4, two possible ESOP expressions for f are:

A(x) = x3x1 ⊕x4x1 ⊕x3x2 ⊕x1 ⊕x4x2 ⊕x2 ⊕x4x3x2x1

B(x) = x4x3x1 ⊕x4x3x2x1 ⊕x4x3x2 ⊕x4x3

The first expression A(x) consists of 7 product terms while the second expression, B(x), is

smaller and has size 4. It is possible to use these ESOPs to synthesize a reversible network for

f and then compile each reversible gate into quantum gates using the algorithm described

in [90]. The resulting networks and the composition of the quantum circuits are reported in

Fig 7.4: #H is the number of Hadamard gates, #NOT and #CNOT are respectively the number

of X and the number of controlled-CNOT gates, #T is the number of T gates. It is clearly shown

how the second ESOP, independently from the smaller size, generates a quantum circuit with

more gates. Differently, the first ESOP, that has larger size, shows characteristics allowing the

compiler to create a circuit with reduced T gates, and fewer gates in general.

This analysis aims to identify the characteristics that lead to a better quantum circuit. With

this in mind, it is possible to notice that the first ESOP has cubes with fewer literals, with

respect to the second ESOP. Thus A(x) generates a reversible circuit with multiple-controlled

Toffoli gates with fewer controls and consequently a quantum circuit with fewer T gates. This

suggests how the number of literals could be a better cost function for ESOPs used for quantum

compilation. In general, evaluating the impact of different cost functions is necessary to use

an ESOP synthesis method that accepts an arbitrary cost function. The next section describes

how such a method can be implemented.

7.2.2 Constraint-based ESOP synthesis

The problem of finding an ESOP expression that realizes a Boolean function is known as ESOP

synthesis.

The seminal work of Perkowski and Chrzanowska-Jeske [187] introduces the Helliwell decision
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function to characterize the solution space of ESOP synthesis for a given Boolean function. The

Helliwell decision function H f (g1, . . . , gK ), K ≤ 3n , for a given Boolean function f (x1, . . . , xn)

describes synthesis as an odd-even covering problem in terms of the minterms of f . For each

possible product term in n Boolean variables, a decision variable gi , 1 ≤ i ≤ K , is introduced.

The Helliwell decision function is then defined by the logic equation

∧
m∈ f

(( ⊕
g∈I (m)

g

)
⊕ f (m)⊕1

)
, (7.1)

where m ∈ f denotes that m is a minterm of f and I maps each minterm to the decision

variables gi1 , . . . , gil whose product terms are covered by m.

The logic equation (7.1) is constructed in such a way that every satisfying assignment ĝ for

g = g1, . . . , gK for H(g ) directly corresponds to an ESOP expression functionally equivalent to

f .

Example 7.2.2 Given the Boolean function f (x1, x2) = x1 ∨x2 with Boolean variables x1 and

x2, the Helliwell decision function uses 9 Boolean variables g1, . . . , g9, which are:

g1 = x1x2 g2 = x1x2 g3 = x1x2 g4 = x1x2

g5 = x1 g6 = x1 g7 = x2 g8 = x2

g9 = 1

A SAT solver can find a selection of the cubes such that minterms for which f evaluates to one are

covered an odd number of times, whether minterms for which f evaluates to false are covered

an even number of times. Constraints must be added to the problem in order for the SAT solver

to find a valid solution. The overall Helliwell decision function for f is:

H(g ) =(g1 ⊕ g6 ⊕ g8 ⊕ g9 ⊕0⊕1) ∧ (g2 ⊕ g7 ⊕ g6 ⊕ g9 ⊕1⊕1) ∧
(g3 ⊕ g5 ⊕ g8 ⊕ g9 ⊕1⊕1) ∧ (g4 ⊕ g5 ⊕ g7 ⊕ g9 ⊕1⊕1)

Fig. 7.5 shows three possible ESOP covers on the Karnaugh map: g4, g6, g8 and g4, g5, g7 and

g1, g9.

Size-minimal ESOP synthesis

Size-minimal ESOP synthesis is the problem of finding an ESOP expression for a given Boolean

function f with a minimum number of product terms. Utilizing equation (7.1), the problem

can be solved by computing minimum satisfying assignments for H f (g ). An assignment ĝ is

minimum satisfying if the following conditions hold:
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Figure 7.5 – Three possible ESOP covering for the function f = x1 ∨x2.

1. ĝ satisfies H f

H f (ĝ )

2. any other assignment g different from ĝ that satisfies H f does not imply ĝ

∀g :
(
g 6↔ ĝ ∧H f (g )

) =⇒ g 6→ ĝ

Please note that the symbols 6↔ and 6→ are used to indicate implication relations between

assignments.

In the following, the idea of utilizing the Helliwell decision function for synthesizing size-

minimum ESOP expression is generalized to synthesizing cost-minimal ESOP expressions,

where the cost function is provided as a part of the input.

Cost-minimal ESOP synthesis

Given a Boolean function f over n Boolean variables and a cost function κ : {0,1,−}n →N>0,

that maps product terms to positive integer values (costs), cost-minimal ESOP synthesis is

the problem of finding an ESOP expression t1 ⊕·· ·⊕ tk that realizes f such that
∧k

i=1κ(ti ) is

minimal.

Two different cost functions κ0 and κ1 are presented to illustrate the idea of cost-minimal

ESOP synthesis. In general, the cost function should be picked keeping the usage of the ESOP

expression in mind.

The constant function

κ0(t ) = 1 (7.2)

defines unit costs for all product terms. If used, each ESOP expression obtained as solution of

cost-minimal ESOP synthesis has a minimum number of product terms. The cost function

κ1(t ) = |t |+1, (7.3)
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where |t | counts the number of literals in t , weights each product term by the number of

appearing literals. The additional 1 ensures that all costs—including the costs of the empty

product term—are greater than 0.

Example 7.2.3 Consider the Boolean function

f1(x) = x̄1x̄2x3x4 ∨ x̄1x2x̄3x4 ∨ x̄1x2x3x̄4 ∨x1x̄2x̄3x4 ∨x1x̄2x3x̄4 ∨x1x2x̄3x̄4

with x = x1, . . . , x4. A cost-minimal ESOP expression that realizes f1 with respect to the cost

function κ0 is

x̄1x2x̄4 ⊕x2x̄3 ⊕ x̄2x3x̄4 ⊕ x̄1x̄2x3 ⊕x1x̄3x4,

whereas a cost-minimal ESOP expression for the same Boolean function with respect to the cost

function κ1 is

x1 ⊕x2 ⊕ x̄3 ⊕x4 ⊕ x̄1x̄2x̄3x̄4 ⊕x1x2x3x4.

Computing cost-minimal ESOPs

The proposed SAT-based procedure computes cost-minimal ESOP expressions using (weighted)

maximum satisfiability (MAX-SAT) [188].

MAX-SAT deals with solving over-constrained constraint satisfaction problems modulo Boolean

logic. The problems consist of hard and soft clauses, where each soft clause is associated with

an integer weight greater than 0. The constraint satisfaction problem initially is unsatisfiable

and the task of a MAX-SAT oracle is to find a minimal-cost relaxation of the soft clauses, i.e.,

the oracle has to remove a subset of the soft clauses, such that the problem becomes satisfiable

while a given cost function is minimized.

Given a Boolean function f over n Boolean variables and a cost function κ : {0,1,−}n →N>0,

cost-minimal ESOP synthesis is solved in three steps:

1. Formulate the Helliwell decision function H(g ) as described in (7.1).

2. Invoke a MAX-SAT oracle to find a satisfying assignment ĝ = ĝ1, . . . , ĝK that minimizes∑K
i=1κ(gi ) subject to CNF[H(g )]∧ (

∧K
i=1 ḡi ), where CNF translates the XOR-clauses to

conjunctive normal form (CNF).

3. Construct the ESOP from the satisfying assignment ĝ .

The described approach is independent from the choice of the MAX-SAT oracle and the

translation to CNF, but uses them as black-boxes.
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Figure 7.6 – Histogram showing the improvement of exact methods over PKRM with respect
to two different cost functions: number of terms (EXACT(unit)) and number of literals (EX-
ACT(lit)).

7.2.3 Results

The proposed SAT-based exact synthesis method is implemented in the open-source C++

library easy2 [181, 189] using its own C++ implementation of RC2 [190] as MAX-SAT oracle.

The easy library provides implementations of various verification and synthesis algorithms for

ESOP expressions.

NPN4 equivalence classes

In this section, the effect of different ESOP optimization methods is evaluated on the 222

representatives of the NPN4 equivalence classes. The results report the number of product

terms in the ESOP, as well as, the number of T gates in the generated quantum circuits,

comparing different state-of-the-art ESOP synthesis methods and the proposed constraint-

based approach:

1. Positive Polarity Reed Muller (PPRM) [191],

2https://github.com/hriener/easy
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Cost function ESOP Synthesis Method

PPRM PKRM EXORCISM EXACT(unit) EXACT(lit)

avg. ESOP size 7.77 4.69 3.41 3.41 3.42
avg. num. T gates 87.35 82.32 59.05 67.50 58.19

Table 7.2 – Comparison of different ESOP synthesis methods.

2. Pseudo-Kronecker Reed Muller (PKRM) [192],

3. EXORCISM [116] and

4. EXACT(unit) and EXACT(lit) minimizing respectively κ0 and κ1

Table 7.2 reports the average number of product terms (size) and the average number of T

gates for each of the ESOP synthesis methods. PPRM and PKRM are special cases of general

ESOP expressions, that can be easily derived from a given Boolean function but are sub-

optimal when considering the number of product terms. They are often used as starting covers

for ESOP optimization approaches. They are reported to enable better comparability of the

achieved reduction. EXORCISM is a fast cube transformation heuristic, capable of finding

close to optimal ESOP expressions, starting from a PKRM cover of the Boolean function.

Nevertheless, EXORCISM is an heuristic method and does not guarantee the minimality of the

solution. In many cases, reducing the size of an ESOP also leads to a reduction of the number

of T gates. Consequently, EXORCISM, EXACT(unit), and EXACT(lit) improve over PPRM and

PKRM. Reducing the number of literals also has a positive effect on the T gates, i.e., EXACT(lit)

achieves a better reduction than EXACT(unit). Moreover, EXORCISM also improves over the

EXACT(unit) method because its heuristic prefers don’t cares over concrete values and reduces

the overall number of literals in an ESOP expression. The histogram in Fig. 7.6 gives a more

detailed overview of the improvement in T -count of EXACT(lit) and EXACT(unit) over PKRM,

respectively, for all the 222 representatives in NPN4 equivalent classes.

Optimizing size and literals, however, does not minimize the number of T gates, as illustrated

by the following example: consider the two equivalent ESOPs

C (x1, x2, x3) = 1⊕ x̄1x2 ⊕x1x2x3 and D(x1, x2, x3) = x1x2x̄3 ⊕ x̄2 ⊕ x̄1. (7.4)

Both ESOPs have the same number of product terms and the same number of literals. To

realize C (x1, x2, x3) as quantum circuit, however, 23 T gates are required, whereas for real-

izing D(x1, x2, x3) 16 T gates are needed. This results suggest that in future work it would

be valuable to identify more fitting cost functions than the number of literals. In addition,

future technology developments could themselves require different cost functions. The pro-

posed constraint-based method could provide the flexibility to enable future research in this

direction.
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Figure 7.7 – Two different state-of-the-art compilation flows for Boolean functions that use
ESOP-based reversible synthesis.

Algorithm 7.1 Pseudo-exact optimal ESOP

Input: control function f :Bn →B

Output: optimized ESOP expression of f
1: function GET_ESOP
2: if f ∈ cache then return cache[ f ]

3: if f is symmetric then
4: esop ← PKRM( f )
5: else if n ≤ 4 then
6: esop ← E X AC TLI T ( f )
7: else
8: esop ← E XORC I SM( f )

9: cache.i nser t ( f ,esop)
10: return esop

Integration into quantum compilation flows

This section reports the result of integrating the advanced ESOP optimization methods into

quantum compilation flows. In addition to the hierarchical reversible synthesis flow, presented

in Chapter 5, the Decomposition-Based Synthesis (DBS) flow, which compiles permutations,

is considered. The two flows are compared in Fig. 7.7.

The pseudo-optimal portfolio approach described in Alg. 7.1 is used to integrate different

ESOP synthesis methods. For each symmetric control function, the ESOP expression esop is

computed using the PKRM method, that is optimum in this case. If the number of inputs is

smaller than or equal to 4, then one of the exact methods is used. For larger functions, the

approach uses the heuristic EXORCISM (command &exorcism -q of abc [119]).

The first experiment evaluates the improvement of the proposed method integrated into

DBS(Fig. 7.7(b)). Table 7.3 shows the synthesis results for reversible permutations from
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Table 7.3 – Comparison between exact method and heuristic for small reversible functions

Permutation PKRM EXACT(lit) EXACT(unit)

Q T t[s] T t[s] T t[s]

hwb4 4 123 0.0 109 0.1 116 0.0
hwb5 5 514 0.0 337 59.9 447 0.3
hwb6 6 1361 0.0 993 0.9 993 0.9
hwb7 7 5331 0.0 3066 1.0 3066 1.1
hwb8 8 13562 0.0 7654 1.2 7654 1.2
mod5_11 5 453 0.0 350 36.5 368 0.2
mod5_12 5 453 0.0 361 59.1 400 0.2
mod5_13 5 428 0.0 329 38.2 343 0.1
mod5_17 5 478 0.0 382 64.3 414 0.3
mod5_21 5 433 0.0 352 34.9 482 0.1
mod5_22 5 469 0.0 354 25.0 391 0.1
mod5_24 5 503 0.0 405 61.4 448 0.3
mod5_3 5 494 0.0 386 34.8 411 0.2
mod7_14 7 5201 0.0 2936 1.0 2936 1.0
mod7_3 7 4945 0.0 2957 1.0 2957 1.0
mod7_7 7 4859 0.0 3039 1.0 3039 1.0
prime4 4 102 0.0 95 0.0 106 0.0
prime5 5 367 0.0 271 28.5 289 0.1
prime6 6 1054 0.0 786 0.8 786 0.7
prime7 7 3600 0.0 2283 1.0 2283 0.9
prime8 8 8302 0.0 4420 1.1 4420 1.0

avg. reduction EXACT(lit) = 28.23%
avg. reduction EXACT(unit) = 22.66%

Maslov’s reversible benchmark3 and for the reversible functions MODn/g :Bn →Bn , where:

MODn/g =
{ 0 if x = 0

g x mod(2n −1) if 1 ≤ x ≤ 2n −2

2n −1 otherwise

The data show a reduction in the number of T gates, with respect to the PKRM method, for

both the EXACT approaches. In addition, if the synthesis is performed to minimize the number

of literals in each cube, the T -count can be further improved. Indeed, the unit approach gets

to 22.66% improvement, while lit gives 28.23% improvement.

The second experiment aims to evaluate the integration into the hierarchical synthesis frame-

work. Table 7.4 shows the results obtained by synthesizing quantum circuits for the arithmetic

designs of the EPFL benchmark4. The first steps of the flow generate a reversible circuit made

of single-target gates, each one with a control function of maximum k inputs, where k is the

LUT size used to build the k-LUT network. An ESOP expression is synthesized for each control

function and translated into quantum circuits as described in [90]. The flow integrating the

pseudo-exact approach is compared against the flow using PKRM for the mapping of single-

target gates. Synthesis results are provided for LUT sizes (k) from 4 to 10. The maximum

reduction of number of T gates is obtained in the case of k = 10 equal to 36.32% and the

3http://webhome.cs.uvic.ca/~dmaslov
4https://github.com/lsils/benchmarks
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Table 7.4 – Comparison between PKRM and the pseudo-exact optimal ESOP synthesis inte-
grated into LHRS to synthesize the EPFL arithmetic benchmark

PKRM Opt. PKRM Opt.

k Q T t[s] T t[s] Q T t[s] T t[s]

4 adder 511 5398 0.0 5356 0.4 bar 1415 76816 0.2 56320 1.8
5 448 16061 0.1 15151 0.5 1031 95576 0.3 63694 2.9
6 448 16271 0.1 15279 0.6 647 52750 0.2 50944 1.8
7 427 37259 0.1 36110 0.7 647 52750 0.3 50944 1.9
8 427 37963 0.1 36654 0.7 647 52750 0.3 50944 1.9
9 416 84076 0.2 72338 0.8 647 52750 0.3 50944 1.9

10 416 85509 0.2 72985 0.9 647 52750 0.3 50944 1.9

4 div 26467 757193 5.8 635999 12.4 hyp 64630 2448872 25.3 2208000 37.5
5 24474 851035 6.8 690622 15.1 56568 2647894 26.1 2156087 40.5
6 24083 876636 8.0 709586 19.0 50118 2860466 28.2 2145634 46.6
7 23944 939887 9.6 742327 23.8 48399 3501767 31.0 2817812 51.8
8 23808 1034583 11.2 773058 26.6 47581 4540244 36.9 3546120 66.7
9 23711 1204407 13.0 831482 30.5 46992 5379295 43.0 4158260 79.1

10 23633 1710038 15.4 875766 34.3 46933 6238649 50.0 4596940 94.4

4 log 10420 458335 2.4 380787 12.8 max 1484 54422 0.2 42684 5.4
5 9661 623957 3.2 492501 24.1 1346 76507 0.2 60597 6.4
6 8156 1033225 4.3 768429 49.4 1256 104109 0.3 79853 6.4
7 8141 1507690 5.1 883462 103.7 1149 148355 0.4 102310 6.0
8 4658 2196359 6.2 1228593 48.1 1067 209851 0.6 140106 6.9
9 4456 3393095 8.4 1912337 65.8 977 323027 0.8 200270 5.9

10 3697 5786642 10.8 3268408 74.8 929 355341 1.1 230118 5.6

4 mult 8194 359422 1.8 270268 6.2 sin 1962 71409 0.4 64103 14.5
5 8100 479930 2.2 368062 8.8 1818 82386 0.5 71471 19.4
6 6706 1034190 2.8 579420 11.6 1608 115107 0.7 92659 25.7
7 7050 1448336 3.7 847558 15.2 1553 137989 0.9 104092 27.3
8 5101 1371054 3.7 818914 16.6 1449 249964 1.2 157332 32.5
9 5165 2115333 5.2 1410009 18.3 915 794521 1.5 362082 33.2

10 4006 3657831 8.0 2417393 23.9 878 1241237 2.2 542136 37.2

4 sqrt 8686 317522 1.7 255275 6.4 square 6909 354552 1.5 240636 11.5
5 8351 344049 2.3 265948 6.8 6092 553311 1.9 308262 18.0
6 8332 391900 2.9 285310 7.8 4195 299574 1.8 206683 16.1
7 8152 448518 3.4 301246 8.4 4213 368160 2.0 261272 22.8
8 7986 709282 4.4 358215 9.5 3764 477446 2.3 341092 24.3
9 7976 720144 5.3 359296 10.6 3724 658343 2.9 445505 32.5

10 7966 1413589 7.0 540586 12.4 3792 876884 3.7 532124 41.4

min avg. improvement k=4 : 17.86 %
max avg. improvement k=10 : 36.32 %
avg. improvement: 26.36 %

minimum reduction in the case of k = 4 equal to 17.86%.
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7.3 LUT-based decomposition

This section describes how to exploit LUT mapping to translate a single-target gate into a

network of multiple-controlled Toffoli gates. An LUT-based mapping method performs k-LUT

mapping, dividing the network into subnetworks, each one having maximum k inputs. If the

mapped LUT network is composed of ` LUTs, then it is possible to map the single-target gate

into a network of single-target gates with at most k inputs, by using `−1 helper qubits.

Example 7.3.1 Consider the 6-LUT network in Fig. 7.8 (a). This network is characterized by 6

primary inputs x1, . . . , x6 and four nodes, implementing the Boolean functions n1,n2,n3 and

n4. Such network can be translated using the hierarchical flow and the Bennett uncomputation

strategy into the reversible network in Fig. 7.8 (b). Please note how the first single-target gate,

which computes the function n1 = prime6, has three helper qubits available for its decomposi-

tion, as highlighted by the boxes in red. Fig. 7.8 (c) shows a 4-LUT mapping of the multi-level

logic network, i.e., an AIG, for the control function prime6. Finally, Fig. 7.8 (d) shows how the

single target gate computing the prime6 function can be mapped into all the available qubits

according to the 4-LUT mapping in Fig. 7.8 (c).

This method requires extra qubits to store intermediate results, differently from the ESOP-

based decomposition strategy. Nevertheless, consider the case in which a hierarchical synthe-

sis method is applied on a large combinational design, generating a network of STGs, as in

Fig. 7.8 (b). Each STG acts on a limited number of qubits, but has at its disposal many other

qubits, i.e., other extra qubits used as target for the other STGs. The LUT-based decomposition

methods are designed to take full advantage of all the qubits available in the network. Once

the control function of the STG has been decomposed into smaller functions, it is possible to

use precomputed optimal implementations, as shown in Section 7.1. Otherwise, if a function

obtained by the decomposition exceeds the number of controls of the available database, the

ESOP method is used.

It is possible to distinguish different strategies to perform such LUT decomposition of single-

target gates.

Hybrid LUT-based decomposition

The decomposition method takes as input the control function of the STG represented as a

logic network. It performs a k-LUT mapping, setting k in order to generate sub-networks with

a number of input matching the size of the optimal functions in the database. However, it can

happen that there are not enough helper qubits available to store all the intermediate values

of the mapping. In this case, the hybrid method merges two LUTs into a larger one, thereby

requiring one fewer helper qubit. This procedure is repeated until the number of available

helper qubits suffices. This procedure may lead to a very large LUT, to the point that this LUT

can have more inputs than the number of primary inputs.
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Figure 7.8 – Example of applying a LUT-based mapping method to single-target gates obtained
from the hierarchical reversible synthesis flow.

Best-fit decomposition

The best-fit mapping [193] is a LUT-based decomposition method that fully exploits the

available helper qubits. It also leverages near-optimal precomputed networks, and does not

generate large networks to be synthesized using the ESOP method. The idea is to find a suitable

value for k. This value is chosen to be the smallest for which the LUT size fits the available

number of helper qubits. Starting from k = 4, k is incremented until the above mentioned

condition is satisfied. Once the mapping is obtained, each k-LUT needs to be mapped in

Clifford+T gates. If the number of a LUT’s inputs is small enough, the LUT can be replaced by a

precomputed Clifford+T network, otherwise ESOP-based decomposition is applied. Using the

best-fit mapping method, each STG in a reversible network is decomposed using a different k

parameter for the LUT decomposition, which indeed fits the number of helper qubits available

for the specific single-target gate.
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7.4 Experimental results

This section presents an experiment carried out using the open-source tool RevKit [194]. The

experiment consists of synthesizing quantum circuits computing the logic functions of the

EPFL combinational benchmark suite5. The state-of-the-art LUT-based hierarchical reversible

flow (LHRS) is applied, setting the k parameter to 6, 10 and 16.

Originally, RevKit exploited a database of precomputed optimized circuits compressed using

affine classification, as described in [195], which enabled storing entries up to 4 variables. For

this experimental evaluation, the database is changed to exploit spectral classification, with

stored functions up to 5 inputs. This database, integrated into RevKit, is obtained using a

procedure similar to the ESOP-based one presented in Section 7.1.2. The difference is that,

to further reduce the T -count, more than one helper qubit is allowed. The reversible circuits

representing all the entries of this database are reported in Appendix A.

The experiment include four different configurations: hybrid, spectral where the hybrid LUT

mapping is coupled with a database of spectral equivalent classes; hybrid, affine where the

hybrid LUT mapping is coupled with a database of affine equivalent classes; best-fit, spectral

where the best-fit LUT mapping is coupled with a database of spectral equivalent classes; and

best-fit, affine where the best-fit LUT mapping is coupled with a database of affine equivalent

classes.

Table 7.5 shows the experimental results. The last rows summarizes the improvement obtained

using the database based on spectral equivalence with respect to the one based on affine

equivalence, by computing the normalized geomeans, as well as the average and maximum

improvement in T -count, independently for the hybrid and best-fit mapping methods. The

improvement is stronger in the hybrid mapping case. In addition, the experiment suggests

that the best-fit method, combined with the spectral-based database, enables a significant

reduction of the T -count. Finally, it can easily be seen that the runtime improved after using

the spectral classification technique. This is a consequence of having fewer single-target gates

synthesized using the ESOP decomposition method, and of the reduced size of the database.

7.5 Summary

In this chapter, I analyzed the problem of decomposing single-target gates into quantum

circuits. In particular, I focused on the specific application of this problem in the hierarchical

reversible synthesis of oracle circuits. In Section 7.1, I considered the case in which the STG

to be decomposed is controlled by a Boolean function with a number of inputs smaller than

or equal to 5. In this case, the size of the control function enables us to generate a database

of precomputed quantum circuits optimized for specific cost functions. As I researched

compilation methods for fault-tolerant quantum computing, the database contains entries

5https://github.com/lsils/benchmarks
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minimized for the T -count, the T -depth, and the number of qubits. In Section 7.1.2, I gave

details on the algorithms used to generate the database, which is publicly available at https://

github.com/gmeuli/stg-benchmark. Future work should target the integration of this database

into the hierarchical reversible synthesis method (ROS) described in Chapter 5.

In the second part of the chapter, I moved to the case in which the control function of the single-

target gate is arbitrarily large. One option is to use ESOP-base decomposition. Section 7.2

presented a study on the use of advanced SAT-based ESOP synthesis methods in quantum

compilation. The study concludes that ESOP synthesis methods for this application should

take into account different cost functions than the standard number of terms. For this reason,

I proposed an exact synthesis method capable of minimizing arbitrary cost functions. Future

work should focus on the development of heuristics to synthesize large expressions according

to more fitting cost functions.

A second option for large control functions is to decompose them using k-LUT-decomposition

methods, presented in Section 7.3. This method is particularly useful when several helper

qubits are available. Section 7.4 reported some experimental results on the use of a spectral-

equivalence-based database combined with k-LUT-decomposition methods in the compila-

tion of large combinational logic designs.
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Table 7.5 – Experimental evaluation of different single-target gate decomposition methods in
LHRS on the EPFL arithmetic benchmarks.

LUT size hybrid, spectral hybrid, affine best fit, spectral best fit, affine

T -count runtime [s] T -count runtime [s] T -count runtime [s] T -count runtime [s]

adder 6 Best-LUT 2,734 0.00 21,023 0.43 2,515 0.00 12,623 0.65
Original 1,893 0.01 1,988 0.05 1,899 0.01 2,066 0.20

10 Best-LUT 4,632 0.02 21,953 0.46 3,609 0.01 13,679 0.81
Original 2,688 0.01 2,730 0.05 2,698 0.01 2,860 0.21

16 Best-LUT 6,584 0.02 23,273 0.64 4,582 0.01 14,802 1.16
Original 4,865 0.02 4,914 0.10 4,881 0.01 5,122 0.24

bar 6 Best-LUT 17,024 0.04 17,024 0.05 17,024 0.05 17,024 0.05
Original 114,374 0.23 108,917 0.95 52,327 0.25 76,883 1.75

10 Best-LUT 24,908 0.07 25,676 0.08 31,272 0.18 42,656 1.23
Original 114,374 0.26 108,917 0.96 52,327 0.11 76,883 1.72

16 Best-LUT 46,838 0.11 47,390 0.25 58,898 0.08 79,530 1.12
Original 116,202 0.13 110,669 0.82 53,543 0.12 78,671 1.96

div 6 Best-LUT 380,467 0.77 405,896 3.31 296,404 0.82 435,554 13.99
Original 663,464 4.18 729,940 11.40 622,086 4.52 819,918 9.45

10 Best-LUT 457,979 0.86 466,635 2.67 364,483 0.95 510,188 15.08
Original 829,094 4.91 874,476 6.72 737,552 4.51 1,073,427 12.58

16 Best-LUT 880,482 1.32 882,893 2.80 669,825 1.51 956,102 22.42
Original 1,005,870 4.72 1,044,271 6.94 896,943 4.56 1,296,742 13.10

hyp 6 Best-LUT 6,052,714 71.92 6,495,823 371.59 2,783,871 72.25 5,050,444 75.71
Original 2,984,620 38.05 3,021,920 174.50 2,411,474 36.65 3,571,054 36.04

10 Best-LUT 8,618,483 73.21 8,789,664 250.10 3,832,579 73.53 7,880,861 81.21
Original 4,405,839 33.90 4,330,883 217.42 3,606,044 53.34 5,430,905 40.73

16 Best-LUT 11,734,937 49.77 11,939,196 366.14 5,148,762 47.82 11,580,940 87.36
Original 6,299,001 64.85 6,194,774 325.07 5,322,818 41.06 8,146,674 47.58

log2 6 Best-LUT 714,982 2.05 860,028 20.35 587,663 1.90 1,363,890 50.64
Original 487,876 1.62 628,777 5.04 471,786 1.69 996,739 9.66

10 Best-LUT 13,389,050 17.87 14,116,708 74.62 13,516,750 22.95 20,415,921 75.39
Original 15,025,683 33.26 15,188,782 91.37 16,591,838 32.20 25,763,551 43.03

16 Best-LUT 28,417,955 200.37 33,794,883 648.48 33,700,030 118.90 46,996,388 197.99
Original 40,245,230 93.52 41,207,475 587.85 43,916,658 111.81 66,794,792 123.33

max 6 Best-LUT 14,440 0.02 18,369 1.30 14,106 0.02 19,849 1.02
Original 41,333 0.06 48,490 1.60 41,008 0.06 64,986 3.61

10 Best-LUT 22,932 0.07 23,460 0.36 22,227 0.09 25,288 1.09
Original 55,967 0.10 55,993 0.63 61,967 0.20 88,321 3.28

16 Best-LUT 29,760 0.11 32,380 0.49 29,658 0.21 33,064 1.28
Original 63,726 0.12 63,993 1.31 68,362 0.18 93,762 4.73

mult 6 Best-LUT 852,784 1.77 929,110 5.81 412,161 1.65 868,907 17.08
Original 330,101 0.97 399,632 7.87 287,570 1.23 733,580 4.87

10 Best-LUT 1,247,591 2.08 1,288,912 10.40 757,357 2.36 1,368,712 19.64
Original 1,065,056 2.90 1,035,633 10.48 1,133,820 3.85 2,518,857 8.79

16 Best-LUT 2,585,906 8.21 2,581,486 78.11 1,624,371 5.20 3,180,890 22.32
Original 1,316,854 9.28 1,299,740 11.11 1,375,811 4.76 3,123,922 10.46

sin 6 Best-LUT 166,548 0.25 195,203 7.84 131,431 0.25 211,222 31.35
Original 72,337 0.10 109,248 5.25 70,613 0.13 134,658 8.61

10 Best-LUT 600,374 1.67 603,866 26.14 682,426 2.65 875,196 36.85
Original 655,022 1.79 661,028 6.51 867,436 3.64 1,205,074 15.91

16 Best-LUT 1,416,441 23.22 1,581,160 93.50 1,217,234 6.66 1,523,135 45.03
Original 1,888,349 4.22 1,938,452 11.96 2,281,121 7.75 3,234,887 22.96

sqrt 6 Best-LUT 387,266 0.75 407,081 6.54 313,607 0.82 447,876 15.72
Original 266,611 0.78 712,757 2.00 261,813 0.73 749,687 3.95

10 Best-LUT 496,633 0.88 508,105 3.67 398,264 1.01 564,062 21.15
Original 322,617 1.05 758,762 1.58 316,977 0.96 833,748 5.84

16 Best-LUT 1,148,079 7.97 1,251,139 28.74 784,685 2.01 1,124,877 22.07
Original 432,535 1.25 861,567 2.04 416,513 1.22 1,028,377 6.44

square 6 Best-LUT 617,451 1.16 651,639 5.53 241,146 0.82 490,182 18.60
Original 492,341 0.96 504,369 3.58 481,628 1.02 768,541 6.24

10 Best-LUT 903,446 1.14 911,949 8.14 371,268 1.07 828,392 20.33
Original 804,561 1.46 781,512 4.39 788,937 1.62 1,242,062 10.75

16 Best-LUT 1,938,405 117.20 1,950,409 232.57 694,144 3.67 1,501,536 25.56
Original 1,933,222 135.06 1,898,077 219.48 1,384,694 6.72 2,101,950 19.70

Normalized geomean 0.84 1.00 0.60 1.00
Average improvement 10.94% 37.54%
Maximum improvement 87.00% Adder, k = 6, Best-LUT 80.08% Adder, k = 6, Best-LUT
Normalized geomean 1 0.82
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8 Quantum circuit optimization

This chapter focuses on optimization techniques to reduce the resources required to compute

quantum circuits in a fault-tolerant setting. Two optimization techniques are presented: one

to be applied on reversible circuits that aims to reduce the number of T gates, and one to be

applied on Clifford+T circuits that aims to minimize the number of CNOT gates.

8.1 T -count optimization using graph matching

Some optimization techniques aiming to reduce the implementation cost of quantum circuits

generated from reversible networks can be found in the literature [196, 197].

This section presents a technique to reduce the T -count of quantum circuits obtained from

reversible networks consisting of multiple-controlled Toffoli gates. The optimization is ef-

fective for reversible circuits obtained with the ESOP-decomposition method, since these

circuits consist of a set of multiple-controlled Toffoli gates all acting on the same target line.

Similar networks can be optimized by using some properties that apply to pairs of gates. Such

properties were originally proposed in [3] and are described in the next section. The presented

optimization method solves a graph matching problem to select the best strategy to apply

such optimization properties in order to maximize the gain, i.e., T -count reduction in the

corresponding quantum circuit.

8.1.1 Optimization properties

The following rules describe ways to combine two multiple-controlled Toffoli gates according

to their control lines. All the rules apply on two gates which share the same target line.

Rule 8.1.1 Let g1 = g2 = T(C , t ). Then costs(g1 ◦ g2) = 0.

Please note that the operator ◦ performs the composition between gates and costs(g ) indicates

the implementation cost of the multiple-controlled Toffoli gate g in terms of T gates. If two
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x1
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(b)
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=

x1
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x3

x4

x5

y1

Figure 8.1 – Rule 2 example. Equivalence rules from [3]: (a) D1, (b) D7, (c) D1.

x1

x2

x3

x4

(a)

=

(b)

=
x1

x2

x3

y1

Figure 8.2 – Rule 3 example. Equivalence rules from [3]: (a) D2, (b) D3.

gates are identical, they can both be removed from the network. This property is called deletion

rule in [3].

Rule 8.1.2 Let g1 = T(C1, t ) and g2 = T(C2, t ) with A =C1 ∩C 2 and B =C2 ∩C 1.

If the following conditions are verified:

if l ∈C1 then l̄ 6∈C2,

if l ∈C2 then l̄ 6∈C1,

#B = 1, B = {c}

where #B is the cardinality of the set of controls B. Then g1 ◦ g2 = T(A, |c|)◦ g2 ◦T(A, |c|).

Rule 8.1.2 is a generalization of some rules presented in [198]. An example is shown in Fig. 8.1,

which explains the rule using identities from [3]. Given two Toffoli gates, the rule applies if one

gate has a single control on a qubit that is not a control of the other one (x5 in the example).

It is possible to substitute the second gate with two identical gates applied before and after

the remaining one. These gates are controlled by the control lines that are not shared with

the first gate. This rule leads to cost reduction only if the two initial gates have some identical

controls: x1 and x2 in the example.

Rule 8.1.3 ([199]) Let g1 = T(C1, t) and g2 = T(C2, t) with |C1| = |C2|, i.e., g1 and g2 share the

same set of controls. Let D =C1 ∩C 2 = {c1, . . . ,ck } be the set of controls that occur in different

polarities in g1 and g2, and let #D > 0. Then

g1 ◦ g2 =
k©

i=2
T(c1, |ci |)◦T(C1 ∩C2, t )◦ k©

i=2
T(c1, |ci |).
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8.1. T -count optimization using graph matching

An example is shown in Fig. 8.2. This rule applies when the first and the second gates have

controls on the same lines but with different polarities. It uses two identical CNOT gates before

and after the initial gates to complement the polarity of one control (see rule D2 in [3]). This is

done until only one control with different polarity remains. Then the pair is equivalent to a

single gate with this control removed and all the identical controls maintained (see rule D3

in [3]).

8.1.2 Graph matching problem

The ESOP decomposition of single-target gates produces reversible networks with multiple-

controlled Toffoli gates acting on the same target line. There are many pairs of gates on which

the described properties could be applied. Different optimization strategies are available

depending on which gates are combined.

This section describes an algorithm that selects an optimization strategy that maximizes the

T -count reduction. The idea is to derive an optimization graph from the circuit and perform

maximum weight matching, similar to how it was done in [200].

Definition 8.1.1 (Optimization graph) Given a set of generalized Toffoli gates g1 = T(C1, t ), g2 =
T(C2, t ), . . . , gm = T(Cm , t ), the optimization graph is an undirected graph G = (V ,E) with edge

weights q : E →N0 defined as follows:

V = {g1, . . . , gm}

E = {{v, w} | v, w ∈V ∧
costs(v ◦w) < costs(v)+costs(w)}

q(e) = costs(v)+costs(w)−costs(v ◦w)

where e = {v, w}

In other words, the vertices in G represent the reversible gates. Two vertices are connected

if the cost of the corresponding gates combined together is smaller than their accumulated

individual cost. The weight on an edge e = (v, w) corresponds to the cost savings that can be

achieved when composing the gates corresponding to v and w together.

It is possible to solve the maximum weight matching problem to find the set of graph edges

corresponding to the set of combined pairs that leads to the largest gain in terms of cost.

Problem 8.1.1 (Maximum weight matching) Given a graph G = (V ,E) with edge weights q :

E 7→N0, find the graph match M ∈ E, i.e., a set of non-adjacent edges, such that
∑

e∈M q(e) is

maximized.

It follows that, given an optimization graph as defined above G = (V ,E ) and a graph matching
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M = {e1, . . . ,e j }, it is possible to realize all generalized Toffoli gates in a circuit g1 ◦ · · · ◦ gm with

costs(g1 ◦ · · · ◦ gm) = ∑
(v,w)∈M

costs(v ◦w)+ ∑
v∈Vr

costs(v)

where Vr =V \ (e1 ∪·· ·∪e j ).

There is an exact method to solve the maximum weight matching problem in O(V 2E), pro-

posed by Edmonds in 1965 [201]. More recently, an approximate algorithm [202] has been

proposed, which runs in linear time.

The described post-synthesis optimization approach has been integrated in RevKit [194]. The

efficiency of the method has been evaluated in the context of the k-LUT-based hierarchical

synthesis of logic designs, in particular, when single-target gates with large control functions

are decomposed into a cascade of multiple-controlled Toffoli gates using 16-LUT decomposi-

tion. We reported in [193] a maximum reduction of T gates of 53% for the arithmetic EPFL

benchmark using a greedy algorithm with complexity Θ(E) to solve the maximum weight

graph matching problem.

8.2 SAT based {CNOT, T } optimization

This section presents a SAT-based optimization technique that targets Clifford+T circuits, in

particular the ones consisting of the Hadamard, the CNOT, and the T gate. In this library, the

T gate has been proven to be the most expensive to implement in fault-tolerant circuits [164].

This is the reason why many research works focus on minimizing the T -count. Nevertheless,

the CNOT gate is the hardest one to execute on the physical level because it requires to

establish an interaction between two adjacent qubits [203].

While there are some methods to efficiently synthesize CNOT circuits [204], in [205] we pro-

posed a SAT-based algorithm to exactly synthesize {CNOT, T } circuits from a phase polynomial

representation with the minimum number of CNOT gates. In [98] the authors presented an

approach that solves the same problem heuristically. We then proposed to use this technique

to optimize the number of CNOT gates in Clifford+T circuits without increasing the T -count,

i.e., the number of T gates in the quantum circuit.

8.2.1 Linear reversible functions

As stated in Section 2.1.1, a multi-output linear Boolean function f :Bn →Bm can be repre-

sented using a m ×n matrix, in which each row is the row vector representing a component

linear function fi . If the multi-output function is linear and reversible the representative

matrix is a non-singular matrix n ×n.
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x1

x2

x3

x4

x2 ⊕x3

x1 ⊕x2 ⊕x3

x3

x3 ⊕x4

Figure 8.3 – Example of a linear reversible CNOT circuit.

Example 8.2.1 The controlled-NOT (CNOT) gate, implementing the function

CNOT : |x1〉|x2〉 7→ |x1〉|x1 ⊕x2〉,

is both linear and reversible, while the Toffoli gate implements a function that is reversible but

not linear:

Tof : |x1〉|x2〉|x3〉 7→ |x1〉|x2〉|x3 ⊕ (x1 ∧x2)〉.

By only using CNOT gates it is possible to build a linear reversible circuit with n inputs,

implementing a multi-output reversible linear function f :Bn →Bn , with n linear reversible

Boolean functions as components fi .

Example 8.2.2 The linear reversible circuit shown in Fig. 8.3 computes four different linear

functions fi :B4 →B:

f1 = x2 ⊕x3, f2 = x1 ⊕x2 ⊕x3, f3 = x3, f4 = x3 ⊕x4.

They can be represented using the row vectors of a n ×n matrix, obtaining a matrix G represent-

ing a multi-output linear reversible Boolean function:

G =


0 1 1 0

1 1 1 0

0 0 1 0

0 0 1 1

 .

This representation is used for encoding the SAT problem described in the next section.

8.2.2 SAT-based algorithm for the synthesis of {CNOT, T } circuits

This section describes how to solve the problem of synthesizing quantum circuits specified

using the phase polynomial representation, introduced in Section 3.2, using the minimum

number of CNOT gates.

Problem 8.2.1 Given a phase polynomial description of a unitary transformation (g , fi , ci )

and an integer K , determine if there exists a {CNOT, T } quantum circuit implementing it with
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x1

x2

x3

x1

x1 ⊕x2

x3

x1

x1 ⊕x2

x1 ⊕x2 ⊕x3

I = A0 =
(1 0 0

0 1 0
0 0 1

)
A1 =

(1 0 0
1 1 0
0 0 1

)
G = A2 =

(1 0 0
1 1 0
1 1 1

)

q1 = (1 0 0)

t 1 = (0 1 0)

q2 = (0 1 0)

t 2 = (0 0 1)

F2 = (1 1 1)
F1 = (1 1 0)

Figure 8.4 – Illustration of SAT encoding for sample circuit in Example 8.2.3.

K CNOT gates. We denote an instance of this problem HasCNOT(g , fi , ci , K ).

The linear reversible function g is represented using a n ×n matrix G with entries Gi , j . Fi is

the row vector representation of fi with entries Fi , j .

Example 8.2.3 The phase polynomial representation of the circuit

x1

x2

x3

T

T †

x1

x1 ⊕x2

x1 ⊕x2 ⊕x3

is represented by:

G =

1 0 0

1 1 0

1 1 1

 , {c1 = 1,F1 = (1 1 0)}, {c2 = 7,F2 = (1 1 1)}

Encoding

Example 8.2.4 Fig. 8.4 shows the encoding of the problem of synthesizing a circuit for the phase

polynomial representation in Example 8.2.3 using two CNOT gates.

If the specified transformation is performed using K CNOT gates, there must be K gate

transformations that map Ak−1 → Ak , for 1 ≤ k ≤ K , where A0 is the identity matrix satisfying:

AK =G and ∀ j∃Ak
i .(Ak

i = F j ) (8.1)

The latter means that at least one row Ak
i is equal to the specified linear Boolean functions.
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8.2. SAT based {CNOT, T } optimization

Example 8.2.5 Considering the example in Fig. 8.4:

A0 =

1 0 0

0 1 0

0 0 1

 , A1 =

1 0 0

1 1 0

0 0 1

 , A2 =

1 0 0

1 1 0

1 1 1

=G , and

A1
1 = A2

1 = (1 1 0) = F1, A2
2 = (1 1 1) = F2

Each CNOT gate is represented by two vectors: qk = (qk
1 . . . qk

n ) describing the gate control

and t k = (t k
1 . . . t k

n ) describing the gate target, where qk
i (t k

i ) = 1 only if the i th line is a control

(target) of the gate (see Fig. 8.4).

First, the encoding must ensure that these variables are describing valid CNOT gates, char-

acterized by one control and one target line. The following one-hot clauses are defined:

∀1≤k≤K [(qk
1 ∨·· ·∨qk

n )∧ ∧
1≤i< j≤n

(q̄k
i ∨ q̄k

j )] (8.2)

and

∀1≤k≤K [(t k
1 ∨·· ·∨ t k

n )∧ ∧
1≤i< j≤n

(t̄ k
i ∨ t̄ k

j )] (8.3)

In addition, the control and target of each gate need to be acting on different lines to represent

a valid CNOT:

∀1≤k≤K

n∧
i=1

(qk
i 6= t k

i ) (8.4)

Once the matrices A0, . . . , AK (8.1) and the conditions over the gate vectors qk and t k describing

the mapping Ak−1 7→ Ak (8.2),(8.3),(8.4) are defined, the functionality of this mapping must

be encoded. Some intermediate expressions hk
j for each row of a matrix Ak−1 are used to

determine whether the row intersects with the control vector qk :

∀1≤k≤K ,∀n
j=1hk

j =
n⊕

i=1
Ak−1

i j ∧qk
i

By means of such variables, it is possible to define in which cases the application of a CNOT

gate causes an element of the matrix A to switch.

∀1≤k≤K ,∀n
i=1,∀n

j=1 Ak
i , j = Ak−1

i , j ⊕ (t k
i ∧hk

j ) (8.5)

Example 8.2.6 Consider the first CNOT gate in Fig 8.4, it can be represented by the vectors:

q1 = (1 0 0) and t 1 = (0 1 0)

verifying conditions (8.2),(8.3),(8.4). One can compute the intermediate variables h1
j checking
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whether one or more elements in the matrix A0 should switch.

h1
1 = A0

1,1 ∧q1
1 ⊕ A0

2,1 ∧q1
2 ⊕ A0

3,1 ∧q1
3 = 1

h1
2 = A0

1,2 ∧q1
1 ⊕ A0

2,2 ∧q1
2 ⊕ A0

3,2 ∧q1
3 = 0

h1
3 = A0

1,3 ∧q1
1 ⊕ A0

2,3 ∧q1
2 ⊕ A0

3,3 ∧q1
3 = 0

Then, the only element in the matrix A that switches is A1
2,1 = A0

2,1 ⊕ (t 1
2 ∧h1

1) and:

A0 =

1 0 0

0 1 0

0 0 1

 7→ A1 =

1 0 0

1 1 0

0 0 1



SAT problem encoding: summary

The specification of the SAT problem is a phase polynomial representation: a matrix G repre-

senting a linear reversible Boolean function g , the set of coefficients ci and the linear Boolean

functions fi .

SAT variables The following variables are declared for each gate: (i) control variables qk
i ,

defining which line i is the control of gate k, (ii) target variables t k
i , defining which line i is the

target of gate k.

In order to evaluate the evolution of the implemented function gate by gate, matrices rep-

resenting intermediate synthesized linear transformations are defined: Ak for 1 ≤ k ≤ K . In

addition, some auxiliary variables hk
j are used to describe the mapping Ak−1 7→ Ak

SAT clauses The following clauses define the SAT problem:

• Initial clauses: A0 = I where I is the identity matrix.

• Final clauses: AK =G and ∀ j∃Ak
i .(Ak

i = F j ). The final linear transformation implements

the desired G and all the functions fi are computed at some time by the circuit so that

ci π/4 phase shifts can be applied.

• Validity clauses: only one variable qk
i (t k

i ) is equal to one for each gate k and qk 6= t k .

Every CNOT gate has one target and one control, on different lines.

• Dependency clauses: Ak
i , j = Ak−1

i , j ⊕ (t k
i ∧hk

j ). They define the relation between the

gate variables qk
i , t k

i and the intermediate matrix variables. These clauses define the

mapping Ak−1 7→ Ak . Considering all the K gates, I = A0 7→ A1 7→ . . . 7→ AK−1 7→ AK =G .
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8.2. SAT based {CNOT, T } optimization

8.2.3 SAT-based rewriting algorithm

This section describes the rewriting algorithm proposed to minimize the number of CNOT

gates without increasing the number of T gates. The starting point is a Clifford+T circuit with

an optimized number of T gates, obtained using the optimization algorithm T-par [108]. The

overall procedure is described by Alg. 8.1.

Algorithm 8.1 SAT-based rewriting algorithm

c ← T-optimized quantum circuit
ct_extract(c) (extract {CNOT, T } sub-circuits)
for all sub-circuit c ′ do

(g , fi ,ci ) ← phase(c ′) (set the phase polynomial representation from c ′)
K ← 0 (number of gates)
repeat

Solve(HasCNOT(g , fi ,ci ,K ))
if SAT then

c ′′ ←Extract {CNOT, T } circuit
Replace c ′ by c ′′ in c

else if UNSAT then
K ← K +1

until a solution is found

The first step of the algorithm is to extract from the input {CNOT, T , H } circuit, some {CNOT,

T } sub-circuits. This partition is required because the algorithm aims at minimizing quantum

circuits defined over the Clifford+T universal library, using an exact method for reducing

{CNOT, T } circuits. The extraction method ct_extract is performed in such a way that after the

rewriting of the sub-circuits, they can be recombined to restore the initial functionality.

The next step is to re-synthesize each sub-circuit. First, the phase polynomial representation

(g , fi ,ci ) is extracted by the procedure phase. Then, the SAT solver is used iteratively to solve

the encoded problem HasCNOT. It tries to find a satisfying solution with K gates and adds an

additional gate if the problem is unsatisfiable. This procedure is repeated until a valid solution

is found. This solution will describe a circuit with the minimum number of CNOT gates, given

the phase polynomial representation.

8.2.4 Results

Algorithm 8.1 is implemented in C++ on top of RevKit [194] and the Z3 prover [148] is used to

encode and solve the SAT problem. The selected benchmark consists of Clifford+T circuits

for the 48 spectral equivalent representatives of the 5-input Boolean function. The proposed

optimization algorithm can reduce the number of CNOT gates by keeping the T -count un-

changed.

Results are shown in Table 8.1, which reports for each equivalent class: (i) the hexadecimal

encoding of the representative function, (ii) the number of T gates in the initial circuit, (iii)
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the number of CNOT in the initial circuit, (iv) the reduced number of CNOT after SAT-based

rewriting, (v) the percentage reduction and (vi) the runtime in seconds. The table also reports

the average percentage reduction and the maximum measured reduction, 26.84% and 45.45%,

respectively. The method used to decompose the initial Clifford+T circuit into {CNOT, T }

sub-circuits, namely ct_extract impacts the final optimized results and the runtime. As it was

expected, the presence of larger sub-circuits leaves larger space for optimization, but slows

down the operation of the SAT solver.

8.3 Summary

This chapter discussed two different optimization methods. The first one, which aims to

reduce the T -count of quantum circuits derived from the decomposition of reversible net-

works, is based on solving instances of the maximum weight graph matching problem. This

method is described in Section 8.1. Section 8.2 presented a second technique dedicated to

the optimization of the number of CNOT gates in Clifford+T circuits. This technique rewrites

parts of the original network exploiting an exact SAT-based method for the synthesis of {CNOT,

T } circuits. Targeting the reduction of CNOT gates, this optimization technique is also com-

pliant with the requirements of NISQ systems. For this reason, future works should extend

the algorithm to support the optimization of circuits composed of the X gate, the CNOT gate,

and the phase gate with continuous rotation angles. In addition, the SAT-encoding can be

extended to take into account qubit connectivity.
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Table 8.1 – Results of the SAT-based rewriting algorithm.

Class T-count CNOT initial CNOT final %CNOT Runtime

00000000 0 0 0 0.00 0.00
80000000 31 61 55 9.84 137.24
80008000 24 45 38 15.56 8.68
00808080 51 112 97 13.39 24.93
80808080 16 47 30 36.17 7.82
88800800 48 94 79 15.96 13.81
88088020 75 175 143 18.29 574.99
88808080 47 100 79 21.00 133.77
2a808080 32 89 54 39.33 202.16
70080088 56 127 96 24.41 814.43
f3c0dd00 48 118 79 33.05 257.79
c0c8c0c8 29 65 54 16.92 9.46
734470c8 111 221 176 20.36 2148.00
e0a0c000 63 156 111 28.85 135.59
e8080808 71 178 128 28.09 293.18
8808a808 63 136 102 25.00 17.44
08888888 36 82 73 10.98 445.86
88888888 7 11 6 45.45 0.92
d5808080 32 89 58 34.83 215.22
70807080 15 40 23 42.50 3.08
e1808880 88 194 130 32.99 16.48
ea808080 56 140 84 40.00 10.14
cc808880 55 117 88 24.79 10.53
e4404440 55 118 83 29.66 5.71
7f008000 23 39 32 17.95 4.22
e0a8c800 91 219 161 26.48 821.58
e8818880 115 291 210 27.84 832.18
e8a08880 80 195 168 13.85 368.34
f8808880 80 182 143 21.43 57.50
e2222220 56 123 85 30.89 1771.19
a0c8a088 63 192 149 22.40 385.03
e6804c80 39 96 58 39.58 5.94
7f808080 19 60 44 26.67 388.19
0231da51 79 192 138 28.12 8.77
a008bc88 95 204 151 25.98 50.76
d8887888 43 112 70 37.50 360.20
eca08088 80 180 118 34.44 10.77
f0888888 56 144 97 32.64 860.57
8a80cac0 47 108 82 24.07 523.50
78807880 36 74 56 24.32 1668.62
bca08488 79 208 154 25.96 863.73
fca08880 96 225 153 32.00 53.71
dac08a80 76 190 157 17.37 356.73
f8887888 43 107 91 14.95 363.48
78887888 12 24 15 37.50 869.91
a6cc60a0 47 126 83 34.13 17.35
62c8ea40 35 95 63 33.68 25.30
6ac8e240 48 107 81 24.30 11.43

Average achieved CNOT minimization: 26.84%
Max achieved CNOT minimization: 45.45%
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9 Automatic accuracy management

Concrete resource estimates for problems and corresponding problem sizes at which quantum

computers are expected to outperform their classical counterparts are scarce. To carry out

such resource estimates, several quantum programming languages and toolchains have been

developed such as Q# [55], Quipper [110], Scaffold/ScaffCC [60], Qiskit [56], ProjectQ [61], and

QuRE [206]. Despite the availability of these languages, there is still a significant amount of

manual work involved in resource estimation [111, 112]—one reason being the lack of built-in

support for handling approximation errors.

Approximation errors must be taken into account when compiling quantum programs into

a low-level gate set. With the existing languages, programmers must manually keep track

of all the introduced errors. Furthermore, programmers must tune the parameters of their

implementation to keep the total error within a target budget. To guarantee this, they must

derive the resulting error bounds manually—a task that is tedious and error prone.

To address this issue, I present a methodology to introduce language support into existing

quantum programming languages, allowing programmers to deal independently with the

approximation errors in each subroutine. The job of inferring how all introduced approxima-

tion errors interact is thus transferred from the programmer to the compiler. The proposed

methodology automatically infers an error bound for the overall quantum program and then

selects appropriate values for each of the program’s accuracy parameters to simultaneously (1)

satisfy a user-specified overall tolerance and (2) reduce the required quantum resources.

More specifically, the methodology supports:

• given the desired approximation error, determining the assignment of accuracy pa-

rameters that guarantees the given approximation error while aiming to minimize the

number of operations;

• given a maximal operation count, determining the assignment of accuracy parameters

that yield at most the given operation count while aiming to reduce the total approxima-

tion error.
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The automatic optimization of accuracy parameters is carried out by solving an optimization

problem before the quantum circuit is generated. The constraint and cost functions describing

the optimization problem are extracted by the compiler directly from the source code of the

quantum program. Then, before execution, the optimized accuracy parameters are fed into

the main program.

Finding a suitable assignment of accuracy parameters using, e.g., simulated annealing [207,

208], requires hundreds of evaluations of both constraint and cost functions. Hence, the

methodology has to lean on a fast method to estimate resource requirements and the total

approximation error. Available methods, e.g., in Q#, estimate resources by actually generating

quantum circuits from completely specified programs and then counting the generated gates.

Hence, their runtime will increase with increasing problem size, making these methods ill-

suited to evaluate cost functions in an optimization procedure, as shown in Section 9.8.

Instead, a fast symbolic method is proposed, which extract a symbolic expression for the

desired cost or constraint function (total approximation error or number of gates) directly

from the source code of the quantum program. The resulting expressions feature variables

that correspond to the various parameters of the program, including accuracy parameters.

The symbolic approach does not need to execute the complete control flow of the quantum

program to get an estimate, hence it provides a much faster solution that is viable even for

application-scale programs.

The presented methodology can be integrated into any quantum programming language

compiler. Two different prototypes are developed: one integrated in the Low-Level Virtual

Machine (LLVM) project and one in Q#. Both prototypes implement a symbolic approach for

resource and error estimation. Since the resulting expressions may theoretically still contain

some residual code that must be executed (e.g., certain if-else statements), they are referred

to as (near-)symbolic. The parentheses indicate that, for most applications, the resulting

expressions would be fully symbolic. However, there are examples where this is not the case,

e.g., a quantum program that executes one of two different algorithms depending on a runtime

parameter. However, both prototypes generate fully symbolic expressions for all the examples

in this thesis.

The chapter is structured as follows: Section 9.1 introduces common sources of errors in

quantum compilation; Section 9.2 describes how such approximation errors compose in

quantum circuits; Section 9.3 describes some famous quantum algorithms that will be later

used for the experimental evaluations; Section 9.4 introduces language support to define

approximation parameters in a quantum program; Section 9.5 describes how to automate the

process of optimizing such approximation parameters; Section 9.6 lists all the features that

a compiler of a quantum programming language should support to integrate the proposed

methodology and describes how such features are implemented in the developed prototypes;

finally Section 9.7 and Section 9.8 provide experimental evaluations of the LLVM prototype.
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9.1 Errors in quantum compilation

Why do approximation errors occur in quantum programs in the first place? This section

discusses three main sources of errors, however, the framework is extensible to other sources

of errors.

9.1.1 Synthesis errors

Due to the discrete nature of fault-tolerant instruction sets (and indeed, it is known that any

universal fault-tolerant instruction set necessarily must be discrete [64]), it cannot be avoided

to introduce approximation errors for general target operations. For instance, consider a

rotation around the Z -axis such as

RZ (θ) =
[

e−iθ/2 0

0 e iθ/2

]
,

which can be defined for any θ ∈ [0,4π). These rotations can only be implemented exactly for

a discrete subset of the interval [0,4π), as gates have to be expressed as words of finite length

over any universal set of generators. It should be noted that there is a mathematical function

that expresses the length of the approximating word in terms of an approximation error, which

is called εR in this thesis. This mathematical function depends on the concrete synthesis

algorithm used to perform the factorization into fault-tolerant instructions. State-of-the-art

synthesis algorithms lead to a cost (e.g., number of T gates, where T = e iπ/8RZ (π/4)) that is

proportional to log2(ε−1
R ) [209, 210].

9.1.2 Phase estimation errors

An important technique in quantum computing, used by many quantum algorithms [18, 211],

is to extract estimates of an eigenvalue λ of an operator U to k bits of precision. A common

method to achieve this is to prepare an eigenstate |ψλ〉 of U and to then apply powers U 2i
, for

i = 0, . . . ,k−1, to the eigenstate |ψλ〉. This application is done conditionally on the value of a

reference system and allows us to extract the k most significant bits of the eigenvalue. As λ

can in principle be any complex number of the form λ= e iα, where α ∈ [0,2π), the particular

choice of k introduces an approximation error and limits how precisely λ can be estimated.

The resulting approximation error is called εQPE in this thesis.

9.1.3 Algorithmic errors

Some quantum programs are part of a parametric family of programs that gracefully degener-

ate with a reduction of the parameters. A concrete example for such a family of programs is

the quantum Fourier transform [18], or QFT for short. While the transformation itself can be

implemented exactly and with no approximation error over a gate set that includes continuous
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rotations such as RZ (θ) for arbitrary θ ∈ [0,4π), it is possible to approximate the transforma-

tion by selectively dropping some of the rotations that occur, in particular by “pruning” the

values of θ that are very close to 0. One such pruning method is well known [212] and allows

us to drop many of the O(n2) rotations that a simple implementation of the Fourier transform

requires and just retain O(n logn) rotations, while still maintaining a sufficient approximation.

The resulting approximation error is called εQF T in this thesis. Another example of algorithmic

error comes from formulas that are known to converge to a target program when taking a suit-

able limit, e.g., of alternations of other, typically smaller and simpler, programs. An example

for the latter is the so-called Trotter formula, a well-known identity to implement an approxi-

mation to e i (A+B) for Hermitian matrices A and B , from the knowledge of implementations for

e i A and e i B . The resulting approximation error (the “Trotter error”) is called εT E in this thesis.

9.2 Approximation errors in quantum circuits

As mentioned, the framework addresses approximation errors that may be reduced at an

increased implementation cost. For the example of synthesis errors, which occur due to the

discrete nature of fault-tolerant instruction sets, the trade-off between the number of T gates

and the approximation error is logarithmic [209]. That is, to achieve an approximation error ε,

O(log(1/ε)) T gates are sufficient. In a typical quantum program, multiple different sources

of such errors are present and thus the question arises: How do the approximation errors of

individual operations compose?

It is possible to derive an upper bound on the total approximation error by summing up all

the individual approximation errors. Consequently, the proposed methodology produces

quantum circuits with accuracy guarantees for quantum programs without measurement

feedback. Note that this excludes programs that rely on repeat-until-success statements, i.e.,

loops that iterate until a certain measurement outcome is observed (see, e.g., [213]). Such

cases can be handled separately using, e.g., an upper bound on the number of iterations. In

the last section, I propose a possible way of enabling accuracy management for such programs

as future work. In all other cases, branching on measurement results may be addressed using

an expression for the total error of the form εb = max(ε1,ε2), where ε1 and ε2 denote the errors

of each branch. This follows from the Deferred Measurement Principle [64, Section 4.4], which

says that measurements may be delayed until the end of the computation, transforming all

quantum operations that are executed conditionally on the measurement result into quantum-

controlled operations.

Quantum circuits corresponding to feedback-free programs consist of a sequence of gates

U1, ...,Um , followed by a sequence of measurements M1, ..., Mk that produce a measurement

outcome m = xi for a final state

|ψ〉 =Um · · ·U1 |0〉⊗N

with probability

P (m = xi ) = |〈xi |ψ〉 |2,
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where 〈xi |ψ〉 denotes the overlap of |ψ〉 with |xi 〉.

Therefore, the methodology must ensure that the actual final state |ψ̃〉 is close to the desired

final state |ψ〉 after all decompositions have been applied to U1, ...,Um .

Let V1, ...,Vn be an approximate decomposition of the quantum program in terms of the gates

supported by the target hardware, i.e.,

‖Um · · ·U1︸ ︷︷ ︸
U

−Vn · · ·V1︸ ︷︷ ︸
V

‖ ≤ ε,

where ‖ · ‖ denotes the spectral norm as defined in [64, Section 2.1.4]. Then, ‖|ψ〉− |ψ̃〉‖ =
‖U |0〉⊗N −V |0〉⊗N ‖ ≤ ε, which guarantees that, with |ψ〉 =∑

i ai |xi 〉 and |ψ̃〉 =∑
i ãi |xi 〉,

|ai − ãi | =
√

|ai − ãi |2

≤
√∑

i
|ai − ãi |2

≤ ε.

Therefore, it is sufficient that the methodology guarantees

‖U −V ‖ ≤ ε.

For more details on approximated unitary operators, refer to Box 4.1 “Approximating quantum

circuits" of [64].

In the process of translating the quantum program to the native gate set, several decomposi-

tions are applied that introduce approximation errors. Let U be a quantum operation being

approximated by the decomposition into W1, ...,Wt . The decomposition introduces at most

εU if ‖U − (Wt · · ·W1)‖ ≤ εU , assuming that all Wi are implemented exactly. Now, combining

multiple such approximate implementations Ũi of Ui such that ‖Ui −Ũi‖ ≤ εi yields a total

error of at most
∑

i εi [214].

Therefore, it is possible to derive recursively-defined expressions for the error E(U ,εU ) and

the total gate count T (U ,εU ) [208]:

E(U ,εU ) = εU + ∑
W ∈D(U ,εU )

E(W,εW ) fW (εU ),

T (U ,εU ) = ∑
W ∈D(U ,εU )

T (W,εW ) fW (εU ),

where D(U ,εU ) is the set of gates in the εU -approximate decomposition of U and fW (εU )

denotes the number of W operations in the decomposition. Looking at these expressions, it is

clear that an upper-bound on the total error can be computed very similarly to counting gates.

In conclusion, by applying this reasoning to the main entry point of a quantum program, one
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| j1〉
| j2〉...

| jn−1〉
| jn〉

H R2 · · ·
· · ·

Rn−1

H

Rn

· · · Rn−2 Rn−1 · · ·

· · ·
· · ·

H R2

H

|0〉+e2πi 0. j1... jn |1〉
|0〉+e2πi 0. j2... jn |1〉...

|0〉+e2πi 0. jn−1 jn |1〉
|0〉+e2πi 0. jn |1〉

Figure 9.1 – Efficient circuit computing the quantum Fourier transform.

can choose all ε(·) in the expression for

E(UM ai n ,εUM ai n )

such that E(UM ai n ,εUM ai n ) ≤ ε. This ensures that the measurement probability amplitude for

a given bit-string changes by at most ε.

9.3 Sample quantum programs

This section describes some famous quantum algorithms, that will be used to test the imple-

mented LLVM prototype.

9.3.1 Quantum Fourier transform

The quantum Fourier transform (QFT) is an algorithm that performs the Fourier transform of

quantum mechanical amplitudes. QFT is implemented as a linear operator that applies the

following unitary transformation on a basis state | j 〉 [64]:

| j 〉 7→ 1p
N

N−1∑
k=0

e2πi j k/N |k〉

The effect of the transform on an arbitrary state can be described using a product representa-
tion that maps | j1, . . . , jn〉 to

(|0〉+e2πi 0. jn |1〉)(|0〉+e2πi 0. jn−1 jn |1〉) · · · (|0〉+e2πi 0. j1 j2... jn |1〉)
2n/2

where 0. jl jl+1 . . . jn is the binary expansion jl /2+ jl+1/4+·· ·+ jn/2n−l+1. This representation

has a direct correspondence to the circuit implementation of the quantum Fourier transform

shown in Fig. 9.1. The circuit consists of n steps, one for each qubit. In each step, for each

qubit, a Hadamard gate is applied, followed by a series of rotation gates controlled by all

remaining qubits.

In this work, I will largely refer to an approximate version of QFT (AQFT) in which the number

of rotations is reduced according to the desired approximation error εQF T . This is done by

pruning the rotations with small angles. In particular, for each qubit ji with 1 ≤ i < n a
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maximum of

l = dlog2(n/εQF T )e+3

controlled-rotations is applied [212].

The quantum Fourier transform enables the quantum phase estimation algorithm and has a

key role in the solution of many relevant problems, e.g., the integer factorization problem.

9.3.2 Simulating time-evolution of operators

Being a quantum system, a quantum computer can be programmed to simulate other quan-

tum systems. This, for example, can be used to elucidate chemical reaction mechanisms [111].

Given the quantum-mechanical Hamiltonian H which describes the system being studied, the

time evolution of the system can be simulated by implementing the time-evolution operator

U = e−iH t . The time-evolved quantum state can then be obtained by applying U to the initial

state |ψ(0)〉:
|ψ(t )〉 = e−iH t |ψ(0)〉

In order to implement the time-evolution operator on a quantum computer, it needs to be

decomposed into the native gate set, e.g., Clifford+T . Different decomposition methods

are available, each one with a different scaling with respect to the targeted precision εT E :

polynomial for the Trotter decomposition method, logarithmic for the linear combination of

unitaries (LCU) [72, 215].

Example 9.3.1 Consider the Hamiltonian of a 1D transverse-field Ising model (TFIM)

H =−J
∑
〈i , j 〉

Z i Z j

︸ ︷︷ ︸
H1

−h
∑

i
X i

︸ ︷︷ ︸
H2

,

where H1 defines the interaction of adjacent spins, denoted by 〈i , j 〉, with periodic boundary

conditions, H2 defines the interaction of the system with the external transverse field, and

X i , Z i denote the application of X = (
0 1
1 0

)
and Z = (

1 0
0 −1

)
, respectively, to spin i .

Using a second-order Trotter-Suzuki decomposition, the time-evolution operator under this

Hamiltonian can be written as

e−iH t ≈ (e−iH1
t

2M e iH2
t

M e−iH1
t

2M )M .

The number of Trotter steps M will be chosen according to the desired accuracy εT E . In particular,

for this second-order Trotter decomposition, M is proportional to 1/
p
εT E [111]. Each Trotter

step can be implemented using CNOT and RZ (θ) gates. The latter being a gate that applies a

rotation equal to the angle θ around the z-axis. Considering Clifford+T as the native gate set,

each rotation has to be synthesized or decomposed in terms of these gates. As not every rotation
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|0〉
...

|0〉
|0〉

|ψ0〉 n

H

H

H

U U 2

· · ·

· · ·
· · ·
· · · U 2k

QF T †

...

Figure 9.2 – Quantum circuit performing quantum-phase estimation on an n-qubit system
with an accuracy of k +1 bits.

can be realized exactly using this gate library, rotation synthesis also introduces an error. Given

a target approximation error εR , the number of T gates per rotation will be proportional to

log2

(
1
εR

)
.

Thus, to express the time-evolution operator, two inter-dependent approximation errors must

be taken into account, namely εT E and εR .

9.3.3 Quantum phase estimation

Once time-evolution under the Hamiltonian H is implemented, one may perform measure-

ments similar to experiments with the actual system. Quantum computing, however, allows

us to achieve a quadratic advantage over repeated measurement and sampling via quantum

phase estimation (QPE). Given a state with large overlap with the ground state |ψ0〉 of the

Hamiltonian, this algorithm determines the ground state energy E0

H |ψ0〉 = E0|ψ0〉.

Fig. 9.2 shows one of several possible implementations of QPE [64]. The measurement out-

comes of the top k+1 qubits yield a k+1-bit approximation to the phase due to time-evolution.

More precisely, the number of qubits to choose nQPE depends on the desired accuracy and

the probability p of a successful measurement as

nQPE = n +
⌈

log

(
2+ 1

2(1−p)

)⌉
,

where n is the desired accuracy in number of bits.

The number of controlled time-evolution unitaries required for QPE to succeed with p = 0.5

and accuracy εQPE may thus be bounded by 2nQPE −1 ≤ 16π/εQPE .

Not only does QPE allow one to infer the ground state energy if the ground state is known, but

it also collapses a non-eigenstate input |φ〉 to the i -th eigenstate |ψi 〉 of the Hamiltonian H

with probability | 〈ψi |φ〉 |2.

In terms of accuracy, it is important to distinguish between the different applications of QPE.

If QPE is used to determine only the energy, i.e., |E0 − Ẽ0| ≤ ε is required, then it is sufficient
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to implement time-evolution such that ‖U −Ũ‖ ≤ ε−εQPE . However, if the goal is to prepare

the ground state, i.e., ‖|ψ0〉− |ψ̃0〉‖ ≤ ε, then ‖U −Ũ‖ ≤ ε−εQPE

2nQPE −1
is sufficient (both via triangle

inequality). Distinguishing these cases clearly has a great impact on the resulting resource

requirements.

9.4 Adding language support for accuracy management

Since large-scale quantum computers are not yet available, resource estimation is a crucial

feature of any software framework for quantum computing. Typically, resource estimation

is performed by compiling the quantum program into the chosen target gate set and then

executing the resulting circuit on a classical simulator that counts native operations (instead of

executing them). For this to be possible, however, all the parameters of the program, including

accuracy parameters for each subroutine, must be determined.

Existing quantum programming languages do not offer built-in support for accuracy manage-

ment. Consequently, it is very cumbersome to implement large-scale quantum algorithms

in an accuracy-aware fashion. Thus, despite the availability of a wide range of quantum

programming languages, resource estimates are still computed (semi-)manually, taking care

of accuracy parameters using pen and paper [112, 111].

The main difficulty when selecting appropriate accuracy parameters is that parameters at

a higher level of abstraction have an effect on the ones at lower levels, as illustrated by the

following example:

Example 9.4.1 Consider QPE on U = RZ (α) := e−i α2 Z and the target gate set Clifford+T . The

number of phase-estimation qubits nQPE depends on the desired precision of the phase (and

the probability of success). At the lowest level, the various U 2i = RZ (αi ) are decomposed into a

sequence of Clifford+T gates featuring O(log 1
εr

) T gates, where εr is the error of a single rotation.

To achieve an overall target accuracy ε, εr must be chosen such that εQPE +εR ≤ ε, where εR

denotes the error introduced by all rotations in the quantum circuit. If the same accuracy is

chosen for all the rotations, then εR = Nr otεr , where Nr ot is the number of rotations. Since εQPE

affects the number of rotations in the circuit, εr must be chosen as a function of εQPE .

In general, it would be possible to adapt all values in the code manually on a case-by-case

basis—however, this defeats the purpose of having a high-level programming language. The

lack of language support forces programmers to manually handle accuracy parameters by

passing all such parameters to the main routine, which forwards them to each subroutine. In

case of the QPE algorithm, this might be result in code as follows:
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function QPE(εQPE , εT E ,εQF T , εRT E , εRQF T , U)

r eg _si ze ← f (εQPE )

for i ← 0 to r eg _si ze do

for j ← 0 to n_i ter (i ) do
c U(εT E , εRT E )

AQFT†(εQF T , εRQF T )

Here, cU is the controlled version of U . Note that all qubit variables are omitted for better

readability.

This programmer-unfriendly approach does not allow code reuse for resource estimation, as

implementations of subroutines need to be adapted to the context in which they are used and,

in particular, to the choice of accuracy parameters. For example, c U(εT E , εRT E ) is implemented

using a number of Clifford+T gates that depends on the chosen accuracy parameters.

When using the proposed methodology, programmers need to worry about accuracy parame-

ters only in subroutines where the corresponding errors are introduced. The compiler will

take care of extracting all dependencies. Specifically, the pseudo-code for phase estimation

can be expressed as follows:

function c R

declare εR

. . .

function c U

declare εT E

. . .

function AQFT†

declare εQF T

l ← g (εQF T )

for i ← 0 to g ′(l ) do
. . .
c R()

. . .

function QPE(U)

declare εQPE

r eg _si ze ← f (εQPE )

for i ← 0 to r eg _si ze do
for j ← 0 to n_i ter (i ) do

c U()

AQFT†()

Using Abstract Syntax Tree (AST) transformations, the methodology is able to handle various

levels of granularity: from using the same value for all accuracy parameters to using a different

value for every instance that is created during runtime (via an accuracy parameter data

structure that mirrors the call graph). This is crucial as there is a substantial trade-off between

the number of accuracy parameters being considered and the resulting gate count [208]. This

can be illustrated with the following example:

Example 9.4.2 Consider Beauregard’s implementation of Shor’s algorithm [216]. In addition

to the (semi-classical) inverse Fourier transform of phase estimation, every addition circuit

requires two (approximate) QFTs [212] (one inverted, one regular) [217]. While the number of
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QPE
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AQFT†
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Figure 9.3 – Flow diagram explaining how the code of the QPE algorithm is transformed into a
code evaluating the overall approximation error ε.

additions (and thus the number of QFTs) varies with the bit-size n of the number to factor, phase

estimation always requires a single QFT. Therefore, it is natural to choose a different accuracy

parameter for the (approximate) QFT of the phase estimation than for the (approximate) QFTs

of the O(n2)-many n-bit additions.

Besides facilitating accuracy-aware implementations of quantum programs and providing

various levels of granularity for assigning accuracy parameters, the methodology allows us to

automatically deduce the number of contexts in which a given (approximate) decomposition

is applied. This enables automatic selection of the number of accuracy parameters and thus

removes the need to perform this task manually.

9.5 Automating accuracy management

The previous section has shown how the quantum programming language can enable the

user to define accuracy parameters in the program. In this section, I describe the proposed

procedure to automatically determine appropriate values for such accuracy parameters. The

optimization problem is defined by two functions: the constraint (total accuracy) and the

cost function (circuit cost in terms of expensive gates), both generated by the compiler from

the source code. The result is a valid distribution of the available approximation error that in

addition aims to minimize the circuit cost.

The prototypes developed in this work use the two-mode simulated annealing described

in [208] to solve the optimization problem. Note that any other optimization method accepting

a cost and a constraint function could be used instead. The two-mode simulated annealing

procedure in [208] activates the first mode when the constraint function is larger than the

target accuracy and performs annealing until the target accuracy is reached. Then, it activates

the second mode to reduce the circuit cost function. It goes back the the first mode if the

constrained function was increased beyond the allowed bound. Both modes iteratively change
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the value of a randomly chosen accuracy parameter by multiplying it for a random factor

f ∈ (1,1+δ], where δ is chosen to achieve an acceptance rate of about 50%. The proposed

change is accepted with probability p = mi n(1,e−β∆E ), where β is the inverse of the annealing

temperature. Please refer to [208] for a detailed description of the algorithm.

The proposed approach is to extract a (near-)symbolic expression for the total error and gate

count from the algorithm and to use the obtained expressions in the annealing procedure. In

general, it is possible to use the annealing procedure with any available resource estimation

method, the difference being that the runtime of each evaluation depends on the problem

size if non-symbolic methods are used.

In the following sections, the T -count is selected as a measure of the implementation cost

of a quantum circuit, as this closely captures the cost in a fault-tolerant setting. Besides, the

framework is most beneficial in this setting, since larger programs lead to larger improvements

over non-symbolic approaches. Nevertheless, note that this approach may be employed using

any cost function. For example, one may want to select accuracy parameters while aiming to

minimize the number of CNOT or CZ gates when targeting NISQ devices.

9.5.1 Cost/constraint functions: extraction

The methodology proceeds by automatically generating two pieces of code that compute (an

upper bound on) (1) the number of costly quantum gates (T) and (2) the overall approximation

error as a function of the different approximation errors (E):

T (ε1, . . . ,εn) and E(ε1, . . . ,εn).

The automatic generation of these two functions can be achieved via a few simple trans-

formations of the program’s Abstract Syntax Tree (AST). Specifically, to generate T , all calls

to native operations are removed from the AST, except those corresponding to costly gates

that are replaced by counter-increments. The program computing a bound on the overall

approximation error (E) can be generated in a similar fashion, where increments are added

for every epsilon declaration (see Sec. 9.2).

Example 9.5.1 Fig. 9.3 shows the different decomposition levels of the QPE algorithm. The

standard coherent QPE requires 2nQPE −1 controlled time-evolution unitaries cU , followed by an

inverse QFT. At the next decomposition level, each unitary (including the QFT) is decomposed

into rotation gates. In turn, those rotations will be fed into rotation synthesis, which outputs a

sequence of O(log 1
εR

) Clifford+T gates for each rotation, where εR denotes the target accuracy of

rotation synthesis (per rotation). Since errors accumulate at most linearly due to being unitary

(see Sec. 9.2), an upper bound on the overall approximation error can be computed by adding

all the εi introduced by the various decomposition steps.
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9.5.2 Cost/constraint functions: optimization

Once the two pieces of code evaluating the total approximation error E (ε1, ...,εn) and the cost

T (ε1, ...,εn) have been generated, they could be fed into the simulated annealing procedure.

While this would allow us to perform accuracy management automatically, the resulting code

would take substantial time to execute: typical quantum applications require on the order of

1015 or more operations [111] and the optimization loop is executed hundreds of times until

suitable accuracy parameters are found.

As a remedy, custom compiler optimization passes are employed to significantly reduce the

time required to evaluate gate counts and error bounds. Specifically, the methodology aims

to infer symbolic and loop-free expressions for (upper bounds on) gate count and overall

approximation error. The following example demonstrates how beneficial the use of a symbolic

approach is.

Example 9.5.2 Consider the example of the approximate quantum phase estimation algorithm

and a two-mode simulated annealing procedure. Even with an optimized annealing schedule,

it will require a minimum of about 200 evaluations to guarantee an overall approximation error

of at most 10−2. As accuracy parameters ε1 . . .εn approach the optimal values (minimizing the

T -count), one evaluation of the non-optimized T (ε1, ...,εn) function on 8 qubits takes 9m 10s,

while evaluating the inferred symbolic expression takes 0.1µs. If the number of qubits grows to

16, then it takes 34m 14s for the non-optimized case, while evaluating the symbolic expression

still takes 0.1µs.

The transformations proposed at the level of the intermediate-representation of the compiler

are shown in the following table:

Table 9.1 – Compiler transformations used to optimize the cost and constraint functions.

Original Code Symbolic expression

1
for i ← 0 to N do

v += const
v += const ·N

2
for i ← 0 to N do

v += f (i )
v +=∑

i f (i )

for i ← 0 to N do
v += min(g (i ),h(i ))

v +=∑
i min(g (i ),h(i ))

≤
v += min(

∑
i g (i ),

∑
i h(i ))

for i ← 0 to N do
v += i p

v +=∑
i i p

(p +1)th degree polynomial
derived from Faulhaber’s formula

3
if (. . . ) then expr 1

else expr 2
max(expr 1,expr 2)
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In particular, the optimization routine would:

1. Check if there is an addition between a variable v initialized outside the loop and a loop

invariant, and if v is not used elsewhere in the loop. If so, apply transformation 1, where

N is the number of iterations of the loop.

2. Check if there is an addition between a variable v initialized outside the loop and a

function f only depending on the inductive variable and other loop invariants. If so,

apply transformation 2. In the particular case where f (i ) is min(), the expression can

be upper bounded as shown in Table 9.1. In addition, polynomial expressions can be

derived from some finite series using Faulhaber’s formula [218].

3. Transform generic branching instructions into max(i f ,el se) instructions, where the

branch that gives the largest contribution to the cost function is selected.

The following example shows the described transformations applied to the AQFT quantum

algorithm.

Example 9.5.3 The pseudo-code of the function AQF T _T , which computes the total number

of T gates required for the AQFT algorithm, obtained after source-to-source transformation is

shown in Alg. 9.1. As the implementation uses three rotation gates for each controlled-rotation,

the function takes as input three accuracy parameters. This is why there are three innermost

loops in Alg. 9.1. Since the objective is to extract a symbolic expression for the variable Tcount , as

many loops as possible must be flattened. The if statement in the inner-loop may be hoisted,

resulting in the following expression:

for j ← 0 to min(n −1− i , l ) do

Then all the loops are optimized by applying the transformations in Table 9.1. Finally, the code

in Alg. 9.2 is obtained, which shows the closed-form expression for the Tcount with respect to the

algorithm’s parameters.

While the methodology succeeds at extracting closed-form expressions for all the proposed

examples, note that this is not necessary for the methodology to work: the remaining control

flow would not affect applicability or correctness, but merely cause an increase in runtime.

Indeed, there are cases in which some residual code remains in the resulting expressions. This

happens, for example, when some of the program parameters are read from a file. Consider the

program performing phase estimation of the time evolution of a TFIM Hamiltonian described

in Section 9.3, but where the parameters J , h and n are read from a file. The program may

check whether the input Hamiltonian is valid, e.g., whether n ≥ 0, before instantiating the

circuit. As a consequence, such an if/else statement would remain in the final expression.
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Algorithm 9.1 Cost function for the AQFT algorithm

function N_ROT(εr ot ) return 1.5∗ log2(1./εr ot )

function AQFT_T(εQF T , εR1 , εR2 , εR3 )
Tcount ← 0
l ←dlog2(n/εQF T )e+3
for i ← 0 to n do

for j ← 0 to n −1− i do
if j ≤ l then

for k ← 0 to N _ROT (εR1 ) do Tcount ++

for k ← 0 to N _ROT (εR2 ) do Tcount ++

for k ← 0 to N _ROT (εR3 ) do Tcount ++
return Tcount

Algorithm 9.2 Cost function for the AQFT algorithm after loop optimization

function AQFT_T(εQF T , εR1 , εR2 , εR3 )
Tcount ← 0
l ←dlog2(n/εQF T )e+3
Tcount = Tcount +min( n(n−1)

2 ,nl ) · (N _ROT (εR1 )+N _ROT (εR2 )+N _ROT (εR3 ))
return Tcount

9.6 Compiler and language requirements

To add this methodology for automatic accuracy management to any quantum programming

language, a few features must be added to the compiler if not already supported. Here I list all

the features that the compiler must support to bring such an integration into fruition.

I have identified such features by working on the prototype developed using the LLVM project,

which was chosen for its modular infrastructure and libraries. The identified integration

strategy can be applied to any other quantum programming language. This is demonstrated

by the second prototype in Q#. Furthermore, the LLVM prototype shows that support for the

framework may also be added to quantum programming languages that are embedded in a

classical host language.

Don’t-cares. The methodology requires that the compiler identifies subroutine parameters

that do not or only negligibly affect the total error and the cost function. Such function

parameters are called don’t-cares. The corresponding arguments will be replaced by a default

value in all calls to that subroutine. This allows the compiler to optimize repeated calls to the

same function.

Example 9.6.1 Consider AQFT, which includes many calls to the rotation gate with different

rotation angles. Normally, these calls will have to be evaluated several times by the compiler,

even if the angle will have no impact on the approximation error selected to decompose the

rotation. This problem is addressed by annotating the angle parameter as a don’t-care. This will
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result in many calls to the same function with identical arguments that hence may be removed

by the compiler.

Epsilon declarations. To provide language support (see Section 9.4) the compiler must be

capable of locating all introduced accuracy parameters. This can be done by matching against

a specific class or by using annotations.

Abstract Syntax Tree transformation. The compiler must provide access to the AST (or to a

reasonably high-level IR) and allow rewriting and copying. In particular, it needs to generate

3 different versions of the entire program: one that computes the total approximation error,

one that computes the total cost, and the original quantum program, which will ultimately be

invoked using optimized accuracy parameters.

The programs obtained after the described AST modifications could already be used to esti-

mate the resource requirements of the quantum program. In this case, the only advantage

with respect to using state-of-the-art methods would be that the approach provides language

support by keeping track of all the introduced approximation errors, work that otherwise

would have to be performed manually. In addition, the estimation would be too slow to be

used in an optimization procedure (see results in Fig. 9.6). A remedy is to introduce specific

rewrites that reduce the time to evaluate these expressions (see next paragraph).

Rewrites to make evaluation more efficient. In order to speed up the optimization process,

fast evaluations of the cost and error functions are needed. The two functions extracted from

most quantum algorithms will feature many loops performing simple counter increments or

floating-point additions. The goal of extracting a symbolic expression from the control flow

structure is achieved implementing and employing compiler optimization, see Table 9.1.

9.6.1 LLVM prototype

Having described the features that are necessary to equip a programming language with auto-

matic accuracy management, I now provide implementation details for the LLVM prototype.

Don’t cares. The LLVM implementation uses compiler annotations to introduce additional

information in the source code. In particular, the user attaches a don’t care annotation to a

parameter declaration if it has negligible effect on the cost/constraint functions.

Epsilon declarations. Epsilon declarations are matched with a custom type. The prototype

framework provides a macro that allows the programmer to quickly define new types of error.

This can be seen in the source code for the approximate QFT in Fig. 9.4, where epsilon_QFT
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1 # include <qadf/ epsilons .hpp >
2 # include <qadf/ operations .hpp >
3

4 REGISTER_EPSILON ( epsilon_QFT )
5

6 inline void Q_FUNC AQFT(int qubits [], const int n)
7 {
8 epsilon_QFT eps_QFT ;
9 int lim = ceil(log2(n / eps_QFT ))+3;

10 for(int i = 0; i < n; i++)
11 {
12 H( qubits [i]);
13 for (int j = 0; j < min(n-1-i, lim); j++)
14 {
15 CR( qubits [j + i + 1], M_PI /(1 << (j + 1)), qubits [i]);
16 }
17 }
18 }

Figure 9.4 – C++ code for the approximate QFT as consumed by the LLVM prototype.

is registered as a new type of error in line 4 and then used in lines 8–9.

Abstract Syntax Tree transformation. Source-to-source transformation is used to modify the

AST. I implemented a ClangTool and run an ASTFrontendAction: a routine that has access to

the AST and allows us to interface with the source code. The ClangTool outputs files containing

the function to compute the T -count, e.g., the one in Alg. 9.1, and the function computing the

total approximation error E . The action exploits the ASTMatcher library, which allows us to

match nodes in the AST that have some specific properties. The library provides a concise way

of describing patterns and is implemented as a domain-specific language (DSL). In addition,

matchers allow us to access the source code by running a callback function on the matched

AST nodes. Once the locations of interest in the code have been identified, one can use an

instance of the Rewriter class to modify the code accordingly. As the AST is constant by design,

a new file containing the transformed source code is generated.

The tool also makes use of header files defining basic quantum operations, such as the ones in

the Clifford+T gate set. These header files can be adjusted according to the specific application.

For example, in addition to the T gate, one might want to consider other expensive operations,

e.g., two-qubit gates for NISQ devices.

The result of running the Clang tool is a new source file computing the total error or gate count

as a function of all the accuracy parameters defined in the source code.

Rewrites to make evaluation more efficient. The compiler optimization passes eliminate

loops in the expressions for the cost (or the total error) by replacing them with additions and

multiplications. For example, the first loop optimization described in Table 9.1 is supported
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for both integral and floating-point numbers. A custom LLVM loop pass is used to perform

this optimization.

Example 9.6.2 Consider the following code that computes the total approximation error of n

quantum operations, characterized by the same approximation error val :

1 double Eps = 0.00;
2 double val = 0.02;
3 for (int i = 0; i < n; i++) {
4 Eps += val;
5 }

Once this function is compiled into Intermediate Representation (IR) code, val will be identified

as a loop-invariant variable, while E ps will be assigned to a so-called PHI node. PHI nodes

assign a variable with a different value, depending on the predecessor of the current block,

where blocks are groups of instructions. In the example, the PHI node would have two incoming

values: 0.00 (if the predecessor block is outside the loop) and the temporary value containing

the addition result (if the predecessor was the previous loop iteration). PHI nodes are defined in

the loop header block.

The loop pass traverses the code from the innermost to the outermost loop in the IR and

checks whether:

1. it contains an instruction performing the addition operation between a loop-invariant

operand and a variable defined through a PHI node in the loop header,

2. the PHI node is only used in the addition operation inside the loop or in the loop latch

block,

3. the result of the addition is only used as the incoming value of the PHI node.

If the described conditions apply, the loop is removed. Referring to the code in Example 9.6.2,

the operations %1 = val ∗n and %2 = E ps +%1 would be added to the pre-header loop block,

i.e., outside the loop. In addition, the result %2 would replace all uses of the original addition

operation, which can then be erased. All the other transformations in Table 1 are implemented

in a similar fashion.

Extraction of symbolic representation. The LLVM prototype also has a method that navigates

the fully optimized IR code and extracts symbolic expressions for the two estimates.

The pass to extract the symbolic expression from the IR is implemented as an LLVM function

pass. Given the main function, it starts from the return instruction and recursively visits all

instruction’s operands annotating the respective functionality. The recursion terminates when

the operand is a constant or, in general, not an instruction.
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1 namespace Accuracy {
2

3 open Microsoft . Quantum . Arrays ;
4 open Microsoft . Quantum . Convert ;
5 open Microsoft . Quantum . Intrinsic ;
6 open Microsoft . Quantum .Math;
7

8 // intrinsic function for epsilon declaration
9 function EpsilonValue () : Double {

10 body intrinsic ;
11 }
12

13 operation AQFT(qs : Qubit []) : Unit is Adj+Ctl {
14 let nQubits = Length (qs);
15 let eps_QFT = EpsilonValue (); // epsilon - declaration
16 let lim = Ceiling (Lg( IntAsDouble ( nQubits ) / eps_QFT )) + 3;
17 for ((i, q) in Enumerated (qs)) {
18 H(q);
19 for (j in 0 .. MinI( nQubits - i - 1, lim)) {
20 ( Controlled R1Frac )([q], (1, j + 1, qs[j + i + 1]));
21 }
22 }
23 }
24 }

Figure 9.5 – Q# implementation of the approximate quantum Fourier transform with epsilon
declarations.

The extraction pass supports the following instructions: casting, PHI nodes, selects, trunca-

tions, zero extensions, call instructions, compare instructions, shifts, addition, multiplication,

division, and subtraction. The expression is written in the Wolfram language, such that

Mathematica [219] can be used for conversion to LATEX and further expression simplifications.

9.6.2 Q# integration

Q# is a standalone quantum programming language developed by Microsoft to facilitates

the description of hybrid quantum-classical programs. Fig. 9.5 shows a snippet of Q# code

that implements the approximate quantum Fourier transform operation, as described in

Section 9.3.

Qubits are represented in Q# using the type Qubit and they are treated as opaque items

that can be passed to both functions and operations, but that can only be interacted with by

passing them to intrinsic (built-in) operations. Q# also uses namespaces to group definitions

together, and elements from other namespaces may be referenced. Q# distinguishes functions

from operations. Functions are pure and free of side effects, whereas operations can have

side effects, such as the application of an intrinsic operation to a qubit or register. Q# can

perform type-safe symbolic computations to automatically derive the adjoint (inverse) and

the controlled variants of an operation, enforced by providing the is Adj+Ctl declaration in
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line 13 of Fig. 9.5. Line 15 shows a declaration of an approximation parameter, i.e., eps_QFT,

which is possible by adding language support for approximation errors. The remainder of

this section provides details on how this and other features have been implemented in the Q#

compiler.

Don’t cares. Currently, the Q# prototype does not support don’t cares. Operations such as

rotation gates—in which don’t cares can help to declare that the rotation angle affects the

gate cost only negligibly—are implemented as intrinsic operations that introduce an epsilon

variable and increment the gate counter explicitly by a value depending on the accuracy

parameter. For more general cases, Q# should support parameter-level annotations to declare

don’t cares explicitly.

Epsilon declarations. An intrinsic function is used for epsilon declarations. Being intrinsic, it

does not require an implementation inside the Q# program to be used, but it can be located

inside the AST by the transformation passes. In the AQFT example, the function is declared in

lines 9-11 and allows the programmer to declare and use accuracy parameters, e.g., as done in

lines 15-16.

Abstract Syntax Tree transformation. An AST transformation pass detects all EpsilonValue
declarations, removes them, and adds them as arguments to the operation signature. This

step is performed before producing the two pieces of code that compute the number of costly

quantum gates and the upper bound on the overall approximation error. Note that the intrinsic

EpsilonValue function is never called in the resulting programs.

There exist no global variables and no call-by-reference parameters in Q#. However, it is

possible to declare an intrinsic operation in Q# and implement it in C#. In order to count

the number of T gates, the operation IncrementCounter(id, value) is introduced, whose

implementation in C# increments a global counter, called id, by value. A similar technique

is used to accumulate the bound on the overall approximation error. Each declaration of

an epsilon value is replaced by a call to an operation IncrementValue(id, value) whose

implementation in C# increments a global variable called id by value.

Rewrites to make evaluation more efficient. The Q# compiler already contains some trans-

formation passes, e.g., for operation inlining, propagating constants, or removing unused

code. Two additional transformation passes need to be added to optimize the use of In-
crementCounter and IncrementValue calls. Without loss of generality the transformation

passes are explained by means of the IncrementCounter operation, remarking that they work

analogously for the IncrementValue operation.

The first transformation pass collects all IncrementCounter calls inside a scope level that

have the same id and do not contain values incorporating mutable variables. These calls can
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be merged into a single call by accumulating all values, benefiting from further optimization,

e.g., constant propagation. The second transformation pass lifts IncrementCounter calls

inside a for-loop. If the call is the only statement in the body of the for-loop and does not use

the loop variable to compute the value, the for-loop can be removed when multiplying the

value in the IncrementCounter call by the number of loop iterations.

9.7 Qualitative evaluation

This section evaluates the prototypes using different quantum algorithms. The first example is

a simple quantum Fourier transform. As a highlight, the LLVM prototype automatically extracts

a symbolic expression for the phase estimation of a Trotter-decomposed time-evolution

under a transverse-field Ising model Hamiltonian, where the phase estimation features an

approximate QFT. The C++ code for the approximate QFT can be found in Fig. 9.4 and the

corresponding Q# code is shown in Fig. 9.5. In addition, the prototype is tested on Shor’s

algorithm [18], to provide the reader with a large-scale example. The period finding quantum

routine as implemented in the open-source programming framework ProjectQ [61] is used.

All the obtained expressions for the T -count and the total approximation error are reported in

Table 9.2.

Exact QFT The first example is an implementation of the exact quantum Fourier transform.

The prototype is able to directly optimize all loops, including the outermost loop which yields

a sum of the form
∑n−1

i i = n(n−1)
2 . It finds the correct closed-form expression for the total

error and it correctly identifies the number of T gates to be O(n2 log(1/εR )). Table 9.2 shows

the detailed output.

Approximate QFT (AQFT) Next, consider the approximate quantum Fourier transform. The

C++ source code that serves as the input to the prototype is depicted in Fig. 9.4. The prototype

upper bounds an intermediate expression of the form c +∑
i min( f (i ), g (i )) by choosing one

of the arguments to the min-function and successfully derives a closed-form expression for

both the T gate count and the total approximation error, see Table 9.2.

Quantum phase estimation (QPE) The example combines the time evolution of a TFIM with

QPE, to find the ground state of the TFIM. This first QPE example makes the simplifying

assumption that the inverse QFT can be performed natively. As can be seen in Table 9.2

(labeled QPE simplified), the methodology is capable of removing all loops and outputs two

closed-form expressions for the T -count and the total error.

The next step is to drop the simplifying assumption that the inverse QFT can be performed

natively. The inverse QFT is implemented as discussed in Section 9.3.1. The closed-form

expressions obtained by the prototype for this case can be found in Table 9.2 labeled QPE with

135



Chapter 9. Automatic accuracy management

QFT.

Finally, the exact QFT is replaced by an approximate QFT (see Fig. 9.4 for the C++ code). As in

the AQFT example, the optimization pass upper bounds an intermediate expression of the

form c +∑
i min( f (i ), g (i )) by choosing one of the arguments to the min-function. Table 9.2

shows the detailed output, which consists of two fully-symbolic expressions for the T -count

and for the approximation error.

Shor’s algorithm The last example is Beauregard’s implementation of Shor’s algorithm [216],

which defines two approximation errors, one for the rotation gates εR and one for the approxi-

mate QFT (εQF T ). In this implementation, each controlled unitary in the phase-estimation

procedure is a modular multiplication (by a constant). Please note that the QPE example

performs a phase-estimation on the time-evolution operator that evolves the system accord-

ing to the transverse-field Ising model Hamiltonian. Therefore, while both examples make

use of phase estimation, their cost and error functions are vastly different because the phase

estimation is performed on different unitaries.

In summary, the proposed methodology successfully produces closed-form expressions for

the total error and gate count for all the examples. The next section shows that access to

symbolic expressions enables a significant reduction in the time required to optimize accuracy

parameters.

9.8 Quantitative evaluation

This section demonstrates how the LLVM prototype enables faster evaluations of the cost

and constraint functions by leveraging the transformations in Table 9.1. The runtimes of the

symbolic resource estimation method are compared against a non-symbolic approach. The

latter does not use symbolic estimations for resources and errors. The non-symbolic estimates

are generated by the methodology during the AST transformation step (see Section 9.6).

All experiments were run on a MacBook Pro with an Intel Core i5 processor with 3.1 GHz

processor clock frequency and 16 GB main memory. All source codes have been compiled

using Clang version 9.0.0 with level 3 optimization (-O3) and with the fast-math mode enabled

(-ffast-math).

As previously described, the prototype uses a two-mode annealing procedure to find suitable

assignments for all accuracy parameters. I measure the runtime for performing one evaluation

of the T and E functions using accuracy parameters provided by the annealer, guaranteeing

an upper bound on the overall approximation equal to 5 ·10−3. The runtime measurements

are performed using different input sizes for Shor’s algorithm and for the QPE example (with

approximate QFT). The plots in Fig. 9.6 depict the sum of the runtimes required for evaluating
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Chapter 9. Automatic accuracy management
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Figure 9.6 – A comparison between the runtimes of the non-symbolic approach and the
symbolic approach developed in this thesis is shown. Each data point marks the runtime
required for a single evaluation of the T function plus a single evaluation of the E function
for the QPE algorithm with approximate QFT and for Shor’s algorithm. Optimized accuracy
parameters are used as input in order to assert that the total approximation error is at most
5 ·10−3. I provide polynomial extrapolations from the collected runtimes for the non-symbolic
approach as the runtime tops out for bit sizes above 512 for Shor and 32 for QPE.

the constraint and cost functions once, as they are always evaluated the same number of times

in the simulated annealing procedure. While the non-symbolic approach exhibits a growing

runtime as a function of the problem size, the symbolic method shows the expected constant

behavior. In particular, the runtime of the non-symbolic approach grows linearly for the QPE

example and (roughly) cubically for the implementation of Shor’s algorithm.

Given that both examples are valid applications of quantum computers only for large prob-

lem sizes (e.g., the target number of bits for Shor’s algorithm is n ≈ 4000), Fig. 9.6 shows

function extrapolations for the non-symbolic approach. The two resulting functions are

fQPE = 1737.30x +816.98 and fShor = 2.38 ·10−5x3.

To estimate the time it would take to optimize accuracy parameters using a non-symbolic

approach, the runtime results in Fig. 9.6 are multiplied by a lower bound on the number of

function evaluations. A loose lower bound of 100 evaluations (of each function) is estimated.

To determine suitable accuracy parameters for Shor’s algorithm, it would theoretically take

approximately 1890 days for n = 4096 bits and an overall approximation error of at most

5 ·10−3.

Therefore, it is possible to conclude that non-symbolic approaches are not suitable for large-

scale applications.

9.9 Summary

In this chapter, I described the first framework with the ability to automatically manage

approximation errors and outputting (near-)symbolic resource estimates. The methodology

targets approximation errors which are introduced during compilation, examples are given
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9.9. Summary

in Section 9.2. The algorithms used in the chapter as running examples are described in

Section 9.3.

Sections 9.4 described how integrating language support for expressing approximation er-

rors in quantum programs facilitates the task of programming a quantum computer in an

approximation-aware fashion. Then, Section 9.5 explained how it is possible to automate the

process of optimizing accuracy parameters at the compiler level. It is possible to integrate the

proposed methodology into any quantum programming language, if its compiler supports the

features discussed in Section 9.6. The latter section also discusses the two proposed prototype

implementations in LLVM and Q#. In Section 9.7, I test the ability of the LLVM prototype to

extract symbolic expressions for the T -count and the total approximation error for the sample

quantum algorithms described in Section 9.3. The demonstration that a symbolic resource

estimation is the only applicable strategy to solve the optimization problem for large-scale

examples, is given in Section 9.8.

The currently proposed technique would require additional inputs to handle branching on

measurement and repeat-until-success-like structures [213]. Future work could focus on

improving the handling of similar structures. Future work could also compare the accuracy

upper bounds estimated by the proposed method to the actually achieved errors on example

applications, as the proposed methodology provides a pessimistic estimate.
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10 Caterpillar

Figure 10.1 – Caterpillar’s logo

All the algorithms and the techniques for the compilation of quantum circuits in this research

work have been implemented as part of open-source projects. At the beginning of my doctoral

studies, I worked on developing the open-source project RevKit [194], a toolkit for reversible

circuit design written in C++. RevKit provided core functionality and elaborated methods for

synthesis, optimization, and verification of reversible (and quantum) circuits. The experiments

in Section 7.4 and the techniques in Chapter 8 were all implemented in RevKit.

More recently, together with other members of the Integrated Systems Laboratory (LSI) at

the École Polytechnique Fédérale de Lausanne (EPFL), we started a collective project: the

EPFL logic synthesis libraries. Among these, I personally develop and maintain the library

caterpillar, which is dedicated to the compilation of quantum oracles and to quantum memory

management. The purpose of this open-source effort is to let other researchers use our

developed methods to enable advancement in the field.

The modular open-source C++- 14 and C++-17 libraries developed at LSI provide efficient

implementations of common logic synthesis tasks. A detailed description of each library

and some show-cases can be found in [181]. In addition, the GitHub repository of each

library contains detailed and specific documentation. The page https://github.com/lsils/

lstools-showcase contains links to all the repositories. Each library targets one general aspect

of logic synthesis:

143

https://github.com/lsils/lstools-showcase
https://github.com/lsils/lstools-showcase


Chapter 10. Caterpillar

• alice eases the implementation of user interfaces and their integration in scripting

languages;

• mockturtle provides generic synthesis and optimization algorithms for logic networks;

• lorina parses logic and networks in various representation formats;

• kitty provides an effective way for explicit representation and manipulation of Boolean

functions;

• bill serves as an integration layer for symbolic reasoning engines;

• percy synthesizes optimum logic networks;

• easy represents and synthesizes Exclusive Sum-Of-Products (ESOP) forms;

• tweedledum is a generic quantum compilation library with synthesis, optimization, and

mapping algorithms;

• caterpillar is a quantum circuit compilation library for fault-tolerant quantum comput-

ing.

The libraries are modular, in the sense that many may be required for one specific research

project. For example, mockturtle includes kitty to represent the Boolean functions computed

by the nodes of k-LUT networks and caterpillar includes mockturtle to provide the initial

multi-level network representation required by its compilation algorithms.

10.1 Compiling with caterpillar

Caterpillar, whose logo is shown in Fig 10.1, is an open-source header-only C++ library dedi-

cated to the compilation of large quantum circuits. The code and the complete documentation

can be found at https://github.com/gmeuli/caterpillar.

Caterpillar includes the library mockturtle to make use of its logic network data structures

and manipulation algorithms. Besides, quantum circuits are represented in caterpillar using

the EPFL library tweedledum, which contains all the abstractions and the data structures to

efficiently represent quantum circuits.

The pivot compilation method, called logic_network_synthesis, performs the hierarchical

reversible synthesis described in Chapter 5 to synthesize a quantum circuit from a multi-level

logic network. The synthesis method can take all the networks implemented in mockturtle

as input: AIGs, XAGs, XMGs, MIGs and LUT networks. The following code snippet shows the

interface of the function template logic_network_synthesis.

144

https://github.com/gmeuli/caterpillar


10.1. Compiling with caterpillar

1 // header : / caterpillar / synthesis /lhrs.hpp
2 template < class QuantumNetwork , class LogicNetwork , class

SingleTargetGateSynthesisFn = tweedledum :: stg_from_pprm >
3

4 bool logic_network_synthesis ( QuantumNetwork & qnet ,
5 LogicNetwork const& ntk ,
6 mapping_strategy < LogicNetwork >& strategy ,
7 SingleTargetGateSynthesisFn const & stg_fn = {},
8 logic_network_synthesis_params const & ps = {},
9 logic_network_synthesis_stats * pst = nullptr );

The function takes as template parameters the quantum network, expressed by the netlist
template class in tweedledum and a logic network, that is one of the logic networks included

in mockturtle.

The function also requires to specify a member of a class derived from the base class map-
ping_strategy, as third parameter. By specifying a mapping strategy one can control how

the multi-level logic network is translated into a reversible circuit, while guaranteeing uncom-

putation of all intermediate results, i.e., a garbage-free circuit. As explained in Section 5.3,

several strategies are possible, each one with a different impact on the number of helper qubits

of the final quantum circuit.

The fourth parameter is a method to decompose each single-target gate into Clifford+T circuits.

This method is only applied when the compilation is performed with a k-LUT network as

input. In this case, each single target gate is controlled by a Boolean function and needs to

be decomposed into quantum instructions. The default decomposition method is the ESOP

decomposition based on Pseudo-Kronecker Reed Muller (PKRM) expressions [192], provided

by tweedledum. The alpha version of tweedledum, currently integrated into caterpillar, also

includes the stg_from_exact_esop method, which implements the exact synthesis method

proposed in 7.2.2. When the compilation algorithm is applied to logic networks characterized

by nodes computing functions with known quantum implementations, e.g., XAGs, such

decomposition methods are not used.

The last two parameters, respectively logic_network_synthesis_params and logic_net-
work_synthesis_stats are needed to provide specific settings to the procedure and to

access runtime information on a specific compilation process.

10.1.1 Mapping strategies

The hierarchical synthesis method in caterpillar requires to specify the mapping_strategy
to be used to map the logic of each node of the input logic network into the available helper

qubits. In general, such strategies are also required in quantum compilation to place pre-

optimized quantum circuits blocks into a circuit, whenever the data dependency is expressed

using a Directed Acyclic Graph (DAG).
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Chapter 10. Caterpillar

Every mapping strategy in caterpillar is derived by the base mapping_strategy template

class.

1 // header : caterpillar / synthesis / strategies / mapping_strategy .hpp
2

3 template < class LogicNetwork >
4 class mapping_strategy {
5 public :
6 using step_function_t = std :: function <void( mockturtle ::node <

LogicNetwork > const&, mapping_strategy_action const & ) >;
7 using step_vec_t = std :: vector <std ::pair < mockturtle ::node <

LogicNetwork >, mapping_strategy_action >>;
8

9 /* take the logic network as input and defines the strategy ’s steps
sequence */

10 virtual bool compute_steps ( LogicNetwork const& ntk ) = 0;
11

12 /* iterate through the strategy ’s steps applying the given function
*/

13 void foreach_step ( step_function_t const& fn ) const {
14 for ( auto const& [n, a] : _steps ) {
15 fn( n, a );
16 }
17 }
18

19 protected :
20 step_vec_t & steps () { return _steps ; }
21

22 private :
23 step_vec_t _steps ;
24 };

Every mapping strategy must then implement the public functions foreach_step, which

iterates through the found strategy steps. A strategy is a vector of pairs with the network’s

node and the corresponding mapping_strategy_action. The supported actions are: com-
pute_action and uncompute_action to compute (uncompute) the node functionality on

a clean helper qubit; compute_inplace_action and uncompute_inplace_action to com-

pute (uncompute) on top of an existing qubit; compute_level_action and uncompute_-
level_action to compute (uncompute) an entire level of the network in one single step.

Several mapping strategies are available in caterpillar:

• Bennett strategy. This strategy computes all the nodes in topological order and uncom-

putes them in inverse topological order. Every node logic is mapped on a clean helper

qubit, i.e., out-of-place. Originally described in [170], it provides a solution that always

returns, given an initial network, the smallest number of single-target gates and the

highest number of helper qubits if compared to the other strategies.

• Eager strategy. This strategy makes sure of computing at first the outputs with the
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largest transitive fan-in cone. Then, as soon as a primary output is computed, all nodes

in the transitive fan-in cone are uncomputed if their value is not needed for an output

that has not being computed yet. The present strategy achieves the same number of

single-target gates as the Bennett strategy. As well as the Bennett startegy, the Eager

strategy only supports out-of-place computation, which requires a clean helper qubit.

• Best-fit strategy. This strategy applies a k-LUT mapping that decomposes the network

into cells. Cells are initially placed to form a reversible network following an eager

strategy. The logic contained into each cell is decomposed by means of a second k-LUT

mapping. The method selects the minimum k such that there are enough helper qubits

to save intermediate results. A different “best-fit” k is selected for each cell. I described

this method in Section 7.3.

• Pebbling strategies. The pebbling strategies are obtained by solving the reversible

pebbling game on the given network. The problem is encoded as a SAT problem as

shown in Section 5.3.

• XAG strategies. These strategies work specifically on XAGs. They correspond to the

algorithms described in Chapter 6.

10.1.2 Pebbling strategies

The pebbling mapping strategies address the problem of building a reversible circuit of single-

target gates by iteratively solving the SAT formulation of the reversible pebbling game played

on the initial logic network. The pebbling strategies rely on a general interface to different

SAT solvers. At the moment of writing this thesis, the ABC’s1 bsat_solver is integrated into

caterpillar. In addition, the library works on top of a local installation of Z3 [148], if the

corresponding CMake option is enabled: USE_Z3.

In addition to the standard reversible pebbling problem, caterpillar also enables to take

into consideration weights associated with each node of a DAG. I have already explained

in Section 6.3.3 how it is possible to modify the SAT encoding to optimize the total weight

of the pebbling solution. The weighted_pebbling_mapping_strategy takes as template

parameter the class of the input networkNetwork. To be valid, the selected network class must

provide the following method:

1 uint32_t get_weight ( const Network :: node n) const;

Some of the network data structures in mockturtle do not provide such a method. Luckily

mockturtle itself provides the needed solution, which allows us to optimize the pebbling solu-

tion for any logic network: views. Views can add, modify or remove the methods implemented

in a network interface. Caterpillar implements the pebbling_view, which adds a method to

1https://github.com/berkeley-abc/abc

147



Chapter 10. Caterpillar

set the weight of a node and one that returns such a weight. This view of the network can be

passed to the weighted pebbling strategy.

A second variation of the reversible pebbling game is the in-place pebbling. This case considers

that some network’s node can be computed on top of one of the inputs. Take for example a

node implementing the XOR operation, the corresponding CNOT gate can be computed on

top of a qubit correspinding to one of the input signals, if this is not used by successive nodes.

To being able to generate a pebbling solution which enables in-place operations, the encoding

of the corresponding SAT problem requires a method to access all the parents of a node.

1 std :: vector <node > get_parents ( node const& n) const

Again, the pebbling_view adds such method into any mockturtle ’s network interface.

10.1.3 Mapping strategies for XAGs

Some of the mapping strategies that are available in caterpillar are specific to the XAG data

structure. The strategies xag_mapping_strategy and xag_low_depth_mapping_strategy
implement Alg. 6.1 and Alg. 6.2, respectively. They both derive an abstract representation of

the graph from the XAG, where each node corresponds to an AND node of the XAG and has an

unlimited number of inputs. These correspond to the input signals of the parity functions,

which were inputs to the AND node, as illustrated in Fig. 6.6. Alternatively, caterpillar provides

strategies designed to perfom such algorithms directly on the abstract network implemented

in mockturtle.

Besides, a mapping strategy specifically designed to pebble XAG graphs is also available: xag_-
pebbling_mapping_strategy. It takes an XAG as input and implicitly works on the abstract

graph. The results obtained applying this strategy are available in Fig. 6.7. Alternatively, it is

possible to use the weighted pebbling strategy on top of mockturtle’s abstract_network.

10.2 Show-case: resource estimation for large quantum circuits

This section illustrates one possible application of the caterpillar library. This example targets

the problem of evaluating the resources required to perform a given large Boolean function.

Such function is specified by an input file expressed in Verilog.

The following code can be used to print the resource estimation obtained using the compila-

tion Algorithm 6.1. Note that I neglected some library namespaces to show a more compact

code.
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1 /* declare the XAG */
2 xag_network xag;
3

4 /* read XAG from benchmark using the library lorina */
5 auto const result = read_verilog ( filename .v, verilog_reader ( xag ) );
6 if ( result != return_code :: success ) { return ; }
7

8 /* set up strategy and synthesis parameters */
9 xag_mapping_strategy strategy ;

10

11 /* start tracer */
12 xag_tracer_stats st;
13 xag_tracer (xag , strategy , {}, &st);
14

15 /* print statistics */
16 std :: cout << " Quantum circuit stats: \n";
17 std :: cout << "#CNOT = " << st. CNOT_count << "\n";
18 std :: cout << "T-count = " << st. T_count << "\n";
19 std :: cout << "T-depth = " << st. T_depth << "\n";
20 std :: cout << "# qubits = " << st. qubit_count << "\n";

Initially, the XAG object xag, is declared. Then, using the parser library lorina , and a Verilog

reader included in mockturtle , the XAG represents the Boolean function defined by file-
name.v. If the parsing of the file is not successful, the execution is stopped. Please note that

lorina also includes diagnostic methods.

Once the input XAG is defined, the mapping strategy is selected. The described case evaluates

the resources obtained by synthesizing a quantum circuit using the XAG-based algorithm

defined in Alg. 6.1. In line 15, the program uses the template function xag_tracer to collect

the statistics of the obtained quantum circuit. The tracer is an alternative function to the

logic_network_synthesis function. The difference is that the latter builds a quantum

circuit: a netlist of quantum operations. For very large functions, as the ones synthesized in

Chapter 6, this may require a prohibitive amount of memory. The tracer executes the synthesis

algorithms specified by the mapping strategy while keeping track of the necessary quantum

operation; hence without building and storing the quantum circuit.

10.3 Show-case: compilation with a fixed number of helper qubits

This second show-case considers the problem of mapping a logic function represented using

an XAG (xag in the code) into a reversible network. Once synthesized, the reversible circuit

will contain CNOT and Toffoli gates. The mapping is performed using a fixed number of helper

qubits. In addition, it is possible to verify that the synthesized reversible network actually

computes the desired Boolean function.
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1 /* declare the reversible network */
2 netlist <stg_gates > rev;
3

4 /* set up strategy and synthesis parameters */
5 pebbling_mapping_strategy_params ps;
6 ps. pebble_limit = helper_qubits ; // fix the number of helper qubits
7 ps. solver_timeout = timeout_ms ; // timeout for the SAT solver [ms]
8 ps. conflict_limit = 0; // 0 means no conflict limits for the SAT solver
9 ps. optimize_weight = true;

10

11 xag_pebbling_mapping_strategy strategy {ps};
12

13 /* start logic network synthesis */
14 logic_network_synthesis_stats st;
15 logic_network_synthesis ( rev , xag , strategy , {}, {}, &st );
16

17 /* check equivalence */
18 bool cec = check_equivalence_tt (xag , rev , st.i_indexes , st. o_indexes );

The example code starts with declaring the reversible network, which is a netlist of single-target

gates. Then, it declares the selected mapping strategy: the xag_pebbling_mapping_strategy,

solving the reversible pebbling game on the abstract graph derived from the XAG. This strategy

enables to set many different pebbling parameters. In this example: the number of available

pebbles is limited to the maximum allowed number of helper qubits; a timeout for the SAT

solver is set up; no limit is given for the number of conflicts; weight optimization is enabled.

Once the circuit is synthesized, the function check_equivalence_tt, verifies that the XAG

and the reversible network have the same functionality. The last two arguments give the

indices of the input and the output lines in the reversible circuit. This method internally

transforms the reversible circuit into a multi-level logic network and then uses a generic

simulation algorithm from mockturtle . This equivalence-checking method relies on truth

tables and, as a consequence, does not provide a scalable solution. A more scalable approach

is to use check_equivalence_ntk, which builds a miter of the logic network derived from

the reversible circuit and the original one and then checks for satisfying assignments using

SAT. A miter is a logic network derived from two other logic networks. As input it has the union

of the two input sets and as output the XOR between the two original outputs. The function

implemented by the miter is satisfied when the two original networks have different outputs.

10.4 Show-case: looking for the minimum pebbling number

For this last show-case, suppose there is no fixed limit on the number of available helper

qubits for the mapping of the previous show-case. Still, it would be desirable to generate a

quantum circuit with a reduced amount of qubits. It is possible to set up the pebbling strategy

parameters to enable searching the smaller number of pebbles for which a solution can be

found in a given time. The smallest number of pebbles required to pebble a given DAG is

called pebbling number.
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The following code snippet shows how to set the strategy parameters to perform this search.

1 /* set up strategy and synthesis parameters */
2 pebbling_mapping_strategy_params ps;
3 ps. pebble_limit = init_helper_qubits ; // sets the initial # pebbles
4 ps. search_timeout = t1_s; // sets a timeout for the search
5 ps. solver_timeout = t2_ms;
6 ps. decrement_pebbles_on_success = true;

With the chosen settings, the algorithm starts looking for a solution with a number of pebbles

equal to init_helper_qubits. If a solution is found, the SAT engine will be called again

with a decremented number of pebbles in order to find a more constrained solution (enabled

decrement_pebbles_on_success). This is repeated until either (i) the SAT solver returns

unsat, (ii) the SAT solver hits the solver timeout or the conflict limit, (iii) the search hits its

dedicated timeout.

10.5 Summary

This chapter introduced the modular C++ libraries for logic synthesis developed in my research

group. In the context of this collective open-source effort, I personally develop and maintain

the library caterpillar. This library is dedicated to the synthesis of quantum circuits starting

from logic network specifications. The main synthesis method in caterpillar is described in

Section 10.1. The method takes as template parameters different mapping strategies, including

the one solving the reversible pebbling game. Section 10.1.2 provided more details on this

latter strategy, while Section 10.1.3 focused on the strategies specifically designed to work with

XAGs. Finally, three show-cases are given to illustrate the capabilities and the applicability of

this library, in Sections 10.2, 10.3, 10.4.

The library is currently used by the following open-source projects: staq 2 and RevKit 3.0 3.

2https://github.com/softwareQinc/staq
3https://github.com/msoeken/revkit
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11 Conclusions and future directions

The research work that I presented in this thesis focuses on tackling the problem of translating

a high-level description of a quantum algorithm into a low-level set of quantum instructions.

This problem is generally referred to as quantum compilation. As for their reduced sizes, NISQ

devices can efficiently rely on a manual or semi-manual compilation. The same is not true

for larger-scale quantum computers that, according to many leading technology companies,

are soon to be developed. Those will be characterized by thousands of qubits and will embed

error-correcting techniques. They will be programmed at a high-level of abstraction and will

rely on a complex software stack to enable their operation. Such quantum computers are

expected to be capable of performing complex quantum algorithms, reaching computational

capabilities far beyond what can be achieved with classical systems.

Many promising quantum algorithms require some classical logic function to be computed

by the quantum systems. Quantum circuits implementing such Boolean functions are often

called oracles and can require a large amount of resources. This is what motivates researching

new and efficient quantum compilation techniques, capable of synthesizing quantum oracles

while aiming at reducing their resource footprint. As this work targets fault-tolerant quantum

computing and the Clifford+T library, the implementation cost functions considered are

related to the T gates and the number of qubits.

This research project stands at the intersection between three research fields, described in

the first chapters of this thesis: (1) classical logic synthesis, (2) quantum computing, and (3)

reversible computing. Chapter 2 presents the field of logic synthesis, from which I borrowed

many representations and methods, adapting them to the problem of quantum compilation.

Chapter 3 introduces basic concepts of quantum computing, as the quantum circuit represen-

tation and the Clifford+T universal gate library. Finally, Chapter 4 introduces reversible gates

and some known methods to decompose them into quantum gates. Following the background,

the second part of this manuscript focuses on the synthesis and optimization of quantum

circuits.

Chapter 5 introduces the k-LUT-based hierarchical synthesis to compile quantum circuits
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performing a Boolean function specified by a multi-level logic network. The method con-

sists of several steps. The first step is the k-LUT mapping, which is used to decompose the

original network into sub-networks with at most k inputs. I discussed how the choice of the

k parameter, and more in general, the cost functions considered when performing this first

decomposition step, can impact the final result. The second step is in charge of translating a

possibly non-reversible Boolean function representation into a reversible circuit. The overall

synthesis method owes the name hierarchical to this step. Indeed, the translation is done by

traversing the graph and placing on the reversible circuit a single-target gate targeting a clean

helper line for each node. The transformation leans on a one-to-one correspondence between

LUT nodes and single-target gates. This second step has to guarantee that the resulting re-

versible network is garbage-free, meaning that intermediate values that are initially stored

on clean helper lines are uncomputed. The last step of the hierarchical synthesis method is

responsible for decomposing each single-target gate into a quantum circuit. This last step

performs STG decomposition to generate quantum circuits for smaller Boolean functions, for

which it is possible to take advantage of less scalable techniques.

In this work, I researched possible improvements of the described k-LUT-based hierarchical

synthesis framework. The first contribution is described in Section 5.2 and focuses on the

cost functions that guide the first step of the procedure: the k-LUT mapping. The original

framework performed this step using state-of-the-art mappers, which were developed for the

technology mapping of classical logic circuits. Such mappers are typically designed to optimize

area and delay—cost functions that do not apply to the quantum compilation problem. For this

reason, I proposed a new mapping that takes into account cost functions related to quantum

circuit synthesis. The second contribution concerns the second step of the procedure and

is described in Section 5.3. The key idea is that there are several strategies for mapping the

logic of each network’s node into the reversible circuit, called uncomputation or pebbling

strategies. Indeed, to find a valid strategy it is necessary to solve the reversible pebbling game.

I encoded the problem as a SAT problem and solved it using state-of-the-art SAT solvers,

e.g., Z3. This procedure enables the user to fix the available number of helper qubits and

to consequently obtain a reversible circuit that minimizes the number of single-target gates

while not exceeding the given constraint. The improvement brought by the combination of

these two contributions is shown in Section 5.4. In particular, the presented experiments show

how the results obtained by the state-of-the-art procedure are improved both in the number

of qubits and the number of gates.

Chapter 6 presents hierarchical compilation algorithms that are specific for XAGs. While the

k-LUT-based method applies to any logic network and enables the user to specify the number

of helper qubits, it fails at reducing the number of generated T gates. Differently, the XAG-

based methods presented in this chapter are capable of synthesizing quantum circuits with

O(N ) qubits and O(N ) gates, where N is the number of nodes of the XAG. In particular, the

first presented method targets the minimization of the T -count, and achieves an upper bound

on the number of T gates that is four times the multiplicative complexity of the network (see

Section 6.3.1). The second algorithm focuses on reducing the T -depth of the final quantum
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circuit. It achieves the same T -count of the previous method but leverages more qubits. The

quantum circuits synthesized using these two algorithms, with application in post-quantum

cryptography, are reported in Section 6.4.

A key feature of such algorithms is that it is possible to correlate the resources of the compiled

quantum circuits with the characteristics of the XAGs. This suggests that future works on

the topic may focus on restructuring and rewriting the XAG to reduce the identified features:

the number of AND nodes, i.e., the multiplicative complexity (affecting the T -count) and the

multiplicative depth (affecting the T -depth).

The last algorithm of this chapter, in Section 6.3.3, is a SAT-based algorithm to find uncompu-

tation strategies by playing the reversible pebbling game on an abstract graph derived from an

XAG in which each node is characterized by a weight. Such a weight depends on the number

of gates required for the quantum circuit to perform the node’s functionality. The section also

describes how the problem of reducing the overall weight of a pebbling strategy with P pebbles

and K steps is encoded in an additional clause for the SAT problem. Section 6.4 shows plots

illustrating the efficiency of this last algorithm to trade-off qubits for gates, and to optimize

the obtained results.

In general, the problem of finding a good uncomputation strategy by solving the reversible

pebbling game finds an application whenever the computation of a quantum algorithm is

decomposed into several parts that need to be composed back together. Pebbling may be an

enabling technology for quantum memory management, allowing us to fit the (often limited)

available memory resources of quantum systems. In this research work, I focused on solving

the problem iteratively using SAT. With the basic formulation of the problem, this is quite

a scalable method, applicable to networks with hundreds of nodes. Nevertheless, as soon

as the problem is strongly constrained in the number of pebbles or one attempts to solve

variations of the original problem, e.g., weighted pebbling and in-place pebbling, the SAT-

based approach becomes too slow. For this reason, further research on the topic could focus

on the development of heuristic pebbling strategies.

Chapter 7 describes several techniques for the decomposition of single-target gates into

quantum circuits. When the control functions are small enough it is possible to build a

database of precomputed optimal implementations. Section 7.1 describes how the database’s

size can be compressed using spectral classification and how any Boolean function up to 5

inputs can be synthesized from a spectral-equivalent function implementation in the database

by only adding CNOT and NOT gates, i.e., with the same T -count and T -depth. The database

is publicly available1 and contains circuits expressed in the Q# language.

A general method to synthesize quantum circuits is the ESOP decomposition. Section 7.2

proposes a study on the impact of different ESOP synthesis methods on the resulting compiled

circuits. From the study, it is possible to conclude that different cost functions must be

1https://github.com/gmeuli/stg-benchmark
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considered when these expressions are used in quantum compilation flows. In addition,

advanced ESOP synthesis methods integrated, e.g., in the hierarchical synthesis flow, show

promising results. The number of literals is identified as a better fitting cost function than

the number of terms in the ESOP expression. In particular, a MAX-SAT problem is encoded

to exactly synthesize ESOP expression minimizing a custom cost function. The technique is

unfortunately not applicable to large Boolean functions. In the latter case, state-of-the-art

heuristics should be used. As a future research direction, one could investigate heuristic

methods guided by specific cost functions.

The last presented technique addresses the decomposition of STGs controlled by large Boolean

functions, given some helper lines available. In this case, it is possible to perform a k-LUT

decomposition and store intermediate results on helper qubits. Then each obtained STG is

decomposed using the ESOP decomposition.

Chapter 8 is dedicated to two techniques developed for the optimization of quantum circuits.

The first one is based on solving the weighted graph matching problem and relies on pairing

certain multiple-controlled Toffoli gates to reduce the corresponding number of T gates.

The second one is based on SAT, and seeks the reduction of the number of CNOT gates

in a Clifford+T quantum circuit. The optimization method extracts subcircuits consisting

of CNOT and T gates, rewrites them using an exact SAT approach that keeps the T -count

unchanged while reducing the number of CNOT to the minimum. Then, the original circuit

is reconstructed. The technique shows an improvement of up to 45.45%, as reported in

Section 8.2.4.

This concludes the part of this thesis dedicated to the synthesis and the optimization of

quantum circuits.

Chapter 9 presents a methodology to automatically manage approximation errors in quantum

programming languages. The methodology introduces language support, to facilitate express-

ing approximation errors into quantum programs. Then, it automatizes the choice of the best

accuracy parameters to guarantee an upper bound on the overall approximation errors. The

constraint and cost functions of the corresponding optimization process are extracted directly

from the quantum program in the form of (near-)symbolic expressions.

The methodology can be added to any quantum software framework, thereby greatly facilitat-

ing the resource estimation of quantum programs. Such integration will allow even domain

experts from, e.g., chemistry or machine learning, to write accuracy-aware quantum programs

without having to manually derive and prove error bounds. Future work could implement

improved handling of branching on measurement results and repeat-until-success-like struc-

tures. To handle such programs, the methodology requires additional input such as the

maximal or expected iteration count (e.g., as a program annotation). For verification purposes,

one could instrument the code in order to assert that the actual number of iterations does

not deviate (too much) from the provided estimate. Future work could also compare upper

bounds to actually achieved errors on example applications. Currently, the methodology does
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not take into account gate cancellations that may be performed by circuit optimization. This,

in addition to the repeated use of the triangle inequality to bound the overall error, likely leads

to pessimistic error bounds.

Finally, Chapter 10 describes the C++ open-source library that I develop and maintain, and

that implements many of the algorithms and techniques presented in this manuscript.
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A Database integrated into RevKit

(a) #0000, 0 (b) #8000, 24 (c) #8080, 16 (d) #0888, 31

(e) #8888, 7 (f) #7080, 15 (g) #7880, 36 (h) #7888, 12

Figure A.1 – Representative functions, starting point Toffoli networks, and obtained T -count
for single-target gates with 4-input control functions.
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Appendix A. Database integrated into RevKit

#00000000,
0

#80000000,
31

#80008000,
24

#0a000010,
41

#80808080,
16

#88800800,
26

#80088820,
55

#88808080,
47

#2a808080,
32

#70080088,
42

#f0800080,
40

#c0c8c0c8,
29

#f780b880,
78

#9ba00000,
56

#e8080808,
63

#8808a808,
52

#c8888888,
34 #88888888, 7

#d5808080,
32

#70807080,
15

#e1808880,
72

#ea808080,
42

#cc808880,
55

#d8808880,
55

#7f008000,
23 #e820c088, 80 #4e144404, 64

#e8a08880,
78

#f8808880,
72

#e2222220,
56

#a038a028,
42

#e6804c80,
27

#7f808080,
19 #0231da51, 63 #a002bc88, 59

#f8087888,
32

#eca08088,
51

#f0888888,
29

#8a80cac0,
47

#78807880,
36

#f8284888,
56 #fca08880, 69

#dac08a80,
70

#38887888,
41

#78887888,
12

#a6cc60a0,
43

#62c8ea40,
19

#6ac8e240,
44

Figure A.2 – Representative functions, starting point Toffoli networks, and obtained T -count
for single-target gates with 5-input control functions.
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