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Abstract

Advancements in high-throughput technologies to measure in-
creasingly complex biological phenomena at the genomic level are
rapidly changing the face of biological research from single-gene
single-protein experimental approach to studying the behaviour of
a gene in the context of the entire genome (and proteome). This
shift in research methodologies has resulted in a new field of net-
work biology that deals with modeling cellular behaviour in terms
of network structures that represent the influence of different bi-
ological entities such as genes, proteins and metabolites on each
other. These different biological entities interact with each other
giving rise to a dynamical system. Even though there exists a ma-
ture field of dynamical systems theory to model such network struc-
tures, some technical challenges that are unique to biology such as
the inability to measure precise kinetic information on gene-gene
or gene-protein interactions and the need to model large networks
comprising of thousands of nodes have renewed interest in devel-
oping new computational techniques for modeling these complex
biological systems.

In this thesis, I introduce a framework for modeling such regula-
tory networks in biology based on Boolean algebra and finite-state
machines that are reminiscent of the approach used for digital cir-
cuit synthesis and simulations in the field of very-large-scale inte-
gration (VLSI). The proposed formalism enables a common math-
ematical framework to develop computational techniques for mod-
eling different aspects of the regulatory networks such as steady
state behaviour, stochasticity and gene perturbation experiments.
Further, the proposed algorithms have been implemented under the
modeling toolbox genYsis using implicit representation techniques
based on reduced ordered binary decision diagrams (ROBDDs) and
algebraic decision diagrams (ADDs) enabling the modeling of large
regulatory networks.
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networks, BDDs, ADDs, Synchronous, Asynchronous, Probabilis-
tic Boolean networks, Stochasticity, Cell differentiation, Cancer
pathways, T-helper network.



Résumé

Le développement de techniques avancées pour observer et mesu-
rer l’activité de phénomènes biologiques complexes relatifs au génome
ont accéléré la recherche en biologie du stade des études restreintes
aux gènes ou protéines individuels,à l’étude de gènes et protéines
dans un contexte plus large de génome et protéome. Cette évolution
des méthodes de recherche a donné naissance à un nouveau do-
maine de biologie de réseau basé sur une description du comporte-
ment de la cellule en tant que réseau dans lequel plusieurs éléments
interagissent, tels que gènes et protéines; une interaction qui peut
être comprise dans le cadre d’un système dynamique. Bien qu’une
théorie des systèmes dynamiques existe déjà, des difficultés tech-
niques y relatives et spécifiques aux systèmes biologiques subsis-
tent encore: par exemple, il n’est techniquement pas possible de
mesurer la cinétique d’une interaction entre deux gènes ou entre
un gène et une protéine; et il est en outre difficile de manip-
uler mathématiquement des systèmes comportant des milliers de
nœuds. Ces difficultés ont relancé la nécessité d’élaborer de nou-
velles méthodes de calcul pour modéliser les systèmes biologiques
complexes.

Dans cette thèse, j’introduirai une base de modélisation de tels
systèmes biologiques régulés en utilisant l’algèbre de Boole et les
automates finis, une approche qui s’apparenteà celle utilisée dans
la synthèse des circuits logiques ainsi que leur simulation dans le
cadre de l’intégration à très grande échelle des circuits intégrés
(VLSI). Le formalisme proposé offre un cadre mathématique des
techniques de calcul pour modéliser les différents aspects du réseau
régulé, comme l’état stationnaire, l’aléa et les expériences sur la
perturbation génétique. En outre, les algorithmes proposés ont été
implémentés dans un outil de modélisation genYsis qui utilise des
méthodes de représentation implicite basées sur les diagrammes de
décision binaire réduits et ordonnés (ROBDDs) et les diagrammes
de décision algébrique (ADDs), permettant ainsi de modéliser des
systèmes très larges.
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Introduction 1
1.1 Motivation

Living organisms exhibit a complex hierarchical organisation of small building
blocks. All self-replicating organisms are composed of cells. All information
required for the functioning of a cell is encoded in the DNA sequence that is
passed on from one cell to another in inheritance. Small fragments of DNA
sequence encode the genes of an organism. Expression of the genes leads to
formation of proteins. A combination of these proteins defines the specific
functionality of the cell. A group of specialized cells come together to form
tissues. Different types of tissues form an organ. Several organs coordinate
with each to function as an organ system (such as respiratory system, digestive
system, etc). And finally, all the organ systems work synergistically to enable
proper functioning of a living organism.

Malfunctioning at any stage of these building blocks may cause a living or-
ganism to stop performing normally leading to a diseased state. Most causes
of diseases can be mapped to the abnormal activity of some genes in the cells.
Normally, cells are equipped to defend themselves against abnormal activity
of genes by either killing the defective cells or activating other genes that can
neutralise the effectivity of abnormal genes. However, external interference in
terms of drug compounds becomes a necessity when cells lose their ability to
control abnormal activity of genes leading to uncontrolled cellular malfunc-
tioning which can quickly spread as cells undergo proliferation.

The Human Genome project [83], one of the primary aims of which was to
identify all protein coding genes, has estimated and identified approximately
20,000-25,000 protein coding genes in humans. With the identification of all
protein coding genes, various high-throughput technologies (such as DNA mi-
croarrays [69, 107], protein arrays [47]) have emerged since the completion

1



2 Introduction

of the project. These technologies can measure the expression (or activity)
of all genes in a genome simultaneously. By measuring and comparing the
expression of genes in an unhealthy vs. a healthy cell, it is now possible
to identify genes responsible for various diseases at the entire genome level.
High-throughput technologies have been widely adopted by biologists to im-
prove their understanding of living systems and has lead to the generation of
enormous amounts of experimental data. With an unprecedented amount of
biological data coming out of research labs, research focus has shifted from the
generation of data to the interpretation and presentation of data in the most
efficient manner [97, 54, 55]. Many sophisticated statistical and computational
tools have been developed to help biologists identify novel targets from their
experimental data.

Predicting a set of responsible genes is often not sufficient as some of the
identified genes may be critical for the functioning of cells or it may not be
possible to manipulate these genes using drug molecules due to technological
reasons. This necessitates studying the behavior of genes with respect to other
genes (or proteins) that are known to play a role in a specific disease and can
potentially serve as drug targets. This has shifted the focus of computational
and experimental tools from just measuring the expression of genes to con-
struction of gene-gene, gene-protein and protein-protein interaction networks
[4, 54, 55]. High-throughput technologies such as yeast two hybrid screening
arrays [138, 93, 85], DNA microarrays and protein arrays are now increasingly
being employed to identify potential interactions among genes and proteins.
At the same time, new computational methods are being developed to model
and analyse these interaction networks [12].

Interaction networks can represent the dynamic behaviour in terms of the
flow of signaling from a biological entity to another and are referred by various
names such as signaling pathways, gene regulatory networks (GRNs) or genetic
regulatory networks. These GRNs can be seen as dynamical systems of sets
of genes and proteins where the gene (or protein) expression is a function
of the expression of other genes (and proteins) with which it can directly
interact [143]. By modeling the dynamical system represented by GRNs, it is
possible to make an in silico simulation of the evolution of a gene (and protein)
expression over time. Also, one can study how the system behaves when it is
slightly changed to reflect gene mutations inside a cell.

The starting point of all modeling efforts is prior knowledge of the system.
The complexity of a model depends upon the extent to which the prior knowl-
edge is available (or can be acquired) from experiments. For modeling the
behavior of a cell, while a wealth of information is present on the interactions
of genes and proteins, the exact stoichiometry and precise kinetics (at the
molecular interaction level) still evades our technologies and understanding.
In such a situation, one could either wait to gather the crucial information
on the precise biochemical processes or choose to model the flow of informa-
tion in gene interaction networks. In this dissertation, we choose the latter
approach as we think that the information available is sufficient to identify
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qualitative behavior of the biological system under study. Enabling such kinds
of approaches should further our understanding of key elements that dictate
the cell fate.

With an improved understanding of gene regulation processes, modeling
efforts are increasingly being used for generating the hypotheses that are then
tested with experiments. This is gradually changing the outlook towards mod-
eling that was traditionally seen as a platform to communicate experimental
outcomes. The same can be observed with respect to modeling GRNs. Quali-
tative modeling of GRNs has been a research interest to theoretical biologists
for at least last three decades [143, 131, 38, 148]. But most of the initial focus
of qualitative modeling was on studying theoretical properties of the dynamical
nature of GRNs rather than developing computational methods for modeling
large GRNs. However in the last decade, a need for efficient computational
tools for qualitative modeling of GRNs has been felt so as to understand the
experimental data in the context of the dynamical behavior of a cell and gen-
erate hypotheses with the assistance of computational tools [117, 36, 119, 106].
A detailed literature survey on qualitative modeling of GRNs is being deferred
to Chapter 2 where we first introduce some background principles helpful in
understanding different modeling methodologies.

1.2 Contributions

The main focus of this research has been on providing computational tools
to biologists that can be used for modeling novel hypotheses, such as drug
response and gene mutations, purely based on prior knowledge available in the
literature about the specific biological system. The models proposed are able
to capture complex processes, such as cellular differentiation, growth and apop-
tosis, based on qualitative knowledge such as gene-protein or protein-protein
interactions. This dissertation specifically makes the following contributions:

• A common mathematical framework for Boolean, multiple-valued and
stochastic simulations of GRNs has been developed showing the appli-
cation on some well-studied biological systems such as T-helper cell dif-
ferentiation and flowering of Arabidopsis thaliana.

• Algorithms and computational models have been proposed for efficient
discrete modeling of GRNs. Algorithms are based on implicit represen-
tation and traversal techniques using Reduced Order Binary Decision
Diagrams (ROBDDs) and Algebraic Decision Diagrams (ADDs). Im-
plicit representation and traversal methods facilitate modeling of GRNs
with over hundreds of nodes.

• A GRN for modeling interactions among the key players in cancer path-
ways has been developed. The GRN is able to capture the balance be-
tween cell growth and cell apoptosis in the presence of various known



4 Introduction

gene mutations in cancer cells and identify drug targets for cancer ther-
apies.

• Algorithms proposed in this thesis are implemented under a common
modeling toolbox, genYsis. The toolbox genYsis has been made avail-
able to the research community in the public domain. The software
requires no knowledge about the underlying computational methods and
facilitates easy-to-use interface for biologists.

1.3 Assumptions and limitations

The strongest assumption in this work is on the discrete nature of gene (or
protein) regulation. Biological entities are known to evolve in a continuous
manner. For example, protein concentrations inside a cell cannot increase in
abrupt-short pulses but rather changes uniformly with time. On the other
hand, the assumption on discrete regulation of gene or protein expression also
serves as a focal point of this research as modeling can be done based on
pure qualitative knowledge about interaction between genes or proteins (that
is widely available from the existing experimental methodologies).

A second assumption has been made on the availability of prior knowl-
edge on gene-gene, gene-protein and protein-protein interactions. Algorithms
proposed in this thesis start with a basic configuration of GRNs, that are in
practice, constructed either from the literature or inferred from experimental
data (by data mining and machine learning approaches). Automated con-
struction of GRNs is the research focus of a dedicated field of data mining and
machine learning. However, this assumption should not be seen as a limita-
tion as algorithms proposed in this thesis are mainly aimed at providing ways
to simulate GRNs and can be used for the analysis and evaluation of GRNs
resulting from data mining and machine learning approaches.

1.4 Thesis organisation

This thesis is divided into four parts. In the first part of the thesis, we outline
the background knowledge that is required for understanding the rest of the
thesis. The second part of the thesis deals with deterministic Boolean and
multi-valued modeling of GRNs. The third part of the thesis extends the
algorithms developed for Boolean models to stochastic modeling of GRNs.
Finally, in the last part of the thesis, we show the applications of the algorithms
developed in this thesis by performing a case study on a GRN that models the
delicate balance between cellular growth and apoptosis in a healthy cell vs. a
cancer cell.

Chapter 2 gives a background on GRNs, modeling methodologies in sys-
tems biology, relevant past work on Boolean modeling and an introduction to
Binary Decision Diagrams.
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Chapters 3 introduces Boolean formulation of GRNs in detail and presents
algorithms for modeling the dynamics of GRNs. Mathematical formulation
proposed in this chapter is used as a basis for the remaining chapters.

Chapter 4 extends the Boolean formalism for modeling multiple-valued
expression in GRNs. A sigmoid-function based method for generating mul-
tiple valued transition rules has been introduced and a methodology for the
combined discrete and continuous simulations of GRNs has been discussed.

Chapter 5 highlights the non-deterministic nature of GRNs due to the
presence of multiple alternative biological explanations for the same physio-
logical behavior. Boolean formalism and algorithms proposed in Chapter 3 are
extended to probabilistic Boolean networks (PBNs) that have been proposed
in the past for non-deterministic modeling of GRNs.

Chapter 6 introduces a new methodology for modeling stochasticity due
to malfunctioning of biological phenomena underlying GRNs. Algorithms from
Chapter 3 are extended to stochastic Boolean functions and it has been shown
that the new stochastic model can give more biologically practical results than
a more widely used stochastic modeling technique.

Chapter 7 presents a case study on the GRN that models a balance be-
tween growth and apoptosis signals in a cell, highlighting a practical appli-
cation of algorithms proposed in the thesis. GRN mapping the key proteins
involved in unregulated growth of cells leading to their cancerous behaviour
has been constructed in this chapter.

Chapter 8 concludes the dissertation by giving a more detailed contribu-
tion of this research and highlights some possible extensions of this work in
other areas of biology such as synthetic biology.
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In this chapter we give a background material helpful for understanding the
algorithms and methods proposed subsequently in this thesis. We start with an
introduction to cellular organisation, intra-cellular signaling components and
their corresponding representation using GRNs. Then Sections 2.2 and and
2.3 introduces commonly used modeling methodologies for GRNs. Section 2.4,
gives a small introduction to Boolean algebra and ROBDDs, which forms a
core of most of the algorithms proposed in the thesis. Finally Section 2.5, gives
an overview of relevant work on discrete modeling of GRNs.

2.1 Biological principles

2.1.1 Cellular organisation

Cells consist of various organelles (such as mitochondria, chloroplast and nu-
cleus). Based on the intra-cellular organisation of these organelles, living or-
ganisms can be divided into two categories, namely : prokaryotes and eukary-
otes. Prokaryotes are single-celled organisms, and their cell lacks a nucleus.
Eukaryotes can be both single-celled or multi-celled organisms; their cells are
organised into a more complex configuration and contains a nucleus. Figure 2.1
displays the organisation of a eukaryote cell. A short explanation on function-
alities of the different subunits is given below. A more detailed explanation
can be found in [16, 118]

Plasma membrane: Plasma membrane (or cell membrane) is a semi-perme-
able bilayer that acts as an interface between the sub-cellular components
and the outside environment. Proteins embedded into the membrane act as
a communication channel by either allowing few specific molecules to pass

7



8 Background

Cytoplasm

Plasma
Membrane

Nucleus

Chromatin

Mitochondria

Figure 2.1: Cellular organisation [118].

through the membrane or by acting as a binding site (both intra-cellular and
extra-cellular) for some other molecules.

Nucleus: Nucleus is the regulatory center of the cell. It contains all the
genetic information organised as chromatin structures. It has a nucleur mem-
brane with protein embedded pores that acts as a gateway for different molecules
to enter the nucleus and regulate chromatin structures.

Chromatin: Chromatin is the condensed structure formed by the combina-
tion of DNA, RNA and proteins. DNA encodes the genetic information as a
sequence of nucleotide base pairs: adenine (A), guanine (G), cytosine (C), and
thymine (T). Small fragments of the DNA sequence, that encodes a protein
are called genes.

Cytoplasm: Cytoplasm is the liquid material composed of salts, nutrients,
enzymes (proteins) etc. It broadly defines the space between the nucleus and
the plasma membrane in a cell.

Mitochondria: Mitochondria are the bilayer organelles floating inside the
cytoplasm. Their main task is to serve the energy requirements of the cell by
releasing ATP (adenosine triphosphate) which is the cellular energy storage
molecule. Mitochondria also have their own DNA (termed as mDNA) and can
also participate in various other sub-cellular processes including cell-growth
and cell death.
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2.1.2 Cellular signaling

A cell is the smallest self-sustaining functional unit of living organisms being
able to respond to the environment by sensing external signals at its surface
and propagating these signals within the surface by functionally activating
various sub-cellular proteins. Even though cells can sense a wide variety of
environmental signals, mechanisms by which a protein propagates these signals
form a very small set and can be categorised into one of the following five types:
receptors, kinases, phosphatases, scaffolds and transcription factors [95].

Receptors: A receptor is a protein molecule which acts as a binding site for
the freely moving signaling molecules either inside or outside the cell mem-
brane. The binding molecule is called a ligand. Receptors propagate signals
by undergoing conformal changes after binding to a ligand.

Kinases: Kinase proteins can transmit signals by adding a phosphate (PO4)
group to the destination protein. The destination protein is said to become
phosphorylated on coming in contact with an active kinase. Phosphorylation
causes change in the shape of the target protein leading to either activation or
deactivation of its functionality.

Phosphatases: Phosphatases have the reverse functionality of a kinase.
They act by removing the phosphate group from the target protein. Simi-
lar to kinases, phosphatases can both activate or inhibit the target protein
functionality. The target protein is said to become de-phosphorylated on inter-
acting with phosphatase proteins.

Scaffolds: Scaffold proteins acts as a platform for bringing together (and
assembling) two or more proteins. The assembled complex works by either
activating one of the partner proteins or by regulating the activity of a down-
stream protein.

Transcription factors: Transcription factors assist in DNA transcription.
They normally reside outside the nucleus and trans-locate to the nucleus on
getting activated by another protein. Once inside the nucleus they bind to
the promoter region of the protein coding region of the DNA and start the
transcription process. Transcribed DNA (called mRNA) trans-locates outside
the nucleus and undergoes translation leading to production of protein.

From the above classification, it is evident that even if a protein is always
present inside a cell, it may not be in its functional (or activated) form and
can exert its biological functionality only when it gets activated by one or
more mechanisms listed above. The next section gives an abstraction of these
signaling mechanisms as a GRN.
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Figure 2.2: (a) A Gene Regulatory Network (GRN). (b) A resting cell state. (c)-(e)
Cellular signaling in response to input stimuli.

2.1.3 Gene regulatory networks

A protein that activates (or inhibits) the functionality of another protein is said
to interact with the target protein by an activating (or an inhibiting) mech-
anism. A graphical representation where the nodes of the graph represents
the functional form of proteins and directed edges represent the activation (or
inhibition) mechanism is commonly referred to as a gene regulatory network
(GRN). A small synthetic GRN is represented in Figure 2.2(a), where acti-
vating edges are represented by arrow-headed lines and inhibiting edges are
represented by circle-headed lines.

Biological phenomena underlying different interactions in the GRN of Fig-
ure 2.2(a) are shown in Figures 2.2(b)-2.2(e). Figure 2.2(b) represents the cell
state in the absence of any input stimuli. When an input stimuli is sensed at
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Figure 2.3: Different modeling techniques for simulating GRNs categorised on the basis
of their complexity and the complexity of the systems they can be modeled [adapted
from [125]].

a surface receptor (Figure 2.2(c)), proteins A and C get dissociated from the
membrane and get phosphorylated. In the next time instance (Figure 2.2(d)),
phosphorylated A and C can transcriptionally express protein B and A respec-
tively. This is represented in the GRN by activating edges from A-to-B and
C-to-A. Finally (in Figure 2.2(d)), expression of protein B de-phosphorylates
A and C leading to loss of their functionality. This mechanism is represented
by inhibiting edges from B-to-A and B-to-C.

The GRNs, such as the one in Figure 2.2(a), summarises known interac-
tions among a set of proteins that participate in a given biological phenomenon.
Such a GRN represents a dynamical system where a node changes its value
over time depending upon the state of the neighbouring nodes in the network.
By modeling these GRNs as a dynamical system one can capture some as-
pects of cellular dynamics. The next section summarises some of the modeling
techniques that are widely used for studying GRNs in Systems biology.

2.2 Modeling techniques

The GRN modeling techniques can be broadly categorised into continuous and
discrete approaches. Figure 2.3 summarizes advantages and disadvantages of
these two modeling approaches. In this section we first explain, with the help
of a small example, the two modeling approaches. Then in the end, we compare
and contrast advantages and disadvantages of both the modeling approaches.

2.2.1 Continuous modeling

Continuous models (or Kinetic models) such as ordinary differential equations
(ODEs) and partial differential equations (PDEs) are used for modeling the
continuous evolution of the concentration of proteins in a GRN. These models
use parameters such as rate constant of chemical reactions, membrane diffu-
sion constants and protein degradation rates to simulate the kinetics of the
system. An ODE formulation of the GRN in Figure 2.2(a) is explained in
Example 2.2.1.
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Rate Constants Initial Conditions

ks,a 0.6 S0 5
ks,c 0.6 A0 5
ka,b 0.8 AP

0 0
kb,a 0.5 B0 0
kb,c 0.5 C0 5
kc,a 0.2 CP

0 0

Table 2.1: Parameters used in ODE.

Example 2.2.1 Interactions among the nodes in the GRN of Figure 2.2(a)
can be specified in further details by using the following set of chemical
reactions, where AP and CP stands for the phosphorylated form of A and
C respectively:

A + S −→ AP (2.1)

C + S −→ CP (2.2)

AP −→ B (2.3)

AP + B −→ A (2.4)

CP + B −→ C (2.5)

CP −→ A (2.6)

If the concentration of proteins A, AP , B, C, CP and the input stimuli
S are given by xa, xap , xB, xC , xcp and xS respectively, then the rate of
evolution of these proteins can be specified by using the set of coupled ODEs
in Equation 2.7. Parameter k’s in Equation 2.7 represents the rate constants
of different interactions in the GRN and are specified as in Table 2.1.




dxs

dt

dxa

dt

dxap

dt

dxb

dt

dxc

dt

dxcp

dt




=




0 0 0 0 0 0

−ks,a 0 0 kc,a 2kb,a 0

ks,a 0 −ka,b 0 −kb,a 0

0 0 ka,b 0 −kb,a−kb,c

0 −ks,c 0 0 0 2kb,c

0 ks,c 0 −kc,a 0 −kb,c




·




xs · xa

xs · xc

xap

xcp

xap · xb

xcp · xb




(2.7)

Given the initial concentrations of these proteins as in Table 2.1, Figure 2.4
gives the simulation results for the ODE’s of the small synthetic network.
As one can see from the simulation results, protein concentration stabilises
over time. The stabilised concentration of proteins reflect the steady state
of the GRN.¥

Kinetic models have been applied successfully in the past for modeling
various GRNs [17, 91, 141]. However, their applications have been restricted
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Figure 2.4: Dynamic simulation of the ODE formulation of the GRN in Fig-
ure 2.2(a).

to only small well studied GRNs due to the fact that kinetic parameters are
not known for most of the interactions in a GRN. Kinetic parameters for
all the gene-gene or gene-protein interactions in a GRN are rarely available
from the literature and experimentally measuring these parameters is currently
infeasible using the available experimental techniques.

2.2.2 Discrete modeling

In the discrete modeling of GRNs, a node can take only discrete expression
values, unlike the continuous range of values that are possible in kinetic models.
In the most restrictive case, a node exists in only two expression states to
represent active and inactive gene (or protein) represented by Boolean 1 and 0
respectively. In Boolean models, an inhibiting edge can change the expression
of the node from 1-to-0 and an activating edge can change the state from 0-to-1
(only when no inhibition is present). A snapshot of the activity level of all the
nodes in the GRN at a given time instance is called the state of the network.

Example 2.2.2 For the GRN in Figure 2.2(a), the network can exist in one
of the states shown in Figure 2.5 and can make a transition from one state to
another state based on the Boolean functions defined in Equations 2.8-2.10,
where the symbols ∧ and ¬ stands for Boolean AND and NOT respectively.

xa = xc ∧ ¬xb (2.8)

xb = xa (2.9)

xc = ¬xb (2.10)
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Figure 2.5: State Transition Diagram corresponding to Boolean model of GRN
in Figure 2.2(a). Every vertex represents a state of the network as defined by the
expression of proteins A, B and C.

A cycle formed by the set of network states {000, 001, 101, 111, 010} is called
a dynamical attractor. There can be 2N network states if there are N nodes
in the GRN. Exponential state space of Boolean models of a GRN, makes
this modeling technique both computationally and memory intensive. ¥

In Boolean modeling, kinetic parameters are not required to define inter-
actions between the genes (or proteins). However, such a simplification comes
at the cost of discretization of the gene expression (or protein concentrations)
to only two expression levels, namely: present or absent. Nevertheless Boolean
modeling can efficiently capture the required dynamics of a GRN and has been
successfully applied in the past to model various biological phenomena such
as cellular differentiation and embryo development [114, 37, 75, 41].

Boolean modeling of GRNs can be extended to more than two levels of
discretization, e.g. low, medium and high. With multiple valued modeling, it is
possible to model a scenario where multiple interactions acting on a single gene
(or protein) may have relatively different effectiveness in activating the target.
However, the computational complexity of the model increases as the number
of discretization levels are increased and also more experimental information is
required to describe the rules for transitions among different activation levels.

2.2.3 Model complexity vs. System complexity

As we have seen from the description of continuous and discrete models above,
one needs a significantly more detailed information about the gene-gene, gene-
protein or protein-protein interactions in the continuous models as compared
to discrete models. This makes the continuous models such as ODEs more
complex to build than the discrete models such as Boolean networks. Model
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complexity along with the availability of experimental data determines the
complexity of biological phenomena (or the system complexity) that can be
simulated using that model. While the largest systems that have been suc-
cessfully modeled using ODEs had at most twenty nodes in a GRN, Boolean
modeling has been applied on GRNs with over hundreds of nodes.

2.2.4 Quantitative vs. Qualitative

Applications of continuous and discrete models also depends upon the desired
output from the modeling effort. Kinetic models are more suitable for modeling
the quantitative aspects such as to measure the concentration of drug required
for a desired cellular response or to measure the amount of protein produced.
Whereas, Boolean models are useful in studying the qualitative aspects of a
biological phenomena such as what are the active proteins in a steady state
or how the steady state proteins activity changes on gene knock-down and
over-expression.

In practice, no single modeling technique can capture all aspects of a bi-
ological phenomenon and multiple methods are often used during different
phases of hypothesis generation and testing.

2.3 Non-determinism in GRNs

The process of gene activation (or inhibition) is a complex mechanism that
involves binding of one or more transcription factors, transcription of DNA
into mRNA and translation of mRNA into protein. All these stages of gene
activation involve some amount of stochasticity. The level of stochasticity
induced depends upon the complexity of the binding mechanism, length of
the protein coding regions, concentration of transcription factors and various
other factors. Experimentally, gene regulation processes have been shown to be
inherently stochastic [62, 2, 113, 111, 87, 130]. In the presence of stochasticity,
a gene may not get expressed even in the presence of required transcription
factors, leading to stochastic fluctuations in the states of the GRN. These
stochastic fluctuations may cause the dynamics of identical cells to behave
differently in the same environmental conditions.

2.3.1 Modeling stochasticity in continuous models

Traditionally, the stochasticity in GRNs is modeled as associated to the con-
centration of the reacting species. At low concentrations of reacting species,
the probability of two molecules undergoing a biochemical reaction decreases,
thereby adding a stochastic effect on the reaction product concentration. This
approach of noisy gene regulation can be efficiently simulated in continuous
modeling approaches by using chemical master equations (CMEs) and Gille-
spie’s algorithm [33, 34, 22, 24, 26].
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Algorithm 1: Gillespie’s algorithm.

GILLESPIE(Tmax,x0,∆, hr)1

begin2

x←− x03

t = 04

while true do5

draw T ∼ Expo(
∑

r hr(x))6

t = t + T7

if t > Tmax then8

break9

draw R in set of reactions according to probability distribution10

P{R = r0} =
hr0

(x)
P

r
hr(x)11

x←− x + ∆R12

return x13

end14

Gillespie’s algorithm in its most basic form is described by Algorithm 1.
In this algorithm, hr defines the rate of each reaction r, Tmax is the amount
of time for which the simulation is required, x0 is the initial concentration of
proteins (or reactants) in terms of number of molecules and ∆ represents the
amount by which the reactant concentration changes at a specific time step. In
Line 5, the next time instance when some reaction takes place is selected. This
time step is drawn from an exponential distribution defined by the sum of rates
of all the reactions. Then, the reaction which will occur at this time instance
is selected in Line 11. The reactant concentrations are updated according to
given ∆ and the steps are iterated until the simulation time exceeds Tmax.
For a detailed reading on Gillespie’s algorithm and CME’s, one is referred to
[33, 34, 79].

Example 2.3.1 The discrete stochastic simulation using the Gillespie’s al-
gorithm for the set of reactions introduced in Example 2.2.1, is as shown in
Figure 2.6. For this simulation, the same rate constants and initial concen-
trations were used as in Example 2.2.1 and ∆ was taken as 0.1. The rate of
reactions hr are given by:

A + S
ks,a·xs·xa
−→ AP (2.11)

C + S
ks,c·xs·xc
−→ CP (2.12)

AP ka,b·xap

−→ B (2.13)

AP + B
kb,a·xap ·xb
−→ A (2.14)

CP + B
kb,c·xcp ·xb
−→ C (2.15)

CP kc,s·xcp

−→ A (2.16)

As one can see from Figure 2.6, the protein concentration changes discretely
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Figure 2.6: Dynamic stochastic simulation using Gillespie’s algorithm for the GRN in
Figure 2.2(a).

over time and stabilises at almost the similar concentrations as by using the
non-stochastic simulations in Figure 2.4. ¥

Just like continuous modeling of GRNs, stochastic modeling using Gille-
spie’s algorithms requires that all the kinetic rate constants are known a priori.
This requirement restricts its application to only small well studied networks.

2.3.2 Modeling stochasticity in discrete models

To simulate the stochastic effects due to low concentrations of reacting species
in Boolean models, methods are proposed in the literature where the nodes
in the GRN are flipped from 0 to 1 or vice versa with some predefined flip
probability [14, 90, 39, 114]. With this model of generating stochasticity in
Boolean models, differentiation into multiple steady states can be simulated.
This model of stochasticity is referred to by the term Stochasticity in Nodes
(or SIN) in this dissertation. Unlike the CME approach, the SIN model of
stochasticity does not take into consideration the correlation between the ex-
pression values of reacting species and the probability of flipping the expression
of a node due to noise. Further, the SIN approach models the stochasticity
at a node regardless of the susceptibility to stochasticity of the underlying
biological function that leads to its activation.

Example 2.3.2 If every node in the GRN in Figure 2.2(a) can flip with
a probability 0.5, then the state transition diagram of Figure 2.5 will have
few extra edges showing the possible transitions under stochasticity and a
probability will be associated with all the edges. For example, Figure 2.7
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Figure 2.7: State Transition Diagram corresponding to Boolean model of GRN in
Figure 2.2(a).

shows the possible next states of the state 011 in the presence of stochasticity.
¥

2.4 Boolean algebra and implicit methods

In this section, we give a short introduction to Boolean algebra, finite state
machines and their implicit representation and traversal using BDDs. This
section aims at giving an overview of the concepts required for the self suf-
ficiency of this dissertation. For a detailed introduction to Boolean algebra,
finite state machines and BDDs, a reader is referred to [133, 63, 64, 46, 155].
Here, we adapt the formalism and terminology introduced by De Micheli in
[46].

2.4.1 Boolean algebra

A Boolean algebra is defined by the set B = {0, 1} and by two operands ∨
and ∧ representing the disjunction and conjunction (often referred to as sum
and product or OR and AND). Traditionally, Boolean values 0 and 1 are often
referred to as false and true respectively.

The multi-dimensional space spanned by n binary-valued Boolean variables
is denoted by Bn. Every point in this space is defined by a binary vector
of dimension n. Every dimension of the space is said to be represented by
a Boolean variable. A literal is defined as an instance of a variable or its
complement. Product of literals is called a cube. The complement of a Boolean
variable a has one of the following representations: a, ¬a or a′.

A completely specified Boolean function is a mapping between Boolean
spaces. An n-input and m-output function is a mapping f : Bn → Bm.
In a completely specified function every input Boolean vector maps to a sin-
gle output Boolean vector. In an incompletely specified Boolean function, an
input vector can map to more than one output vector and is represented by
f : Bn → {0, 1,−}m, where the symbol “-” denotes a don’t care condition and
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can take values in both 0 and 1. Any function can be either expressed as a
sum of product of n literals or as a product of sum of n literals.

Definition 1 The cofactor of Boolean function f(x1, x2, ..., xn) with respect to
variable xi is fxi

= f(x1, x2, ..., xi−1, 1, ..., xn) and with respect to variable x′
i is

fx′
i
= f(x1, x2, ..., xi−1, 0, ..., xn).

The cofactor fxi
is also referred to as a positive cofactor and fx′

i
as a negative

cofactor.

Definition 2 The Boolean difference of a Boolean function f(x1, x2, ..., xn)
with respect to variable xi is defined as ∂f

∂xi
= fxi

⊕ fx′
i
= fxi

f ′
x′

i
+ f ′

xi
fx′

i
.

The Boolean difference fxi
indicates whether the function f is sensitive to

changes in input xi. When it is zero the function does not depend on the
variable xi.

Definition 3 The smoothing or existential quantification of a Boolean func-
tion f(x1, x2, ..., xn) with respect to variable xi is defined as ∃xi

f = fxi
+ fx′

i
.

The smoothing (or existential quantification) of a function with respect
to a variable amounts to deleting all appearances of that variable from the
function.

Definition 4 The consensus or universal quantification of a Boolean function
f(x1, x2, ..., xn) with respect to variable xi is defined as ∀xi

f = fxi
· fx′

i
.

The consensus (or universal quantification) of a function with respect to
a variable represents the components of the function that are independent of
that variable.

Definition 5 The logic equivalence function ↔ over two Boolean variables a

and b is defined as a ↔ b = a ⊕ b = ab + ab, where a and b represent the
complement of variables a and b.

A function f = a↔ b is true if and only if either both a and b are true or
both a and b are false. In other words, the variable a is said to take the value
defined by the variable b.

2.4.2 Finite state machines

A finite state machine (FSM) is defined by a 6-tuple (X,Y, S, δ, λ, s0), where
X is the set of input patterns, Y is the set of output patterns, S is the set of
states, δ : X × S → S is the state transition function, λ : X × S → Y is the
output function and s0 is the initial state (or the reset state). Based on the
output function λ, FSMs can be classified into Mealy or Moore machines. In
a Moore FSM, output function does not depend upon the input patterns, i.e.
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Figure 2.8: (a) State transition table representation of a FSM. (b) Corresponding
state transition graph. (c) Structural representation of FSM.

λ : S → Y . In a Mealy FSM, output depends upon both the current state and
the input pattern, i.e. λ : X × S → Y .

An FSM can have either a behavioural or a structural representation. A
behavioral representation of an FSM can be either using a state transition
table (such as the one in Figure 2.8(a)) or as a state transition graph (see
Figure 2.8(b)). The structural representation of an FSM is given by a com-
binational logic and a set of registers (to store the state variables) as in Fig-
ure 2.8(c). The behavioral description of an FSM explicitly represents all the
states of the machine and their possible transitions. Therefore, explicit repre-
sentation of FSMs is possible only for small state space. On the other hand,
in the structural representation, the state transition function δ is implicitly
represented by a Boolean function.

2.4.3 Binary decision diagrams

A binary decision diagram (BDD) [133] is a rooted directed acyclic graph
with two terminal nodes labeled 0 or 1 (representing false and true values
respectively), and a set of intermediate nodes with out-degree two. Each in-
termediate node is labeled with a binary variable name and the two outgoing
edges represent variable evaluation to 0 and 1. The path from the root to the
leaf node 1 gives the variable assignment that makes the function evaluates to
true. A sample BDD corresponding to the function f : c↔ (a ∧ ¬b) is shown
in Figure 2.9(a).

A BDD is ordered (OBDD) if all the paths from the root to the leaf nodes
have a same linear order of variables x1 < x2 < .... < xn. An OBDD corre-
sponding to BDD in Figure 2.9(a) with the variable order a < b < c is shown
in Figure 2.9(b).

An OBDD is a reduced ordered BDD (ROBDD) if no two nodes in the
graph have the same sub-graph and no node has a 1-successor similar to its 0-
successor. ROBDD corresponding to OBDD in Figure 2.9(b) with the variable
order a < b < c is shown in Figure 2.10. ROBDDs gives an advantage over
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Figure 2.9: (a) BDD corresponding to Boolean function f : c ↔ (a ∧ ¬b). (b)
Corresponding OBDD with the variable order a < b < c.
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Figure 2.10: An ROBDD corresponding to Boolean function f : c ↔ (a ∧ ¬b) with
the variable order a < b < c.

BDDs due to their following two characteristics :

• ROBDDs are more efficient than BDDs as redundant nodes are elimi-
nated.

• For a given variable order, an ROBDD is a canonical representation of a
Boolean function.

ROBDD representation can be space efficient for most Boolean functions
and Boolean operations like AND, OR, existential quantification (i.e. ∃) and
universal quantification (i.e. ∀) can be performed in time that has a polynomial
complexity [63] with the number of ROBDD nodes. In a worst case scenario
number of nodes in a ROBDD can grow exponentially with the problem size
(i.e. number of variables). However, in practice it has been seen that the
number of nodes in a ROBDD grows mildly with the problem size for most
practical cases. Any Boolean function can be represented using ROBDDs.
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Figure 2.11: An ROBDD construction from a Boolean function.

Figure 2.11, demonstrates an example of how a complex Boolean function
(represented as a combinational digital circuit) can be mapped into a ROBDD.

In Figure 2.11, if the variable at+1 is assigned to the input a at the next
time step (and same for b), then the input-output activity of the circuit can
be seen as an FSM in Figure 2.12(a). Since the state transition function is
defined by a Boolean function, the FSM behavior can also be represented
using ROBDDs. The corresponding ROBDD for the FSM in Figure 2.12(a) is
shown in Figure 2.12(c). The corresponding state transition diagram is shown
in Figure 2.12(b). The number of states in a state transition diagram can
grow exponentially with the number of state variables. ROBDDs serves as an
efficient way to represent all state transitions and can be constructed from the
FSMs without explicit enumeration of all states. ROBDD representation of the
FSM is also called an implicit representation of the state transition function
and is very suitable for reachability analysis on the state space.

2.4.4 Reachability analysis

Given an initial state s0 of the FSM (X,Y, S, δ, λ, s0), the set of next states
under the state transition function δ is called the image of the state s0 (repre-
sented by Iδ(s0)). By iteratively computing the image one can list all the pos-
sible reachable states from an initial state. The computed reachable states can
be subjected to further analysis such as testing for undesirable output state,
oscillating behavior etc. Such reachability computation and analysis can be
efficiently performed on the ROBDD representation. The image of a state can
be determined by following paths from the root node to the 1-terminal node
in the corresponding ROBDD.

Example 2.4.1 Given an initial state 00 (i.e. a = 0 and b = 0), following
the left-most path in the ROBDD of Figure 2.12(c) one can quickly discover
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Figure 2.12: (a) A finite state machine. (a) Corresponding state transition diagram.
(b) ROBDD representation of the state transition diagram.

that the next states belong to the set of states {10, 11, 00}. The image of
the state I0 = 00 (or the states reachable from I0 in one step) is given by
the set RS1 = {10, 11, 00}. ¥

Many problems in digital system design, combinatorial optimization, arti-
ficial intelligence, cryptography can be formulated in terms of operations over
Boolean functions. ROBDDs have been effectively applied on a range of prob-
lems in these domains. In this thesis, we explore the applications of ROBDDs
for implicit modeling and representation of GRNs.

2.4.5 Discrete functions and ADDs

Given a set V of discrete real numbers, an n-input and m-output discrete
function f : V n → V m is a mapping from the finite space V n to the space
defined by V m. In this dissertation, we are only interested in discrete functions
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with Boolean inputs and outputs defined by a set of finite real numbers, i.e.
f : Bn → V m.

Discrete functions with real numbers as outputs can be represented by
an extension of ROBDDs called algebraic decision diagrams (ADDs) [135, 44].
Unlike ROBDDs, the leaf nodes in ADDs can take the values in the set defined
by V . For example, ADD for the discrete function f = 5 ·c ·a ·b+3 ·c ·a+2 ·c ·b
is as shown in Figure 2.13(a)

Boolean existential quantification ∃x can be generalised to arithmetic ex-
istential quantification \op

x for an arithmetic operation op such as +, −, ×,
Max and Min. We will only require arithmetic existential quantification with
respect to the sum operator (i.e. +) and the Max operator in this dissertation.
These operators are defined as in Equations 2.17 and 2.18.

\+x f(x, y) =
∑

x

f(x, y) (2.17)

\Max
x f(x) = max

x
f(x) (2.18)

In ADD representation, \+x corresponds to removing the BDD nodes corre-
sponding to variable x and merging its subgraphs. Conversely, \Max

x corre-
sponds to selecting the leaf node with the largest value.

Example 2.4.2 Given the discrete function f = 5 · c · a · b+3 · c · a+2 · c · b,
\+b f(a, b, c) is given by :

\+b f(a, b, c) =
∑

b

f(a, b, c) (2.19)

= fb=0 + fb=1 (2.20)

= {5 · c · a + 3 · c · a}+ {3 · c · a + 2 · c} (2.21)

= 5 · c · a + 8 · c · a + 2 · c · a (2.22)

The ADD corresponding to \+b f(a, b, c) is shown in Figure 2.13(b). The
operator \Max

a,b,c f(a, b, c) will return 5 (i.e. the leaf with the largest value in
the ADD of Figure 2.13(a)). ¥

.

2.5 Previous work

Boolean modeling of GRNs has been addressed quite extensively in the past.
However, most of the formalisms of Boolean models either required enumer-
ation of states in some form or they were not suitable for common modeling
framework for both deterministic and stochastic modeling of GRNs. The past
work on Boolean modeling can be well explained by charting the history of its
progress in the last few decades.
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Figure 2.13: (a) ADD corresponding to Boolean function f = 5·c·a·b+3·c·a+2·c·b.
(b) ADD corresponding to \+b f(a, b, c).

2.5.1 Explicit enumeration based approaches

Boolean networks for modeling GRNs were first introduced by Kauffman [143]
for qualitative analysis of cellular differentiation. Most of the early work on
Boolean modeling was targeted at theoretical analysis of GRNs, such as the
size and number of attractors with respect to the number of Boolean functions
for every node or the number of feedback loops in the GRN. All the initial
studies performed explicit enumeration of states in a network so as to identify
all steady states.

To avoid enumeration of all states, a concept of loop characteristic states
was introduced in [131, 38] by using the principle of generalized logic analy-
sis (GLA). The GLA was essentially a generalisation of Boolean-synchronous
transition models of Kauffman in [143] to discrete-asynchronous modeling. A
GLA model of GRN can be characterized by the following conditions :

1. States are updated asynchronously (i.e. only one node can change its
expression between two consecutive time steps).

2. Each node can have multiple levels of expression (i.e. 0, 1, 2...).

3. In the state transition diagram, nodes can have threshold values between
two consecutive expression states (i.e. xi = {0, θ1, 1, θ2, 2, ....}). States
involving only integer values (i.e. 0, 1, 2, ...) are called regular states (e.g.
00, 01, etc.), whereas states involving one or more threshold values are
called singular states (e.g. 0θ1, θ2θ1, etc.).

4. Logical parameters specify the rules of interactions (e.g., if a node i can
have three incoming edges from i, j and k; then Ki.i, Ki.ij , Ki.ijk specify
relationship between xi, xj and xk). These parameters can take the same
values as the corresponding variable xi.
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Figure 2.14: A small synthetic Gene Regulatory Network.

Table 2.2: State transition table for the GRN in Figure 2.14.

xa xb Xa Xb

0 0 K1,2 K2,.

0 1 K1,. K2,.

0 2 K1,. K2,2

1 0 K1,2 K2,1

1 1 K1,. K2,1

1 2 K1,. K2,12

Example 2.5.1 Let us consider a small GRN in Figure 2.14. Since, the
node A has only one outgoing edge, it is modeled at two logic levels: 0
and 1. The node B has two outgoing edges and therefore modeled at three
expression levels: 0, 1 and 2. The node B deactivates the node A at the
expression level 1 and activates itself at the expression level 2. The gener-
alised transition rules for the GRN in Figure 2.14 are then specified using
the logic Equations 2.23-2.24, where dx stands for discretisation of the real
values inside the brackets. The capital letters Xa and Xb stands for the value
of A and B at the next step and k’s are the real-valued parameters.

Xa = dx(k21 · xb) (2.23)

Xb = dx(k12 · xa + k22 · xb) (2.24)

In the above equations, Xa can take the values in the set {0, dx(k21) and Xb}
can take the values in the set {0, dx(k12), dx(2 · k22), dx(k12 + 2 · k22)}. These
different values are assigned generalised logical parameters {K1,., K1,2} for
the Xa and {K2,., K2,1, K2,2, K2,12} for the expression Xb. Following addi-
tional constraints are valid on the parameter K’s: K1,., K1,2 ∈ {0, 1} with
K1,. ≤ K1,2; K2,., K2,1, K2,2, K2,12 ∈ 0, 1, 2 with K2,. ≤ K2,1 ≤ K2,12 and
K2,. ≤ K2,2 ≤ K2,12. A set values can be assigned to the parameter K’s
such that the above constraints are satisfied. Additional biological reason-
ing, such as two transcription factors have to be simultaneously present to
activate a node, can be taken into consideration while selecting the parame-
ter K’s. The truth table representing the image of all possible states of the
GRN is given in Table 2.2. Depending upon the chosen parameter K’s, the
image values in the truth Table 2.2 can be different. ¥
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xa xb Xa Xb

0 0 1 0
0 1 0 0
0 2 0 2
1 0 1 1
1 1 0 1
1 2 0 2

Table 2.3: An instance of the State transition table for the GRN in Figure 2.14 with
the logical parameters specified in Example 2.5.3.

The characteristic state of a feedback loop is defined as the state for which
each variable of the loop is located at the threshold value, above which it is
active in the loop considered.

Example 2.5.2 In GRN of Figure 2.14, there is one negative cycle formed
by A and B and there is a positive self-loop on B. The loop characteristic
states for these two cycles are given by {θ1, θ1} and {−, θ2} respectively.
the value “-” implies that the node A can take any possible value in {0, 1}.
Therefore, the characteristic state {−, θ2} can give rise to two characteristic
states {0, θ2} and {1, θ2}. Now each of these three loop characteristic state
are checked for stability. ¥

It was been demonstrated by Snoussi and Thomas in 1993 [38] that:

1. Among the singular steady states of a system, only those which are loop
characteristic can be steady.

2. On the other hand, if a state is loop-characteristic there exists a combi-
nation of logical parameter values K’s, for which it is steady.

Example 2.5.3 For K1,. = 0, K1,2 = 1, K2,. = 0, K2,1 = 1, K2,2 = 2, K2,12 =
2, in Example 2.5.1, it can be shown that the loop characteristic states
{θ1, θ1} and {0, θ2} are stable while the loop characteristic state {1, θ2} is
not. The state {θ1, θ1} belongs to a negative cycle and hence presence of
this stable loop characteristic state indicates the presence of an attractor in
the state space. One can verify from the truth table in 2.3 that an attractor
is indeed formed by the states 00 → 10 → 11 → 01. On the other hand,
the {0, θ2} is part of a positive feedback loop and implies the presence of
multi-stationarity (i.e. multiple steady states). Indeed there are two steady
states in Table 2.3, one formed by the attractor and the other formed by a
regular steady state 02. ¥

With the above properties of loop characteristic states, it is no longer
required to enumerate all states in the system. One just need to enumerate
all the cycles in a GRN and check if the characteristic state of every cycle



28 Background

(and the combination of non-overlapping cycles) is a steady state. Hence,
GLA requires identification of all possible feedback loops (both positive and
negative) in a GRN. Enumerating all cycles in a graph can quickly run into
exponential complexity. Moreover, once a stable loop characteristic state has
been identified, it has to be expanded into an actual attractor. This will require
testing all the possible neighbours of the threshold values in the characteristic
state. For a large GRN, this enumeration of neighbouring states can quickly
run into exponential complexity, specially under the asynchronous transition
model where multiple next states can exist for a given state of the network.

2.5.2 Implicit enumeration based approaches

To avoid explicit enumeration of all cycles in a GRN, GLA was formalised
as a constraint satisfaction problem by Devloo et al [148], for the first time.
In this formalism, all the steady states of a system are found by solving a
system of logical equations. Constraint programming is used to solve the
discrete equations. The method described by Devloo allows for all steady
states to be found in much larger system that was previously possible. Systems
with hundreds or even thousands of components can be solved in reasonable
amounts of time. However, the method does not scale well for GRNs with
high in-degree and out-degree nodes. Further, the complexity involved in the
expansion of characteristic steady states into real attractors still remains an
issue in this approach.

A BDD-based approach has been proposed for identifying all steady states
using the GLA formalisation. GINSim extends the multiple terminal BDDs
(MTBDDs) to GLA approach [119]. However, this approach can only iden-
tify stable steady states and can not identify the cyclic attractors. Further,
GLA formalism, in general, is not suitable for modeling gene perturbation
experiments and the stochasticity in Boolean functions.

Another methodology based on model checking was proposed in the re-
cent past under the modeling toolbox BioCHAM [117]. BioCHAM can per-
form both Boolean and continuous (kinetic models) simulation of GRNs. For
Boolean simulations, BioCHAM uses a BDD based toolbox called NuSMV.
In BioCHAM, given an initial state, it can compute the steady state reach-
able from that state. As a result, to enumerate all steady states, initialisation
from all possible initial states is therefore necessary. Further, BioCHAM (and
NuSMV) does not have any support for probabilistic Boolean networks (PBNs)
and stochastic GRNs.

2.5.3 Petri Nets

An alternative formulation of Boolean networks has been proposed in terms of
Petri Nets [36]. Before the work in [36], Petri nets were used quite extensively
for modeling biochemical networks [151, 129, 110]. A Petri net representation
for a small GRN is shown in Figure 2.15. A Petri net has a set of places and
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Figure 2.15: (a) A synthetic GRN. (b) Petri net mapping for Boolean model corre-
sponding to GRN.

a set of transitions (represented by p’s and t’s respectively. Set of tokens in
places p’s represent a state of the GRN. For example, if there are tokens in
places {pa, pb̄, pc} then it represents the state 101. The transitions can fire
asynchronously when all the incoming edges to the transition have a token.
When a transition is fired, a token is transferred from all places connected to
the incoming edges to places attached to the outgoing edges.

Petri nets are more suitable for biochemical simulations as reactants and
metabolites consumption in chemical processes has a direct correspondence
with the transition of tokens in Petri nets. However, for Boolean modeling,
regulators are usually not consumed. Regulators have only activation and inhi-
bition states and a node once activated stays in active state until an inhibiting
edge is acting on it. With this extra constrain, Petri nets were extended to
Boolean and multi-valued models of GRNs for the first time in [36]. However,
Petri nets based computational tools for Boolean modeling of GRNs started
becoming available only with the toolbox GNaPN [106]. Petri net simulations
for steady state computations is a topic of research in itself for asynchronous
digital circuit synthesis and simulations [8, 5] and algorithms using ROBDDs
have been proposed in the context of verification of Petri net representation
of asynchronous circuits (including identification of steady states) [120].

2.5.4 Alternate formulation of GRNs in this thesis

In this thesis we look at an alternate formulation of GRNs based on Boolean
algebra and FSMs. Rather than performing analysis in terms of feedback
loops in a GRN, which may not be very intuitive in the presence of multiple
overlapping feedback loops, the proposed formalism models the dynamics of
a GRN as a single FSM. The GRNs are mapped directly onto their corre-
sponding Boolean function representation and the underlying Boolean state
space is implicitly represented and traversed using ROBDDs. Further, the
proposed formulation facilitates a common modeling framework for comput-
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ing the steady states, performing gene perturbation experiments and stochastic
simulations of GRNs.



Boolean Modeling 3
Availability of large amounts of experimental data suitable for inferring gene-
gene or protein-protein interactions has renewed interest in Qualitative mod-
eling of GRNs. Qualitative modeling can be used to study the dynamical
behavior of a set of genes (or proteins) purely based on the information (such
as degree of activation or inhibition of a gene or protein) and does not require
kinetic information that is still scarcely available. Boolean modeling (where a
node of a GRN can have only two activation states) and multiple-valued model-
ing (where nodes can take discrete levels of activation) are two such qualitative
modeling approaches that are currently being pursued actively. This chapter
introduces Boolean formulation of GRNs that is suitable for implicit model-
ing based on ROBDDs and proposes algorithms for computing steady states
and perform in silico gene perturbation experiments on a GRN. The Boolean
formulation proposed in this chapter is then extended to the multiple-valued
modeling of GRNs in Chapter 4.

3.1 Boolean mapping of GRNs

Edges in a GRN represent biological phenomena underlying the activation (or
inhibition) of the functional form of a gene (or protein). Almost all the under-
lying biological functionalities of a GRN can be represented by a combination
of Boolean functions (or logic gates) in the set {AND, OR, IAND, BUFF, NOT}.
Figure 3.1, gives a few instances of mapping between biological functional-
ities and its corresponding GRN and Boolean function representation. For
example in the 1st row of Figure 3.1, the blue protein looses its activity after
undergoing degradation by the green protein. This can be represented by a
NOT gate which shows negative influence of green protein on the blue protein.
Similarly, when a protein undergoes phosphorylation or de-phosphorylation on

31
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Multiple
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Figure 3.1: Boolean function mapping of biological phenomena in GRNs.

interacting with another protein, it can either loose its activity (1st row) or
gain its activity (2nd row). Hence, phosphorylation and de-phosphorylation
are categorised under both the NOT gate and the BUFF gate (which stands for
buffer). Scaffolding and a promoter-assisted gene transcription processes (in
the 3rd row), requires assembling of two or more proteins into multimolecular
complexes. This can be represented by an AND gate requiring simultaneous
presence of two or more inputs. If the presence of a protein has an inhibiting
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Figure 3.2: (a) A Gene Regulatory Network (GRN). (b) The GRN mapped to Boolean
functions (gates).

effect on another protein-protein interaction (e.g. phosphorylation blocked by
the presence of red protein in the 4th row) or gene-protein interaction (e.g.
transcription blocked by the red protein), then it can be represented by an
IAND gate. Finally, Boolean function OR represents a choice between alternate
biological mechanisms to activate or deactivate a protein. For example in the
5th row blue protein can be phosphorylated at two different sites by two differ-
ent proteins. Phosphorylation at any site can activate the blue protein. This
phenomena is captured by the OR gate. However, the OR gate in itself does not
have any biological meaning. The dual phosphorylation sites are captured by
two BUFF gates in the 5th row of Figure 3.1. It should be noted that the logic
gates {AND, OR, IAND} can have two or more inputs while {BUFF, NOT} are only
single input functions. With the mapping defined in Figure 3.1, a synthetic
GRN in Figure 3.2(a) can be translated into a logic gate representation as in
Figure 3.2(b).

3.1.1 Network states and steady states

In Boolean modeling of GRNs, a node can have only two expression states:
active and inactive. These expression states of a node are represented by 1 and
0 respectively. A snapshot of the activity level of all the nodes in the GRN
at time t is called the state of the network. The network can transition from
one state to another state as defined by the Boolean functions. Hence, a state
of the network evolves over time by making a transition into another state
until it stabilises into an attractor (or the steady state). Such an attractor
represents the long term behaviour of the genes/proteins in the regulatory
networks. Under the Boolean assumption, if there are N genes in a GRN, the
network can be in any of the 2N possible states. This exponential state space
makes the identification of attractors both a computationally and a memory
intensive task.
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Figure 3.3: Mapped GRN with registers showing the delay in expression of each output
node.

In biology, a state of the network corresponds to the measured activity of
all the genes (or proteins) in a cell at a given time instant and can be exper-
imentally measured using techniques such as flow-cytometery or microarray.
The state transition of a GRN biologically corresponds to the dynamic evo-
lution of the cell. With the existing experimental techniques it is difficult to
monitor all the state transitions inside a cell. However, steady state behavior,
which corresponds to the end point of an experiment when all cells stabilise, is
easier to measure experimentally. Attractors (or the steady states) of Boolean
models of GRNs have been shown to correspond to the cellular steady states
(or cellular phenotypes) in the past [143, 139].

3.1.2 Synchronous vs. Asynchronous:

In Figure 3.2(b), based on the activity of the nodes at the input at time t

(represented by At, Bt, ..., Et) and the corresponding Boolean functions for
every node, the activity of the node at the next time instance is given by
functions A(t+1), B(t+1) and so on. The underlying biological functions for
every node in the GRN will have a latency between the time input signal is
sensed and the time when the change in expression is produced at the output.
This latency of biological processes can be mapped to the latency of Boolean
functions in Figure 3.2(b). However, unlike in digital circuits where a logic
gate has a unique latency, in GRNs the same logic gate can have different
latency for different nodes depending upon factors such as length of protein
coding regions for the transcription process and location of phosphorylation
site. Further it is hard to experimentally measure the latency of each biological
function. In the absence of such an information, it is reasonable to model the
latency in the transition of expression of a node from 0-to-1 or vice versa rather
than the latency in each logic gate. Latency in the transition of expression can
be introduced by adding a register at each output node (see Figure 3.3). The
register stores the value of Boolean functions (e.g. A(t + 1), B(t + 1) etc) and
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updates the stored value with the new value at the time intervals given by TA,
TB, and so on for every node in the GRN.

Delay in transition introduces a notion of synchronicity and asynchronicity
in the dynamics of the GRN. If all the nodes update the value stored in their
output registers at the same time instance (i.e. TA = TB = ... = TE) then the
system is said to behave synchronously. Otherwise, the system behaves asyn-
chronously. Even though in theory register update times can be inferred from
kinetic rate parameters, this information is seldom available in practice. To
address this problem, the asynchronous models can be relaxed to fully asyn-
chronous model wherein all registers are assumed to have a different update
times (i.e. TA 6= TB 6= ... 6= TE). This assumption of asynchronous models can
also be viewed as frequent measurements such that only one gene (or protein)
can update its expression between two measurement steps. The assumption is
also biologically plausible as two unrelated biological events can rarely occur at
the exact same time instant. The relaxed formulation of asynchronous models
has been used quite often in the literature [131, 132]. Next section formally
introduces the synchronous and asynchronous Boolean modeling of GRNs.

3.2 Problem formulation

Given a GRN (such as in Figure 3.2(a)), expression of a node (or gene) i at time
t is represented by a Boolean variable xt

i. If xt
i = 0, the node i is inactive and

if xt
i = 1, the node is active. The state of the network at time t is represented

by a Boolean vector, xt, of size N (number of genes in the network) and is
referred to as a present state vector. Each bit of this vector (represented by
xt

i) represents whether the gene is active or inactive. Another Boolean vector,
xt+1, of size N is used to represent the state of the network in the next step
and is called the next state vector. The expression of each gene i at time t + 1
can be written as a function xi(t + 1) of the state of the genes acting as its
input at time t. Equations 3.1 and 3.2 can be used to compute the function
xi(t+1) and can be understood better with the help of Figure 3.2. In Equation
3.1, an activator (or an inhibitor) function f ac

xi
(t) (or f in

xi
(t)), represent the set

of genes that have a collective activating (or inhibiting) impact on the gene i.
Equations 3.1 and 3.2 can be also formed by composing Boolean gates as in
Figure 3.2(b).

xi(t + 1) =

(
n∨

l=1

fac
xi,l

(t)

)
∧ ¬

(
n∨

l=1

f in
xi,l

(t)

)
(3.1)

fac,in
xi,l

(t) =

(
p∧

j=1

x
t,ac
j

)
∧

(
p∧

j=1

¬xt,in
j

)
(3.2)
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xj ∈ {0, 1}

fac
xm

are the set of activator functions of xi

f in
xn

are the set of inhibitor functions of xi

xac
p are the set of activators of functions fxi

xin
q are the set of inhibitors of functions fxi

∧ , ∨ and ¬ represent Boolean AND , OR and NOT

Example 3.2.1 For the synthetic GRN in Figure 3.2, Boolean functions
describing the expression of nodes are given by the following equations :

xA(t + 1) = xt
B

xB(t + 1) =
(
xt

A ∧ xt
C

)
∨ xt

E

xC(t + 1) = ¬xt
D

xD(t + 1) = xt
B ∧ ¬x

t
C

xE(t + 1) = xt
A

Boolean variables xt
A, xt

B, xt
C and xt

D represent the expression of nodes A,
B, C and D respectively. ¥

Equations 3.1 and 3.2 represent the dynamics of individual genes indepen-
dent of the dynamics of the other genes in the network. To model the dynamics
of the complete network, one has to couple the dynamics of these genes. This
can be done by defining the transition function, T (xt,xt+1), of the state of
the network. Function T (xt,xt+1) represents the transition from the present
state xt to the next state xt+1. Transition functions T (xt,xt+1), can be differ-
ent depending upon synchronous or asynchronous dynamics model (as will be
described in the next section).

3.2.1 Synchronous model

If the transition function is synchronous, expression of all genes is updated at
the same time. A synchronous model can be described by the following set of
equations :

Ti(x
t,xt+1) = xt+1

i ↔ xi(t + 1) (3.3)

T (xt,xt+1) = T0(x
t,xt+1) ∧ .... ∧ TN(xt,xt+1) (3.4)

Equation 3.3 gives the transition function for a single gene i. Symbol↔ stands
for logical equivalence and in Equation 3.3, represents that the value of a gene
in the next time step, xt+1

i is equal to the value of the function xi(t + 1) (as
defined in Equation 3.1). Equation 3.4 states that all genes in the network
make a simultaneous transition from the present state xt to the next state
xt+1.

If a state transition graph is constructed using Equations 3.3 and 3.4, then
each state has only one transition going out of it. Hence, assuming that all
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Figure 3.4: State Transition Diagram for the synchronous model of the GRN in
Figure 3.2.

genes can take ‘0’ or ‘1’ levels of expression, the number of states and the
number of transitions in the state transition graph are both equal to 2N , where
N is the number of genes in the network. The state transition diagram for the
synthetic GRN in Figure 3.2(a) is shown in Figure 3.4. The N bit state vector
xt is packed into an integer in Figure 3.4 for aesthetical reasons.

3.2.2 Asynchronous model

In the asynchronous model, no two genes (or proteins) can change their ex-
pression states simultaneously. More precisely, following three assumptions
are made: (a) Only one gene can make a transition (or be updated) in a single
step. (b) At least one gene makes a transition unless none of the genes can
change their expression levels (i.e. xi(t+1) = xt

i ∀ i). (c) Every gene is equally
likely to make a transition. That means every state can have potentially N

successor states, where each successor state differs from the present state in
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only one gene expression.
The first assumption of asynchronous models, which states only one gene

can be updated between two consecutive time steps, can be specified by using
Equation 3.5:

TPi(x
t,xt+1) =

(
xt+1

i ↔ xi(t + 1)
)
∧
∧

j 6=i

(
xt+1

j ↔ xt
j

)
(3.5)

Equation 3.5 states that gene i in the next time step, takes the value as defined
by the function xi(t+1) in Equation 3.1 and all other genes stay at their current
expression levels. For the second assumption, one has to check if all genes stay
at the same expression level in the next time step. This can be specified by
using the flag function, F (xt) defined in Equation 3.6.

F (xt) =
N∧

i=1

(
xi(t + 1) ⊕̄ xt

i

)
(3.6)

The Flag function F (xt) = 0 iff xi(t + 1) 6= xt
i for at least one gene i. The

transition relation for gene i is then given by Equation 3.7.

Ti(x
t,xt+1) = {F (xt) ∨

(
xi(t + 1) ⊕ xt

i

)
} ∧ TPi(x

t,xt+1) (3.7)

In Equation 3.7, the transition function for gene i is given by TPi(x
t,xt+1) if ei-

ther all the genes stay at the same level in the next time step (i.e. the flag func-
tion, F (xt) = 1) or if the expression of gene i in the next step can be different
from its expression in the present time step (i.e. (xi(t + 1) ⊕ xt

i) = 1). Equa-
tion 3.7 is the asynchronous counterpart of Equation 3.3 of the synchronous
model.

Transition function T (xt,xt+1) for the state of the network is then given
by Equation 3.8.

T (xt,xt+1) = T0(x
t,xt+1) ∨ .... ∨ TN(xt,xt+1) (3.8)

Equation 3.8 incorporates the third assumption, which states that from a given
state, the network can have multiple next states and each next state can differ
from the present state in at most one gene expression. Note that Equation 3.8
is the counterpart of Equation 3.4 for synchronous models, with the difference
that the conjunctions (∧) have been replaced by disjunctions (∨).

The asynchronous model has 2N states, and each of them can have up to
N outgoing transitions, making a total of N · 2N transitions in the worst case.
This means that the number of transitions in an asynchronous model can be
more than those in the corresponding synchronous model by Upton a factor
of N . The asynchronous state transition diagram for the synthetic GRN of
Figure 3.2(a) is shown in Figure 3.5. At this point, one should appreciate
the complexity of transitions in an asynchronous model as compared to a syn-
chronous model of the same GRN. This increased number of transitions, as will
be seen in Section 3.2.6, can have a considerable impact on the computation
time of the algorithm.
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Figure 3.5: State Transition Diagram for the asynchronous model.

3.2.3 Boolean attractors

Boolean attractors and steady states of a GRN can be described formally by
the following set of definitions :

Definition 6 Successor. Given a state of the network xt, all the states x̃t

such that T (xt, x̃t) = 1 are the successor states of the state xt.

Definition 7 Predecessor. Given a state of the network xt, all the states x̃t

such that T (x̃t,xt) = 1 are the predecessor states of the state xt.
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Definition 8 Forward image. Given a set of states S(xt), the forward image
I

f
T (S(xt)) is the set of immediate successors of the states in the set S(xt) under

the state transition graph defined by the transition function T .

Definition 9 Backward image. Given a set of states S(xt), the backward
image Ib

T (S(xt)) is the set of immediate predecessors of the states in the set
S(xt) under the state transition graph defined by the transition function T .

Definition 10 Forward reachable states. Given a set of states S0, forward
reachable states FR(S0) are the set of states that can be reached from the
states in the set S0 by iteratively computing forward image under the transition
function T until no new states are reachable.

Definition 11 Backward reachable states. Given a set of states S0, backward
reachable states BR(S0), are all the states xt whose forward reachable set con-
tain at least one state in S0.

Definition 12 Attractor. An attractor is a set of states SS(xt) such that
for all the states s ∈ SS(xt), the forward reachable set FR(s) is the same as
SS(xt) (i.e. FR(s) = SS(xt) ∀s ∈ SS(xt)).

Definition 13 A Steady State is an attractor that consists of a single state.

Example 3.2.2 Let us assume that the system is in a state S0 = 5 in
the synchronous state transition diagram of Figure 3.4. The successor of
state S0 is the state 6 and the predecessors of S0 are the states 8 and 12
respectively. Set of forward reachable states from S0 are given by FR(S0) =
{6, 13, 7, 15} and the set of backward reachable states is given by BR(S0) =
{17, 18, 8, 12, 2, 21}. Since, FR(S0) 6= S0, the starting state S0 does not
belong to an attractor.

There are four attractors in Figure 3.4, given by SS1 = {4}, SS2 = {27},
SS3 = {15} and SS4 = {11, 31}. Out of these four attractors, SS1, SS2

and SS3 are the steady states. ¥

It is interesting to notice the differences between the structure of attractors
in a synchronous (Figure 3.6) and asynchronous model (Figure 3.7) of the
same GRN. Following Definition 12, single state attractor forms a Self Loop,
otherwise attractor can be either a Simple Loop or a Complex Loop. A Simple
Loop is a cycle of states such that each state can have exactly one successor
state. A Complex Loop is formed by two or more overlapping simple Loops.
A self loop attractor is called a steady state (Definition 13).

Since synchronous networks can have only one outgoing transition from
any state, an attractor in synchronous networks can only be of two types: a)
self loops, and b) simple loops. Simple loops for synchronous models can again
be divided into two subclasses : b1) loops where any two consecutive states
differ in exactly a single gene expression and b2) loops where at least one pair
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Figure 3.7: Possible types of attractors in an asynchronous model

of consecutive states differ in more than one gene expression (e.g. transition
1010→ 1100 in Figure 3.6(c)).

Similarly, an asynchronous model can have three classes of attractors (Fig-
ure 3.7), namely: a) self loops, b) simple loops, and c) complex loops. Since the
definition of asynchronous models allows only a single gene expression change
between any consecutive states, they can have only one kind of simple loops
(unlike synchronous models).

Self loops and simple loops found in the asynchronous model of a gene
regulatory network are also present in the synchronous model of the same
network. The two models can only differ in the complex loop and simple loops
of the second type (i.e. Figure 3.6(c)). Even though simple loops (of Figure
3.6(c)) may lead to a complex loop (of Figure 3.7(c)) in an asynchronous
model, for some gene regulatory networks, the presence of the former is not
necessary for the existence of complex loops. Hence, some attractors seen in a
synchronous model can vanish in the corresponding asynchronous model of a
GRN. This can also be seen from the state transition diagrams of synchronous
and asynchronous models of synthetic GRN in Figure 3.2(a). The synchronous
steady state formed by {11 → 31 → 11} in Figure 3.4 does not exist in the
asynchronous model (Figure 3.5).

Computing attractors (or steady states) of a GRN is of interest to biologists
as attractors have a biological correspondence to cell states (or cell phenotypes)
[143, 139, 56]. Further, since the steady state of a GRN corresponds to the end
point of an experiment when all cells stabilise, it is easily to experimentally
validate the steady state behavior than validating the behaviour of transient
states of a GRN. In the next section, we give algorithms that can be used for
identifying all the attractors in a GRN.
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3.2.4 Algorithms for computing attractors

As explained in Sections 3.2.1 and 3.2.2, a state transition graph can have
exponential state space and if this graph is explicitly represented and traversed,
then an exponential number of states restricts the computation to small sized
networks. Further, identifying attractors by enumeration becomes difficult
as one will have to consider all possible subset of states that can form an
attractor (which can be super-exponential in the worst case). To avoid explicit
enumeration of subset of states, a set of theorems proposed in [7] can be used
(stated again in Theorems 1 and 2).

Theorem 1 A state i ∈ S is a part of an attractor if and only if FR(i) ⊆
BR(i). State i is transient otherwise.

Theorem 2 If state i ∈ S is transient, then states in BR(i) are all transient.
If state i is a part of an attractor, then all the states in FR(i) are also part of
the same attractor. In the latter case set {BR(i)−FR(i)} has all the transient
states.

Example 3.2.3 Let us assume we will like to test if the state S0 = 5 in
the synchronous state transition diagram of Figure 3.4 belongs to an attrac-
tor or not. From Example 3.2.2, FR(S0) = {6, 13, 7, 15} and BR(S0) =
{17, 18, 8, 12, 2, 21}. As we can clearly see FR(S0) * BR(S0). Hence The-
orem 1 implies that the state S0 does not belong to an attractor. Then
Theorem 2 implies that none of the states in BR(S0) = {17, 18, 8, 12, 2, 21}
should belong to an attractor either. One, can verify from attractors listed
in Example 3.2.2 that none of the states in the set BR(S0) indeed belong to
any of the four attractors. ¥

Based on Theorems 1 and 2, the procedure for attractor computation is
given in Algorithm 2. This algorithm takes as input the transition function
T (xt,xt+1), which can be either synchronous or asynchronous. In Line 5 of
Algorithm 2, a seed state is selected from the state space T ′ and forward and
backward reachable states from this seed state are computed in Lines 6 and
7. Then Theorem 1, as implemented in Line 8, checks if the seed state (from
Line 5) is part of an attractor. If the seed state is indeed part of an attractor,
then using Theorem 2 (as implemented in Lines 9-12), all the states in the
forward reachable set are declared to from an attractor in Line 9 and the rest
of the states in the backward reachable set are declared transient in Line 10.
Otherwise, the seed state and all the other states in the backward reachable
set are declared transient in Line 12. In Line 13, the state space is reduced by
removing those states that have already been tested for reachability and the
process is repeated to find another attractor on the reduced state space. This
process is iterated until the whole state space is explored (i.e. until T 6= ∅).
The states in the backward reachable set are removed from the state space in
each iteration, resulting in the continuous size reduction of the latter. One
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Algorithm 2: Algorithm for computing Attractors

all attractors(T)1

begin2

T ′ ←− T3

while T ′ 6= ∅ do4

s←− initial state(T ′)5

FR(s)←− forward set(s, T ′)6

BR(s)←− backward set(s, T ′)7

if FR(s) ∧BR(s) = ∅ then8

report FR(s) as an attractor9

report BR(s) ∧ FR(s) as all transient states10

else11

report s ∨BR(s) as all transient states12

T ′ ←− T ′ ∧ s ∨BR(s)13

end14

initial state(T)15

begin16

s(Vt) = random state(T)17

RS(0) ←− ∅, FS(0) ←− {s}18

k ←− 019

while FS(k) 6= ∅ do20

FS(k+1) = If
T (FS(k))(xt+1 ← xt) ∧RS(k)21

RS(k+1) = RS(k) ∨ FS(k+1)
22

k ←− k + 123

s←− random state(FS(k−1))24

return s25

end26

should note that the number of iterations of Lines 4-13 depends upon how the
seed state is selected in Line 5.

Function initial state() in Algorithm 2 selects a seed state from the given
state space T ′. In this function (implemented in Lines 17-25), a random initial
state is selected from the transition state space T in Line 17. The forward
reachable set from this random initial state is then computed in Lines 19-24.
During the forward set computation, when the frontier set evaluates to ∅ in
iteration k, a random state is taken from the frontier set in iteration k−1 and
returned as the seed state. The motivation behind this function is that a state
in the last frontier set is more likely to be a part of an attractor than a random
state in the state space T . For synchronous models, it can be proved that the
seed state selected in this way is guaranteed to be a part of an attractor. While
for the asynchronous models, there is no guarantee that the seed state is part
of an attractor.

Algorithm 2 also uses functions forward set() and backward set() for com-
puting forward reachable FR(S), and backward reachable BR(S) states, re-
spectively. These functions are given in Algorithm 3. In Algorithm 3, the while
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Algorithm 3: Computing Forward and Backward reachable sets

forward set(S0,T)1

/∗ backward set(S0,T) ∗/2

begin3

RS(0) ←− ∅, FS(0) ←− {S0}4

k ←− 05

while FS(k) 6= ∅ do6

FS(k+1) = If
T (FS(k))(xt+1 ← xt) ∧RS(k)7

/∗ FS(k+1) = Ib
T (FS(k))(xt ← xt+1) ∧RS(k) ∗/8

RS(k+1) = RS(k) ∨ FS(k+1)
9

k ←− k + 110

return (FR(S0)←− RS(k))11

/∗ return (BR(S0)←− RS(k)(xt+1 ← xt)) ∗/12

end13

loop in Lines 6-10 computes the reachable states iteratively starting from the
initial set of states S0, where kth iteration represents the states reachable in k

time steps from S0. FSk and RSk, are the frontier set and the reachable set
respectively in the kth iteration of the while loop. The Frontier set in the kth

iteration, contains the states which have been reached for the first time in the
(k − 1)th iteration of the while loop. The Reachable set in the kth iteration
contains all reachable states from the initial set S0 up to k iterations. The
Frontier set in iteration k + 1 is computed by taking the forward image (back-
ward image for backward reachable set computation) of the frontier set in the
kth iteration and removing from this image set, the states that have already
been explored in previous iterations (which are stored in Reached Set). The
Reached Set is updated by adding the new states from the frontier set. This
process is iterated until no new states can be added to Reached Set. The final
Reached Set represents the forward (backward) reachable set from the set of
initial states S0.

3.2.5 Algorithm complexity

Given a graph G(V,E), identifying all the attractors in G can be performed
in linear time O(|V | + |E|) by depth-first search algorithm. However, for
Boolean functions there can be exponential number of vertices (i.e. |V | =
2N) in the graph for N Boolean variables, resulting in an exponential space
complexity of the problem of identification of all the attractors in the Boolean
state space. BDDs can be used to represent the Boolean state space within
a reasonable memory requirements and perform efficient reachability analysis
on the underlying graph. However, it is difficult to analyze the complexity
of BDD based algorithm which further depends upon the size of the BDD
representation of the problem. BDD representation can be exponential with
the problem size in the worst case scenario, but in the most practical cases it
has a mild growth with the size of the problem as has been demonstrated in the



3.2. Problem formulation 45

Network Nodes Edges
Number of Attractors Time taken (in sec)

Self Simple Simple 2 Complex sync async
Mammalian 10 39 1 0 1 1 0.1 0.26

T-helper 23 34 3 0 0 0 0.12 0.35
Dendritic 114 129 0 1 0 0 0.32 0.37

T-cell receptor 40 58 1 0 9 7 3.0 960
Network 1 1263 5031 1 0 0 0 200 *

Table 3.1: Benchmarking of the synchronous model (column 8) using Algorithm 2 and
asynchronous model (column 9) using Algorithm 2. A cut-off time of 1 hour was used
and the algorithms which could not finish computation within this time were terminated
(represented by ’*’). Mammalian Cell Network is taken from [3], T-helper from [102]
and T-cell receptor from [140]. The Dendritic Cell network was generated by semi-
automatic mining of literature evidence. Network 1 is a full literature mined Insulin
Growth Factor regulatory network. It has been developed through automatic literature
mining tools that build a tentative regulatory network based on the set of keywords such
as activation/inhibition.

literature [133, 63, 46]. Therefore in the worst case scenario, the complexity of
BDD based Algorithm 2 can be the same as an explicit depth-search algorithm.
But, as we will see in the next section, it runs very efficiently for most of the
big GRNs.

3.2.6 Computational results

Run times of Algorithm 2 on some of the benchmark networks are given in
Table 3.1. From the results it can be seen that the synchronous algorithm
scales well with the size of the network and can compute all the attractors in
reasonable time and memory. The benchmarking was performed on a 1.8 GHz
Dual Core Pentium machine with 1 GB of RAM running on Linux Fedora Core
5.

The last column of Table 3.1 presents the benchmarking of the asyn-
chronous model. The increased run time to compute the attractors in asyn-
chronous models is due to both the size of the state transition diagram and the
heuristics used to select seed states in Algorithm 2. Contrary to synchronous
models, for the asynchronous model, the initial state() function in Algorithm 2
does not guarantee to return a state that forms a part of an attractor. This
creates a potential problem, since, for computing the set of attractors common
to the synchronous and the asynchronous model of a GRN, Algorithm 2 for
the asynchronous model may require a large number of iterations. For this
reason, in Table 3.1, Mammalian Cell, T-helper and T-cell receptor have a
greater differences in computational time for synchronous and asynchronous
model as compared to the run time difference for the Dendritic Cell network.
The large time difference between the two models for the Network 1 is due to
the extremely large size and complex configuration of this network.
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3.3 Modeling asynchronicity using a synchronous

Model

As is evident from the results from Table 3.1, BDD representation and manip-
ulation can be far more efficient on a synchronous representation as compared
to the asynchronous representation. A similar conclusion has been made in an
entirely different context in electronic design automation (EDA) community,
where verification of asynchronous circuits using BDDs is known to be more
computationally challenging than synchronous circuits [80, 108]. However, by
taking into consideration the similarities in the structure of attractors of syn-
chronous and asynchronous models, run times of asynchronous models of GRN
in Table 3.1 can be improved. As explained in Section 3.2.3, synchronous and
asynchronous models only differ in attractors formed by complex loops and
a specific type of simple loops. To reduce the computation times, algorithms
given in Section 3.2.4 can be used to compute the common attractors on the
synchronous model and then compute the complex loop attractors on the asyn-
chronous model. This can improve the efficiency of the algorithms proposed
in Section 3.2.4 for two reasons :

1. The common set of attractors can be computed in fewer iterations of
Algorithm 2 for the synchronous models than that required for the asyn-
chronous model.

2. ROBDDs for asynchronous models are more complex than those for syn-
chronous models. This makes all the logic operations like AND, OR, Quan-
tify, etc. computationally demanding. Computing some of the attractors
on the synchronous model should improve the computational efficiency.

3.3.1 Combined synchronous-asynchronous algorithm

Algorithm 4 details the combined synchronous-asynchronous traversal tech-
nique. In this algorithm, synchronous attractors are first computed in line 3.
Then in lines 4-7, the synchronous attractors that do not exist in the asyn-
chronous model are deleted. In line 8, the backward reachable states from
the remaining attractors are computed on the asynchronous state transition
diagram. These backward reachable states are removed from the state space
in line 9 (using Theorem 2) and the remaining attractors of the asynchronous
model are computed in line 10 on the reduced state space using Algorithm 2.

The function isFalseLoop() in lines 12-28 checks for the false synchronous
attractors. In line 14 of this function, a state s0 is randomly selected from
the states set S. Then two sets, namely the reached set RS0 and frontier set
FS0, are defined and initialised to null and s0 respectively. The superscript of
FS and RS stands for the iteration number. Then the state reachable in one
step from the current frontier set is computed in line 18. Since the reachable
states are computed on synchronous models, there would be only one state in
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Algorithm 4: Computing asynchronous attractors

comp async attractors(Tsync, Tasync)1

begin2

SSsync[ ] = all attractors(Tsync)3

for i = 0 to SSsync.size() do4

if isFalseLoop(SS[i], Tsync) == false then5

SSasync = SSasync ∪ SSsync[i]6

report SS[i] as an attractor7

BR(SSasync)←− backward set(SSasync, Tasync)8

T ′

async ←− Tasync ∧ SSasync ∨BR(SSasync)9

SSasync[ ] = all attractors(T ′

async)10

end11

isFalseLoop(S, T )12

begin13

s0 = random state(S)14

RS(0) ←− ∅, FS(0) ←− {s0}15

k ←− 016

while FS(k) 6= ∅ do17

FS(k+1) = If
T (FS(k))(xt+1 ← xt)18

nV arDiff =
∑N

i=1 FS
(k)
i ⊕ FS

(k+1)
i19

if nV arDiff ≥ 2 then20

/* false asynchronous attractor */21

return true22

FS(k+1) = FS(k+1) ∧RS(k)23

RS(k+1) = RS(k) ∨ FS(k+1)
24

k ←− k + 125

/* genuine asynchronous attractor */26

return false27

end28

the new frontier set. Then in line 19, the number of bits by which the current
and the new frontier set differ is computed. If the number of bits by which
these two states differ is more than one, then the attractor is declared false
(lines 20-22). Otherwise, the new frontier set is modified in line 23. If the
new frontier state has already been explored then this modification makes it
an empty set. The new frontier set is added to the reached states set (line 24)
and the process is iterated until the the frontier set is empty (line 17). If for
all the consecutive states of an attractor, the number of bits by which they
differ is exactly one, then the attractor is declared genuine (line 27).

3.3.2 Computational results

Results obtained on using this combined model are listed in the last column
of Table 3.2. The improvement of the combined model over the asynchronous
model is more evident from the results on T-cell receptor and Network 1 gene
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Network Nodes Edges
Number of Attractors Time taken (in sec)

Self Simple Simple 2 Complex sync async combined
Mammalian 10 39 1 0 1 1 0.1 0.26 0.22

T-helper 23 34 3 0 0 0 0.12 0.35 0.4
Dendritic 114 129 0 1 0 0 0.32 0.37 0.49

T-cell receptor 40 58 1 0 9 7 3.0 960 460
Network 1 1263 5031 1 0 0 0 200 * 730

Table 3.2: Benchmarking of the combined synchronous asynchronous model (column
10) vs. stand-alone synchronous and asynchronous models. Network descriptions are as
in Figure 3.1.

regulatory networks. While processing for Network 1, the asynchronous model
could not finish the computation in 1 hour whereas the combined method
computed the attractors in 12 minutes and for the T-cell receptor network,
the performance almost doubled. For T-helper and Dendritic Cell networks,
the combined model takes marginally more time than the asynchronous model
but this might be attributed to the fact that there is a fixed overhead involved
in computing the backward reachable set in Line 8 of Algorithm 2 that is not
compensated by the small run time difference between the synchronous and
the asynchronous model.

3.4 Modeling gene perturbations

Computing attractors on GRNs gives an insight into the cell differentiation
process. If the computed Boolean attractors of the GRN have a biological
explanation, then the GRN is likely to represent the biological process under
investigation. In that case, it would be interesting for biologists to study the
results of gene perturbation experiments on the given network.

Gene perturbations (or mutations) can be either in the form of a gene
knock-out which leads to constant absence of a protein inside the cell or in
the form of a constant high expression of a gene leading to over-production of
the corresponding protein. Such mutations may naturally exist in a cell (i.e.
inherited from parents) or they could be temporarily induced as a result of a
disease or the impact of a drug compound. In both cases, it is interesting for
biologists to study the impact of such mutations on the dynamics of the cell.
Due to the presence of mutations in a GRN, some sections of the pathways
may loose their dynamics completely. Therefore, what may seen as a mutation
in a single gene can easily propagate its impact to remotely related genes.

Example 3.4.1 A synthetic GRN of Figure 3.2(a) in the presence of the
knocked-down and the over-expressed node A is as shown in Figures 3.8(a)
and 3.8(b) respectively. The modified pathway can obviously result in a
different set of steady states than those in the wild-type (i.e. unperturbed)
GRN. In Figure 3.8(a), when A is knocked-down, node E will always stay at
the low expression and node C will loose its activity towards B. Hence, the
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(a) Knocked-down node GRN
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(b) Over-expressed node GRN

Figure 3.8: Dashed edges does not form a part of the dynamics of the GRN due to
mutation in one of the participating node. (a) Modified GRN with the knocked-down
node A. (b) Modified GRN with the over-expressed node A.

node B always stay at low expression state. This in turn leads to low expres-
sion of D, which further causes C to always stay in high expression state.
With all the nodes permanently fixed at one expression state, the network
looses its ability to produces multiple attractors. A similar explanation can
be extended to over-expressed nodes A in Figure 3.8(b). ¥

In the next section, we extend our Boolean model of GRNs to perform in
silico perturbation experiments. A gene (or protein) in a GRN can exist in
one of the following three state:

1. Over-Expression. This represents the constant expression of a gene
at a high activation level. In Boolean logic, this means that the gene is
“ON” or “1” all the time.

2. Knock-Down. This represents the case when a gene is silenced and
it does not participate in the network dynamics. That means gene is
“OFF” or at level “0” all the time.

3. Wild-Type. An unperturbed gene (i.e. neither over-expression nor
knock-down) is said to be present in the wild-type condition.

The over-expression and knock-down of genes in GRNs, have a similar
notion in digital circuits as stuck-at-1 and stuck-at-0 faults respectively.

3.4.1 Problem formulation

We modify Boolean Equations 3.1,3.2,3.3 and 3.5 to encode knowledge about
all possible gene-perturbations in the Boolean model and then, during the
analysis phase, we select the genes to be perturbed dynamically. Encoding
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this information in the model itself helps in sharing information between dif-
ferent perturbation experiments. Also, such a modeling approach permits the
computation of the set of all minimal gene perturbations that can generate a
desired steady state. The formulation shown below helps in identifying all such
minimal gene perturbation sets without explicitly enumerating and simulating
all the possible gene perturbations.

In the presence of perturbations, each node in a GRN can exist in one
of the following three states: wild-type, knocked-down and over-expressed. In
addition to Boolean vector xt, that was used in previous sections for represent-
ing the expression state of all the nodes of a GRN, we use two additional N

bit Boolean vectors x↓ and x↑ to represent knocked-down and over-expressed
nodes respectively in the GRN. If a bit i of x↓ (or x↑) evaluates to 1 (i.e. x

↓
i = 1

or x
↑
i = 1), then it means that the gene i is knocked-down (or over-expressed).

If both x
↓
i and x

↑
i evaluate to 0 or 1 for any given i then the node i is modeled

as a wild-type node. This constraint ensures that a node is not both knocked-
down and over-expressed at the same time. To encode this information, we
use the modified Boolean variables x̃i’s as in equation 3.9.

x̃i =
{

xi ∧
(
¬x↓

i ∨ x
↑
i

)}
∨
(
¬x↓

i ∧ x
↑
i

)
(3.9)

Equation 3.9 states that if the gene i has been knocked out (i.e. if x
↓
i = 1),

then x̃i = 0. If the gene i is over-expressed (i.e. if x
↑
i = 1), then x̃i = 1.

If the gene is wild-type (i.e. both x
↓
i and x

↑
i either evaluate to 0 or 1) then

x̃i = xi. Equation 3.9 accommodates the perturbation information in the input
expression of a node. To specify the perturbation information in the Boolean
function that defines the expression of a node, we modify Equations 3.1 and 3.2
to Equations 3.10 and 3.12 respectively.

x̃i(t + 1) =
{

xi(t + 1) ∧
(
¬x↓

i ∨ x
↑
i

)}
∨
(
¬x↓

i ∧ x
↑
i

)
(3.10)

xi(t + 1) =

(
n∨

l=1

fac
xi,l

(t)

)
∧ ¬

(
n∨

l=1

f in
xi,l

(t)

)
(3.11)

fac,in
xi,l

(t) =

(
p∧

j=1

x̃
ac,t
j

)
∧

(
p∧

j=1

¬x̃in,t
j

)
(3.12)

Equation 3.10 states that if gene i is over-expressed (i.e. if x
↑
i = 1), then

xi(t+1) = 1. If gene i has been knocked-down (i.e. if x
↓
i = 1), then xi(t+1) =

0. If the gene is wild-type (i.e. both x
↓
i and x

↑
i either evaluate to 0 or 1), then

Equation 3.10 is same as Equation 3.1. Equation 3.12 is the counterpart of
Equation 3.2, with the modified variables x̃i.

Example 3.4.2 The modified Boolean gates mapped synthetic GRN of Fig-
ure 3.2(b) is shown in Figure 3.9. As one can see from this figure, extra
Boolean logic is appended both at the input and at the output to reflect the
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Figure 3.9: Modified Boolean gates to accommodate the gene perturbation experi-
ments.

choice between over-expression and knock-down for each input and output
variable. ¥

Transition functions for the synchronous model given in Equations 3.3 is
modified to Equation 3.13 while Equation 3.4 does not changes for the pertur-
bation model.

Ti(x
t,xt+1) =

{
xt+1

i ↔ x̃i(t + 1)
}

(3.13)

For the asynchronous model, Equation 3.5 is modified to Equation 3.14 while,
the rest of the equations for the asynchronous models remain the same as in
Equations 3.6-3.8.

TPi(x
t,xt+1) =

{
xt+1

i ↔ x̃i(t + 1)
}
∧
∧

j 6=i

{
xt+1

j ↔ x̃j

}
(3.14)

Using the above formulation, one can model multiple gene perturbations
in a GRN. A set of perturbations define a single experiment. Multiple ex-
periments spaced over different time points (also referred to as levels of ex-
periments) can also be performed using the above formulation. The mod-
ified transition function T (xt,xt+1) represents the relation between current
state and the next state in the presence of any possible gene perturbation.
Given a perturbation experiment (which specifies the set of perturbations to
be performed), we restrict the transition function state space to only those
perturbations which are part of the experiment and compute attractors on
that restricted state space. For this we define three Boolean functions f x

↓

,
fx

↑

and f p to represent information of the knocked-down, over-expressed and
perturbed genes respectively. f p is further expressed as a function of fx

↓

and
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fx
↑

. These functions are given in Equations 3.15-3.17.

f p = fx
↓

∧ fx
↑

(3.15)

fx
↓

=



∧

i:x↓
i =1

x
↓
i


 ∧



∧

i:x↓
i =0

¬x↓
i


 (3.16)

fx
↑

=



∧

i:x↑
i =1

x
↑
i


 ∧



∧

i:x↑
i =0

¬x↑
i


 (3.17)

In the next section, we describe the algorithm to perform perturbation
experiments using the above formalism.

3.4.2 An algorithm for gene perturbations

A biological experiment often involves more than one perturbations either
concurrently or in the time spaced manner. Let us define the set of concurrent
perturbations as a single test and a sequence of tests as an experiment. Tests
in an experiment are always performed at different time points defined by
their sequence specified in the input experiment file. With this generalised
experiment model, the basic idea behind the gene perturbation algorithm can
be summarised as in Figures 3.10.

In Figure 3.10(a), black box computes steady states for every test, fol-
lowing the sequence of tests specified in the experiment. The first test in an
experiment is always said to be wild-type (i.e. with no perturbations). Start-
ing from the second test, the black box in Figure 3.10(a) checks if the steady
states from the previous test can reach the steady states of the current test.
The output from this black box is in the form of a DAG (directed acyclic graph)
as shown in Figure 3.10(b). In Figure 3.10(b), starting from the one level after

0i

: Steady StatesiSS

: New Steady States1iSS
1ii

,i
x

f i
x

f

DAG

(a) Summary of gene perturbation algorithm

Initial steady states
First set of perturbations

Resulting steady states
Second set of perturbations

(b) Steady state transitions

Figure 3.10: (a) Flowchart of gene perturbation algorithm. (b) Directed Acyclic
Graph (DAG) showing the transitions among steady states.
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Algorithm 5: Algorithm for in-silico gene perturbation experiments

Input : Genetic Network and perturbation experiments.
Output: DAG representing steady state analysis.

begin1

compute Tsync and Tasync2

for i = 0 to L do3

compute fx
↓

i , fx
↑

i and4

f
p
i = fx

↓

i ‘ ∧ fx
↑

i5

T ′
sync = Tsync ∧ fP

i6

T ′
async = Tasync ∧ fP

i7

SSi[ ] = all attractors(T ′
sync, T

′
async)8

if i 6= 0 then9

for k = 0 to SSi−1.size() do10

FR←− forward set(SSi−1[k], Tasync)11

for j = 0 to SSi.size() do12

if SSi[j] ⊆ FR then13

Draw an edge between nodes SSi−1[k] and SSi[j]14

end15

the root node of the DAG, steady states results are shown in the sequence in
which the tests are specified in the experiment. First DAG level gives all the
steady states in un-perturbed network, second DAG level gives steady states
after first perturbations and so on. Edges among the nodes represents the
possible transitions among steady states in the presence of the perturbation.
One should note that while steady states can not transition among each other
in the absence of a perturbation, they can transition among each other when
some nodes are perturbed. This change in stable behavior is captured by the
absence of edges between nodes at the same level and presence of edges among
the nodes at different levels of DAG in Figure 3.10.

In Figure 3.10, some of the steady states in different levels might be same or
may have some measure of similarity. This similarity measure can be computed
by counting the percentage of genes which have the same level of expression
in two different steady states. Here we compute similarity measure between
steady states of first level and steady states of all the other levels. This way
one can make more sense out of the perturbation experiments results and can
make conclusions such as: the system moves from steady state A to steady
state B on perturbing gene X, where A and B are the steady states in the
original un-perturbed network.

Figure 3.10 is formally described in Algorithm 5. In this algorithm, the
main loop in Lines 3-13 is iterated over the sequence of tests in the experiment.
For every test i, corresponding functions fx

↓

, fx
↑

and f p are constructed using
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Equations 3.15-3.17 in Line 4 and 5. Then the transition function is restricted
to the state space defined by this perturbation experiment (Lines 6-7). The
attractors are computed on the perturbed network in Line 8 using the com-
bined synchronous-asynchronous method. Once the attractors are found, we
compare the forward reachability of attractors of the previous test with the
attractors of the current level of a perturbation experiment. This is done in
Lines 9-14. For every attractor computed in the previous level, i.e. the test
i − 1, we compute the forward reachable states on the new transition func-
tion (Line 11). Then we check all the attractors in the current test i that are
contained in this forward reachable set (line 13). Lines 3-14 can be repeated
for different experiments on the same network without having to modify the
GRN.

3.5 GenYsis toolbox

Algorithms proposed in this thesis are implemented in our modeling toolbox
genYsis. The software is written in C++ and makes use of the CUDD soft-
ware package [43] for the BDD manipulation. Executable binaries of genYsis
for both windows and linux have been made available in the public domain.
In the next section, we perform a case study on T-helper GRN showing the
application of algorithms developed in this chapter.

3.6 Case Study: T Helper network

The vertebrate immune system is made of diverse cell populations; some of
them are antigen presenting cells, natural killer cells, B and T lymphocytes.
There is a subpopulation of T lymphocytes, the T-helper, or Th, cells that
have received much attention from the modeling point of view. Th cells can
be divided into precursor Th0 cells and effector Th1 and Th2 cells, depending
on the pattern of secreted molecules. Th1 and Th2 cell types play a cen-
tral role in cellular immunity and humoral responses, respectively. Moreover,
immune responses biased towards the Th1 phenotype result in autoimmune
diseases, while enhanced Th2 responses originate allergic reactions. At the
molecular level, Th1 and Th2 cells can be distinguished by their pattern of
cytokine secretion, which are responsible for their central role in cell mediated
immunity (Th1 cells) and humoral responses (Th2 cells). Understanding the
molecular mechanisms that regulate the differentiation process from Th0 to-
wards either Th1 or Th2 is very important, since an immune response biased
towards the Th1 phenotype result in the appearance of autoimmune diseases,
and an enhanced Th2 response can originate allergic reactions [23, 94].

There are several factors at the cellular and molecular levels that deter-
mine the differentiation of T helper cells. Importantly, the cytokines present
in the cellular milieu play a key role in directing Th cell polarization. On
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Figure 3.11: T-Helper Gene Regulatory Network [102].

the one hand, IFN-γ, IL-12, IL-28 and IL-27 are the major cytokines that
promote Th1 development [144]. And on the other hand, IL-4 is the major
cytokine responsible for driving Th2 responses. Besides the positive role of
cytokines in the differentiation process, there exist also a mutual inhibitory
mechanism. Specifically, IFN-γ play a role in inhibiting the development of
Th2 cells, whereas IL-4 inhibits the appearance of Th1 cells. This interplay of
positive and negative signals, at both the cellular and molecular levels, creates
a complexity that is very suitable for analysis by the modeling approach.

Due to its physiological relevance, there are various mathematical mod-
els that have been proposed for describing the differentiation, activation and
proliferation of T helper lymphocytes. Most of these models, however, focus
on interactions established among the diverse cell populations that somehow
modify the differentiation of Th cells [19, 9]. Also, other modeling efforts have
been aimed at understanding the mechanism of the generation of antibody
and T-cell receptor diversity, as well as the molecular networks of cytokine or
immunoglobulin interactions [50, 48]. Recently, there have been some publi-
cations on the regulatory network that controls the differentiation of Th cells
[102, 99]. The regulatory network presented (reproduced in Figure 3.11) consti-
tutes the most extensive attempt to model the regulatory network controlling
the differentiation of Th lymphocytes to date. The topology of the network
was derived from published experimental data. The network (Figure 3.11) is
made of 23 nodes, 26 positive and 8 negative interactions. Importantly, the
model does not need to be seen as metabolic pathway, or a reaction network,
but rather as an information processing network.

3.6.1 Simulation results

On applying the algorithms developed in this chapter on the T helper cell
network of Figure 3.11, three wild type steady states as listed in Table 3.3
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Table 3.3: Steady states of the T-helper Cell.

Perturbed Active genes in steady states Cell
Genes Type

All the genes are inactive Th0
wild type IFN-γ Tbet SOCS-1 IFN-γR Th1

IL-10 IL-10R GATA-3 STAT3 STAT6 IL-4 IL-4R Th2

IL-12+/+ IFN-γ Tbet SOCS-1 IFN-γR IL-12 IL-12R STAT4 Th1
IL-10 IL-10R GATA-3 STAT3 IL-12 STAT6 IL-4 IL-4R Th2

IL-4+/+ IFN-γ Tbet SOCS-1 IFN-γR IL-4 Th1
IL-10 IL-10R GATA-3 STAT3 STAT6 IL-4 IL-4R Th2

wildtype

IL-12 overExp

IL-4 overExp

Th1

Th1

Th1

Th2

Th2

Th2

Th0

(a) Experiment A

wildtype

IL-4 overExp

IL-12 overExp

Th1

Th1

Th1

Th2

Th2

Th2

Th0

(b) Experiment B

Figure 3.12: Results of Gene Perturbation Experiments

are found. These steady states correspond to the molecular profiles observed
in Th0, Th1 and Th2 cells respectively. The first steady state reflects the
pattern of Th0 cells, which are precursor cells that do not produce any of the
cytokines included in the model (i.e. IFN-β, IFN-γ, IL-10, IL-12, IL-18 and
IL-4). The second steady state represents Th1 cells with high activation of
IFN-γ, IFN-γR, T-bet and SOCS1. Finally the third steady state corresponds
to the activation observed in Th2 cells, with high level of activation of GATA-
3, IL-10, IL-10R, IL-4, IL-4R, STAT3 and STAT6. These results also match
those published in [102].

Next, the response of Th cells was studied to two consecutive stimuli, first
a constant saturating concentration of IL-12, and then changing it to a sat-
urating concentration of IL-4. As shown in Figure 3.12(a), this combination
of signals has the result of eliminating the Th0 steady state. If the system is
in the Th0 state, the constant activation of IL-12 moves it to the Th1 state,
where it stays even after the inactivation of IL-12 and the constant presence
of IL-4. By contrast, if the system starts in the Th1 or Th2 states, the two
consecutive signals are incapable of moving the system to another attractor.
The steady state profile on IL-12 and IL-4 over-expression are shown in Table
3.3. Figure 3.12(b), shows the simulation results on applying the same per-
turbations as described above in the reverse order (i.e. activating IL-4 to its
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highest level, and then inactivating it and activating IL-12 instead). Results
are the same as before, shown in Figure 3.12(b). The only difference is that in
this simulation, the network in the Th0 states receives the IL-4 and moves to
Th2, where it stays after the elimination of IL-4 and the activation of IL-12.

These simulations show that Th0 state is unstable under the perturbation
of IL-12 or IL-4, which act as differentiation signals to take the system to the
Th1 or Th2 states, respectively. By contrast, the Th1 and Th2 states are
stable under the perturbation of the IL-4 and IL-12 nodes. These results are
in total agreement with experimental data [94] and reported simulations of the
Th network using a different mathematical framework [102]. In the literature,
modeling of Th cell differentiation at the molecular level has been shown to
be very useful to bring insight into the origin of the unexpected phenotypes.
By using the algorithms proposed in this chapter one can easily perform such
simulations in silico.

3.7 Summary

In this chapter, we started with an informal description of biological func-
tionalities in a GRN in terms of Boolean functions. We then introduced a
modeling approach for GRNs based on Boolean algebra and discrete methods,
reminiscent of the style used in digital circuit synthesis and verification. A
common formalism for both synchronous and asynchronous dynamics mod-
eling approach was then introduced. Differences between the two dynamic
models and their impact on computational results were discussed. It was
shown that asynchronous modeling can be a far more computation intensive
than the synchronous modeling of the same GRN. An algorithm based on
combined synchronous-asynchronous modeling was then introduced to reduce
the computation time for attractors in asynchronous circuits. Finally, the
Boolean formulation was modified to simulate gene perturbation experiments
in silico. By showing a biologically motivated example of T-Helper GRN, we
demonstrated a practical application of algorithms proposed in this chapter

The formalism proposed in this chapter assumes that genes (or proteins)
can only exist in two expression states (i.e. active and inactive). This assump-
tion is not biologically impractical as most of the protein signaling in practice
have a switch-like behavior. However, one can easily come up with a few ex-
amples of proteins that show different functionalities at more than two levels
of activation. To address this issue, the next chapter extends the modeling
approach proposed in this chapter to multiple activations levels of nodes in a
GRN.
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Boolean modeling of GRNs inherently assumes the binary nature of cellular
signaling represented by the protein being active or inactive. Although the
assumption of only two states of protein activity is not entirely inappropriate
in biology, at least a few proteins are known to biologists that demonstrate
different functionalities when present in more than two activity states. For
example, activation of a pro-survival protein Akt occurs via its phosphorylation
of two residues Ser473 and Thr308. Mutational analysis has shown that while
phosphorylation at Thr308 is sufficient to activate Akt, phosphorylation at
both its residues is required for the maximal activation of Akt [32, 121]. To
model such a behavior in GRNs, it is important that Akt is modeled at more
than two levels of activity in a GRN.

This chapter extends the formalism proposed for Boolean modeling in the
previous chapter so as to model GRNs where genes (or proteins) can have three
or more activation states. The chapter starts with an introduction to 1-hot
encoding, a commonly used methodology for mapping multiple valued models
on Boolean models. Sections 4.2 and 4.3 show the application of multiple
valued models on the T-Helper cells and Arabidopsis thaliana GRNs. Finally,
Sections 4.4 and 4.5 extend the multiple valued formulation to sigmoid function
representation of protein activation functions.

4.1 1-hot encoding of GRNs

Multiple valued modeling of GRNs where a gene (or protein) can have more
than two levels of expressions can also be modeled using the algorithms given in
Chapter 3. Unlike in Boolean models, where a single function can specify rules
to activate a node at both low and high expression states, a different function
is required to specify the activation of nodes at each activity levels in multi-

59



60 Multiple Valued Modeling

A B

C

Figure 4.1: A synthetic GRN.

Table 4.1: Multiple valued transition rules for the GRN in Figure 4.1.

Gene Name
Transition rules

Low Medium High

c a = l, b = l a = m, b = m a = m, b = h

c a = l, b = m a = l, b = h a = h, b = m

c a = m, b = l a = h, b = l a = h, b = h

a b = h b = m b = l

b a = l a = m a = h

valued logic. For example Table 4.1 specifies the input output relationship for
the activation of the node C in the GRN of Figure 4.1.

Nodes that have multi-valued activation states (such as such as low, medium
and high) can be encoded into Boolean representation using the concept of 1-
hot encoding. Under 1-hot encoding, each variable that can take up to n values
is represented by a Boolean vector of length n. Therefore, unlike Boolean logic
where a gene expression state is represented by a Boolean variable xi, in the
multiple valued logic, a gene expression is represented by using a binary vector
xi of length n. The jth entry of the vector xi is 1 (i.e. xi,j = 1) if the variable
i takes the expression level j. Otherwise xi,j = 0. For example, if a gene i

has three expression levels : low, medium and high (given by 0, 1 and 2), then
these levels can be represented as 001, 010 and 100 respectively. This encoding
scheme is commonly known as 1-hot encoding [46].

In the multiple valued modeling of GRNs, in addition to the connectivity
graph (Figure 4.1), a rule table in the format of Table 4.1 is given. If we use
1-hot encoding to implicitly represent each column of Table 4.1, we can treat
each expression state i of the node c as a Boolean function xc,i(t + 1) of the
expression states of the input nodes a and b. For example Equation 4.1 gives
the Boolean function for the medium expression state of the node c.

xc,1(t + 1) = (xa,1 ∧ xb,1) ∨ (xa,0 ∧ xb,1) ∨ (xa,1 ∧ xb,0) (4.1)

Equation 4.1 can be generalized to Equation 4.2 and 4.3, where xt
i,j is the

boolean variable for the jth expression level of the gene i at the time instant
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t. Equations 4.2 and 4.3 are the counterpart of Equations 3.1 and 3.2 in
Section 3.2 for Boolean modeling of GRNs.

xi,j(t + 1) =

(
ni,j∨

p=1

fi,j,p(t)

)
(4.2)

fi,j,p(t) =




∧

k∈Ri,j,p

xt
k


 (4.3)

x ∈ {0, 1}

∧ and ∨ represent logical AND and OR

ni,j is the number of rules for the jth logic level of gene i

Ri,j,p is the tuple {a, b} of variables and logic levels in transition rules

Similar to Boolean modeling, a state of the network is represented by a
Boolean vector xt of size

∑N
i=1 li, where N is the number of genes in the net-

work and li is the number of expression levels of the gene i. Each gene has
li continuous bits in the vector xt representing the corresponding logic levels.
Only one of these li bits can be 1 since a gene can only be at one expression
level at any given instant of time. Another similar Boolean vector xt+1, is used
to represent the status of the genes at the next time step. The transition func-
tion Ti(x

t,xt+1) given in Chapter 3 for the synchronous model (Equations 3.3)
and the asynchronous model (Equations 3.7) are slightly modified to Equa-
tions 4.4 and Equations 4.5 respectively. The combined transition function
T (xt,xt+1) remains the same as in Equations 3.4 and 3.8 for the synchronous
and asynchronous models respectively.

Ti(x
t,xt+1) =

li∧

j=1

(
xt+1

i,j ↔ xi,j(t + 1)
)

(4.4)

Ti(x
t,xt+1) = {

li∧

j=1

(
xt+1

i,j ↔ xi,j(t + 1)
)
} ∧

∧

k 6=i

{

lk∧

j=1

(
xt+1

k,j ↔ xt
k,j

)
} (4.5)

With the modified transition functions, algorithms as given in Sections 3.2.4
and 3.3.1 for Boolean models can be used for synchronous, asynchronous
and combined synchronous-asynchronous modeling of the multi-valued GRNs.
In the next two sections, we model multi-valued T-Helper and Arabidopsis
thaliana GRNs using the above formalism.

4.2 Multiple valued T Helper network

We modeled the multi-valued T-helper Network (Figure 4.2) introduced in [99].
This network has four genes at three levels of activation: low, medium and
high. All the other genes have only two levels: low and high. The transition
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Figure 4.2: T-Helper Gene Regulatory Network.[99]

Table 4.2: Steady States Observed in Wild Type and Mutated T Helper Gene Network
(Figure 4.2).

Perturbed Active genes in steady states Cell
gene Type

All the genes at low activation level Th0
Wild IFN-γ(h) T-bet(h) SOCS-1(h) IFN-γR(m) STAT-1(m) Th1
Type IFN-γ(m) T-bet(m) SOCS-1(h) IFN-γR(m) STAT-1(m) Th1

GATA-3(h) STAT-6(h) IL-4R(h) IL-4(h) Th2

IL-12+/+

IFN-γ(h) T-bet(h) SOCS-1(h) IFN-γR(m) STAT-1(m) Th1
IL-12(h) IL-12R(h) STAT-4(h)
IFN-γ(m) T-bet(m) SOCS-1(h) IFN-γR(m) STAT-1(m) Th1
IL-12(h) IL-12R(h) STAT-4(h)
GATA-3(h) STAT-6(h) IL-4R(h) IL-4(h) IL-12(h) Th2

IL-4+/+

IFN-γ(h) T-bet(h) SOCS-1(h) IFN-γR(m) STAT-1(m) Th1
IL-4(h)
IFN-γ(m) T-bet(m) SOCS-1(h) IFN-γR(m) STAT-1(m) Th1
IL-4(h) )
GATA-3(h) STAT-6(h) IL-4R(h) IL-4(h) IL-12(h) Th2

rules describing the expression of different genes are given in Table 4.3. When
this network was run through genYsis, it found four wild type (without any
mutation) steady states shown in Table 4.2. These steady states match the
ones reported in [99].

We also tried two mutations, IL-12+/+ (i.e. IL-12 over-expressed) and IL-
4+/+ (i.e. IL-4 over-expressed). The steady states are listed in Table 4.2.
Both the mutations remove the Th0 cell state from the GRN. This is also in
correspondence with the results results reported in [99] and have similarities
with Boolean steady states reported in Table 3.3 in Chapter 3.



4.2. Multiple valued T Helper network 63

Table 4.3: Multiple valued transition rules for T-helper network.

Name
Transition rules

Low Medium High

IFNg IRAK(h) STAT4(h) STAT4(h),IRAK(h)
default STAT4(h),T-bet(m) STAT4(h),IRAK(h),T-bet(m)

IRAK(h),T-bet(m) STAT4(h),IRAK(h),T-bet(h)
T-bet(m) STAT4(h),T-bet(h)

IRAK(h),T-bet(h)
T-bet(h)

IRAK default IL18R(h)

STAT4 IL12R(h),GATA3(h) IL12R(h)
GATA3(h)

default

IL4 STAT1(m) GATA3(h)
STAT1(m),GATA3(h)

STAT1(h)
STAT1(h),GATA3(h)

default

STAT1 default IFNbR(h) IFNgR(h)
IFNgR(m) IFNbR(h),IFNgR(h)

IFNbR(h),IFNgR(m)

GATA3 STAT6(h),T-bet(m) STAT6(h)
STAT6(h),T-bet(h)

T-bet(m)
T-bet(h)
default

IFNgR SOCS1(h) IFNg(m) IFNg(h)
default IFNg(m),SOCS1(h)

IFNg(h),SOCS1(h)

SOCS1 default STAT1(m)
STAT1(m),T-bet(m)
STAT1(m),T-bet(h)

STAT1(h)
STAT1(h),T-bet(m)
STAT1(h),T-bet(h)

T-bet(m)
T-bet(h)

IL12 default

STAT6 default IL4R(h)

T-bet STAT1(m),GATA3(h) STAT1(m) STAT1(m),GATA3(h),T-bet(h)
STAT1(h),GATA3(h) STAT1(m),GATA3(h),T-bet(m) STAT1(m),T-bet(h)

STAT1(h),GATA3(h),T-bet(m) STAT1(m),T-bet(m) STAT1(h)
STAT1(h),GATA3(h),T-bet(h) T-bet(m) STAT1(h),T-bet(m)

GATA3(h) STAT1(h),T-bet(h)
GATA3(h),T-bet(m) T-bet(h)
GATA3(h),T-bet(h)

default

IL4R IL4(h),SOCS1(h) IL4(h)
SOCS1(h)

default

IL12R IL12(h),STAT6(h) IL12(h)
STAT6(h)

default

IL18 default

IFNbR default IFNb(h)

IL18R IL18(h),STAT6(h) IL18(h)
STAT6(h)

default

IFNb default
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Figure 4.3: Arabidopsis thaliana Gene Regulatory Network. [20]

The analysis performed on the T-Helper model permits the identification of
all the stable states observed in the biological system, specifically under wild-
type conditions. It is straightforward to modify the model so as to describe the
situation where there are knock-downs and over-expressions. This capacity to
simulate mutants helps both to validate the model and to help interpret the
behavior in the presence of mutations and drug stimuli.

Published quantitative data on the expression of the molecules represented
in the Th regulatory network is currently lacking. Hence, it would be very
instructive to model the Th network at different levels of granularity with
respect to the levels of activation of its nodes, so as to know which steady
states are obtained regardless of the underlying modeling approach. Moreover,
it is important to compare the result of mutants in the model, so as to validate
it against experimental data. GenYsis provides a way to biologists to perform
these experiments in silico and test the validity of the network with respect to
the experimental data.

4.3 Arabidopsis thaliana network

Flowers of Arabidopsis thaliana are formed by four concentric whorls of organs
made of four sepals (the outermost whorl), four petals, six stamens and two
fused carpels (the innermost whorl). This organization of the flower can be
disrupted by mutations in a series of genes. The analysis of such mutations led
to the proposition of a combinatorial schema, called the “ABC model”, which
has been used extensively to describe the morphology of Arabidopsis flowers,
both in a wild type and mutant backgrounds [35]. The ABC model postulates
the existence of three different abstract activities, namely A, B, and C, each of
which is present in sets of two adjacent whorls. Whichever the nature of the
molecular mechanism, the particular combination of these activities determines
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the identity of the organs that will develop in a particular whorl. Specifically,
the sole presence of the A activity will determine the differentiation of the
underlying tissue into sepals. The combination of A and B activities, however,
determine the differentiation of petals. The combination of B and C leads to
a production of stamens. And finally, the C activity by itself determines the
development of carpels. Additionally, the ABC model postulates a mutual
inhibition between activities A and C, such that when function A is absent
function C substitutes it and vice versa.

Many genes involved in Arabidopsis thaliana flowering and flower morpho-
genesis have been identified. This has permitted the cloning and analysis of
expression patterns of the genes. Moreover, there is already a wealth of infor-
mation related to the phenotype associated with alteration in gene expression.
All the known experimental information lead to the proposition of the regula-
tory network that controls the flower morphogenesis in Arabidopsis [101, 100].
This first model was later enlarged by the incorporation of new genes and inter-
actions [20]. The initial versions of the flowering model used binary variables
to represent the activation of genes. The more recent version of the model
[20] used both two- and three-valued variables to represent the levels of gene
activation. In this case, the model showed patterns of expression that could
be compared directly with those observed not only in the mature flower, but
also in the inflorescence meristems and floral organ primordia. Finally, in all
versions of the Arabidopsis model it was possible to simulate the effect of null
mutations, obtaining results that were qualitatively correct with the published
experimental data.

Here, we show the application of genYsis on the arabidopsis network pub-
lished in [20] with both two and three levels of expression of gene activation.
The network used is as shown in Figure 4.3. The rules encoding the interac-
tions of genes are in a similar format as for the T Helper Cell Network in the
previous section.

GenYsis found 10 wild type steady states on the GRN in Figure 4.3. These
steady states are listed in Table 4.4 and match the ones reported in [20].
Of the 10 steady states listed in Table 4.4, four steady states represent the
inflorescence meristems and the remaining six steady states correspond to the
formation of different parts of the flower, namely: stamens (St), carpel (Car),
petals (Pt) and sepals (Sp). In addition to the wild type experiment, we tried
AP3 and AP2 gene knock-downs. The steady states reported are listed in
Table 4.4. As one can see from Table 4.4 that by knocking down AP3, GRN
does not show the steady states corresponding to formation of stamens and
petals. On the other hand, on knocking down AP2, steady states corresponding
to sepals and petals are missing. This biologically corresponds to the loss
of ability of the formation of these organs in the flower carrying the gene
mutations. These steady states match the cell states reported in experimental
data published [156, 115] and [86]. The same results were also reported in [20].
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Figure 4.4: Simulation of Equation 4.6, displaying the sigmoid approximation of
discrete Boolean function with varying values of the gain parameter h.[99]

Table 4.5: Steady states of the T-helper GRN in Figure 3.11.

Active genes in steady states Cell
Type

All the genes are inactive Th0
IFN-γ (m) T-bet (h) SOCS-1 (h) IFN-γR (m) Th1
IFN-γ (m) T-bet (m) SOCS-1 (m) IFN-γR (m) Th1
IL-10 (h) IL-10R (h) GATA-3 (h) STAT3 (h) STAT6 (h) IL-4 (h) IL-4R (h) Th2

If all the gene expressions xi are to be modeled at li discrete expression
levels, then the Equations 4.6 and 4.7 can be discretized at these discrete levels
to give the multiple valued rules (in the format used in Section 4.2). We now
model again the small T-Helper network in Section 4.2 and the bigger T-helper
network used in Section 3.6 by inferring the multiple valued rules using the
above sigmoid function. Each node in the GRN is modeled at three levels of
activation, specified by xi = 0, xi = 0.5 and xi = 1.0 in Equation 4.6. These
activation levels qualitatively correspond to the low, medium and high activa-
tion levels of a gene (or protein). In the following simulations, the parameter
h is chosen as 3 and all the α and β are assigned the value 1.

On modeling the T-helper network in Figure 3.11, we find four steady states
given in Table 4.5. Two steady states corresponds to Th1 cell state profile and
the remaining two steady states represent the Th0 and Th2 cell states. As
one can see the the gene expression profiles of Th0, Th1 and Th2 in Table 4.5
resembles the steady state profiles obtained from Boolean models (as given in
Table 3.3 in Chapter 3).

Similarly when the automatic extraction of rules is applied on the smaller
T-Helper network, which was modeled using biologically inferred multiple-
valued rules in Section 4.2, it gives five steady states (Table 4.6). Two steady
states represents the Th2 cell state and the remaining two represent the Th0
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Table 4.6: Steady states of the small T-helper GRN in Figure 4.2.

Active genes in steady states Cell
Type

All the genes at low activation level Th0
IFN-γ (m) T-bet (h) SOCS-1 (h) IFN-γR (m) STAT-1 (m) Th1

GATA-3 (h) STAT-6 (h) IL-4R (h) IL-4 (h) Th2
GATA-3 (m) STAT-6 (m) IL-4R (m) IL-4 (m) Th2

and Th2 cell states. The Th0, Th1 and Th2 activation profile of steady states
in Table 4.6 can be compared with the activation profile of steady states in
Table 4.2 obtained when the multi-valued rules were explicitly given.

From the above simulations, it is evident that automatic extraction of rules
using Equation 4.6, can serve as an alternative for generating multiple values
rules when explicit information linking the expression states of genes at more
than two activation levels is not available. Another advantage of computing
gene expression evolution using the Equations 4.6 and 4.7 is that the expression
is continuous between ‘0’ and ‘1’ level and the sigmoid function approximates
to Boolean function. Therefore, one can also use a combined Boolean and
ODE (represented by the above sigmoid function) technique as we will show
in the next section.

4.5 Combined Boolean-ODE formalism

The sigmoid function in Equation 4.6 was originally proposed in [99] for com-
bined Boolean-ODE simulations. Dynamics of the network using the sigmoid
function in Equation 4.6 can be represented by a system of coupled ODE’s
specified in Equation 4.8, where γi represents the decay parameter of the ex-
pression of a node.

dxi

dt
= xi(t + 1)− γixi (4.8)

Equation 4.8 is a nonlinear differential equation and can be solved using
numerical integration techniques. To compute the steady state behaviour of
a GRN, Equation 4.8 is simulated starting from an initial assignment to xi’s,
until the system of ODE’s converge to a steady state. However, identifying
starting configurations of variable xi’s so as to discover different steady states
of the GRN can be a cumbersome task. To address this issue, if the parameter
h in Equation 4.6 is chosen such that the sigmoid function is not very far from
the discrete Boolean function then, one can use the steady states identified
in Boolean modeling of GRNs as a starting configuration of xi’s in Equa-
tion 4.8. This modeling technique has been applied in the simulation toolbox
SQUAD (Standardized Qualitative Dynamical Modeling Suite) which integrates
the Boolean and ODE formulation of GRNs. SQUAD implicitly makes use of al-
gorithms proposed in this thesis for computing the Boolean steady states and
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IL-12 IL-4

(a) Experiment A

IL-12IL-4

(b) Experiment B

Figure 4.5: Results of Gene Perturbation Experiments

then perform dynamic simulations using Equation 4.8 with Boolean steady
states as a starting configuration.

Using the continuous system of differential equations provides additional
functionalities on top of Boolean formalism, as the dynamics of GRNs can be
visualized in continuous time domain and gene perturbations can be applied at
different time points (and for varying time durations) mimicking the behaviour
of drug dosage. For example, Figure 4.5 presents the output from SQUAD for
the same gene perturbation experiments that were performed in Section 3.6
on Boolean formalism of GRNs. These simulations show that Th0 state is un-
stable under the perturbation of IL-12 (Figure 4.5(a)) or IL-4 (Figure 4.5(b)),
which act as differentiation signals to take the system into the Th1 or Th2 state
respectively. By contrast, the Th1 and Th2 states are stable when a second
pulse of IL-4 and IL-12 is given (Figures 4.5(a) and 4.5(b) respectively).

The genYsis toolbox has been integrated in SQUAD, which also acts as
a graphical user interface for algorithms proposed in Chapter 3 for Boolean
modeling of GRNs.

4.6 Summary

In this chapter, we presented methodologies for modeling multiple-valued GRNs.
We started with an extension to the formalism proposed in the previous chapter
by encoding multiple levels of gene expressions into Boolean variables using
the 1-hot encoding scheme. The modified formalism can make use of algo-
rithms proposed for Boolean modeling for computing the attractors in multi-
valued GRNs. Algorithms were applied on the multiple-valued T-Helper GRN
for modeling cellular differentiation and on the Arabidopsis thaliana GRN
for studying the formation of different organs of the flower. Then a sigmoid
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function based methodology was introduced for extracting the multi-valued
transition rules from the Boolean functions describing the gene regulation
mechanisms. By avoiding an explicit enumeration of rules that define gene
regulation at each activation level, one can apply algorithms developed for
Boolean modeling at various levels of discretisation. Finally, algorithms for
computing attractors in Boolean modeling were integrated with the sigmoid
function based ODEs demonstrating a combined Boolean-ODE modeling ap-
proach. The integration of Boolean algorithms of genYsis with the ODE
formulation in SQUAD provides a notion of time scale to the dynamics of GRNs
and also facilitates a graphical user interface for genYsis.





Probabilistic Boolean

Networks 5
Even though Boolean networks have been used successfully in the past to
model various real gene regulatory networks [20, 102, 74], their inherent de-
terministic nature and Boolean logic have been a central issue of criticism.
Non-determinism in gene regulatory networks may exist for various reasons.
For instance, a protein may not bind to its operation site (leading to loss of
functionality represented by the GRN) or multiple functions may exist to ex-
plain the behaviour of a gene in similar circumstances. Such non-deterministic
behaviour is difficult to accommodate in Boolean networks. This prompted
researchers in [65] to propose a probabilistic extension of Boolean networks
termed as probabilistic Boolean networks (PBNs).

In a PBN, behaviour of a gene can be described with multiple Boolean
functions. Each function has a probability associated with it and there is at
least one function corresponding to each gene that can predict its expression as
a function of the expressions of the input genes. If all the genes have only one
function then a PBN is similar to a BN. Alternatively, a PBN can be seen as a
set of BNs. In that case, each BN has a probability equal to the product of the
probabilities associated with the Boolean functions of which it is composed.
Although most analysis on PBNs are done by looking at the latter description
of a PBN, in this chapter we look at the equivalent former description and pro-
pose a more suitable mathematical model for efficient analysis of probabilistic
gene regulatory networks.

This chapter extends the deterministic Boolean formalism proposed in
Chapter 3 for implicit modeling of GRNs to PBNs. The chapter starts with
the PBN formulation as proposed by [65] in Section 5.1. Then an improved
formalism of PBN is proposed in Section 5.2 which is suitable for implicit repre-
sentation and traversal of PBNs. Algorithms based on implicit representation
are given in Section 5.3 for modeling some interesting functionalities of PBNs.

73
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(a) Probabilistic Boolean Network (b) Boolean Network 1 (c) Boolean Network 2

Figure 5.1: (a) A sample PBN. There are two variables a and b and four functions f
(a)
1 = a ∧ b,

f
(a)
2 = ¬a ∧ ¬b, f

(b)
1 = a ∧ ¬b and f

(b)
2 = ¬a ∧ b. Arrow headed edges represent activation and circle headed

edges represent inhibition. (b) A Boolean network formed by selecting only f
(a)
1 and f

(b)
1 . (c) A Boolean network

formed by selecting only f
(a)
1 and f

(b)
2 .

The chapter finishes with the computational results of improved methodology
for modeling PBNs.

5.1 Problem formulation

A PBN is defined by the triplet (V, F, C), where V = {v1, v2, ..., vN} is the
set of Boolean variables. Each variable vi is described by a set of Boolean
functions, Fi = {f

(i)
1 , f

(i)
2 , ..., f

(i)
|Fi|
}. Each function f

(j)
i has a probability (or

chance of selection) associated with it, which is given by the real number c
(j)
i .

Using this terminology, F = {F1, F2, ..., FN} and C = {C1, C2, ..., CN}, where

Ci = {c
(i)
1 , c

(i)
2 , ..., c

(i)
|Fi|
} such that

∑|Fi|
j=1 c

(i)
j = 1. A sample PBN is shown in

Figure 5.1(a). In this figure, each variable can be described by two functions.
When a PBN (V, F, C) is used to represent a GRN, V = {v1, v2, ..., vN}

correspond to the genes (or proteins) where N is the number of genes (or
proteins) in the GRN. For each vi, a corresponding set of Boolean functions
Fi represent the Boolean relation between vi and the genes that can have an
influence on vi. The probability values c

(i)
j represent the confidence on using the

function f
(i)
j to explain the dynamics of vi. PBN of Figure 5.1(a) correspond

to a GRN of Figure 5.2.
A particular realisation of the PBN is given by the vector f = {f (1), f (2), ..

., f (N)} taking values in F1 × F2 × ...× FN . By this definition, the number of
possible realisations NR of a PBN is given by Equation 5.1 :

NR =
N∏

i=1

|Fi| (5.1)

Each realisation of a PBN represents a Boolean network. All possible
realisations of a PBN can be represented by using an NR×N matrix K where
every row i represent one of the possible network realisations of PBN given by
the vector fi. Then the probability Pi that a network realisation i is selected
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Figure 5.2: A Gene Regulatory Network corresponding to PBN in Figure 5.1(a).

vavb f
(a)
1 f

(a)
2 f

(b)
1 f

(b)
2

00 0 1 0 0
01 0 0 0 1
11 1 0 0 0
10 0 0 1 0

Table 5.1: Boolean functions corresponding to PBN in Figure 5.1(a).

is given by Equation 5.2, where c
(j)
Kij

defines the probability of choosing the
function defined by kij for the gene vj.

Pi =
N∏

j=1

c
(j)
kij

(5.2)

Example 5.1.1 The PBN in Figure 5.1(a) is defined by the triplet (V, F, C)

where V = {a, b}, F = {{f (a)
1 , f

(a)
2 }, {f

(b)
1 , f

(b)
2 }} and C = {{c(a)

1 , c
(a)
2 },

{c
(b)
1 , c

(b)
2 }}. The Boolean functions in F are defined as in Table 5.1.

The given PBN can have four possible realisations (NR = 2 · 2), given by
the matrix K in Equation 5.3, where the columns of K correspond to the
nodes a and b and rows correspond to different PBN realisations.

K =




1 1
1 2
2 1
2 2


 (5.3)

The first row of matrix K defines the PBN realization vector f1 = {f
(a)
1 , f

(b)
1 }

(Figure 5.1(b)), the second row defines the realization vector f2 = {f
(a)
1 , f

(b)
2 }

(Figure 5.1(c)) and so on. The probability of selecting the PBN realization

f1 is given by P1 = c
(a)
1 · c

(b)
1 . ¥

Let us define a Boolean vector xt of size N , that represents the state of the
network at time t. Gene vi is ON or active at time t if xt

i = 1 and the gene vi is
OFF or inactive if xt

i = 0. The probability of making a transition from a state
xt to state xt+1 can be computed by using Equation 5.4 [65].

P (xt,xt+1) =
∑

i:f
(1)
Ki1

=xt+1
1 ,...,f

(N)
Kin

=xt+1
N

Pi (5.4)
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Figure 5.3: State Transition Diagram corresponding to Figure 5.1(a). States 00,01 and 10 form an
attractor. Labels on the edges represent the probability of transition

Example 5.1.2 For the PBN in Example 5.1.1, the probability of transition
from the state {a = 0, b = 0} to the state {a = 1, b = 0} is given by :.

P (00, 10) = P3 + P4

= c
(a)
2 · c

(b)
1 + c

(a)
2 · c

(b)
2

In the above equation, the probability of transition P (00, 10) is computed
using Table 5.1, Equation 5.3 and Equation 5.4. The state transition dia-
gram representing probability of transition among all possible 2N states of
Figure 5.1(a) is as shown in Figure 5.3. The values on the edges in Figure 5.3
represent the probability of transition computed using Equation 5.4. ¥

The state transition diagram of PBNs can be modeled as Markov Chains
comprising of 2N states and the state transition matrix A given by Equation 5.5
[65].

A(xt,xt+1) = P (xt,xt+1) (5.5)

Using the transition matrix A, the Power method can be used to compute
the steady state probability distribution. In this method, given an initial
probability distribution vector x(0), Equation 5.6 is iterated until the condition
in Equation 5.7 is satisfied for some tolerance ε.

x(k) = Ax(k−1) (5.6)

‖x(k) − x(k−1)‖∞ < ε (5.7)

Once the matrix A has already been constructed for a given PBN, Equa-
tions 5.6 and 5.7 have been observed to converge in a few iterations [145].
However, the above formalism is not fully suitable for large GRNs due to the
following reasons :

• The computational complexity of Equation 5.4 is O(NR), where NR is
the number of possible PBN realisations. If each of the N genes in the
network has two possible functions, then Equation 5.1 implies NR = 2N .
This in turn implies that Equation 5.4 can not be used for networks
that have a very large number of genes ( i.e. N) even if the number of
alternate functions for each gene is as small as 2.



5.2. Modified formulation 77

• Construction of the state transition matrix, as defined by [65], has the
computational complexity of O(NR ·2

N ·2N). Under synchronous transi-
tion assumption the matrix A may have at most NR ·2

N non-zero entries
[67]. Based on this observation, an improved algorithm was proposed in
[145] that computes only those transitions that have non-zero probabili-
ties and hence reduces the complexity of the construction of the matrix
A to O(NR · 2

N). Even with this reduced complexity, the factor NR can
be very large for even simple networks as we described in the previous
point. Even if NR is small, an explicit construction of the transition
matrix still has an exponential complexity.

• Computing a steady state distribution using Equations 5.6 and 5.7 de-
pends upon the starting distribution x(0). In the case of multiple at-
tractors, different steady state probability distributions may be found
depending upon the chosen x(0). This is an issue because it is not pos-
sible to make a claim a priori on the number of attractors for a given
network using this method. Further, since it is more interesting to study
gene regulatory networks with multiple steady states (or cell states), the
current methodology prevents the user from exploiting the full function-
ality of PBNs.

In the next section, we show how these issues are addressed by using the
implicit representation and traversal techniques based on ROBDDs and ADDs.

5.2 Modified formulation

First we introduce a modified form of Equation 5.4 to reduce the complexity
of computing the probability of transition Pi from O(NR) to O(ÑR), where

ÑR is given by Equation 5.8.

ÑR =
N∑

i=1

|Fi| (5.8)

In Equation 5.8, ÑR can also been seen as the number of Boolean functions in
a given PBN. The modified formula for computing the probability of transition
P (xt,xt+1) is then given by Equations 5.9 and 5.10:

Pi(x
t,xt+1) =

∑

j:f
(i)
j =xt+1

i

c
(i)
j (5.9)

P (xt,xt+1) =
N∏

i=1

Pi(x
t,xt+1) (5.10)

In Equation 5.9, 0 ≤ Pi(x
t, xt+1) ≤ 1 and it is equal to the sum of the prob-

abilities associated with all those functions f
(i)
j for which the expression of
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gene vi at time t + 1 matches the function evaluation (i.e. f
(i)
j = xt+1

i ). The
probability of transition of the state of the gene regulatory network from xt to
xt+1 is given by the product of the transition probabilities of all the genes and
is defined by Equation 5.10. The computational complexity of Equation 5.10
is O(ÑR). To get an idea of the improvement in complexity with this modified

equation, if each gene can have k functions then ÑR = k · n, whereas N = kn

in Equation 5.1. Mathematically, Equations 5.4 and 5.10 are equivalent.
However, using this modified equation may not help in reducing the com-

plexity of constructing the transition matrix A as the number of non-zero
elements in the matrix are O(NR · 2

N) and using this modified equation for
each non-zero entry would only increase the computational complexity to
O(ÑR ·NR ·2

N). If the size of the transition matrix A could be reduced so that
the number of nonzero entries are significantly smaller than O(NR · 2

N), then
using this modified equation could be helpful. This is the central idea behind
the ROBDD based technique proposed in this chapter. We compute the steady
states (or attractors) using an implicit representation based on ROBDDs and
compute the transition matrix (implicitly using ADDs) only for the states re-
stricted to the attractors. This way the size of the matrix A is proportional
to the size of the attractor. Although it is difficult to put a bound on the
number of states in an attractor, it has been observed that it is often a small
number [145]. Dividing the problem of computing the steady state distribution
into two parts ensures that in the event of a situation in which the size of an
attractor becomes very large to be represented as ADDs, our algorithm is at
least able to detect the states in the attractor. However, we may not be able
to compute the probability distribution of these states in that situation.

5.2.1 Implicit formulation

We start by giving a modified formulation of the transition functions Ti(x
t,xt+1)

and T (xt,xt+1) given in Chapter 3. With the modified transition functions,
algorithms proposed in Chapter 3 can be used for computing the attractors of
the PBN formulation of GRNs.

Given a PBN, a gene expression xi can have only two states ‘0’ and ‘1’.
Since there are multiple functions f

(i)
j acting on the gene xi at the same time,

there is a possibility that some of the functions set the expression of the gene
xi to ‘0’ and some others may set the expression to ‘1’. The transition function
Ti(x

t,xt+1) describing the relationship between the expression of a gene xi at
time t + 1 and the expression of all the other genes in the GRN at time t is
given in Equation 5.11.

Ti(x
t,xt+1) = {xt+1

i ⇔

|Fi|∨

j=1

f
(i)
j }

︸ ︷︷ ︸
I

∨{xt+1
i ⇔

|Fi|∧

j=1

f
(i)
j }

︸ ︷︷ ︸
II

(5.11)

Part (I) of Equation 5.11 represents the situation when one of the input func-
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tions f
(i)
j can set the expression of gene vi (given by xt+1

i ) to 1. Part (II) of

Equation 5.11 represents the case when one of the input functions f
(i)
j can set

xt+1
i to 0.

If all the genes in the network are assumed to make a synchronous transition
then the transition function representing the state of the network between
consecutive time steps can be given by Equation 5.12 :

T (xt,xt+1) =
N∧

i=1

Ti(x
t,xt+1) (5.12)

Equations 5.11 and 5.12 are the counterpart of Equations 3.3 and 3.4 re-
spectively, proposed for synchronous Boolean modeling in Chapter 3. With the
modified transition functions, Algorithm 2 proposed in Chapter 3 can be used
for computing all the attractors. Now for every attractor, we can construct
the matrix A(xt,xt+1) restricted to the states in that attractor and compute
the steady state probability distribution for those states.

Equation 5.9 can also be computed symbolically using Equations 5.13 and
5.14.

q
(i)
j = (xt+1

i ⇔ f
(i)
j ) · c

(i)
j (5.13)

P̃i(x
t,xt+1

i ) =

|Fi|∨

j=1

q
(i)
j (5.14)

The probability of transition of the state of the network is then given by
Equation 5.15.

P̃ (xt,xt+1) =
N∧

i=1

P̃i(x
t,xt+1) (5.15)

Equations 5.14 and 5.15 can be computed implicitly using the algorithms given
in the next section.

5.3 PBN Functionalities

PBNs can be used for performing various interesting computational analysis.
For instance, computation of steady states, computation of the probability of
a path from one state of the network to another state and identification of
genes in a GRN that play a most important (or least important) role in the
dynamics of the PBN. These computational tasks have been addressed in the
literature [65, 67, 145]. However, existing tools use an explicit representa-
tion and modeling of PBNs, restricting their application to networks with no
more than 10 genes. In this section, we will give the algorithms to perform
above functionalities in an efficient manner on the implicit formalism of PBNs
introduced in the previous section.



80 Probabilistic Boolean Networks

Algorithm 6: Algorithm for computing the stationary distribution of
states in an attractor.

comp stationary distribution(T, P̃ , ε)1

begin2

SS = all attractors(T)3

for i = 1 to |SS| do4

Ssrc = SSi5

Sdest = SSi(x
t ←− xt+1)6

P̂ (xt,xt+1) = P̃ (xt,xt+1) ∧ Ssrc ∧ Sdest
7

q(0) = init vector(Ssrc, Ssrc)8

k = 09

while true do10

q(k+1) = \+xt

[
P̂ (xt,xt+1) · q(k)

]
11

if |\Max
xt

q(k+1) − \Max
xt

q(k)| ≤ ε then12

pSSi = q(k+1)
13

break;14

k = k + 115

return pSS
16

end17

5.3.1 Algorithm for computing steady state distribution

Algorithm 6 formally describes the procedure for computing the stationary
distribution of the attractors in a PBN. Algorithm 6 takes as input the tran-
sition function T (xt,xt+1) given in Equation 5.12, the transition probability

function P̃ (xt,xt+1) given in Equation 5.15 and the convergence factor ε. In
Line 3 of Algorithm 6, we compute all the attractors that exist in the state
space using the function all attractors() that was defined in Algorithm 2 of
Chapter 3. Then for every attractor identified in Line 3, the state space of
probability transition function is restricted to the states in that attractor (Line
7). The power method (i.e. Equations 5.6-5.7) for computing the stationary
distribution is executed in Lines 8-15. In Line 8, an initial distribution is com-
puted using the function init vector(S̃, S), which selects a random state from

the set of states S̃ and assigns it a probability 1. All the remaining states in
the set S are assigned the probability 0. Then starting from this initial distri-
bution, the probability distribution for the next iteration of the power method
is computed in Line 11. The operation \+xt

in Line 11 stands for arithmetic
existential quantification (defined in Chapter 2 in more detail). Then we check
for convergence of distribution in Line 12 (implements Equation 5.7) and the
iterations are terminated if the distribution has converged (Lines 13-14).
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Algorithm 7: Computing Forward and Backward reachable sets

forward set(S0,T,Starget)1

/∗ backward set(S0,T,Starget) ∗/2

begin3

RS(0) ←− ∅, FS(0) ←− {S0}4

k ←− 05

while FS(k) 6= ∅ do6

FS(k+1) = If (FS(k))(xt+1 ← xt) ∧RS(k)7

/∗ FS(k+1) = Ib(FS(k))(xt ← xt+1) ∧RS(k) ∗/8

RS(k+1) = RS(k) ∨ FS(k+1)
9

if RS(k+1) ∧ Starget 6= ∅ then10

return (RS(k+1))11

k ←− k + 112

/∗ Target is not reachable from source. Return Empty Set ∗/13

return ∅14

end15

5.3.2 Probability of a path

Given a path p(iÃ1 j) = (i, s1, s2, ..., sn, j) from state i to state j, the proba-
bility of this path, P (iÃ1 j) is given by Equation 5.16 :

P (iÃ1 j) = P (i, s1) · P (s1, s2) · .... · P (sn, j) (5.16)

There can be multiple paths between any two states and the probability
P (i Ã j) to go from a state i to state j is given by the sum of the probability
of all these paths. Summation of the probability of all the paths l maintains
the probability constraint, i.e. 0 ≤

∑
l P (i Ãl j) ≤ 1. To avoid making too

many P (i Ãl j) computations, we apply a constraint that only the shortest
paths (or paths with minimum number of steps) are enumerated between any
two states. This gives a lower bound on the probability P (i Ã j).

Given the state transition matrix A, a row vector y(0) of size equal to the
number of states in the state transition diagram is constructed. In this vector
y(0) all the entries are 0, except the entry corresponding to the source state
which is 1. Then Equation 5.17 is iterated until the condition in Equation 5.18
is satisfied.

y(k) = Ay(k−1) (5.17)

y(k)[dest] > 0 (5.18)

Intuitively, Equation 5.17 computes the probability of reaching a state i in k

iterations. The probability values are stored in the vector y(k). Equation 5.18
ensures that we terminate the iterations the first time we reach the destination
state.

Equations 5.17 and 5.18 have similar computational issues as the probabil-
ity distribution computation using Equations 5.6 and 5.7 in Section 5.3.1. But
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Algorithm 8: Computing set of states that lie on all shortest paths
between a source and destination

compute states path(T, Ssrc, Sdest)1

begin2

FR = forward set(Ssrc, T, Starget)3

Ssrc tmp = Ssrc(xt ← xt+1))4

Sdest tmp = Sdest(xt ← xt+1))5

BR = backward set(Sdest tmp, T, Ssrc tmp)6

SReduced = FR ∧BR(xt ← xt+1)7

return SReduced
8

end9

Algorithm 9: Algorithm for computing probability of transition from a
source state to a destination state in one or more transitions.

tran matrix path(T, P̃ , ssrc, sdest)1

begin2

S = compute states path(T, ssrc, sdest)3

if S = ∅ then4

/∗ Target is not reachable from source. Return NULL ∗/5

return NULL6

Ssrc = S7

Sdest = S(xt ←− xt+1)8

P̂ (xt,xt+1) = P̃ (xt,xt+1) ∧ Ssrc ∧ Sdest
9

q(0) = init vector(ssrc, S)10

k = 011

while true do12

q(k+1) = \+xt

[
P̂ (xt,xt+1) · q(k)

]
13

P (ssrc
Ã sdest) = \Max

xt

[
q(k+1) ∧ sdest

]
14

if P (ssrc
Ã sdest) > 0 then15

return P (ssrc
Ã sdest)16

k = k + 117

end18

again, if a smaller transition matrix A can be used then P (src Ã dest) can
be computed very efficiently. Using the implicit representation we described
earlier, here we propose algorithms that first compute the states that lie on all
the shortest paths between the source and the destination and then compute
Ã restricted to these states.

Algorithms 7, 8 and 9 can be used to compute P (iÃ j). Algorithms 7 and
8 compute the states that lie on the shortest paths between the source and the
destination states. In Algorithm 8, first the forward reachable states from the
source state are computed in Line 3. Then the backward reachable states from
the destination state are computed in line 6. The intersection of the forward
and the backward reachable states gives all the states that may lie on all the
paths between the source and the destination. To ensure that we include only
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the shortest paths while computing the forward and backward reachable states
in Algorithm 7, we compute reachable states only up to the point when the
target state is first seen (in line 10). Then Algorithm 9 restricts the state space
of the probability transition matrix to the states that lie on the shortest paths
in Line 9. The function init vector() assigns the probability 1.0 to the state
ssrc and the probability 0 to all the other states that lie on the shortest paths
between the source state and the destination state. Then Equations 5.17 and
5.18 are implemented as in Lines 10-17. In every iteration of the While loop
of Lines 12-17, the probability distribution in next step is computed in Line
13. Then in Line 14, we compute the probability of reaching the destination
state. If this probability is greater than zero then the iterations are terminated
and the resulting probability from the source state to the destination state is
returned.

5.3.3 Algorithm for sensitivity analysis

Another interesting functionality of PBNs is their ability to represent the in-
fluence of a gene on other genes in the network. This functionality can be very
useful in deciding the genes that should be perturbed to have the maximum
impact on the state space of the network. This impact could be in terms of
the size of the attractor, number of attractors or the probability of the reach-
ability from one state to another. The influence of a variable xi on a function
f(x1, x2, ..., xn) is given by Equations 5.19-5.21 [65], where ∂f(x)

∂xi
is the Boolean

difference of Function f(x) with respect to the variable xi.

Ii(f) = Pr

{
∂f(x)

∂xi

= 1

}
(5.19)

= Pr {f(xi = 0) 6= f(xi = 1)} (5.20)

=
no. of x such that ∂f(x)

∂xi
= 1

2 size of vector x
(5.21)

Equation 5.22 can then be used to compute the influence of a gene vi on the
gene vj.

Ii(vj) =

|Fi|∑

k=1

Ii(f
(j)
k ) · c

(j)
k (5.22)

This way an N × N influence matrix Γ can be constructed to represent the
influence of every gene on all the other genes.

In our implicit representation of PBNs, Equation 5.21 can be trivially com-
puted by enumerating cubes of the Boolean function ∂f(x)

∂xi
. This can be better

demonstrated with Example 5.3.1.
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Algorithm 10: Algorithm to compute Influence Matrix

compute influence matrix(F,C)1

begin2

for i = 1 to N do3

for j = 1 to N do4

for k = 1 to |Fi| do5

∂f
∂x

= ∃xi
(f

(j)
k ∧ ¬xi)⊕ ∃xi

(f
(j)
k ∧ xi)6

cubes drv = compute Cubes( ∂f
∂x

)7

cnt = 08

for p = 1 to cubes drv.size() do9

cnt + = 2n−num var support(cubes drv[p])
10

Γij+ = cnt
2n × c

(j)
k11

end12

Example 5.3.1 Given a Boolean function f(a, b, c) in Equation 5.23, it can
be rewritten in a sum of product SOP form as in Equation 5.24.

f = (a⊕̄b)c + bc (5.23)

f = āb̄c + bc (5.24)

In Equation 5.24, a three variable function f consists of two cubes āb̄c and
bc. Cube āb̄c has all the three variables in support and evaluates to true
for only one (= 23−3) Boolean vector (i.e. a = 0, b = 0, c = 1). Cube bc

has two variables in support and evaluates to true for two (= 23−2) Boolean
vectors {111, 110}. These two cubes together give three Boolean vectors
{001, 111, 110} for which function f can be true. ¥

In a ROBDD representation of a Boolean function, any path from root
node to 1-leaf node represents a cube. So computing cubes is very efficient
in BDDs and the number of cubes is always less than the number of possible
Boolean vectors. Based on cube enumeration, the method for computing the
influence matrix is formally described in Algorithm 10. In this algorithm, an
N × N influence matrix Γ is constructed in lines 3-11. The influence of gene
vi on vj (i.e. Γij) is computed in lines 5-11. A For loop is iterated (in Lines
5-11) over all the functions that may influence the gene vj. For each function,
the Boolean difference is computed in line 6. Then the cubes of the Boolean
difference are stored in an array in line 7. In lines 9-10, the number of Boolean
vectors for all the cubes are computed and the corresponding influence for this
function is finally added to Γij in line 11.

5.4 Results

In this section, we present the results obtained from the simulations on the
glioma network [49, 67]. Based on the glioma gene expression data set of
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Table 5.2: Boolean functions in glioma network.

Gene Id Gene Name Input Functions

1 Tie-2 f
(1)
1 (2, 13) f

(1)
2 (7, 14)

2 TGF-beta3 f
(2)
1 (1, 11, 12) f

(2)
2 (10, 13)

3 ERCC1 f
(3)
1 (2, 6) f

(3)
2 (4, 10, 11)

4 HSP40 f
(4)
1 (1, 3)

5 TDPX2 f
(5)
1 (1, 3)

6 GSTP1 f
(6)
1 (1, 2) f

(6)
2 (3) f

(6)
3 (9, 10, 8)

7 GNB1 f
(7)
1 (6)

8 NDPKB f
(8)
1 (6, 7) f

(8)
2 (9, 10, 11)

9 SCYB10 f
(9)
1 (6, 10, 8)

10 PDGFA f
(10)
1 (9, 3, 11)

11 NKEFB f
(11)
1 (8, 10) f

(11)
2 (12)

12 Beta Actin f
(12)
1 (11)

13 NFKB1 f
(13)
1 (1, 2, 11) f

(13)
2 (12, 14)

14 BCL2A1 f
(14)
1 (1, 4) f

(14)
2 (12, 8, 13)

[49], a small PBN of 14 genes was proposed in [67]. The 14 genes selected
in the Glioma Network (Table 5.2) play a very important role in the forma-
tion of blood vessels. Presence or absence of some of them can be used to
differentiate between a healthy cell and a tumor cell. For example, Tyrosine
Kinase receptors (Tie-2) along with angiopoietins plays an important role in
vasculogenesis [127] (formation of blood vessels), the excision repair cross-
complementing (ERCC1) gene helps in DNA damage repair, while mutations
in Nuclear Factor-Kappa B (NFkB) has been linked to the formation of tumors.
On modeling this network, we find a single attractor consisting of 4450 states.
Table 5.4 gives the number and size of attractors when different genes are per-
turbed in the glioma network. A gene is knocked out when it is constantly
inactive (i.e. level 0) and it is over-expressed when it is constantly active (i.e.
level 1). Table 5.4 represents the situation when some of the functions are

inactive in the glioma network. Function f
(i)
j in Table 5.4 represents the jth

function of gene vi. Further details of Functions f
(i)
j are given in Tables 5.2

and 5.3.
All the results obtained from simulations on the glioma network match

the results shown in [145]. The computation time of our algorithm was, at
maximum, 65 seconds on a 1.8 GHz Dual Core Pentium machine with 1GB of
RAM running on Linux Fedora Core 5. The algorithms are implemented in
C++ using the CUDD package for BDDs and ADDs. It is difficult to compare
the run time of our algorithms with the one achieved by the authors in [145]
since their program is not available in the PBN toolbox [66]. However, it
has been mentioned in their paper that it takes them 20 minutes to compute
the steady state distribution on a CPU Pentium 4 machine with 1GB RAM.
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Table 5.3: Truth table for input functions.

Input Vector f
(1)
1 f

(1)
2 f

(2)
1 f

(2)
2 f

(3)
1 f

(3)
2 f

(4)
1 f

(5)
1 f

(6)
1 f

(6)
2 f

(6)
3 f

(7)
1

000 0 1 1 0 0 0 0 1 1 0 0 1
001 1 0 1 1 1 1 1 0 0 1 0
010 1 1 0 1 1 0 - - 1 - 1 -
011 0 0 0 1 1 0 - - 1 - 1 -
100 - - 1 - - 0 - - - - 0 -
101 - - 0 - - 1 - - - - 1 -
110 - - 1 - - 1 - - - - 0 -
111 - - 0 - - 0 - - - - 1 -

Input Vector f
(8)
1 f

(8)
2 f

(9)
1 f

(10)
1 f

(11)
1 f

(11)
2 f

(12)
1 f

(13)
1 f

(13)
2 f

(14)
1 f

(14)
2

000 1 1 0 1 1 0 1 0 1 1 0
001 0 1 0 1 0 1 0 1 0 1 0
010 0 0 1 0 0 - - 1 0 1 1
011 0 0 1 0 1 - - 0 1 0 0
100 - 0 1 0 - - - 1 - - 1
101 - 0 0 1 - - - 1 - - 1
110 - 1 1 0 - - - 1 - - 0
111 - 0 1 0 - - - 0 - - 0

Table 5.4: Gene perturbation simulation

Gene Perturbed
Number Of Time

attractors states (sec)

Un-perturbed 1 4450 50

ERCC1 = 1 1 768 6

SCYB10 = 0 1 1920 33

NFkB1 = 0 1 2145 38

Table 5.5: Influence of Functions on Attractors.

Inactive Number Of Time
Function attractors states (sec)

f
(1)
2 1 4424 38

f
(3)
1 1 1633 27

f
(14)
2 1 3815 36

Table 5.6: Computational Results on Synthetic Data.

Number of Maximum Time (sec)
Alt. Functions Attractor Steady Probability

Genes 1 2 3 Attractors size States Distribution
20 10 10 0 2 844 0.6 8
20 9 8 3 3 288 0.8 3
40 30 10 0 8 1536 2 7
40 23 15 2 3 2684 3 30
60 41 19 0 12 4096 39 40
60 46 10 4 18 1536 120 20

Moreover, their software is written in MATLAB. The PBN toolbox in [66]
can not run networks that have more than 10 nodes as it quickly runs out of
memory. Even with a network of 10 nodes and two functions per gene, it takes
more than 1 hour to compute the state transition matrix.

Some results to benchmark our algorithm are given in Table 5.6. Columns
2, 3 and 4 represent the number of genes in the network with 1, 2 and 3
alternate functions per gene respectively. For most of the synthetic PBNs in
Table 5.6, more than one attractor can exist. Using the existing PBN toolbox
[66] it is not possible to simulate such networks as there will be no unique
steady state distribution. However, using algorithms proposed in this chapter,
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one can easily identify different attractors in the state space and compute the
stationary distribution of each attractor individually.

5.5 Summary

In this chapter, we proposed an extension of Boolean modeling formalism
proposed in Chapter 3 to PBNs. In practice, PBNs can be very helpful in
analysing the experimental data. Since the date coming from experimental
tools is always noisy, it is often possible to have more than one explanation for
the same observation. If the inference of underlying gene regulatory network
is the final aim of data analysis task, then multiple inferred functions can be
directly translated into PBNs and the dynamic analysis of resulting networks
can be performed. In the literature, the potential applications of PBN have
been restricted by the unavailability of efficient computational tools to model
large GRNs. PBN toolbox proposed in the literature use explicit methods
for constructing the state transition probability matrix and model it using
computational methods developed for Markov chains. However, the resulting
Markov chain is not guaranteed to have unique stationary distribution due to
the presence of multiple attractors. Algorithms proposed in this chapter can
address this issue by dividing the problem of computing stationary distribution
of attractors into: attractor computation and then computing the stationary
distribution of the states in all the attractors individually. Additionally, im-
plicit representation using ROBDDs and ADDs ensure that even large GRNs
can be modeled in a realistic run time.

PBNs model the stochasticity arising due to a choice between alternate
biological functions for activating a given gene (or protein) in a GRN. How-
ever, stochasticity in a GRN can also be induced due to inherent noise in the
biological function underlying the regulation of a gene (or protein). To address
the stochasticity arising from temporary function failure, we introduce in the
next chapter an extension of Boolean formalism which can also be generalised
to PBN.





Stochasticity in Gene

Regulatory Networks 6
Biological functions can have varying levels of complexity and hence, show
varying levels of stochasticity in their behaviour. Although it is experimentally
difficult to quantify the measure of stochasticity involved in different biological
functions, it is a well known fact that some functions, such as proteasome
degradation, are least prone to stochasticity while functions, such as scaffolding
complexes that integrate signals arising from different pathways, are likely
to behave most stochastically. In practice, most biological functions behave
somewhere between the above two extremes. Keeping this observation in mind,
the probability of stochasticity can be broadly classified into three different
classes, namely: low probability of error (ε ≈ 0), medium probability of error
(ε ≈ 0.5) and high probability of error (ε ≈ 1). Figure 6.1 gives an example of
a few biological functions divided into these different classes of stochasticity.

Traditionally, the stochasticity in Boolean models of GRNs is modeled by
flipping the expression of nodes in a GRN from 0 to 1 or vice versa with some
predefined flip probability [14, 90, 39, 114]. This model of stochasticity is
referred to as stochasticity in node (SIN) in this chapter. However, the SIN
model of stochasticity does not take into account the complexity of underlying
biological function while flipping the expression of a node.

This chapter introduces a new stochasticity modeling approach called the
stochasticity in functions (SIF) for Boolean models of GRNs. In the SIF model,
stochasticity is induced at the level of biological functions rather than at the
level of expression of a protein/gene. SIF associates a probability of failure
with different biological functions and models stochasticity in these functions
depending upon the expression of the input nodes. With the above two con-
straints in the SIF model, the probability of a node in the GRN flipping its
expression from 0-to-1 or vice-versa at a given time instant depends upon the
probability of function failure and the activity of other nodes in the network at

89
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ε ≈ 0 ε ≈ 0.5 ε ≈ 1

Proteasome, Phosphorylation, Scaffolding

Ribosome, etc. Transcription, etc. Complexes

Figure 6.1: Biological functions categorized into three different classes of stochasticity
and error probability. From left to right, biological processes are classified from very
stable structures to highly stochastic systems involving scaffold proteins.

that instant in time, thereby making it possible to integrate the stochasticity
due to complexity of a biological function with the dynamics of the GRN.

Example 6.0.1 A difference between the SIN and SIF models of stochas-
ticity can be better understood from Figure 6.2. In Figure 6.2, we model
a biological function that requires simultaneous activity of inputs A and
B to activate the protein C. Under the SIN model, probability of flipping
the expression of node C is given by P (C∆

SIN |C) = 0.5. While under the
SIF model, probability that node C shows a noisy behaviour is given by
P (C∆

SIF |A,B, f), which is a function of the biological phenomena f and its
inputs {A,B}. The table next to the figure represents the stochastic expres-
sion of C under the SIN and the SIF model. ¥

The chapter starts with an introduction to impact of stochasticity on the
dynamics of a GRN in Section 6.1. Then we formally introduce the SIN and
the SIF models of stochasticity in Section 6.2. Finally, the results on applying
the two models of stochasticity on T-helper and T-cell receptor networks are
compared and contrasted in Section 6.3.

A B C C∆
SIN C∆

SIF

0 0 0 1 0

0 1 0 1 0

1 0 0 1 0

1 1 1 0 0

Figure 6.2: A small example demonstrating the difference between the SIN and SIF
in terms of the activity of the output gene (or protein).
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6.1 Impact of Stochasticity

In modeling GRNs, one is often more interested in knowing the steady state
behavior of the network as compared to that of the transient states. This is
because in biological experiments, measurement and comparison of the tran-
sient states across multiple experiments is difficult as the dynamics may vary
in each experiment. Steady state behavior, which corresponds to the end point
of an experiment when all cells stabilise, is easier to measure and compare with
similar experiments. It is also experimentally easier to understand the impact
of stochasticity on the steady state behavior (by measuring the fraction of dif-
ferent cell phenotypes in an experiment). In the dynamic simulation of GRNs,
a state of the network evolves over time and stabilises in an attractor (or the
steady state). Hence, an attractor represents the long term behaviour of the
genes/proteins in the regulatory networks. Attractors (or the steady states) of
Boolean networks are hypothesized to correspond to the cellular steady states
(or phenotypes) [143, 139, 56]. In this chapter, we compare the results ob-
tained using SIN and SIF stochasticity models with respect to two properties
of steady states: (a) Cellular Differentiation in response to an external stimulus
and (b) Robustness of attractors.

6.1.1 Cellular differentiation

In the absence of stochasticity, all biological functions behave as per their
description and an initial state of the network differentiates into a specific
steady state. However, in the presence of stochasticity in these functions, a
network simulation starting from the same initial state may stabilise into differ-
ent steady states. The probability of differentiating into one steady state can
be different from the probability of differentiating into another steady state.
This simulation behavior can be used to explain the well known biological ob-
servation of emergence of phenotypically distinct subgroups within an isogenic
[111] cell population in response to an input stimuli (such as on exposure to
external ligands). A sample simulation experiment on a T-Helper Differenti-
ation network [102], as in Figure 6.3, can be effectively used to describe the
stochastic differentiation of näıve T-Helper cells (i.e., Th0) in response to a
pulse of IFNγ, a key cytokine known to play an important role in Th0 to Th1
differentiation.

In Figure 6.4(a), cells are initially in a näıve undifferentiated cell state
(i.e., Th0). On receiving an input stimulus on IFNγ, cells must differenti-
ate into Th1 cell state in the absence of any stochasticity. This is shown in
Figure 6.4(b). Biologically it is known that, while most of the cells should
differentiate into Th1 state in response to an IFNγ dosage, a few cells can
revert to the Th0 state [19, 94]. This difference in response across the cell
population is often attributed to inherent stochasticity in biological functions
(Figure 6.4(c)).



92 Stochasticity in Gene Regulatory Networks

Figure 6.3: T-Helper Gene Regulatory Network [102].

(a) Th0 Cell State (b) Th0 to Th1 (no noise) (c) Th0 to Th1 (with noise)

Figure 6.4: Simulation results showing the effect of noise on T-helper cell differen-
tiation process with an external stimulus of IFNγ. Each small circle is representative
of a T-Helper cell and each cell is modeled to behave independent of the neighbouring
cells. Red cells represent the näıve undifferentiated Th0 cells, green cells represent Th1
cell state. Ratio of number of red (or green) cells to total number of cells in a panel is
representative of the probability of differentiating into Th0 (Th1 or Th2) cell state. (a)
Cell Culture maintained in Th0 state. (b) In absence of any stochasticity all Th0 cells
differentiate to Th1 cell state on receiving IFNγ. (c) In the presence of stochasticity,
Th0 cells differentiate into Th1 cells while some cells cannot differentiate on receiving
IFNγ and revert to Th0 cell state.

6.1.2 Robustness of attractors

Robustness of attractors of a GRN can be defined as the probability of an
attractor reverting back to itself when the expression of one or more nodes is
perturbed from its original expression value. In the absence of any stochas-
ticity in the biological functions, there should be no transition among two
different attractors. If a perturbation changes the state of an attractor, it is
possible that the new perturbed state may transition into a different attrac-
tor. The perturbed state may be generated in response to external stimuli
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A C C∆

0 0 1
1 1 0

(a) BUFF

A C C∆

0 1 0
1 0 1

(b) NOT

A B C C∆

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

(c) AND

A B C C∆

0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0

(d) OR

A B C C∆

0 0 0 1
0 1 0 1
1 0 1 0
1 1 0 1

(e) IAND

Table 6.1: Truth tables representing the transfer function of different Boolean logic
gates. A and B are the input genes, C represents the output gene expression in the
absence of stochasticity and C∆ represents the output gene expression in the presence
of stochasticity.

such as ligands, inhibitors or due to internal stochasticity of the cell. Bio-
logically, cellular steady states are highly robust to internal stochasticity due
to redundancy of critical biological functions. Redundant alternative biolog-
ical pathways to control the expression of genes/proteins is nature’s solution
to the short term stochastic behavior of sub-sections of the pathway and are
known to exist in abundance in any biological system. To associate high con-
fidence in a GRN, it is imperative that the robustness of cellular steady states
is reflected by the robustness of attractors under the stochastic simulations
of the corresponding GRNs. Hence, a biologically motivated stochastic model
for quantifying the robustness properties of a GRN is essential to compare
multiple network configurations for the same biological problem.

In the next section, we formally introduce the SIN and the SIF models of
stochasticity and propose algorithms to compute the stochastic cellular differ-
entiation and robustness of attractors in a GRN.

6.2 Methods and Techniques

In Chapter 3, we introduced the Boolean function mapping of GRNs. We saw
in Section 3.1, how different biological functionalities can be well described
using a small set of Boolean functions {BUFF, NOT, AND, OR, IAND}. Truth
tables defining the characteristic function of these Boolean functions are shown
in Table 6.1. In the presence of stochasticity in Boolean functions, output of
these logic gates can be different from those specified by their characteristic
functions (represented by C∆ in above truth tables).

The synthetic GRN from Section 3.1 is reproduced in Figure 6.5 along with
the Boolean functions mapped network. As explained earlier in Section 3.1,
the shaded Boolean functions in Figure 6.5(b) have a corresponding biological
functionality and hence should be modeled for stochastic behavior. How this
stochasticity is modeled in a GRN varies in the SIN and SIF models and also
depends upon the fault model used (as explained in the next few sections).
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6.2.1 Fault model

A fault in a GRN is defined as the stochastic behavior of a node (i.e. gene
expression) or the Boolean function in the GRN. Under the SIN model, faults
are modeled in genes expression and under the SIF model, faults are modeled
in Boolean functions. Fault in a node or Boolean function i is represented by
a Boolean variable ∆i. If ∆i = 1 then gene (or Boolean function) i takes the
faulty value and ∆i = 0 represents the normal expression value in the absence
of any stochasticity. There are multiple nodes (or Boolean functions) in a GRN
and more than one of them can be susceptible to faults. Faults in a GRN at
a given instant of time are represented by a Boolean vector ∆ and is referred
to as a fault configuration in the GRN.

Here, we make an assumption that at most one gene or one function in a
GRN can have a fault at a given instant in time and that multiple faults are
spread over different time instants. This implies that ∆i = 1 for at most one i

in a fault configuration vector ∆. A sequence of network states from a given
starting state to an attractor is called the trajectory of the state. If n faults
in the network exist then at most n faults can lie on any trajectory. However,
multiple faults cannot exist on a trajectory at the same time instant. We
refer to this fault injection model as the single fault model. Further, under the
single-fault model, given a state of the network, all the possible single faults are
independent of each other and can exist with equal probability. This leads to
multiple outgoing trajectories from a single state. The assumption of a single
fault at a time has been widely used in the literature for stochastic Boolean
modeling of GRNs under the SIN model [90, 14, 39, 114]. The single-fault
model corresponds to a small probability of two distinct biological functions
behaving stochastically at the same instant of time.

Next we modify the transition functions introduced in Chapter 3, for mod-
eling the stochasticity in GRNs.

A B

DC

E

(a) A Gene Regulatory Network

AND OR

AND

)1(tA

)1(tB

)1(tC

)1(tD

)1(tE

tD

tE

tC

tA

tB

tB
tA

tC

(b) Mapped GRN

Figure 6.5: (a) A Gene Regulatory Network (GRN). (b) The GRN mapped to
Boolean functions (gates).
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6.2.2 Stochasticity in nodes

In the SIN model, any node can flip its expression, from 0-to-1 or vice versa,
due to internal stochasticity in gene regulation mechanisms. When a node
flips from its normal expression value due to stochasticity, a fault is said to
be injected in the GRN. Fault in the node i in the GRN is represented by
a Boolean variable ∆i. The transition function for a single gene, Ti(x

t,xt+1)
(Equation 3.3) introduced in Section 3.2 can be modified such that xt+1

i is equal
to the value of the function xi(t+1) if there is no fault (i.e., ∆i = 0). Otherwise
xt+1

i takes the value opposite to current value of the function (i.e., ¬xi(t+1)).
Equation 6.1 represents the modified transition function Ti(x

t,xt+1,∆) in the
presence of a fault in the SIN model. Transition function T (xt,xt+1) of the
GRN is the same as in Equation 3.4 and is given again here in Equation 6.2.

Ti(x
t,xt+1,∆) =

[(
xt+1

i ↔ xi(t + 1)
)
∧ ¬∆i

]
∨[(

xt+1
i ↔ ¬xi(t + 1)

)
∧∆i

]
(6.1)

T (xt,xt+1,∆) = T0(x
t,xt+1,∆) ∧ .... ∧ TN(xt,xt+1,∆) (6.2)

Since any node can flip its expression in the SIN model, there are exactly
N possible faults in the network at a given instance of time, where N is the
number of genes in the network. Under the single-fault model, if the faults
in the network are represented by a Boolean vector ∆ of size N , at most one
gene xi has a fault (i.e., ∆i = 1 for at most one bit). Since all the faults
are independent of each other, given the state of the network xt, a set of
independent and equiprobable fault configuration vector ∆s can exist in the
network. That is, if we represent the set of possible fault configuration vectors
by a set D = {∆1,∆2, .....,∆N}, the probability of selecting the fault vector
∆i is given by Equation 6.3.

P (∆ = ∆i) =
1

N
(6.3)

If the probability of flipping a node i is given by εi, then the probability that
the gene i has a fault (i.e., P (∆i = 1)) in the fault vector ∆ is given by
Equation 6.4.

P (∆i = 1) = ∆i · ε
i (6.4)

6.2.3 Stochasticity in functions

SIF models the stochasticity in biological functions that are represented using
Boolean gates AND, OR, BUFF, NOT and IAND in Figure 6.5(b). In the presence
of faults, the output of these logic gates can be different from their normal
value. For example, the noisy output value of these Boolean functions is given
in the last column of Tables 6.1(a)-6.1(e). The noisy output of these Boolean
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A C C∆

0 0 0
1 1 0

(a) BUFF

A C C∆

0 1 1
1 0 1

(b) NOT

A B C C∆

0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 0

(c) AND

A B C C∆

0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 1

(d) OR

A B C C∆

0 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

(e) IAND

Table 6.2: Truth tables representing the transfer function of different Boolean logic
gates. A and B are the input genes, C represents the output gene expression in the
absence of stochasticity and C∆ represents the output gene expression in the presence
of stochasticity under the SIF model.

functions can take different values depending upon how the faults are modeled.
For example, Table 6.2 shows another set of transition functions in the presence
of noise. Since, the above Boolean functions represent an underlying biological
functionality, it is important that the way faults are modeled in these functions
reflects the biological reasoning behind stochasticity in underlying gene or
protein regulation mechanism. Keeping this in mind, Table 6.2 has a closer
correspondence with biological mechanisms then Table 6.1 as explained below.

In Tables 6.2(a)-6.2(e), noise has an impact on the function only when all
the positive inputs are “active” or 1. This constraint corresponds to the fact
that a biological function can behave stochastically only when it is functionally
active. For example, transcription of a gene can take place only when the
transcription factor is present and there is a natural stochasticity involved in
the process of transcription. On the other hand, if the transcription factor is
absent, there can be no stochasticity in the transcription process and the gene
would never be expressed. Boolean gates BUFF, NOT and AND have all the input
ports as positive inputs. Boolean gate IAND have some ports which go through
the NOT gate and act as negative inputs. Boolean OR gate is modeled to have
no stochasticity because it just represents that the two alternate biological
functions can have an impact on the same gene/protein. Note that the noise
in these alternate biological functions is already modeled with the remaining
stochastic gates (i.e., AND, NOT and BUFF).

In the SIN model, the fault variable ∆ represents stochasticity in the ex-
pression of a gene whereas in the SIF model, ∆ represents stochasticity in
Boolean functions. Since not all Boolean functions in a GRN behave stochas-
tically, let us define G = {G1, G2, ..., Gp} as a set of stochastic functions in the
mapped GRN of Figure 6.5(b). If ∆i = 1, then Boolean function Gi behaves
stochastically and take the expression value as defined by the last column of
truth tables 6.2(a)-6.2(e). Otherwise, if ∆i = 0, Boolean function Gi behaves
per its original description. Equations 6.5-6.9 formally describe the stochastic
Boolean functions.

BUFF : fB(xa) = [(xc ↔ 0) ∧∆] ∨ [(xc ↔ xa) ∧ ¬∆] (6.5)
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NOT : fN(xa) = [(xc ↔ 1) ∧∆] ∨ [(xc ↔ ¬xa) ∧ ¬∆] (6.6)

OR : fO(x1, .., xp) = (xc ↔

p∨

i=1

xi) (6.7)

AND : fA(x1, .., xp) = [(xc ↔ 0) ∧∆] ∨

[
(xc ↔

p∧

i=1

xi) ∧ ¬∆

]
(6.8)

IAND : f IA(x1, .., xp) =


{xc ↔ (

pin∧

i=1

¬xin
i ∧

pa∧

j=1

xa
j )} ∧ ¬∆


∨


{xc ↔

pa+pin∧

j=1

xj} ∧∆


 (6.9)

The expression of each gene i at time t+1 is specified by the function xi(t+1)
of the state of the genes acting as its input at time t. The construction of
function xi(t + 1) was given in Equation 3.1 (Chapter 3). Alternatively, the
function xi(t+1) can be formed by composing Boolean gates as in Figure 6.5(b)
and using the corresponding Equations 6.5-6.9.

Example 6.2.1 For the node B in the GRN in Figure 6.5, xB(t + 1) is
defined in Equation 6.10.

xB(t + 1) = fO(fB(xt
E), fA(xt

A, xt
C)) (6.10)

In the above equation, fB, fA and fO are defined in Equations 6.5, 6.8 and
6.7 respectively, and xt

C and xt
E represent the expression of nodes C and E

at the time instant t. ¥

The transition function Ti(x
t,xt+1) of a gene i for SIF model is given by

Equations 6.11-6.12 for the deterministic Boolean networks. Note that whereas
the SIN model modifies the transition function of a gene, the description of
Boolean functions is modified in the SIF model.

Ti(x
t,xt+1,∆) = {xt+1

i ↔ xi(t + 1,∆)} (6.11)

T (xt,xt+1,∆) = T0(x
t,xt+1,∆) ∧ .... ∧ TN(xt,xt+1,∆) (6.12)

Given a state of the network xt, not all Boolean functions in the set G

behave stochastically. We use a Boolean vector ∆ of size |G| to represent the
faulty Boolean functions in the network. In a given fault vector ∆, the bit
∆i = 1 only if all the positive inputs to the function Gi are active or 1. Hence,
the number of faults in the network at a given time instant t depends upon
the current state of the network. Again, assuming the single-fault model, a set
D = {∆1,∆2, .....,∆|D|} of independent fault vectors ∆i may exist such that
in each fault vector, at most one Boolean function Gi has a fault (i.e., ∆i = 1
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for at most one bit). The probability of selecting the fault vector ∆i is given
by Equation 6.13.

P (∆ = ∆i) =
1

|D|
(6.13)

Boolean functions in the set G correspond to Biological functions and have
a probability of failure εi associated with each Gi. The probability of failure
εi is independent of the state of the network and solely depends upon the
complexity of the biological function that it represents. The probability that
Boolean function i has a fault (i.e., P (∆i = 1)) in a given fault vector is given
by Equation 6.14.

P (∆i = 1) = ∆i · ε
i (6.14)

Whereas the set D of fault configuration vectors does not depend upon the
state of the network and is always the same in the SIN model, both the size of
the set D and its elements depend upon the current state of the network xt in
the SIF model. Further, the size of fault configuration vector ∆ is different for
the SIN and the SIF models. Whereas the size of the vector ∆ is equal to the
number of genes in the network in the SIN model, it is equal to the number of
stochastic gates in the SIF model of stochasticity.

With these two models of stochasticity in GRNs, we provide, in the next
two sections, algorithms to compute the probability of cellular differentiation
and robustness.

6.2.4 Algorithms for stochastic cellular differentiation

Given a state of the network xt, a fault vector ∆ and the transition func-
tion Ti(x

t,xt+1), the state of the network in the next time step, xt+1, can be
computed by using Equation 6.15 where the symbol ∃ stands for existential
quantification.

xt+1 = ∃∆∃xt+1{T (xt,xt+1,∆) ∧ xt ∧∆} (6.15)

Given a fault vector ∆ of length n and a current state of the network xt,
the probability that the network would exist in the faulty state xt+1,∆ and the
fault-free state xt+1 is given by Equations 6.16 and 6.17 respectively.

P (xt+1,∆|(xt,∆)) =
n∑

i=1

P (∆i = 1) (6.16)

P (xt+1|(xt,∆)) =
n∑

i=1

(1− P (∆i = 1)) (6.17)

By applying Bayes’ rule on Equations 6.16 and 6.17, the probability of the
network being in state xt+1 at the next time instant is given by Equations 6.18-
6.22. In Equation 6.18, we marginalise the probability over all possible fault
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configuration vector ∆s. By using Equation 6.13 in Equation 6.18, we get the
probability of generating the faulty next state xt+1,∆ from the current state
xt in Equation 6.19. If the network can be in only one starting state xt, the
probability of generating the faulty state xt+1,∆ is given by Equation 6.20.

P (xt+1,∆|xt) =
∑

δ∈D

{P (xt+1,∆|(xt, ∆ = δ)) · P (∆ = δ)} (6.18)

=
1

|D|

∑

δ∈D

P (xt+1,∆|(xt, ∆ = δ)) (6.19)

P (xt+1,∆) = P (xt+1,∆|xt) · P (xt) (6.20)

A similar set of equations exist for the fault-free next state xt+1 (Equations 6.21
and 6.22).

P (xt+1|xt) =
1

|D|

∑

δ∈D

P (xt+1|(xt, ∆ = δ)) (6.21)

P (xt+1) = P (xt+1|xt) · P (xt) (6.22)

If the network may exist in a set of initial states S and the probability of
each initial state is specified, then the probability of being in the next states

Algorithm 11: Algorithm for computing probability of faulty next
states.

stochastic next states(T, St, Pt, G)1

begin2

St+1 = ∅3

for i = 0 to |St| do4

D = construct fault config(Si
t , G)5

∆ = 06

stmp = ∃∆∃xt+1{T (xt,xt+1,∆) ∧ Si
t ∧∆}7

for j = 0 to |D| do8

s∆
tmp = ∃∆∃xt+1{T (xt,xt+1,∆) ∧ Si

t ∧Dj}9

P (s∆
tmp) = P (s∆

tmp | S
i
t) · P

Si
t

t10

P (stmp) = P (stmp | S
i
t) · P

Si
t

t11

P
s∆

tmp

t+1 = P
s∆

tmp

t+1 + P (s∆
tmp)12

St+1 = St+1 ∪ s∆
tmp13

P
stmp

t+1 = P
stmp

t+1 + P (stmp)14

St+1 = St+1 ∪ stmp15

return (St+1, Pt+1)16

end17
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Algorithm 12: Algorithm for computing probability of differentiation
into various attractors in the presence of up to k faults.

stochastic differentiation k faults(T, S,G, k, SS)1

begin2

for i = 1 to |S| do3

PSi

t = 1/S.size()4

for i = 1 to |SS| do5

PSSi
= 06

St = S7

for i = 1 to k do8

(St+1, Pt+1, P̃SS) = stochastic differentiation(T, St, G, Pt, SS)9

for j = 1 to |SS| do10

PSSj
= PSSj

+ P̃SSj
/k11

t = t + 112

return PSS13

end14

stochastic differentiation(T, S,G, P, SS)15

begin16

(St+1, Pt+1) = stochastic next states(T, S, P,G)17

for j = 1 to |SS| do18

for i = 1 to |St+1| do19

if BR(SSj)
⋂

Si
t+1 6= ∅ then20

PSSj
= PSSj

+ P
Si

t+1

t+121

return (St+1, Pt+1, PSS)22

end23

xt+1,∆ and xt+1 is given by Equations 6.23 and 6.24, respectively.

P (xt+1,∆) =
∑

xt∈S

P (xt+1,∆|xt) · P (xt) (6.23)

P (xt+1) =
∑

xt∈S

P (xt+1|xt) · P (xt) (6.24)

Algorithm 11 describes how the probability of the set of next states St+1 is
computed from a given set of initial states St. In line 5 of Algorithm 11,
the possible fault configuration vectors are computed from an initial state
Si

t (i = 1, 2, ..., |St|). For each fault configuration vector in the set D, the
next states are generated in line 9 and the probability of each next state is
computed in lines 10-14 by using Equations 6.18-6.24. In Algorithm 11, Pt and
Pt+1 represents the probability of states in the set St and St+1 respectively.

Algorithm 12 describes how the probability of transition into different
steady states can be computed from a given set of initial states. In Algo-
rithm 12, given a set of states S, backward reachable set BR(S) is a set of
all the states of the network that can make a transition into the states in S

in one or more time steps under the no-stochasticity condition (i.e., ∆ = 0).
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Algorithm 13: Algorithm for computing Robustness of Attractors in
the presence of up to k faults.

robust attractors k faults(T, S,G, k)1

begin2

T̃ = ∃∆
[
{T (xt,xt+1,∆)} ∧ {∆ = 0}

]
3

SS = all attractors(T̃ )4

for i = 1 to |SS| do5

PSS [i] = stochastic differentiation k faults(T, SSi, G, k, SS)6

end7

If SSai
represents the set of states in an attractor ai, one can test if the cur-

rent state of the network xt can differentiate into the attractor ai given a
fault vector ∆ by testing if BR(SSai

)
⋂

xt+1 6= ∅, where xt+1 is computed
using Equation 6.15. The probability of making a transition to an attractor
ai is then given by the sum of P (xt+1) for all the states xt+1 that can make
a transition to ai. The function stochastic differentiation() in lines 15-23 of
Algorithm 12 computes the probability of differentiation into all the cellular
steady states from an initial set of states S. In line 17, we compute the prob-
ability of all the faulty states that may exist by injecting a single fault in the
network. Multiple faults may exist in the network that we model using the
function stochastic differentiation k faults() in lines 1-14. This function mod-
els k sequential faults in the network. However, each fault is injected under
the single-fault model and multiple faults exist only in consecutive time steps.

6.2.5 Algorithm for robustness computation

In the absence of any stochasticity, attractors in a GRN are first computed
using the Algorithm 2 proposed in Chapter 3 for the deterministic Boolean
modeling of GRNs. By the definition of an attractor (see Section 3.2.3),
there can be no path among the attractors in a deterministic model. If
SSai

represents the states in the attractor ai, then by using the function
stochastic differentiation k faults(), defined in Algorithm 12, the probability of
differentiation into various attractors can be computed for every attractor ai.
The probability to differentiate into various attractors in turn represents the
robustness of an attractor ai. Algorithm 13 formally describes the procedure
to compute the robustness of attractors.

6.3 Simulation results

In this section, the SIN and SIF models of stochasticity are applied on two real
GRNs proposed in the literature, namely: T-Helper network [102] and T-Cell
activation network [140]. These GRNs are modeled under increasing number
of faults in the network. The results and discussion is organized under the
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(a) Th0 Cell State (b) Th0 to Th1

(c) Th0 to Th1 in SIN model (d) Th0 to Th1 in SIF model

Figure 6.6: Simulation results showing the effect of noise on T-helper cell differen-
tiation process with an external stimulus of IFNγ. Each small circle is representative
of a T-Helper cell and each cell is modeled to behave independent of the neighbour-
ing cells. Red cells represent the näıve undifferentiated Th0 cells, green cells represent
Th1 cell state and blue cells represent Th2 cell state. Ratio of number of red (green
or blue) cells to total number of cells in a panel is representative of the probability of
differentiating into Th0 (Th1 or Th2) cell state. (a) Cell Culture maintained in Th0
state. (b) In absence of any stochasticity all Th0 cells differentiate to Th1 cell state
on receiving IFNγ. (c) Th0 cells differentiate into Th1 and Th2 under the SIN model
of stochasticity. Few cells revert to Th0 state as seen by the few patches of red color.
(d) SIF model of stochasticity shows that Th0 cells differentiate into Th1 cells while
some cells cannot differentiate on receiving IFNγ and revert to Th0 cell state. None of
the cells differentiate into Th2 cell state. The probability of failure (i.e., εi) is 0.5 for
all the nodes (functions) in the SIN model (SIF model). The stochasticity models are
simulated with upto 4 faults in a GRN.

earlier mentioned two properties of steady states, i.e., cellular differentiation
and robustness of attractors.

6.3.1 Cellular differentiation

T-Helper network

On simulating the Th0 to Th1 cellular differentiation in response to external
IFNγ stimulus under the SIN model of stochasticity, we found that an almost
equal number of cells differentiate into Th1 and Th2 from the Th0 cell state
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and a few cells revert to Th0 (Figure 6.6(c)). Biologically it is known that
Th0 cells cannot differentiate to Th2 state in response to an IFNγ stimuli [94].
The difference in the simulation results from the known biological observation
can be a shortcoming of the GRN, of Boolean modeling, or of the model of
stochasticity. The equally likely cellular differentiation of steady states under
the SIN model of stochasticity has been observed earlier in [98] and was tagged
as a shortcoming of Boolean models. However, in our opinion, SIN model of
stochasticity is the main reason behind this discrepancy in simulation results.
If we use the more biologically motivated SIF model of stochasticity, where the
stochasticity in a biological function is tightly linked to activity of other nodes
in the network, we see that a major sub-population of Th0 cells differentiate
into Th1 cellular state and a few cells revert to Th0 in response to IFNγ dosage
(Figure 6.6(d)). This is consistent with the expected biological behavior of T-
Helper cells [94] and thereby makes a strong case for the refined SIF model.

T-Cell activation Network

Unlike the T-Helper network, the T-Cell activation network does not differen-
tiate into different cell types. Attractors of the T-Cell GRN just represent the
gene expression profiles of differentially activated T-Cells. Hence, the cellular
differentiation property is not applicable to the study of the T-Cell activation
GRN.

6.3.2 Robustness of attractors

T-Helper network

Robustness results of the T-Helper network under the SIN and the SIF models
of stochasticity are shown in Figure 6.7. Since, in the absence of any stochas-
ticity (i.e. n = 0), an attractor cannot make a transition to another attractor,
Figures 6.7(a) and 6.7(f) have non-red entries only along the diagonal. In Fig-
ure 6.7, under the SIN model, all the three attractors (i.e., Th0, Th1 and Th2)
are found to make a transition into each other with a significant probability
(represented by the intensity of the yellow color in Figure 6.7). Robustness
of attractors is measured as the number of faults in the network are increased
from 0 (i.e., no stochasticity) to 5 faults. One can see from the top row in
Figure 6.7 that robustness decreases if the number of faults in the network
is increased under the SIN model. This observation could be specific to the
GRN of T-Helper network but a similar observation can be made on the T-Cell
activation network. As any GRN is not robust under the SIN model, it may
not be a good model of stochasticity for comparing different GRNs. Under
the SIF model, Th0 cell state is found to be robust to stochasticity (bottom
row of Figure 6.7). Th1 and Th2 cellular states are very robust as most of
the cells stay in the original attractor state even with 5 sequential faults in
the network. Moreover, Th1 and Th2 cells do not show transition among each
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(a) n=0 (b) n=1 (c) n=2 (d) n=4 (e) n=5

SIN model

(f) n=0 (g) n=1 (h) n=2 (i) n=4 (j) n=5

SIF model

Figure 6.7: Simulation results showing the transition probability among Th0, Th1
and Th2 cell states of the T-Helper network. (a)-(e) Transition probabilities in the SIN
model as the number of faults n in the network is increased from n = 0 to n = 5.
(f)-(k) Transition probabilities in the SIF model. In each figure, the intensity of yellow
color in the entry i-j correponds to the probability of transition from the attractor i to
the attractor j. The colorbar in the rightmost column indicates the color-probability
encoding. The probability of failure (i.e., εi) is 0.5 for all the nodes (functions) in the
SIN model (SIF model).

other as the number of faults is increased. This observation further increases
our confidence in the SIF model as biologically Th0, Th1 and Th2 cell states
are known to be robust and the underlying T-Helper network of Figure 6.3 is
a well established GRN in the literature.

T-Cell activation Network

We next applied the SIN and SIF models of stochasticity on T-Cell activation
network from [140]. We measured the probability of reachability among the
attractors with an increasing number of faults in the network. The T-Cell acti-
vation network has 10 attractors in the absence of stochasticity. As the number
of faults is increased, the number of red entries in the heatmaps of Figure 6.8
decreases showing the decreasing robustness of different attractors. The in-
tensity of yellow color in a cell is proportional to the probability of transition
among the corresponding attractors labeled on the X and Y axes. For single
fault injection, one can already see that the probability of transitions among
these attractors in the SIN model is more widespread than in SIF model on
the same network. To test if SIN and SIF models show the same reachability
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(a) n = 1 (b) n = 3 (c) n = 4

SIN model

(d) n = 1 (e) n = 3 (f) n = 4

SIF model

Figure 6.8: Simulation results showing the transition probability among the ten at-
tractors of the T-Cell activation network. (a)-(d) Transition probabilities in the SIN
model as the number of faults n in the network is increased from n = 0 to n = 4.
(e)-(h) Transition probabilities in the SIF model. The colorbar in the rightmost column
indicates the color-probability encoding. The probability of failure (i.e., εi) is 0.5 for all
the nodes (functions) in the SIN model (SIF model).

among the attractors with an increasing number of faults, we simulated the
injection of 4 faults sequentially. Just after three faults, almost all the attrac-
tors show transitions among each other in the SIN model (Figure 6.8(b)). The
results are similar to the those seen earlier for the T-Helper network, where
Th0, Th1 and Th2 cell states can transition among each other in response to
internal stochasticity (Figure 6.7). In Figure 6.8, under the SIF model, transi-
tions among the attractors is sparse and a saturation in transition probabilities
is observed as the number of faults in the network increases. Since the SIF
model is closer to the biological phenomenon of inducing faults in biological
functions and does not always give low robustness measure, it can provide
an effective way to compare the robustness of two different configurations of
GRNs in response to internal stochasticity.

From the results above it is evident that the SIN model of stochastic-
ity often leads to over-representation of noise in GRNs by making all the
genes/proteins equally likely to flip, independent of the expression of the input
genes and complexity of the underlying biological function. With the improved
SIF model of stochasticity, it is possible to simulate biological phenomena such
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as gene perturbation experiments more accurately and to construct GRNs that
exhibit strong robustness properties.

6.4 Summary

In this chapter, we have extended the deterministic Boolean formalism pro-
posed in Chapter 3 to stochastic Boolean modeling of GRNs. A new method,
called stochasticity in functions (SIF), has been proposed for modeling the
stochasticity in GRNs. Unlike the traditional stochasticity in nodes (SIN)
model that simulates stochasticity by flipping gene expression values, SIF mod-
els the stochasticity induced at the level of biological functions. SIF associates
a probability of failure with different biological functions and models stochas-
ticity in these functions depending upon the expression of the input nodes. By
applying the SIN and SIF models on the T-Helper network, we have shown
that while the SIN model predicts biologically implausible behavior of T-Helper
cell differentiation, the SIF model correctly predicts the Th0 to Th1 cellular
differentiation process. Further, by analysing the robustness of steady states
of the T-Helper and T-Cell activation networks it was shown that the SIN
model predicts low robustness properties in both cases whereas the SIF model
predicts more biologically relevant behavior with higher robustness.



Modeling Cell Growth vs.

Apoptosis 7
During its lifetime, a cell grows in response to environmental nutrients, under-
goes proliferation and apoptosis. Cellular apoptosis can be either due to either
an unexpected malfunctioning in the cell machinery or as a result of natural
aging process. In a normal healthy tissue, a balance is always maintained be-
tween the number of cells undergoing apoptosis and cell growth. At the single
cell level, this balance is the result of strict self-regulation of pro-apoptopic and
pro-growth signals generated by different proteins inside the cell. The presence
of feedback loops among the proteins inside a cell ensures that cells neither
undergo an uncontrolled growth (leading to formation of tumors) nor they
have too much of apoptosis (which may lead to diseases such as Alzheimer’s
and Parkinson’s).

Some cells may carry mutations in a few genes that are functional in
the feedback loops which maintain a proper balance between generating pro-
growth and pro-apoptopic signals inside a cell. If these mutations are in the
favour of pro-growth signals, then a cell is said to have a pre-disposition to-
wards uncontrolled growth (and hence proliferation). In such a scenario, a cell
(carrying mutations) undergoes uncontrolled proliferation and consequently
leads to the formation of tumors. Most cancer treatments either try to restore
the normal expression of mutated genes directly or counteract the impact of
mutated genes by targeting other genes (or proteins) in the pathway. Under-
standing how different genes (and proteins) regulate each other in cancer cells
is therefore of major interest in the development of treatments for this disease.

In this chapter, we illustrate an application of algorithms, proposed in the
previous chapters, on the GRN that models a balance between the “apoptosis”
and the “growth” signals in a healthy cell. In Section 7.1, we start with the
description of a GRN that models the balance between apoptosis and growth.
The explanation of the GRN follows the sequence of steps followed while con-
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Figure 7.1: GRN representing interactions among some proteins known to play a
crucial role in maintaining a balance between apoptosis and cellular growth.

structing the pathway. Starting from the key proteins PI3K, mTOR, AKT
and p53 we construct the GRN incrementally by including proteins known to
interact with these base proteins in the literature. Finally, in Section 7.2 we
show simulation results of modeling a few known gene mutations that have
been implicated in the past for uncontrolled growth or for abnormally low
apoptosis of mutated cells.

7.1 Cell survival vs. apoptosis GRN

Some of the key proteins that are known to play a crucial role in the normal
functioning of a cell are summarised in the GRN of Figure 7.1. Interactions
proposed in the GRN of Figure 7.1 have been collected from the published
literature on the experimental study of these proteins to model the cancer
behavior of a cell. As one can see from Figure 7.1, by just looking at the
pathway it becomes difficult to understand how different proteins work in
tandem with each other and influence the cell growth and apoptosis signals.

The GRN in Figure 7.1 has been constructed in a bottom-up strategy start-
ing with an abstracted pathway comprising of the four proteins PI3K, mTOR,
AKT and p53 (Figure 7.2). PI3K, mTOR and AKT are known to participate
in the anti-apoptopic, pro-survival pathways in the cells. On the other hand,
p53 is known to participate in generating pro-apoptopic and anti-survival sig-
nals. Starting from this knowledge, we first expand upon the p53 module of
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p53 mTORC1AKTPI3K

Apoptosis
Growth/

Translation

Figure 7.2: Topmost abstraction level of the key players in cell growth and apoptosis
pathways.

the GRN and include proteins downstream of p53 that have been implicated
for the cellular apoptosis in the literature. Then we expand upon the proteins
known to participate in AKT, PI3K and mTOR pathways respectively.

The four modules of the pathway crosstalk through various intermediate
proteins. Therefore, while describing a specific module, we will only focus on
proteins that are directly downstream or upstream of the key regulator of the
module (i.e. PI3K for PI3K module, p53 for p53 module, etc) and use dashed
edges to abstract away the information on a few protein interactions which are
further elaborated while describing other modules.

7.1.1 P53 module

The p53 protein, as we have explained before, plays a crucial role in generating
pro-apoptopic and anti-growth signals when a malfunctioning is detected in
the cell or cell is exposed to some external stress such as lack of nutrients or
oxygen. It exhibits its functionality through various intermediate proteins as
sketched in Figure 7.3. The biological explanation behind different interactions
in the GRN module of Figure 7.3 is summarised below.

AKT-p53-MDM2 interaction

In normal cells, p53 is known to exist in very small concentration inside the
nucleus [104]. When p53 is present in the transcriptionally active form, it
activates various target genes including MDM2, PUMA and BAD [89, 77, 123,
124]. HDM2 protein, a human analogous of mouse MDM2, acts as a ubiquitin
ligase of p53 [73]. The HDM2 protein when activated (on phosphorylation by
AKT [103]), trans-locates into the nucleus and binds with the p53 protein.
The HDM2 bound p53 is then trans-locates itself out of the nucleus into the
cytoplasm where it is degraded [104]. The counter interaction between HDM2
and p53 provides a negative feedback loop that controls the adequate amount
of p53 in the normal cells.
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Figure 7.3: p53 module for modeling the cell apoptosis.

AKT-p53-BAD interactions

Activated p53 is involved in generating apoptosis signals via proteins PUMA,
BCL2, BAX, BAD, Caspase 9 and Caspase 3. p53 can transcriptionally acti-
vate PUMA [89, 77] and BAD [123, 124]. BAD undergoes rapid phosphoryla-
tion by AKT and normally exists in the cytosol in the hyper-phosphorylated
form [146]. BAD in its phosphorylated form looses its pro-apoptopic func-
tionality. In the presence of pro-apoptopic signals (such as high p53 activity),
phosphorylated BAD undergoes dephosphorylation and forms a complex with
p53 [123, 124]. The resulting complex trans-locates itself to the mitochondria
where it exerts its pro-apoptopic activity.

p53-PUMA-BAX interactions

Proteins p53 and PUMA can conformally change the BAX, which is present
in the inactive form in the cytosol in the normal circumstances [112, 84].
The activated conformation, trans-locates BAX to mytochondria where it can
perform the pro-apoptopic functions. PUMA can also directly trans-locate to
mitochondria where it performs anti-apoptopic functions.

PUMA-BAD-BAX-Caspase interactions

The BCL2 protein, which is normally present on mitochondria has anti-apoptopic
functionality and restricts the cytochrome c inside the mitochondria. Cy-
tochrome c when released into the cytosol leads to activation of caspase cascade
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Figure 7.4: Simulation results for p53 module.

involving sequential activation of CASPASE 9 and CASPASE 3 which acts as
an ultimate step before the cell undergoes apoptosis by DNA degradation
[60]. BAD, BAX and PUMA dimerize with BCL2 leading to loss of its anti-
apoptopic activity [89, 77, 84]. This action further leads to formation of pores
in the mitochondria that in turn releases cytochrome c, leading to activation
of caspase signaling cascade. This phenomenon is critically dependent upon
the balance between the anti-apoptopic and pro-apoptopic signals. Further
PTEN, the details of which we will see in Section 7.1.3, undergoes cleavage in
the presence of caspase 3 [76]. PTEN is a tumor suppressor gene and is also
known to be frequently mutated in human cancers [72, 25, 109].

p53 module analysis

To ensure that the small module in Figure 7.3 correctly captures the p53
functionality, we simulated the steady state behavior using genYsis. All the
genes in the p53 module in Figure 7.3 were modeled at the binary activa-
tion levels: present or absent. In the absence of any mutation we found one
attractor (steady state) with an oscillating “apoptosis” node, exhibiting the
balance maintained in generating the pro-apoptopic signals (Figure 7.4). With
over-expressed p53 or knock-down p53 (resembling p53 mutations), we get one
stable steady state where the apoptosis signal is constitutively 1 or 0 respec-
tively showing the pro-apoptopic functionality of p53.

7.1.2 AKT module

The AKT protein (also known as protein kinase B, PKB) plays an impor-
tant role in regulating the cell survival and proliferation. It has also been an
important subject of research for cancer therapies as it has been found in its
hyper-active form in various cancer cells. AKT acts as both anti-apoptopic and
pro-growth through various intermediate proteins as summarised in Figure 7.5.
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Figure 7.5: AKT pathway for modeling the cellular growth and apoptosis.

PIP3-PDK1-AKT interactions

Once the protein phosphatidylinositol (4,5)-triphosphate (PIP3) is activated
(details in Section 7.1.3), it recruits phosphoinositide-dependent protein kinase-
1 (PDK1) and AKT (also known as Protein Kinase B, PKB) on the cell mem-
brane where PDK1 activates AKT by phosphorylation [121, 32].

AKT-TSC2-Rheb interactions

In a healthy cell, the protein TSC1 stabilises the protein TSC2 by forming
the TSC1-TSC2 complex [45, 51]. When AKT gets activated by phospho-
rylation, it can phosphorylate TSC2, dissociating the TSC1-TSC2 complex.
This loss of activity of TSC1-TSC2 is represented by an inhibiting edge from
AKT to TSC1-TSC2 in Figure 7.5. Rheb is normally present in an inactive
GDP-bound (guanine diphosphatase) form in the cells and gets activated in its
GTP-bound state. The TSC1-TSC2 complex acts as a GTPase for Rheb (Ras
homologue enriched in brain), converting Rheb-GTP to Rheb-GDP [88, 105].
This interaction is represented by an inhibiting edge from TSC1-TSC2 to Rheb.
Phosphorylated TSC2 looses the GTPase activity towards Rheb, leading to ac-
cumulation of GTP-bound Rheb. Activated Rheb then generates pro-growth
and anti-apoptopic signals through some additional proteins [1], the details of
which we will see in Section 7.1.4.
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Figure 7.6: Simulation results for AKT module.

AKT-GSK3-EIF2B interactions

Activated AKT can phosphorylate glucose synthase kinase 3 (GSK3) lead-
ing to inhibition of its kinase activity [122, 71]. This is represented by an
inhibiting edge from AKT to GSK3 in Figure 7.5. In normal conditions, un-
phosphorylated GSK3 can phosphorylate initiation factor 2B (EIF2B) [147].
Phosphorylated EIF2B looses its functionality which promotes mRNA trans-
lation initiation in its un-phosphorylated form. This is represented by an
inhibiting edge from GSK3 to EIF2B and an activating edge from EIF2B to
the node representing cellular growth signals respectively in Figure 7.5.

AKT-BAD interaction

In addition to HDM2, GSK3 and TSC2; AKT can also phosphorylate BAD
(which has pro-apoptopic function in its un-phosphorylated form as explained
in Section 7.1.1) [146]. This is represented by an inhibiting edge in Figure 7.5.

p53-setrin-APMK-TSC2 interactions

Activated p53 transcriptionally activates Sestrin 1 and Sestin 2 [142, 58] in
response to stress. Sestrins recruits AMPK to form a larger complex that can
in turn phosphorylate TSC2 [15]. However, unlike AKT phosphorylation of
TSC2, AMPK phosphorylation promotes the GTPase activity of TSC2 [15].
This is represented by an activating edge from AMPK to TSC2 in Figure 7.5.
Through sestrins and AMPK, a crosstalk is induced between the p53 module
and the AKT module.

AKT module analysis

Since, the “Growth/Translation” node in the GRN of Figure 7.5 has two dif-
ferent input signals, it is modeled at three different activation levels, taking
the values: low, medium and high. All the other nodes are modeled at two
levels of activation. On simulating the multi-valued GRN in Figure 7.5, we find
two attractors. Both attractors show an oscillating “apoptosis” and “growth”.
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Figure 7.7: PI3K pathway for modeling the cell growth and apoptosis.

Here we display only one attractor in Figure 7.6(a). On simulating the over-
expression of AKT, which is often seen in cancer cells, we see high cellular
growth and low apoptosis signals (Figure 7.6(b)). This resembles the pro-
growth and anti-apoptopic functionality of AKT.

7.1.3 PI3K module

The phosphoinositide 3 kinase (PI3K) pathway gets activated in response to
external growth factors such as insulin and plays a crucial role in regulating the
cell growth and apoptosis. Gene mutations in PI3K pathway have been seen in
various carcinomas [11, 18, 109] and many drug compounds are currently being
investigated to target proteins on this pathway [18]. Figure 7.7 elaborates on
the proteins that play a crucial role in the PI3K pathway.

IRS activation

The insulin Receptor Substrate (IRS) gets activated on phosphorylation by
insulin-like growth factor receptors (IGFR). IGFR belongs to the family of re-
ceptor protein tyrosine kinase (RTK). These receptors, sitting across the cell
membrane, gets activated on extra-cellular binding of IGFs (insulin growth
factors). The IGFR undergoes auto-phosphorylation (leading to its activity)
and acts as a binding site for IRS. On binding with IGFR, IRS gets phospho-
rylated and in turn leads to phosphorylation of of PI3K. This is represented
by activating edges from IRS to PI3K in Figure 7.7.

PI3K

The protein PI3K plays an important role in the cell growth mechanism. It gets
activated in response to the growth signals (such as glucose and insulin) via
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IRS [70, 81] and transfers the growth signal downstream to AKT pathway that
plays a major role in cell growth and apoptosis (as discussed in previous sec-
tion)). PI3K acts as as kinase for phosphatidylinositol (4,5)-biphosphate (PIP2)
and phosphorylates PIP2 to phosphatidylinositol (4,5)-triphosphate (PIP3)
[6, 109, 116]. Mutations in PI3K (leading to its constitutive over-expression)
has been seen in many cancers [11]. This makes PI3K an interesting target for
pharmaceutical research. Inhibitors of PI3K, such as Wortmannin drug and
LY294002 have been found to reduce the tumors in various cancer cell lines.

PIP2-PIP3 balance

Proteins PIP2 and PIP3 are phospholipids and are found on the cell membrane.
PIP2, when activated, it can lead to its own production, the details of which
we do not consider here and represent it by a self activating edge on PIP2
[96]. PIP2 can be phosphorylated into PIP3 by PI3K [6, 109, 116]. There is
a balancing phosphatase called phosphatase and tensin homolog (PTEN) that
can dephosphorylate PIP3 into PIP2 [59, 109, 116, 134]. PTEN protein is
found in almost all tissues in the body and plays a critical role in maintaining
a proper balance between PIP2 and PIP3. Over-expression of PI3K or muta-
tion in PTEN (leading to loss of its functionality) can cause abnormally high
expression of PIP3 in cells and thereby causing constitutive activation of AKT
via PDK1 (Section 7.1.2). This constitutive activation of AKT can lead to
abnormal cell growth and attenuates apoptosis.

PIP2-PLD-PA interactions

As will be explained in Section 7.1.4, phosphatidic acid (PA) is required for the
activation of mTor complex. PA is generated by hydrolysis of phosphatidyl-
choline to PA and choline. This reaction is catalysed by another protein called
phospholipase D (PLD) [29]. Activation of PIP2 in turn is required for the
activation of PLD [29].

PI3K module analysis

With the addition of PI3K module to the GRN constructed so far, genYsis
finds three steady states. All the steady states show the oscillating apoptosis
and growth signals. Here we demonstrate only one of the steady states in
Figure 7.8(a). As one can see PIP3 and PTEN also displays an oscillating
behaviour due to the feedback from p53. In Figure 7.8(b), when PTEN is
knocked out the apoptosis signal is completely inhibited and the growth sig-
nals stays constitutively high. This behavior represents the pro-growth and
anti-apoptopic functionality of PTEN, which is a well known fact from the
experiments [72, 25, 109].

The “Growth/Translation” node in Figure 7.7 has three input signals and
is modeled at four different activation levels, namely: low, medium, medium-
high and high. All the other nodes are modeled at two levels of activation.
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Figure 7.8: Simulation results for PI3K module.

7.1.4 mTOR module

The mammalian target of rapamycin (mTor), integrates growth signals, nu-
trients and energy status and regulates the cell growth, translation and cell
apoptosis [30]. Figure 7.9, summarizes the key proteins downstream of mTOR,
that helps mTOR in achieving these functionalities.

Rheb-PA-mTorC1 interactions

The mTOR complex 1 (mTORC1), or more commonly known as the raptor-
mTOR complex, normally lies in an unactivated form. mTORC1 activity is
inhibited in the basal state due to the endogenous presence of another protein
called FKBP38 inside the cells, which binds and keeps mTORC1 in an inacti-
vated form [152]. mTORC1 can be activated by displacing FKBP38 from its
binding site. There are at least two known mechanisms, through Rheb and PA,
by which this activation takes place inside the cells. Once Rheb is activated
(see Section 7.1.2), it can displace FKBP38 from the mTORC1 complex result-
ing in the activation of mTORC1 [152]. Under a different mechanism which
requires simultaneous presence of both PA and Rheb, Rheb first displaces
FKBP38 from its binding site which is then occupied by PA in turn activating
the mTORC1 [28, 153, 154]. Rapamycin, a known drug for cancer therapy, is
known to occupy the same binding site as FKBP38 and performs anti-cancer
action by inactivating the mTORC1 [152, 28, 153, 154]. The similar activation
region of rapamycin, Rheb and PA, makes all the three compounds compete
for the same site.

mTORC1-p70S6K-BAD interactions

The activated mTORC1 in turn activates p70 S6 kinase (S6K) [128], which
in turn can phosphorylate the 40S ribosomal protein S6 [52, 128] leading to
increased rate of translation of a class of mRNA transcripts (called 5’ terminal
oligopyrimide mRNA) [61, 42, 53]. This region of mRNA encodes critical
components which promotes translation and hence the protein synthesis (which
in turn leads to cellular growth). Further, p70S6K is known to inhibit BAD by
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Figure 7.9: mTor pathway for modeling the cell growth and apoptosis.
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Figure 7.10: Simulation results for mTOR module.

phosphorylation and hence has an inhibiting impact on the cellular apoptosis
[52].

mTORC1-4EBP-EIF4E interactions

EIF4E is a mRNA cap binding protein that regulates mRNA translation
[57, 10, 27]. For translation to start, EIF4E must bind with another pro-
tein called EIF4G. In normal circumstances, the binding site of EIF4G on
EIF4E is occupied by 4E-BP which prevents the translation machinery from
getting activated. mTORC1 can remove 4E-BP from its binding site by phos-
phorylation of 4E-BP. Once 4E-BP is dissociated, EIF4E can form a complex
with EIF4G, thereby activating the protein synthesis machinery.

mTOR module analysis

With the addition of mTOR module to the GRN constructed so far, genYsis
finds three steady states. All the steady states show the oscillating apoptosis
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Figure 7.11: Simulation results showing steady state expression of growth and apop-
tosis nodes in the GRN of Figure 7.1. With no mutations, the growth and apoptosis
signals show an oscillating behavior indicating the balance between their two extreme
values.

and growth signals. Here we demonstrate only one of the steady states in
Figure 7.10. The bottom two curves, show the apoptosis and the growth signals
in a wild type situation when no gene is mutated. The impact of mTORC1 is
more evident in the growth signals (middle two curves in Figure 7.10) which
stay constitutively high in the presence of mTORC1 over-expression (which
is commonly the case in the cancer cells). When mTORC1 is knocked-down
(or inhibited by drugs), growth signal show reduced activity (the top two
curves in Figure 7.10) as compared to its wild type activity. All the nodes,
except the “Growth/Translation” node are modeled at two activation levels.
The “Growth/Translation” has four activation levels, namely: low, medium,
medium-high and high.

7.2 Modeling growth vs. apoptosis

When the GRN in Figure 7.1 is simulated using genYsis, it demonstrates
the steady state activity of apoptosis and cell growth signals as shown in
Figure 7.11. Apoptosis and cell growth signals show an oscillating behavior
demonstrating the ability of the pathway to self-regulate the cellular growth.
This self-regulated behavior is possible due to the presence of various negative
feedback loops in the GRN, which avoids cell growth and apoptosis signals
from constitutive high or constitutive low activity. This balance between the
apoptosis and growth signals is known to be skewed in the presence of various
gene mutations that lead to abnormal protein activities. Here, we are going to
simulate the impact of mutations in p53, PTEN and TSC2 on the growth and
apoptosis signals. We will also demonstrate how the imbalance due to these
mutations can be restored by perturbing other nodes in the GRN, capturing
the mode of action of two commonly used cancer drugs Wortmannin and Ra-
pamycin in cancer therapies. Wortmannin acts as an inhibitor of PI3K protein
activity and Rapamycin acts as an inhibitor of mTORC1 protein activity.
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Figure 7.12: Simulation results with p53 mutation. (a) p53 is a pro-apoptopic gene
and cells can not generate apoptosis signals anymore when p53 looses its functionality
due to mutation. (b) p53 mutated cells on inhibiting mTORC1 (by adding inhibitors
such as Rapamycin). Cell growth signal in treated cells decreases as compared to un-
treated cells, but it is not completely inhibited. (c) On treating with PI3K inhibitors (on
treatment with drugs such as Wortmannin), the growth signals are completely inhibited.

7.2.1 p53 mutation

The tumor suppressor gene p53 plays an important role in various cellular
processes such as: (a) halting the cell cycle to avoid cell from proliferating in
response to malfunctioning detection, (b) inhibiting the cell growth in response
to stress factors so as to avoid burden on scarce resources and (c) repairing the
cell machinery if a malfunctioning is detected and guiding the cell to apoptosis
if the malfunctioning can not be repaired [31, 13]. Mutant p53, leading to the
constitutive inhibition of its activity, is one of the most frequently mutated
genes in human cancers [92, 82]. The protein p53 gets activated in response to
various stress related factors such as lack of nutrients, hypoxia (lack of oxygen)
and UV radiation exposure [31, 13]. Due to its significance in regulating the
cell growth, p53 was considered to be a potent target for cancer therapies for
a long time. However, so far, restoring the proper level of p53 activity has
remained a challenge. The issues in manipulating p53 has pushed the focus
of cancer research to other proteins that can regulate the cell growth and
apoptosis (and counteract the p53 mutations in the cells) [109].

Figure 7.12(a) shows the simulation results when p53 looses its activity in
the GRN. Figures 7.12(b) and 7.12(c) demonstrate the impact of inhibition of
mTORC1 and PI3K (in the presence of drug compounds such as Rapamycin
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Figure 7.13: Simulation results with PTEN mutations. (a) The apoptosis signal
is completely inhibited and growth signal stays at the saturating high level. (b) On
treatment with PI3K inhibitor, the growth signals can be inhibited.

and Wortmannin respectively) on p53 mutated cells. Rapamycin which can
decrease the cell growth (and hence the growth of tumor) is known to be
not very effective in low doses (when it selectively targets mTORC1) and has
to be either used in high concentrations (resulting in inhibition of various
other proteins) or in cocktail with other drug compounds. On the other hand,
when the PI3K is inhibited in p53 mutated GRN, the cellular growth signal is
completely inhibited (Figure 7.12(c)).

7.2.2 PTEN mutation

The protein PTEN is found in almost all tissues in the body and plays a critical
role in regulating pro-growth signals. The gene encoding PTEN protein has
been found to be frequently mutated (leading to its constitutively high activity)
in multiple sporadic tumor types and in patients with cancer predisposition
syndromes such as Cowden disease [72, 25, 109].

Figure 7.13(a) demonstrates the growth and apoptosis signals in the pres-
ence of mutation in PTEN. PTEN mutation causes both uncontrolled cellular
growth and attenuates the apoptosis signal. However, it is known in the lit-
erature that the anti-apoptopic and pro-growth behavior of PTEN mutations
can be counter-balanced by inhibiting PI3K (using drug compounds such as
Wortmannin) [78]. Simulation results in Figure 7.13(b)) capture this behavior
of PI3K inhibition on PTEN mutated GRN.

7.2.3 TSC2 mutation

The tuberous sclerosis complex (TSC) is a genetic disorder which can lead to
formation of tumors in many different organs, primarily in the brain, eyes,
heart, kidney, skin and lungs [126]. Two tumor suppressor genes, TSC1 and
TSC2, have been identified for pathogenesis of TSC [21, 150]. In a healthy
cell, TSC1 and TSC2 form a complex that acts as an inhibitor of protein
translation machinery. In the presence of mutation in either TSC1 or TSC2,
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Figure 7.14: Simulation results with mutated TSC2. (a) The apoptosis signal is
not affected, but the growth signal shows a higher activity as compared to non-mutated
GRN. (b) On treatment with PI3K inhibitor, the growth signal shows a decreased activity
indicating alternate pathways from PI3K to growth signals. (c) On treatment with
mTORC1 inhibitor (such as Rapamycin drug), the constitutively high growth signals
can be regulated.

the two proteins can not form a complex, and hence leading to uncontrolled
cell growth.

Figure 7.14 demonstrates the simulation results in the presence of TSC2
mutations. As one can see by comparing simulation results in Figure 7.14(a)
with Figure 7.13(a), the growth signal does not remain constitutively high
and indicates the presence of alternative pathways that can control the cellu-
lar growth even in the presence of these mutations. This can also be validated
from Figure 7.14(b), which shows a decreased growth signal activity when
PI3K is inhibited. Figure 7.14(c) demonstrates the decrease in growth sig-
nal on treatment with Rapamycin, indicating the effectiveness of this drug in
treatment of TSC2 mutated carcinomas.

The difference in growth signal activities in PTEN mutations (Figure 7.13(a))
vs. TSC2 mutations (Figure 7.14(a)) also conform with the observation made
in the literature that Cowden disease, which is associated with PTEN muta-
tions, is characterized by a much higher cancer risk than is tuberous sclerosis
complex disease (associated with TSC2 mutations) [137].

In silico simulations, such as the ones shown in this section, can be effi-
ciently performed using algorithms proposed in this thesis and can be very
useful for biologists to study the crosstalk among various genes (and proteins)
in a complex pathway. Even though the simulation results in this section show
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effectiveness of one drug over another drug, it is often important to study the
concomitant effect of two or more drug compounds. For instance, PI3K activ-
ity is important for insulin signaling, metabolism and normal brain function
[40]. So inhibition of PI3K can lead to various other abnormalities such as
diabetes, schizophrenia and bipolar disorder [136, 40, 149]. This necessitates
modeling the multiple inhibitions in a GRN that can capture such diverse ef-
fects of drug therapies. The GRN in Figure 7.1 is a small subset of hundreds
of genes and proteins that are known to play a crucial role in a day to day
functioning of a cell and needs to be explored further. Nonetheless, it captures
some important experimental results known in the literature.

7.3 Summary

In this chapter, we provided an application of algorithms proposed in previous
chapters for modeling GRNs. A GRN was constructed for modeling the signal-
ing pathways that maintain a balance between the pro-growth and anti-growth
signals in a healthy cell. By simulating various known cancer mutations and
their corresponding drug targets, the GRN has been shown to represent the
known experimental outcomes well. Furthermore, an evolutionary approach
for constructing a GRN has been demonstrated that uses genYsis to ensure to
ensure that local biological functionalities are conserved (i.e. global behaviour
of the GRN is preserved) as new proteins are added to a GRN. Even though
the interactions in the GRN, shown in this chapter, were manually inferred
from literature, this process can potentially be automated using the literature
mining and machine learning algorithms. GenYsis can prove invaluable in
analysing the inferred GRN and to ensure that the inferred network correctly
represents the dynamics of the biological phenomena under investigation.
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In this thesis, I have proposed algorithms to model various aspects of GRNs.
The formalism proposed in different chapters can be seen as different stages of
construction and modeling of GRNs. Boolean modeling in Chapter 3 requires
a very small amount of prior knowledge about the biological system being
modeled. As we advance through multiple valued rules in Chapter 4, more
refined information about gene and protein regulation is accommodated in
the modeling framework. The PBNs in Chapter 5 provide a mechanism to
study the GRNs resulting from the previous chapters in the context of the
experimental data. Finally, when one is confident that the constructed GRN
resembles the dynamics of the biological system under investigation, robustness
and stochastic simulations can be performed on the resulting GRN.

8.1 Thesis summary and contributions

Chapters 1 and 2 were dedicated to the introduction of the problem and the
background knowledge on GRNs respectively. Chapters 3 to 7 gave the original
contributions of our research. Contributions of this thesis are summarised as
follows:

• Chapter 3 formally introduced the problem of modeling the dynam-
ics in GRNs using Boolean algebra and implicit representation of finite
state machines. The formalism proposed in this chapter enables compu-
tation of steady states and dynamical attractors of large GRNs with over
thousand nodes. Further, under this formalism, it is possible to model
different transition schemes such as synchronous and asynchronous, by
slightly modifying the underlying Boolean functions but using the same
algorithms. Although the asynchronous dynamic models are closer to bi-
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ological phenomena than the synchronous models, their computational
overhead can be prohibitively large for some GRNs. It was demon-
strated that the computation time for identifying all attractors in the
asynchronous model can be reduced by exploiting similarities between
attractors of the synchronous and the asynchronous models. Based on
these algorithms for computing steady states, further algorithms were
developed for modeling multiple gene perturbation experiments. These
algorithms can be used for in silico simulation of experimental proto-
cols which involve application of different stimuli on a cell culture over
a range of time. The applicability of algorithms was shown by model-
ing the T-Helper cell GRN. It was demonstrated how T-helper cells can
differentiate into Th0, Th1 and Th2 cell types when subjected to gene
perturbations.

• Chapter 4 extended the formalism proposed in Chapter 3 to model
multi-valued GRNs. In the multi-valued modeling of GRNs a gene (or
protein) can exist at multiple levels of activation, such as: low, medium
and high. Multiple levels of activation of a gene (or protein) can be
sometimes essential as the same gene (or protein) may shown different
functionalities at different levels of activity. This extension to formalism
proposed in Chapter 3 was executed by treating each activation level of
the gene as a different Boolean variable. Additional Boolean constraints
were used to define a relationship between the set of Boolean variables
that correspond to the activity levels of the same gene (or protein). Un-
der the modified formalism, algorithms presented in Chapter 3 could be
employed to compute the steady states of multi-valued GRNs. Further,
a sigmod function was introduced to extract multiple level transition
rules from the Boolean transition functions (i.e. activating and inhibit-
ing edges) of GRNs. This automatic extracting of rules has the benefit
that one does not have to explicitly identify transition rules for the each
activation level of a gene from the literature or from the experimental
data. Finally, a combined Boolean-ODE methodology was introduced
based on sigmoid functions where the Boolean attractors are fed into
a numerical solver of ODEs to compute the continuous counterpart of
Boolean steady states.

• Chapter 5 presented an extension of Boolean modeling of GRNs to
non-deterministic networks where multiple alternative biological func-
tions can cause the activation of a gene (or protein). Alternate functions
have respective probabilities of selection leading to a stochastic FSM.
PBNs have been proposed in the past for modeling the dynamics in such
a non-deterministic representation of GRNs using markov chains based
explicit approaches. Under such approaches, the steady state probability
distribution is assumed to correspond to the cellular state. However, a
GRN can have multiple steady states and hence, depending upon the
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starting probability distribution, there can be multiple stationary dis-
tributions in a given markov chain representation. Further, size of the
probability transition matrix required for explicit computation of sta-
tionary distribution can be astronomically large due to the exponential
large state space of a GRN. I addressed these issues in this chapter by
extending the implicit representation of deterministic Boolean networks
to PBNs. Unlike in the explicit methods, the problem of computation of
stationary distribution was divided into two problems. First, all attrac-
tors of the stochastic FSM were identified using the algorithms proposed
in Chapter 3 and then in the second problem, the steady state probabil-
ity distribution of each attractor is computed. By dividing the problem
into two sub-problems, I address the issue of non-unique stationary dis-
tribution of the markov chains. Further, the complexity arising due
to exponential state space is addressed by using implicit representation
techniques based on ROBDDs and ADDs. The computational efficiency
and functionalities of algorithms proposed in this chapter was shown by
applying them on various synthetic GRNs and on a GRN proposed in
the literature for modeling a specific cancer type called gliomas.

• Chapter 6 extends Boolean formalism proposed in Chapter 3 to incor-
porate inherent stochasticity in biological phenomena. A gene or protein
can be normally activated by more than one biological phenomena. This
redundancy is inherent in biology to avoid a complete breakdown of the
system in the event of malfunctioning in a single gene (or protein) reg-
ulation phenomena. However, every gene regulation phenomena has a
probability of failure which is normally reflected by the complexity of
the regulation mechanism itself. In our Boolean modeling approach,
the gene (or protein) regulation mechanisms are represented by Boolean
functions. To model stochasticity in gene regulation mechanisms, a fault
modeling approach called stochasticity in functions (SIF) was introduced
in this chapter. In SIF, Boolean functions have a probability of failure
reflecting the stochasticity (and hence complexity) of underlying biologi-
cal functions. The SIF model was shown to give more biological realistic
results as compared to existing approaches for modeling stochasticity
in GRNs. By applying SIF on T-Helper and T-Cell receptor GRN, it
was demonstrated that while the two GRNs will be declared non-robust
to stochasticity for a small amount of noise under the existing models,
SIF can efficiently model the impact of gradually increasing noise on the
robustness of GRNs.

• Chapter 7 introduced a case study on the construction and modeling of
a GRN that represents a balance between cellular growth and apoptosis
signals in a healthy vs. a cancer cell. The GRN was constructed incre-
mentally, starting from a small set of four proteins. In each iteration of
network construction, the GRN was expanded by adding new regulators
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and targets of base proteins. Algorithms proposed in this thesis were
then applied to ensure that the expanded GRN correctly reflects the
intended end result (i.e a balance between apoptosis and cell growth).
The GRN resulting from the final iteration was then modeled for various
known gene mutations that are known to cause an imbalance between
cell growth and apoptosis. The impact of gene mutations on unregulated
cell growth was demonstrated reflecting the critical role of these genes
(or proteins) in the formation of tumors. Further, the therapeutic tar-
gets to restore the imbalance in mutated cells were modeled reflecting
the impact of commonly used drugs. The bottom-up GRN construction
mechanism shown in this chapter displays one possible application of
our modeling toolbox genYsis which can be potentially automated in
the future by using it in combination with data and literature mining
algorithms.

8.2 Future work

The formalism proposed in this thesis can be extended in various interesting
directions.

In this thesis, I focussed on modeling the dynamics of single cells. However,
cells can also communicate with each other by secreting proteins that other
cells can sense at their surface. To model the influence of inter-cell communica-
tion on the population of cells, it will be interesting to generalise the algorithms
such that multiple copies of GRNs are simulated at the same time. Cell pop-
ulation can be seen as a swarm of cells where each cell has a computation
mechanism specified by its own GRN and cells communicate via expression of
a few nodes that are part of their GRN. Such a modeling mechanism can link
the simulation of the GRN of a single cell with the GRN of its neighbouring
cells. This modeling approach will have an advantage over the more tradi-
tional ODE based approaches where protein expression is normalised over the
population of cells assuming that all cells behave in an identical way and show
concurrent dynamics.

Algorithms proposed in this thesis can also benefit by including param-
eters that reflect the notion of time in the gene regulation mechanisms and
parameters to reflect probability of failure of a biological function. However
in practice, it can be difficult to learn these parameters from literature or esti-
mate them from the experimental data. Structural biology can provide some
of the information that can potentially be translated into these parameters.
For example, it has been demonstrated that the length of protein coding re-
gion has an impact on the time it takes for a protein to be expressed inside a
cell from the time the transcription factor is activated [68]. Eventhough such
information is readily available in databases, it has not been applied in the
context of the dynamics of a GRN. On the other hand, in order to assign a
probability of failure to each biological function, information on binding sites,
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binding affinity and number of binding agents required to activate a protein
can be effectively put to use. These extensions, however, will require a detailed
study to translate the above biological characteristics into the corresponding
equation parameters.

As the experimental tools available to biologists will become more ad-
vanced, additional insights into gene and protein regulation mechanisms will
become available. However, with this improved understanding of biological
phenomena, there will be a desire to computationally model increasingly com-
plex biological systems. To deal with the complex biological systems, various
abstraction mechanisms will have to be employed in the computational tools.
Therefore, even though the formalism proposed in this thesis seems to be an
abstraction of actual biological mechanisms, computational methods such as
the ones proposed in this thesis will form the basis of modeling in biology in the
future. I believe that the discrete modeling and analysis techniques proposed
in this thesis will find more applications as the complexity of the systems that
one would like to computationally model grows and discrete modeling will be
the direction of research in systems biology in the coming years.
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