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Abstract

Energy efficiency of electronic devices has become a critical issue in modern system
design due to three major reasons. First, energy saving increases the operational time
of battery-powered portable systems by extending the battery lifetime. Second, heat
dissipation can be reduced by energy reduction. Excessive heat dissipation increases
cooling and packaging cost. Also, it disturbs continuous performance improvement
and system reliability. Third, energy reduction alleviates the demand for electricity
as well as the impact on our environment.

As design complexity increases, processor-based embedded system design has be-
come widely used to meet the time-to-market constraint and increase design flexibil-
ity. Typically, processor-based systems can be structured into three layers - hardware,
operating system (OS), and application program layers. Even though two software
layers do not consume the power directly, they control the behavior of the hardware
and have strong impact on the energy consumption of the hardware layer. However,
most previous research has focused on the energy opimization of the hardware itself.

In this thesis, I will discuss how to restructure two software layers for the improve-
ment of overall system energy consumption. As an OS-level technique, I will present
dynamic power management (DPM) technique which allows OS to change the power
state of hardware components. Also, I will describe an application-program-level
technique which restructures the software so that hardware consumes less power.

DPM is a design methodology for reducing power consumption of electronic sys-
tems by performing selective shutdown of idle system resources. The effectiveness of a
power management algorithm depends critically on accurate modeling and prediction

of user behavior and the computation of the control policy. In this thesis, I present

iv



two different on-line adaptive DPM algorithms. The first approach models systems
as finite-state Markov chains and applies on-line adaptation technique to deal with
initially unknown or non-stationary user behavior, which are very common in real-life
systems. The proposed approach extends policy optimization techniques in a station-
ary stochastic environment to handle the non-stationary stochastic environment for
practical applications using sliding windows. The effectiveness of the proposed ap-
proaches is demonstrated by a complete DPM implementation on a laptop computer
with a power-manageable hard disk that outperforms existing DPM schemes.

The second approach is a heuristic event-driven DPM algorithm based on an
adaptive learning tree which is the representation of recent past user history. This
approach controls the power state of the system based on the future user behavior
predicted using the learning tree.

Next, I discuss a framework and a tool for low energy software optimization tech-
nique including the algorithms and a tool flow to reduce the computational effort of
programs, using value profiling and partial evaluation. Such a reduction translates
into both energy savings and average case performance improvement, with tolerable
increase of worst case performance and code size. The tool reduces the computational
effort by specializing frequently executed procedures for the most common values of
their parameters. The most effective specializations are automatically searched and
identified, and the code is transformed through partial evaluation. Experimental re-
sults show that the proposed technique greatly improves both energy consumption
and performance of the source code. Also, the proposed automatic search engine

greatly reduces code optimization time with respect to exhaustive search.
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Chapter 1

Introduction

1.1 Motivation

Design methodologies and tools for energy-efficient system-level design are receiving
increasing attention [21, 69, 70, 85] because of the widespread use of portable elec-
tronic appliances (e.g., cellular phones, laptop computers, etc.) and of the concerns
about environmental impact of electronic systems.

Battery life time in portable systems can be prolonged in two ways - by increasing
battery capacity per unit weight and by reducing power consumption with minimal
performance loss. Between these two alternatives, the latter has been the major
concern of designers because battery capacity (Watt-hours / kg) has only improved
a factor 2 to 4 over the last 30 years, while the computational power of digital IC’s
has increased by more than 4 orders of magnitude [85].

Energy-efficient design requires the development of new computer-aided design
(CAD) techniques to help exploring the trade-off between power and conventional
design constraints, i.e., performance and area. Numerous CAD techniques [70] have
been researched and implemented at all levels of the design hierarchy to reduce power
consumption, and many of these techniques target VLSI digital components. Modern
portable systems are heterogeneous [61]. For example, the power breakdown for a
well-known laptop computer [107] shows that the power consumed by VLSI digital
components is only 21%, while the display, hard disk drive, and wireless LAN card
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Application program |:> Algorithm implementation

Operating system |:> Uniform interface / Resource manager

Hardware |:> Actual energy consumer

Figure 1.1: The structural view of processor-based systems

consume 36%, 18%, and 18%, respectively.

Recently, processor-based system architectures are adoped in many modern ap-
plication domains such as telecommunications, consumer electronics, and multime-
dia [39, 75]. The major driving force to move from ASIC design to processor-based
architectures is programmability, which increases flexibility and reduces the design
time. Cost is also reduced, because the design is based on high-volume commodity
parts (processor and memory), whereas ASIC solutions require low-volume custom
components [56, 111].

Typically, processor-based portable systems (e.g. laptop computers and PalmPi-
lots) can be structured into three layers as shown in Figure 1.1. The hardware resides
at the bottorm layer, the operating system (OS) layer is on top of the hardware layer,
and application programs are the top layer. Application-program layer consists of a
set, of programs and each of them is executed for its specific application domain. On
the other hand, the OS layer provides the uniform interface to application programs
and manages hardware resources, and the hardware layer is the actual energy con-
sumer. In these systems, two software layers running on the processor control the
behavior of hardware. For this reason, the overall performance and energy consump-

tion of processor-based design critically depends on software organization and quality.
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power

busy idle
Figure 1.2: An example of energy perspective system abstraction

Software optimization is one of the most important issues in modern processor-based
embedded system design [61, 108, 101, 85].

In this thesis, I will discuss how to enhance the two software layers to facilitate
energy reduction. [ will also describe how these enhancements affect the system

performance.

1.2 Energy-Centric System Abstraction

From an energy point of view, processor-based systems can be represented by finite-
state models. Consider a laptop computer as shown in Figure 1.2. While a user is
working on the computer, the computer is in busy state. On the other hand, while
a user is taking a break, and there is no application program running on the com-
puter, the computer is in idle state. In other words, whenever a user changes his

or her behavior, the state model changes its state. Usually, the system consumes
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sLow energy software optimization
Application — Design time technique

program — Busy state energy reduction
— Computation-intensive applications

*DPM (Dynamic power management)
— Run time technique
— |dle state energy reduction
— Interactive applications

(ON)

Hardware

Figure 1.3: Research objectives corresponding to each software layer

different power levels depending on the state. For this reason, total energy consump-
tion of the system is the sum of busy-state energy consumption and idle-state energy
consumption.

Notice that Figure 1.2 is the simplest example of system abstraction from an
energy perspective. More complex system abstraction may be required when a system
has multiple busy and/or sleep states which consume different power levels. For
example, a laptop computer consists of several components such as processor, hard
disk, memory, and so on. Depending on the programs running on the computer,
each system component shows large variation of its utilization and such utilization

variation translates into different busy states.

1.3 Research Objectives

The major goal of this research is to restructure the software layers to reduce the
energy consumption of the hardware layer. Each software layer requires different
techniques due to its different role.

Figure 1.3 shows the research objectives in each software layer. Dynamic Power
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Management (DPM) is an OS-level run-time technique aiming at reducing the idle-
state energy consumption. DPM is a design methodology to reduce the energy con-
sumption at the system level by selectively placing components into low-power states.
The challenging areas of DPM are interactive applications because the system goes
into idle state frequently.

On the other hand, the major objective at the application-program layer is to
develop low-energy software optimization techniques. These techniques are software
design time techniques for the busy-state energy reduction by decreasing the overall
computations and appropriate for computation-intensive applications.

Typically, a system consists of several hardware components. For instance, a
system consists of a microprocessor and some peripheral devices such as hard disk
and network card. For computation-intensive programs such as image compression
and expansion programs, the major energy consumer is the processor. On the other
hand, for interactive programs such as web browser and editors, the peripheral devices
play an important role in overall energy consumption. For this reason, I will show the
effectiveness of DPM by applying it to hard disk drives while interactive programs
are running on the processor. Also, the effectiveness of low energy optimization
techniques will be shown by applying them to computation-intensive programs for

processor energy reduction.

1.4 Dynamic Power Management

1.4.1 Overview

A system does not always need to operate at its peak performance because its work-
load changes continuously. In particular, this situation is commonly observed while
interactive applications are running on the system. Suppose that a user is executing a
web browser on a laptop computer. While the data is transmitted from the network,
the system will be in busy state. However, the system with the exception of the LCD
display will be in idle state while the user is reading the data displayed by the web

browser. Therefore, while the user is reading the data, the system wastes energy and
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Figure 1.4: Energy perspective system abstraction with a sleep state

does not have to run at its peak performance.

DPM is a flexible and general design methodology aiming at controlling per-
formance and power levels of electronic systems, by exploiting the idleness of their
components. For this purpose, a system is provided with sleep states in addition
to the states (busy state and idle state) in Figure 1.2 and abstracted as shown in
Figure 1.4. In sleep state, a system is shutdown and cannot serve any requests from
the user while consuming minimal amount of power.

Also, a system may need a power manager (PM) that monitors the overall system
and component states and controls the power state of each component. This control
procedure is called power management policy. The problem in DPM is that changing
power state (e.g. spin up and down a disk drive) imposes a penalty in terms of both
power and performance. Generally, the power state transition from idle state into the
sleep state is called shutdown and the power state transition from sleep state to busy
state is called wakeup.

Figure 1.5 shows (a) the system power consumption level over time without DP M,
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Figure 1.5: System power consumption level variation with DPM
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Figure 1.6: An example of user behavior change

(b) the case when the ideal DPM is applied, and (c) the case when non-ideal DPM
is applied. Non-ideal DPM wastes the idle interval at the second idle period and pays
performance penalty at the third idle period because the idle period is not long enough
to amortize the shutdown and wakeup penalty. These inefficiencies come from the
inaccurate prediction of the duration of the idle period, or, equivalently, the arrival
time of the next request for an idle component.

An example for the inaccurate prediction is shown in Figure 1.6. Suppose that a
laptop computer is shared by multiple users. Whenever a user generates a request,

the system goes into the busy state to serve it and after finishing the service, the
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system goes into the idle state and waits for the next request. Each user will show
a different behavior (request rate) in using the laptop computer. In other words, the
length of busy periods and idle periods will vary significantly depending on the user.
Furthermore, the same user can change his or her behavior from time to time. For
instance, the user behavior while using a web browser will be different from the user
behavior while using an text editor. Therefore, there is unavoidable uncertaintiy on
future user requests. More precisely, the user request rate changes over the time and
such time-variant property is called non-stationary property.

An ideal PM assumes that it has the complete knowledge of present, past and
future workloads. In other words, an ideal PM is not affected by the non-stationarity
due to the complete knowledge of workloads. However, in practice, it is impossible
to have the complete knowledge of future workloads. Therefore, practical DPM al-
gorithms should be adaptive to the non-stationarity to increase their efficiency. In
some cases, some partial knowledge can be provided by applications that provide
hints on the future requirements of system resources [47, 35]. Unfortunately, such
application-driven approach requires the modification of the applications, and thus
partial knowledge cannot be provided when the applications cannot be modified.

In this thesis, I take an application-independent viewpoint and present two new
adaptive DPM approaches that heuristically predict the idle period length to cope

with the non-stationary property of user behavior.

1.4.2 Related Work

Previous DPM policies can be classified into three major categories: timeout, predic-
tive, and stochastic. Although these approaches proposed different methods to exploit
the idleness, they have the common rationale to make a decision for shutdown. For
this reason, I will first discuss the shutdown criteria for DPM and then the previous

work in each category will be discussed in order.
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Figure 1.7: compute the break-even time of a device

Shutdown Criteria

The first mission of DPM techniques is to identify the idle period long enough to shut
down the system for amortizing the shutdown and wakeup penalty. The break-even
time (ty.) is the criterion to determine whether the given idle period is long enough
to shut down the system.

Figure 1.7 illustrates the concept of break-even time. Figure 1.7 (b) graphically
represents the energy consumption for the idle period shown in Figure 1.7 (a) when
the system is not shut down. Using the parameters introduced in Table 1.1. The

energy consumption over the time interval ¢;4., can be expressed as:

Eno—shutdown = tidle f)idle (11)

On the other hand, Figure 1.7 (c) graphically represents the energy consumption
for the same idle period when the system is shut down. Its corresponding expression

is:
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the break-even time
tshutdown shutdown delay
twakeup wakeup delay
tidie idle period length
Pehutdown power consumption during shutdown
Pyakeup power consumption during wakeup
Pieep power consumption in sleep state
P power consumption in idle state
Ero_shutdown | €nergy consumption without shutdown for ¢;4,
Eohutdown energy consumption with shutdown for ¢;4,

Table 1.1: Device parameters for energy consumption computation

Eshutdown = tshutdown : Pshutdown + twakeup ' Pwakeup

(1.2)
+ max((tidle - (tshutdown + twakeup)); 0) ) Psleep

Note that we assume that it is impossible for the system to stay in sleep state
when ¢4 is shorter than the sum of ¢shud0wn and tyareup-

The break-even time is the period such that E,,_sputdown 1S exactly the same as
Ehutdown- In other words, there is no difference in energy consumption regardles of
power state changes. The break-even time is expressed as Equation 1.3, if the energy

overhead of shutdown and wakeup is larger than the energy wasted in idle state, i.e.

tshutdown ' Pshutdown + twakeup : Pwakeup > tidle : f)idle-

tshutdown ) (Pshutdoum - Psleep) + Ztwakeup ) (Pwakeup - Psleep)
Pz'dle - Psleep

the = (1.3)
If the idle period length is longer than the break-even time, the system should be
shut down for energy reduction. Otherwise, the shutdown should be avoided because
it causes more energy consumption due to the shutdown and wakeup overhead.
To summarize, the effectiveness of DPM policies critically depends on how to

predict accurately the upcoming idle period, whether it is longer than the break-even



CHAPTER 1. INTRODUCTION 11

time or not.

Timeout Policy

The timeout policy [40] is the most widely used in many applications such as micro-
processors, monitors, hard disk drives, etc. because of its simplicity. The value of
the timeout can be fixed (static timeout) or it may be changed over time (adaptive
timeout). An effective static timeout policy sets the timeout to the break-even time
of the power-managed device [46]. Roughly speaking, ;. is the minimum idle time
for which it is convenient to shut down the device, because the power savings in the
sleep state should compensate for the shutdown and wakeup costs [12]. It can be
shown [46] that setting the timeout to ty produces a 2-competitive policy, which is
guaranteed to be within a factor of two from the power savings that could be achieved
by an ideal policy with perfect knowledge of the future (i.e., an oracle policy).

Static timeout policies use a fixed timeout value. Several adaptive timeout policies
have been introduced to reduce wasted idle time by changing the timeout threshold
depending on previous idle period history [37, 38, 30, 62].

To summarize, timeout policy is widely used due to its simplicity, but the main
shortcoming of timeout policies is that they waste power waiting for the timeout to

expire. This inefficiency motivates the search for more effective techniques.

Predictive Policy

Srivastava et al. [94] proposed heuristic policies to shut down a system selectively as
soon as an idle period begins. The basic idea in [94] is to predict the length of idle
periods and shut down the system when the predicted idle period is long enough to
amortize the cost (in latency and power) of shutting down and later re-activating the
system. A shortcoming of the predictive shutdown approach proposed by Srivastava
is that it is based on offline analysis of usage traces, hence it is not suitable for non-
stationary request streams whose statistical properties are not known a priori. This
shortcoming is addressed by Hwang and Wu [44]. They proposed online adaptive
methods that predict the duration of an idle period with an exponentially weighted



CHAPTER 1. INTRODUCTION 12

average of previous idle periods.

However, all predictive shutdown techniques share a few limitations. First, they
do not deal with resources with multiple sleep states. Second, they cannot accurately
trade-off performance losses (caused by transition delays between states of operation)
with power savings. Third, they do not deal with general system models where
multiple incoming requests can be queued while waiting for service

To summarize, predictive policies are more aggressive than timout policies by
making a decision for the shutdown at the beginning of idle period. But they still

need to be improved to overcome the three major limitations mentioned above.

Stochastic Policy

Stochastic policies solve the limitations of predictive approaches by modeling the
unavoidable uncertainty of future requests (or workload / user behavior) and the
behavior of system components as a stochastic process. Component behavior is also
modeled as a stochastic process. Even if the realization of a stochastic process is not
known in advance, its properties can be studied and characterized. This assumption is
at the basis of many stochastic optimal control approaches that are routinely applied
to real-life systems [96, 78, 114]. DPM has been formulated and solved as a discrete-
time stochastic optimal control problem by Benini et al. [11]. Also, continuous-time
stochastic approaches were proposed in [79, 80, 82, 90].

In [11], general systems (with multiple states and queuing) and user request are
modeled as discrete-time Markov decision processes. The discrete-time Markov model
enables a rigorous formulation of the search for optimal power management policies
as a constrained stochastic optimization problem whose exact solution can be found
in polynomial time. Also, it provides a flexible way to control the trade-off between
power consumption and performance penalty depending on the optimization con-
straints. A few extensions to the discrete-time Markov model have been proposed in
the recent past.

To reduce the power cost of the power manager which observes and issues com-
mand at regular time-discretization intervals, continuous-time (event-based) formu-

lations have been proposed [79, 80, 82, 90, 92]. The technique in [79] was further
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extended to handle more complex systems (multiple devices) in [81], or to control
the power states of the system with the consideration of a side metric - quality
of service [113]. For systems where running the power manager at regular time-
discretization intervals imposes an unacceptable power cost, continuous-time (event-
based) formulations have been proposed [79, 90]. Also, the authors in [92] proposed
to use the distributions other than exponential to model the system behavior more
precisely. For example, they modeled the user behavior as a Pareto distribution and
the wakeup and shutdown time penalties were modeled as a uniform distribution.

Unfortunately, a common basic assumption in [11, 79, 80, 82, 92] is that the
Markov model is stationary and known in advance. Such an assumption clearly does
not hold if the system experiences non-stationary workloads. Furthermore, for each
idle interval, only a single shutdown decision is allowed in continuous-time methods,
thus a wrong decision may critically degrade their effectiveness. In contrast, the
discrete-time methods naturally have multiple chances to change its decision. In [92],
the continuous-time methods were extended to overcome this limitation based on the
renewal theory and the time-indexed semi-Markov decision process model.

To summarize, stochastic policies overcome the limitations of predictive policies,
but they are not practical in many real-life applications due to the assumption that

the workloads are stationary.

1.5 Low Energy Software Optimization

1.5.1 Overview

DPM is an effective technique for interactive applications by exploiting idleness, but
it is not appropriate for the computation intensive applications because these applica-
tions rarely allow a system to be in idle state due to a large amount of computations
and tight timing constraints.

Processor-based embedded systems are pervasive in many modern application
domains such as telecommunications, consumer electronics, and multimedia [39, 75].

The major driving forces to move from ASIC to processor-based architectures are
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the following. First, processor-based embedded systems provide the programmability
which increases flexibility and reduces the design time. Second, design cost is also
reduced, because the design is based on high-volume commodity parts (processor and
memory), whereas ASIC solutions require low-volume custom components [56, 111].

The overall performance of processor-based design critically depends on soft-
ware quality because the processor on which software is running is the major en-
ergy consumer for computation-intensive applications. For this reason, software
optimization is one of the most important issues in modern embedded system de-
sign [61, 108, 101, 85].

Embedded software can be optimized more aggressively than general-purpose soft-
ware for several reasons. First, embedded software can be often characterized by a
few well-known workloads, thus profiling-driven optimization can be effectively used
for embedded software development. Second, embedded software only needs to be
optimized for the specific target hardware, while general-purpose software should be
optimized with the consideration of the various hardware platforms. Third, embed-
ded software optimization takes the advantage of the reduced compilation speed re-
quiremenet with respect to the general-purpose software compilers, therefore embed-
ded software development tools can adopt more complex and aggressive approaches
which are not allowed in general purpose software development. Such optimization
is often a critical step for striking design targets under tight cost constraints, which
are typical of embedded systems.

A traditional quality metric for embedded software is compactness: the most
compact code for a program uses the least instruction memory. Moreover, if such
program represents a pure data flow (i.e. no branching and iteration is involved), it
executes in the shortest time and consumes the least energy under the assumption
that the cost of each instruction is roughly constant. However, in a real situation,
as algorithm complexity grows, the control dependency of a program increases and
specific architectural features of a processor may favor some instructions over others in
terms of performance and energy consumption. Thus, two additional metrics, namely
performance and energy, are considered in embedded software design. It is also very

important to distinguish between average- and worst-case performance because many
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embedded systems are targeting real-time applications [56].

Average-case performance is tightly related to energy efficiency, because short
execution time can be directly translated into reduced energy by slowing down the
system’s clock (or by gating the clock) and/or by lowering the voltage supply [10,
13, 85]. At the same time, however, worst-case performance should not be adversely
affected when optimizing for average case. In other words, while minimizing the
expected value of program execution time, variance should remain under control. In
this context, I propose an automatic source-code transformation framework aiming
at reducing the computational effort (the average number of executed instructions)
with tightly controlled worst-case performance and code size degradation.

According to Amdahl’s law, the most effective way to improve the average case
performance is to make the common case fast. Many code transformation techniques
adopt execution frequency profiling to identify the most frequently-executed code
blocks [77, 9], or computational kernels. Then, the kernels can be optimized either
by eliminating redundant operations or by matching computation and memory trans-
fer to the characteristics of the hardware platform (e.g., parallelizing computation,
improving locality of memory transfers) [13, 8, 112].

Execution frequencies of program fragments are not the only profiling informa-
tion that can be used for code optimization. Recently, value profiling has been pro-
posed as a technique for identifying a new class of common cases for a given pro-
gram [16, 17, 36]. The common cases identified by value profiling are code fragments
which frequently execute operations with the same operand values. In this case,
the identified code fragments can be specialized for the commonly observed operand
values to eliminate redundant computations.

Profiling-driven optimization is often very effective for embedded systems because
embedded software shows value locality and can be characterized by a few well-known
workloads, unlike software running on a general purpose system. For example, many
DSP programs execute filter operations and the filter coefficients are rarely changed.

Partial evaluation is an appropriate technique to exploit the value locality by
specializing a procedure with respect to a subset of its parameters, where these pa-

rameters are held constant [45, 27]. In partial evaluation, procedure calls, which are
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frequently executed with rarely varying parameter values, are defined as common
cases. Such common cases are identified by value profiling and specialized by partial
evaluation. Even though partial evaluation is a well-developed field, there are several
issues in its application that have not been fully addressed in the past. First, the
procedures to be specialized, their parameters, and parameter values for specializa-
tion are assumed to be specified by the user. Second, partial evaluation sometimes
leads to code size blowup. If applied in an uncontrolled fashion, it can actually make
performance and energy consumption worse. Third, when multiple procedures within
a program are specialized, the interplay among various specialized calls is rarely taken
into consideration (refer to the example in Figure 5.1). Because of these limitations,
program specialization based on partial evaluation is not widely applied.

In this thesis, I will discuss a source-code transformation framework and tool
based on profiling (both execution frequency and value profiling) and partial evalua-
tion to overcome the limitations of partial evaluation in an automated fashion. The
framework integrates execution frequency and value profiling, candidate computa-
tional kernel selection, partial evaluation, performance and energy estimation within
a single optimization engine. Its input is a target program (C source code) with
typical inputs. The output is optimized source code, and estimates of average exe-
cution time and energy for the original and optimized version of the target program.
The impact of optimization is assessed by instruction level simulation on the target
hardware architecture [68, 33, 55].

1.5.2 Related Work

Whereas the objective of most software optimizations for general purpose computers
is average case performance, the requirements for embedded software are more artic-
ulated [66]. Code compactness is often a high-priority objective [57, 29, 52]. Also,
energy efficiency as well as performance are becoming important issues in embedded
software design [102].

Retargetability is another key requirement for embedded software optimization

tools, because of the wide variability of target hardware platforms [99, 74, 53, 58].
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Also, compiler development for specific application domains such as digital signal
processing was researched to exploit special features of application-specific processor
architectures [86, 5]. Most research on optimizing compilers for embedded processors
has focused on fairly low-level optimizations, such as instruction scheduling, register
assignment, etc. Embedded software optimization takes advantage of the reduced
compilation speed requirement with respect to general-purpose software compilers.
Therefore embedded software development tools can adopt more complex and ag-
gressive approaches which are not allowed in general purpose software development.

Both compactness and retargetability basically require the instruction-level pro-
gram analysis. Due to this effect, performance and energy efficiency improvement
were also studied in instruction level in the past [101, 102, 104, 98].

Recently, high-level approaches (based on source to source transformations) to im-
prove code quality were proposed. Memory-oriented code transformation techniques
were proposed in [18, 72| and other classical high-level loop transformations for gen-
eral purpose software were applied to embedded software optimization [68, 33, 55].
Source-to-source techniques are more aggressive in modifying the target program, and
they can be applied together with more traditional optimizing compilers in the back-
end. One of the major concerns in the adoption of high-level optimizations is that
they are hard to control, and they are often meant to be used in a semi-automated
flow that requires programmer’s guidance.

Value locality is a promising property for general purpose software optimization,
but it has not been studied in depth for embedded software. Value locality is defined
as the likelihood of a previously-seen value recurring repeatedly within a physical or
logical storage location [59]. Value locality enables to reduce the computational cost
of a program by reusing previous computations.

Previous work shows that value locality can be exploited in various ways de-
pending on the target system architecture. In [49], common-case specialization was
proposed for hardware synthesis using loop unrolling and algebraic reduction tech-
niques. In [59, 51], value prediction was proposed to reduce the load/store operations
with the modification of general purpose microprocessor. Also, in [87], redundant

computation (an operation performs the same computation for the same operand
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value) was defined and result cache was proposed to avoid redundant computations
by reusing the result from the result cache. Unfortunately, these techniques are not
appropriate for our case, because they are architecture dependent. For this reason, I
will focus on pure software oriented approaches exploiting value locality (i.e. partial
evaluation) in this thesis.

Depending on the way of using the result of previous computations, partial eval-
uation can be classified into two categories, i.e. program specialization and data
specialization. Program specialization encodes the results of previous computations
in a residual program, while data specialization encodes these results in the data
structures like caches [22].

Program specialization is more aggressive in the sense that it optimizes even the
control flow, but it can lead to a code explosion problem due to over-specialization.
For example, code explosion can occur when a loop is unrolled and the number of
iterations is large. Furthermore, code explosion can degrade the performance of the
specialized program due to increased instruction cache misses. On the other hand,
data specialization is much less sensitive to code explosion because the previous com-
putation results are stored in a data structure which requires less memory than the
textual representation of program specialization. However, this technique should be
carefully applied such that the previously cached computations are expensive enough
to amortize the cache access overhead. The cache can also be implemented in hard-
ware to amortize the cache access overhead [87].

To summarize, instruction-level optimization was a major trend in low-energy
software optimization in the past. Recently, high-level code optimization (source-
to-source transformation) has become a new trend in embedded software design to
achieve higher degree of performance and energy improvements. One of the promising
high-level techniques is program specialization based on value profiling. However,
program specialization has a few limitations including code explosion and needs a

method to overcome the limitations for practical use.
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1.6 Thesis Contributions

This thesis focuses on energy reduction techniques for processor-based systems. The
contributions can be summarized in two parts.

The first contribution is an OS-level energy reduction technique. I propose two
adaptive Dynamic Power Management policies to handle the non-stationary service
requests of the intractive applications for energy saving. Also, these techniques are
implemented on both laptop and desktop computers to control the power states of
their hard disk drives.

The second contribution is an application-program-level energy reduction tech-
nique. I propose an automated low-energy software optimization framework to im-
prove average energy consumption as well as performance by specializing the computa-
tion intensive application programs. The framework performs a source to source-code
transformation using the value locality obtained from the profiling. The framework
is implemented based on the SUIF [100] and the transformation effect is validated on
ARM [6] and ST200 [95] processors.

1.6.1 DPM for Non-Stationary Service Requests

The first technique is a predictive policy called sliding window technique and the
second one is a stochastic policy called adaptive learning tree.

The sliding window technique tackles the non-stationary property of user behavior,
which is the most critical limitation of all stochastic DPM policies. This technique
adopts parameter-learning schemes for the workload source (e.g., the user, also called
service requestor) that capture the non-stationarity of its behavior. The time-varying
parameters of the stochastic model of the workload source are monitored within sliding
windows. The captured time-varying parameters are well integrated with an existing
stationary stochastic policy [11] by interpolating the optimal policies computed under
the assumption that user requests are stationary.

The adaptive learning tree technique is different from the previous predictive tech-
niques, because it supports multiple-sleep state devices to exploit idleness more effi-

ciently by selecting the most appropriate sleep state depending on the length of the



CHAPTER 1. INTRODUCTION 20

idle period. For this purpose, the concept of multiple break-even times is used. Based
on this concept, the idle period length is quantized and each quantum is mapped to
each sleep state. The adaptive learning tree technique records the most recent idle-
ness history in the form of a tree and predicts the corresponding quantum of the next
idle period from the tree.

Both sliding window and adaptive learning tree techniques are implemented in
Windows2000 from Microsoft running on latop and desktop computers with hard
disk drives to show their feasibilities in real system environments. The sliding window
technique requires a pre-characterization step to build a set of policies to cope with
the non-stationary user behavior, while this step is not necessary in adaptive learning
tree technique. But the pre-characterization step in sliding window technique allows
us to trade off precisely between energy consumption and performance, which is the
benefit of the sliding window technique over the adaptive learning tree technique.
The experimental results show that the proposed methods outperform other DPM
policies in terms of both energy reduction and performance penalty. In the best case,
the sliding window technique improves the energy consumption of a hard disk drive
up to more than a factor of two compared to the hard disk drive without power

management.

1.6.2 Low Energy Software Optimization Framework

The technique presented in this thesis is based on program specialization without any
hardware assistance for embedded software design and implemented as a tool-chain.
The proposed technique differs from previous approaches [27] as follows.

First, I propose a computational effort estimation technique which combines value
profiling with execution frequency profiling. Using the estimation technique, it is
possible to identify the common cases (computationally intensive procedure calls with
their effective known parameter values for the specialization) in an automated fashion.

Second, this approach provides a systematic loop controlling strategy to avoid
the code explosion problem (which was manually controlled by the user in previous

work).
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Third, this approach supports the inter-procedural effect analysis of the program
specialization which was mentioned only in a few papers [28]. This analysis is espe-
cially important when multiple procedure calls are specialized.

I adopt offline partial evaluation rather than online partial evaluation, since of-
fline partial evaluation is more advantageous in the context of real-time applications,
which are common embedded systems [71]. In detail, the advantages of offline partial
evaluation can be summarized as two reasons.

First, online partial evaluation does not guarantee the worst case performance
due to the dynamic optimization and run-time code generation, while it is possible
to avoid such inefficiency by offline partial evaluation because it is not the run-time
technique.

Second, the intrinsic problems of partial evaluation - code explosion and inter-
procedural effect analysis for multiple specialized calls cannot be handled properly at
run time due to their complexities.

The advantages of the proposed method are implemented in a single framework
to automate the overall code transformation procedure with minimal human inter-
vention. Also, the effectiveness of the framework was validated in two different pro-
cessor environments, i.e., strong-ARM and ST200 processors. Several DSP programs
transformed using the framework show great improvements of both performance and
energy consumption. Our tool improves both performance and energy consumption
of the source code up to more than a factor of two and in average about 35% over

the original program.

1.6.3 Limitations and Future Work

The DPM techniques in this thesis consider single component instead of multiple
components to be power-managed. The concurrent power management of multiple
components is still challenging area to be researched because it is more practical
and the overall energy reduction will increase. The proposed DPM methods can
be extended to solve this challening problem, but the extension may face in some

problems like the overhead of the power manager.
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The low-energy software optimization technique also has the possibility of being
further improved. For example, the current optimization framework only considers
procedure-level optimization. But the lower level (i.e. loop-level) optimization may
be more effective for both performance and energy consumption. Also, for energy
critical systems, it is possible to achieve further energy saving by combining the tech-
nique with Dynamic Voltage Scaling (DVS). The combination of these two techniques

enables us to translate the performance improvment into further energy reduction.

1.7 Thesis Organization

Chapter 2 explains the first adaptive DPM technique, sliding window technique. 1
also demonstrate its effectiveness by applying it to hard disk drives and comparing
it to the previous stationary DPM policies. Chapter 3 presents the second adaptive
DPM technique, adaptive learning tree technique and shows its effectiveness by ap-
plying it to the hard disk drives with multiple-sleep states. Chapter 4 compares the
proposed adaptive DPM techniques to other DPM policies by implementing them in
Windows2000 running on laptop and desktop computers. The efficiency of each policy
is measured by energy consumption and performance penalty. Chapter 5 describes
the low-energy software optimization framework implemented based on SUIF. The
effectiveness of the framework is shown by applying it to two well-known processors,
strong-ARM and ST200. Finally, Chapter 6 concludes this thesis and discusses the

directions for future work.



Chapter 2

Sliding Window Technique for
DPM

This chapter and the following two chapters describe adaptive DPM techniques.
Chapter 2 and Chapter 3 will describe a stochatic DPM policy and a predictive
DPM policy, respectively. Chapter 4 will compare these two techniques to other
DPM policies by measuring the energy consumption and performance penalty of the
hard disk drives installed in laptop and desktop computers.

The sliding window technique to be discussed in this chapter extends the sta-
tionary stochastic DPM policy to handle the non-stationary property of the service
requests. [ will explain the adaptive DPM in steps. First, I will describe the basics
of the stochastic optimal control formulation in the case of a known and stationary
environment. Then, I will introduce adaptive techniques for the unknown stationary
case. In the case of DPM, estimation of the unknown parameters is decoupled from
the control of the power-managed system. Hence, it is possible to exploit theoret-
ical results on adaptive stochastic control to prove asymptotic optimality of DPM
control policies for initially unknown Markovian workloads. Finally, I will extend
the proposed approach to non-stationary, general workloads. In this case, optimality
cannot be proven, and DPM algorithms are heuristic. The effectiveness of heuristic

DPMalgorithms will be demonstrated through extensive simulation analysis

23
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Figure 2.1: Overall system model for DPM

2.1 DPM in Known Stationary Environment

In this section, I briefly review the system model introduced in [11]. The model for
non-stationary requests described in Section 2.3 can be seen as an extension of the
stationary approach of [11], with the consideration of time-varying request probability.

The overall system model for DPM is shown in Figure 2.1. An electronic system
is modeled as a unit providing a service, called service provider (SP) while receiving
requests from another entity, called service requestor (SR). A queue (SQ) buffers
incoming unserviced requests. The service provider can be in one of several states (e.g.
active, sleep, idle, etc.). Each state is characterized by the ability (or the inability) of
providing a service and by a power consumption level. Transitions among states may
have a performance penalty (e.g., latency in reactivating a unit) and a power penalty
(e.g., power loss in spinning up a hard disk).

The power manager (PM) is a control unit that controls the transitions among
states. I assume that the power consumption of the PM is negligible with respect
to the overall power dissipation '. At equally spaced instants in time, the power
manager evaluates the overall state of the system (provider, queue and requestor)
and decides to issue a command to stimulate a state transition. For the sake of
conciseness, [ borrow the following notations to represent the states of the units and

PM commands from [11]:

e SP: s5,={0,1,---,5,—1}

!This assumption has been validated in practice for several classes of systems [12, 64], and it will
analyzed in detail later in this chapter.
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Figure 2.2: An example of a Markov chain for stationary SR

e SR: 5, ={0,1,---,S,— 1}
e 5Q: s,={0,1,---,5,—1}
e At a=1{1,2,---,N,}

where A is a command set issued by PM to control the power state of SP. I model
the system components as discrete-time Markov chains [11]. In particular, I use a
controlled Markov chain model for the system provider, so that its transition proba-
bilities depend on the command issued by the power manager.

In [11], the SR as well as SP are modeled as stationary processes. A generic
requestor can have S, states. I will discuss the case of S, = 2, as shown in Figure 2.2.
SR stays in state 0 when no request is issued for the given time slice, otherwise SR
is in state 1. The corresponding transition matrix is denoted by Psg. 1 call the
diagonal elements of Psr user request probabilities and I denote them by R;,7 =0, 1.
The probabilities R; = Prob(s,(t+1) =i|s.(t) =i),i = 0,1 (and the entire transition
matrix Psg) are time-invariant for a stationary workload.

With this assumption, the entire system model does not include any time-variant
parameters, thus the complete system can be described by a controlled stationary
Markov chain. The control policy for the given system model can be optimized under
performance or power constraints by solving a linear programming problem. Details
are provided in [11].

The optimal policy for a Markov system model is also Markovian, ¢.e., the decision
at any point in time depends only on the current system state instead of the entire past

history. Therefore, a policy, the final result from policy optimization, can be thought
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of as a matrix, that associates a probability of issuing each command (a € A) with
each system state. The matrix is called a decision table and its dimension is S x N,
where S =5, x S, x 5.

A control policy is a sequence of decisions. At each time slice, the PM observes
the current system state and issues a command based on the probability of each
command for the given system state in the decision table. The decision made at each
time slice 7 is denoted as d; and the policy 7 is the sequence of the decisions.

Even though this approach provides a way to obtain an exact solution and control
the trade-off between performance and power, the following two assumptions limit its

practical application:

e The user request probabilities for the given workload are known through offline

analysis.

e The user request probabilities for the given workload are constant over time.

The workload of many practical systems is not stationary in time. Furthermore,
statistic workload characteristics may not be available for offline policy optimization.
Therefore, we need to extend the approach by relaxing these two assumptions. In
Section 2.2, the approach is first extended to the unknown stationary environment
by relaxing the first assumption, and in Section 2.3, it is further extended to the

unknown non-stationary environment.

2.2 DPM in Unknown Stationary Environment

In Section 2.1, it is assumed that SR can be characterized through offline analysis of
stationary workloads. Offline analysis at design time can be impossible in practice,
especially for general-purpose systems (such as PCs or workstations), where workload
strongly depends on the applications that the end user will run on the general-purpose
platform. For these reasons, even the straight-forward timeout PM policies imple-
mented on current portable computers are user-customizable. This customization

process puts on the user the responsibility of following the trial-and-error process
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that leads to the choice of an optimal timeout value. While this choice may be ac-
ceptable for tuning a single timeout, it is certainly not possible to assume that the
user would be able to manage the complex characterization process for a Markov
model of system workload. Thus, we need techniques for automatically “learning”
a Markov workload model and for computing the corresponding optimal PM policy.
Clearly, both estimation and policy optimization overhead should be small for online
application in real-life systems.

Our approach will follow classic techniques of adaptive control theory [48, 43],
based on the principle of estimation and control. The unknown parameters of the
stochastic system (i.e., the parameters that characterize the workload) are estimated
with estimators that are guaranteed to converge (with probability one) to the true
parameter values. The policy applied at each time step is chosen assuming that the
current parameter estimates are the true values. It can be shown that, under some
restrictive assumptions (which are verified in our case), this approach (henceforth
called EC for “estimation and control”) leads to a self-tuning policy, i.e., a control
law that produces the same long-term average cost as the stationary, optimal policy
obtained with complete a priori knowledge of parameter values [48].

For the estimation technique, I will adopt Maximum Likelihood Estimation (M LE),
which satisfies the requirements for statistical convergence towards true parameter
values. MLE is described in Subsection 2.2.1. For the computation of the optimal
control law for a given ML parameter estimate, we could in principle apply the exact
optimization techniques introduced in [11]. In practice, this solution may not be ap-
plicable, because the computational burden of re-computing an optimal policy every
time slice could be sizable, thereby violating the assumption that the power manager
takes fast decisions with negligible power.

Therefore, I propose a novel table look-up method with linear interpolation (de-
scribed in Subsection 2.2.2) to compute the control law to be applied at each time
step. Using a look-up table is equivalent to enforcing a discretization on the continu-
ous range of optimal control policies. This may, in principle, prevent the achievement
of an optimal solution. Fortunately, theoretical results [43] show that a succession

of optimal discretized policies tends to the optimal policy as discretization is refined.
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Figure 2.3: State transition matrix and observed transition table of SR

Furthermore, linear interpolation helps in reducing discretization errors, as demon-

strated by our experiments.

2.2.1 Estimation of Stationary SR

Maximum Likelihood Estimation (MLE) produces estimators that are consistent
and, under certain regularity conditions, can be shown to be most efficient in an
asymptotic sense (i.e. as the sample size n approaches infinity) [106]. The principle
of this method is to select as an estimate of f the value for which the observed sample
is most likely to occur.

Suppose there is a service requestor SR, which has the state space S, = (1,2, ,m)
and the SR is observed until n transitions have taken place. Then, the state transi-
tion matrix of SR can be represented as Figure 2.2.1 (a) and the observed transitions
can be collected in tabular form as shown in Figure 2.2.1 (b), where n;; is the number

of transitions observed from state 7 to state 7 and n; = Z;n:l Nij.



CHAPTER 2. SLIDING WINDOW TECHNIQUE FOR DPM 29

Then, MLE of the given SR is P;; = 7;: i,7=1,2,---,m. I do not show the
details of the derivation for M LE, but the complete derivation can be found in [14].
The estimator may be biased for small n, thus in our approach, every transition from
time slice 0 is recorded in the transition table like Figure 2.2.1 for the estimation.
As n increases, f’ij will converge to a certain time-invariant matrix like the transition
probability matrix of SR in stationary known environment. In other words, for
reasonably large n, Py;(n) & P;j(c0).

We can define the convergence time of estimation by introducing the tolerable
error, €. Then, the convergence time is the smallest n, such that | P;;(n) — P;j(c0)| < €
for Vi, j.

The n — step transition probability can be computed from 1 — step transition
probability and initial probability vector. Namely, it is a function of 1—step transition
probability and n [106].

For example, Py(n) of two-state SR can be represented as follows [106].

Po(n) = Pio(1) + Poi (1) * (1 = Por(1) = Po(1))"
00 Poi(1) + Pyo(1)
Por(1) * (1 = Pou(1) = Pro(1))"

Pgl(]_) + Plo(]_)

(2.1)

= POO(OO) +

Thus, the convergence time is n which makes the second term smaller than e.
Notice that convergence time depends on the time-step, n as well as the property of
the given stationary process.

It is important to stress the fact that M L estimation of the probability matrix of
the SR is completely independent from the PM policy adopted for the SP. In other
words, estimation of the unknown parameter does not interfere with control. This
identifiability condition is sufficient to guarantee that the basic £C' adaptive control

is self-tuning [48].

2.2.2 Decision Policy

As mentioned in Section 2.1, the optimal policy 7 is the sequence of decisions chosen

from the optimized decision table according to the system state in every single time



CHAPTER 2. SLIDING WINDOW TECHNIQUE FOR DPM 30

slice. This approach is possible because the transition probability matrix of SR is
determined before optimizing the decision table. But in the unknown stationary
environment, it is not possible to build the decision table in advance because the
transition probability matrix is unknown. For this reason, it is necessary to provide
a decision table for the estimated transition probability matrix dynamically. On the
other hand, the EC' adaptive policy requires a new policy optimization for every new
ML estimate for the SR. This is hard to apply in practice because the computation
required to optimize the policy is demanding.

In this section, I describe a table look-up method augmented with a linear in-
terpolation technique that relaxes computational requirements without significantly
degrading solution quality. For the sake of simplicity, it is assumed that SR has two

states, but this method can handle SRs with more than two states.

Look-up Table Construction

The transition probability matrix of a stationary SR can be characterized by user
request probability, R; € [0,1], i = 0,1. If each dimension, R; is sampled with a
finite number of samples, each sampling point in dimension ¢ is denoted as R;;,j =
0,%,-++,NS;—1, where, NS; is the number of sampling points for dimension . Based
on these sampling points, a look-up table called policy table is constructed as shown
in Figure 2.4.

Each cell of a policy table corresponds to a SR of which user request probability
is (Roj, Rix) (j = 0,1,-+- NSy — 1 and k = 0,1,--- ,NS; — 1). And each cell
of a policy table is also a two-dimensional table, which T call a decision table (See
Section 2.1 and [11]). A decision table is a matrix with as many rows as the total
system states and as many columns as the command issued by the PM to SP. Each
cell of a policy table can be indexed as a pair (j, k) and its corresponding request
probability pair is (Ro;, Rix). For each pair (7, k), a policy optimization is performed
to get the corresponding decision table and the obtained decision table is stored to a
cell of the policy table with the corresponding index. The overall table is constructed
once for all, and its size is NSy x NS;x the size of the table used in [11].
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- S: System Status
o\ | R10| R11] R12 R13 R14 A: Commands

ROO A Decison Table
RO1 N |~ |
o2 so] 03 Jo2 Jos
R03 S1 0.9 0.0 0.1
R04 S2 0.2 0.4 0.4

Figure 2.4: An example of a 2D policy table (NSy = NS; = 5)

## : Selected Decision Tables
[ ] : Selected rows for CS

N
Ro1< Ro< Ry

N
Ri3<Ri<Ry4

R1

RO R10| R11] R12] R13| R14

ROO /I I| I| I|

RO1 s A0 Al A2 LM

RO2 > so| 03 o2 Jos -_'
RO3 si| 09 Joo Joi -_'
RO4 s2| 02 Jos4 Josa in

Figure 2.5: Decision Table and Rows Selection from Policy Table

Decision Using Interpolation

For a given time slice, (1%0, 1%1) can be obtained using the estimation technique men-
tioned in Section 2.1, and two consecutive indices can be chosen for each dimension
such that Ry; < f{o < Ry(j4+1y and Ry, < Rl < Ry(ky1)- Thus, four decision ta-
bles corresponding to the chosen indices can be used to calculate the decision for
the given (Ry, Ry) and current observed system state. From each decision table cho-
sen, a row corresponding to the current system state denoted by C'S is selected as

shown in Figure 2.5. From these four rows, the final decision row can be obtained
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Ao Al T : 1-dimensional Interpolation
(Ryp Rig) | cs|o7]o3 |4
— | cs|o6] 04
(Ro; Ry | cs| osfos |- .
(Row: R1)
cs| osfos
(Roz, Rl3) CSs 0.2]0.8 = A A
— | Cs| 03]07 Ry Ry)
(Ryp» Ria) | cs| o4]os |- A
(Roz: Rq)

Figure 2.6: Visualized 2-dimensional Interpolation Example

by two-dimensional interpolation technique - applying the one-dimensional interpo-
lation represented in Equation 2.2 iteratively. In a one-dimensional function f(z),
the function value f(x) for any point x which is located in between any two points -

x1 and x5 can be linearly interpolated as follows.

(f(z2) = fw1))x + 22 f(21) — 21 f (72)

To — T

flz) = (2.2)

The iterative procedure is visualized in Figure 2.6 and the pseudo-code of the
interpolation/extrapolation procedure including decision table and row selection is
shown in Figure 2.7.

Extrapolation is used if I%Z > Rins;—1) or Rl < R;p. In all other cases, the inter-
polated value is computed as three successive one-dimensional linear interpolations
on the selected table entries. The proposed technique in this section is described for a
SR with two states, but it can be extended to handle SR with more states by increas-
ing the number of dimensions. For n state SR, the required number of dimensions
is n(n — 1), thus the computational effort is increased proportionally to n%. In this
application, it is enough to model SR with two states with reasonable computation
effort.
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2DInterpolation (CS, cell, Ro, Ri, NSy, NS1)
for (i = 0; i < 2; i++) {
if (R; < Rjp) { /* extrapolation */
id% = 0;
idi =1;
} else if (R; > Ri(NSi—l)) { /* extrapolation */
id? = NS; - 2;
idl = NS; - 1;
} else { /* interpolation */
id) = j st Rij < Ry < Rytnys
} id! = j+1;
¥
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
Select a decision d2i+j from cell(id%, hﬂ)
for State CS;
}
}

foreach (command) {

ds = OneDimInterp(dp, d1);

dg = OneDimInterp(dz, d4);

d7 = OneDimInterp(ds, dg);
return(dr);

Figure 2.7: 2-dimensional Interpolation

2.3 DPM in Non-Stationary Environment

2.3.1 Non-Stationary Service Requestor

In many practical applications, the assumption of stationary SR does not hold. Work-
load is subject to changes over time, as intuitively suggested by the observation of
typical computer systems. In this section, I describe DPM policies tailored to non-
stationary SR models. These adaptive DPM policies are more generally applicable
to real system environments than those in Section 2.1 and 2.2, even though they are

heuristic, because we cannot claim global optimality in a non-stationary environment.

Our first step is to model a non-stationary SR as shown in Figure 2.8. A non-
stationary workload denoted by U' is modeled by a series of stationary workloads
which have different user request probabilities. Each stationary workload is denoted

by us,s = 0,1,---, N, — 1, where N, is the total number of stationary workloads
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POl ®

PlO ®

R()=R,0

Ry(® = R0

Figure 2.8: An example of a Markov Chain for non-stationary SR

JRi(Us) — _ stationary SR
—— Non-Stationary SR

Uo ui U  us u4
Figure 2.9: R;(us) of non-stationary SR .vs. stationary SR

forming the non-stationary workload, U'. Thus, a non-stationary workload can be
represented as UM = (ug,u1,- -+ ,un,_1). In this model, the R; becomes a function
of the given sequence and can be distinguished from the R; of stationary SR as shown
in Figure 2.9.

Notice that the non-stationary SR model is very general: by increasing N,, we can
model any given workload with arbitrary accuracy. In fact, for any given sequence
of zeros and ones of length A, we can set N, = A, and define N, different two-
state Markov chains with deterministic transitions that reproduce exactly the given
sequence.

Clearly, the knowledge of such a model at time zero is equivalent to assuming
the existence of a perfect oracle that can predict the future with no uncertainty.
Realistically, we can only expect to be able to predict the future based on past
experience, and take into account non-stationarity by limiting the effect that the
remote past will have on our current prediction. In other words, I will track changes in

transition probability of the non-stationary Markov model by observing the workload



CHAPTER 2. SLIDING WINDOW TECHNIQUE FOR DPM 35

on a limited-size time window in the past.

In the non-stationary environment of Figure 2.9, the optimal policy is to take
decision based on the decision table optimized for the R; for each u,. I call such
an ideal policy the best-adaptive policy which requires the perfect knowledge of
the change of u, and cannot be implemented in a real situation. Therefore, the
objective in this section is to propose techniques that achieve results comparable to
best-adaptive policy. The look-up table based interpolation technique introduced in
Section 2.2 is still employed for dynamically choosing the most appropriate policy for
the estimated SR, but the estimation technique in Section 2.2 should be replaced
due to the non-stationarity of the workloads. I propose two window-based approaches
to handle the non-stationarity of the workloads.

For the sake of clarity, I enrich our notation: Psg becomes a function of the
sequence and denoted by Psg(us). From now on, I will denote the actual values as
function of u, because they are constant over time for a given uy and the estimated
values are represented as a function of time. For example, R;(us) is the actual user
request, probability of a sequence u; and Rz(t) is the estimated user request probability

at time t.

2.3.2 Single Window Approach

A sliding window stores the recent user-request history to predict future user requests.
This approach is a derivation of M LE (Section 2.2) because it estimates the request
ratio depending on recent user history (the information stored in a sliding window)
instead of the whole history.

A sliding window denoted as W, consists of [, slots and each slot, W(i),i =
0,1,---1, — 1, stores one previous user request, i.e. s, € 0,1,---,S5, — 1. The basic
window operation is to shift one slot constantly for every time slice.

An example of a window operation for a two-state user requests is shown in Fig-
ure 2.10. At each time point, W (i + 1) <~ W(i),i =0,1,--- ,l, — 1 and W(0) stores
a new user request from SR.

A

At a given time point ¢, P;; in Psp can be simply estimated by the ratio between
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At time tn

W) W) W2) WB) W)  cerrerrrrrrinrrnnnenns W(iw2)  W(lwl)
SR >1 0 1 1 1 o | 0 1

At time tn+1

WO) W) W(2) WEB) W(@)  eeeerremmmnnmnnnnnnnnnns W(w2)  W(lw1l)
SR : 0 0 1 l 1 ........................ 0 0

Figure 2.10: Single window operation for two-state user requests

the total number of transitions from state ¢ to 7 and the total number of occurrences
of state ¢ observed within the window.

It may be impossible to define ]52-]- when the sliding window does not have any
information of state 7 at a certain time point. In this case, I define Pij as 0 when
i =7 and 1/(S, — 1) when i # j, respectively.

Let us denote the total number of state ¢ observed by the sliding window by A;,
then A; = Y7 (W (k) = i) and P at a given time ¢ can be formally expressed as

Equation 2.3.

ly—1
A%};[(W(k) =) AWk -1)=7)] if Ai#0
Fijt) =4 0 if A =0, andi=j  (23)
1/(S, —1) otherwise
where, “=" is the equivalence operation with a Boolean output, (i.e. it yields

“1” when the two arguments are same, otherwise returns “0”), and where “A” is the
“conjunction” operation.
There exist three possible estimation error sources - resolution error, biased esti-

mation error, and adaptation time.

1. Resolution error is due to the maximum precision of Ri(t), which is limited to
1/l,, For example, if {,, = 10, R; (t) cannot express two digit effective numbers

such 0.95. The longer [, is, the smaller the effect of resolution error is.
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AH (ug) orF\/’\i(t) - II:\\’i ®

— Ri(us)

N
N

r() resolution error
_

adaptation time
: = Time
u S_l us

(a) Resolution error and adaptation time

sliding window (I w5)
Us 11111../100000....0
100 | 100 |

(b) Biased estimation error

Figure 2.11: Estimation error source

2. Biased estimation error happens when [, is shorter than the burst lengths
of sequences. Suppose a SR generates 100 1's after 100 0's and [, = 10. When
the sliding window is in the middle of 0 (1) sequence, the window does not have
any information of state 1 (0) which causes the estimator to guess the Ry (t)
(Ry(t)) arbitrarily (the second or the third case of Equation 2.3). The longer

[, is, the smaller the effect of biased estimation error is.

3. Adaptation time is considered when the sliding window is observing u,_; and
us - the window is experiencing the switching of two stationary processes. The
estimation of the new stationary process (u;) is disturbed by the old stationary
process (us_1). Thus, it is the time required to fill the window, W fully with
the transitions of the new sequence u,. This error source can be reduced by

reducing .

These error sources are graphically represented in Figure 2.11. It is obvious that

the resolution error is limited by li and the adaptation time is always [,, independent
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W0O) W) W(@) WE) WEA) e W(lw2)  W(wl)
SR Sr(t) Sr(t—1)=0 > 0 Il IO Il IO I ........................ IO Il IWO
sr () l Window
- Selector W(O) W(L) W) WEB) WE)  eeeereeninennieennns W(lw2)  W(lwl)
Previous [s; (t-1)
Request _ 0 0 1 1 1| 0 0 W.
Buffer sr(t-1)=1 1

Figure 2.12: Multi-window operation for two-state user requests

to us. Also, to avoid the biased estimation error, [,, should be larger than the sum of
average sequence length of 0 state and 1 state in case of two-state SR. For example,
l,, should be larger than 200 in case of Figure 2.11 (b).

The average burst length of each state i for a given u, (I;(us)) can be expressed

as follows.

i) = D2 kPR = Pal) +1= {—pos 2:4)
This equation represents the average number of self-transitions of each state ¢
whenever state ¢ is first visited. Thus, for two-state SR, the required [, to avoid
biased estimation is simply Io(us) + I (us) for a given wus.
Finally, if [,, — 00, both resolution error and biased estimation error become neg-
ligible, but adaptation time becomes infinite. Thus single window approach becomes

the M LE of the unknown stationary environment.

2.3.3 Multi-Window Approach

In the single window approach, it is not guaranteed that the previous history observed
by the window at a given time point always provides complete state information. Due
to this limitation, the second and third case of Equation 2.3 can be frequently used,
especially when [, is small. To avoid this situation, [,, should be increased, but
increasing [,, is not desirable because adaptation time is also increased. The multi-
window approach is devised to overcome this situation by keeping the previous history

of each state separately.
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The basic structure for the multi-window approach is shown in Figure 2.12. There
are as many windows as S, of SR and their sizes are the same (l,,). For convenience,
each window is denoted by W, which is dedicated to the state s, = i. Therefore,
W; stores only the previous transitions from state 7. At a time point ¢, the Previous
Request Buffer (PRB) stores s,(t — 1) and controls the window selector to select
a window W;, where s,.(t — 1) = i. At each time point t, W;(j + 1) < W;(j),
i = s.(t—1), and j = 0,1,---,l, — 1. Note that only the selected window W,
i = s,(t — 1) performs the shift operation, while the other windows stay constant.
Thus, each window W; stores [,, previous user requests and plays a role in predicting
the transition probabilities from state ¢ to any other states. Each row of Psg(us) is
mapped to the window corresponding to the state which is source of the transition
and P;;(us) can be easily calculated as follows.

: e (Wik) = J)

Py(t) = &=£=0 l for all i, j (2.5)

The estimation error sources of the multi-window approach are resolution error
and adaptation time, but there is no biased estimation error because each state has
its dedicated window to store past history.

While the resolution error is simply 1/1,, (like for the single window approach), the
adaptation time is not a constant unlike the single window approach. The adaptation
time is determined by the window which is fully filled with the new requests (u;) in
the latest.

Consider a system component power-managed by multiwindow approach. Suppose
a stationary SR which can generate either u; or u; depending on the initial state of
SR, where u; = 00000110000011 --- and w; = 11000001100000---. Also, suppose
that [,, of each window (W, and W) is 10. Then, to completely fill W, with u;, we
need two repetitions of sequence 0000011, whereas we need five repetitions of sequence
0000011 for Wy. Thus, the adaptation time is 5 x 7 = 35 time slices determined by
Wi. On the other hand, for u;, we only need 5 x 7 —5 = 30 time slices because 0's in
the last repetition is of no use (W is already filled with u;). Therefore, the average

adaptation time for the given SR is 32.5.
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For two-state SR, it can be generally represented as follows.

et = T (o (ug) + I ()
A (2.6)
(T = ) () + L)

where, m = min(Jo(us), [1(us)), thus [2] represents the number of repetitions
required to fill the window for the given sequence of which length is Ip(us) + I1(us).
The last term represents the unnecessary part of the sequence in the last repetition.
Finally, the last term is divided by 2 to get the average value with the consideration

of different initial states.

2.4 Experimental Results

The effectiveness of the proposed algorithms is validated by the simulation in the con-
text of the system model of Figure 2.1. The key advantage of simulation is flexibility:
the executable models of all system components are C routines that can be easily
modified to simulate different operating conditions and tune the power management
policy.

On the other hand, real-world experiments are necessary to test the actual appli-
cability and effectiveness of the proposed techniques: no approximation is introduced
by modeling assumptions, all implementation issues have to be addressed and solved,
power savings can be evaluated by means of measurements and performance degrada-
tion can be directly experienced by the user instead of being represented by arbitrary
cost metrics. The real-world experiments for this method will be discussed with other
DPM policies in Chapter 4.

2.4.1 Experimental Setting

The experiments were performed on a Sony VAIO PCG-F150 laptop computer, and
on a VA Research VArStation desktop computer. The service providers for our ex-

periments were commercial power-manageable HDDs by Fujitsu (VAIO PCG-F150)
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HDD Ps Pa Tsd Psd Tw'u, Pw'u,
Watt | Watt | sec | Watt | sec | Watt

IBM 0.75 | 3.48 | 0.51| 2.12 | 6.97 | 7.53
Fujitsu | 0.13 | 0.95 [ 0.67 | 0.54 | 1.61 | 2.72

Table 2.1: Power states of commercial HDDs from Fujitsu and IBM

HDD DMM

Figure 2.13: Hardware setup for HDD power measurement

and IBM (VArStation). Table 2.1 reports their average power consumption measured
in the active and sleep states (P, and P;) and during shut-down and wakeup tran-
sitions (P,q and P,,). Transition times T,y and T, are also reported in Table 2.1.
The numbers reported in Table 2.1 are obtained from real measurement using the
hardware setup shown in Figure 2.13 and its logical diagram is shown in Figure 2.14.

The 12V and 5V power lines go through two digital multi-meters as shown in
Figure 2.14 and both meters are connected to data collection computer through the
RS232 port. Readers interested in the details of measurement may refer to [63, 65].

I modeled the Fujitsu’s HDD of Table 2.1 as a SP with four power states, rep-
resenting active, sleep, wakeup and shutdown operating modes. When active, the

SP serves one request per time slice, while it has no throughput when in sleep and
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12V power supply
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RS232 port
=Y meter
V RS232
5V power supply

Figure 2.14: The logical diagram of Figure 2.13

transient states. A queue S is available to store up to 3 incoming requests when
the SP is not ready to serve them. The SR is a two-state Markov chain that issues
a request per time slice when in state 1 and no requests when in state 0. The overall
system is a Markov chain with 32 states.

According to the actual behavior of the HDD, wakeup transitions are triggered
by incoming requests, while shut-down transitions are triggered by a GO_TO_SLEEP
command issued by the PM. In practice, the PM controls the SP by issuing two
alternative commands, GO_TO_SLEEP and GO_TO_ACTIVE. When the SP is in
active state with no incoming and waiting requests, the GO_TO_SLEEP causes a
shut-down transition, while GO_TO_ACTIVE leaves the SP in the active state. On
the other hand, when the SP is in sleep state with no incoming and waiting requests,
GO_TO_SLEEP leaves the SP in the sleep state, while GO_TO_ACTIVE wakes up
the SP. In all other conditions (there are incoming or waiting requests or the SP is
in either shutdown or wakeup state) the PM has no control on the SP. Though the
complete PM policy can be viewed as a 32 X 2 matrix, there are only two significant
rows, corresponding to a state (SP =active, SR = 0, SQ = 0) and the other state
(SP =sleep, SR = 0, SQ = 0). For all other states, power manager does not issue
any command, which reduces the computation overhead due to power management.

Moreover, the two entries in the row represent complementary probabilities, so
that the second one can be obtained as the 1’s complement of the first one, represent-
ing the conditional probability of issuing a GO_TO_SLEEP command. The value of
such probability is the only degree of freedom available for policy optimization. Thus,

the memory space required to store the decision table is only a few bytes. Therefore,
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total memory required for the policy table is under 1K bytes, even when N.S; for each
dimension ¢ (number of sampling points for each dimension) is 10. This low memory
requirement is especially advantageous when multiple devices must be controlled by
our power management policy.

P M policies were designed to minimize power consumption subject to performance
constraints expressed in terms of upper bounds on two performance metrics: the
average waiting time (hereafter called waiting time and denoted by W,) and the
average probability of loosing an incoming request because of a queue-full condition
(hereafter called request loss and denoted by L,).?

For our experiments I used L,, = 0.05, representing the probability of loosing up to
the 5% of incoming requests, and W, = 1, representing an average delay of one time
slice experienced by each service request. The look-up table (LUT) of PM policies was
constructed by keeping the constraints unchanged while varying workload parameters
Ry and R; with a 0.05 step. For each (Ry, R;) pair policy optimization was performed
(as described in [11]) and the resulting policy stored in the corresponding entry of the
LUT. The entire process took less than 10 minutes on a SUN Sparc2, with a 200MHz
clock rate and 520MB of memory.

The estimation and control approach proposed in this chapter is characterized
by two sources of error: estimation and interpolation. In the following subsections
I report the results of simulations performed to isolate and analyze the effects of
estimation and interpolation errors. The overall quality of the estimation and control
strategy applied to non-stationary workloads is reported and discussed in the next
sections. All simulations were performed using an in-house cycle-accurate stochastic

simulator, with 10° time steps by default.

2.4.2 Estimation Error

Since the asymptotic convergence of the maximum likelihood estimators is theoreti-

cally demonstrated, I need only to evaluate the dynamic properties of the estimators,

2The request loss is a model for the incoming requests when the queue is full. In practice, no
request is lost in the implementation because a queue full state will trigger alternative mechanism
for buffering. Still, the queue full state is undesirable.
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Ideal Estimation
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Figure 2.15: Ideal and Estimated curve at f = 0.001

i.€., their capability of tracing the time-varying parameters of a non-stationary work-
load. For this purpose I used a family of non-stationary two-state SRs with self loop

probabilities defined as sinusoidal functions of time:

Ro(t) = 0.5 + A x sin(27r%) (2.7)

t
Ri(t) =05+ A X% cos(27rf)

where T is the period and A is the amplitude of the variation. Since Equations 2.8
depend only on T and A, I use the notation SR(T, A) to represent sinusoidal SRs.

I simulated SR(T, A) for different values of T' and I applied single and double-
window estimators to trace the variation of Ry and R;. Figure 2.15 shows the actual
behavior of Ry(t) for T'= 1000 and A = 0.45, together with the estimates provided
by a double window of length 20 (DW20), a single window of length 50 (SW50) and
a double window of length 100 (DW100). We can compare the estimated waveforms
with the original one in terms of: attenuation, that is the ratio between the amplitude
of the estimated waveform A, and that of the original one A, delay, evaluated as the
time gap between a local maximum of the original waveform and the corresponding

maximum of the estimated one, and noise, that adds higher-frequency fluctuations
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Attenunation of Estimation
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Figure 2.16: Attenuation and phase shift of window-based estimates
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to the sinusoidal waveforms. In Figure 2.15, it is apparent that DW100 is less noisy
than DW20 and SW50, at the cost of sizable estimation delay and attenuation. It
is also worth noting that DW20 is closer to the actual waveform and less noisy than
SW50.

The above observations are supported by the results of the analysis in the fre-
quency domain, reported in Figure 2.16. I repeated the simulation experiment of
Figure 2.15 for different values of 7', and I computed attenuation and delay for each
estimator. Estimation delays were divided by T'/27 and expressed in degrees to obtain
comparable phase shifts. Attenuation and phase shift were then plotted as functions
of T', as shown in Figures 2.16(a) and (b), respectively.

As expected, all window-based estimators act as low-pass filters: as the period T of
workload variations decreases, both the attenuation and the phase shift become criti-
cal, while they are negligible for values of T" larger than a cut-off value that depends on
the estimator. In general, the larger the window the higher the cut-off period. This
can be better explained by thinking of a non-stationary workload obtained as the
concatenation of two stationary ones, ug and u;. When the workload statistics switch
from ug to uy, adaptation time proportional to the window length [, (see Section 2.3)
is required to completely update the contents of the windows in order to estimate the
parameters of u; independently of uy. This effect can be appreciated in Figure 2.16
by comparing the curves associated with DW20 and DW100, while the comparison
between DW20 and SW50 suggests a different trend. This counterintuitive result
is due to the inherent capability of double-window estimators of selectively keeping

trace of significant past events whose distance in time may exceed the window length.

2.4.3 Interpolation Error

To evaluate the effect of discretization and policy interpolation I applied the estimation-
and-control strategy (based on a double-window estimator with /,, = 20) to a set of 20
stationary workloads with randomly generated values of Ry and R;. For each work-
load T also performed ad-hoc policy optimization using the same constraints used for

LUT characterization. Then I run simulations for 50,000 time steps and I compared
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Figure 2.17: Sub-optimality of interpolated policies.

the power-performance trade-off’s provided by the adaptive PM with those provided
by the optimum ad-hoc policy.

Results are reported in Figure 2.17 as a scatter plot. Each experiment is repre-
sented by a point whose coordinates are the ratio between the power consumptions
obtained by interpolated and ad-hoc policies (P,s/ Pys), and the ratio between the cor-
responding waiting times (W,,/Wj,).> Points close to (1,1) represent situations where
the approximation introduced by estimation and interpolation produced negligible ef-
fects on the actual quality of the control policy. In other words, the adaptive policy
produced almost the same benefit of the optimum one (KS). The average penalty of
adaptation was below 5% both in terms of power and performance.

As a final remark, notice that results of Figure 2.17 are affected both by the
interpolation error and by the estimation error. However, the estimation error is
negligible because the simulation time was much longer than the cut-off time of DW20

(50,000 time steps against a few hundreds).

3Subscripts us and ks stay for unknown stationary and known stationary, respectively.
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2.4.4 Overall Quality of Estimation and Control

To evaluate the overall quality of the proposed approach we simulated a highly non-
stationary workload, built as the concatenation of SR traces of variable lengths (rang-
ing from 40,000 to 60,000 time steps) generated by the 20 stationary workloads of
which were used in interpolation error estimation. For the sake of conciseness, in the
following T use U?° to denote the non-stationary workload trace and u, (s = 0,--- , 19)
to denote each of the stationary traces that compose it.

I simulated the effect on U?° of adaptive control based on single-window (SW)
and double-window (DW) estimators with different window sizes. I also implemented
and simulated known stationary (K.S), unknown stationary (US), and best-adaptive
(BA) mentioned in Section 2.3.

I compared the above five policies to the best oracle (BO) policy. BO is the
most ideal policy in the sense that it perfectly knows the arrival of future requests
deterministically. It deterministically decides to shut down the SP at the beginning
of idle periods longer than the break-even time ¢y (i.e., long enough to compensate
the shut-down and wakeup cost) [12]. Also, it wakes up the SP T, before the next
incoming request is issued by SR, thus BO never pays performance penalty for power
saving. This policy cannot be implemented in practice, but its effect can be quantified
through offline analysis of any workload. Since it is the “best” possible policy, it is
useful for comparisons.

The power consumption and waiting time provided by the power management
strategies are reported in Figures 2.18(a) and (b) as functions of the sliding window
size l,,. For a wide range of values of [, (from 50 to about 5,000) both SW and
DW approaches provide almost the same power-performance trade-off of BA policy.
Outside this range, estimation errors cause sizeable violations of performance con-
straints mainly due to the estimation noise for [,, < 50, and to the estimation delay
for ,, > 5000.

It is also worth to mention that the given performance constraint represents the
maximum performance penalty allowed to achieve minimum power consumption.
Thus, if increasing performance penalty (but still less than the given constraint)

does not help to save more power, the waiting time is kept smaller than the given
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constraint by the control policy. One extreme case can be shown when SR generates
requests without idle periods longer than break-even time Tp.. In this situation, shut-
down does not decrease power consumption, but it increases performance penalty.
These points will be further explained by means of Figure 2.19.

As for KS and US, though they provide more power savings than BA, they com-
pletely violate performance constraints (again, represented by the average waiting
time of BA). Their constraint violations are caused by the wrong hypothesis of sta-
tionary Markov SR they are based on. It is also worth noting that the estimation
errors made by SW and DW approaches when the windows they use are too small or
too large are never as critical as those caused by the stationarity assumption.

Figures 2.19(a) and (b) show the power and performance values achieved by the
PM strategies for each stationary sub-trace uy; in U?°. Index s is reported on the
x axis. Boxes are used to point out the cases in which the constraint on W, was
inactive either because it was dominated by that on L, or because there were no idle
periods longer than the break-even time. In both cases the actual waiting time was
well below the given constraint, causing the overall average reported in Figure 2.18(b)
to be around 0.5 instead of 1.

Interestingly, the performance of SW and DW (for [,, = 50) is always comparable
to that of BA both in terms of power and in terms of waiting time, meaning that
both estimation and interpolation errors may be made almost negligible by carefully
selecting [,,. On the other hand, the ideal BO strategy often provides a much better
(but unreachable) trade-off. As for US and KS, their apparent advantage in terms of
power is paid in terms of performance violations that become evident on Figure 2.19.
The average waiting time they impose often exceeds by 50% the given constraint.

It is also worth noting that when there are no idle periods longer than the break-
even time, all adaptive policies take the correct decision of keeping the resource always
on, locally reaching the same quality of BO (see, for instance, us = 8). In contrast,
US and KS policies still issue GO_TO_SLEEP commands that cause both a power

waste and a performance penalty.
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Figure 2.19: Local power consumption and average waiting time provided by the PM
policies for each sub-trace us of U* (L, = 0.05, W, = 1).
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2.5 Chapter Summary

In this chapter, I described how to derive adaptive power management policies for
non-stationary workloads based on stochastic approach. The proposed adaptive ap-
proach is based on sliding windows and two-dimensional linear interpolation to find an
optimal policy from a optimal policy table which is pre-computed. Thus the on-line
computational requirements are mild (0.8% of the overall system power consump-
tion). The proposed approach deals effectively with highly non-stationary workloads.
Moreover, our adaptive method offers the possibility of trading off power for perfor-
mance in a controlled fashion. Simulation results show that my method outperforms
non-adaptive policies.

As in the case of most current and previous research, I addressed the problem
of power managing a single device (e.g., hard disk) abstracted as a single service
provider. I believe that this method can be extended to control multiple devices, as
long as their number is small. Nevertheless, the problem of performing concurrent
power management of multiple devices, under non-stationary workloads, remains a

challenging problem for future research.



Chapter 3

Adaptive Learning Tree for DPM

This chapter describes a DPM policy called adaptive learning tree. This technique
is a predictive approach, while the sliding window technique proposed in Chapter 2
is a stochastic approach. The major advantage of adaptive learning tree technique
is that it can handle multiple-sleep state device which have not been considered in
previous predictive DPM policies. Another benefit of this technique is that it provides
the self-adaptive capability to adjust the power state control policy to cope with the
time-varying (or non-stationary) property of service requests, which is supported by
only a few previous predictive DPM policies.

The major concepts of this technique can be summarized in three parts. First,
the idle period length is quantized and each quantum is mapped to a power state
in which the energy consumption can be maximally reduced. Second, a sequence
of the previous idle periods is transformed into a sequence of discrete events using
the first concept and this information is recorded in the form of a tree structure.
Also, a predictor is assigned to each recorded sequence. Third, whenever a new idle
period is observed, one of the sequence recorded in the tree structure is selected and
the decision for shutdown is made based on the corresponding predictor. Also, the

predictor is updated depending on the result of the shutdown prediction.

93



CHAPTER 3. ADAPTIVE LEARNING TREE FOR DPM 54

3.1 Idle Period Grouping

In this section, I introduce the idle period clustering scheme which is the base of
adaptive learning tree technique for multiple sleep state systems. A system can be
abstracted as a two-state finite-state machine as shown in Figure 1.2.

An idle period is defined as the period from the time when the system enters the
idle state to the time when the system exits the idle state. Similarly, busy periods
are the time intervals spent in busy state. Thus, the overall system behavior can be
modeled as a time series of busy and idle periods. When an idle period is long enough
to amortize the shutdown cost, the system can be shut down for power saving. For
a system with a single sleep state, such as the one analyzed in [44] we can define
a threshold, which is the minimum idle time required to reach the break-even point
between shutdown cost and power savings. For a multiple sleep state system, we need
as many thresholds as sleep states because each sleep state has a different shutdown
cost. Figure 3.1 illustrates the need for multiple thresholds and the efficiency of
multiple sleep states compared to the single sleep state when the system workload
is known. Usually, shutting down to a deeper sleep state requires more transition
time and power consumption (i.e., higher cost). Energy consumption during the idle
period can be calculated by estimating the area under the line corresponding to the
selected sleep state. In Figure 3.1, the deeper sleep state is more efficient during the
first idle period, but the shallower sleep state is more efficient during the second idle
period. During the third idle period, by selecting the deeper sleep state, severe delay
overhead and less power saving are observed. Finally, during the last idle period,
no sleep state is helpful because the idle period is too short. From this example, it
is obvious that multiple sleep states and multiple thresholds are required for more
efficient DPM.

Let n be the number of sleep states; then the total number of power states in
the system while it is idle is n + 1 (i.e., all sleep states plus the fully on state). Let
P = {po,p1, - ,pn} be the set of power states. The n threshold values (one for
each sleep state) are determined based on the assumption that a deeper sleep state

offers lower power consumption at the price of higher transition cost. For a given idle
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Figure 3.1: An example of system shutdown with multiple sleep states
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period, t;4., energy consumption, E; by selecting a power state p;, ¢ = 0,1,--- ,n,

can be computed as follows.
EZ- = tdi * pdi + tui * PU; + (tidle — tdi — tuz-) * Dy (31)

Where, td; is the transition time from idle state to power state p; and tu; is the
transition time from power state p; to idle state. Also, pd; and pu; are the power
consumption levels corresponding to each transition and p; is the power consumption
while the system is in power state z. In our notation, power state p; is a shallower
sleep state than power state p; 11 (p; > piy+1) and power state 0 (py) is the idle state in
which the system is not shut down. Hence, E; should be greater than or equal to F;,
and the equality holds when t;4,. is the threshold between power state ¢ and power
state 7 + 1. We can compute threshold values for every i,72 = 0,1,--- ,n by equating
E; with E; ; and solving for ¢;4.. Let I; be the threshold value between power state
p; and p; ;. Then

[ (pdit1 — pit1) * tdip1 + (Puits — pit1) * tuig
l Di — Pi+1
3.2
_ (pdi = pi) * td; + (pui — pi) * tu, (3.2)
Pi —Pita

The time axis can be partitioned in n+1 disjoint intervals, bounded by the thresholds.
We can then associate with a given idle period ¢;4. the index of the power state

IG(t;ae) giving the best savings for that idle period:

0 if tige < Io
IG(tidle) =<1+1 Zf I < tige < Ii-i—l fOT 0<i1<n (33)
nif Iy < tiage

Thus, a sequence of idle periods can be transformed into a sequence of integers 0 <
IG(tigre) < n, which represent the best power state that could be chosen for each idle
period. Let s denote the sequence. If s has finite length [, it is denoted as s'. Also, s;
denotes the i'* value of the sequence and s is the most recent event among all s;’s.

The optimal power state for an idle period represented by s; is ps..
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3.2 Adaptive Learning Tree

Predicting the values of a discrete event sequence is a fundamental problem in learning
theory [20]. The idle period clustering technique mentioned in Section 3.1 transforms
the sequence of idle periods into the sequence of discrete events. In other words, the
problem to be solved is “which value will /G (t;q.) have in the next idle period for
the current sequence s'?” By predicting the next G (t;4.), the system can choose the
most appropriate sleep state. In previous studies, learning tree algorithms have been
reported to find rules from experience [15, 32, 84, 83]. These algorithms are static in
nature, and can be seen as techniques to organize knowledge and drive inference. To
be effective, the algorithm must be highly dynamic, and be able to adapt rapidly to
changes in the workload.

The learning tree that I propose can be applied to binary as well as multi-valued
sequences. Idle periods are observed by the PM and they are transformed into
integers IG(t;q). This information can be seen as a sequence st. The PM predicts
the next IG(#;4.) for the given s based on the current status of the learning tree. The
learning tree is updated as soon as the prediction result is available. The sequence
st is updated by shift operation whenever a new idle period is observed by PM such
that s; — s;41 and the new value is stored as so. The basic assumption behind the
proposed algorithm is that we can predict the future idle periods with high accuracy
by observing idle periods in the recent past. The proposed approach has some analogy
with advanced branch prediction schemes widely used in computer architectures to

reduce the penalty of mispredicted branches [73].

3.2.1 Basic Structure

An example of an adaptive learning tree is shown in Figure 3.2. The proposed adap-
tive learning tree consists of decision nodes (circles), history branches (solid lines),
prediction branches (dashed lines), and leaf nodes (rectangles). The tree is levelized:
the top decision node corresponds to sy, nodes in the second level correspond to s
and so on. All leaf nodes are predictions for the next idle period regardless of their
ancestor levels. Each leaf stores the Prediction Confidence Level (PCL). The higher
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Figure 3.2: An adaptive learning tree (with two sleep states)

the PCL is, the higher the confidence is for a prediction. Each decision node can have
both history branches and prediction branches, but the total number of branches is
always n, and a prediction branch can only be used when the ancestor is a decision
node and the descendant is a leaf node. Each branch of a decision node is associated
with the index of a power state IG(t;q.) = {0,1,---,n}. From left to right, they are
denoted as b;,7 =0,1,--- ,n regardless of their types.

3.2.2 Decision

A decision for a given sequence s’ is taken based on a path matching procedure. A
path for a given sequence s' is defined as a series of decision nodes such that from the
top node, we recursively select a history branch b,, and move to the lower level decision
node connected to bs;. The recursion is terminated when the b;, is a prediction branch
or the level of the decision node corresponds to s;_1. Path length (pl) is defined as
the number of decision nodes included in the path. While matching the path, the
leaf nodes connected to the decision node included in the path are checked and the
leaf node which has the highest PCL is selected. When there are multiple leaf nodes
which have the same highest PCL, the leftmost leaf node is selected. After path
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matching, the index of the selected leaf node becomes the prediction for the next
event. For example, in Figure 3.2, the path, “a — b — €” is matched when the
5?2 = “01” and its path length is 2. After path matching, the center leaf node of node
e is selected, thus the tree predicts IG(t;qe) = 1 for the next idle period and issues
a command to change the system to power state 1. Also, when the s? = “00” or
s?2 = “02”, the path, “a — b” is matched. Note that node e is not included in the
path for these sequences any more. Thus, the rightmost leaf node of node b is selected
in this case. As shown in this example, the number of old events used in decision,
pl is varied according to the given sequence. Also, two different sequences (“00” and
“02”) are classified in the same category and can share the resources of the tree to

reduce memory usage.

3.2.3 Learning

In conjunction with prediction, a learning process is needed to maintain the accuracy
of the prediction. Whenever an event s; occurs, the tree is updated to reflect the
quality of prediction made when the previous event s;,; occurred. When the pre-
diction is correct, the learning tree should be updated to increase the possibility of
choosing the same leaf node for the given sequence. In the opposite case, the reverse
action should be performed. This task is achieved by updating the PCL of the leaf
nodes. PC'L update is controlled by a finite-state machine as shown in Figure 3.3 (the
update rule is analogous to that employed in branch prediction buffers for conditional
branch prediction). When the prediction is correct, the PCL state is changed to the
higher state, in the reverse situation, the PC'L state is changed to the lower state.
And when it reaches either end state, it keeps the current state. Thus, the PCL is
an adaptive feature of the learning tree for non-stationary event sequences. Learning
process is more complicated when misprediction occurs, because decreasing PC'L of
the selected node is insufficient. In other words, the adaptive learning tree has in-
sufficient information to distinguish the given sequence from other sequences and the
PCL of the leaf node which should have been selected (desired leaf node) is too low.

Thus, two additional procedures are performed. Let us denote the desired value as
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Figure 3.3: PCL operation

dv = IG(tge). First, to increase distinguishability, increase the path length of the

current path by replacing the leaf node on the prediction branch b connected to

Spl+1
the last decision node in the path with a new decision node. Second, to increase the
PCL of the desired leaf node, find all leaf nodes which are connected through the
prediction branch, by, on the path and increase their PC'L. An example of the up-

dating procedure is shown in Figure 3.4. Suppose there are three different sequences

0N 0N 0N RN RN /
1) (3] (3] [2) (1] (3] [3) (1] [0 @

/ AN
(@) (b)

Figure 3.4: An example of learning for a prediction miss

such that A = “20”, B = “21” and C' = “22” and the next event after sequence A
and B is 0, but the next event after sequence C' is 1. The path “a — d” will be
matched for all those sequences in Figure 3.4 (a) and the learning tree will predict 0
for every sequence. This prediction is correct when the given sequence is A or B; it
is wrong when the given sequence is C'. Thus, it is necessary to distinguish sequence
C from A and B. When this prediction miss occurs, the PCL of the leftmost leaf

node of node d is decreased. Then, the rightmost leaf node of node d is replaced with



CHAPTER 3. ADAPTIVE LEARNING TREE FOR DPM 61

PM Service
‘ Requester
Decision
%. Tree
a oY
g% IG(fg1e) S 2 | Tree Update T $ Predicted
£ 2 o g Tree - Command )
2z gnm - Handler Predictor Service
a 3 Provider

Event Observation

Figure 3.5: Power Manager Configuration

a new decision node because s; = 2. The leaf nodes of the new decision node have
the initial PCL value (in this case, it is 1). Then, the second additional procedure
is applied and the final PCL of leaf nodes are as shown in Figure 3.4. Due to these
additional procedures, the adaptive learning tree grows in an unbalanced manner and
this characteristic is efficient for keeping it small and naturally determines the cor-
relation depth between the future event and old history depending on the sequence

characteristics.

3.3 Power Manager

As mentioned in Section 1.4, Power Manager (PM) is the heart of DPM. Thus,
the adaptive learning tree is implemented within the PAM as shown in Figure 3.5.
In Figure 3.5, service requester (SR) is the external environment which triggers the
system and the service provider (SP) is the system itself which serves the requests
from service requester. The idle period grouper (IPG) observes SP and extract
idle periods. Then the idle interval for the observed idle period is calculated and it
is passed to the previous history buffer (PHB) and the tree handler. The buffer,
PH B stores the observed idle sequence s'. Whenever a new event arrives, it performs
shift operation such that s; — s;11 and the new event is stored as sy. Finally, the
tree handler performs learning and the predictor performs the decision process as

mentioned in Section 3.2.
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Wakeup and miss correction

The service provider SP can be waken up in two different ways. One is when
PM detects a new service request. The other is when the SP stays in power state p;
longer than I; — tu;. The first case occurs when the predicted idle interval is greater
or equal to the actual idle interval. And the second case occurs when the predicted
idle interval is less than the actual idle interval. The second case is a prediction miss
due to a conservative prediction. After the SP is waken up, PM monitors the system
until 7, (maximum threshold). During this period, if a new service request comes,
the SP can serve this request without wakeup penalty, thus the inefficiency in power
saving is compensated by eliminating wakeup performance penalty. Otherwise, the
P M shuts down the SP to the deepest power state to save more power. This feature

enables the exploitation of very long mispredicted idle periods.

Prediction filter

In many applications, the distribution of idle period intervals shows an L-shaped
curve as mentioned in [44, 94], which represents that the ratio of very short idle periods
is dominant in total idle periods distribution. Thus, the prediction quality for short
idle periods can play an important role in deciding overall prediction accuracy. For
this reason, we use a fixed timeout policy preceding the actual prediction. In other
words, the command predicted by PM is not issued immediately, but the command
issue is delayed for a small amount of time (threshold of the fixed timeout policy) to
filter out very short idle periods. If a request arrives during this waiting period, the
predicted command is canceled, thus only the idle periods longer than the threshold
can be used for shutdown. The threshold value used for the fixed timeout policy is the
minimum threshold, I,. Usually, Iy is small, thus the sacrifice to filter out short idle
periods is not a big penalty for power saving, but it prevents excessively aggressive

shutdown.
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IBM HDD in [11]

State AT | Power | Threshold
active NA 2.5W NA
idle (po) NA 1w NA

idleLP (py) | 40ms | 0.8W 680m.s
standby (p2) | 2.2sec | 0.3W | 19088ms

sleep (ps3) 6sec | 0.1W | 95600ms
Toshiba HDD in [105]

active NA 2.5W NA

idle (po) NA | 0.9W NA

standby (p1) | lsec | 0.3W | 10667ms

sleep (p2) 3sec | 0.1W | 70000ms

Table 3.1: HDD specifications

3.4 Experimental Results

I applied the proposed scheme to two different Hard Disk Drives [11, 105] with the
real trace data [110]. I chose two different types of disk traces from [110] - one is
the trace for swap purpose only disk and the other is the trace for swap and user
data disk. Thus, the distributions of idle period length are different. Two different
HDD specifications are shown in Table 3.1 with the threshold values computed by the
equation 3.2. I implemented a simulator to estimate the performance of the proposed
algorithm in terms of power consumption, delay overhead, and energy efficiency. The
simulator also supports fixed timeout policies, the best oracle policy [24], and other
predictive policies [44] for validation purpose. Please refer to Chapter 2 for the details
of best oracle policy.

The size of PHB in adaptive learning tree is 20 bits, thus the maximum path
length of the adaptive learning tree was constrained to be less than or equal to 20.
Since fixed timeout policy and the prediction policy in [44] does not support multiple
sleep states, only the deepest sleep state is used for those policies.

The compared policies are: 1) best oracle (O1), 2) adaptive learning tree without
filter (M1), 3) adaptive learning tree with filter (M2), 4) prediction policy in [44] with
miss correction (H1), 5) H1 with pre-wakeup (H2), 6) timeout policy with timeout
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value = Iy (T'1), 7) timeout policy with timeout value = lsec (7'2), and 8) timeout
policy with threshold value that is used in H1 (7'3). O1 is the reference in comparison
because any other shutdown technique cannot outperform O1 and H2 has the pre-
wakeup feature in addition to the features of H1. Several quality measures as shown

below were obtained from the simulation.

e Hit ratio(HR): is defined as the ratio between the number of correct pre-
dictions to the number of total predictions. Thus, it is not used for the fixed
timeout policies. Also, the hit ratio of the proposed approach can not be di-
rectly compared to that of [44] because they have a different number of sleep
states (unit: %).

e Avg. power(AP): is the average power consumption during SP is in idle
state (unit: W).

e Delay Overhead(DO): is the ratio between the increased idle time after
applying the policy and original idle time(unit: %).

e Avg. delay / idle period(AD): is the ratio between total increased idle
time and total number of idle periods. It is a good quality measure for instant

availability (unit: sec).

e Energy(EN): is the total energy consumed during idle periods normalized to

the energy consumption by best oracle policy (unit: .J).

e Efficiency(EF): is the ratio between the normalized energy in O1 and that of
each policy. It well represents the efficiency of the policy compared to the ideal
policy and is good for considering the power saving and performance penalty

together.

The simulation results are shown in Table 3.2. First, the effect of filter is shown
from M1 and M2. In M2, by filtering out very short idle periods, the hit ratio is
increased by about 10% and this is also reflected in efficiency. Second, M2 outper-
forms H1 in terms of hit ratio, even though M2 is in a harder situation to increase

the hit ratio than H1 due to the following reasons. First, M2 has more choices than
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IBM HDD in [11]: Trace data 0 (swap and user data purpose)
o1 M1 M2 H1 H2 T1 T2 T3
HR | 100 85.6 |96.2 | 975 | 975 |- - -
AP 1 0.172 ] 0.217 | 0.194 | 0.298 | 0.998 | 0.247 | 0.244 | 0.234
DO | 0.0 1.0 1.0 1.8 1.3 6.1 5.9 1.8
AD | 0.0 0.227 | 0.236 | 0.428 | 0.294 | 1.440 | 1.393 | 0.413
EN | 1.000 | 1.273 | 1.136 | 1.561 | 5.202 | 1.527 | 1.504 | 1.384
EF | 1.000 | 0.786 | 0.880 | 0.641 | 0.192 | 0.655 | 0.667 | 0.723
IBM HDD in [11]: Trace data 1 (swap only purpose)
01 M1 M2 H1 H2 T1 T2 T3
HR | 100 84.5 | 94.8 |60.7 |60.7 |- - -
AP | 0.125 | 0.148 | 0.132 | 0.227 | 1.014 | 0.132 | 0.128 | 0.149
DO | 0.0 0.6 0.5 2.2 1.7 1.3 1.1 1.0
AD | 0.0 1.525 | 1.420 | 5.891 | 4.678 | 3.530 | 3.093 | 2.741
EN | 1.000 | 1.190 | 1.067 | 1.855 | 8.242 | 1.069 | 1.038 | 1.203
EF | 1.000 | 0.840 | 0.937 | 0.539 | 0.121 | 0.935 | 0.963 | 0.831
| AE | 1.000 | 0.813 | 0.909 | 0.590 | 0.157 | 0.800 | 0.815 | 0.777 |
Toshiba HDD in [105]: Trace data 0 (swap and user data purpose)
01 M1 M2 H1 H2 T1 T2 T3
HR | 100 91.0 [99.3 | 976 |976 |- - -
AP | 0.158 | 0.200 | 0.186 | 0.249 | 0.898 | 0.205 | 0.206 | 0.234
DO | 0.0 0.6 0.5 1.0 0.7 2.1 3.0 1.5
AD | 0.0 0.135 | 0.109 | 0.234 | 0.159 | 1.486 | 1.705 | 0.360
EN | 1.000 | 1.273 | 1.183 | 1.458 | 5.242 | 1.325 | 1.343 | 1.503
EF | 1.000 | 0.786 | 0.845 | 0.686 | 0.191 | 0.755 | 0.744 | 0.686
Toshiba HDD in [105]: Trace data 1 (swap only purpose)
01 M1 M2 H1 H2 T1 T2 T3
HR | 100 87.6 |98.0 |59.9 |599 |- - -
AP | 0.118 | 0.133 | 0.126 | 0.192 | 0.915 | 0.125 | 0.121 | 0.135
DO | 0.0 0.3 0.3 1.1 0.9 0.5 0.6 0.5
AD | 0.0 0.803 | 0.685 | 3.011 | 2.387 | 1.403 | 1.553 | 1.381
EN | 1.000 | 1.131 | 1.071 | 1.645 | 7.819 | 1.065 | 1.032 | 1.150
EF | 1.000 | 0.884 | 0.934 | 0.607 | 0.128 | 0.939 | 0.970 | 0.870

| AE | 1.000 | 0.835 | 0.890 | 0.647 | 0.160 | 0.847 | 0.857 | 0.778 |

*AFE: Average of EF for trace data 0 and E'F for trace data 1

Table 3.2: Comparisons of the various policies
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Figure 3.6: Distribution of idle intervals

H1 (due to more sleep states). Second, the correction after a miss is considered as
a hit in H1. Nevertheless, the efficiency of H1 is much lower than that of M2. Tt
is also observed that the hit ratio of H1 is drastically decreased when trace data 1
is simulated. This is an indication that the non-stationary property of trace data
1 is much stronger than that of trace data 0. In contrast, the hit ratio of M2 is
decreased by about 1%. Thus, the proposed approach adapts well to the variation
of SR. H2 has very poor efficiency even though the hit ratio is same to that of H1.
This is because the pre-wakeup scheme wakes up SP even when it meets very long
idle periods. Third, in average, M2 outperforms any other timeout policy by about
5 —17%. When trace data 1 is applied, policy T2 is slightly better than M2(1%).
This fact can be explained by the distribution of idle intervals as shown in Figure 3.6.

For the IBM HDD shown in Table 3.1, the ratio of idle periods in idle intervals
1 and 2 in trace data 0 is two times more than that in trace data 1. Also, for the
Toshiba HDD shown in Table 3.1, the ratio of idle periods in ¢dle interval 1 is about
four times more than that in trace data 1. It means that trace data 1 rarely has
intermediate length of idle periods. In other words, the idle periods in trace data
1 are either very short or very long because it is the trace of swap operation only.
For this reason, the fixed timeout policy shows good efficiency for trace data 1. But
for trace data 0, the efficiency of fixed timeout policy degrades rapidly because the
ratio of the intermediate-length idle periods can not be ignored, while the proposed

approach shows almost the same efficiency. From these results, we can conclude that
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Trace data 0 2nd case 3rd case
01 M2 01 M2
Hit ratio (%) 100.0 | 98.1 | 100.0 | 99.3
Avg. power (W) 0.183 | 0.194 | 0.174 | 0.213
Delay overhead (%) 0.0 0.9 0.0 0.9
Avg. delay / idle period(s) | 0.0 0.206 | 0.0 0.211
Energy (.J) 1.0 |1.066]1.0 |1.235
Efficiency 0.940 | 0.882 | 0.989 | 0.801
Trace data 1 2nd case 3rd case
01 M2 01 M2
Hit ratio (%) 100.0 | 96.5 | 100.0 | 97.3
Avg. power (W) 0.125 | 0.129 | 0.125 | 0.138
Delay overhead (%) 0.0 0.5 0.0 0.5
Avg. delay / idle period(s) | 0.0 1.450 | 0.0 1.359
Energy (.J) 1.0 |1.034|1.0 |1.110
Efficiency 1.0 0.967 | 1.0 0.901

| Average Efficiency (IBM) [0.970 | 0.925 | 0.995 | 0.851

Table 3.3: Comparisons for design guide

the proposed approach has superior reliability.

Next, I tested the adaptive speed of the proposed approach and the stability over
the time. I used the hit ratio variation over the time for this purpose. As shown in
Figure 3.7, the proposed approach achieves a high hit ratio after experiencing less
than 1000 idle periods. Moreover, after it reaches a high hit ratio, the variation of hit
ratio is very small. The variation in trace data 1 is somewhat larger than trace data
0 because the non-stationary property of trace data 1 is stronger than trace data 0.

Last, I performed another experiment to provide a design guidance in deciding
number of sleep states and sleep levels. For this purpose, I simulated three different
cases for IBM HDD. The first case is the same case as in the above experiment. In
the second case, the standby sleep mode (power state ps) is eliminated and in third
case, the idleLP sleep mode (power state p;) is eliminated. The simulation results
are shown in Table 3.3.

To avoid duplication with Table 3.2, the results of the first case are omitted in

Table 3.3. From the comparison of the best oracle policies, it is shown that increasing
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the number of sleep states is ideally more efficient. This is because increasing the
number of sleep states enables us to handle various lengths of idle periods. Also, it
shows that choosing a deeper intermediate sleep state (standby instead of idleLP)
makes it possible to save more power. This situation depends on the distribution
of idle intervals. In this experiment, deeper sleep states are preferred, because idle
periods in both idle intervals 1 and 2 have similar ratios in the distribution. Never-
theless, the M2 of the second case shows better efficiency than the third case. The
reason is that the third case wastes more idle periods when filtering out impulse-like
idle periods because its I is much larger than the I of the second case. Even though
the hit ratio is increased by a large Iy (because of perfectly filtering out short idle
periods), the increased ratio is only a small amount because the proposed approach
already preserves high hit ratio. Thus, to adopt the proposed approach, choosing
shallower sleep states or choosing deeper sleep states with small timeout value for
filtering is recommended. It is also shown that increasing the number of sleep states
is not always the best choice, because it increases the difficulty of the decision process.
The results of M2 from the first case and the second case supports this argument
because their efficiency is almost the same and the hit ratio of the first case is lower

than the second case.

3.5 Chapter Summary

In this chapter, I presented a novel adaptive power management policy for non-
stationary workloads. This is the first prediction based DPM policy to handle multi-
ple sleep state components. The proposed approach is based on an adaptive learning
tree and idle period clustering, and it has been validated through extensive experi-
ments using two different HDD models and two kinds of real disk trace data. The
experimental results show that the proposed approach outperforms fixed timeout pol-
icy and other prediction methods. Also, it is shown that the prediction accuracy is
reliable in the sense that the proposed approach is much less affected by strongly
non-stationary workloads. Moreover, the proposed approach reaches reasonable hit

ratio before experiencing more than 1000 idle periods.



Chapter 4
Comparison of DPM Policies

This chapter compares the DPM policies proposed in Chapter 2 and Chapter 3 to
other DPM policies in real system environments. The comparison was performed for
the hard disk drives installed in desktop and laptop computers. Each policy is imple-
mented in Windows2000 running on these computers. The real measurement guar-
antees a more fair comparison among the DPM policies over the simulation because
the simulator of each policy may have different assumptions on hardware modeling.
The implementation and experimental data by measurement will be presented in this

chapter.

4.1 Compared Policies

The DPM policies compared in this experiment are summarized in Table 4.1.

In Table 4.1, 7 represents the timeout value in each fixed timeout policy. As
discussed in Chapter 2 and Chapter 3, best oracle policy is an ideal policy with offline
analysis. It never wastes idle period longer than break-even time and never shuts
down the system for the idle period shorter than break-even time. On the other
hand, always-on policy never shuts down the system regardless of the length of idle
period; hence, it cannot reduce the system energy consumption.

All stochastic policies (DW, SW, and US policies) have already been described in
Chapter 2 and the adaptive learning tree (LT) is described in Chapter 3. Also, the
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policy category | adaptivity features
BO (best oracle) NA NA ideal policy with offline anaysis
DW (double window) | stochastic yes double window and interpolation
SW (single window) | stochastic yes single window and interpolation
US (stationary) stochastic no optimal for stationary workload
LT (learning tree) predictive yes handling multiple sleep states
EA [44] predictive yes exponential average prediction
CA [46] timeout 1no T = break — even time
T30 timeout no 7 =30
T120 timeout no T =120
ATO1 [30] timeout yes adjustable 7
ATO2 [62] timeout yes adjustable 7
ATO3 [37] timeout yes adjustable 7
always-on NA NA no shutdown

Table 4.1: Compared policies

details of fixed timeout policies (CA, T30 and T120) can be found in Chapter 1. For
this reason, I will discuss only the exponential average policy and adaptive timeout

policies in this section.

Exponential Average Policy

In [44], the authors observe that the length of a future idle period can be accurately
predicted by the length of the previous idle periods and the prediction of this period.
Mathematically, let ¢, edictea|t] and toctuar[?] be the predicted and the actual lengths of
the " idle period. The length of the (i + 1) idle period can be approximated by

tpredicted[i + 1] =a- tactual [2] + (1 — a) . tpredicted[i] 0 S a S 1 (41)

This is “discounted average” because the effect of the most recent idle period is
discounted by factor a while the previous prediction is discounted by 1 — a. Since

tpredicted|?] 18 calculated in the same way, we can expand the equation as follows:
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tpredicted [Z + 1] =a- tactual [7'] + (1 - a) * predicted[i]
= @ * tactual [7'] + (1 - a) ' (CL * Lactual [Z - 1] + (1 - a) ' tpredicted[i - 1])
=a- tactual [Z] + (1 - a)a : tactual [Z - 1] + (1 - Cl)2 ) tpredicted[i - 1]
= (1 - a)i+1tpredicted[0] + Za(l - a)ktactual [Z - k]

. (4.2)

In addtion to Equation 4.2, t,,egictea[i + 1] is restrained such that it cannot exceed
¢ - tiae[?] to avoid inordinate shutdown operations, where c is a constant greater than
1.

If tyredicted 15 larger than the break-even time, the policy shuts down the system.

Two parameters, ¢ and ¢ are set to 0.5 and 2 as suggested in [44].

4.1.1 Adaptive Timout Policies

Fixed timout policies cannot adapt to the variation of the workload, thus it may be
efficient for some specific workloads, but not for some other workloads. To overcome
this limitation, the adaptive timeout policies are introduced. ATO1, ATO2, and
ATOS3 are adaptive timeout policies which change the timeout value depending on
the recent past workload history to reduce the wasted idleness at the beginning of
the idle period. ATOL1 in [30] considers the length of the previous idle period. If it is
short, 7 increases; otherwise, 7 decreases to follow the variation of idle period length.
On the other hand, ATO2 [62] considers the length of a busy period. If a busy period
is short, 7 decreases; otherwise 7 increases. Unlike ATO1 and ATO2, ATO3 [37]

updates 7 asymmetrically; increasing 7 by 1 second or decreasing 7 by half a second.

4.2 Policy Implementation

The policies described in Section 4.1 were implemented on both a desktop PC and
a laptop PC to control the power state of their hard disk drives. As discussed in
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Chapter 1, DPM policies are implemented in OS level. For this purpose, hardware
has to support programming interface and allow the power state ot be changed.
There are two widely used standards for power management: advanced power man-
agement(APM) [4, 2] and advanced configuration power interface (ACPI) [1]. The
policies were implemented on Windows2000 which supports ACPI.

ACPI specifies protocols between hardware components and operating systems
to enable operating system directed power management (OSPM); the OS can adopt
system-wide power management policies. Figure 4.1 shows the ACPI interface with
the implementation of the double window policy; it consists of the OS which controls
the power states, the ACPI interface, and the hardware that responds to ACPI com-
mands and changes power states. An ACPI-compliant device can have up to four
power states: powerDeviceDO (DO), the working state, and PowerDeviceD1 (D1) to
PowerDeviceD3 (D3), representing three different sleeping states. But only D0 and
D3 states are used in our implementation because the hard disk drives provide only
single sleep state. Other policies are also implemented in the same concept.

I used Microsoft Windows2000 in its implementation. In Windows, power man-

agement commands are processed as [O commands using /0 request packets (IRP).
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Special IRP’s are required to synchronize ACPI commands so that the transient cur-
rent does not exceed the maximum capability of the power supply. I implemented
power managers using a filter driver (FD) template [63]. A filter driver is a device
driver attached upon another device driver; it can intercept commands from the OS
and responses from the lower driver. The filter driver observes IO activities generated
by the OS and applications to update the estimation of stochastic parameters. When
the power manager determines to shut down a device, it issues a power IRP to the
lower level driver to control the power states.

By implementing power managers in a commercial operating system, we can ex-
periment different algorithms running realistic workloads. Because these filter drivers
are visible only to the OS and its lower-layer driver, application programs can run
without any modifications. Based on the software-controlled architecture described

above, both single and multiple window approaches were implemented and tested.

4.3 Experimental Results

In Chapter 2 and 3, T used simulation to analyze and discuss the inherent properties
of the proposed adaptive DPM policies. However, I carried out experiments in a real
physical setting to make a fair comparison with other policies in this chapter.

The experiments were performed on a Sony VAIO PCG-F150 laptop computer,
and on a VA Research VArStation desktop computer. The service providers for these
experiments were commercial power-manageable HDDs by Fujitsu (VAIO PCG-F150)
and IBM (VArStation). The hard disk parameters are already presented in Table 2.1.

I implemented single and double-window adaptive control strategies on ACPI-
compliant PC’s mounting the power-manageable HDDs of Table 2.1: the MHF2043AT
HDD (3.8GB) by Fujitsu was installed on a VAIO PCG-F150 laptop computer from
Sony (Pentium II, 32MB memory), while the DTTA-350640 HDD (6.44GB) by IBM
was installed on a VArStation desktop computer from VA Research (Pentium II,
256MB memory). The base unit of time slice was set to 1 second which is large
enough to tolerate the computation cost of the power manager.

Alternative DPM algorithms [30, 44, 62, 46, 37, 94] and timeout mechanisms
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[64] were implemented on the same platforms for comparison. All PM schemes were
applied under the same workload conditions, represented by an 11-hour trace of disk
accesses generated by text editors, debuggers and graphical tools running on top of

Windows-NT. The quality of each control strategy was evaluated based on 5 metrics:

e P: Average power consumption. (unit: W)

N,q: Number of shutdowns.

Nywq: Number of wrong shutdowns causing a power overhead.

Tss: Average sleeping time per shutdown. (unit: sec)

e Tys: Average idle time before shutdown. (unit: sec)

Notice that all metrics shown above are related to only HDD, namely, P is
the power consumption of HDD alone. The experimental environment described in
Section 4.2 provides the run-time support for online computation of the above metrics.

While average power consumption P provides a direct measure of the objective
function of policy optimization, performance metrics are more involved and need some
explanations. The number of shutdowns N4 is directly related to the performance
penalty that has to be paid (regardless of the PM scheme) to wakeup the SP. The
number of wrong shutdown decisions N,,4 is a measure of inefficiency: a wrong decision
causes both a performance and a power penalty. On the contrary, the average sleeping
time per shutdown T, is a measure of efficiency: the longer the sleeping time, the
lower the number of shutdowns required to achieve the same power savings. Finally,
T,s can be viewed as a measure of inefficiency since it represents wasted idle time. In
summary, good PM strategies should be characterized by low values of P, Ny, Nyq4
and Tp; and by large values of T§,.

Experimental results are reported in Table 4.2: rows are associated with PM
algorithms, columns with power/performance metrics. Algorithms are sorted for in-
creasing power consumption. Notice that the reported power value is only consumed
by each target HDD.

It is also worth mentioning that DPM aims at reducing average power consump-

tion of the target device, but it can increase the peak power consumption because
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changing power state (especially when the device is waken up) usually requires more
power than active state as shown in Table 2.1. The symbols in Table 4.2 to denote
each policy is identical to those in Table 4.1.

Performance constraints used for policy optimization were L, < 0.05 and W, < 2,
while window sizes of 50 and 20 were chosen for SW and DW, respectively. As for
simulation, BO policy was designed based on the offline analysis of the trace. Rows
referring to timeout policies are denoted by the corresponding timeout values (7 = 30
and 7 = 120). Finally, the always-on row reports the power consumption of the HDD
without power management.

Notice that I could not implement a best-adaptive (BA) policy as I did for sim-
ulation in Chapter 2, because of the nature of the workload. In fact, best-adaptive
policies can only be conceived for piece-wise stationary workloads as those artificially
constructed in Section 2.4 for simulation experiments. Real-world workloads are not
piece-wise stationary.

The method proposed by Karlin et al. [46] achieved the best power-performance
trade-off on the desktop computer, but DW provided comparable results both in
terms of performance (V) and in terms of power (P), the difference being within 5%.
And LT is ranked at fourth and shows large performance penalty compared to the
two top policies. A different trade-off (with higher consumption at lower performance
penalty) was provided by 7 = 30, [62] and [30], while all other approaches showed
much worse results.

On the laptop computer, DW provided the lowest power consumption, followed
by [46] and LT. I remark, however, that in this case results are not comparable: the
performance penalty caused by [46] and LT is almost twice that of DW, with lower
power savings.

It is worthwhile to mention that LT (adaptive learning tree) is not as efficient as
the simulation results shown in Chapter 3. I believe that this is because the number of
sleep states of the target device used for the simulation in Chapter 3 is more than one,
while the sleep state of the target device in this measurement is only one. The limited
choice (actually, forced choice) of the sleep state in the measurement degrades the

efficiency of the adaptive learning tree policy because it intends to support multiple
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Policy P Nsd Nwd Tss Tbs

BO 0.33 | 250 0 118 0

DW 0.43 | 191 28 127 | 134

CA[46] 044 323| 64| 79| 54

LT 0.46 | 437 | 217 56 6.1

ATO1[30] | 0.47 | 273 | 73| 88| 124

EA [44] 050|623 ] 427| 37| 3.0

TO30 0.51 | 139 7 157 | 30.0

SW 0.51 | 226 | 83 | 96.05 | 20.05

ATO2 [62] | 0.52 | 196 48 109 | 24.5

US 0.62 | 173 54 102 | 35.2

ATO3[37] | 0.64 | 881 | 644 | 19| 2.3

TO120 | 0.67 | 55 0| 255/ 120.0

always-on | 0.95 - - - -

(a) Laptop computer

Policy P Nsd Nwd Tss Tbs

BO 1.64 | 164 0 166 0

CA[46] |1.04[160| 15| 142 176

DW 1.97 | 168 26 134 | 18.7

TO30 2.05 | 147 | 18 142 |1 30.0

LT 2.07 | 379 | 232 62 o7

ATO2 [62] | 2.09 | 147 | 26| 138 | 29.9

ATO1 [30] | 2.19 | 141 | 37| 135 | 276

ATO3[37] [ 222|595 | 430 | 41| 41

SW 225|295 | 188 | 68.42 | 14.25

TO120 252 55 3 238 | 120.0

US 2.60 | 105 | 39 130 | 48.9

EA [44] [2.99 595 503| 30| 7.6

always-on | 3.48 - - - -

(b) Desktop computer

Table 4.2: Algorithm Comparison
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lw P Nsd Nwd Tss Tbs
5 | 1.85|224 | 61]110.49 | 6.908
10 | 1.91 | 198 451 120.39 | 10.7
20 | 1.97 | 168 | 26 134 | 18.7
o0 | 2.23 | 189 47 | 104.7 | 26.9
100 | 2.35 | 166 | 89 | 100.37 | 33.68

Table 4.3: Experimental results for window-size sensitivity analysis on desktop PC

sleep state devices.

The performance of SW is worth discussing. Both on desktop and laptop experi-
ments, SW results were much worse than DW, while they provided comparable results
on simulation experiments. I believe this is due to the bursty nature of real-world
workloads. As discussed in Section 2.3.2, if the SR does not enter a given state for
more than [, cycles, SW provides no information about state transition probabili-
ties from that state. The arbitrary assumptions made in this case by Equation 2.3
about workload parameters may cause sizeable estimation errors. On the contrary,
this situation does not impair the performance of DW.

[ also ran a set of experiments on the desktop PC to analyze the sensitivity of DW
to window size [,,. Results are shown in Table 4.3. Power savings increase monoton-
ically as [,, decreases because of a lower adaptation delay. Performance metrics, on
the other hand, show that the minimum penalty is achieved when [,, = 20. Since a
further reduction of [, does not reduce power significantly, while impairing estimation
accuracy, l,, = 20 provides the best trade-off between power and performance.

Finally, I measured the power overhead caused by the policy computation and
the power saving of the overall system achieved by our approach. For this purpose, I
compared DW and the competitive approach proposed in [46] to always-on policy on
the laptop computer. There are two reasons to select the competitive approach: i)
its power saving for HDD is comparable to our approach, ii) its policy computation
is very simple, because it is a timeout approach by setting the timeout value to the
break-even time, whereas our approach requires more complex computation.

[ measured the current drawn by the overall system by connecting the multi-meter
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to the AC adaptor. For each policy, I prepared two versions of the power manager.
The first version is the same as the power manager used for Table 4.2, but the second
version does not issue any command to HDD. In other words, the second version also
performs the entire policy computation, but it does not change the power state of the
HDD. The first version is useful to measure the impact of each policy on the power
saving of the overall system, while the second version can be used to measure the
impact of the policy computation overhead on the overall system. Using the second
version, I measured the power overhead of the policies for the entire system; it proved
to be very small for both approaches (0.8% for DW and 0.6% for the competitive
approach).

On the other hand, the measurement of the overall power saving by DW was not
obvious due to the power consumption and fluctuation caused by other components
such as display and processor. The impact of the power saving for HDD on the
entire system can vary significantly depending on the power control policies of other
components. To eliminate such variation, I measured the power reduction by DW
for the OS controllable fraction ! of total system power budget. DW achieved 20.2%
of power saving, while the competitive approach did 15.7% of power saving (both
include the power overhead of the policy computation). Also, the peak power of the
system was increased by 6% for both approaches. To summarize, DW outperforms
competitive approach in terms of overall power saving, while preserving the same

peak power.

4.4 Chapter Summary

In this chapter, I described how to implement DPM policies in real system environ-
ment. The policies are implemented in Windows2000 running on both desktop and
laptop computers based on ACPI standard and filter drivers.

The efficiency of the implemented policies are compared for the hard disk drives

IThis subtracts the quiescent power from the total power. The quiescent power is consumed by
the laptop computer when no user program is running and HDD is shut down; it was not controlled
by DW.
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installed in these computers by real measurements. The results show that double
window policy outperforms all other compared policies in terms of both power and

performance.



Chapter 5
Low Energy Software Optimization

The objective of the work presented in this chapter is to create a framework for the
optimization of embedded software application programs. I present algorithms and
a tool flow to reduce the computational effort of programs, using value profiling and
partial evaluation. Such a reduction translates into both energy savings and average
case performance improvement, while preserving a tolerable increase of worst-case
performance and code size.

The tool reduces the computational effort by specializing frequently-executed pro-
cedures for the most common values of their parameters. The most effective spe-
cializations are automatically searched and identified, and the code is transformed
through partial evaluation.

Experimental results show that our technique improves both energy consumption
and performance of the source code up to more than a factor of two and in average
about 35% over the original program. Also, the automatic search engine greatly

reduces code optimization time with respect to exhaustive search.
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5.1 Basic Idea and Overall Flow

5.1.1 Basic Idea and Problem Description

The technique described in the following sections aims at reducing the computational
effort of a given program by specializing it for situations that are commonly encoun-
tered during its execution. The ultimate goal of this technique is to improve energy
consumption as well as performance by reducing computational effort. The special-
ized program requires substantially reduced computational effort in the common case,
but it still behaves correctly. The “common situations” that trigger program special-
ization are detected by tracking the values passed to the parameters of procedures.
The example in Figure 5.1 illustrates the basic idea.

Consider the first call of procedure foo in procedure main. Suppose the first
parameter a is 0 for 90% of its calling frequency. Also, suppose the same condition
holds for the last parameter k. Using these common values, a partial evaluator can
generate the specialized procedure sp_foo as shown in Figure 5.1 (b) which reduces
the computational effort drastically.

In reality, the values of parameters a and k are not always 0. Therefore, the
procedure call foo cannot be completely substituted by the new procedure sp_foo.
Instead, we can replace it by a conditional statement which selects the appropriate
procedure call depending on the result of a common value detection (CVD) procedure
named cvd_foo in Figure 5.1 (b). I call this transformation step source code alterna-
tion. Also, the variable whose value is often constant(e.g. a) is called constant-like
argument (CLA).

When the CVD procedure detects a common case, the specialized code corre-
sponding to the detected common case is executed, which yields fewer instruction
executions than the original code. On the other hand, the worst case scenario occurs
when the CLA does not take any frequently observed values identified by the pro-
filing. In this case, the worst case performance increase per each call is simply the
product of the cost of compare instruction and the number of CLA’s tested in the
conditional statement, therefore the worst case performance degradation is marginal

if the target procedure is computationally expensive.
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main () {
int i, a, b, k, m, c[100], d[200], e, result = 0;

result = foo(a, 100, c, k);

for (i = 0; i < 10; i++) {
result += foo(i, 100, c, m);
result += foo(b, e, d, m);

int foo(int fa, int fb, int *fc, int fk) {
int i, sum = 0;
for (i = 0; 1 < fb; i++)
for(j = 0; j < £b/2; j++)
sum += fa * fc[i] + fk;
return sum;

(a) Original program

main () {
int i, a, b, k, m, c[100], d[200], e, result = 0;
if (cvd_foo(a, k)) result = sp_foo(c);
else result = foo(a, 100, c, k);
for (i = 0; i < 10; i++) {
result += foo(i, 100, c, m);
result += foo(b, e, d, m);

int foo(int fa, int fb, int *fc, int fk) {
int i, sum = 0;
for (i = 0; i < fb; i++)
for(j = 0; j < £b/2; j++)
sum += fa *x fc[i] + fk;
return sum;

int sp_foo(int *fc) { return 0; }
int cvd_foo(int a, int k) {
if (a == 0 && k == 0) return 1;
return 0;

(b) Specialized program for the first call of foo (a=0 and k = 0)

main () {
int i, a, b, k, m, c[100], d[200], e, result = 0;

if (cvd_foo(a)) result = sp_foo(c, k);
else result = foo(a, 100, c, k);
for (i = 0; i < 10; i++) {

result += foo(i, 100, c, m);

result += foo(b, e, d, m);

int foo(int fa, int fb, int *fc) {
int i, sum = 0;
for (i = 0; i < fb; i++)
for(j = 0; j < £b/2; j++)
sum += fa *x fc[i] + fk;
return sum;

int sp_foo(int *fc, int fk) { return 50*%100*fk; }
int cvd_foo(int a) {

if (a == 0) return 1;

return 0;

(c) specialized program for the first call of foo (a=0)

Figure 5.1: Example of source code transformation using the proposed technique
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In general, different possibilities for code optimization exist. This gives rise to
a set of search problems that aim to detect the best set of transformations for the
example shown in Figure 5.1. If we ignore the common value of k, the original code
will be specialized as shown in Figure 5.1 (c). The sp_foo in Figure 5.1 (¢) has one
more multiplication than the sp_foo in Figure 5.1 (b), but the situation that a = 0
will happen more frequently than the situation that both a and k are 0. For this
reason, it is not clear which specialized code is more effective to reduce the overall
computational effort. This is the first search problem in our approach.

Next, consider two procedure calls inside the loop of Figure 5.1 with the assump-
tion that parameter e (the second parameter of the third procedure call) has single
common value, 200. Each of two procedure calls has a CLA as their second argument,
respectively. Partial evaluation can be applied for each procedure call to reduce com-
putational effort. However, there is not much to be done by partial evaluator except
loop unrolling because all other parameters are not CLLAs. The effect of loop unrolling
can be either positive or negative depending on the system configuration. For this
reason, it is required to find the best combination of loop unrolling for each call. In
this example, there are four possible combinations for each call, but the number of
combinations is exponential with respect to the number of loops. This is the second
search problem of our approach.

After each call is specialized with the best combination of loop unrolling, it is also
necessary to check the interplay among the specialized calls, because both specialized
calls will increase code size and they may cause cache conflict due to their alternative
calling sequence. Thus, we need a method to analyze the global effect of the special-
ized calls caused by their interplay, which is the third problem of our approach. This
paper addresses each of these problems and proposes algorithms for the search of the
best code specialization.

To summarize, we have three search problems to specialize a program for common

cases.

1. Common-case selection is to find the most effective common case among

several common cases for each procedure call.
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2. Common-case specialization is to specialize a procedure call for the given

common case by controlling loop unrolling.

3. Global effective-case selection is to find the most effective combination of

specialized calls.

I will use the term “call site” and “procedure call” interchangeably unless there
is an explicit explanation. Also, for the sake of simplicity, we will call cycle-accurate

instruction-level simulation (simulator) instruction-level simulation (simulator).

5.1.2 Framework Configuration and Transformation Flow

The automated framework configuration is shown in Figure 5.2, where an instru-
mentation tool and a profiler provide the basic information necessary to search the
solution space. The computational effort estimator solves the common-case selection
problem and the specialization engine and global effect analyzer solve the common-
case specialization and the global effective-case selection problems, respectively. The
entire framework is implemented based on SUIF [100]. CMIX [3] is chosen as a partial
evaluator in the specialization engine. ISS (instruction-set level simulator) in both
specialization engine and global effect analyzer can be selected depending on the tar-
get processor to consider the underlying hardware architecture for the specialization.
Each tool component in Figure 5.2 corresponds to each step of the overall transfor-
mation flow shown in Figure 5.3. Thus, I will briefly describe each step in this section

and the details will be described in the later sections.

e Instrumentation and profiling. Two types of profiling are performed -
execution frequency profiling and value profiling. Using the information from
execution frequency profiling, the computational efforts of procedures and pro-
cedure calls are estimated. On the other hand, value profiling identifies CLAs
and their common values by observing the parameter value changes of procedure

calls .

e Common-case selection. Based on profiling information, all detected com-

mon cases are represented as a hierarchical tree (Section 5.3). To reduce the



CHAPTER 5. LOW ENERGY SOFTWARE OPTIMIZATION

Instrumentation tool

Set of promising common cases

Specialization engine

Loop controller

Execution frequency Vauelocdlity
instrumentation tool instrumentation tool

Instrumented program
Profiler

)

——

Profiling
information

Computational
effort estimator

* |SS: Instruction-set level smulation

pecialized program

Figure 5.2: The configuration of the proposed framework

C Source Code

| Code Instrumentation |

| Profiling |

!

Common-case

| Architecture
Lindependent analysis |

Figure 5.3: Overall source code transformation flow

selection

4
[
[
[
[
|
|
[

S S S

Common-case
specialization

Global effective-case
selection

Final C Code

-
I | Architecture

I dependent analysis by
| 1 instruction-level sim.

86



CHAPTER 5. LOW ENERGY SOFTWARE OPTIMIZATION 87

search space, normalized computational effort (NCE) is computed for each ob-
ject in the hierarchical tree. NCFE represents the relative importance of each
object in terms of computational effort. By defining a user-defined constraint

called computational threshold (CT), trivial common cases are pruned.

e Common-case specialization. FEach case not pruned in the previous step is
specialized. In our framework, specialization is performed by CMIX [3] which is
a compile-time (off-line) partial evaluator. In addition to the specialized proce-
dure, the common value detection (CVD) procedure is generated. Also, source
code alternation is performed so that the original procedure call is replaced by
a conditional statement as shown in Figure 5.1. For the specialized code of each
common case, instruction-level simulation is performed to assess the quality of
the specialization and the cases which show improvement by specialization are
selected for the next step. The search space of this problem is exponential with
respect to the number of loops and the details of heuristic approaches performed
by the loop controller for the search space reduction will be described in Section
5.4.

e Global effective-case selection. This step analyzes the interplay of the
specialized calls chosen at the previous step and decides the specialized calls
to be included in the final solution. The search space for this analysis is also
exponential with respect to to the number of the specialized calls, thus a search
space reduction technique based on the branch and bound algorithm is applied

to the binary tree built on the specialized calls.

5.2 Profiling

5.2.1 The Structure of Profiler

Many profiling techniques are based on assembler or binary executable to extract more
accurate architecture-dependent information such as memory address tracing and

execution time estimation. Since they are designed for specific machine architectures,
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they have limited flexibility [77].

In our case, it is sufficient to have only relatively accurate information rather than
accurate architecture-dependent profiles, while keeping source-level information. In
other words, it is more important to identify which piece of code requires the largest
computational effort rather than to know the exact amount of computational efforts
required for its execution.

[ used the SUIF compiler infrastructure [100] for source code instrumentation.
The instrumentation is performed based on the abstract syntax trees (High-SUIF)
which well represent the control flow of the given program in high level abstraction.
In detail, a program is represented as a graph G = {V, F'}, where node set V is
matched to the high level code constructs such as for-loop, if-then-else, do-while
and denoted as v; € V, i = {0,1,---, N, — 1}, where, N, is the total number of
nodes in a program G. Any edge e;; € E connects two different nodes v; and v,
and represents their dependency in terms of either their execution order or nested
relation. Note that v; is hierarchical, thus each v; can have its subtree to represent
the nested constructs. For each v; which is a procedure, I insert as many counters
as its descendent nodes to record the visiting frequencies. And for each descendent
node, SUIF instructions for incrementing the corresponding counter are inserted for
execution frequency profiling. Value profiling requires additional manipulations such
as type checking between formal parameters and actual parameters of procedure calls,
recording the observed values and so on.

The proposed profiler has the so-called ATOM-like structure [93] in the sense
that the user supplied library is used for instrumentation, namely the source code
is instrumented with simple counters and procedure calls. The user supplied library
includes the procedures required for both ezxecution frequency and value profiling. At
the final stage, the instrumented source code and the user supplied library are linked

to generate the binary executable for profiling.

5.2.2 Computational-Effort Estimation

Computational kernels can be identified by execution frequency profiling and
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computational-effort estimation. Execution frequency profiling is a widely used tech-
nique to obtain the visiting frequency of each node (v; in G). This information only
represents how frequently each node is visited, but does not show the importance of
each node in terms of computational effort.

For this reason, I used a simple estimation technique of computational efforts
for each basic unit using the number of instructions of each basic unit, where the
instruction set used is the built-in instructions defined in SUIF framework. Due to
the lack of specification of a target architecture, it is assumed that all the instructions
require same computational effort. But [ provide a way to distinguish the cost of each
instruction when the target architecture is determined using an instruction cost table.
Each SUIF instruction is defined with its cost in the instruction cost table, thus the

execution time of each node v; of graph G can be calculated as follows.

N-1

ce; = fi * i; Z(oij % ¢j) (5.1)
§=0

where, ce; is the estimated computational effort of node v;, f; is the execution fre-
quency of node v; from execution frequency profiling, i; is the average number of
iterations for each visit of node v;, 0;; is the number of instruction j observed in node
vj, ¢; is the cost of instruction j, and NN is the total number of instructions defined
in SUIF. Note that the basic unit of our approach includes for-loop and do-while
constructs. For this reason, variable i; is considered in Equation 5.1. It is also worth-
while to mention that the Equation 5.1 represents the single level computational-effort
estimation. As mentioned in Section 5.2.1, the node v; is hierarchical. Thus, the cu-
mulative computational efforts for each node v; can be estimated by the sum of current
level computational effort and the computational effort of its descendent nodes.

An example of abstract syntax tree is shown in Figure 5.4 (a), where a solid edge
represents the dependency of two nodes and a dotted edge represents their nested
relation and its corresponding instruction cost table is shown in Figure 5.4 (b). A
pair of numbers assigned to each node is (f;, ;) which is obtained from the ezecution
frequency profiling.

Example: Consider node v, in Figure 5.4 (a). f, and iy are 4 and 1 as shown in
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int foo(int a, int b[4]) { @

inti, sum; (1,1
v0 sum=0;
vl for (i=0;i <4 i++) (1, 4) 4,1

v2 sum +=a* bfi]; @ @

V3| return sum;

} @ @1

(a) An example of abstract syntax tree

Instruction type o
vO load

compare

vl
increment

add
v2  multiply
load

NP R Lo B

v3 return 1 2

(b) Corresponding instruction cost table

Figure 5.4: An example of abstract syntax tree and instruction cost table

the graph. Also, from Figure 5.4 (b), vs has 1 addition, 1 multiplication, and 2 load
instructions. Among them, only multiplication has cost twice higher than the other
two instruction. By substituting these values into Equation 5.1, ce; = 4x1 x (1 X
1 + 1x2 4+ 2x1) = 20. Similarly, ceg = 1, ce; =8, and ceq = 2. Therefore the

computational effort of procedure foo is 31 by summing these values. Bl

5.2.3 Value Profiling

As mentioned in Section 5.1.1, value profiling is performed at the procedure level. In
other words, each procedure call is profiled, because any single procedure can be called
in many different places with different argument values. We chose value profiling
instead of value tracing which records the entire history of value observation, because
tracing requires huge disk space and accesses.

One of the difficulties in value profiling occurs when the argument size is dynamic.
For example, in a program, one-dimensional integer arrays with any size can be passed

to an integer type pointer argument whenever the corresponding procedure is called.



CHAPTER 5. LOW ENERGY SOFTWARE OPTIMIZATION 91

Procedure List  Call List Argument List
call0 —1 arg 0 | .veeenns arg n-1
call 1
Proc O
call 2 row #| Value C
0
call0 S-1
Proc n-1 call 1
Value Table

Figure 5.5: Internal data structure of value profiling

Another difficulty occurs when the argument has complex data type because complex
data type requires hierarchical traversal for value profiling. For this reason, currently
value profiling in our work is restricted to elementary type scalar and array variables.
Note that this restriction is not applied to the arguments defined at each procedure,
but to the variables passed as arguments for each procedure call. When a procedure
call has both types of variables as arguments, only the variables which violate this
restriction are excluded from profiling. Pointers to procedures are not considered in
our approach due to their dynamic nature.

Figure 5.5 shows the internal data structure of value profiling system. As shown in
Figure 5.5, each procedure has a list of procedure calls which are activated inside the
procedure. Fach procedure call in the list has a list of arguments and each argument
in this list satisfies the type constraint mentioned above and has its own fixed size
value table to record the values observed and their frequencies. Each row in the value
table consists of three fields - index field, value field and count (C) field.

The index field represents not only the index of the row, but also the chronological
order of the row in terms of the updated time relative to other rows. Thus, the
larger the index is, the more recently the corresponding row is updated. In our
representation, each row is denoted as r;, i € {0,1,---,S — 1}, where S denotes the
size of value table, i.e. the number of the rows in the table. The value field is used to
store the observed value, and the ¢; field in r; counts the number of observations of the

corresponding value. The table is continuously updated whenever the corresponding
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procedure call is executed. At the end of profiling, each argument of the value table
is examined to find the values which are frequently observed and only the argument-
value pairs which satisfy user defined constraint called Observed Threshold (OT') are
reported to the user. For this purpose, Observed Ratio (OR;) is calculated for each

r; in the value table as follows.
OR; =i/ f (5.2)

where, f is the visiting frequency of this call site. The larger OR; is, the more
frequently the value is observed. When OR; is smaller than OT, the value in r; is
disregarded.

The key feature of value profiling is the value table replacement policy [17]. As
mentioned above, the size of each value table is fixed to save memory space and table
update time. The variable ¢; of each value table is initialized to 0. Thus if a new
value is observed and at least one of ¢; is 0, the new value is recorded in r; which
has the smallest index among these rows. On the other hand, when the table is full
(there is no ¢; which is 0), the following formula is used to select the row which is to

be replaced.

rfz-:W*%+(1—W)*ORi (5.3)
where, rf;, i € {0,1,---,S5 — 1} is replacement factor which is the metric to decide

which row is to be replaced. The smaller rf; is, the more likely r; will be selected
for replacement. The weighting factor W is used to specify the importance of the
chronological order relative to observed count ¢;. The selected r; which has the
smallest 7 f; is deleted from the table and r; — r;_4, j € {i+1,---S—1}if j < S—1.
Finally, the new value is stored into a new row rg_;, and thus the table will contain

those S entries for which rf; is largest.
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5.3 Common-Case Selection

As shown in the example of Section 5.1.1, any procedure call with CLAs can be
specialized. Some procedure calls can be effectively specialized, while others may not
show significant improvement. Also, some CLAs are not useful for specialization.
Thus, it is necessary to search the procedure calls which can be effectively specialized
by using their common values.

Due to the large search space, I represent all possible common cases as a hierar-
chical tree based on profiling information and prune out the cases which are expected

to show only marginal improvement even after specialization.

5.3.1 Common Case Representation

Figure 5.6 shows the hierarchical tree for the example shown in Figure 5.1 based on
the profiling information. Let us consider a simple example how a common case is
represented in a hierarchical tree. The program has two procedures: main and foo
(procedure level) and procedure foo is called three times in procedure main (call-
site level). The first procedure call has single CLA, a which is passed to the formal
parameter, fa (CLA level) and its common value is 0 (value level). Finally, the
common case is represented as < 0,—, — > by mapping the common value to the
corresponding parameter position (case level). For the sake of simplicity, I ignore the
parameter £k which is the fourth parameter of procedure foo. I assume that variable
b (the first parameter of the third call) has two common values - 2 and 3.

In Figure 5.6, the call-site level has two-level sub-hierarchies to represent the CLAs
and their common values. CLA level represents the mapping relation between CLA
parameter and its corresponding formal parameter and value level is used for common
values of CLAs. In case level, common values are related to each formal parameter
by positional mapping and “-” represents don’t care - the parameter value in that
position is not considered in this case. There are seven possible cases, even though
the number of call sites are only three. There is nothing to be examined for procedure
main because it does not have any CLA.

I introduce some notation for convenience to indicate each level and object in a



CHAPTER 5. LOW ENERGY SOFTWARE OPTIMIZATION 94

[ main | }
\
foo | ‘ 1stcallinmain — a=>fa — 0 ‘ 4‘* <0, -, —>
\
| |
\
‘ ‘ 2nd callinmain — 100 =>fb — 100‘ J‘ﬁ <-, 100, ->
| |
\
| 3rd call in main b=>fa —[ 2 <2,-, >
\ <3,-, >
} —[ 8 | IL < 200>
‘ e=>fb — 200| | <2, 200,->
| T ———————_ I - <3, 200, ->
Procedure Call site — -l cLa—— Vvalue | ‘
‘ | Case Level
Level | Level @ '——————— ‘
|

Figure 5.6: Hierarchical tree representation of common cases

level set element
procedure | P Di
call site C; Cij
CLA Aij Qijk
value V;jk Vijkl
case Bij | bijm =< cvp, CU1, -+, CUR, -+, CU A1 >

Table 5.1: Notations for a hierarchical tree

hierarchical tree as shown in Table 5.1.
As shown in Table 5.1, procedure level is denoted as P which is a set of proce-

dures denoted as p;. Each procedure p; has a set of procedure calls, C; = {¢;;,i =

0,1,---,|P|—=1,7 =0,1,--- ,|C;| — 1}. And the same rule is applied to CLA level
and value level. Each common case of ¢;; is denoted as b;;,, and each dimension of
bijm (cvg) corresponds to a;jk, k = {0,1,---,|A;;| — 1}, where the bound of m (|B;|)

will be shown in Equation 5.5. Also, cvy, of ¢;; is one of the common values of a;;;, or
don’t care, namely cvp = {vijp, —}, k € {0,1,---,|4;;| —1},0€{0,1,- -, |Viju| — 1}.

The overall size of the search space to find common cases is calculated by summing
the size of search space for each call site. At each call site, we need to examine all
possible cases with the consideration of the coherence of the common values (the
common value of each CLA may occur at the same time or separately). For example

as shown in Figure 5.1, there are four possible cases - i) only a = 0 (b can have any
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Di Cij QAijk

i| proc | NCE | j | site | freq. | NCE | k | var | value | freq.

0| main| 5% |0]| - 1 5% | - | - - -
0| Ist | 100 8% | 0] a 0 100
1| 2nd | 10000 | 29% | 1| 100 | 100 | 10000
1] foo | 95% 54% | 0| b 2 1000
2 | 3rd | 10000 3 8000
1] e 200 | 10000

Table 5.2: Profiling information for the hierarchical tree shown in Figure 5.6
value), i7) only b = 0 (a can have any value), iii) both a and b are 0, 7v) neither a
nor b is 0 (both a and b can have any value). Among these four cases, the last case
(case 7v) is ignored due to the lack of useful information for the specialization and

total cases to be examined is three. More generally, the search space of each call site,
|BZJ| is:

(A =1
Bijl = J[ Vil +1) —1 (5.4)
k=0
where, |V;;x| + 1 represents the number of possible values of each CLA (41 corresp-
sonds to any other value except common values) and the last term (-1) represents the
case 7 (none of CLAs has a common value).

The overall size of the search space, S is:

|P|-1]Ci|-1

S=>" > IByl (5.5)

i=0 =0
5.3.2 Pruning Trivial Cases

Due to the large size of the common case set, it is necessary to reduce the search space
without missing promising candidates. I define common cases those cases to be in-
cluded in the search space after search space reduction. The search space reduction is
performed based on normalized computational effort (NCE). The computational effort
of each procedure is obtained from execution frequency profiling and computational-

effort estimation technique described in Section 5.2. Based on this, NCE of each
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common case can be estimated in a hierarchical order. In other words, NCE of each
procedure is estimated first and then NCE of each call site is calculated and so forth.

NCE in a hierarchical tree represents the maximum degree of improvement to be
obtained by specializing all cases belonging to the given node. For pruning purpose,
a user constraint called computational threshold (CT) is defined in terms of NCE. I
will assume CT' = 0.1 for all examples illustrated in this section.

Usually, maximizing the usage of common values is considered to be better because
more information is provided to the optimizer. But in our case, maximizing the usage
of common values is not always advantageous (e.g. the third call in Figure 5.1).

Example: Consider two common cases < 2,200,— > and < —,200,— > for
the third call of procedure foo. The profiling information is shown in Table 5.2
which is a sample profiling information used for all examples in this section. From
Table 5.2, b = 2 with the probability of 0.1 and e = 200 with the probability of
1.0. Then, the probability that case < 2,200, — > will happen is 0.1, while that of
case < —, 200, — > is 1.0. Thus, the specialized code for case < 2,200, — > is useful
only when it reduces the computational effort 10 times more than the specialized
code for case < —,200, — >. The cases like case < 2,200, — > is pruned out before
progressing to the next step, i.e. common-case specialization, for the sake of the
computation efficiency.

Pruning is not limited only to case level, but also performed at any other level
based on NCE. I will describe NCE computation and pruning at each level in the

next subsections.

Procedure Level Pruning

Normalized computational effort (NCE) of each procedure is obtained by normalizing
its computational effort to the total computational effort. Because NCE of procedure
main is lower than CT, it is eliminated from the hierarchical tree. Also, the procedure
which doesn’t have any descendant is eliminated. The pruning at this level has the

largest impact on reducing the search space.
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Call Site Level Pruning

Call-site level pruning, similar to procedure level pruning, is performed next. The pro-
filer described in Section 5.2 can estimate the computational effort of each procedure
as well as each procedure call. Thus, NCE of each procedure call can be computed
in the same way as NCE of each procedure is computed. In Table 5.2, the first call
of procedure foo will be pruned out because its NCE is less than the threshold CT.

I also consider NCE for two sub-hierarchies in call-site level. NCE of each CLA
is calculated by weighting the NCE of the corresponding procedure call (¢;;) by its
observed ratio (OR;) and can be represented as Equation 5.6. Also, NCE of each

common value (vjjz) also can be computed similarly.

[Aij—1]

NCE(ayx) = NCE(cy) + Y ORy (5.6)
k=0

Example: Let us consider the third call of procedure foo, where a4 is variable b
as shown in Table 5.2. ajg9 has two common values - 2 (v1900) and 3(v1201). Also, from
Equation 5.2, OR(v1200) = 1000/10000 = 0.1 and OR(v1201) = 8000/10000 = 0.8.
Thus, NCE(a12) = 0.54 x (0.1 4+ 0.8) = 0.486 which is larger than CT, thus,
a1a is not pruned at CLA level. At wvalue level, NCE(v1200) = NCE(a12) X
OR(v1200) = 0.486 x 0.1 = 0.0486 which is smaller than CT and vy39is pruned

out, whereas v199; is not eliminated because its NCE is larger CT. B

Case Level Pruning

Normalized computational effort (NCE) of each case can be calculated using NCE of

common values. But NCE at this level cannot be obtained in the same way used in

other levels because each case may depend on multiple common values such as case

< 2,200, — >. Thus, NCE of each case is obtained by multiplying NCE of common

values which are involved in forming the case and represented as Equation 5.7.
|Bij|=1

NCE(bijm) = |[ NCE(cuz) (5.7)

k=0
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Remember that cvy is v, 0 € {0,1,---,|Vije| — 1} or ”-” and NCE(-) is defined as
1.

Example: Let us consider case bjyy =< 2,200, — > which is a child of ¢;5 (third
call in main) and ¢ is also a child of p; (procedure foo). From the example in
Section 5.3.2, NC'E(v1200) = 0.0486. Similarly, NC'E(v1219) = 0.54 x 10000/10000 =
0.54. From Equation 5.7, NC'E(bjy) = 0.0486 x 0.54 = 0.027, thus b9 is dropped
from the search space. But this pruning does not happen in practice because v
is already pruned out at value level. Also, notice that case < —, 200, — > which has
less information than case < 2,200, — > (from the viewpoint of a specializer in the
next step) is still in the tree due to its high NCE (0.54). B

To reduce the search space further, I define dominated cases those that can be
eliminated from the search space. I say that b;;, is dominated by b;; if all common

values of b;j, appear in b;;; and NCE(b;;;) is greater than or equal to NCE(b;jn,)-

NCE(bijjm) < NCE(bij)

V ocog in bijm € cug in by (5.8)

where, a € b is defined as true when a = b or a = —. For example, b5 is dominated
by b124. A dominated case needs not to be specialized because it has less information
and is less important in terms of NCE than dominant case.

To summarize, pruning is performed at each level, but higher level pruning is more
effective because its all descendants are removed. Also, notice that pruning sacrifices
the amount of the information useful in the specialization step by increasing the
possibility that the common situation occurs more frequently (e.g. case < 2,200, — >
is pruned, but case < —, 200, — > is not). This trade-off is controlled by pruning based
on the metric - NCE.
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5.4 Common-Case Specialization

5.4.1 Overview

After having pruned out trivial common cases (which show marginal improvement,
even when they are specialized), we have only common cases (expected to show non-
marginal improvement by specialization) left in the hierarchical tree. For each re-
maining case in the hierarchical tree, we perform the specialization using partial
evaluation. The common values of each case are used by partial evaluator for - (i)
simplifying control flow (pre-computing if test or unrolling loops), (i) constant folding
and propagation, (i) pre-computing well-known functions calls such as trigonometric
functions and so on. These optimizations are not performed independently. Indeed,
applying one optimization technique can provide a better chance to other techniques
to succeed. For example, loop unrolling can provide better chance to constant prop-
agation/folding by simplifying control dependency and enlarging basic blocks.

Due to such combined effects, it is not easy to estimate the quality of the special-
ized code analytically. For this reason, this step uses instruction-set level simulator
for the purpose of code quality assessment with the consideration of the underlying
hardware architecture. It differs from the common-case selection step which performs
architecture-independent analysis. Thus, this step takes much longer time than ef-
fective case selection step due to specialization and instruction-set level simulation.

Among the techniques mentioned above, loop unrolling should be used most care-
fully because its side effect (code size increase) can severely degrade both performance
and energy consumption. But in traditional applications of partial evaluation, this
fact is not deeply studied, based on the assumption that taking more space will re-
duce computational effort [27]. This assumption may be true for general systems
such as workstations, but may not be true for the resource limited systems such as
embedded systems. Therefore, we need to address our second search problem by ex-
ploring various loop combinations for unrolling. The size of search space for each case
specialization is simply 2", where n is the number of loops inside procedure p;.

In case of exhaustive search, the specialization of each case is iteratively per-

formed for the overall search space and each iteration requires instruction-set level
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simulation to assess the specialized code quality. In our framework, loop unrolling
can be suppressed by declaring the corresponding loop index variable as a residual
variable. It means that the residual variable will not be specialized, henceforth the
corresponding loop construct will not be affected by specialization either. Because
the search space is exponential with respect to the number of loops, two heuristic
approaches are proposed in this section. These two approaches may provide lower
quality of specialization over the exponential approach, but reduce the search space

(both specializations and instruction-set level simulations) drastically.

5.4.2 Semi-exhaustive approach

The first heuristic search algorithm is called semi-exhaustive search. Unlike pure
exhaustive search, semi-exhaustive approach performs a complete search for each loop
nest rather than for the entire set of loops. Thus, pure exhaustive search guarantees a
globally optimal solution, while semi-exhaustive approach can provide a sub-optimal
solution. This is the trade-off between the searching time and the code quality. The
trade-off will be explained in the experimental part (Section 5.6).

For this purpose, I represent the entire loop structure inside a procedure as a loop
tree and an example of loop tree is shown in Figure 5.7. To construct such loop tree,
I first levelize the loop structure. The outermost loop is assigned to level 0 and the
next outermost loop is assigned to level I and so on. Next I represent each loop as a
node and place each node to its assigned level. Finally, I represent the nested relation
between two nodes as an edge connecting these two nodes. Notice that if a loop has
multiple loop nests, the connecting edges are identified as a branch and I call each
branch path subtree. For example, the edge between L0 and L4 and the edge between
L0 and L1 forms a branch. Also, there are two subtrees connected to the branch: a
subtree formed by L4 and L5 and a subtree formed by L1, L2, and L3. Each node
is represented as v;(k), where i is the level to which the node belongs and k is the
index of the nodes that have the same parent. Thus, if a node is not connected to a
branch, £ is always 0.

After constructing a loop tree, the best loop combination for unrolling is searched
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LO: for (i =0; i< 100; i++) {

L1:  for (j=0;j<50;j++) {

L2: for (k = 0; k < 50; k++) {
L3: for (1= 0; 1 < 50; I++) {
}

} }
L4:  for (m=0; m < 100; m++) {
L5: for (n = 0; n < 100; n++) {

}
}
}

Figure 5.7: An example of loop tree

for each subtree in a bottom up fashion (i.e. the branch in the lower level is visited
first). For a given branch, we visit the subtrees in the order of their computational
efforts.

While searching the best solution of each subtree, 1 exclude the loop combina-
tions which are expected to increase the code size drastically, because such loop
combinations increase specialization, compilation, and simulation time drastically.
Furthermore, such combinations provide very low quality of specialized code due to
the high instruction cache misses. To identify such undesirable cases, I use a code size
constraint and a code size estimation technique. The code size constraint is set to the
cache size of the target architecture because the code size larger than the cache size
will increase the instruction cache miss drastically. Also, the code size is estimated

as shown in Equation 5.9.

|Kit1]-1

csz-(k):< > csi+1(j)+NIi(k)> « I(k)/Ui(k) (5.9)

J=0

where, c¢s;(k) the cumulated code size of the descendent nodes of node v;(k) in
addition to the code size of v;(k) itself. Also, NI;(k) represents the number of in-

structions of node v;(k), I;(k) represents the average number of iterations per each
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visiting of node v;(k). Finally, U;(k) returns 1 when node v;(k) is unrolled, and I;(k)
when v;(k) is not unrolled. In other words, I estimate the code size to be linearly
increased by a factor of I;(k) when v;(k) is unrolled. Notice that I;(k) and NI;(k)
are available from the profiler in Section 5.2.

Example: Consider the loop tree shown in Figure 5.7. Suppose that the sub-
tree on the right branch (formed by L1, L2, and L3) has higher computational effort
than the subtree on the left branch (formed by L4 and L5). In case of pure exhaus-
tive approach, there are 64 (2°) combinations of loop unrolling, thus the given case
should be specialized and simulated 64 times to find the best combination. In case of
semi-exhaustive approach, we first visit the right subtree (L1) because it has higher
computational effort. Because the right subtree is a three-level loop nest(L1, L2, and
L3), there are eight combinations of loop unrolling and all combinations are exam-
ined to find the best loop combination for the subtree. While examining these eight
combinations, the code size of each combination is estimated using Equation 5.9. If
the estimated code size is larger than the code size constraint, the combination is
excluded from the specialization. After finding the best combination for the right
subtree (L1), we visit the left subtree (L4) which has four possible loop combinations
and find the best solution in the same way. After loop unrolling for both subtrees
is decided, we move to the top node (L0). There are only two combinations for this
node because loop unrolling for all its descendent nodes is already decided. Thus, we

need to examine total 14 loop combinations using the semi-exhaustive approach. ll

5.4.3 One-shot approach

The second heuristic approach to solve the common case specialization problem is
called one-shot approach. 1t is close to semi-exhaustive approach, but differs because
the choice of the best combination for each subtree depends on just code size esti-
mation instead of exhaustive search within the subtree. The code size estimation is
performed in depth first search fashion for each subtree. I will illustrate this approach

using the following example.
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Example: Let us consider the loop tree shown in Figure 5.7. The subtree (L1) is
visited first due to the same reason in semi-exhaustive approach (higher computational
effort). Initially, all nodes are assumed not to be unrolled. However, at this time, all
8 possible combinations are not examined. Instead, unrolled code size is estimated
in depth first order (from the lowest level (L3) to the highest level (L1)). First, L3
is visited and the unrolled code size is estimated. If the unrolled code size is larger
than the code size constraint, the code estimation procedure is terminated and the
node is decided not to be unrolled. Also, all nodes in the higher level of this subtree
are decided not to be unrolled. Otherwise (estimated code size is smaller than code
size constraint), we decide to unroll this node and move up to node L2. The same
procedure is repeated until it reaches to the top of the subtree. After all nodes in the
right graph are traversed, we move to the left graph and the same decision procedure
is applied. Finally, we move up to the top node and the same procedure is repeated.
[ |

To summarize, this approach requires only single specialization and simulation,

but it is more limited in improving the quality of partial evaluation.

5.5 Global Effective-Case Selection

The last search problem is to analyze the interplay among the specialized calls to
maximize the specialization effect in a global perspective. I already described this
problem in Section 5.1 using a simple example in Figure 5.1. T consider now a more
complex example.

Example: Consider the situation in Figure 5.8. Suppose that the call of proce-
dure foo and both calls of procedure bar2 inside procedure bar are computationally
expensive and have common cases. Then, all three call sites are specialized indepen-
dently in the common-case specialization step. If we analyze their interplay in a local
scope (intra-procedural analysis), two calls inside procedure bar will interfere with
each other marginally. Furthermore, the interplay between procedure call bar2 and
procedure foo is not detected because their interplay occurs in inter-procedure level,

even though they may affect to each other severely. Thus, the interplay among the
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main() {
int *a, b, *c;

foo(a, b);

bar(int *fa, int *fc) {
bar2(fa, fal[0]);
bar2(fc, fc[0]);

}

Figure 5.8: A more compex example for global effective-case selection

Figure 5.9: An example of binary tree for M
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specialized calls should be analyzed in a global scope (inter-procedural analysis). B
The inter-procedural analysis may reveal that the combination of multiple specialized
calls may yield a gain inferior to the sum of the gains of the individual specialized
calls, because of mutual interference such as I-cache conflict. Also, it is not obvious
to estimate their interference analytically. For this reason, each combination should
be assessed by instruction-set level simulation and the best combination is chosen for
the final solution.

[ represent each specialized call as my € M, k = {0,1,---,|M|—1}. Each my has
an attribute called gain, g, which is the amount of improvement in terms of the given
cost metric (either energy consumption or performance) and obtained when each call
is specialized at the common-case specialization step. I always sort my;’s in descending
order for g, i.e. gr > gr+1. And I denote a combination of the specialized calls as
ci€ C,i=1{0,1,---,|C| -1} and |C] = 2M! thus the search space is exponentially
large. Each ¢; is a binary vector to represent which specialized calls are included in
this combination. For example, ¢p =< 1,1,1 > means mg, m, and msy are included
in the combination ¢y. Also, ¢; =< 1,1,0 > means only mg and m; are included in
the combination ¢;. Each ¢; has two gain attributes ideal_g; and actual_g; which are

tdeal gain and actual gain, respectively.

e ideal gain (ideal_g;) is the sum of gains of the individual specialized calls
in each combination by assuming that there is no interference with each other.

Thus, this is the maximum gain that can be achieved for the given combination.

e actual gain (actual_g;) is the sum of gains of specialized calls in each combi-
nation with the consideration of their interference. Thus, it is always less than
or equal to (when there is no interference) the ideal gain and can be obtained

by instruction-set level simulation.

I represent each combination ¢; as a path in a binary tree as shown in Figure 5.9.
The rightmost path represents co =< 1,1,1 > and the second rightmost path repre-
sents ¢; =< 1,1,0 > and so on. Each level of the tree corresponds to each element
of the vector ¢; and the right edge and the left edge correspond to “1” and “07”, re-
spectively. Thus, the number of levels in the binary tree is always |M|. Each edge
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search_solution (binary_tree) {
initialze_gain;
solution = traverse_tree(root_node_of_binary_tree);
return solution;

traverse_tree(binary_tree_node) {
if (binary_tree_node == NULL) {
simulate the selected case;
return sim. result;

if (right_node_visited == FALSE) {
select right_edge;
gain_right_edge = traverse_tree(right_node);

if (gain.right_edge >= gain_left_edge) {
delete left descendent; /* pruning */
if (solution == NULL)
save current case to solution;
return gain right_edge;

if(left_node_visited)
return gain_left_edge;
else {
select left_edge;
gain_left_edge = traverse_tree(left_node);
if (gain_right_edge >= gain_left_edge) {
select right_edge;
save this case to solution
delete left descendent;
return gain_right_edge;

else {
delete right descendent;
save current case to solution;
return gain_left_edge;

Figure 5.10: Search procedure for the given binary tree
ei(l),i={0,1,---,20+Y — 1} and [ = {0,1,---,|M| — 1}, also has a gain attribute,
g:(1). Where, [ is the level to which the edge belongs and i is the index of an edge in
level [ (from left to right).

Initially, ¢;(]M| — 1) (the gain of each edge connected to the leaf nodes) is set to
ideal_g;. At the same time, g;(1) is set to max{ge;(l + 1), g2i+1(l + 1)}, namely the
edges above than leaf-level inherit the maximum gain of their children. After the gain
initialization as shown in Figure 5.9, I perform the search procedure based on branch
and bound algorithm in Figure 5.10. I will illustrate the how the procedure works
using the following example.

Example: The gain for the right edge of ng called g;(2), is initially set to 45
(ideal_go) because this path corresponds to ¢g =< 1,1,1 > which means mg, m;, and
my are included in the combination ¢y. Similarly, gs(2) (the gain for the left edge of

ng) is set to 35 (corresponds to ¢; =< 1,1,0 >). Also, g3(1) = maz{gs(2), g-(2)} = 45
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and the gains of other edges are also decided in the same way. Next, we apply the
procedure in Figure 5.10. First, we visit the rightmost path (¢). For ¢q, we perform
instruction-set level simulation to get actaul_gy and g¢7(2) is updated to actual_go.
We compare g;(2) to gs(2) which is the maximum gain that can be achieved by
combination ¢;. If g7(2) > g¢6(2), it is obvious that ¢y is better than ¢;, thus we
eliminate the left edge of ng (identical to eliminate ¢;). On the other hand, if ¢7(2) <
96(2), ¢1 can be better than ¢y. Thus, we perform instruction-set level simulation for
¢ and update gg(2) with actual_g;. Then, we can decide which combination is better
and prune out the worse combination. Next, we move to node n, in the next level by
updating g3(1) to max{gs(2), g7(2)} without simulation because we already selected
either ¢y or ¢; in level 2. If g3(1) > go(1), we can prune out the left descendent of ny
(c2 and ¢3) due to the same reason. But, if g3(1) < go(1), we visit node nj to choose
the better combination from ¢y and c3 by performing the same procedure as we did
for ¢y and ¢;. After choosing either ¢y or ¢3, we compare two edges of node ny, and
select better one. We repeat the same procedure until there remains only one path
in the binary tree. B

To summarize, the algorithm first builds a binary tree to enumerate all possible
selections of specialized calls. Second, the expected gain of each path is computed as
a cost function for pruning purpose by ignoring the interplay effect. Third, the actual
cost of each path is defined as an actual gain considering the interplay effect: this is
available from instruction-set level simulation. The purpose of this search problem is
to find the path which shows the maximum actual gain among all paths. The pruning
occurs when the expected gain of current path is less than the maximum actual gain
obtained up to this point which is the bounding function of this search problem. As
a final remark, this step can be extended to consider the code size increase constraint

by the use of the code size increase estimation mentioned in Section 5.4.
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5.6 Experimental Results

5.6.1 Experimental Setting

Even though source code transformations are applicable to a wide set of architectures,
I consider now two specific hardware platforms to be able to quantify the results. The
Smart Badge, an ARM processor based portable device [89] and ST200 processor
developed by STMicroelectronics and Hewlett-Packard [95, 34] were selected as the
target architectures. For these target architectures, I applied the proposed technique
to seven DSP application C programs - Compress, Expand, Edetect, and Convolve
from [97], g721 encode from [67], and FFT from [31], FIR [34], and turbo code [41],
and SW radio.

Compress compresses a pixel image by a factor of 4:1 while preserving its infor-
mation content using DCT and Expand performs the reverse process using IDCT.
Edetect detects the edges in a 256 gray-level pixel image using Sobel operators and
Convolve convolves an image relying on 2D-convolution routine. g721 encoder is
CCITT ADPCM encoder. FFT performs FFT using Duhamel-Hollman method for
floating-point type complex numbers (16-point). turbo code is iterative (de)coding
algorithm of two-dimensional systematic convolutional codes using log-likelihood al-
gebra. Finally, SW radio performs a series of operations (CIC lowpass filter, FM
demodulation, ITR/FIR deemphasis) for the input in ADC format.

The experiment was conducted for two aspects - search space reduction and qual-
ity of the transformed code. The quality of transformed code was analyzed in terms
of energy saving, performance improvement, and code size increase. Each application
program was profiled to collect computational effort and CLAs with their common
values. There exist two important parameters in value profiling as described in Sec-
tion 5.2.3. First, Observed Ratio (OR) is the ratio of the observation frequency of a
specific parameter value over the total call site visiting frequency. Second, Observed
Threshold (OT) is a threshold value to select common values among observed param-
eter values - only the observed parameter values which shows OR higher than OT is
selected as common values. In this experiment, OT was set to 0.5, thus only observed

parameter values which have OR higher than 0.5 were selected as common values.
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Figure 5.11: Search space reduction using common-case selection
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Figure 5.12: Search space reduction ratio in common case and global effective-case
selection step
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C programs Code Quality
exhaustive semi-exhaustive one-shot
energy performance code size energy performance code size energy performance code size
Compress 0.91 0.91 1.01 0.91 0.91 1.01 0.93 0.93 1.15
Expand 0.84 0.83 1.15 0.84 0.83 1.15 0.90 0.90 1.12
Edetect 0.44 0.37 1.20 0.44 0.37 1.20 0.44 0.37 1.20
FFT 0.86 0.86 1.16 0.86 0.86 1.16 0.86 0.86 1.16
g721 encode 0.88 0.88 1.04 0.88 0.88 1.04 0.88 0.88 1.04
Convolve 0.54 0.48 1.18 0.54 0.48 1.18 0.54 0.48 1.18
FIR 0.53 0.53 1.12 0.53 0.53 1.12 0.53 0.53 1.12
turbo code - - - 0.89 0.90 1.22 0.89 0.90 1.22
SW radio 0.67 0.65 1.09 0.67 0.65 1.09 0.67 0.65 1.09
[ Average [ 0.71 ] 0.69 [ .12 ][ 073 ] 0.71 [ 1.13 ][ 074 ] 0.72 [ 1.14 ]
(a) Specialized code quality in SmartBadge environment
C programs Code Quality
exhaustive semi-exhaustive one-shot
energy performance code size energy performance code size energy performance code size
Compress 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Expand 0.94 0.95 1.08 0.94 0.95 1.08 1.00 1.00 1.00
Edetect 0.27 0.26 1.04 0.27 0.26 1.04 0.27 0.26 1.04
FFT 0.18 0.19 1.14 0.18 0.19 1.14 0.18 0.19 1.14
g721 encode 0.91 0.95 1.01 0.91 0.95 1.01 0.91 0.95 1.01
Convolve 0.65 0.68 1.04 0.65 0.68 1.04 0.65 0.68 1.04
FIR 0.38 0.35 1.06 0.38 0.35 1.06 0.38 0.35 1.06
turbo code - - - 0.82 0.82 1.23 0.82 0.82 1.23
SW radio 0.81 0.79 1.10 0.81 0.79 1.10 0.81 0.79 1.10
[ Average ][ 0.64 | 0.64 [ 106 [ 067 ] 0.67 [ 1.09 [ 068 ] 0.67 [ to8 |

(b) Specialized code quality in ST200 processor environment

Table 5.3: Quality of the code transformed with different approaches (normalized to
original code)

5.6.2 Search space reduction

I first analyzed the effectiveness of the proposed search space reduction techniques.
Figure 5.11 shows the pruning ratio achieved by each step with computation threshold,
CT = 0.1. Notice that this step is architecture-independent as shown in Figure 5.3,
thus Figure 5.11 is common to both SmartBadge and ST200 processor.

The procedure pruning step always plays an important role to reduce the search
space, but call-site pruning step shows large variation depending on the property of
the application programs. This is because the computational kernels of some programs
such as compress and FFT were called only once while the kernel of g721 encode was
called several times in different sites with different calling frequencies. Thus, this step
is useful for the kernels called frequently in different sites with different frequencies.

The ineffectiveness of the case pruning step was due to high OT which was set
to 0.5 for value profiling. Under this OT, the OR of each common value was usually
large enough to yield NCE larger than CT used in this experiment (0.1). Dominated
case pruning was effective for most of application programs because many of common
values were constant (OR = 1.0).

Next, the pruning methods used in common-case specialization and global

effective-case selection were evaluated. Figure 5.12 shows the pruning ratios of these



CHAPTER 5. LOW ENERGY SOFTWARE OPTIMIZATION 111

two steps for SmartBadge environment. Our technique in ST200 processor environ-
ment also showed similar results. As shown in Figure 5.12, both semi-exhaustive and
one-shot approach drastically reduced the search space by 64% and 88%, respectively.
Also, pruning technique in global effective-case selection step showed 46% of search
space reduction and large variation of pruning ratio depending on the property of
application programs. There was nothing to be pruned for Compress, FFT and g721
encode programs because only one case was passed from common case specialization

step.

5.6.3 Code quality improvement

Both one-shot and semi-exhaustive approaches were compared to exhaustive approach
in terms of code quality and specialization time. Common-case selection step was
commonly used for each approach to avoid large search space. Also, global effective-
case selection step was used in all three specializations because it always guaranteed
the optimal solution and its worst case run time was same to exhaustive approach.
As expected, the one-shot approach showed the smallest running time and semi-
exhaustive approach was ranked at second. In average, both one-shot approach and
semi-exhaustive approach are about 8.3 (8.0) times and 2.7 (2.5) times faster than
exhaustive approach in SmartBadge (ST200 processor) environment, respectively.
Notice that Figure 5.12 only shows the reduction ratio of the search space, which
is different from the specialization time in the sense that search space reduction
ratio only implies the reduction ratio of the number of specializations, while the
specialization time includes partial evaluation, compilation, and instruction-set level
simulation.

In SmartBadge environemnt, our tool was executed on SUN UltraSPARC running
at 200MHz with 512MB memory. The overall procedure of our tool takes less than
20 minitues with one-shot approach, while it takes from 10 minitues (FIR) to 7 hours
(turbo code) depending on the complexity of the loop structure in addition to the
overall program complexity and program input data size.

In ST200 environment, our tool was executed on Sony VAIO R538DS equipped
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with Pentium III running at 500MHz with 128 MB memory. The difference of execu-
tion time between one-shot approach and semi-exhaustive approach is still large, but
the semi-exhaustive approach benefits from the faster machine (also faster simula-
tor) because it requires much more iterations including simulation, compilation, and
specialization. turbo code with semi-exhaustive approach still showed the longest
executio n time (2 hours and 20 minitues).

It is interesting that exhaustive approach often generated a huge size of code which
is one of the main problems in partial evaluation. For the code, compilation or simu-
lation was not terminated within a few hours, which is a bottleneck for automation.
For this reason, I adopted time-out approach especially for the exhaustive approach
by assuming that the code requiring long simulation time would be very huge and
require large energy consumption.

Table 5.3 shows the quality of transformed code in terms of energy, performance,
and code size for the three approaches. Notice that the energy consumption was
measured with the consideration of shutdown technique. As shown in Table 5.3, semi-
exhaustive approach is comparable to exhaustive approach in terms of transformed
code quality with much less computation time(63% for SmartBadge and 60% for
ST200 processor). One-shot solution is also useful by trading off its code quality and
computation time. (About 8.0 times faster and 2% consumes more energy compared
to exhaustive approach). I could not perform exhaustive approach for turbo code
because its computational kernel had too many loops (18) which yielded a huge
number of loop combinations (2'® = 261844). Tt is also worthwhile to mention that
the deviation of improvement is largely depending on the nature of the programs.
For the best case, the improvement is more than twice(Edetect), but for the worst
case, about 10% (0%) is improved (Compress) in SmartBadge (ST200 processor)
environment.

It is interesting that our tool specialized Compress and Expand in different ways
depending on the target architecture. Compress and Expand show non-marginal im-
provement in SmartBadge environment, whereas their improvement ratio in ST200
processor is marginal. Also, the improvement ratio of FFT is much larger in ST200

processor environment than in SmartBadge environment, even though the specialized
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programs SmartBadge | ST200 processor
energy | perf. | energy | perf.
Compress_float | 0.91 | 0.91 1.0 1.0

Compress_fixed | 0.80 | 0.79 | 0.91 0.91
Expand_float 0.84 | 0.83 | 0.94 0.95
Expand._fixed 0.55 | 0.53 | 0.73 0.76

Table 5.4: Improvement ratio of floating-point and fixed-point versions (semi-
exhaustive)

programs for both architectures are identical. The common feature of these programs
is that the computational kernels of all three programs have floating-point operations
which are not directly supported by the hardware in both architectures, but they are
handled by floating-point emulation. From the careful analysis of these programs, I
found two reasons for this fact. First, the computation cost of floating-point emu-
lation in ST200 processor is much more expensive than in SmartBadge environment
(relative to their integer operations). Notice that floating-point emulation is per-
formed by the built-in library functions which is out of the scope in our technique.
Second, the loop overhead in SmartBadge is larger than in ST200 processor.

The results in Table 5.4 support this claim. Compress_float and Expand float
are the floating-point versions used in Table 5.3 and Compress_fixed and
Expand _fixed are their fixed-point versions, respectively. Notice that the improve-
ment by the specialization is mainly due to loop unrolling for both versions of two
programs. As shown in Table 5.4, the improvement ratio using our technique is about
2.5 times larger for the fixed-point version compared to the floating-point version in
SmartBadge environment. On the other hand, it is about 5 times larger in ST200
processor environment. It means that the relative cost of floating-point emulation in
ST200 processor environment is twice larger than that in SmartBadge environment.
But, the improvement ratio using our technique in SmartBadge environment is still
larger than in ST200 processor environment. It implies that the loop overhead elim-
ination by our technique is more effective (about twice) in SmartBadge environment
rather than in ST200 processor environment.

In case of FFT, the specialization step eliminates trigonometric functions such as

cos. The computation cost of cos function is four times more expensive in ST200
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processor environment than in SmartBadge environment in terms of number of clock
cycles (measured by simulators). Thus, the elimination of such functions is more
advantageous in ST200 processor than in SmartBadge environment.

In summary, our technique is more effective in fixed-point arithmetic programs,
therefore it is desirable to apply our technique after transforming the floating-point
arithmetic programs into the fixed-point arithmetic programs as proposed in [91].
Also, the computation cost of the built-in functions such as trigonometric functions is
architecture dependent, thus the impact of the specialization varies largely depending
on the underlying hardware architecture.

As a final remark, the run time of the optimization flow depends on the two user-
defined constraints C'T" and OT that drive the pruning. Also, program size and loop
depth are critical factors in specialization step, because our approach uses instruction
set-level simulation. Nevertheless, it is important to remember that low energy and
fast execution of the target code is the overall objective, which can be achieved at

the expense of longer optimization time for large programs.

5.6.4 Input data sensitivity analysis

The variation of improvement (whatever the metric is) is a common problem of
profiling-based techniques because profiling information can be largely varied depend-
ing on the trained input data set. Our technique is also affected by input data set
and the improvement ratio shown in Section 5.6.3 may be largely varied if common
values used for transformation heavily depend on input data set.

I analyzed the common values identified by our framework and they can be clas-
sified into two categories. The common values in the first category are sensitive to
input data set, while those in the second category are independent to input data set,
i.e. they are statically declared (or computed) values in somewhere of the program. I
call the common values in the first category dynamic common values and those in the
second category static common values. Notice that static common values are rarely
(or never) changed input data identified by a programmer, but this information is

not used for optimization due to the complexity and/or future modification.
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A program transformed using static common values shows constant improvement
ratio because the transformation is independent to input data set. In our experi-
ment, many of benchmark programs were transformed using static common values.
Compress and Expand programs initially computes cos table with fixed number of
sampling points and these results are identified as common values. In g721 encode
program, the static common values are a quantization table and its size defined in a
program. It is interesting that two quantization tables with different size are defined
in this program, but only one quantization table was consistently used in each call
site. Thus, even though many static common values were observed in procedure point
of view, each call site was related to a single static common value. Programs Edetect,
Convolve, and FIR identified filter coefficient tables as static common values (with
their size) and these coefficient values and size were efficiently used for the transfor-
mation. In program turbo code, the number of delay elements was identified as a
static common value.

In case of FFT, the number of sampling points was identified as a dynamic common
value, thus the improvement ratio was largely varied. In the worst case, the trans-
formed program does not show any improvement if the identified common value is
not observed during the program execution. However, the variation of dynamic com-
mon value was limited to several numbers such as 4, 8, 16, and so on. Such limited
divergence can be handled in our framework because our framework can manipulate
multiple common cases for single call site using multi-way branch statement with
multiple common value detection procedures at the expense of code size increase.

To summarize, our technique shows constant improvement ratio when it trans-
forms programs with static common values, but transformation with dynamic com-
mon value can largely change the improvement ratio depending on the input data like
other profiling-based techniques. Also, restricted variation of dynamic common value

can be treated by our framework at the expense of code size increase.
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5.7 Chapter Summary

I presented algorithms and a tool flow to reduce the computational effort of software
programs, by using value profiling and partial evaluation. I showed that the average
energy and run time of the optimized programs is drastically reduced. The main
contribution of this work is the automation of an optimization flow for software pro-
grams. Such a flow operates at the source level, and is compatible with other software
optimization techniques, e.g., loop optimizations and procedure in-lining.

Within our approach, a first tool performs program instrumentation and profiling
to collect useful information for transformations, such as execution frequency and
commonly-observed values at each call site. Using the profiling information, another
tool selects common cases based on the estimated computational effort. Each selected
case is specialized independently using a partial evaluator. In the selection step,
code explosion due to loop unrolling - which may hamper partial evaluation - is
avoided by code size estimation technique and pruning. Finally, the interplay among
the multiple specialized cases is analyzed based on instruction-set level simulation.
The transformed code shows in average 35% (26%) energy saving and 38%(31%)
in average performance improvement with 7% (13%) code size increase in ST200
processor (SmartBadge) environment.

Currently, our approach is limited to the common cases at procedure level, but I
believe that our technique can be extended to lower-level common cases (e.g. loop
level) which may provide better quality of code specialization. Also, the specialization

technique will be extended to consider more architecture dependent characteristics.



Chapter 6
Conclusion

Energy efficiency has become a major design goal for all types of electronic systems.
As design complexity increases, designs are forced to adopt processor-based architec-
tures to meet the time-to-market constraint and increase design flexibility. Typically,
processor-based system can be structured as three layers. The hardware resides at
the bottom layer, the OS (Operating System) layer is on top of hardware layer, and
application program is the top layer. In these systems, hardware is the actual energy
consumer, however software running on the processor controls the behavior of hard-
ware and strongly affects on the overall system energy consumption. For this reason,
software-oriented energy reduction has become one of the major trends for energy
efficient system design.

For interactive application programs, I presented two DPM policies to reduce the
wasted energy while the system is in idle state. These two approaches especially
focus on the adaptive capability to cope with the workload variation and they are
implemented in OS-level.

For computation intensive application programs, I presented a low-energy soft-
ware optimization technique and this technique is implemented as a source to source
code transformation framework and a tool. This framework and tool specialize the
applications programs to highly expected situations and provides fully-automated

transformation environment.
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6.1 Thesis Summary

6.1.1 Dynamic Power Management

Dynamic power management policies reduce energy consumption by selectively plac-
ing the system into low power states. The quality of dynamic power management
policy strongly depends on its adaptability, 7.e. how well the policy copes with the
variation of the workloads. In this work, I present and implement two adaptive DPM
policies (i.e. sliding window and adaptive learning tree techniques) and the measure-
ment results show large energy savings. Both methods commonly address the problem
of non-stationary workloads for DPM policy, but they are different in many aspects.

The sliding window technique is based on a stationary stochastic policy which pro-
vides a theoretical optimal solution for stationary workloads. It extends the stationary
stochastic policy to handle the non-stationary workloads using sliding windows and
table look-up based interpolation technique. In detail, the adaptive policy computa-
tion of sliding window technique consists of two steps. In the first step performed at
system design time, this technique pre-computes a set of stationary optimal policies
by a linear-programming formulation. This pre-computation allows us to trade off
between power and performance precisely. In the second step performed at run time,
the workload statistics is estimated by sliding windows and the adaptive policy is com-
puted from a set of pre-computed optimal stationary policies. The sliding window
technique is developed for two-state machines ( one active state and one sleep state),
but it can be extended for multiple sleep state devices. This is the first stochastic
policy which considers non-stationary workloads with a formal model of stochastic
optimization.

On the other hand, the adaptive learning tree technique is a fully-heuristic method
and cannot trade off between power and performance unlike sliding window technique.
But, this policy does not require any pre-computation step at system design time.
This technique predicts the next idle period length using the data structure called
adaptive learning tree which is evolved as the system experiences the non-stationary
workloads. The data structure records the recent user behavior patterns with predic-

tion confidence level and the next user behavior is predicted from the user behavior
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pattern with the highest prediction confidence level. This policy supports multiple
sleep state devices which was not considered in previous methods.

Experimental results are only the way to compare these polices and their effec-
tiveness are validated by both simulation and real measurement. The simulation and
real measurements were performed for power-manageable hard disk drives installed in
both laptop and desktop computers. The sliding window technique performed well in
real measurement as well as simulation. This technique outperformed all other exist-
ing DPM policies compared and was comparable to the ideal policy called best-oracle.
The adaptive learning tree technique also performed well in simulation environment,
but its performance was not as good as sliding window technique in real measurement.
This is because the hard disk drives used in real measurement support only single
sleep state; hence, its capability cannot be fully tested.

To summarize, adaptability is the essential property of dynamic power manage-
ment policies to handle the variation of the workloads. I proposed two DPM policies
- sliding window and adaptive learning tree techniques which represent different solu-
tions with different approaches to handle the non-stationary workloads. Both methods

showed their outstanding adaptability which yields large energy reduction.

6.1.2 Low Energy Software Optimization

Low energy software optimization is one of the most promising techniques to reduce
the energy consumed by software application programs on processor-based systems.
This technique is especially effective on computation-intensive applications because
the major energy consumer for these applications is the processor on which these
application programs are executed.

I created an automatic source to source code transformation framework and a tool
which specialize the software for highly expected situations for the energy reduction of
the processors. In this framework, the highly expected situation is the commonly ob-
served values passed to the procedure calls as their parameters. In detail, I presented
algorithms and a tool flow to reduce the computational effort of software programs,

by using value profiling and partial evaluation. I showed that the average energy and
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run time of the optimized programs is drastically reduced. The main contribution of
this work is the automation of an optimization flow for software programs. Such a
flow operates at the source level, and is compatible with other software optimization
techniques, e.g., loop optimizations and procedure in-lining.

Within this framework, a first tool performs program instrumentation and profil-
ing to collect useful information for transformations, such as execution frequency and
commonly-observed values at each call site. Using the profiling information, another
tool selects common cases based on the estimated computational effort. Each selected
case is specialized independently using a partial evaluator. In the selection step, code
explosion due to loop unrolling - which may hamper partial evaluation - is avoided
by code size estimation technique and pruning. Finally, the interplay among the
multiple specialized cases is analyzed based on instruction-set level simulation. The
transformed code shows in average 35% (26%) energy saving and 38%(31%) in aver-
age performance improvement with 7% (13%) code size increase in ST200 processor

(SmartBadge) environment.

6.2 Future Work

Energy efficient system design is an evolving area and still many researchers have
devoted their efforts to this area with many different viewpoints. My work in this
thesis is an approach to energy-efficient design in software perspective and there are
still quite a few limitations to overcome.

The dynamic power management policies I presented can be extended to con-
trol multiple devices, as long as their number is small. Nevertheless, the problem of
performing concurrent power management of multiple devices, under non-stationary
workloads, remains a challenging problem for future research. Also, my DPM policies
do not distinguish among the programs or processes executed on the processor. In
other words, they solely depend on the previous request arrival ratio to identify the
characteristics of the workload currently processed. The communication between op-
erating system and application program can provide more information of the workload

characteristics, which can improve the adaptability of DPM policies.



CHAPTER 6. CONCLUSION 121

The framework for low-energy software optimization is limited to the common
cases in procedure level, but I believe that our technique can be extended to the
lower level common cases (i.e. loop level) which may provide better quality of code
specialization. Also, the specialization technique can be extended to consider more
architecture dependent characteristics such as memory hierarchy. Another promising
challenge is to integrate dynamic voltage scaling (DVS) technique with the framework
to slow down the processor when it executes the specialized code, which yields fur-
ther energy reduction with losing the performance improvement obtained from the
specialization.

Software restructuring for energy efficient system design is still an evolving area
with many unsolved problems and open issues. This research topic will continue to be
challenging in the next few years as designs with embedded processors and memory

become increasingly more pervasive.
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