
Accepted on the jury’s recommendation

for the award of the degree of Docteur ès Sciences (PhD)

by

Logic Synthesis and Optimization for CMOS and
Post-CMOS Technologies

Dewmini Sudara MARAKKALAGE

Thesis n° 10 874

2025

Presented on 7th March 2025

Prof. P. Ienne, jury president
Prof. G. De Micheli, thesis director
Dr P. Vuillod, examiner
Prof. L. Josipović, examiner
Prof. T. Bourgeat, examiner

School of Computer and Communication Sciences
Integrated Systems Laboratory (IC/STI)
Doctoral program in Computer and Communication Sciences

To all who have supported me. . .

Acknowledgements

Pursuing a Ph.D. has been a journey filled with challenges, growth, and invaluable support
from many individuals. This is a humble attempt to express my deepest gratitude to
those who have guided, supported, and inspired me throughout this endeavor.
First and foremost, I am immensely grateful to my advisor, Prof. Giovanni De Micheli, for
his guidance, encouragement, and wisdom. His unwavering support, insightful discussions,
and patience have played a pivotal role in shaping my research journey. I am incredibly
fortunate to have had his guidance throughout my academic endeavors.
I extend my sincere appreciation to my jury committee members, Prof. Paolo Ienne,
Prof. Thomas Bourgeat, Prof. Lana Josipović, and Dr. Patrick Vuillod, for their time,
thoughtful feedback, and valuable insights on my research.
I am also grateful to Chantal Demont, the administrative manager of our lab, for her
kindness and efficiency in handling countless administrative tasks, both within and
beyond EPFL, that made my academic life smoother. My thanks also go to all the other
administrative staff at EPFL for their support throughout the years.
I sincerely thank all my labmates and postdocs at the Integrated Systems Laboratory
(LSI): Mingfei, Andrea, Chang, Heinz, Mathias, Fereshte, Sonia, Alessandro, Rehab, and
Rassul. Their collaboration and invaluable insights have been instrumental throughout
this journey.
I warmly acknowledge the Processor Architecture Laboratory (LAP), where I worked
as a part-time research scholar prior to my doctoral studies. I am grateful to Chantal
Schneeberger, the administrative assistant, for her invaluable help with administrative
tasks, and to Andrea and Stefan for their friendly support and engaging discussions.
I deeply appreciate my coauthors and collaborators from Synopsys: Eleonora Testa,
Luca Amarù, Walter Lau Neto, and Giulia Meuli, whose contributions and discussions
have significantly shaped my research. Additionally, I am grateful to Alan Mishchenko
from UC Berkeley and Marcel Walter and Robert Wille from TUM for their invaluable
collaboration and knowledge-sharing.
Teaching has been an enriching experience, and I extend my gratitude to the professors

i

under whom I worked as a teaching assistant: Ties Jan Henderikus Kluter and Nicolas
Boumal. Their dedication to teaching has been truly inspiring.
I express my sincere gratitude to the staff of the Department of Electronics and Telecom-
munication Engineering at the University of Moratuwa, where I completed my bachelor’s
degree, especially Dr. Ranga, Dr. Pasqual, Prof. Dileeka, Dr. Thayaparan, Dr. Pratha-
pasinghe, and Dr. Dulika, for their invaluable mentorship and guidance. I also cherish
the friendships I have built with my batchmates and colleagues: Shanika, Danushi,
Shehara, Dakila, Duvindu, Ishara, Ishan, Kalindu, Pasan, Poorna, Ridwan, Rushen,
Thilina, Dinushani, Sachinthana, Hasantha, Kawshalya, Wageesha, Senani, Shalanika,
Madushika, Ayanga, Sanduni, Kasun, Dumindu, Vikum, Janith, and Gresha. Thank you
for the shared memories and unwavering support.
I would also like to acknowledge the support and encouragement of my teachers and
friends from my high school, Sirimavo Bandaranaike Vidyalaya. In particular, I am
grateful to my teachers: Mrs. Dharshani, Mrs. Dulini, Mrs. Samitha, Mrs. Kamalini,
Mrs. Chandani, and Mrs. Hemamala for their dedicated teaching and encouragement.
My heartfelt thanks also go to my high school friends, especially Prabodha, Suvini, and
Lakshika, for their constant support.
My sincere appreciation goes to my Sri Lankan friends in Switzerland—Anuradha,
Ruchiranga, Yasara, Wenuka, Heshani, Udaranga, Pasindu, and Lakmal—for their
immense support and for making me feel at home even in a foreign land.
I am also indebted to the medical doctors who have helped me during difficult times:
Dr. Dilshani, Dr. Buddhini, Dr. Sanduni, and Dr. Kelum. Their care and support have
been invaluable.
I extend my sincere gratitude to the taxpayers of Sri Lanka, Switzerland, and the
European Union, as well as other funding providers for EPFL research, for enabling me
to pursue my education from kindergarten to Ph.D.
Last but not least, words cannot express my profound gratitude to my family. My parents,
Kalyanapala Marakkalage and Wansika Julgoda Manage, have been my unwavering pillars
of strength, and I am forever grateful for their unconditional love and encouragement. I
extend my heartfelt gratitude to my brother, Hasala, and my sister, Wathmini, who have
always been a constant source of affection and encouragement. I offer my deepest thanks
to my husband, Buddhima Gamlath, for his love, constant care, and support. I am also
grateful to Buddhima’s parents, Amarasooriya and Vijitha, Hasala’s wife, Thathsara, as
well as Buddhima’s brother, Kassapa, and his wife, Sasankara, for their kindness and
support.
This journey would not have been possible without the collective support of everyone. I
am deeply grateful for the contributions of all, whether explicitly mentioned or otherwise,
and your kindness has been invaluable. Thank you, from the bottom of my heart.

February 20, 2025 Dewmini Sudara Marakkalage

Abstract

Logic synthesis is a cornerstone of electronic design automation (EDA), facilitating the
optimization of power, performance, and area (PPA) in integrated circuits. As complemen-
tary metal-oxide-semiconductor (CMOS) technology approaches its physical limitations,
achieving further improvements using conventional methods has become increasingly
difficult. Simultaneously, emerging post-CMOS technologies offer significant potential for
enhanced energy efficiency, performance, and scalability, but introduce unique constraints
that are often unmet by traditional synthesis approaches. Motivated by these challenges,
this thesis explores two key research directions: advanced optimization techniques for
CMOS and novel synthesis methodologies tailored to post-CMOS technologies.

The first part of this thesis focuses on advancing CMOS logic synthesis through sequential
optimization, which exploits the broader solution space afforded by the reachable states of
memory elements. We introduce a scalable algorithm leveraging sequential observability
don’t cares (SODCs) to enhance redundancy removal and resubstitution via k-step
sequential induction. Our approach achieves an average area reduction of 6.9% after
technology mapping, with post-layout reductions of 2.89% and 1.43% in combinational
and sequential areas, respectively.

The second part of this thesis addresses the specific constraints of emerging post-CMOS
technologies, including fanout limits, path balancing, and planarization requirements.
First, we treat fanout-bounded synthesis as a general problem, considering its appli-
cations also in the CMOS domain; we develop exact and heuristic algorithms for
fanout-bounded synthesis, realizing an average area reduction of 11.82% compared
to state-of-the-art (SOTA) techniques. We also demonstrate the adaptability of these
methods to emerging technologies such as adiabatic quantum-flux-parametron (AQFP)
circuits. We then propose an exact-synthesis-database-driven approach for solving the
splitter and buffer insertion problem in superconducting electronics, achieving up to 40%
reduction in critical path delay and a 21% decrease in area for AQFP circuits. Finally,
building on the same database-driven approach, we present a general synthesis framework

iii

for emerging technologies, incorporating planarization constraints that are particularly
critical for field-coupled nanocomputing (FCN) technologies. For FCN technology, our
method reduces buffer count, crossing count, and critical path length by 84.5%, 74.5%,
and 65.2%, respectively.

This thesis provides scalable and effective methodologies for optimizing circuits in both
CMOS and post-CMOS domains. By advancing sequential synthesis and integrating
emerging technology constraints into the synthesis process, this work establishes a
foundation for the efficient design of next-generation digital systems.

Keywords: Logic synthesis, electronic design automation, CMOS, Post-CMOS, emerg-
ing technologies, sequential synthesis, superconducting electronics, AQFP, FCN, path-
balancing, buffer insertion, planarization, exact synthesis.

Résumé

La synthèse logique est une pierre angulaire de l’automatisation de la conception électro-
nique (EDA), optimisant la puissance, les performances et la surface (PPA) des circuits
intégrés. À mesure que la technologie CMOS (complementary metal-oxide-semiconductor)
atteint ses limites physiques, il devient de plus en plus difficile d’obtenir des améliorations
avec des méthodes conventionnelles. En parallèle, les technologies post-CMOS émergentes
offrent un potentiel considérable pour améliorer l’efficacité énergétique, les performances
et la scalabilité, tout en introduisant des contraintes uniques souvent ignorées par les
approches traditionnelles. Cette thèse explore deux axes principaux : des techniques
d’optimisation avancées pour le CMOS et des méthodologies de synthèse adaptées aux
technologies post-CMOS.

La première partie se concentre sur l’optimisation séquentielle pour la synthèse logique
CMOS, exploitant les états atteignables des composants de mémoire. Un algorithme
basé sur les “Sequential Observability Don’t Cares” (SODCs) est proposé, permettant
une réduction moyenne de la surface de 6,9 % après le mappage technologique et des
réductions post-routage de 2,89 % et 1,43 % pour les zones combinatoires et séquentielles.

La deuxième partie traite des contraintes des technologies post-CMOS, telles que les
limites de fanout, l’équilibrage des chemins et les exigences de planarisation. Nous
développons des algorithmes exacts et heuristiques pour la synthèse sous contrainte de
fanout, réalisant une réduction moyenne de la surface de 11,82 %. Ces méthodes sont
adaptées aux circuits émergents comme l’Adiabatic Quantum-Flux-Parametron (AQFP),
où une approche basée sur une base de données permet de réduire jusqu’à 40 % le délai
critique et 21 % la surface. Un cadre de synthèse général est également proposé pour
intégrer les contraintes de planarisation des technologies de Nanotechnologies à Couplage
de Champs (FCN), réduisant les buffers, croisements et longueurs des chemins critiques
de 84,5 %, 74,5 % et 65,2 %, respectivement.

Cette thèse propose des méthodologies évolutives et efficaces pour optimiser les circuits

v

dans les domaines CMOS et post-CMOS, jetant les bases d’une conception efficace des
systèmes numériques de la prochaine génération.

Mots-clés : Synthèse logique, automatisation de la conception électronique, CMOS, Post-
CMOS, technologies émergentes, synthèse séquentielle, électronique supraconductrice,
AQFP, FCN, équilibrage des chemins, insertion de buffers, planarisation, synthèse exacte.

Contents
Acknowledgements i

Abstract (English/Français) iii

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1
1.1 Electronic Design Automation (EDA) . 2
1.2 Logic Synthesis . 5
1.3 Challenges in Logic Synthesis . 7
1.4 Thesis Contributions Overview . 9

1.4.1 Scalable Sequential Logic Synthesis 9
1.4.2 Fanout-Bounded Logic Synthesis 10
1.4.3 Logic Synthesis for AQFP Technology 10
1.4.4 Logic Synthesis for FCN Technologies 11

1.5 Thesis Organization . 13

2 Background 15
2.1 Boolean Algebra and Functions . 15

2.1.1 Boolean Algebra . 15
2.1.2 Boolean Functions . 16
2.1.3 Equivalence of Boolean Functions 17

2.2 Logic Representations . 18
2.2.1 Truth Tables . 18
2.2.2 Algebraic Expressions . 19
2.2.3 Canonical Forms . 19
2.2.4 Binary Decision Diagrams (BDDs) 20
2.2.5 Logic Networks . 20
2.2.6 And-Inverter Graphs (AIGs) . 21
2.2.7 Majority-Inverter Graphs (MIGs) 22

vii

2.3 Logic Optimization . 22
2.4 Post-CMOS / Emerging Technologies . 24

2.4.1 Superconducting Electronics (SCE) 24
2.4.2 Field-Coupled Nanotechnologies (FCN) 26

3 Scalable Sequential Logic Synthesis 27
3.1 Introduction . 27
3.2 Preliminaries . 29

3.2.1 Sequential Logic Optimizations . 29
3.2.2 Don’t Cares in Logic Networks . 30
3.2.3 Prior Work on Sequential Synthesis 31

3.3 Scalable Sequential Optimization . 32
3.3.1 Motivation . 32
3.3.2 Sequential ODCs . 33
3.3.3 Framework Definition . 34
3.3.4 Proposed Method . 35
3.3.5 Complete Algorithm . 38
3.3.6 Correctness of the Proposed Approach 40
3.3.7 Characterizing SODC-Optimizable Transformations 44

3.4 Experimental Results . 49
3.4.1 Comparison of Different Configurations 49
3.4.2 Technology Mapped Results . 52
3.4.3 Post Place & Route Results on Industrial Designs 53

3.5 Summary . 54

4 Fanout-Bounded Logic Synthesis 57
4.1 Introduction . 57
4.2 Preliminaries . 60

4.2.1 And-Inverter Graphs / Majority-Inverter Graphs 60
4.2.2 Static Timing Analysis . 60
4.2.3 Node Equivalence . 61
4.2.4 AQFP Logic Circuits . 61

4.3 Related Work . 62
4.3.1 General Fanout-Bounded Synthesis 62
4.3.2 Path-Balanced Fanout-Bounded Synthesis 64

4.4 Globally Optimum General Fanout-Bounded Synthesis 65
4.5 Top-Down Heuristic Approach for General Fanout-Bounded Synthesis

Problem . 69
4.5.1 Improved Top-Down Approach with Over-Duplication 72

4.6 Path-Balanced Fanout-bounded Synthesis 74
4.6.1 ILP Formulation for the Global Optimum 74
4.6.2 Scalable Heuristic Approach . 75

4.7 Experimental Results . 77

4.7.1 Global Optimum for General Fanout-Bounded Synthesis 78
4.7.2 Heuristics for General Fanout-Bounded Synthesis 79
4.7.3 Global Optimum Splitter/Buffer Insertion for AQFP 81
4.7.4 Heuristic Splitter/Buffer Insertion for AQFP 85

4.8 Summary . 85

5 Logic Synthesis for AQFP Technology 87
5.1 Introduction . 87
5.2 Motivation . 90
5.3 Preliminaries . 92

5.3.1 Majority-Inverter Graphs (MIGs) 92
5.3.2 AQFP logic circuits . 93
5.3.3 Exact synthesis . 93

5.4 AQFP Resynthesis Approach . 94
5.4.1 Generation of the database . 94
5.4.2 Synthesis Algorithm . 99

5.5 Experimental Results . 101
5.6 Summary . 105

6 Logic Synthesis for FCN Technologies 107
6.1 Introduction . 107
6.2 Preliminaries . 108

6.2.1 Beyond-CMOS Technologies with Unconventional Costs 109
6.2.2 Circuit Model . 112
6.2.3 Conventional Technology Mapping 112

6.3 Proposed Methodology . 113
6.3.1 Generation of Optimal Subcircuits 114
6.3.2 Rewriting Using the Exact Database 115

6.4 Experimental Evaluation . 117
6.4.1 Experimental Setup . 117
6.4.2 Results . 119

6.5 Summary . 120

7 Conclusion 121
7.1 Scalable Sequential Logic Synthesis . 121
7.2 Fanout-Bounded Logic Synthesis . 122
7.3 Logic Synthesis for AQFP Technology . 123
7.4 Logic Synthesis for FCN Technologies . 125
7.5 Final Remarks . 126

Bibliography 127

Curriculum Vitae 143

List of Figures
1.1 A simplified synthesis flow of a typical digital system. 4

3.1 A combinational logic network (a) and its optimized version (b). 32
3.2 A sequential logic network (a), its optimized version (b), and its base

case network (c) and the inductive case network (d) for 1-step sequential
induction. 33

3.3 A sequential logic network (a), its optimized version (b), and its inductive
case network (c) for 2-step sequential induction. 37

3.4 A sequential logic network with feedback (a) and its inductive case network
(b) for 1-step sequential induction before applying assumptions in the first
frame. 38

3.5 An example sequential circuit and its frame representation. 45
3.6 The inductive network for the sequential circuit in Figure 3.5. 45
3.7 The inductive network for the sequential network in Figure 3.5, where the

decomposition of the 3-input AND is unfavorable to the proposed algorithm. 46
3.8 The inductive network for the sequential network in Figure 3.5, where the

decomposition of the 3-input AND is conducive to the proposed algorithm. 47
3.9 The inductive network for the sequential network in Figure 3.5, where

shadow nodes are added to reflect the assumptions on the reachable states
of registers. 47

4.1 Example logic network (left) and two of its possible fanout-bounded, path-
balanced versions targeting AQFP technology assuming a fanout capacity
of 1 for gates and 3 for splitters. (Buffers and splitters are shown by
triangles.) The version in the middle does not use any gate duplication
whereas the version on the right allows gate duplication resulting in a
reduction in both the overall number of logic levels as well as the total area. 62

4.2 Example logic network (left) and a possible fanout-bounded version as-
suming a fanout limit of 2 (right). 65

4.3 A fanout net for a node n with levels of fanouts already decided (a), two
possible outcomes for the fanout net of n if the algorithm of [178] is used
(b and c), and the optimum buffer tree for n (d) when fbuff = fgate = 3
and cgate > cbuff . 71

xi

4.4 An intermediate step of fanout-bounded synthesis with levels decided for all
nodes except n, n1, n2 (top), the synthesized fanout nets by the algorithm
described in naive top-down approach (middle), and the synthesized
fanout nets if over-duplication allowed (bottom) when fbuff = fgate = 3
and cgate > cbuff . 73

4.5 Two possibilities for a part of an AQFP netlist and their retimed version. 77

5.1 An example logic network with unit-delay gates (left) and its splitter-
inserted, path-balanced version (right). 88

5.2 A part of a logic network with unit-delay gates (left), and its path-balanced
versions (middle and right) using two choices of locally optimum splitter-
trees with 1-to-2 splitters. 90

5.3 (a) A logic network with unit-delay gates, (b) its path balanced version
using a balanced splitter tree, (c) an optimized version of (a) by pushing
one splitter up in the hierarchy, and (d) optimum path balancing with an
unbalanced splitter tree. 91

5.4 Two partial DAGs (left and middle) and a DAG (right). The partial DAG
in the middle is derived from the one on the left by tying a new gate and
connecting it to one uncommitted leaf in each of the existing gates. The
DAG on the right is derived from the partial DAG on the left by attaching
four inputs (leaf nodes) to the five uncommitted leaves. 95

5.5 Two fanout-nets with the same relative fanout levels. 96
5.6 Computing best area for a relative level configuration using dynamic

programming. 97
5.7 Three different buffer-splitter configurations to realize the same DAG

structure. 98

6.1 Elementary FCN devices. 109
6.2 QCA gates and wire segments. 110
6.3 Two realizations of a network computing o1 = a ∧ b ∧ c ∧ d and o2 =

¬a ∧ ¬b ∧ ¬c ∧ ¬d. Inverters are denoted by dashed edges and crossing
cells are denoted by a × symbol. 113

List of Tables
3.1 Comparison of the proposed method against the baseline (redundancy

removal) . 50
3.2 Comparison of the proposed method against the baseline (redundancy

removal + resubstitution) . 51
3.3 Comparison of the proposed method against the baseline (k-step induction) 52
3.4 Comparison of the proposed method against the baseline (Increased window

size) . 53
3.5 Results after technology mapping for OpenCores designs 54
3.6 Results after place and route for industrial designs 54

4.1 The global optimums for general fanout-bounded synthesis. 78
4.2 Results of the top-down fanout-bounded synthesis on benchmarks of [76]. 79
4.3 Results of the top-down fanout-bounded synthesis algorithm on EPFL

benchmarks. 80
4.4 Results of AQFP splitter/buffer insertion without gate duplication. 82
4.5 Results of AQFP splitter/buffer insertion with gate duplication (part i). . 83
4.6 Results of AQFP splitter/buffer insertion with gate duplication (part ii). . 84
4.7 Results of scalable heuristic approach for AQFP. 84

5.1 Results for the experiment where the proposed AQFP synthesis algorithm
is applied for 10 iterations under the assumption that no splitter-buffer
insertion is needed for primary inputs but primary outputs need path-
balancing. The reference column shows the optimized results from [163]. . 102

5.2 JJ utilization of majority-3 and majority-5 gates in the output of the
proposed AQFP synthesis algorithm under the assumption that no splitter-
buffer insertion is needed for primary inputs but primary outputs need
path-balancing. 103

5.3 Results for the experiment where the proposed AQFP synthesis algorithm
is applied for 10 iterations under the assumption that primary inputs
need splitters to support multiple fanouts and primary outputs need
path-balancing. 104

xiii

6.1 Results of the proposed technology mapping approach on the ISCAS [38]
and EPFL [11] benchmark suites. 118

List of Acronyms

AIG And-Inverter Graph

AQFP Adiabatic Quantum-Flux-Parametron

AI Artificial Intelligence

ASIC Application-Specific Integrated Circuit

BDD Binary Decision Diagram

CAD Computer-Aided Design

CDC Controllability Don’t Care

CMOS Complementary Metal-Oxide-Semiconductor

CODC Compatible Observability Don’t Care

DAG Directed Acyclic Graph

EDA Electronic Design Automation

FCN Field-Coupled Nanocomputing

FBS Fanout-Bounded Synthesis

HDL Hardware Description Language

HLS High-Level Synthesis

IC Integrated Circuit

ILP Integer Linear Programming

IoT Internet of Things

JJ Josephson Junction

LUT Look-Up Table

MFFC Maximum Fanout-Free Cone

MIG Majority-Inverter Graph

NML Nanomagnetic Logic

xv

NPN Negation-Permutation-Negation

ODC Observability Don’t Care

PI Primary Input

PO Primary Output

POS Product of Sums

PPA Power, Performance, Area

QCA Quantum-dot Cellular Automata

RI Register Input

RO Register Output

RSFQ Rapid Single Flux Quantum

RTL Register Transfer Level

SAT Satisfiability

SCE Superconducting Electronics

SDC Satisfiability Don’t Care

SMT Satisfiability Modulo Theory

SoC System-on-Chip

SoTA State of The Art

SODC Sequential Observability Don’t Care

SOP Sum of Products

SSW Sequential SAT-Sweeping

TFI Transitive Fan-In

TFO Transitive Fan-Out

XAG XOR-And Graph

XMG XOR-Majority Graph

1 Introduction

From robotic submarines exploring the deepest trenches of the ocean to space probes
venturing beyond the Solar System, electronic systems have seamlessly integrated into
nearly every facet of modern technology.

The rapid evolution of electronic devices has fueled an unrelenting demand for more
efficient, high-performance integrated circuits (ICs) capable of performing complex com-
putations while minimizing power consumption and shrinking in size. To address these
challenges, electronic design automation (EDA) tools have become indispensable in
modern semiconductor design, providing robust frameworks for optimizing circuits in
terms of power, performance, and area (PPA).

Among these tools, logic synthesis plays a pivotal role, refining digital circuit designs
at the logical level by transforming initial specifications into optimized structures ready
for physical design and subsequent synthesis steps. Along with other steps of the EDA
flow and advancements in semiconductor technology, several decades of research in logic
synthesis have been instrumental in keeping pace with the ever-increasing complexity of
modern electronic systems, enabling Moore’s Law to continue its course. In this thesis,
we lay the groundwork for further advancements in logic synthesis, focusing on two
key research directions: scalable sequential logic synthesis and synthesis for emerging
computing paradigms.

Since the advent of the first integrated circuits in the 1960s, the semiconductor industry
has witnessed a remarkable transformation, driven by continuous advancements in pro-
cess technology and design methodologies. Complementary metal-oxide-semiconductor
(CMOS) technology has been the dominant semiconductor technology for decades, of-
fering a robust foundation for the development of high-performance, low-power ICs.
Consequently, logic synthesis has primarily focused on optimizing circuits for CMOS
technology, leveraging a wide array of algorithms and techniques to achieve superior PPA
metrics.

1

Chapter 1 Introduction

Among existing research on logic synthesis for CMOS, the majority of work has concen-
trated on optimizing combinational logic, which forms the core of digital circuits, given
that combinational logic dominates the area and power consumption of most designs. The
synthesis of sequential logic, which deals with circuits containing memory elements, has
received relatively less attention. However, despite its name, sequential logic synthesis is
not just about optimizing sequential memory elements but also about optimizing the
combinational logic that interacts with these memory elements, taking advantage of the
fact that the set of reachable states of the memory elements is often smaller than the set
of all possible states. Thus, sequential logic synthesis has the potential to significantly
improve PPA metrics of digital circuits. In this thesis, we introduce a novel sequential
synthesis method that leverages sequential observability don’t cares (SODCs) to optimize
sequential circuits across reachable states.

On the other hand, as CMOS technology approaches its scaling limits, emerging com-
puting paradigms have emerged as promising alternatives. For instance, superconduct-
ing technologies such as adiabatic quantum-flux parametron (AQFP) and field-coupled
nanocomputing (FCN) technologies have gained traction for their potential to deliver
high-performance, ultra-low-power solutions. In many of these post-CMOS technologies,
the fundamental logic gates differ significantly from those of CMOS. Moreover, they often
come with substantial interconnect overhead, arising from unique physical constraints
such as tight fanout bounds, the need for specialized components to support multiple
fanouts, precise signal synchronization requirements between gates, and the need for spe-
cial handling of wire crossings. As a result, traditional CMOS-centric synthesis methods
are not directly applicable to these technologies. Even when adapted, these methods
often yield suboptimal results due to the lack of consideration of interconnect costs. In
this thesis, we introduce novel synthesis methods focusing on post-CMOS technologies
that account for the unique constraints of these paradigms, achieving significant PPA
improvements.

In the following sections, we provide an overview of the EDA and the role of logic synthesis
within this domain. We then introduce the contributions of this thesis, highlighting the
key research directions and the novel methods developed to address the challenges in
sequential logic synthesis and synthesis for emerging computing paradigms. We conclude
this chapter by outlining the organization of the subsequent chapters.

1.1 Electronic Design Automation (EDA)

Electronic design automation (EDA) refers to the collection of software tools and method-
ologies used to design, verify, and produce electronic systems and integrated circuits (ICs).
In the modern electronics industry, EDA plays a critical role in managing the complexity
of advanced circuit designs, thus reducing time-to-market and development costs. As
technology continues to scale, the reliance on EDA tools has grown exponentially, making

2

Introduction Chapter 1

them indispensable in every stage of the design process.

The EDA market has seen significant growth in recent years, driven by the increasing
demand for semiconductors, the rise of AI and IoT applications, and advancements
in manufacturing processes. Major players in the EDA industry, including Synopsys,
Cadence, and Siemens EDA, are continually innovating to support the design of next-
generation technologies. The market is also witnessing the emergence of niche players
and open-source tools, diversifying the ecosystem. The EDA industry was valued at USD
10.40 billion in 2019, and it is expected to grow up to USD 15.38 billion by 2025 [105].

The history of EDA dates back to the 1960s and 1970s, when early computer-aided design
(CAD) tools such as schematic capture programs, simulation software, and layout editors
were developed, forming the foundation for modern EDA tools. The 1980s brought a
major breakthrough with hardware description languages (HDLs) like VHDL and Verilog,
enabling abstract and efficient circuit representations. This advancement facilitated the
modeling, verification, and synthesis of complex systems.

During the 1990s and 2000s, EDA tools evolved to include comprehensive automation, such
as synthesis, place-and-route, and verification, significantly enhancing design efficiency
and handling the increasing complexity of ICs. Modern EDA tools are highly sophisticated,
offering extensive features for designing system-on-chip (SoC) and application-specific
integrated circuits (ASICs) including some recent GPUs and CPUs having well over
a hundred billion transistors [1]. Academic research on EDA has also been pivotal,
contributing open-source tools (e.g., ABC [34], Yosys [174]) and libraries (e.g., EPFL
Logic Synthesis Libraries [154]). These efforts complement industrial advancements,
fostering innovation and progress in EDA technologies.

The EDA flow represents the sequence of processes and tools used to design an IC, from
its initial specification to final tape-out. The typical EDA flow for digital IC design
consists of several stages; a simplified version of a typical EDA flow is shown in Fig. 1.1
where each step addresses specific aspects of the design process. Starting with the design
specification, the flow progresses through high-level/behavioral synthesis, architectural
synthesis, logic synthesis, and physical synthesis to generate a fabrication-ready layout.
Each stage involves a series of optimizations, transformations, and verifications to ensure
that the design meets the desired specifications and constraints.

We remark, however, that a modern EDA flow is much more complex and non-linear
than the simplified flow shown in Fig. 1.1. For instance, the flow may involve multiple
iterations between different stages, feedback loops, etc. to optimize the design.

Design Specification: The high-level requirements and functionality of the circuit are
defined. This stage involves understanding the system’s purpose, target applications,
and performance goals.

3

Chapter 1 Introduction

System Specification

High-level Synthesis
Behavioral Synthesis

Architectural Synthesis
RTL Synthesis

Logic Synthesis

Physical Design
(Place & Route)

Layout

Figure 1.1: A simplified synthesis flow of a typical digital system.

High-level Synthesis/Behavioral Synthesis: High-Level Synthesis (HLS), sometimes
also referred to as Behavioral Synthesis, converts a high-level description of a system’s
behavior, often written in languages like C, C++, or SystemC, into a register-transfer-level
(RTL) representation. This process involves:

• operation scheduling, where the order of operations is determined to optimize
factors such as latency and throughput,

• allocation of resources such as functional units, registers, and memories, and
• generation of control logic to manage the flow of data and operations execution.

In short, HLS translates abstract specifications into a format ready for hardware imple-
mentation, while performing some initial PPA optimizations.

Architectural Synthesis: This step transforms an RTL description, which defines the
behavior of a circuit in terms of data transfer between registers and combinational logic,
into a gate-level netlist. This step also performs some optimizations to reduce circuit

4

Introduction Chapter 1

complexity and meet timing constraints, and it includes resource mapping to translate
RTL components like adders and multiplexers into standard logic gates. The output of
RTL synthesis is a technology-independent gate-level design.

Logic Synthesis: In logic synthesis, the gate-level netlist generated during RTL synthesis
is extensively optimized to further improve PPA using both technology-independent and
technology-specific optimizations. Transforming the optimized technology-independent
netlist into a technology-specific netlist and subsequent technology-dependent optimiza-
tion are often referred to as technology mapping. A more detailed discussion on logic
synthesis is provided in Section 1.2.

Physical Synthesis: Physical synthesis, consisting of place & route, converts the
technology-mapped netlist into a complete physical layout, including floorplanning,
placement, clock tree synthesis, and routing. This stage ensures that the design meets
the constraints for manufacturing, signal integrity requirements, and timing closure goals.
Physical design is crucial for preparing the design for fabrication and ensuring that the
layout adheres to design constraints.

In each stage of the EDA flow, verification is a critical component that ensures the design
meets all functional, timing, power, and reliability specifications. An integral part of
verification is equivalence checking, which ensures that the synthesized netlist at the end
of each stage is functionally equivalent to the original RTL design.

The contributions of this thesis focus on the logic synthesis stage of the EDA flow. In
the next section, we delve into the details of logic synthesis and technology mapping,
highlighting the challenges and opportunities in these areas.

1.2 Logic Synthesis

Logic synthesis and technology mapping are critical steps in the EDA process, serving as a
bridge between high-level design specifications and physical implementation. These steps
ensure that a digital design adheres to PPA constraints while meeting the requirements
of the target manufacturing technology.

Broadly, logic synthesis involves finding optimized representations of Boolean functions.
The definition of optimized depends on the chosen criteria and representation framework.
For instance, one logic synthesis problem involves finding the sum-of-products (SOP)
expression with the fewest literals for a given Boolean function. Another example is
identifying the smallest depth or size circuit consisting of 2-input AND gates and inverters
for a Boolean function.

The origins of logic synthesis predate the EDA industry itself. While the roots trace
back to George Boole’s foundational work on Boolean algebra in the 1800s, the field

5

Chapter 1 Introduction

began to take a formal shape with Claude Shannon’s seminal work [147] in the 1930s,
which demonstrated the use of Boolean algebra for representing and analyzing switching
circuits. Classic Boolean optimization techniques, such as Karnaugh Maps [85] and
the Quine-McCluskey methods [116, 136], were introduced in the 1950s. Over time,
increasingly sophisticated synthesis algorithms were developed, evolving the field into a
mature domain with a rich set of methodologies and tools.

Many logic synthesis problems are computationally intractable, with no known efficient
algorithms to solve them optimally. As a result, a variety of heuristic-based techniques
have been developed to optimize logic representations. These approaches often combine
algebraic, Boolean, and exact optimization techniques to achieve high-quality results.

In digital circuit optimization, logic synthesis can be categorized into two main types:
combinational logic synthesis and sequential logic synthesis.

Combinational logic synthesis focuses on optimizing circuits while treating memory
elements, such as flip-flops and latches, as black boxes. In this approach, registers are
treated as independent pairs of primary inputs and outputs, assuming no dependencies
among them. Sequential logic synthesis exploits dependencies among registers to
optimize not only the sequential elements but also the combinational logic portion of the
design. This can significantly enhance PPA metrics by taking advantage of the sequential
nature of the circuit.

Logic synthesis typically consists of two main stages: technology-independent optimization
and technology mapping.

Technology-independent optimization: This stage optimizes the logic representation
of the design without considering the target technology. While simple logic functions
can be represented as truth tables or Boolean expressions, such representations do not
scale well for large designs. Therefore, synthesis tools often use graphical representations,
such as directed acyclic graphs (DAGs), to represent logic functions efficiently. A detailed
discussion of various logic representations is presented in Section 2.2. Common opti-
mization objectives during this stage include minimizing the number of gates and circuit
depth, which correlate to area and delay, respectively. Techniques such as rewriting,
refactoring, and resubstitution, with varying levels of complexity, are applied to optimize
these metrics [118].

Technology mapping: This stage involves mapping the technology-independent, opti-
mized logic representation onto a target technology library and performing technology-
specific optimizations. Technology mapping converts the logic representation into a
technology-specific netlist, where gates are selected from the target library [49, 50, 75,
84, 94]. During this stage, more accurate technology-specific models for area, delay, and
power are used compared to the technology-independent optimization stage.

6

Introduction Chapter 1

Overall, logic synthesis is a critical step in the EDA flow. In today’s technological
landscape, logic synthesis is a key enabler for achieving high-performance, low-power
designs at a lower cost, even as the technology itself is reaching its downscaling limits.
In general, logic synthesis is relevant not only in traditional EDA, but also in other
application fields such as cryptography [161, 177] and quantum computing [117].

1.3 Challenges in Logic Synthesis

The work of this thesis is inspired by two key challenges in logic synthesis and technology
mapping:

1. Extend the advanced combinational logic synthesis techniques to sequential logic
synthesis.

2. Develop synthesis methods tailored for unique constraints of emerging computing
paradigms.

Enhancing Sequential Logic Synthesis

Many existing logic synthesis techniques have been tailored for combinational logic
synthesis; though sequential logic synthesis has also been studied, there is still room
for improvement. Recently, there has been a growing interest in exploring sequential
logic synthesis techniques as the ever more complex designs require more sophisticated
optimizations to keep up with the growing demands for performance, power, and area
efficiency. To this end, a notable recent development is the introduction of sequential SAT-
sweeping (SSW) [125], which is an extension of combinational SAT-sweeping [93, 121, 122]
to sequential circuits.

A natural question is whether there are other advanced combinational logic synthesis
techniques that can potentially be extended to sequential logic synthesis to uncover more
optimization opportunities. One promising candidate is the use of observability don’t cares
(ODCs). In combinational logic synthesis, ODCs have been shown to provide significant
optimization opportunities by identifying redundant logic. The key idea behind ODCs is
to focus on internal wires that are not observable at the primary outputs under certain
input conditions and to simplify the logic based on these conditions.

Effectively extending the ODC-based optimizations to sequential logic is challenging as
the synthesis algorithms have to simultaneously work on two tasks:

1. argue about potential reachable state combinations and

2. handle dependencies among ODC-based simplifications.

7

Chapter 1 Introduction

In this thesis, we introduce a novel synthesis algorithm that successfully executes these
tasks, leveraging sequential observability don’t cares (SODCs) to optimize sequential
circuits across reachable states.

Synthesis for Post-CMOS Technologies

With the advent of CMOS technology in the 1980s, which has since dominated the
semiconductor industry, logic synthesis has primarily focused on optimizing circuits for
CMOS. The internal logic representations employed in synthesis tools, as well as their
associated optimization metrics, have been heavily influenced by the characteristics of
CMOS technology. For instance, graphical representations of logic consisting of AND
gates and inverters have been widely adopted in synthesis tools, as these gates form
the basic building blocks of CMOS circuits. Optimization metrics in this domain have
typically focused on minimizing the number of gates and the circuit depth (i.e., the
number of gates in the longest input-to-output path), which directly correlate to the area
and delay of the synthesized circuits.

In emerging technologies, however, as discussed in Section 2.4, several key differences
render traditional CMOS-centric synthesis methods less effective. For example, in many
superconducting technologies—promising post-CMOS alternatives—the fundamental
logic gate is often the majority gate rather than AND or OR gates. Consequently, logic
optimized for CMOS may not translate efficiently to these technologies.

Additionally, emerging technologies often incur significant interconnect overhead due to
various physical constraints. These include:

• Tight fanout bounds: Multi-fanout nets require additional hardware, such as
splitters, to support multiple fanouts.

• Balanced logic paths: Stringent requirements for path balancing necessitate
increased buffering.

• Special handling of wire crossings: Certain technologies require additional
resources to manage wire crossings effectively.

These constraints necessitate additional synthesis and optimization stages to properly
account for interconnect requirements and optimize interconnect resources. As a re-
sult, traditional CMOS-centric synthesis methods are not readily applicable to these
technologies.

In this thesis, we propose novel synthesis techniques to address these constraints at the
logic synthesis stage, enabling efficient optimization tailored to the unique characteristics
of emerging post-CMOS technologies.

8

Introduction Chapter 1

1.4 Thesis Contributions Overview

In this section, we provide an overview of the contributions of this thesis. The first
part of the thesis focuses on scalable sequential logic synthesis, while the second part
addresses logic synthesis for emerging computing paradigms.

1.4.1 Scalable Sequential Logic Synthesis

Sequential logic synthesis offers powerful optimizations for circuits with memory elements
by exploiting the reachable states and transition behavior of registers. Unlike combi-
national synthesis, which optimizes based on stateless inputs and outputs, sequential
synthesis considers the inherent statefulness of circuits, allowing for potentially significant
improvements in PPA. This work presents a novel method for don’t-care-based sequential
logic synthesis, using an advanced algorithm that leverages sequential observability don’t
cares (SODCs) to perform redundancy removal and resubstitution under sequential
conditions.

The proposed approach builds on the concept of sequential k-step induction, where
both a base case and an inductive case network are optimized simultaneously. By
examining dependencies within the SODCs—where certain inputs or states are not
critical for the circuit’s observable output—this method optimizes the circuit with an
enhanced focus on the sequentially reachable states. Unlike previous approaches, this
method incorporates SODC dependencies directly, without limiting the solution space to
compatible ODC (CODC) simplifications, which often miss optimization opportunities.
The k-step induction model enables scalability by applying windowing, thus ensuring
manageable SAT problem sizes for larger designs.

Experimental results demonstrate that this approach achieves superior PPA metrics
when compared to existing sequential synthesis methods. Implemented in an industrial
setting, this method achieved an average area reduction of 6.9% after technology mapping,
with additional reductions of 2.89% in combinational area and 1.43% in sequential area
in post-place-and-route designs. This high-efficiency approach to sequential synthesis
showcases its potential for substantial area savings in practical designs, with verified
correctness through advanced sequential verification tools.

By integrating this method within a full EDA flow, this work addresses one of the key
challenges in sequential synthesis—balancing scalability with the complexity of sequential
dependencies. The results underline the benefits of considering don’t-care conditions that
include sequential reachability, providing an effective framework for scalable, high-quality
synthesis in sequential circuits.

9

Chapter 1 Introduction

1.4.2 Fanout-Bounded Logic Synthesis

Fanout-bounded synthesis is a design approach tailored to meet the specific constraints
of emerging technologies like AQFP and FCN, where traditional CMOS-based synthesis
methods are insufficient. In these post-CMOS paradigms, constraints on fanout and path
balancing are crucial due to the distinct operational mechanisms that require precise
control over signal propagation. For instance, AQFP circuits cannot drive multiple
fanouts directly from a single gate; instead, splitters are required to distribute the signal,
adding substantial overhead to both area and delay. To accommodate these requirements,
fanout-bounded synthesis focuses on minimizing the use of splitters and buffers while
adhering to a bounded fanout constraint, ensuring that each gate’s fanout does not
exceed a specified limit.

Taking a rigorous approach to the generic fanout-bounded synthesis problem, this work
formulates the problem as an Integer Linear Programming (ILP) model, in order to
minimize the total area under a fixed delay constraint. The ILP model incorporates
variables representing the number of gate copies and buffers associated with each gate
and each logic level and introduces constraints to ensure that each level has sufficient
fanout capacity to drive the fanouts in subsequent levels. By solving the ILP with a
commercial solver, we obtain optimum solutions for benchmark circuits up to a few
hundred gates in size. We also extend the ILP to the path-balanced setting, targeting
the AQFP technology, demonstrating the versatility of our approach.

For scalability, the ILP-based fanout-bounded synthesis is complemented by heuristic
approaches, which reduce computation time while achieving significantly better results as
compared to the state-of-the-art. Our heuristic employs a top-down approach, initially
favoring the addition of buffers over duplicating gates to avoid unnecessary area increases.
Critical paths are prioritized in the synthesis process to ensure that timing requirements
are met without excessive buffering. Additionally, path-balancing heuristics are applied
to synchronize the arrival of signals at each gate, a requirement in technologies like
AQFP, where clocked operations depend on precise timing alignment across fanins.

Experimental results on benchmark circuits demonstrate that fanout-bounded synthesis
methods can achieve significant area reductions.

1.4.3 Logic Synthesis for AQFP Technology

Adiabatic Quantum-Flux Parametron (AQFP) technology is a promising family of
superconducting electronic circuits known for its exceptional energy efficiency. AQFP
circuits operate with extremely low power consumption, making them highly suitable for
applications where energy efficiency is paramount. However, AQFP technology imposes
specific design constraints, including limited fanout capacity, clocked operations, and
a need for synchronized signal paths. To address these constraints effectively, AQFP

10

Introduction Chapter 1

synthesis requires specialized optimization techniques that consider both the placement of
logic gates and the arrangement of buffers and splitters necessary for clock synchronization.
We propose an exact database-driven synthesis approach for AQFP circuits, leveraging
precomputed optimal configurations that take into account both logic and interconnect
resource requirements.

The exact database technique for AQFP synthesis consists of two primary stages. In
the first stage, a database of minimum-area AQFP structures is generated through
enumeration of all possible graph structures in a size-bounded manner. This process is
performed only once and is independent of specific input networks, making it a reusable
asset for optimizing multiple designs. The database contains precomputed structures for
each unique 4-input Boolean function (up to some notion of equivalence), with optimized
layouts for different input arrival-time patterns. By considering both area (measured in
terms of Josephson Junctions) and delay (measured by the number of levels in the critical
path), the database captures the best possible configurations for minimizing resource
usage. This approach contrasts with traditional methods, which often treat buffer and
splitter insertion as a post-synthesis step, thereby missing optimization opportunities that
could be realized through simultaneous synthesis of logic and path-balancing resources.

In the second stage, the synthesis algorithm maps the input logic network to a Look-Up
Table (LUT) representation and then replaces each LUT with an optimized structure
from the exact database in topological order. This topological rewriting ensures that each
logic block is replaced by its best equivalent from the database based on area or delay
considerations. By integrating buffer and splitter insertion directly into the synthesis
process, this method minimizes resource usage for both logic functions and necessary
path-balancing components. The exact database technique also supports both majority-3
and majority-5 gates, leveraging AQFP’s gate-level capabilities for more complex logic
functionalities.

Experimental evaluations highlight the effectiveness of this database-driven synthesis
approach. Compared to conventional AQFP synthesis methods, the database-based
technique achieved significant improvements, reducing critical path delay by over 40%
and area by approximately 21%. These results underscore the advantages of simultaneous
optimization of logic and path-balancing resources for AQFP circuits in particular, and
for similar post-CMOS technologies in general.

1.4.4 Logic Synthesis for FCN Technologies

Technology mapping for beyond-CMOS circuitry, such as FCN and similar emerging
technologies, presents unique challenges that are not effectively addressed by conventional
CMOS synthesis methods. In CMOS-based synthesis, technology mapping typically
focuses on minimizing the number of gates or nodes in a logic network, assuming that

11

Chapter 1 Introduction

reducing these elements will optimize area, delay, and power consumption. However, in
beyond-CMOS technologies, additional design constraints emerge that can drastically
affect layout quality. These constraints include the need for path balancing, signal
synchronization, and the minimization of interconnect elements such as buffers, splitters,
and crossings. Addressing these requirements calls for a technology mapping approach
that optimizes for unconventional cost functions directly relevant to the characteristics
of beyond-CMOS technologies.

In beyond-CMOS circuits, interconnects often carry a substantial portion of the layout
costs, as they may involve specialized components like planarizing crossings and fanout-
branching splitters. For example, in FCN, which encompasses technologies like Quantum-
dot Cellular Automata (QCA) and Nanomagnetic Logic (NML), each gate or wire segment
contributes uniformly to area and delay due to strict design grid layouts. Additionally,
crossing cells, which enable wire paths to intersect without interference, can be costly
and difficult to fabricate, necessitating an approach that minimizes their usage. Similarly,
path-balancing buffers are required to ensure signal synchronization, as delays from
imbalanced paths can lead to incorrect logic states. Therefore, technology mapping for
beyond-CMOS circuitry must consider all these factors holistically to achieve an efficient
layout.

The proposed technology mapping approach for beyond-CMOS circuitry with uncon-
ventional cost functions begins by generating a library of optimized subcircuits, which
includes not only basic logic gates but also special cells like buffers, splitters, and cross-
ings. These subcircuits are optimized according to the specific requirements of the target
beyond-CMOS technology, ensuring that each cell configuration minimizes area, delay,
and interconnect costs. The mapping process then uses this library to transform the
logic network into a layout that is functionally equivalent to the original design while
incorporating the necessary buffers, splitters, and crossings to meet design constraints.
This mapping algorithm optimizes the arrangement of these cells, placing priority on
reducing the critical path length and minimizing the number of costly interconnect
elements.

Experimental evaluations of this mapping technique on benchmark circuits demonstrate
significant improvements in layout quality compared to traditional mapping approaches.
The proposed technology mapping algorithm achieves reductions in buffer count by over
84%, crossing count by 74.5%, and critical path length by 65.2% on average compared to
state-of-the-art physical design algorithms adapted for FCN. These results underscore
the effectiveness of incorporating unconventional cost functions into the mapping process,
showing that layout quality in beyond-CMOS technologies can be greatly enhanced
by directly addressing the specific challenges of interconnect management and path
synchronization. This approach not only yields more efficient designs but also supports
the broader adoption of emerging, energy-efficient computing paradigms by making them
more practical and scalable for large-scale applications.

12

Introduction Chapter 1

1.5 Thesis Organization

The remainder of this thesis is organized into six chapters, each addressing distinct
aspects of the research and contributing to the overarching goals of scalable sequential
logic synthesis and synthesis for emerging computing paradigms. Experimental results
are discussed in Chapters 3 through 6 to validate the proposed methods.

Chapter 2: Background

This chapter provides the foundational concepts and terminology necessary for understand-
ing the contributions of this thesis. Topics include Boolean algebra, logic representations,
and optimization techniques. Additionally, the chapter gives an overview of emerging
technologies, such as AQFP and FCN, which serve as the basis for post-CMOS synthesis
approaches discussed later.

Chapter 3: Scalable Sequential Logic Synthesis

This chapter introduces the concept of sequential observability don’t cares (SODCs), a
powerful tool for optimizing sequential circuits by leveraging don’t-care conditions that
arise from the reachability of states. The chapter presents a novel synthesis method that
utilizes SODCs to optimize sequential circuits while preserving correctness. Detailed
proofs are provided, along with experimental results showcasing significant improvements
in power, performance, and area (PPA) metrics compared to existing methods.

Chapter 4: Fanout-Bounded Logic Synthesis

This chapter addresses the challenges of fanout-bounded synthesis, which is crucial for
technologies with tight fanout constraints, such as AQFP and FCN. The chapter formalizes
the problem and presents both an exact Integer Linear Programming (ILP) formulation
and heuristic approaches to optimize logic networks while adhering to fanout limits.
The chapter also discusses adaptations of these methods for the path-balanced setting,
where precise signal synchronization is required. Experimental results demonstrate the
effectiveness of the proposed techniques in minimizing area and delay.

Chapter 5: Logic Synthesis for AQFP Technology

This chapter focuses on a two-stage exact-database-based synthesis method specifically
designed for AQFP technology. The approach combines precomputed optimal configu-
rations for small circuit blocks with an efficient mapping algorithm to produce highly
optimized circuits. By integrating logic optimization with path-balancing resources such
as splitters and buffers, this method achieves significant reductions in area and critical

13

Chapter 1 Introduction

path delay. Experimental results highlight the advantages of this technique, showcasing
improvements over traditional AQFP synthesis methods.

Chapter 6: Logic Synthesis for FCN Technologies

This chapter presents a technology mapping algorithm tailored to the unique constraints
of Field-Coupled Nanocomputing (FCN) technologies. The method addresses key chal-
lenges such as minimizing the use of costly interconnect elements (e.g., buffers, crossings)
and achieving path balancing. By leveraging a library of optimized subcircuits and
applying advanced mapping techniques, the proposed algorithm delivers substantial im-
provements in layout quality and efficiency. Experimental results demonstrate reductions
in interconnect costs and critical path lengths, validating the approach.

Chapter 7: Conclusion

The final chapter summarizes the key contributions of this thesis and discusses potential
future research directions. It highlights the advancements made in scalable sequential
logic synthesis, particularly through the introduction of SODC-based methods, and in
synthesis for emerging computing paradigms, focusing on fanout-bounded and post-
CMOS technologies. Suggestions for extending the work to broader applications and
other emerging paradigms are also presented.

14

2 Background

This chapter introduces the key concepts, notations, and terminology necessary for
a comprehensive understanding of this thesis. It also provides an overview of post-
CMOS technologies, their technology-specific constraints, and the challenges they pose
to traditional logic synthesis techniques.

2.1 Boolean Algebra and Functions

Boolean algebra is a branch of mathematics that deals with variables having two distinct
values, typically denoted as 0 (false) and 1 (true). The origins of Boolean algebra can be
traced back to the work of George Boole [29] in the mid-19th century, who developed
a formal system for logical reasoning based on binary values. Boolean algebra forms
the foundation of digital logic and binary systems, providing a rigorous mathematical
framework for representing and manipulating logical expressions.

2.1.1 Boolean Algebra

Axiomatically, any set B, binary operations (∧,∨), and a unary operation (¬) that satisfy
the following axioms for any a, b, c ∈ B form a Boolean algebra:

Associativity: (a ∨ b) ∨ c = a ∨ (b ∨ c), (a ∧ b) ∧ c = a ∧ (b ∧ c),

Commutativity: a ∨ b = b ∨ a, a ∧ b = b ∧ a,

Absorption: a ∨ (a ∧ b) = a, a ∧ (a ∨ b) = a,

Identity: a ∨ 0 = a, a ∧ 1 = a,

Distributivity: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),

15

Chapter 2 Background

Complement: a ∨ ¬a = 1, a ∧ ¬a = 0.

In the context of digital logic, Boolean algebra typically refers to the two-value algebra
with the set B = {0, 1}, where the operators ∧ (logical AND), ∨ (logical OR), and ¬
(logical NOT) are defined as follows:

Logical AND: 0 ∧ 0 = 0, 0 ∧ 1 = 0, 1 ∧ 0 = 0, 1 ∧ 1 = 1,

Logical OR: 0 ∨ 0 = 0, 0 ∨ 1 = 1, 1 ∨ 0 = 1, 1 ∨ 1 = 1,

Logical NOT: ¬0 = 1, ¬1 = 0.

We often use the notation a′ to denote the logical NOT of a, i.e., a′ = ¬a. Similarly, +
and · are often used to denote logical OR and AND operations, respectively. For brevity,
logical AND is frequently written without the operator symbol, e.g., a ∧ b = ab. For
instance, the expression (a ∧ b) ∨ ¬c can equivalently be written as ab + c′.

Logical AND and OR operations can be generalized to multiple inputs:

∧(a1, a2, . . . , an) = a1 ∧ a2 ∧ . . . ∧ an, ∨(a1, a2, . . . , an) = a1 ∨ a2 ∨ . . . ∨ an.

The order in which the binary operators are applied does not matter due to the commu-
tative and associative properties of Boolean algebra.

The logical XOR (exclusive OR) operation, denoted by ⊕, is defined as:

a⊕ b = (a ∧ ¬b) ∨ (¬a ∧ b) = ab′ + a′b.

The XOR operation is also referred to as modulo-2 addition, as it is equivalent to
addition modulo 2. It also is commutative and associative, i.e., a ⊕ b = b ⊕ a and
a⊕ (b⊕ c) = (a⊕ b)⊕ c, and can be extended to multiple inputs:

⊕(a1, a2, . . . , an) = a1 ⊕ a2 ⊕ . . .⊕ an.

More details on Boolean functions and operations can be found in [39, 118].

2.1.2 Boolean Functions

Boolean functions are mathematical expressions that describe relationships between
binary variables, mapping an n-tuple of binary inputs to a single binary output. Formally,
a Boolean function f is defined as:

f : {0, 1}n → {0, 1},

16

Background Chapter 2

where n represents the number of input variables. The function computes a binary output
for every combination of its inputs.

Multi-output Boolean functions extend the concept of single-output Boolean functions
by mapping binary input variables to multiple binary outputs. These functions are
fundamental in digital design, as they naturally model combinational circuits with
multiple outputs, such as decoders, arithmetic units, and control logic. A multi-output
Boolean function f is defined as:

f : {0, 1}n → {0, 1}m,

where n is the number of input variables and m is the number of output variables. The
function computes m binary outputs for every combination of its n binary inputs. For
example, if n = 3 and m = 2, the function f(a, b, c) produces two outputs, f1 and f2,
each defined as a single-output Boolean function:

f(a, b, c) = (f1(a, b, c), f2(a, b, c)).

The set of input variables of a Boolean function is called the support of the function.

2.1.3 Equivalence of Boolean Functions

Two Boolean functions defined on the same support are considered equivalent if they
produce the same output for every possible input. However, there are other relaxed
notions of equivalence commonly used in practice, defined based on three types of
transformations:

Input Permutations: Two functions are considered equivalent under input permu-
tations if one can be transformed into the other by permuting the input variables. For
example, the functions f(x, y) = ¬x ∧ y and g(x, y) = x ∧ ¬y are equivalent under input
permutations since f(x, y) = g(y, x).

Input Negations: Two functions are considered equivalent under input negations if
one can be transformed into the other by negating one or more input variables. For
example, the functions f(x, y) = x ∧ y and g(x, y) = ¬x ∧ y are equivalent under input
negations since f(x, y) = g(¬x, y).

Output Negation: Two functions are considered equivalent under output negation
if one can be transformed into the other by negating their output. For example, the
functions f(x, y) = x ∧ y and g(x, y) = ¬(x ∧ y) are equivalent under output negation

17

Chapter 2 Background

since f(x, y) = ¬g(x, y).

Two functions are considered NPN equivalent (short for Negation-Permutation-Negation)
if one can be transformed into the other using a combination of input negations, input
permutations, and output negation [23].

NPN equivalence is an equivalence relation, as it satisfies the properties of reflexivity
(a function is NPN-equivalent to itself), symmetry (if f is NPN-equivalent to g, then g

is NPN-equivalent to f), and transitivity (if f is NPN-equivalent to g and g is NPN-
equivalent to h, then f is NPN-equivalent to h). Thus, all functions defined on the same
support can be partitioned into NPN equivalence classes. There exists algorithms to
efficiently enumerate NPN classes for Boolean functions [78, 132, 152].

NPN equivalence is a powerful concept in logic synthesis, as it reduces the number of
distinct functions that need to be considered in many synthesis tasks. For instance, while
there are 224 = 65536 different 4-input Boolean functions, there are only 222 distinct
4-input NPN classes. Often, synthesis databases are constructed by considering only one
representative function from each NPN class for a fixed number of inputs (e.g., 4-input
functions).

2.2 Logic Representations

A logic representation is a method used to describe a Boolean function in a structured
and systematic manner. A given Boolean function can be represented in various forms,
including truth tables, algebraic expressions, binary decision diagrams, and logic networks.

2.2.1 Truth Tables

A truth table is a tabular representation of a Boolean function, listing all possible input
combinations and their corresponding output values. For example, consider the Boolean
function f(x, y, z) = x(y + z) + y′z. Its truth table representation is as follows:

x y z f(x, y, z)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

18

Background Chapter 2

By fixing the order of input variables, truth tables can be compactly represented as
a binary or hexadecimal string, where the i-th least significant bit corresponds to the
output value of the i-th row. For example, the truth table above can be encoded as
b’11100010 in binary or 0xe2 in hexadecimal.

Truth tables are straightforward and easy to understand, but their size grows exponentially
with the number of input variables, making them impractical for functions with many
inputs. A function with n Boolean inputs has 2n different input combinations, requiring
O(2n) space to store the truth table. For a multi-output function with n inputs and
m outputs, the truth table contains m columns, each of which can be represented as a
2n-bit binary/hexadecimal string.

2.2.2 Algebraic Expressions

Boolean functions can be expressed algebraically using logical AND, OR, and NOT
operations. For example, the function f(x, y, z) = x(y + z) + y′z discussed earlier is
represented as an algebraic expression.

Boolean functions can often have multiple equivalent algebraic expressions. For example,
the following algebraic expressions are equivalent representations of f(x, y, z):

f(x, y, z) = x(y + z) + y′z = xy + z(x + y′) = xy + z(x + y′).

Boolean algebraic properties can be used to manipulate such expressions and derive their
equivalent forms.

Due to multiple equivalent representations, it is not straightforward to compare two
algebraic expressions for equivalence. This has led to the development of canonical forms,
which provide a systematic and unique representation for any Boolean function.

2.2.3 Canonical Forms

A canonical algebraic form is a special case of algebraic expressions where the expression
is written in a standard form. Two common canonical forms are the Product-of-Sums
(POS) and Sum-of-Products (SOP) forms:

POS: Represents the function as a conjunction (AND) of maxterms, where each
maxterm is a disjunction (OR) of literals (variables or their negations). For
example, f(x, y, z) = (x + y + z)(x′ + y + z′)(x′ + y + z)(x + y′ + z′) is a POS
representation.

SOP: Represents the function as a disjunction (OR) of minterms, where each minterm
is a conjunction (AND) of literals. For example, f(x, y, z) = xyz′ +xy′z +xyz′ +

19

Chapter 2 Background

xyz is an SOP representation.

Canonical forms provide a unique representation for any Boolean function and are
useful in certain logic synthesis techniques. For example, the logic minimization tool
Espresso [36, 142] uses the SOP form to minimize Boolean functions. However, for
complex functions with hundreds of inputs, canonical forms can still be impractical due
to their exponential size.

2.2.4 Binary Decision Diagrams (BDDs)

A Binary Decision Diagram (BDD) [5, 96] is a directed acyclic graph (DAG) representation
of a Boolean function, where each node represents a Boolean variable and each edge
represents a variable assignment. The leaf nodes are labeled with the constants 0 or 1,
representing the function’s output. Ordered Binary Decision Diagrams (OBDDs) are
a variant of BDDs that enforce a fixed variable order, ensuring a unique and canonical
form for a given function with respect to the variable order. A special case of OBDDs is
Reduced Ordered Binary Decision Diagrams (ROBDDs) [40], which eliminate redundant
nodes and merge identical subgraphs to further reduce the size of the BDD.

A BDD can be constructed using the so-called Shannon decomposition rule:

f(x1, x2, . . . , xn) = x1f(1, x2, . . . , xn) + x′
1f(0, x2, . . . , xn),

which is used to recursively split the function based on the value of a variable.

While the worst-case complexity of BDDs is still exponential in the number of variables,
they can provide compact representations for many practical functions, as many real-
world functions exhibit shared structures that BDDs can exploit. BDDs are used in logic
synthesis tools such as CUDD [155] and ABC [34] for efficient manipulation of Boolean
functions in various optimization and verification tasks.

2.2.5 Logic Networks

A logic network is a multi-level representation of a Boolean function. It represents the
Boolean function as a network of interconnected logic gates, where each gate performs a
specific Boolean operation.

Logic networks are highly versatile representations. In general, a gate in a logic network
can correspond to any arbitrary logic function. For example, a technology-mapped
circuit may be represented as a logic network where nodes represent standard cells
from the target technology library, and edges represent connections between cells. In
technology-independent logic synthesis, however, synthesis tools typically use network
representations where the gates correspond to simple logic functions such as AND, OR,

20

Background Chapter 2

and NOT gates.

Mathematically, a logic network can be represented as a directed acyclic graph (DAG),
where nodes represent logic gates and edges represent connections between gates. Logic
networks sometimes omit explicit NOT gates; instead, the edges are annotated with a
binary flag denoting the presence of an implicit inverter along the edge.

The terminal nodes with no incoming edges (sources) represent the primary inputs (PIs),
and the terminal nodes with no outgoing edges (sinks) represent the primary outputs
(POs). A logic network may also represent a sequential digital circuit, where sources
may represent register outputs (ROs) and sinks may represent register inputs (RIs). The
corresponding RI/RO pairs are usually stored in a separate data structure along with
the respective initial values of the registers.

The fanins of a node n refer to the set of nodes that drive n, i.e., the nodes that have
directed edges to n. Similarly, the fanouts of a node n refer to the set of nodes driven by
n, i.e., the nodes that have directed edges from n. The transitive fanin (TFI) cone of a
node n is the set of all nodes from which n is reachable via a directed path. Analogously,
the transitive fanout (TFO) cone is the set of all nodes reachable from n via a directed
path.

Two of the most common types of logic networks used in logic synthesis are And-Inverter
Graphs (AIGs) and Majority-Inverter Graphs (MIGs). These are homogeneous networks,
meaning that all nodes in the network are of the same type (up to possible fan-in inversions
denoted by edge annotations). Both AIGs and MIGs are universal logic representations,
capable of representing any arbitrary Boolean function.

2.2.6 And-Inverter Graphs (AIGs)

And-Inverter Graphs (AIGs) [69, 92] are logic networks where internal (i.e., non-terminal)
nodes represent AND gates. Typically, 2-input AND gates are used as the basic building
block in AIGs, ensuring that each internal node has an in-degree of two. Inverters are
usually represented through edge annotations.

Given that the basic building block of CMOS technology is the 2-input NAND gate—which
can be mapped to a 2-input AND gate followed by an output inverter—AIGs are a
natural choice for representing logic circuits in the context of CMOS technology. AIGs
have been widely used in logic synthesis tools such as ABC [34] and libraries such as
mockturtle [154], owing to their simplicity and compatibility with many logic synthesis
algorithms.

AIGs support efficient structural hashing, a technique that uniquely identifies gates by
their fanin configuration, thereby allowing the identification and collapsing of logically

21

Chapter 2 Background

equivalent nodes.

2.2.7 Majority-Inverter Graphs (MIGs)

The k-input Boolean majority gate outputs 1 if and only if more than k/2 of its inputs
are 1. While majority-based logic synthesis has been studied since the 1960s [6, 7, 119],
it has recently been re-introduced as a new paradigm for logic synthesis [8, 9].

Majority-Inverter Graphs (MIGs) are defined similarly to AIGs, with the key difference
being that the internal nodes represent 3-input majority gates. Thus, each internal node
has an in-degree of three.

Note that when one input of a majority gate is tied to a constant 0 or 1, the gate behaves
as a 2-input AND or OR gate, respectively. Thus, MIGs are a generalization of AIGs.
Similar to AIGs, MIGs also support efficient structural hashing.

MIGs are supported by a sound and complete set of algebraic rules, known as the majority
algebra, which enables efficient manipulation and optimization of MIGs [13]. Using the
notation ⟨x1, x2, x3⟩ to denote a majority gate with inputs x1, x2, x3, the majority algebra
rules are as follows:

Commutativity: ⟨x1, x2, x3⟩ = ⟨x2, x3, x1⟩ = ⟨x3, x1, x2⟩,

Associativity: ⟨x1, ⟨x2, x3, x4⟩, x5⟩ = ⟨x5, ⟨x1, x2, x3⟩, x4⟩,

Distributivity: ⟨x1, x2, ⟨x3, x4, x5⟩⟩ = ⟨⟨x1, x2, x3⟩, x4, ⟨x1, x2, x5⟩⟩,

Majority: ⟨x, x, y⟩ = x, ⟨x, x̄, y⟩ = y,

Inverter Propagation: ⟨x̄, ȳ, z̄⟩ = ⟨x, y, z⟩.

MIGs are particularly useful in superconducting technologies (see Section 2.4 for more
details), where majority gates are the natural gate type. They are one of the fundamental
logic network types supported in the logic synthesis library mockturtle [154].

Other homogeneous networks using different types of 3-input gates have also been studied
for their representative power [109]. In addition to AIGs and MIGs, their heterogeneous
counterparts with additional XOR (XAGs and XMGs [59, 66]) or other operators such
as multiplexers have also been utilized in various contexts [15].

2.3 Logic Optimization

Logic optimization is the process of transforming a given Boolean function into an
equivalent function that satisfies certain criteria, such as minimizing the number of gates

22

Background Chapter 2

(e.g., in a network representation) or reducing the number of literals [37] (e.g., in an
algebraic expression).

Optimizations consist of heuristic-based methods and exact algorithms. Heuristic-based
methods often involve algebraic and Boolean manipulations to simplify the function, while
exact algorithms rely on formal methods such as Boolean satisfiability (SAT) [26, 88]
solvers.

In algebraic optimizations of logic networks, the outputs of internal nodes are expressed
as polynomials of the primary inputs (or with respect to some intermediate nodes).
Algebraic optimization [35, 37, 118] methods include:

Extraction: Identifying and factoring out common subexpressions.

Substitution: Replacing parts of an expression with equivalent expressions de-
rived from another node in the network.

Decomposition: Breaking down a node’s polynomial into smaller components.

Rewriting: Transforming a node’s expression into a different form.

For Majority-Inverter Graphs (MIGs), rewriting can be performed based on the majority
algebra rules.

In Boolean optimizations, similar to algebraic optimizations, substitutions and rewriting
are performed while also considering the Don’t-Care conditions [30, 45, 56, 118, 120, 133].
A don’t-care condition for an internal wire (or node) is an input combination under which
the output of the wire (or node) is not significant. This could occur either because the
input combination never arises in practice or because the output is never observed at
any primary output under that input combination.

Another type of Boolean optimization is redundancy removal under don’t-care conditions.
Nodes that are stuck at a constant value for all non-don’t-care inputs can be removed
after propagating the stuck-at constant to the outputs.

Exact methods aim to find the optimal solution to a given optimization problem. While
there are a few cases where efficient (polynomial-time) exact algorithms exist (e.g.,
minimum delay LUT mapping [52]), most optimization problems are NP-hard [53].
Consequently, these problems are often solved using SAT or Integer Linear Programming
(ILP) solvers after encoding the problem appropriately [151]. Alternatively, explicit
exhaustive enumeration can be used to systematically search through all possible solutions
to find the optimal one [65].

An important exact synthesis problem in logic synthesis is to synthesize the minimum
area circuit for a given Boolean function, while meeting a given set of constraints on

23

Chapter 2 Background

the input arrival times. Prior work on exact synthesis includes [14, 57, 67, 87, 89, 141]
and employs various approaches such as decomposition-based, SAT-based, and explicit
enumeration-based methods.

More details on logic optimization can be found in [68, 118].

2.4 Post-CMOS / Emerging Technologies

The continuous scaling of CMOS technology is approaching its fundamental limits, driving
research into alternative technologies to sustain the advancement of digital circuits. These
post-CMOS emerging technologies offer potential advantages in terms of performance,
power consumption, and density, while introducing unique challenges for logic synthesis.
Several promising families of post-CMOS technologies are being actively researched and
developed, including superconducting electronics [73], field-coupled nanotechnologies [16],
and photonic crystals [82, 179].

As these alternative technologies are gaining momentum, logic synthesis techniques are
being adapted to address the challenges posed by these technologies [12, 20, 71, 138]. Our
work primarily focuses on superconducting electronics and field-coupled nanotechnologies.

2.4.1 Superconducting Electronics (SCE)

Superconducting Electronics (SCE) utilize superconducting materials to achieve ultra-
low power dissipation and high operating speeds. SCE circuits operate at cryogenic
temperatures, where the resistance of superconducting interconnects becomes zero. SCE
logic gates are typically based on Josephson junctions, which exploit the Josephson
effect [72]. This effect exhibits non-linear current-voltage characteristics and is used to
implement various logic functions. Candidate technologies in the SCE domain include
Rapid Single Flux Quantum (RSFQ) [104], Reciprocal Quantum Logic (RQL), and
Adiabatic Quantum-Flux-Parametron (AQFP) [157]. Some of these technologies have
gained sufficient maturity so that medium-sized circuits have been realized [10, 17, 20, 127].
In many of these technologies, the fundamental logic gate is the 3-input majority gate,
while some technologies, such as AQFP, also support higher-fanin majority gates.

The AQFP technology has recently gained attention due to its ultra-low power con-
sumption and adiabatic operation. Namely, it achieves superior energy efficiency (uses
two orders of magnitude less energy compared to semiconductor technologies even after
cooling energy is taken into consideration [51]) using AC-biased Josephson junctions,
whereas most other SCE technologies use DC-biased junctions, which cause static power
dissipation. Since AQFP is one of the main post-CMOS technologies we focus on in this
work, we provide a brief overview of its key characteristics.

24

Background Chapter 2

Adiabatic Quantum-Flux-Parametron (AQFP)

In AQFP technology, logic gates are constructed using superconductive inductors and
Josephson Junctions (JJs). The number of JJs in an AQFP circuit is commonly used as
a proxy for area cost.

Takeuchi et al. [158] proposed a simple cell library for AQFP, consisting of four primitive
cells: buffer, inverter, constant, and branch. Gates are created using arrays of primitive
cells combined with branches, while splitters are constructed using buffers and branches.
The majority-3 gate comprises three buffer cells and a branch. Input-inverted versions of
majority-3 gates are constructed by substituting buffer cells with inverter cells [158]. As
such, explicit inverter cells are typically not needed except at the primary outputs if an
inverted gate output is required. Similarly, 2-input AND and OR gates are derived by
substituting a buffer cell with a constant 0 or 1 cell. Each primitive cell—buffer, inverter,
and constant—uses two JJs, meaning a splitter also uses 2 JJs. Thus, all gates, including
majority-3, AND-2, and OR-2, as well as their input-inverted versions, use 6 JJs each.

In AQFP logic, the majority-3 gate is the elementary gate, as AND and OR gates are
derived from it, all having the same area. Consequently, Cai et al. [41] proposed majority-
gate-based logic synthesis as a suitable optimization strategy for AQFP technology.

AQFP gates have weak output signals that cannot directly drive multiple fanouts. Instead,
splitters (or trees of splitters) must be used to boost the output signal for multiple fanouts.
Depending on the implementation, splitters can drive three or four fanouts [42, 158]. Our
synthesis experiments assume a branching capacity of four.

As with many superconducting technologies, AQFP gates are clocked, and logic values
propagate between consecutive gates when their active periods overlap. To ensure overlap,
all fanins of a gate n are clocked in the same phase, and n itself is clocked in the next
available phase (e.g., for a 4-phase clocking scheme, if fanins are activated by phase ϕ, n

is activated by ϕ + π/4). To achieve this:

1. Ensure all fanins of a gate are in the same logic level.

2. Map consecutive logic levels to consecutive rows of gates/buffers in the physical
circuit.

3. Activate consecutive rows of gates with clock signals in consecutive phases.

We note that, in general, it is not mandatory for all fanins to be exactly in the same
logic level; it is sufficient for them to be in the same logic level modulo the number of
clock phases. Even this requirement can be eliminated by adopting a more elaborate
clocking scheme, where non-consecutive clock phases can also overlap [144]. However,
such approaches are not yet widely adopted in practice, and most existing works on

25

Chapter 2 Background

AQFP focus on the setting where all fanins of a gate must be in the same logic level.
This thesis adheres to this convention as well.

The design of registers and the clocking mechanism can introduce varying requirements,
such as the need for splitters at primary inputs, path-balancing for primary inputs, and
path-balancing for primary outputs [143].

2.4.2 Field-Coupled Nanotechnologies (FCN)

Field-Coupled Nanotechnologies (FCN) encompass a range of nanotechnologies, including
Quantum-Dot Cellular Automata (QCA) [101, 102], Nanomagnet Logic (NML) [24, 54],
and Silicon Dangling Bonds (SiDB) [79, 135, 175]. In these technologies, information
is encoded using the polarization or magnetization of nanoscale building blocks called
cells. When placed in close proximity, these cells influence each other’s polarization
or magnetization through Coulomb interactions, enabling information transmission via
electric or magnetic coupling without the actual flow of charge. This allows for the design
of ultra-dense, low-power circuits.

As with superconducting technologies, FCN technologies exhibit tight fanout constraints
and path-balancing requirements. In addition, FCN technologies often require planariza-
tion, where crossing wires are prohibited. Instead, special crossing cells must be used
to handle signal path intersections. Making a circuit compatible with this constraint
by properly placing crossing cells is referred to as planarization. This process often
lengthens signal paths, increasing buffer overhead due to path-balancing constraints.
Consequently, in these technologies, interconnect costs (crossings and buffers) far exceed
gate costs [148].

For more details, we delve deeper into FCN technologies in Section 6.2.1 of Chapter 6,
focusing primarily on logic synthesis targeting these technologies.

26

3 Scalable Sequential Logic Synthe-
sis

As the scaling of CMOS technology approaches fundamental physical limits, optimizing
the power, performance, and area (PPA) of digital circuits has become increasingly
critical. While significant progress has been made in combinational logic synthesis, the
potential of sequential logic optimizations remains underexplored. This chapter delves
into sequential optimization, proposing novel optimization methods to bridge gaps in
conventional synthesis methodologies and unlock new PPA opportunities.

This chapter is based on the work [113] published in the Design, Automation, and Test in
Europe Conference (DATE) 2024. An extended version of the work has been submitted
to the journal IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems [112].

3.1 Introduction

Logic synthesis optimizes logic networks under various metrics, such as area, power, and
delay. It plays a crucial role in modern Electronic Design Automation (EDA) flows, and
can be broadly categorized into two types: combinational and sequential logic synthesis.

Combinational logic synthesis focuses on optimizing logic networks while maintaining
combinational equivalence. Even if a logic network has sequential elements, combinational
logic synthesis can still be applied by treating the register inputs/outputs as primary
outputs/inputs, ignoring any constraints on reachable states.

Sequential logic synthesis, in contrast, specifically targets the optimization of logic
networks with sequential elements. Since it can account for the fact that not all register
value combinations are reachable, it offers a more powerful form of logic synthesis. It is
well known that sequential logic synthesis explores a broader solution space and generally
achieves better power, performance, and area (PPA)[125]. These PPA benefits become
increasingly critical as the cost of chip design continues to rise [3].

27

Chapter 3 Scalable Sequential Logic Synthesis

Sequential logic synthesis has been studied in the past considering various approaches
[32, 47, 48, 58, 90, 99, 125, 146, 149]. One such approach is to integrate combinational
optimizations together with retiming [81, 99], which can exploit optimization opportu-
nities arising due to structural properties across register boundaries [32]. The key idea
behind this line of work is to move registers across combinational logic while optimizing
the resulting combinational logic segments with existing combinational optimization
techniques. A powerful yet scalable state-of-the-art approach is given by the sequen-
tial SAT-sweeping (SSW) algorithm from [125]. The basic idea of SSW is to merge
sequentially equivalent nodes, where it uses Bounded Model Checking (BMC), Boolean
Satisfiability (SAT), and sequential induction [27, 128, 168] to prove the validity of such
merge candidates.

In this chapter, we present a novel scalable algorithm for don’t cares-based sequential logic
synthesis. Our approach, by design, can work with dependencies among observability
don’t cares (ODCs), which is a challenging problem that has not been addressed in
prior approaches. Our method is based on sequential induction and is orthogonal to the
approach presented in [125]. In fact, our new method integrates both redundancy removal
and resubstitution, leveraging sequential observability don’t cares (SODCs). Moreover,
our method can be enhanced to work with multistep induction and the use of assumptions
to detect additional optimization opportunities. The latter is a version of sequential
induction where the validity of candidate logic transformations in the inductive case are
verified assuming they are already present in prior frames.

In combinational logic synthesis, ODCs—i.e., input patterns where the value of a wire
is not observed at the outputs—can be utilized to uncover better optimization oppor-
tunities [55, 98, 120, 126, 162, 180]. However, employing ODCs for optimization poses
inherent challenges, as the remaining ODCs can change after applying an ODC-based
optimization. These challenges are even more pronounced in sequential optimizations,
where it is particularly difficult to account for the sequential nature of circuits while
managing ODC dependencies. (It is worth noting that applying an ODC-based optimiza-
tion can also alter the set of reachable states.) Although the dependency issues can be
mitigated by restricting the analysis to compatible ODCs (CODCs)[145], i.e., ODCs that
can be used independently at each node, this approach can result in missed optimization
opportunities.

Nevertheless, the method we propose inherently handles ODC dependencies and hence
utilizes the full power of ODCs in sequential optimizations. This is achieved using an
inductive approach that takes the reachable states into account and performs simultaneous,
in-place optimization of two networks (base case and inductive case) using ODC-based
combinational optimization methods that are built on Boolean Satisfiability (SAT) [115].
To make it scalable, our approach uses windowing so that the SAT-problem sizes remain
manageable.

28

Scalable Sequential Logic Synthesis Chapter 3

The simultaneous optimization of the derived networks enables our method to naturally
identify valid ODC-based sequential optimizations that are compatible with one another,
without restricting the search space to CODC-based optimizations. As a result, it achieves
superior optimizations, particularly in circuits with sequential feedback, which can pose
challenges for traditional retiming-based techniques. In essence, our method uncovers
sequential optimizations that were previously unexplored by other approaches, while
maintaining scalability. Additionally, since our approach avoids moving registers over
combinational logic, the verification of the optimized networks is more likely to succeed,
making it more suitable for use in industrial tools. In contrast, retiming-based methods
often present challenges for verification tools due to the potential loss of anchor points
essential for verification.

Through optimization of technology independent logic, we have demonstrated that each
of the extensions improves the quality of results compared to the base version. Moreover,
our approach is shown to achieve a 6.9% average reduction in area after technology
mapping on top of state-of-the-art sequential optimization methods (e.g., SSW), with
a 2.89% reduction of combinational area and a 1.43% of sequential area post place &
route on industrial designs. All designs were verified using state-of-the-art sequential
verification tools [164].

The organization of the chapter is as follows: Section 3.2 discusses some background and
relevant prior work. Section 3.3 presents a motivating example for sequential synthesis
with ODCs followed by our novel scalable sequential logic synthesis approach, together
with the proofs of correctness for different versions of the algorithm. Section 3.4 presents
our experimental results, and finally, Section 3.5 concludes with a brief discussion of the
results and future work.

3.2 Preliminaries

In this section, we provide some background that will be useful to better understand
the rest of the chapter and briefly describe some state-of-the-art prior work in sequential
synthesis.

3.2.1 Sequential Logic Optimizations

In this section, we briefly introduce two important concepts that we use in our proposed
optimization approach: sequential redundancy and sequential resubstitution.

29

Chapter 3 Scalable Sequential Logic Synthesis

Sequential Redundancy

In logic synthesis, a redundancy is a node or a wire whose value is stuck at a constant
in all observable input (PI/RO) patterns. A redundant wire can be optimized away by
removing the origin node of the wire from the fanin set of the destination node and
modifying the destination node’s function accordingly. A node is redundant if all its
outgoing wires are redundant. Sequential redundancy is a generalization of a redundancy
where the stuck-at-constant property holds considering all observable input patterns and
reachable states.

Sequential Resubstitution

In logic synthesis, resubstitution refers to replacing a node n with a different node
m ̸= n. In general, m can be any existing node that is not in the TFO cone of n, or
it can be a new node constructed by combining several other non-TFO nodes (called
divisors). Boolean resubstitution refers to equivalence-preserving resubstitutions that are
computed considering Boolean properties such as don’t cares (DCs). Additionally, when
the implicit restrictions on reachable states of a sequential logic network are considered
during resubstitution, we refer to it as sequential resubstitution.

3.2.2 Don’t Cares in Logic Networks

In logic synthesis, a don’t care (DC) is an input pattern (i.e., similar to a minterm) for
which the output value of a node is not important [30]. Such patterns can be specified
either with respect to the primary inputs or any cut of the node. Note that the latter is
a generalization of the former since the set of PIs is a valid cut for any node. Don’t cares
have been extensively used in logic optimizations [22, 45, 140].

There are different types of don’t cares such as Controllability Don’t Care (CDC) and
Observability Don’t Care (ODC), which are described below. Note that, in addition to
CDC and ODCs, there is also the notion of Satisfiability Don’t Care (SDC)[118] which
are Boolean value combinations that never occur considering an internal wire. SDCs are
primarily used in the exhaustive computation of ODCs and CDCs.

Controllability Don’t Cares

The CDCs for a node n with respect to a cut I are the Boolean value combinations for I

which are impossible to occur. When the considered cut contains some internal nodes,
CDCs can occur due to the structure of the network. For example, if a node n as two
inputs x and y where x = a ∧ b and y = a ∨ b, the value combination x = 1 and y = 0
can never occur. Thus, considering the cut {x, y}, the value combination x ∧ ¬y is a

30

Scalable Sequential Logic Synthesis Chapter 3

CDC for n. (Consequently, if n computes x ∧ ¬y, a CDC-based optimization algorithm
might optimized it away and replace it with the constant 0.) A logic network might also
have some impossible PI patterns due to external constraints„ and such patterns are
called external CDCs.

Observability Don’t Cares

The ODCs for a node n with respect to a cut I are the Boolean value combinations for
I for which the output of n is not observed at any PO. For example, in Fig. 3.1 (a),
consider the node w1 with respect to the cut {a, b, d}. For any pattern where a = 1, b = 0,
w1 is not observed at the output o1 because the output gate’s second fanin, g2, will be 0
under such a pattern. Thus a ∧ ¬b is an ODC for w1.

The ODCs of nodes in a logic network can have dependencies among themselves. Namely,
if an optimization with respect to an ODC is performed for a particular node, it can change
the ODCs of other downstream nodes, and hence, ODCs will have to be recomputed
for those nodes. This added complexity can be avoid by using a less powerful version
of ODCs, called Compatible ODCs (CODCs) [33, 145], that do not have dependencies
among themselves.

3.2.3 Prior Work on Sequential Synthesis

A common optimization approach in early works on sequential synthesis is to use retiming
together with logic transformations [32, 58]. In this approach, first, the registers are
moved around, then the resulting circuit is optimized using combinational methods, and
finally retiming is performed again to minimize the register count. During retiming,
if some reconvergent paths have varying numbers of registers, the usual practice is to
remove such paths by duplicating the shared nodes, considering small blocks of logic.
In contrast, our SODC-based approach does not move registers, thus it avoids the
duplication requirement of shared logic. Moreover, our approach scales well to much
larger logic blocks.

Another prominent sequential optimization method is sequential SAT-sweeping (SSW),
which is a generalization of combinational SAT-sweeping [92, 121] to the sequential setting,
where the idea is to merge sequentially-equivalent nodes. If two nodes m and n are
equivalent under all observable input patterns of n in all reachable states, n can be merged
with m by transferring the fanouts of n to m, without changing the overall output function
of the network. An efficient SSW algorithm is proposed in [125] where the sequential
equivalences among nodes are proven using bounded model checking (BMC) [25] and SAT
together with induction [27, 128, 168]. Once the equivalence classes are identified, all
nodes in a class are merged into a chosen representative node and the dangling nodes are
removed. Despite its practical success, SSW misses many optimizations made possible

31

Chapter 3 Scalable Sequential Logic Synthesis

due to SODCs. Notably, SSW cannot optimize the simple sequential logic network in
Fig. 3.2(a) into the one in Fig. 3.2(b).

Additionally, Case et al. [48] considered a simulation-based approach to find merge
candidates considering ODCs. Namely, the network is simulated with random bit
patterns to identify node pairs a, b such that for each simulated pattern, either a and
b are equal or all paths from b to combinational outputs are non-controlling. Then
a new network is created with all candidates merged, the equivalence of the new and
original network is proven/disproven using SAT, and if disproved, the merge candidates
are refined. However, this approach does not scale well to large networks due to large
miters used in equivalence checking and hence misses many optimization opportunities.
In contrast, we use a window-based approach and check the validity of each optimization
in isolation; hence the SAT-based validity checks are scalable.

The method we propose in the next section is able to find optimizations that were never
found by the prior approaches.

3.3 Scalable Sequential Optimization

In this section, we first give a brief motivation for our proposed method and introduce
sequential induction. Then, we discuss our novel sequential optimization approach in
detail with a formal proof of correctness. Lastly, we analyze some of the limitations of
the proposed method and possible workarounds.

3.3.1 Motivation

Consider the purely combinational logic network shown in Fig. 3.1(a) and observe that
the wires g1 and g2 can never be 1 at the same time. This implies that whenever g2 = 1,
g1 must be 0. Since w2 is observed at output o1 only when g2 = 1, one can simplify the
circuit by assuming that g1 is stuck at 0, which, in turn, implies that w1 is also stuck
at 0. This leads to the optimized circuit in Fig. 3.1(b).

a
b

g1

d
w1

e
w2

o1
a
b

g2
a
b

g2

e o1

(a) (b)

Figure 3.1: A combinational logic network (a) and its optimized version (b).

Now consider the sequential circuit in Fig. 3.2(a) which is similar to the one in Fig. 3.1(a)
except for the two registers at g1 and g2. If we consider this as a combinational network
(i.e., disregard the registers, consider g1, g2 to be POs, and consider lo1, lo2 to be PIs),
the previous reasoning no longer applies; lo1, lo2 can take arbitrary values, and hence lo1

32

Scalable Sequential Logic Synthesis Chapter 3

is observed even when it is 1. However, if we additionally know that the initial values of
lo1, lo2 are (0, 0) (or any combination of values different from (1, 1)), the optimization is
still possible. This is because, by design, lo1 and lo2 can never be 1 at the same time
in the subsequent clock cycles. This observation yields the optimized circuit shown in
Fig. 3.2(b). The state-of-the-art sequential optimization routines such as scorr, lcorr, scl,
and retime of the logic synthesis tool ABC [34] are unable to find this optimization.

D Q
g1a

b
lo1

d
w1

e
w2

o1

D Q
g2a

b
lo2

(a)

D Q
g2a

b
lo2

e o1

(b)

lo1
(0)

lo2
(0)

a(0)

b(0)

d(0)

e(0)

li1
(0)

li2
(0)

o1
(0)

a
b

g1

a
b

g2

lo1
d

w1 w2

e
lo2

o1

0

0

(c)

lo1
(0)

lo2
(0)

a(0)

b(0)

d(0)

e(0)

li1
(0)

li2
(0)

o1
(0)

a
b

g1

a
b

g2

lo1
d

w1 w2

e
lo2

o1

lo1
(1)

lo2
(1)

a(1)

b(1)

d(1)

e(1)

li1
(1)

li2
(1)

o1
(1)

a
b

g1

a
b

g2

lo1
d

w1 w2

e
lo2

o1

X

Y

(d)

Figure 3.2: A sequential logic network (a), its optimized version (b), and its base case
network (c) and the inductive case network (d) for 1-step sequential induction.

The goal of the proposed method is to identify this kind of optimization opportunities
in sequential logic networks in a scalable way. We remark that, while a retiming-based
optimization method might be able to optimize the example above, such methods perform
poorly especially when there is sequential feedback (e.g., finite state machines) or varying
numbers of registers along different reconvergent logic paths.

3.3.2 Sequential ODCs

The optimization in the example holds due to two facts:

1. (Reachability) Not all states (value combinations for the sequential elements) are
reachable.

2. (Observability) In all reachable states, the optimization is valid due to the ODCs.

These two facts together form a notion of sequential ODCs (SODCs), a generalization of
ODCs in combinational logic networks into the sequential setting.

33

Chapter 3 Scalable Sequential Logic Synthesis

Recall that a sequential network can be optimized by considering it as a combinational
network, using combinational synthesis algorithms, where the register inputs are consid-
ered as primary outputs and the register outputs are considered as primary inputs. In
this setting, suppose that the complete set of unreachable states are somehow known
beforehand. Then, we can input such unreachable states as external CDCs, and use
an external-CDC-based synthesis algorithm to optimize the network, and this would
effectively perform sequential synthesis. The ODCs that exists when such unreachable
states are considered as external CDCs are called SODCs.

In practice, the set of unreachable states is not known beforehand; but are implicitly
defined by the structure of the network and the initial states. Thus, to consider SODCs
in optimizations, an algorithm has to somehow reason about the reachable/unreachable
states, and completely characterizing the set of SODCs is a computationally hard problem.
In what follows, we present a framework that can be used to approximate SODCs of
sequential networks.

3.3.3 Framework Definition

To use SODCs in optimization, we first take the reachability of states into account. To this
end, a widely used technique is to use the so-called sequential induction [27, 168] which
leverages two combinational networks called the base case network and the inductive
case network that are obtained using k-step unrolling as defined below in Definition 1.

Definition 1 (k-Step Unrolling). For a sequential logic network N, the k-step base case
network N b is the combinational network obtained by

1. taking k copies of N (referred to as frames),

2. connecting the RIs of each frame to the corresponding ROs of the subsequent frame,

3. replacing the ROs of the first frame with the respective register initial values, and

4. designating RIs of each frame as POs.

The k-step inductive case network N i is similarly defined except with the following
changes:

1. it has k + 1 frames, and

2. the ROs of the first frame are designated as PIs.

For the example network of Fig. 3.2(a), the base case and the inductive case networks
for 1-step (i.e., for k = 1) sequential induction are shown in Fig. 3.2(c) and Fig. 3.2(d)

34

Scalable Sequential Logic Synthesis Chapter 3

respectively. Note that in all figures, wires between frame inputs and gates are implicit,
i.e., a frame input x(i) is connected to gate pins denoted by x. The behavior of N b is the
same as that of the original network N for the initial k clock cycles and the behavior of
N i is the same as k + 1 consecutive clock cycles of N for any initial state. As formally
stated in Theorem 1, if an optimization is valid in all frames of the base case and the
last frame of the inductive case, then it is a valid sequential optimization for the original
network.

On top of the reachability criterion, we consider the observability to identify sequential
optimization opportunities. It seems straightforward to consider the sets of ODC-based
optimizations in the base case and inductive networks and then take the intersection
of the two sets as the final set of optimizations. However, as discussed in Section 3.1,
this approach only works with CODCs which do not have dependencies among them.
Unfortunately, using CODCs in place of ODCs leads to many missed optimization
opportunities. The regular ODCs can have dependencies in them, and cause this simple
algorithm to fail. In the remainder of this section, we present an algorithm that, by
design, avoids dependency issues of regular ODCs without falling back to CODCs.

3.3.4 Proposed Method

Our proposed algorithm is based on sequential induction and it can fully utilize ODCs
by simultaneously optimizing base case and inductive case networks.

Namely, we start by constructing the 1-step unrolled base case and inductive case
networks for sequential induction. Then, considering one node at a time, we check if
there is a valid optimization for that node in both the base case and the inductive
case networks. If so, we immediately update both the derived networks as well as the
original network by applying the optimization. This approach allows the algorithm to
find subsequent optimizations for the remaining nodes that may depend on the already
applied optimizations. Thus it avoids any dependency issues that would arise if we were
to use the simple approach we stated at the end of Section 3.3.3 with regular ODCs.
Hence, the algorithm computes compatible sequential optimizations without limiting to
CODCs.

To find optimizations, the algorithm considers fanin redundancies for each gate n in the
network. Namely, for each fanin f of n we check whether f is effectively stuck at 0 or 1
in

1. the the base case network, and

2. the last frame of the inductive case network.

Since both the base case and inductive case networks are purely combinational, it is

35

Chapter 3 Scalable Sequential Logic Synthesis

possible to use any combinational redundancy check for this purpose. To this end, let
n′ be the node obtained by fixing fanin f of n at the target constant value. In our
implementation, we check if replacing n with n′ is valid using a SAT problem. If the
problem is unsatisfiable (UNSAT), then the optimization is valid. To make the overall
algorithm scalable, we optimize the SAT formulation not to consider all POs and RIs,
but instead consider the leaf nodes of a small TFO cone rooted at n. If the optimization
is shown to be valid for both the base and inductive case networks, then we apply it in
both the networks as well as in the original network (see Section 3.3.5 for details).

As an illustrative example, consider Fig. 3.2(a). We can prove, that w1 is stuck at 0, in
both the base case and the inductive case networks, which will result in the optimized
network in Fig. 3.2(b) (assuming all registers are initially 0).

We consider three enhancements on our proposed method which enables it to find more
optimization opportunities.

Enhancement 1

We extend our algorithm to use k-step sequential induction where the base case network
has k ≥ 1 frames and the inductive case network has k + 1 frames. In this case, we check
if the target ∆ redundancy is valid in

1. all k frames of the base case network, and

2. the last frame of the inductive case network.

If the considered redundancy is valid in both cases, then we apply it in all frames of the
two derived networks as well as in the original network.

Fig. 3.3(a) shows an example sequential network which can be optimized to the one in
Fig. 3.3(b) with 2-step sequential induction (assuming all registers are initially 0). In
the last frame of the inductive network (Fig. 3.3(c)), lo3, lo4 are fed by the gates g1, g2
of the first frame, so lo3, lo4 of the last frame are never 1 at the same time. Thus the
algorithm is able to prove that w1 of the last frame is stuck at zero. In contrast, if 1-step
induction were to be used, we only get the first two frames of Fig. 3.3(c), and the second
frame’s lo3, lo4 are driven by two arbitrary inputs from the first frame. Hence, all value
combinations are possible, so w1 of the second frame is not stuck at zero.

Enhancement 2

Our approach is not limited to fanin redundancies but also extends to resubstitutions
under ODCs. Namely, for a considered node n, we consider a subset D (called divisors)

36

Scalable Sequential Logic Synthesis Chapter 3

D Q
g1a

b
D Q

lo1 lo3

d
w1

e
w2

o1

D Q
g2a

b
D Q

lo2 lo4

(a)

D Q
g2a

b
D Q

lo2 lo4

e o1

(b)

X

Y

Z

W

lo1
(0)

lo2
(0)

lo3
(0)

lo4
(0)

a(0)
b(0)
d(0)
e(0)

li1
(0)

li2
(0)

li3
(0)

li4
(0)

o1
(0)

a
b

g1

a
b

g2

lo3
d

w1 w2

e
lo4

o1

lo1
(1)

lo2
(1)

lo3
(1)

lo4
(1)

a(1)
b(1)
d(1)
e(1)

li1
(1)

li2
(1)

li3
(1)

li4
(1)

o1
(1)

a
b

g1

a
b

g2

lo3
d

w1 w2

e
lo4

o1

lo1
(2)

lo2
(2)

lo3
(2)

lo4
(2)

a(2)
b(2)
d(2)
e(2)

li1
(2)

li2
(2)

li3
(2)

li4
(2)

o1
(2)

a
b

g1

a
b

g2

lo3
d

w1 w2

e
lo4

o1

(c)

Figure 3.3: A sequential logic network (a), its optimized version (b), and its inductive
case network (c) for 2-step sequential induction.

of nodes that are not in the TFO cone of n. Then, we consider all versions of n obtained
by replacing one of its fanins with one of the nodes in D as resubstitution candidates for
n. As with the redundancies, for each resubstitution candidate n′, we use SAT to check
if some window output would differ when n is replaced with n′.

Enhancement 3

We further improve our method by considering redundancy assumptions in the base case
and the inductive case networks. To elaborate, suppose that we found a valid optimization
∆ for the first frame of the base case. Then, we check whether ∆ is also valid for the
subsequent frames, assuming that the all preceding frames are already updated with ∆.
Namely, for i > 1, we check if ∆ is valid for frame i of the base case, assuming all frames
1, . . . , i− 1 are transformed with ∆. Once the validity of ∆ is confirmed in all frames of
the base case network, update the first k frames of the inductive case network with ∆
and check for its validity in the last frame. At any point, if we find ∆ is not valid for the
considered frame, we undo it in all previous frames.

Fig. 3.4(a) shows a simple sequential network with feedback whose output is always zero
provided that the initial state of the register is zero. With assumptions, our proposed
method is able to prove this. For the base case, it is clear that g1 is stuck at zero. For
the inductive case (shown in Fig. 3.4(b)), if we assume g1 of the first frame is stuck at

37

Chapter 3 Scalable Sequential Logic Synthesis

g1
D Q

g2 lo1

o1

a
b

lo1
(0)

a(0)

b(0)

li1
(0)

o1
(0)

g1
g2

lo1
a

b

lo1
(1)

a(1)

b(1)

li1
(1)

o1
(1)

g1
g2

lo1
a

b

X

(a) (b)

Figure 3.4: A sequential logic network with feedback (a) and its inductive case network
(b) for 1-step sequential induction before applying assumptions in the first frame.

zero, then so is g1 in the second frame. This is also an example of a sequential network
that is not optimized by retiming-based methods.

3.3.5 Complete Algorithm

The high-level pseudocode of our method without assumptions (i.e., with the first and
second enhancements above) is presented in Algorithm 3.1 whereas the Algorithm 3.2
shows the pseudocode considering all three enhancements.

In both our algorithms, we use the following definition of dangling registers:

Definition 2 (Dangling Registers). We say that a register r in a logic network N is
non-dangling if there is a combinational logic path from the RO of r to either

1. any PO, or

2. the RI of any other non-dangling register.

All remaining registers are called dangling registers.

In Algorithm 3.1, after constructing the two derived networks N b and N i, the gates of
the input network are processed one at a time. For each gate, the algorithm iterates of
candidate optimizations ∆ and checks if ∆ is valid for all frames of the base case network
N b. If so, it checks if ∆ is also valid for the last frame of the inductive network N i. If
both checks succeed, the algorithm applies ∆ in all frames of the two derived networks
as well as in the original network N .

Algorithm 3.2 is an enhanced version of Algorithm 3.1 which additionally support
temporary application, and if necessary, undoing of unconfirmed candidate optimizations.
In Line 4 of Algorithm 3.2, the algorithm iterates over all gates in the original network,
and in Line 5, it considers different optimization candidates ∆. We use the letter ∆
to denote a simple logic transformation such as a fanin redundancy or a resubstitution.
Then, for each frame of the base case network, the algorithm checks if ∆ is valid in that
frame; if it is valid, then the algorithm applies ∆ in that frame (Line 6-Line 10). If it is

38

Scalable Sequential Logic Synthesis Chapter 3

Algorithm 3.1: High-level pseudocode of sequential optimization with k-step induc-
tion without assumptions.
Input : Input network N . Number of frames k.
Output : Updated network N .

1 N b ← N unrolled into k frames and first frame ROs replaced with initial states.
2 N i ← N unrolled into k + 1 frames.
3 Let N b,j , N i,j denote the j-th frame of N b, N i respectively.
4 for each gate g ∈ N do
5 for each candidate optimization ∆ for g do
6 if ∆ is not valid in all frames of N b then
7 Continue loop.

8 if ∆ is invalid for g in N i,k+1 then
9 Continue loop.

10 Apply ∆ in N b,1, . . . , N b,k.
11 Apply ∆ in N i,1, . . . , N i,k+1.
12 Apply ∆ in N .

13 Recursively remove all dangling registers and their MFFCs from N .
14 return N

valid in all frames of the base case network, then it applies ∆ in the first k frames of the
inductive case network (Line 11) and checks for the validity in the last frame (Line 12)
of the inductive case network. If it is valid, the algorithm applies ∆ in the last frame
(Line 15) as well as in the original network (Line 16). At any point, if ∆ is invalid for
the considered frame, it undoes all preceding applications of it (Line 8 and Line 13).

In Lines 7 and 12, to check for the validity of a target optimization ∆, the algorithm
first constructs a window around the target node in the respective network. (Note that
the window is not restricted to the considered frame; to take the reachable states into
consideration, the window should span to all previous frames in general.) Then it encodes
the following as a SAT problem:

Is there an input pattern (for the window) that would make at least one output
differ for the window with and without the candidate optimization?

In other words, the algorithm constructs a miter to compare the outputs of the window
with and without the optimization and checks if the miter can be satisfied. If it is UNSAT,
then the target optimization is valid. The size of the window and the conflict limit for
the SAT solver are configurable parameters.

39

Chapter 3 Scalable Sequential Logic Synthesis

Algorithm 3.2: High-level pseudocode of sequential optimization with k-step induc-
tion with assumptions.
Input : Input network N . Number of frames k.
Output : Updated network N .

1 N b ← N unrolled into k frames and first frame ROs replaced with initial states.
2 N i ← N unrolled into k + 1 frames.
3 Let N b,j , N i,j denote the j-th frame of N b, N i respectively.
4 for each gate g ∈ N do
5 for each candidate optimization ∆ for g do
6 for j = 1, . . . , k do
7 if ∆ is invalid for g in N b,j then
8 Undo ∆ in all frames N b,1, . . . , N b,j−1.
9 Continue outer loop.

10 Apply ∆ in N b,j .

11 Apply ∆ in N i,1, . . . , N i,k.
12 if ∆ is invalid for g in N i,k+1 then
13 Undo ∆ in N b,1, . . . , N b,k and N i,1, . . . , N i,k.
14 Continue loop.

15 Apply ∆ in N i,k+1.
16 Apply ∆ in N .

17 Recursively remove all dangling registers and their MFFCs from N .
18 return N

3.3.6 Correctness of the Proposed Approach

In this section, we show the correctness of our algorithms, both with and without the use
of assumptions. To this end, we consider sequential networks in the following setting:

1. All sequential elements in the network are positive-edge-triggered D flip-flops,

2. PIs are set on the negative edge of the clock, and

3. The clock edge that immediately following the reset is a negative edge.

We label the positive clock edges that follows reset by non-negative integers 0, 1, 2,
Unless explicitly mentioned otherwise, we use the following notations in our theorems
and proofs: we denote the input sequential logic network by N , and assume that it has
m PIs, n POs, and ℓ registers. Let For x ∈ Bm and y ∈ Bℓ, let PO(N, x, y) ∈ Bn and

40

Scalable Sequential Logic Synthesis Chapter 3

RI(N, x, y) ∈ Bℓ, respectively, denote the PO and RI values of N when PIs are set to x

and register states (ROs) are set to y. We use y0 ∈ Bℓ to denote the initial state of the
registers. Let {x}T0 = x0, x1, . . . , xT where xi ∈ Bm for all i = 0, 1, . . . , T be a sequence of
Boolean vectors. Given a sequence {x}T0 and initial state y ∈ Bℓ, suppose that registers
are set to y at reset and that xt is set as PI values at t-th negative clock edge. We observe
the PO and RI values just before the T -th positive clock edge. Let PO(N, {x}T0 , y) ∈ Bn

and RI(N, {x}T0 , y) ∈ Bℓ, respectively, denote the resulting PO values and RI values.

For two networks N1, N2, we define EQ(N1, N2, T, y1, y2) to be the proposition that for
any sequence of T PI vectors, the PO values of the two networks are the same, when
started, respectively, from y1 and y2 as the initial state. Formally,

EQ(N1, N2, T, y1, y2) := For all sequences {x}T0 ∈ Bm×T ,

PO(N1, {x}T0 , y1) = PO(N2, {x}T0 , y2).

Similarly, we define EQ⋆(N1, N2, T, y) to be the proposition that for any sequence of T

PI vectors, the PO and RI values of the two networks are the same, when started from y

as the initial state. Formally,

EQ⋆(N1, N2, T, y) := For all sequences {x}T0 ∈ Bm×T ,

PO(N1, {x}T0 , y) = PO(N2, {x}T0 , y) and
RI(N1, {x}T0 , y) = RI(N2, {x}T0 , y).

Note that, here, both networks are initialized with the same initial state y.

We now define the notion of sequential equivalence and strong sequential equivalence.

Definition 3 (Sequential Equivalence). Suppose that N1 and N2 are two sequential
networks with m PIs and n POs, and suppose that N1 has ℓ1 registers and N2 has ℓ2
registers. Let y1

0 ∈ Bℓ1 and y2
0 ∈ Bℓ2 be the initial states of the registers of N1 and N2,

respectively. We say that two sequential networks N1 and N2 are sequentially equivalent
if EQ(N1, N2, T, y1

0, y2
0) is true for all T ∈ N0.

When ℓ1 = ℓ2 and y1
0 = y2

0, we say that N1 and N2 are strongly sequentially equivalent if
EQ⋆(N1, N2, T, y1

0) is true for all T ∈ N0.

Our goal is to show that the output of Algorithm 3.2 is sequentially equivalent to the
input network. Outline of our proof is as follows:

1. Show that the intermediate network we get before removing dangling registers, i.e.,
the network N just before Line 17, is sequential equivalent to the input network.

2. Show that removing the dangling registers in Line 17 does not affect the sequential

41

Chapter 3 Scalable Sequential Logic Synthesis

equivalence.

For step 1 above, we in fact show the stronger result that the intermediate network
is strongly sequentially equivalent to the input network. To this end, we first start
with the following lemma, which essentially yields an alternative definition of sequential
equivalence.

Lemma 1. Let N1, N2 be two logic networks with the same initial state y0, and let
S ⊆ Bℓ be the set of all reachable states of N1. If PO(N1, x, y) = PO(N2, x, y) and
RI(N1, x, y) = RI(N2, x, y) for all x ∈ Bm and y ∈ S, then N1 and N2 are strongly
sequentially equivalent.

Proof. Suppose that for all x ∈ Bm and y ∈ S, it holds that

PO(N1, x, y) = PO(N2, x, y) (3.1)

and

RI(N1, x, y) = RI(N2, x, y). (3.2)

We show that, for any sequence {x}T0 ,

PO(N1, {x}T0 , y0) = PO(N2, {x}T0 , y0) (3.3)

and

RI(N1, {x}T0 , y0) = RI(N2, {x}T0 , y0) (3.4)

using induction.

To this end, fix any sequence {x}T0 . We use the notation {x}t0 to denote the subsequence
x0, x1, . . . , xt. Considering the initial clock cycle, we have

PO(N1, {x}00, y0) = PO(N1, x0, y0)
= PO(N2, x0, y0)
= PO(N2, {x}00, y0)

and

RI(N1, {x}00, y0) = RI(N1, x0, y0)
= RI(N2, x0, y0)
= RI(N2, {x}00, y0).

In derivations above, the second equality follows due to Eqs. (3.1) and (3.2).

42

Scalable Sequential Logic Synthesis Chapter 3

As the inductive hypothesis, assume that for a positive integer t such that T ≥ t > 0,

RI(N1, {x}t−1
0 , y0) = RI(N2, {x}t−1

0 , y0).

Note that RI(N1, {x}t−1
0 , y0) is also in S. Then we have

PO(N1, {x}t0, y0) = PO
(
N1, xt, RI(N1, {x}t−1

0)
)

= PO
(
N2, xt, RI(N2, {x}t−1

0)
)

= PO(N2, {x}t0, y0)

and

RI(N1, {x}t0, y0) = RI
(
N1, xt, RI(N1, {x}t−1

0)
)

= RI
(
N2, xt, RI(N2, {x}t−1

0)
)

= RI(N2, {x}t0, y0).

In derivations above, again, the second equality follows due to Eqs. (3.1) and (3.2).

Thus, by induction, it follows that Eqs. (3.3) and (3.4) hold for {x}T0 .

With Lemma 1, we now show that the strong sequential equivalence holds with respect
to a single valid transformation ∆. Namely, we show the following lemma:

Lemma 2. Consider a logic network N and its k-step base case and inductive versions
N b and N i. Let ∆ be a logic transformation and let N∆, N b

∆, N i
∆, respectively, be the

networks obtained by applying ∆ to N, to all frames of N b, and to the last frame of N i.
If N b and N i, respectively, are combinationally equivalent to N b

∆ and N i
∆, then N and

N∆ are sequentially equivalent.

Proof. Let S be the set of reachable states, and note that S can be decomposed as the
countable union S = S0 ∪ S1 ∪ S2 . . ., where S0 is the set with only the initial state, S1
is the set of reachable states after the first clock cycle, S2 is the set of reachable states
after the second clock cycle, and so on.

We first claim the following: For i = 0, 1, 2, . . ., for any x ∈ Bm and y ∈ S0 ∪ S1 ∪ S2 . . .,
we have that PO(N, x, y) = PO(N∆, x, y) and RI(N, x, y) = RI(N∆, x, y).

To see this, first fix any i ∈ {0, . . . , k − 1}, and let y ∈ Si. Let x0, . . . , xi−1 be the
sequence of PI vectors that resulted in state y after i clock cycles. Now, for networks N b

and N b
∆, set the j-th frame PIs to xj for j = 0, . . . , i− 1, set i-th frame PIs to x, and set

the remaining PIs arbitrarily (but same for both networks). By design of N b, we must
have its i− 1-th frame RIs set to y, and by combinational equivalence, the same holds

43

Chapter 3 Scalable Sequential Logic Synthesis

for N b
∆. Thus, considering the combinational equivalence for i-th frame POs and RIs,

the claim above holds for i-th frame.

Now, fix any i ≥ k, let y ∈ Si and let x0, x1 . . . xi−1 be the sequence of PI vectors that
resulted in state y after i clock cycles as before. This time, we use the equivalence of
N i and N i

∆, and for this, we set ROs of the 0-th frame to state we get on sequence
x0, . . . , xi−k, and we set j-th frame PIs to xi−k+j for j = 0, . . . , k − 1, and k-th frame
PIs to x. Then, by the combinational equivalence of N i and N i

∆, considering the last
frame POs and RIs, we have that the claim holds for i-th frame.

With Lemma 2, we now proceed to show that the input network of Algorithm 3.2 is
sequentially equivalent to the output network.

Theorem 1. Let N be the input network of Algorithm 3.1 and let N⋆ be the output
network. Then N and N⋆ are sequentially equivalent.

Proof. Let N int denote the intermediate network produced by Algorithm 3.1 just before
removing dangling registers, i.e., just before Line 17. Note that N int is obtained from N

by applying a sequence of valid transformations, and each transformation preserves the
strong sequential equivalence due to Lemma 2. Thus N int and N are strongly sequentially
equivalent, which is a special case of being sequentially equivalent.

Observe that removing dangling registers and their MFFCs does not affect the value
of any PO or any remaining non-dangling register. Thus, N int and N⋆ are sequentially
equivalent. Finally, since sequential equivalence is transitive by definition, we have that
N and N⋆ are sequentially equivalent.

3.3.7 Characterizing SODC-Optimizable Transformations

As proven above, our approach only finds correct SODC-based optimizations, so it has
the soundness property. However, due to the limitations of sequential induction, the
proposed algorithm is not complete, i.e., it is unable to prove all valid SODC-based fanin
redundancies/resubstitutions.

In the remainder of this section, we examine in what situations the proposed method
can find the SODC-based optimizations and propose workarounds for situations where it
may struggle to do so.

Networks without sequential feedback

Consider a sequential network with no sequential feedback. This means that for any
register, its future (not necessarily the immediate next state) state does not depend its

44

Scalable Sequential Logic Synthesis Chapter 3

D Q

R1

D Q

R2

D Q

R3

a
b

en

en

a
b

c

o1

ro1

ro2

ro3

ri1

ri2

ri3

ro1

en

ro1
ro2

ro2

en

ro1
ro2

c

o1ro1
ro2
ro3

en

a

b

c

Figure 3.5: An example sequential circuit and its frame representation.

ro1
(0)

ro2
(0)

ro3
(0)

ri1
(0)

ri2
(0)

ri3
(0)

o1
(0)

ro1

en

a
b

ro2

en

a
b

c

ro1
ro2
ro3

en(0)

a(0)

b(0)

c(0)

ro1
(1)

ro2
(1)

ro3
(1)

ri1
(1)

ri2
(1)

ri3
(1)

o1
(1)

ro1

en

a
b

ro2

en

a
b

c

ro1
ro2
ro3

en(1)

a(1)

b(1)

c(1)

Figure 3.6: The inductive network for the sequential circuit in Figure 3.5.

current state. For such a network N , let d be the sequential depth, which is the maximum
number of registers in any path from a PI to a PO. If our proposed methods is used to
optimize N using d-step sequential induction, then our method is capable of finding any
valid SODC-based optimization. This is because, the reachable states approximated by
the inductive case network will be the same as the actual reachable states after d clock
cycles.

Networks with sequential feedback

In networks with sequential feedback, the future state of a register can depend on its
current state. In such networks, the number of sequential induction steps required
to characterize all reachable states can be exponential, and hence it is impractical.
Moreover, unless assumptions are used, it may not be possible to find all valid SODC-
based optimizations with sequential induction.

Consider the following example sequential circuit (Fig. 3.5) and its inductive case network
for sequential induction (Fig. 3.6). Suppose that all registers are initially set to 0, and
observe that R1 and R2 can never be 1 at the same time. Thus, the output o1 is stuck
at 0.

We analyze under what conditions our proposed method is able to find the above
optimization.

Note that in the 1-step inductive case network shown in Fig. 3.6, the ro1 and ro2 of the
initial frame are considered as PIs, thus they can take arbitrary values. When en is 0,
these values can propagate to the next frame, and if ro1, ro2, and c of initial frame are

45

Chapter 3 Scalable Sequential Logic Synthesis

ro1
(0)

ro2
(0)

ro3
(0)

ri1
(0)

ri2
(0)

ri3
(0)

o1
(0)

ro1

en

a
b

ro2

en

a
b

c

ro1ro2
ro3

en(0)

a(0)

b(0)

c(0)

ro1
(1)

ro2
(1)

ro3
(1)

ri1
(1)

ri2
(1)

ri3
(1)

o1
(1)

ro1

en

a
b

ro2

en

a
b

c

ro1ro2
ro3

en(1)

a(1)

b(1)

c(1)

Figure 3.7: The inductive network for the sequential network in Figure 3.5, where the
decomposition of the 3-input AND is unfavorable to the proposed algorithm.

all 1 and en = 0, then the output o1 of the last frame is 1. Thus, this setup is unable to
prove the the stuck-at-0 property of o1, unless we use assumptions. This remains the
case even if use k-step induction with any k > 1 since the values of ro1 and ro2 of the
initial frame can propagate to the last frame as long as en remain 0.

However, from Fig. 3.5, we clearly see that the values of both R1 and R2 can never be 1
at the same time if the initial states are 0. This is because, if R1 and R2 are not 1 in
the current clock cycle, then they are not 1 in the next clock cycle as well. Thus, one
would hope to find the optimization considering the assumptions. The challenge for our
algorithm is to find the right assumptions to make.

In the proposed method, we consider a simplified set of assumptions. Namely, as
assumptions, we always use the candidate redundancy (or resubstitution) property that
we are trying to prove. Consequently, there arise cases where these simplified assumptions
are not sufficient as-is to prove the property.

To illustrate, consider again the sequential network in Fig. 3.5 or a different version of
the same network as shown in Fig. 3.7 where the 3-input AND gate is decomposed into
two 2-input AND gates. Let us assume that o1 is 0 in the initial frame.

With the goal of proving that o1 is stuck at 0 in the last frame, suppose that o1 is 0 in
the initial frame. Unfortunately, the condition of o1 = 0 in the initial frame does not
prevent ro1 and ro2 from being 1 at the same time in the first frame, because o1 = 0 is
possible with ro1 = 1, ro2 = 1, and ro3 = 0. Thus, with this assumption, the algorithm
is unable to prove the stuck-at-0 property of o1.

Alternatively, consider the case where the 3-input AND gate is decomposed into two
2-input AND gates in a different manner, as shown in Fig. 3.8. In contrast to the previous
case, in this network, the algorithm is able to prove the stuck-at-0 property of o1, by
first proving that gate g1 of the decomposition is stuck at 0. Namely, the algorithm first
assumes that g1 is stuck at 0 in the first frame. This implies that ro1 and ro2 are not 1
at the same time in the first frame. For the second frame, the value of g1 is either AND
of ro1 and ro2 values from the first frame, or its the and of a ∧ ¬b and ¬a ∧ b, which can
never be 1 at the same time.

46

Scalable Sequential Logic Synthesis Chapter 3

ro1
(0)

ro2
(0)

ro3
(0)

ri1
(0)

ri2
(0)

ri3
(0)

o1
(0)

ro1

en

a
b

ro2

en

a
b

c

g1
ro1
ro2 ro3

en(0)

a(0)

b(0)

c(0)

ro1
(1)

ro2
(1)

ro3
(1)

ri1
(1)

ri2
(1)

ri3
(1)

o1
(1)

ro1

en

a
b

ro2

en

a
b

c

g1
ro1
ro2 ro3

en(1)

a(1)

b(1)

c(1)

Figure 3.8: The inductive network for the sequential network in Figure 3.5, where the
decomposition of the 3-input AND is conducive to the proposed algorithm.

ro1
(0)

ro2
(0)

ro3
(0)

ri1
(0)

ri2
(0)

ri3
(0)

o1
(0)

ro1

en

a
b

ro2

en

a
b

c

ro1
ro2
ro3

a1
ro1
ro2

a2
ro2
ro3

a3
ro1
ro3

en(0)

a(0)

b(0)

c(0)

ro1
(1)

ro2
(1)

ro3
(1)

ri1
(1)

ri2
(1)

ri3
(1)

o1
(1)

ro1

en

a
b

ro2

en

a
b

c

ro1
ro2
ro3

a1
ro1
ro2

a2
ro2
ro3

a3
ro1
ro3

en(1)

a(1)

b(1)

c(1)

Figure 3.9: The inductive network for the sequential network in Figure 3.5, where shadow
nodes are added to reflect the assumptions on the reachable states of registers.

Considering the two scenarios described above, it is clear that the proposed method’s
ability to find the SODC-based optimizations depends on the network structure. To
mitigate this issue, we propose two approaches.

Equivalent Structural Transformations One straightforward way to address the
issue is to consider different equivalent structures for different portions of the network
and different decompositions of complex gates. This will allow the algorithm to consider
different anchor nodes and explore assumptions on them.

External Assumptions The other approach is to expand the possible types of as-
sumptions used by the algorithm. Recall that the current method uses the candidate
redundancy property as the only assumption. However, this is strictly not necessary, and
the algorithm may consider any arbitrary assumption on the reachable states of registers.
Such general assumptions can be proven by the current algorithm, simply by introducing
additional shadow nodes to serve as anchor nodes for the assumptions.

To elaborate on external assumptions, suppose that the algorithm is faced with the
network in Fig. 3.7. From the initial conditions, we know that o1 is stuck at zero. If no
decomposition is preformed, the algorithm will again construct the inductive network
as shown in Fig. 3.6. However, instead of assuming that the 3-input AND gate of the

47

Chapter 3 Scalable Sequential Logic Synthesis

first frame gate is stuck at 0 and then trying to prove the same for the second frame, the
algorithm may perform the following steps:

1. Find the registers on which the value of o1 depends. This can be done by traversing
the transitive fanin cone of o1. (In general, such registers can be computed for
all gates in a more efficient manner using a topological traversal from inputs to
outputs.) In this case, the registers are ro1, ro2, and ro3.

2. Explore different subsets of value combinations for these registers which would
make o1 stuck at 0. The number of such subsets grows doubly-exponentially with
the number of registers (e.g., for r registers, there are 2r possible states, so there are
22r many subsets of states). Since exploring all possible subsets is impractical, the
algorithm may use heuristics to select a subset of states to explore. For example,
the algorithm may choose states where a pair of registers are not both 1 at the
same time.

3. For each considered subset S of states, construct a new temporary node nS in the
network which is 0 if and only if the register value combination is in S. E.g., for o1
of the network in Fig. 3.5, the algorithm may create new temporary AND gates
ro1 ∧ ro2, ro2 ∧ ro3, and ro2 ∧ ro3 as shown in Fig. 3.9. The gate a1 denotes the
assumption that the state (ro1 = 1, ro2 = 1, ro3 = ∗) is not reachable, gate a2
denotes the assumption that the state (ro1 = 1, ro2 = ∗, ro3 = 1) is not reachable,
and gate a3 denotes the assumption that the state (ro1 = ∗, ro2 = 1, ro3 = 1) is
not reachable.

4. Assuming that nS is stuck at 0 in the first frame, check whether the nS is stuck at
0 in the second frame. If so, assuming that nS is stuck at 0 in the second frame,
check whether the nS is stuck at 0 in the third frame, and so on. If nS is stuck at
0 in all frames, then conclude that the assumption is valid, and hence o1 is stuck
at 0 in all reachable states.

Once the algorithm has proven the stuck at 0 property of o1, it can proceed to remove
the redundant gates as well as the shadow nodes.

To summarize, while the proposed algorithm always finds correct SODC-based opti-
mizations, the limited horizon of sequential induction and the implementation choices
for accommodating assumptions can lead to missed optimization opportunities. These
drawbacks can be mitigated by using symmetry-breaking logic transformations and
adding support for more elaborate assumptions.

48

Scalable Sequential Logic Synthesis Chapter 3

3.4 Experimental Results

In this section, we present and discuss the experimental results obtained using the
proposed approach which is implemented as part of a commercial EDA tool. For the
evaluations, we consider a subset of OpenCores [2] and some industrial designs as the
sequential benchmark design suite.

We proceed in three steps. First, we compare the effects of different configurations of
our algorithm by optimizing technology-independent logic, using And-Inverter Graphs
(AIGs) as the logic representation. Next, we evaluate the performance of the model on
technology-mapped designs, and finally we present the results obtained on industrial
designs after place and route. Note that in experimental results, we report the area
improvements as negative percentages, indicating by how much the area is reduced.

3.4.1 Comparison of Different Configurations

Recall that, on top the basic version of our algorithm, we also proposed several extensions,
namely, multi-step sequential induction, assumptions, and support for resubstitutions.
To compare the effectiveness of these extensions, we optimize a subset of OpenCores
designs using different configurations of our algorithm.

As the baseline for comparisons, we consider a state-of-the-art sequential optimization flow
[125] together with combinational rewriting (commands scorr and rewrite in ABC [34]).
The two optimizations are interleaved and run until saturation, i.e., no further reduction
is observed. In the experimental flow, we additionally run our algorithm (without and
with respective extensions) on top of the baseline.

Redundancy removal vs. redundancy removal + resubstitution

In Table 3.1, we present the results obtained by running our method with only redundancy
removals and with both redundancy removals and resubstitutions. The columns ‘NAND2’,
‘Lev’, and ‘FF’ show the number of two-input NAND-gates, combinational logic levels,
and flip-flops, respectively. The last two columns for each experimental setting show the
runtime of the experimental flow in seconds and the percentage NAND2 reduction over
the baseline.

Here we used 1-step sequential induction with windowing, where the window size is
limited to 500 nodes with at most 16 levels in the transitive fanout cone of a target
node. For the resubstitution, we limit the divisor count to 100 nodes. We also set a tight
control on the level count to prevent increasing it during resubstitution.

As seen in Table 3.1, the redundancy removals alone lead to an average reduction of

49

Chapter 3 Scalable Sequential Logic Synthesis

Table 3.1: Comparison of the proposed method against the baseline (redundancy removal)

Baseline Our Method (redundancy removal)
Name NAND2 Lev FF NAND2 Lev FF Time (s) NAND2%
aes_core 22026 32 530 21576 32 530 22.7 -2.04
des_area 4611 37 64 4611 37 64 0.7 0.00
des_perf 77288 23 8808 76691 23 8808 302.7 -0.77
ethernet 168 13 47 166 13 47 0 -1.19
i2c 931 24 126 891 24 126 0.1 -4.30
mem_ctrl 7097 31 1050 7003 31 1050 1.9 -1.32
pci_bridge32 17656 32 3198 17403 32 3198 10.2 -1.43
pci_spoci_ctrl 704 20 60 678 20 60 0.2 -3.69
sasc 597 10 117 568 10 117 0.1 -4.86
simple_spi 779 12 131 772 12 131 0.1 -0.90
spi 3621 31 229 3590 31 229 0.5 -0.86
ss_pcm 464 9 87 399 9 87 0 -14.01
steppermotor 138 17 25 125 17 25 0 -9.42
systemcaes 11106 42 670 11105 42 670 4.3 -0.01
systemcdes 2696 36 190 2692 34 190 2 -0.15
tv80 7740 58 359 7553 58 359 2.5 -2.42
usb_funct 13910 27 1722 13560 26 1721 8 -2.52
usb_phy 457 12 98 407 11 98 0 -10.94
vga_lcd 89555 27 17032 89392 27 17032 286.8 -0.18
wb_conmax 47026 32 770 42491 32 770 43.4 -9.64
wb_dma 3283 19 521 3258 19 521 0.6 -0.76
Average -3.40

3.40% in the number of NAND2 gates. When resubstitutions are allowed on top of
redundancies, the average reduction increases to 3.65%, as shown in Table 3.2.

As a final remark, note that all testcases have been verified using sequential verification
(dsec) in ABC [34] where the verification time is below 13 seconds for all the benchmarks.

Single-step vs. multi-step induction

In Table 3.3, we present the results obtained by running our method with 2-step sequential
induction. In this case, we use the same settings as in the previous experiment with
both redundancy removals and resubstitutions enabled, but with a window size of 5000.
Note that we use an increased window size to support larger number of inductive steps.
To effectively find potential optimizations in the unrolled inductive-case network, the
window need to contain logic from all unrolled frames. When 2-step induction is used,
the average reduction in the number of NAND2 gates increases to 3.97% from 3.65%. As
before, all testcases have been verified with ABC’s dsec, where the maximum observed

50

Scalable Sequential Logic Synthesis Chapter 3

Table 3.2: Comparison of the proposed method against the baseline (redundancy removal
+ resubstitution)

Baseline Redundancy removal & resubstitution
Name NAND2 Lev FF NAND2 Lev FF Time (s) NAND2%
aes_core 22026 32 530 21535 32 530 49.2 -2.23
des_area 4611 37 64 4611 37 64 1.7 0.00
des_perf 77288 23 8808 76534 23 8808 592.6 -0.98
ethernet 168 13 47 166 13 47 0 -1.19
i2c 931 24 126 891 24 126 0.3 -4.30
mem_ctrl 7097 31 1050 6998 31 1050 3.7 -1.39
pci_bridge32 17656 32 3198 17403 32 3198 20.9 -1.43
pci_spoci_ctrl 704 20 60 674 20 60 0.5 -4.26
sasc 597 10 117 568 10 117 0.1 -4.86
simple_spi 779 12 131 772 12 131 0.2 -0.90
spi 3621 31 229 3592 31 229 0.9 -0.80
ss_pcm 464 9 87 399 9 87 0 -14.01
steppermotor 138 17 25 125 17 25 0 -9.42
systemcaes 11106 42 670 11105 42 670 8.2 -0.01
systemcdes 2696 36 190 2687 34 190 5.7 -0.33
tv80 7740 58 359 7527 58 359 6.2 -2.75
usb_funct 13910 27 1722 13557 26 1721 16.8 -2.54
usb_phy 457 12 98 407 11 98 0.1 -10.94
vga_lcd 89555 27 17032 89385 27 17032 477.3 -0.19
wb_conmax 47026 32 770 40734 32 770 84.9 -13.38
wb_dma 3283 19 521 3257 19 521 1.2 -0.79
Average -3.65

verification time is 74 seconds.

Without assumptions vs. with assumptions

When assumptions are allowed, we observed improvements in the NAND2 reduction
for specific benchmarks. Namely, when our algorithm is used with 1-step sequential
induction allowing both redundancy removals and resubstitutions, reductions of -4.94%,
-2.98%, and -11.16% were observed, respectively, for benchmarks ethernet, i2c, and
usb_phy.

Redundancy removal + resubstitution with different window sizes

When using both redundancy removals and resubstitutions with 1-step sequential induc-
tion, we observed that increasing the window size from 500 to 50 000 nodes produced

51

Chapter 3 Scalable Sequential Logic Synthesis

Table 3.3: Comparison of the proposed method against the baseline (k-step induction)

Baseline Our Method with 2-step induction
Name NAND2 Lev FF NAND2 Lev FF Time (s) NAND2%
aes_core 22026 32 530 21132 31 530 288.9 -4.06
des_area 4611 37 64 4604 37 64 37.7 -0.15
des_perf 77288 23 8808 76507 23 8808 1509 -1.01
ethernet 168 13 47 166 13 47 0.1 -1.19
i2c 931 24 126 891 24 126 0.9 -4.30
mem_ctrl 7097 31 1050 6976 31 1048 28.6 -1.70
pci_bridge32 17656 32 3198 17376 32 3197 153.1 -1.59
pci_spoci_ctrl 704 20 60 670 20 60 1.5 -4.83
sasc 597 10 117 568 10 117 0.2 -4.86
simple_spi 779 12 131 772 12 131 0.5 -0.90
spi 3621 31 229 3586 31 229 31.9 -0.97
ss_pcm 464 9 87 399 9 87 0.1 -14.01
steppermotor 138 17 25 125 17 25 0.1 -9.42
systemcaes 11106 42 670 11087 42 670 41.7 -0.17
systemcdes 2696 36 190 2685 34 190 12.5 -0.41
tv80 7740 58 359 7419 58 359 37.6 -4.15
usb_funct 13910 27 1722 13541 26 1721 49.7 -2.65
usb_phy 457 12 98 403 11 98 0.2 -11.82
vga_lcd 89555 27 17032 89352 27 17032 1633.5 -0.23
wb_conmax 47026 32 770 40375 32 770 344.3 -14.14
wb_dma 3283 19 521 3257 19 521 3.2 -0.79
Average -3.97

even better results as shown in Table 3.4. The reduction in the number of NAND2
gates increased from 3.65% to 4.10% on average. In this case, the maximum observed
sequential verification time is 27 seconds.

3.4.2 Technology Mapped Results

In Table 3.5, we present the results obtained after area-oriented technology mapping for
the same OpenCores designs we used in the previous experiments. In this experiment, the
baseline is an industrial synthesis flow that does not use any sequential logic optimizations,
and Flow1 uses two iterations of sequential SAT-sweeping for mapped networks on top of
the baseline. Flow2 runs Flow1 followed by our proposed method, with 1-step sequential
induction, with both redundancies and resubstitutions enabled, and with a window size
of 50 000.

The table shows the average improvements over the baseline. Our flow achieves an
18.3% area reduction, compared to the baseline, and a 6.9% reduction, compared to

52

Scalable Sequential Logic Synthesis Chapter 3

Table 3.4: Comparison of the proposed method against the baseline (Increased window
size)

Baseline Our Method
Name NAND2 Lev FF NAND2 Lev FF Time (s) NAND2 %
aes_core 22026 32 530 21061 31 530 1404.9 -4.4
des_area 4611 37 64 4594 37 64 71.6 -0.4
des_perf 77288 23 8808 76053 23 8808 811.2 -1.6
ethernet 168 13 47 166 13 47 0 -1.2
i2c 931 24 126 889 24 126 1 -4.5
mem_ctrl 7097 31 1050 6961 31 1048 27 -1.9
pci_bridge32 17656 32 3198 17292 32 3198 151.8 -2.1
pci_spoci_ctrl 704 20 60 671 20 60 2.4 -4.7
sasc 597 10 117 568 10 117 0.2 -4.9
simple_spi 779 12 131 772 12 131 0.6 -0.9
spi 3621 31 229 3583 31 229 86.4 -1.1
ss_pcm 464 9 87 399 9 87 0.1 -14.0
steppermotor 138 17 25 125 17 25 0.1 -9.4
systemcaes 11106 42 670 11070 42 670 137.7 -0.3
systemcdes 2696 36 190 2685 34 190 22.7 -0.4
tv80 7740 58 359 7396 57 359 208.9 -4.4
usb_funct 13910 27 1722 13506 26 1721 38.2 -2.9
usb_phy 457 12 98 403 11 98 0.2 -11.8
vga_lcd 89555 27 17032 89294 27 17032 1993.1 -0.3
wb_conmax 47026 32 770 40184 32 770 391.8 -14.5
wb_dma 3283 19 521 3257 19 521 4 -0.8
Average -4.1

Flow1 with sequential SAT-sweeping, at a cost of 20% increase in runtime. The results
confirm that the two methods, the sequential SAT-sweeping and our proposed method,
are orthogonal; our proposed method finds new optimization opportunities on top of
state-of-the-art sequential optimizations. All benchmarks were equivalence-checked using
existing sequential verification tools.

3.4.3 Post Place & Route Results on Industrial Designs

In Table 3.6, we present the results obtained after place and route for 4 industrial
benchmarks, where the baseline does not use any sequential logic optimizations and the
experimental flow combines our proposed method and sequential SAT-sweeping.

Our flow achieves a 2.89% reduction in combinational area, a 1.43% reduction in sequential
area, a 0.18% improvement in worst negative slack (WNS), a 1.12% improvement in
total negative slack (TNS), and a 1.96% reduction in total power. These results confirm

53

Chapter 3 Scalable Sequential Logic Synthesis

Table 3.5: Results after technology mapping for OpenCores designs

Flow Comb. Area Seq. Area # Cells Runtime
Baseline 1 1 1 -
Flow1 (SSW) -12.2% -4.8% -9.6% 1
Flow2 (SSW + new method) -18.3% -4.8% -14.9% +20%

Table 3.6: Results after place and route for industrial designs

Comb. Area Seq. Area WNS TNS Tot. Power
Average -2.89% -1.43% -0.18% -1.12% -1.96%

that our proposed method provides significant improvements in both area and timing
metrics, even after place and route. This further demonstrates that our method scales
well such that it can be effectively used on large industrial benchmarks. All 4 designs have
been verified with an industrial sequential verification tool which uses an state-of-the-art
sequential verification flow [164].

3.5 Summary

In this chapter, we introduced a scalable sequential optimization method based on
multi-step induction, extending the concept of Observability Don’t Cares (ODCs) to
the sequential domain through Sequential Observability Don’t Cares (SODCs), which
explicitly account for reachability constraints. By simultaneously optimizing two derived
combinational networks—representing the base and inductive cases—our approach effec-
tively addresses the dependency issues inherent in traditional ODC-based optimizations.
Candidate optimizations are verified using a SAT-based approach that encodes ODC
constraints, with a windowing technique employed to maintain scalability. Leveraging
SODCs, our method uncovers optimization opportunities that prior approaches were
unable to detect.

Experimental results demonstrate the scalability of our method across large industrial
designs, yielding significant area improvements in both technology-mapped circuits and
post place-and-route designs.

While the method incurs non-negligible runtime, it proves valuable as a high-effort
sequential optimization, particularly for area-critical applications. Our analysis shows
that most of the runtime is spent on SAT solving, and we anticipate substantial speedups
by reducing the number of equivalence-checking SAT calls. Techniques such as randomized
or counter-example-guided simulation could efficiently filter out invalid optimizations
early. Additionally, exploring heuristics for optimization candidate ordering may expose

54

Scalable Sequential Logic Synthesis Chapter 3

further opportunities for improvement. As outlined in Section 3.3, applying symmetry-
breaking logic transformations and more advanced reachability assumptions could also
reveal additional optimization potential. These enhancements are left for future work.

Moreover, our method’s integration into a state-of-the-art industrial sequential optimiza-
tion flow yielded promising results, maintaining significant reductions in both combi-
national and sequential areas, even after place-and-route. We hope that the enhanced
sequential optimization offered by this method will inspire further research in the field,
driving efforts to better approximate reachable states and uncover more optimization
opportunities.

55

4 Fanout-Bounded Logic Synthesis

In digital electronics, the ability to have multiple fanouts per gate allows for compact
implementations of complex logic functions. However, increasing the number of fanouts of
a gate can negatively impact delay performance, and the maximum number of fanouts a
gate can support is typically limited. This limitation is particularly stringent in emerging
technologies such as superconducting electronics, but it also has implications for CMOS
technology. In this chapter, we take a rigorous approach to the generic fanout-bounded
synthesis (FBS) problem and propose both exact and heuristic algorithms that are readily
adaptable to different technologies.

This chapter is based on the work [107] presented at Design, Automation, and Test
in Europe (DATE) 2023, which was also presented at the International Workshop on
Logic Synthesis (IWLS) 2022 [106]. The extended version of the work, which includes
adaptations to emerging technologies, was published in Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) [108].

4.1 Introduction

In conventional CMOS technology, fanout optimization has been well-studied, both as
a means of improving the critical path delay [4, 21, 103, 131, 156], and as a method of
optimizing special high-fanout nets such as clock and reset signals [167]. However, the
techniques developed for CMOS technology are not generally transferable to emerging tech-
nologies such as superconducting electronics (e.g., AQFP [157], RQL [31], RSFQ [104]),
field-coupled nano-computing technologies (e.g., QCA [101]), and spintronics [43], which
generally have tight, explicit fanout bounds and/or significantly different timing models
(e.g., clocked gates). Thus the allowed circuit transformations in such technologies can
be fundamentally different.

For instance, in CMOS technology, the delay increase caused by a high number of fanouts
can be mitigated by techniques such as transistor sizing. However, this option is not

57

Chapter 4 Fanout-Bounded Logic Synthesis

available for post-CMOS technologies. Instead, when designing for emerging technologies
that have globally imposed, hard fanout limits, fanout-bounding is achieved through a
combination of gate duplications and buffer insertions. This procedure tends to consume
a significant portion of resources as compared to CMOS, so it is typically considered
relatively early in the synthesis process, e.g., in the logic synthesis stage.

Motivated by the aforementioned differences from CMOS, we first consider the following
general fanout-bounded synthesis (FBS) problem in the unit-delay model: Given an
input logic network and the fanout bounds and area costs of different gate types/buffers,
re-synthesize the logic network by means of gate duplications and buffer insertions such
that each gate meets its respective fanout bound while the total area is minimized. Note
that the unit-delay model encompasses many emerging technologies that have clocked
gates (e.g., AQFP, QCA). Zhang and Jiang [178] recently studied this general FBS
problem (in the same unit-delay model) and presented an algorithm composed of several
heuristics, where the main idea was to duplicate gates if doing so locally reduces the
number of buffers (see Section 4.3 for more details).

In this work, we revisit the FBS problem by taking a rigorous approach: namely, we
present the first known integer linear programming (ILP) formulation of this problem
for a fixed target delay and use it to obtain optimum area FBS solutions for a number
of EPFL [11] benchmarks and benchmarks of [76]. Our ILP uses the number of copies
and buffers associated with different gates and levels as variables, and has constraints
to ensure that there are sufficiently many gate copies and buffers to support all fanouts
subject to fanout bounds. As we see in Section 4.4, this formulation is versatile and
can be extended, for example, to facilitate different types of gates and buffers as well as
different fanout constraints for primary inputs.

We then present a scalable top-down synthesis algorithm for the general FBS problem
based on a heuristic different than that of [178], where we give preference to adding
buffers over duplicating gates. Specifically, the main idea of the new approach is to
duplicate gates only if the critical path delay would be increased otherwise. As we explain
in Section 4.3, our heuristic exploits several improvement opportunities we identified in
the algorithm of [178]. We also present an additional optimization step on top of the
proposed top-down approach which can be used as a high-effort optimization step to
obtain even better results. Our basic top-down heuristic achieves a 10.9% better area as
compared to the state of the art [178] while the top-down approach with the additional
optimization step allows an 11.82% improvement on average. Notably, the critical path
delays of the resulting output networks of our top-down approaches are less than or equal
to those obtained by the state of the art because they retain the same logic depth as the
original fanout-unbounded networkI.

INote that, to have a fair comparison with [178], we assume the primary inputs have unbounded
fanout capacity.

58

Fanout-Bounded Logic Synthesis Chapter 4

Next, we consider the FBS with the additional requirement of path-balancing, which is a
crucial constraint of several emerging technologies such as AQFP and QCA. In these
technologies, gates can only drive at most one fanout, and special branching cells called
splitters are required to support multiple fanouts. By considering the splitters as buffers
with a fanout capacity of at least two, synthesizing for such technologies can be considered
a special case of FBS. However, what makes synthesizing for these technologies more
challenging is the constraints on the arrival times of fanins of a gate. For example, in
AQFP technology, the signal propagation between gates is facilitated by a multi-phase
clocking scheme, which requires all fanins of a gate to be clocked in the same phase (see
Section 4.2 for details). One way to ensure this same-phase-fanins constraint is to require
that all fanins of a gate be at the same logic level by adding extra buffers as necessary,
which is referred to as path-balancing in the literature.

For FBS in the path-balanced case, we first adapt the aforementioned general-case-ILP
to account for the path-balancing constraints considering both scenarios where gate
duplications are enabled and disabled. (The latter setting has been studied as the AQFP
splitter/buffer insertion problem in a series of research work [44, 61, 76, 97] as we describe
in Section 4.3.)

Then, as with the general FBS problem, we present a scalable heuristic algorithm for
path-balanced FBS focusing on AQFP technology. This algorithm starts with a top-down
approach resembling our heuristic for the general setting (with some differences to avoid
excessively duplicating gates) to determine initial gate/buffer counts, and then follows
on with additional optimizations to mitigate the overhead of path-balancing buffers.
Remarkably, as compared to the optimum delays in the setting without gate duplications,
our heuristic with gate duplications achieves 8.76% better delays on average together
with a 0.5% average area improvement.

In the rest of this chapter we first summarize some concepts useful to better understand
our work including the logic network structures we use, timing and node equivalence
concepts, and a brief introduction to AQFP technology (Section 4.2). Then we discuss
some prior work on general FBS as well as splitter-buffer insertion for AQFP technology
(Section 4.3). Next, in Section 4.4, we describe our ILP formulation for the general
FBS, and in Section 4.5, we present our scalable top-down algorithm and related further
optimizations. Following that, in Section 4.6, we extend our approaches from Section 4.4
and Section 4.5 to facilitate the path-balancing constraints. Finally, in Section 4.7, we
present our experimental results, and in Section 4.8, we conclude with a brief discussion
on the results and possible future directions.

59

Chapter 4 Fanout-Bounded Logic Synthesis

4.2 Preliminaries

In this section, we briefly discuss the different logic representations used in our algorithms,
the concept of static timing analysis for the unit delay model, and the notion of node
equivalence. Additionally, we recall some key aspects of AQFP technology, which serve
as the basis for demonstrating our FBS approaches in the path-balanced setting.

4.2.1 And-Inverter Graphs / Majority-Inverter Graphs

As discussed in Section 2.2, an and-inverter graph (AIG) is a directed acyclic graph
(DAG) representation of logic where nodes represent either primary inputs or 2-input
AND gates. Primary input nodes have an in-degree of zero, while AND gate nodes have
an in-degree of two. Due to their simplicity and support for structural hashing, AIGs are
the preferred logic representation in Section 4.4 and Section 4.5.

In Section 4.6, we focus on synthesis for AQFP technology, which is inherently based on
majority gates. Consequently, the majority-inverter graph (MIG) is used as the preferred
logic representation in that section. For more details on MIGs and their relevance to
superconducting technologies, we refer the reader to Section 2.2.

4.2.2 Static Timing Analysis

In this work, we use the unit-delay model which assumes that a signal incurs a unit
delay when it passes through a gate. The arrival time of a node n, denoted by tarr

n is
defined as follows: If n is a primary input, tarr

n = 0. Otherwise tarr
n = 1 + maxm∈FI(n) tarr

m ,
where FI(n) denotes the set of fanin nodes of n. Note that the arrival time of a node
is equal to the maximum length of a path from the node to any primary input. Hence,
we sometimes use the term level to refer to the arrival time. The overall circuit delay
(depth of the circuit) is defined as the maximum arrival time of any primary output.

For a given target delay D, the required time treq
n of a node n is defined as follows: If n

has no fanout nodes which are internal to the logic network (i.e., all fanouts are primary
outputs), treq

n = D. Otherwise, treq
n = minm∈FO(n) treq

m − 1, where FO(n) denote the set
of fanout nodes of node n.

A critical path in a network is an input-to-output path of nodes where each node n on
the path satisfies treq

n = tarr
n . We say a node is critical if it lies on at least one critical

path.

60

Fanout-Bounded Logic Synthesis Chapter 4

4.2.3 Node Equivalence

In general, we say two nodes m and n in a logic network are equivalent if their outputs are
equal under all possible value combinations of primary inputs. If the input graph contains
two or more equivalent nodes, their fanouts can be re-distributed among themselves at
the discretion of a synthesis algorithm without altering the overall output of the circuit.
However, for a network with many primary inputs, the computation needed to identify all
sets of equivalent nodes can be prohibitively expensive. Thus, a more practical approach
is to find equivalent nodes by considering a node’s function with respect to a small cut,
i.e., a set of nodes that separates the considered node from primary inputs. An example
of this type of weaker equivalence checking is structural hashing which was originally
used in IBM CAD tools [150]; For AIGs, a widely used structural hashing technique is
to identify each gate with a signature consisting of the gate’s fanins and flags denoting
which fanins are inverted.

In this work, we do not explicitly check for equivalent nodes; instead, we allow the AIG
data structure to internally use structural hashing to collapse any equivalent nodes. For
the output logic network, our algorithms may explicitly duplicate some gates, hence we
disable structural hashing for the output.

4.2.4 AQFP Logic Circuits

Adiabatic quantum-flux-parametron (AQFP) is a superconducting electronics technology
with very low power consumption due to adiabatic operations. In AQFP, logic gates are
constructed using superconductive inductors and Josephson Junctions (JJs) which are
based on the Josephson effect [72]. The number of JJs in an AQFP circuit is commonly
used as a proxy for the area cost.

As described in Section 2.4, the basic logic gates in AQFP are majority-3 gates, and the
technology consists of clocked gates that are activated by a multi-phase clocking scheme.
The fanouts of a gate are limited to one, and splitters are used to support multiple
fanouts. To facilitate the proper signal propagation, all fanins of a gate must be at the
same logic level. Thus all input-to-output paths must be balanced in terms of logic levels,
which is referred to as path-balancing.

Depending on register implementations and clocking mechanisms, there can be different
requirements on whether splitters are needed for primary inputs, whether path balancing
is needed for primary inputs, and if path balancing is needed for primary outputs [143].
In our proposed FBS approaches for the path-balanced setting, we assume that splitters
are needed for primary inputs (which is a notable difference from the general FBS
setting where we assume primary inputs have unbounded fanout capacity to be consistent
with [178]) and that path-balancing is needed for primary inputs and primary outputs
(i.e., all primary outputs are at the same level).

61

Chapter 4 Fanout-Bounded Logic Synthesis

To illustrate synthesis for AQFP under fanout and path-balancing constraints, consider
the example logic network on the left of Fig. 4.1 and two of its fanout-bounded, path-
balanced versions in the middle and on the right. The one in the middle does not have
any duplicated gates while the one on the right has one gate duplication. In this example,
duplicating gates benefits both the area and the delay; the delay is reduced by one logic
level and the area is reduced by two JJs.

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

ℓ = 5

∨

maj

∧

i1 i2 i3

o1 o2

∨

maj

∧

i1 i2 i3

o1 o2

∨ ∨

maj

∧

i1 i2 i3

o1 o2

Figure 4.1: Example logic network (left) and two of its possible fanout-bounded, path-
balanced versions targeting AQFP technology assuming a fanout capacity of 1 for gates
and 3 for splitters. (Buffers and splitters are shown by triangles.) The version in the
middle does not use any gate duplication whereas the version on the right allows gate
duplication resulting in a reduction in both the overall number of logic levels as well as
the total area.

4.3 Related Work

In this section, we first discuss some notable work related to FBS and briefly explain
how our approach differs from the existing methods. Then, we also discuss some work
related to the AQFP splitter/buffer insertion problem which can be viewed as a special
case of FBS with path-balancing constraints.

4.3.1 General Fanout-Bounded Synthesis

An early theoretical work on general FBS using gate duplications and buffers by Hoover
et al. [74] presented an algorithm that limits the number of fanouts of each gate by any
given constant c ≥ 2 at the expense of a constant factor increase in both the total number
of gates and the depthII. Their algorithm assumes the natural setting that the input
consists of bounded-fanin gates.

IIThe depth increase allows for an additive O(logc(# primary outputs))-term, which is unavoidable
under constant-factor size increase considering a network with a single gate that feeds to a large number
of primary outputs.

62

Fanout-Bounded Logic Synthesis Chapter 4

A vital ingredient of their work that is pertinent to FBS in general is the minimum-size
minimum-height buffer tree construction. Namely, given the levels of fanouts of a gate,
construct a tree consisting of the gate and a set of buffers such that 1) the gate is at
the root, 2) the total number of buffers is minimized, and 3), the height of the tree
is minimized. In the case where the gates and buffers have the same fanout bound
t ≥ 2, Golumbic [62] showed how to construct such a tree using a slightly modified
Huffman-coding-like algorithm [80].

Recently, Zhang and Jiang [178] studied the problem of general FBS in the unit delay
model and proposed an algorithm consisting of several heuristic optimizations. The main
idea of their work is to duplicate gates if that results in a buffer reduction in the local
neighborhood without significantly affecting the critical path delay. To this end, they
proposed a recursive evaluation procedure to determine the number of duplicates for
each gate. After the duplicate count for each gate has been determined, for each node in
the reverse topological order, their algorithm constructs “skewed” buffer trees using an
algorithm similar to [80]. Finally, for each set of equivalent nodes, their buffer trees are
considered together and the load is re-distributed. This step does not alter the levels of
the nodes but may remove some redundant equivalent nodes.

After further analyzing the algorithm of Zhang and Jiang, we identify the following
optimization opportunities:

1. The computed numbers of gate duplicates in the recursive evaluation step do not
guarantee that the fanout-bounded version achieves the same minimum possible
logic depth as the original, fanout-unbounded network. (Note that the original
depth is always achievable using gate duplicates under the assumption that the
number of fanouts for a primary input is unbounded.)

2. The priority-queue-based method used in [178] for skewed buffer tree construction,
although achieves the best possible size for the buffer tree, is not guaranteed to
achieve the best possible level for the root node unless the fanout bound is two.
However, for fanout bounds ≥ 3, it is always possible to obtain the best size for the
buffer tree as well as the optimal level for the root node using the method proposed
by Golumbic [62].

3. In [178], it is not stated how the fanouts are initially assigned to the duplicated
copies prior to the skewed buffer tree construction or how their initial levels are
determined. For instance, if all copies of a gate are naively placed at the same level
when it is possible to place some copies at higher levels, the critical path delay
can be adversely affected. However, it is difficult for an algorithm to make such
decisions unless it already knows the levels of the fanouts.

4. The buffer forest re-balancing step does not guarantee that we get the minimum
possible duplicate count (even locally for a considered set of equivalent nodes). This

63

Chapter 4 Fanout-Bounded Logic Synthesis

is because the re-balancing step is run only after fixing the levels of the duplicated
nodes.

In our scalable algorithm for general FBS, we capitalize on all these optimization
opportunities. Specifically, by reconstructing the network in the reverse topological order,
our algorithm has the full knowledge of the levels of fanouts of a gate, before the gate
itself is synthesized. In Section 4.5, we describe in detail how our top-down approach
enables exploiting each aforementioned opportunity.

4.3.2 Path-Balanced Fanout-Bounded Synthesis

As for the path-balanced setting, there is a line of work on satisfying fanout and path-
balancing constraints for the AQFP technology (e.g., [44, 61, 97]), but these works
mainly consider doing so without gate duplications. In literature, this problem is often
referred to as the AQFP splitter/buffer insertion problem, and it is a special case of the
path-balanced FBS.

In early work on AQFP splitter/buffer insertion, the main idea was to optimize individual
fanout nets using different approaches such as dynamic programming and local retiming-
like methods for pushing buffers from fanins to fanouts. The work of Lee et al. [97]
took a rigorous approach where they presented an exact formulation of the problem as a
satisfiability modulo theory (SMT) problem using the theory of integer linear arithmetic.
Namely, they use the logic depth of each gate as an SMT variable and, for each fanout net,
they consider constraints that must be satisfied by any valid splitter/buffer insertion. In
contrast, our proposed method uses an ILP to encode the problem and uses the number
of gate copies/buffers of each fanout net in each level as variables, which supports gate
duplications.

The work in [97] also presented a more elaborate retiming algorithm where an initial
splitter/buffer inserted network is further optimized by identifying collections of tightly-
connected gates (chunks) where buffers can be pushed forward (from inputs to outputs)
or vice-versa to reduce the buffer count. This retiming technique was later used in [44] for
area recovery in delay optimal AQFP synthesis. More recently, Fu et al. [61] presented
a dynamic programming approach to globally optimize splitters and buffers in AQFP
synthesis and an ILP-based solution to approximate the optimum solution.

As a final remark, we emphasize the lack of gate duplications in the existing work on
splitter/buffer insertion. However, duplicating gates is an important option that warrants
increased attention because it can reduce both the area and the delay as we see in the
example of Fig. 4.1.

64

Fanout-Bounded Logic Synthesis Chapter 4

4.4 Globally Optimum General Fanout-Bounded Synthesis

In this section, we present our ILP formulation of FBS in the unit-delay model. Given
an input logic network, a predefined target logic depth D, the gate and buffer costs (e.g.,
area), and their respective fanout bounds, the proposed ILP finds the minimum cost logic
network that meets all fanout bounds, has logic depth at most D, and is functionally
equivalent to the input logic network.

We remark that we do not aim to make any logic restructuring; instead, our ILP
determines how to duplicate gates and add buffers to the input logic network. For
instance, consider the logic network shown on the left of Fig. 4.2 where the primary
inputs (i1, . . . , i4) are shown on the bottom and the primary outputs (o1, . . . , o5) are at
the top. If we assume gates and buffers both have fanout capacity 2, then one possible
solution to the FBS problem is the network shown on the right, where we have two gates
duplications (n1 and n3) and added two buffers (shown in blue triangles.)

ℓ = 1

ℓ = 2

ℓ = 3

n1 n2

n3

n4 n5 n6 n7

ℓ = 1

ℓ = 2

ℓ = 3

i1 i2 i3 i4

o1 o2 o3 o4 o5

n1 n1 n2

n3 n3

n4 n5 n6 n7

i1 i2 i3 i4

o1 o2 o3 o4 o5

Figure 4.2: Example logic network (left) and a possible fanout-bounded version assuming
a fanout limit of 2 (right).

To derive the ILP, we start with the following notation: Let I be the set of all primary
inputs of the input network, let G be the set of all gates, and let N = I ∪G be the set of
all nodes. For example, in the example network shown in Fig. 4.2, I = {i1, . . . , i4}, G =
{n1, n2, . . . , n7} and N = {i1, . . . , i4, n1, . . . , n7}.

For a node n ∈ N , let FO(n) be the collection of fanout nodes of n. Let kn be the
number of primary outputs directly connected to node n. Thus, for example, for
the network in Fig. 4.2, we have FO(n1) = {n3, n4} and FO(n3) = {n4, n5, n6}, and
kn2 = kn4 = kn5 = kn6 = kn7 = 1.

Let cgate be the cost (area) of a gate (we assume the network is homogeneous, but our
ILP can easily be generalized to support different types of gates), let cbuff be the cost of
a buffer, let fgate be the fanout capacity of a gate, and let fbuff be the fanout capacity of
a buffer.

For example, the setting studied in [178] for FBS assumed gates and buffers each have
fanout capacity 2 and considered the optimization of the total node count. For this case,

65

Chapter 4 Fanout-Bounded Logic Synthesis

we thus have fgate = fbuff = 2 and cgate = cbuff = 1.

Let n ∈ N be a node in the original graph. We say a node m in a fanout-bounded circuit
is n-equivalent if one of the following holds:

1. n is a primary input and m is the corresponding primary input in the fanout-
bounded version.

2. n is a gate with fanins n1, n2 and m is a gate with fanins m1, m2 such that m1 is
n1-equivalent and m2 is n2-equivalent.

3. m is a buffer such that its fanin m1 is n-equivalent.

Note that by the third criterion, any buffer in a buffer tree rooted at an n-equivalent gate
is also n-equivalent. According to this definition, in the example fanout-bounded network
(assuming fgate = fbuff = 2) shown on the right of Fig. 4.2, there are two n1-equivalent
gates and two n2-equivalent gates. Moreover, the two buffers represented as blue triangles
in level 2 are n2-equivalent.

Variables

We use two kinds of integer variables. For each node n ∈ N and for each level ℓ ∈
{1, . . . , D}, we introduce variables gn,ℓ to denote the number of gate copies in level ℓ in
the fanout-bounded circuit that are n-equivalent.

Similarly, we introduce variables bn,ℓ to denote the number of buffers in level ℓ in the
fanout-bounded circuit that are n-equivalent.

For example, for the logic network shown in Fig. 4.2, the introduced variables take the
following values: gn1,1 = 2, gn2,1 = 1, gn3,2 = 2, gn4,3 = 1, gn5,3 = 1, gn6,3 = 1, gn7,3 =
1, bn2,2 = 2 and gn,ℓ = 0 for all unspecified variables gnq ,ℓ with q ≤ 7 and ℓ ≤ 3.

Constraints

Next, we introduce constraints to ensure that the values of variables indeed correspond
to a valid fanout-bounded logic network that is equivalent to the input network. To
this end, we first have that gn,0 = 0 and bn,0 = 0 for all n ∈ N since there cannot be
any gates or buffers in the same level as the primary inputs. (In fact, these variables
are redundant and we can write the ILP without them, but having these variables with
the above constraint makes it easier to specify the remaining constraints in a concise
manner.) Next, consider a fixed level ℓ ∈ {1, . . . , D} and a fixed gate n ∈ G. We denote
by avl(n, ℓ), which stands for “availability of n-equivalent signals by level ℓ,” the total

66

Fanout-Bounded Logic Synthesis Chapter 4

fanout capacity of all n-equivalent gates/buffers that are placed in levels strictly less
than ℓ. Note that

avl(n, ℓ) =
ℓ−1∑
ℓ′=0

(fbuff · bn,ℓ′ + fgate · gn,ℓ′),

which is a linear function of the ILP variables. We denote by req(n, ℓ), which stands
for the “requirement of n-equivalent signals by level ℓ,” the total fanout requirement of
n-equivalent gates/buffers by all gates and buffers in level ℓ or below. Note that each
copy of a fanout of an n-equivalent gate increases the fanout requirement by one, and
each n-equivalent buffer also increases the fanout requirement by one. Namely, we can
write

req(n, ℓ) =
ℓ∑

ℓ′=1

bn,ℓ′ +
∑

m∈FO(n)
gm,ℓ′

 ,

which is again a linear function of the ILP variables.

Now, observe that, in any variable assignment that corresponds to a valid fanout-bounded
network with depth D, it must hold that

avl(n, ℓ) ≥ req(n, ℓ) for all n ∈ G and ℓ ∈ 1, . . . , D.

To see this, consider any valid depth-D fanout-bounded version of the input network,
and let gn,ℓ, bn,ℓ be the corresponding ILP variable values. Fix any gate n ∈ G and let
ℓ = 1. Note that for any gate m ∈ FO(n), gm,1 must be 0. Otherwise, there must be a
copy of n at level 0, which is a contradiction as n is not a primary input.

Similarly, there cannot be any n-equivalent buffer at level 1 either. Thus it must hold
that

avl(n, 1) = 0 ≥ 0 = req(n, 1).

Now, suppose that avl(n, ℓ) ≥ req(n, ℓ) must hold for any valid depth-D fanout-bounded
version. We inductively show that avl(n, ℓ + 1) ≥ req(n, ℓ + 1) must also hold. Observe
that the total number of connections between n-equivalent gates/buffers and their fanouts
that must cross the boundary between level ℓ and ℓ + 1 is at least∑

m∈FO(n)
gm,ℓ+1 + bn,ℓ+1.

The total remaining capacity of n-equivalent gates/buffers that are at levels below ℓ

is avl(n, ℓ) − req(n, ℓ). Thus the additional capacity needed to support all crossing
connections must be provided by n-equivalent gates/buffer that are at level ℓ. Namely,

67

Chapter 4 Fanout-Bounded Logic Synthesis

we must have

fgate · gn,ℓ + fbuff · bn,ℓ ≥
∑

m∈FO(n)
gm,ℓ+1 + bn,ℓ+1

− (avl(n, ℓ)− req(n, ℓ)),

which yields

avl(n, ℓ) + fgate · gn,ℓ + fbuff · bn,ℓ

≥ req(n, ℓ) +
∑

m∈FO(n)
gm,ℓ+1 + bn,ℓ+1,

or equivalently, avl(n, ℓ + 1) ≥ req(n, ℓ + 1) after re-arranging.

Finally, we ensure that we have enough capacity remaining in n-equivalent gates/buffers
to support the respective primary outputs (if any). Namely, for all n, it must hold that

avl(n, D + 1)− req(n, D) ≥ kn.

The same can be achieved by viewing all fanouts connected to a gate n as n-equivalent
buffers placed at level D + 1, and simply adding the constraint

avl(n, D + 1) ≥ req(n, D + 1).

We thus get the following ILP formulation for FBS under a predetermined depth bound
D, where the objective function is to minimize the total area.

Minimize ∑
n∈G

∑D
ℓ=1(cgate · gn,ℓ + cbuff · bn,ℓ),

Subject to

avl(n, ℓ)− req(n, ℓ) ≥ 0 ∀n ∈ N, 1 ≤ ℓ ≤ D,

avl(n, D + 1)− req(n, D) ≥ kn ∀n ∈ N,

gn,0 = 0 n ∈ G,

bn,0 = 0 n ∈ N,

gn,ℓ, bn,ℓ ∈ Z ∀n ∈ N, 1 ≤ ℓ ≤ D.

Let OPT be the optimum area of a fanout-bounded version of the input network with
maximum depth D. Since any such valid network corresponds to a feasible solution for

68

Fanout-Bounded Logic Synthesis Chapter 4

the ILP, it is clear that the value of ILP is at most OPT. We now give an algorithm
(Algorithm 4.1) to transform any feasible ILP solution to a fanout-bounded network of
maximum depth D, which is equivalent to the original network, thus showing that our
ILP in fact finds the optimum area.

The algorithm first sorts all variables gn,ℓ, bn,ℓ in the increasing order of ℓ. Then,
considering the variable values in that order, construct the gn,ℓ gate copies or bn,ℓ buffers
in a new network. To facilitate this construction, for each n ∈ N , the algorithm maintains
a queue of currently constructed n-equivalent gates/buffers together with their remaining
fanout capacities. Each time it uses such a gate/buffer, it decrements the count; once the
count reaches zero, the corresponding gate/buffer instance is removed from the queue.
Since the algorithms construct gates/buffers in a level-by-level fashion using a feasible
variable assignment, we can see that the algorithm always has sufficient equivalent signals
in the corresponding queues when executing Line 11 and Line 15.

4.5 Top-Down Heuristic Approach for General Fanout-
Bounded Synthesis Problem

In this section, we first present our scalable top-down heuristic algorithm that greedily
finds a feasible solution to the derived ILP. We then propose an additional optimization
step that we can integrate with the top-down approach that allows further area reductions
in certain cases.

Although solving the ILP introduced in Section 4.4 gives the optimum solution, solving
it optimally for large networks which we often encounter in practice is a prohibitively
expensive computation, and hence not a viable approach in many practical settings. On
the other hand, the top-down approach we propose in this section is scalable to very
large networks as it runs in O(S log S) time where S is the size of the input network
(i.e., the number of wires in the network). Although this approach is not optimum in
general, we note that it achieves optimum or near-optimum areas for several considered
benchmarks in our experiments.

In the proposed approach, we consider the gates n ∈ G in the reverse topological order,
and for each n in this order, determine values for variables gn,ℓ and bn,ℓ such that the
constraints

avl(n, ℓ)− req(n, ℓ) ≥ 0

and

avl(n, D + 1)− req(n, D) ≥ kn

are satisfied.

69

Chapter 4 Fanout-Bounded Logic Synthesis

Algorithm 4.1: Algorithm for constructing a fanout-bounded network using a feasible
solution to the ILP.
Input : Input network ntk, parameters fgate, fbuff , and a feasible ILP solution

gn,ℓ, bn,ℓ for n ∈ N and 0 ≤ ℓ ≤ D.
Output : A fanout-bounded version of ntk.

1 Let newsig be a map from nodes in ntk to a queue of pairs (new node, remaining
capacity)

2 for all p ∈ primary inputs of ntk do
3 newsig[p].push((newntk.create_pi(),∞))

4 Let data be an empty list.
5 for all nonzero gn,ℓ do Add (ℓ, n, “gate”) to data

6 for all nonzero bn,ℓ do Add (ℓ, n, “buff”) to data

7 Sort data in the ascending order of levels.
8 for all (ℓ, m, t) ∈ data in the ascending order of levels do
9 if t = “gate" then

10 Look up fanins of m in newsig.
11 newgate ← Create a new gate by choosing the first available equivalent fanins

in newsig.
12 Decrement remaining capacity for used fanin nodes and remove them from

the queue if remaining capacity reach zero.
13 newsig[m].push((newgate, fgate))

14 else
15 newbuff ← Create a new buffer by choosing the first available equivalent node

in newsig[m].
16 Decrement remaining capacity for the used fanin.
17 Pop from newsig[m] if remaining capacity is zero.
18 newsig[m].push((newbuff, fbuff))

19 return the constructed network.

Since we consider the nodes in the reverse topological order, when we consider a node n,
we already know the levels of all fanouts of n-equivalent gates/buffers except for those
fanouts that arise due to fanins of n-equivalent buffers. We call those fanouts external
fanouts of n-equivalent gates/buffers.

When determining the values for gn,ℓ and bn,ℓ, we prefer minimizing the number of gate
duplicates by utilizing buffers as much as possible to support the fanout requirement.
This decision is motivated by the following facts: First, duplicating a gate will increase

70

Fanout-Bounded Logic Synthesis Chapter 4

the fanout requirement of other nodes: For example, suppose that n’s fanins are m1
and m2. Then, duplicating a n-equivalent gate increases the fanout load of m1 and
m2-equivalent gates/buffers. This is in contrast to adding a buffer which only increases
the fanout load by one. Secondly, it is natural to assume that the area of a buffer is not
more than that of a gate, and the fanout capacity of a buffer is usually more than that
of a gate. Thus, in terms of area, replacing a gate copy with a buffer is always beneficial.

However, we cannot completely eliminate gate duplication because the addition of buffers
can increase the number of logic levels (i.e., the critical path length). Recall that tarr

n

is the minimum level node n can be at even if we assume unbounded fanout capacities.
Thus, for any ℓ < tarr

n , setting gn,ℓ to a non-zero value makes the solution infeasible.
Similarly, for any ℓ ≤ tarr

n (note the inclusion of equality), setting bn,ℓ to a non-zero value
also makes the solution infeasible.

For given levels of external fanouts of n-equivalent gates/buffers and the minimum
possible level (i.e., tarr

n) for an n-equivalent gate, we use Algorithm 4.2 to determine the
values of gn,ℓ and bn,ℓ variables by considering each node in the reverse topological order.
We then use Algorithm 4.1 to construct the corresponding fanout-bounded logic network.

n n

n

n

n

ℓ = 4

ℓ = 5

ℓ = 6

ℓ = 7

(a) (b) (c) (d)

Figure 4.3: A fanout net for a node n with levels of fanouts already decided (a), two
possible outcomes for the fanout net of n if the algorithm of [178] is used (b and c), and
the optimum buffer tree for n (d) when fbuff = fgate = 3 and cgate > cbuff .

We remark that our top-down approach is fundamentally different from the work of
Zhang and Jiang [178]. In [178], a set of n-equivalent gates and their corresponding
levels are already determined when the buffer-forest re-balancing algorithm is run in
order to reduce the number of gate duplicates. This can lead to some redundant gate
copies that remain in the network even after re-balancing is performed.

In contrast, our algorithm uses Algorithm 4.2 to decide the set of n-equivalent gates that
we absolutely need along with their levels, thus redundant gate copies are never created.
Moreover, in the “skewed buffer tree construction” and “buffer-forest re-balancing”
algorithms of [178], there can be situations where it does not construct the best buffer
tree/forest when fgate, fbuff > 2 and cgate > cbuff . To see this, suppose that fgate =
fbuff = 3 and cgate > cbuff and consider the fanout net shown in Fig. 4.3 (a). The
algorithm of [178] may either decide to duplicate node n and produce the forest shown

71

Chapter 4 Fanout-Bounded Logic Synthesis

Algorithm 4.2: Algorithm for determining gn,ℓ and bn,ℓ values for a node n ∈ N ,
given ℓmin

n and the levels of all external fanouts of n-equivalent gates/buffers.
Input : Input network ntk, parameters fgate, fbuff , a node n, tarr

n , and a list folevn

of levels of n’s fanouts.
Output : Values of gn,ℓ, bn,ℓ variables for ℓ = 1, . . . , D.

1 Set gn,ℓ, bn,ℓ = 0 for all ℓ

2 for t = 1 to length(folevn) do
3 Let rem← length(folevn)− t · fgate

4 if rem ≤ 0 then
5 for i = 1 to length(folevn) in steps of fgate do
6 Increment gn,folevn[i]−1.
7 return variable values

8 s← rem mod (fbuff − 1)
9 if s > 0 then

10 Add fbuff − s many copies of ∞ to folevn (i.e., dummy fanouts with
unbounded required time).

11 Use the skewed buffer tree construction from [178] until we have t buffer trees.
12 if the root levels of all buffer trees are at least tarr

n then
13 Set gn,ℓ and bn,ℓ according to the construction.
14 return variable values

in Fig. 4.3 (b) which has a cost of 2 · cgate or it may construct the skewed buffer tree
shown in Fig. 4.3 (c) where the node n is placed at level 4. However, the buffer tree
shown in Fig. 4.3 (d) is better than both the options; it has a lower area than the one
in Fig. 4.3 (b) and gives a better placement for node n than the one in Fig. 4.3 (c). In
contrast to [178], our algorithm always constructs the optimum buffer forest for given
levels of external fanouts and tarr

n . Namely, for r = 1, 2, . . ., we consider r copies for the
root gate, employ a modified version of the algorithm of Golumbic [62] to derive r buffer
trees, and find the minimum value of r such that roots of all trees meet the arrival time
requirement.

4.5.1 Improved Top-Down Approach with Over-Duplication

Recall that in our vanilla top-down approach, for each fanout net, we find the smallest
buffer forest that does not increase the overall critical path length. The intuition behind
settling for the smallest buffer forest is to minimize duplication of gates, and hence avoid
unnecessarily increasing the load on the fanins of those gates.

72

Fanout-Bounded Logic Synthesis Chapter 4

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

n1 n2

n

i1 i2 i3 i4

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

n1 n2n1 n2

n

i1 i2 i3 i4

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

n1 n2

n n

i1 i2 i3 i4

Figure 4.4: An intermediate step of fanout-bounded synthesis with levels decided for all
nodes except n, n1, n2 (top), the synthesized fanout nets by the algorithm described in
naive top-down approach (middle), and the synthesized fanout nets if over-duplication
allowed (bottom) when fbuff = fgate = 3 and cgate > cbuff .

One potential drawback of this frugal approach is the following: Consider a scenario where
we may have the option of placing two copies of a node n at level tarr

n + 1. However, we
may end up placing a single copy of n at level tarr

n instead, thus forcing more duplications
for n’s fanin nodes as their fanout nets do not have enough slack to add buffers. To
illustrate this point, assuming that fgate = fbuff = 3 and cgate > cbuff , consider the time
our algorithm processes the fanout net of node n in the setting shown on top in Fig. 4.4
where the levels are already decided for all nodes except n, n1 and n2. Since the naive
top-down approach greedily tries to minimize the number of duplicates for n, it will be
placed at level 2 (no duplication) with one buffer at level 3 as shown in the middle of
Fig. 4.4. This forces both n1 and n2 to be duplicated (unless the critical path length is
to be increased) which results in an overall cost of 5 · cgate + cbuff for the fanout nets of
n, n1, and n2. However, if we allow the locally suboptimal choice of duplicating n, it is
possible to place two copies of n in level 3. This allows more room for fanout nets of n1
and n2 to have buffers, resulting in the outcome shown at the bottom of Fig. 4.4 with an
overall cost of 4 · cgate + 2 · cbuff (which is strictly a better cost when cgate > cbuff). As
such, allowing more duplicates than absolutely necessary (i.e., over-duplication) can be
good if that provides more room for the fanins to have buffers and prevents them from

73

Chapter 4 Fanout-Bounded Logic Synthesis

being duplicated.

In an improved version of our top-down approach, we incorporate this idea of over-
duplication as follows: For the fanout net of a considered node n, instead of stopping the
algorithm at minimum possible number of trees t, we continue increasing t and construct
the corresponding buffer forests. For each such buffer forest, we consider the overall area
incurred by the fanout net of the considered node and the fanout nets of its fanin nodes,
assuming that we do not use over-duplication for those fanin nodes. Then for node n, we
choose the buffer forest that gives the minimum overall area computed in the above step.

There are two issues with this approach: First, due to the top-down implementation, when
considering node n, all levels of its fanouts (including their potential copies) are known.
However, for a fanin m of n, there can be some fanouts that are yet to be considered
by the algorithm, and hence their final levels are not known. Secondly, suppose that a
node m has k fanouts. For each of those fanouts, the cost of the fanout net of m will be
re-evaluated multiple times. I.e., the fanout net of m is evaluated at least k-times. Since
each evaluation also takes time at least linear in k, the total work involved in evaluating
a node’s fanout net can be very expensive for high-fanout nodes.

To circumvent the first issue, we propose to use a proxy level for the so-far unconsidered
nodes; namely, we use their maximum possible level (i.e., the required time) as the proxy
level. To mitigate the effects of the second issue, we set a constant bound Fmax (e.g., 10)
and ignore nodes with more than Fmax fanouts when computing the overall area impact.

4.6 Path-Balanced Fanout-bounded Synthesis

In this section, we focus on FBS with the additional requirement of path-balancing.

4.6.1 ILP Formulation for the Global Optimum

Recall that the path-balancing constraint states that all input-to-output paths are of the
same length. Equivalently, for a gate in level ℓ, all of its fanins must be in level ℓ− 1.
Thus for a gate or primary input n in the input network and for a level ℓ in the output
network, it must hold the following: The total available fanout capacity of all n-equivalent
nodes in level ℓ− 1 must be at least the total required number of n-equivalent signals by
nodes in level ℓ. We can easily incorporate this constraint into the ILP of Section 4.4 by
simply redefining avl(n, ℓ) and req(n, ℓ) as

avl(n, ℓ) = fbuff · bn,ℓ + fgate · gn,ℓ,

74

Fanout-Bounded Logic Synthesis Chapter 4

and

req(n, ℓ) = bn,ℓ +
∑

m∈FO(n)
gm,ℓ.

As discussed in Section 4.2, the FBS with path-balancing constraints is a generalization of
splitter/buffer insertion for AQFP technology, and AQFP technology can have different
assumptions on the need for buffers/splitters on primary inputs and primary outputs.
In particular, the requirement that all input-to-output paths must be of the same
length falls under the assumption that both primary inputs and primary outputs need
path-balancing.

However, our ILP is versatile as it can be adapted to different AQFP-technology-
specific assumptions. For example, we can remove the path-balancing requirement on
primary inputs by retaining the definitions of avl(n, ℓ) and req(n, ℓ) from Section 4.4
for nodes n ∈ I, i.e., the primary inputs. Similarly, we can remove the path-balancing
requirement on primary outputs by retaining those definitions only in the constraint
avl(n, D + 1)− req(n, D) ≥ kn. Moreover, if we need to also enforce that primary inputs
need splitters to support multiple fanouts, we can add constraints dictating gn,0 = 1 and
gn,ℓ = 0 for all n ∈ I and ℓ > 0. (In the ILP for the general fanout-bounded setting with
no fanout limit on primary inputs, we simply omitted these constraints. This allows the
ILP solver to place as many copies of primary inputs anywhere in the network, which is
effectively equal to assuming unbounded fanout capacity.)

In addition to supporting the different AQFP-specific assumptions, we can also change
the ILP to match the original splitter/buffer insertion problem where duplicating gates
is not an option. To this end, we simply have to introduce a new constraint that∑

1≤ℓ≤D gn,ℓ = 1 for all gates g ∈ G.

4.6.2 Scalable Heuristic Approach

In the path-balanced setting, we need buffers not only to support multiple fanouts, but
also to ensure that all input-to-output paths are of the same length. If we naively use
the same top-down approach from the general FBS for the path-balanced setting, it
can unnecessarily increase the area due to path-balancing buffers. To see this, suppose
that we have a gate n whose arrival time is 1, but its only fanout is determined to be
in level 3 by our top-down algorithm. In this case, the algorithm prefers to keep n in
level 2 (as opposed to 1) because the main idea of the algorithm from Section 4.5 was
to keep gates in the highest level possible to give sufficient room for its fanins to have
buffers. Now suppose that n’s fanins have no other fanouts, in which case, we will need
two path-balancing buffers at n’s fanins. However, if we placed n in level 1 instead, we
could only use one path-balancing buffer at n’s output. In general, the situation can

75

Chapter 4 Fanout-Bounded Logic Synthesis

be much worse: for example, we could have a block of logic that has k1 outputs and k2
inputs in place of n. If k1 < k2, moving the whole logic block down by 1 level can save
k2 − k1 buffers. On the other hand, if k2 < k1, then the algorithm’s choice to keep the
logic block in the highest possible level is meaningful.

Taking such scenarios into account, for the path-balanced setting, we start with a
top-down approach similar to Section 4.5 to determine initial gate/buffer counts in
different levels (i.e., values for variables gn,ℓ and bn,ℓ), but we then perform an additional
optimization to modify these gate/buffer counts to further reduce the area. To this
end, we first identify (gate, level)-pairs that may correspond to potential path-balancing
buffers. If all fanins of a gate are path-balancing buffers, we can push the buffers towards
the output of the gate. In general, this can be done on blocks of logic whose inputs all
correspond to path-balancing buffers.

This kind of retiming techniques have already been considered in the past [44, 97], but
they work on existing AQFP netlists. Our proposed method is more general and works
on gate/buffer counts in each level, before constructing the netlist, and hence it is able to
capture more retiming opportunities. To illustrate, consider the part of a netlist shown in
Fig. 4.5 (b), where we assume that splitter fanout capacity is 2 for the sake of simplicity.
The existing retiming techniques can optimize this by moving node a one level down to
obtain the configuration in Fig. 4.5 (c), saving one buffer in the process. However, these
algorithms fail to identify an optimization opportunity in for the configuration in Fig. 4.5
(a) because one of the fanins of node a is not a path-balancing buffer but a splitter. Our
approach, instead works on gate/buffer counts in each level and hence is able to identify
the optimization opportunity in both scenarios. Namely, for each fanin x of node a, we
check if we have a potential path-balancing buffer by checking

1. if we have x-equivalent buffers in the lower level,

2. and if we can isolate one path-balancing buffer (a buffer with fanout one) from
those.

To check the first condition for a fanin x of node a in level ℓ, we check if bx,ℓ−1 > 0. For
the second condition, we check whether the remaining x-equivalent nodes in level ℓ−1 can
still satisfy the requirement of remaining fanouts of x in level ℓ after dedicating a single
x-equivalent buffer to supply node a’s fanin; namely, we check if avl(x, ℓ− 1)− fbuff ≥
req(x, ℓ)− 1. After optimizing the gate/buffer counts with this improved retiming step,
we construct an AQFP netlist using Algorithm 4.1. Then we also run the state-of-the-art
retiming from [44] on the constructed circuit to further optimize buffer counts.

In addition to the retiming, our initial top-down heuristic has some minor differences
with respect to Section 4.5. Namely, when computing the arrival times for signals, if the
originating gate of a signal has more than one fanout, we assume a delay of 2 (instead of 1)

76

Fanout-Bounded Logic Synthesis Chapter 4

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

(a)

a b c

d

e

f

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

(b)

a b c

d

e

f

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

(c)
a

b c

d

e

f

Figure 4.5: Two possibilities for a part of an AQFP netlist and their retimed version.

accounting for an additional splitter at the output of that gate. This is an AQFP-specific
setting: in AQFP, the gates can only support one fanout, and if we always assume a delay
of 1 for a gate, the top-down algorithm can end up excessively duplicating gates to meet
this delay bound. However, if a gate is in the critical path, has only two fanouts, and
if its fanins will have splitters added at their outputs (i.e., they have multiple fanouts),
then it is likely that we may be able to duplicate the gate with only a small additional
cost. So for such gates, we take the delay to be 1 when computing the arrival time.

4.7 Experimental Results

In this section, we present the experimental results obtained from our ILP formulations
and heuristic FBS algorithms for both the general and path-balanced settings. All our
experiments were run on a MacBook Pro M1 with 10 cores of CPU, 16 cores of GPU,
and 32 GB of RAM.

Note that in all our experiments for the general FBS setting, the benchmarks are
preprocessed with a single round of resyn2 command in ABC [34], to do a fair comparison
with prior work [178]. No such preprocessing was done in experiments for the path-
balanced FBS setting.

77

Chapter 4 Fanout-Bounded Logic Synthesis

4.7.1 Global Optimum for General Fanout-Bounded Synthesis

First, for a set of small benchmarks, we use the ILP to find the global optimum solutions;
Namely, using the minimum possible circuit delay as the delay bound, we write the ILP
introduced in Section 4.4, and then solve it using the Gurobi optimizer [64]. In the
ILP formulation, we use the same setting as [178] where we have fanout capacity 2 and
unit-area for both AND gates and buffers.

Table 4.1: The global optimums for general fanout-bounded synthesis.

Input network Output network

Benchmark And
gates Levels And

gates Buffers
Total
gates

(Area)
Levels Time(s)

adder 1019 255 1021 126 1147 255 8538.26
bar 3141 12 3901 0 3901 12 242.97
cavlc 662 16 733 13 746 16 12.14
ctrl 108 8 123 3 126 8 0.24
dec 304 3 768 0 768 3 0.21
i2c 1162 15 1255 113 1368 15 59.27
int2float 214 15 224 7 231 15 2.76
router 177 19 180 5 185 19 1.52
adder1 7 4 7 0 7 4 0.01
adder8 77 17 78 7 85 17 0.37
mult8 439 35 447 13 460 35 1129.73
counter16 49 13 55 4 59 13 0.10
counter32 125 19 139 11 150 19 2.55
counter64 285 25 311 28 339 25 11.71
counter128 613 31 650 76 726 31 67.21
c17 6 3 6 0 6 3 0.03
c432 121 26 136 6 142 26 1.92
c499 387 18 410 42 452 18 8.15
c880 306 27 322 28 350 27 16.84
c1355 388 17 412 44 456 17 3.92
c1908 286 21 318 32 350 21 6.31
c2670 169 9 178 9 187 9 0.33
c3540 789 32 905 127 1032 32 3521.49
c5315 1294 26 1403 118 1521 26 553.95
c7552 1385 33 1562 192 1754 33 1335.10
sorter32 480 15 512 0 512 15 4.31
sorter48 984 25 984 64 1048 25 68.47

The results are shown in Table 4.1 where the first 8 benchmarks are from the EPFL logic
synthesis benchmarks suite [11] and the rest of the benchmarks are a subset of those
used in [76].

78

Fanout-Bounded Logic Synthesis Chapter 4

4.7.2 Heuristics for General Fanout-Bounded Synthesis

Next, we evaluate our top-down FBS approaches on the benchmarks of [76] and on EPFL
benchmarks [11].

Table 4.2: Results of the top-down fanout-bounded synthesis on benchmarks of [76].

Top-down approach
Top-down

approach with
over-duplication

Benchmark And
gates Buffers

Total
gates

(Area)

And
gates Buffers

Total
gates

(Area)
adder1 7 0 7 7 0 7
adder8 77 8 85 77 8 85
mult8 441 19 460 441 19 460
counter16 52 7 59 52 7 59
counter32 130 20 150 130 20 150
counter64 298 41 339 298 41 339
counter128 638 88 726 638 88 726
c17 6 0 6 6 0 6
c432 132 13 145 134 9 143
c499 409 44 453 410 42 452
c880 306 47 353 306 47 353
c1355 412 44 456 414 42 456
c1908 314 44 358 314 44 358
c2670 172 18 190 172 18 190
c3540 819 256 1075 825 237 1062
c5315 1311 288 1599 1378 153 1531
c6288 1903 7 1910 1903 7 1910
c7552 1393 420 1813 1422 364 1786
sorter32 512 0 512 512 0 512
sorter48 984 64 1048 984 64 1048
alu32 1512 434 1946 1513 432 1945

For benchmarks of [76], we present the results in Table 4.2. As we see, our initial top-down
approach already achieves the optimum on several benchmarks. Our top-down approach
with over-duplication performs even better and achieves results that are optimum or closer
to optimum on some additional benchmarks. We recall that both our approaches do not
increase the number of logic levels of the input network (computed with no restrictions
on the fanout capacity of gates).

For EPFL benchmarks, we present the results in Table 4.3 together with the results
of [178] for a comparison. We remark that the measure of quality of results (QoR) used
in [178] is slightly different, and if we were to use their QoR measure on our results, our

79

Chapter 4 Fanout-Bounded Logic Synthesis

Ta
bl

e
4.

3:
R

es
ul

ts
of

th
e

to
p-

do
w

n
fa

no
ut

-b
ou

nd
ed

sy
nt

he
sis

al
go

rit
hm

on
EP

FL
be

nc
hm

ar
ks

.

In
pu

t
ne

tw
or

k
O

ut
pu

t
of

[1
78

]
O

ut
pu

t
(t

op
-d

ow
n)

O
ut

pu
t

(t
op

-d
ow

n
w

it
h

ov
er

-d
up

lic
at

io
n)

B
en

ch
m

ar
k

A
nd

ga
te

s
Le

ve
ls

To
ta

lg
at

es
(A

re
a)

Le
ve

ls
A

nd
ga

te
s

B
uff

er
s

To
ta

lg
at

es
(A

re
a)

A
re

a
Im

pr
.%

T
im

e
(s

)
A

nd
ga

te
s

B
uff

er
s

To
ta

lg
at

es
(A

re
a)

A
re

a
Im

pr
.%

T
im

e
(s

)

ad
de

r
10

19
25

5
12

73
25

5
10

20
12

8
11

48
9.

82
0.

00
10

20
12

8
11

48
9.

82
0.

08
ar

bi
te

r
11

83
9

87
22

91
1

87
11

83
9

10
17

6
22

01
5

3.
91

0.
01

11
83

9
10

17
6

22
01

5
3.

91
0.

04
ba

r
31

41
12

39
01

12
34

25
95

2
43

77
-1

2.
20

0.
00

39
01

0
39

01
0.

00
0.

01
ca

vl
c

66
2

16
84

0
16

66
3

12
8

79
1

5.
83

0.
00

67
7

10
0

77
7

7.
50

0.
00

ct
rl

10
8

8
14

7
8

10
8

26
13

4
8.

84
0.

00
11

4
14

12
8

12
.9

3
0.

00
de

c
30

4
3

76
8

3
76

8
0

76
8

0.
00

0.
00

76
8

0
76

8
0.

00
0.

00
di

v
40

77
2

43
61

79
41

3
43

65
41

08
7

12
12

6
53

21
3

32
.9

9
0.

04
41

13
1

12
03

8
53

16
9

33
.0

5
1.

72
hy

p
21

13
30

24
79

4
33

27
44

24
81

7
21

14
58

45
19

9
25

66
57

22
.8

7
0.

20
21

22
37

43
64

1
25

58
78

23
.1

0
41

.0
1

i2
c

11
62

15
15

30
15

11
62

26
4

14
26

6.
80

0.
00

11
71

24
7

14
18

7.
32

0.
01

in
t2

flo
at

21
4

15
25

1
15

21
4

23
23

7
5.

58
0.

00
21

6
19

23
5

6.
37

0.
00

lo
g2

29
37

0
37

6
56

61
7

37
6

29
89

3
15

01
8

44
91

1
20

.6
8

0.
03

29
85

7
15

04
5

44
90

2
20

.6
9

1.
08

m
ax

28
34

20
4

41
57

20
6

30
94

99
7

40
91

1.
59

0.
00

30
96

99
3

40
89

1.
64

0.
09

m
em

_
ct

rl
45

61
4

11
0

63
78

8
11

0
45

66
2

15
32

6
60

98
8

4.
39

0.
04

46
14

0
14

64
2

60
78

2
4.

71
2.

18
m

ul
tip

lie
r

24
55

6
26

2
31

93
0

26
2

24
56

7
70

11
31

57
8

1.
10

0.
02

24
61

8
69

09
31

52
7

1.
26

0.
90

pr
io

rit
y

67
6

20
3

79
5

20
3

67
6

59
73

5
7.

55
0.

00
67

6
59

73
5

7.
55

0.
05

ro
ut

er
17

7
19

22
2

19
17

7
8

18
5

16
.6

7
0.

00
17

7
8

18
5

16
.6

7
0.

00
si

n
50

39
17

7
10

32
9

17
8

54
15

27
47

81
62

20
.9

8
0.

01
54

31
26

77
81

08
21

.5
0

0.
13

sq
rt

19
43

7
49

68
32

14
1

54
49

20
15

2
94

32
29

58
4

7.
96

0.
02

20
15

2
94

32
29

58
4

7.
96

0.
65

sq
ua

re
16

62
3

24
8

27
55

6
24

8
16

62
5

15
33

18
15

8
34

.1
1

0.
01

16
72

0
13

43
18

06
3

34
.4

5
1.

44
vo

te
r

97
56

57
13

15
8

58
98

10
11

85
10

99
5

16
.4

4
0.

01
98

10
11

85
10

99
5

16
.4

4
0.

06
si

xt
ee

n
11

97
68

64
99

24
46

12
92

99
11

97
68

64
95

10
30

8
21

48
71

72
12

.1
6

23
.6

1
12

08
42

31
94

43
89

1
21

52
81

22
11

.9
9

52
7.

31
tw

en
ty

15
31

73
74

86
31

48
16

12
86

15
31

73
74

12
49

32
85

27
81

06
59

11
.6

6
29

.8
4

15
46

05
97

12
41

13
71

27
87

19
68

11
.4

7
52

0.
78

tw
en

ty
th

re
e

17
16

87
90

94
35

35
80

29
94

17
16

87
90

14
05

60
97

31
22

48
87

11
.6

9
32

.9
7

17
31

67
27

13
96

88
65

31
28

55
92

11
.5

2
65

5.
45

Av
er

ag
e

10
.9

3
11

.8
2

80

Fanout-Bounded Logic Synthesis Chapter 4

approach would score even higher. Namely, the QoR measure used in [178] is

size(G)
size(G′) + depth(G)

depth(G′)

where G is the original input network and G′ is the fanout-bounded version produced
by the algorithm. In our approach, the depths of G and G′ are always equal, whereas
in [178], depth(G) ≤ depth(G′) with strict inequality for some benchmarks (e.g., see the
results for benchmark “sqrt”).

In our top-down approach without over-duplication, the average improvement over
all standard EPFL benchmarks is 10.93%. However, for the benchmark “bar”, our
algorithm’s result is 12.2% worse. Remarkably, combining the top-down algorithm with
the over-duplication step from Section 4.5.1 achieves the same results as [178] for that
benchmark, while increasing the average improvement over all EPFL benchmarks to
11.82%. Notably, our method results in fanout-bounded circuits that are much closer to
the optimum results on several benchmarks (e.g., adder, cavlc, int2float, and router).

4.7.3 Global Optimum Splitter/Buffer Insertion for AQFP

In this section, we present the results of our ILP-based global optimization algorithm
for the FBS in the path-balanced setting targeting the AQFP technology. To this end,
we set fbuff = 4 and fgate = 1 to capture the fanout constraints commonly used in prior
work on the AQFP technology. We use the number of JJs as the area cost, and hence
we set cgate = 6 and cbuff = 2. Recall that, according to the ILP formulation, the global
optimum means the minimum area for a fixed depth.

In our experiments, we consider two scenarios: one without gate duplications and one with
gate duplications. To the best of our knowledge, no prior work on AQFP splitter/buffer
insertion considers gate duplications.

In Table 4.4, we present our optimum results on the same benchmarks used by [76] for
the case with no gate duplicates and compare them with the results of four prior work
[44, 61, 76, 97] in the same setting. In this experiment, we use the minimum achievable
delay without duplicating gates as the target depth bound. In the table, the optimum
area for the target depth is shown in blue. The term “opt" in the last columns means that
the ILP solver was able to find the optimum solution. On the other hand, the term “tle"
(time-limit-exceeded) means that the solver failed to find the optimum solution within
a given time limit of 300 seconds, so the presented results for "tle" rows are based on
a tentative feasible solution found by the solver. Note that having the global optimum
results in this setting allows for an objective evaluation of other heuristic algorithms.

In Table 4.5 and its continuation Table 4.6, we present the optimum results obtained

81

Chapter 4 Fanout-Bounded Logic Synthesis

Ta
bl

e
4.

4:
R

es
ul

ts
of

A
Q

FP
sp

lit
te

r/
bu

ffe
r

in
se

rt
io

n
w

ith
ou

t
ga

te
du

pl
ic

at
io

n.

In
pu

t
ne

tw
or

k
IC

C
A

D
’2

1
[7

6]
D

A
C

’2
2

[9
7]

A
SP

-D
A

C
’2

3
[4

4]
A

SP
-D

A
C

’2
3

[6
1]

G
lo

ba
l

op
ti

m
um

B
en

ch
m

ar
k

A
re

a
Le

ve
ls

#
B

/S
#

JJ
Le

ve
ls

#
B

/S
#

JJ
Le

ve
ls

#
B

/S
#

JJ
Le

ve
ls

#
B

/S
#

JJ
Le

ve
ls

#
B

/S
#

JJ
Le

ve
ls

op
t/

tle

ad
de

r1
7

4
16

74
8

16
74

8
16

74
8

-
-

-
16

74
8

op
t

ad
de

r8
77

17
37

1
12

04
33

37
1

12
04

33
37

2
12

06
33

-
-

-
37

1
12

04
33

op
t

m
ul

t8
43

9
35

18
33

63
00

70
18

69
63

72
71

16
88

60
10

70
16

81
59

96
70

17
24

60
82

70
tle

co
un

te
r1

6
29

9
82

33
8

17
65

30
4

17
65

30
4

17
66

30
6

17
65

30
4

17
op

t
co

un
te

r3
2

82
13

18
9

91
2

23
15

5
80

2
23

15
4

80
0

23
15

6
80

4
23

15
4

80
0

23
op

t
co

un
te

r6
4

19
5

17
41

9
21

34
30

35
2

18
74

30
34

7
18

64
30

35
1

18
72

30
34

7
18

64
30

op
t

co
un

te
r1

28
42

8
22

89
5

46
52

38
76

0
40

88
38

74
7

40
62

38
75

5
40

78
38

74
7

40
62

38
op

t
c1

7
6

3
12

60
5

12
60

5
12

60
5

-
-

-
12

60
5

op
t

c4
32

12
1

26
83

7
24

06
37

87
4

24
74

38
83

9
24

04
37

82
9

23
84

37
82

9
23

84
37

op
t

c4
99

38
7

18
12

51
48

58
30

12
75

48
72

31
11

73
46

68
29

11
73

46
68

29
11

73
46

68
29

op
t

c8
80

30
6

27
17

23
52

96
40

17
03

52
42

41
15

11
48

58
40

15
36

49
08

40
-

-
-

tle
c1

35
5

38
9

18
12

16
47

84
29

12
90

49
14

31
11

84
47

02
29

11
86

47
06

29
11

78
46

90
29

op
t

c1
90

8
28

9
21

15
05

48
10

35
12

98
43

30
35

12
36

42
06

34
12

53
42

40
34

12
32

41
98

34
op

t
c2

67
0

36
8

21
20

55
73

92
27

21
32

64
72

30
19

32
60

72
28

18
69

59
54

28
17

94
57

96
28

op
t

c3
54

0
79

4
32

23
95

96
10

53
22

66
92

96
55

19
72

87
08

52
19

63
86

90
52

19
26

85
16

52
tle

c5
31

5
13

02
26

64
47

20
85

4
41

60
26

19
86

4
42

56
46

19
10

4
40

55
05

18
94

2
40

62
60

20
33

2
42

tle
c6

28
8

18
70

89
92

97
29

81
4

17
9

98
93

31
00

6
18

0
90

09
29

23
8

17
9

88
32

28
88

4
17

9
-

-
-

tle
c7

55
2

13
94

33
83

42
25

14
0

59
87

59
25

88
2

66
75

05
23

37
4

56
67

68
21

90
8

58
-

-
-

tle
so

rt
er

32
48

0
15

48
0

38
40

30
48

0
38

40
30

48
0

38
40

30
-

-
-

48
0

38
40

30
op

t
so

rt
er

48
88

0
20

88
0

70
40

35
88

0
70

40
35

88
0

70
40

35
-

-
-

88
0

70
40

35
op

t
al

u3
2

15
13

10
0

17
17

8
43

57
4

17
0

14
65

5
38

38
8

17
1

13
83

7
36

75
2

16
9

13
97

6
37

03
0

16
9

-
-

-
tle

82

Fanout-Bounded Logic Synthesis Chapter 4

Table 4.5: Results of AQFP splitter/buffer insertion with gate duplication (part i).

Benchmark Gates Buffers #JJ Levels Time (s) opt/tle
adder1 7 16 74 8 0.04 opt
adder1 8 13 74 7 0.03 opt
adder1 9 10 74 6 0.03 opt
adder8 82 352 1196 33 305.20 tle
adder8 81 347 1180 32 304.82 tle
adder8 81 337 1160 31 304.61 tle
adder8 81 328 1142 30 304.28 tle
adder8 81 320 1126 29 304.01 tle
counter16 29 65 304 17 21.47 opt
counter16 31 57 300 16 17.46 opt
counter16 32 53 298 15 6.48 opt
counter16 34 47 298 14 1.28 opt
counter16 36 45 306 13 0.95 opt
counter32 82 154 800 23 303.32 tle
counter32 84 149 802 22 303.12 tle
counter32 88 133 794 21 302.83 tle
counter32 92 121 794 20 302.58 tle
counter32 99 116 826 19 302.34 tle
counter64 195 347 1864 30 328.99 tle
counter64 198 335 1858 29 327.17 tle
counter64 203 323 1864 28 325.26 tle
counter64 209 299 1852 27 323.59 tle
counter64 225 284 1918 26 321.81 tle
counter128 431 742 4070 38 515.67 tle
counter128 439 730 4094 37 505.04 tle
counter128 440 706 4052 36 494.14 tle
counter128 455 662 4054 35 483.08 tle
counter128 458 651 4050 34 474.59 tle
c17 6 12 60 5 0.04 opt
c17 7 8 58 4 0.02 opt
c432 122 822 2376 37 316.69 tle
c432 122 793 2318 36 315.87 tle
c432 123 784 2306 35 314.97 tle
c432 130 775 2330 34 314.12 tle
c432 135 757 2324 33 313.41 tle
c499 396 1123 4622 29 386.41 tle
c499 398 1086 4560 28 380.61 tle
c499 400 1051 4502 27 375.08 tle
c499 403 1007 4432 26 369.49 tle
c499 444 962 4588 25 364.10 tle

83

Chapter 4 Fanout-Bounded Logic Synthesis

Table 4.6: Results of AQFP splitter/buffer insertion with gate duplication (part ii).

Benchmark Gates Buffers #JJ Levels Time (s) opt/tle
c2670 370 1825 5870 28 398.12 tle
c2670 372 1793 5818 27 391.00 tle
c2670 378 1749 5766 26 384.23 tle
c2670 382 1699 5690 25 378.11 tle
sorter32 566 481 4358 30 435.07 tle
sorter32 534 450 4104 29 426.82 tle
sorter32 553 417 4152 28 420.74 tle
sorter32 576 384 4224 27 410.68 tle
sorter32 608 352 4352 26 402.67 tle
sorter48 896 896 7168 35 913.68 tle
sorter48 896 848 7072 34 875.92 tle
sorter48 944 816 7296 33 841.85 tle
sorter48 960 756 7272 32 807.86 tle
sorter48 1008 704 7456 31 778.18 tle

Table 4.7: Results of scalable heuristic approach for AQFP.

Benchmark Gates Buffers #JJ Levels Time (s) Area
Impr. %

Delay
Impr.%

adder1 9 10 74 6 0 0.00 25.00
adder8 84 285 1074 26 0.01 10.95 21.21
mult8 469 1543 5900 58 0.06 1.83 17.14
counter16 29 65 304 17 0 0.00 0.00
counter32 82 154 800 23 0.01 0.00 0.00
counter64 195 347 1864 30 0.01 0.00 0.00
counter128 428 747 4062 38 0.03 0.00 0.00
c17 6 12 60 5 0 0.00 0.00
c432 139 821 2476 36 0.02 -3.00 2.70
c499 391 1131 4608 28 0.04 1.29 3.45
c880 306 1545 4926 40 0.08 -1.40 0.00
c1355 392 1151 4654 28 0.03 1.02 3.45
c1908 293 1176 4110 32 0.05 2.28 5.88
c2670 371 2172 6570 27 0.09 -8.20 3.57
c3540 797 1930 8642 50 0.15 0.76 3.85
c5315 1302 5710 19232 40 0.23 -0.67 0.00
c6288 1908 8468 28384 163 0.31 2.92 8.94
c7552 1400 9163 26726 54 0.61 -14.34 3.57
sorter32 704 256 4736 23 0.01 -23.33 23.33
sorter48 912 816 7104 33 0.04 -0.91 5.71
alu32 1543 11459 32176 139 0.65 12.45 17.75

Weighted average compared to [44] 0.51 8.76

84

Fanout-Bounded Logic Synthesis Chapter 4

considering different target logic depths on the same benchmarks for the setting with gate
duplicates, which can be used to evaluate future algorithms in this setting. To obtain
these results, we start with the minimum delay achievable without gate duplications as
the target delay, and proceed with gradually decreasing the target delay. In the table,
for each benchmark, the minimum observed is shown in blue where the ties are broken
using the overall delay. Note that these results serve as a proof-of-concept that allowing
gates duplications can help improve both the area and delay in AQFP synthesis.

4.7.4 Heuristic Splitter/Buffer Insertion for AQFP

Finally, we run our scalable heuristic algorithm for path-balanced FBS on the same
benchmarks used by [76] and compare our results with the latest scalable algorithm
for AQFP splitter/buffer insertion [44] in Table 4.7. For all benchmarks, our approach
achieves the same or significantly better delays as compared to the optimum delay achieved
by the method in [44]. For some benchmarks with significant delay improvements, there
is a considerable area overhead which is likely caused by duplicated gates. However, some
other benchmarks with higher delay improvements show considerable area improvements
as well, which can be attributed to the decrease in path-balancing buffers. The average
delay improvement of our approach is 8.76% while the average area improvement is 0.5%.
Notably, our heuristic algorithm achieves more than 17% delay improvements on several
benchmarks.

4.8 Summary

In this work, we took a rigorous approach for the FBS of circuits in the unit-delay model.
To this end, we formulated the problem of FBS for fixed target delay as an ILP and
obtained the global optimum solutions for a number of benchmarks. We then showed
how to find a feasible solution to the ILP using a scalable top-down approach while
mitigating some shortcomings of earlier work. As compared to the known best results for
this problem, our algorithm produced an 11.82% improved area while achieving matching
or better delays.

As we see in Section 4.7, the over-duplication heuristic with a local cost function
improved the area reduction. It will be interesting to find a more elaborate but efficiently
computable cost function for evaluating heuristic choices such as the one we introduced
in Section 4.5.1. We also believe that a deeper analysis of the benchmark “bar” might
hint at what kind of real-world circuit patterns benefit more from such heuristics.

We extended both our optimum and heuristic approaches to the setting with path-
balancing constraints and demonstrated their effectiveness considering the splitter/buffer
insertion problem in the AQFP technology. Our globally optimum results considering

85

Chapter 4 Fanout-Bounded Logic Synthesis

different target depths for the setting with gate duplications show that there exists a
large gap in existing AQFP splitter/buffer insertion techniques. Remarkably, our scalable
heuristic algorithm for this setting was able to exploit many optimization opportunities by
considering the duplication of gates on critical paths. In particular, several benchmarks
showed over 17% delay improvements under our method including two benchmarks
(adder8, alu32) that also showed over 10% area improvements. However, comparing the
results of our heuristic with the globally optimum solutions, it is clear that there are
many opportunities for further improvements.

Considering these promising findings, we envision that FBS will have a bigger role to
play in logic synthesis for emerging technologies with unconventional design constraints,
and we hope that our work will motivate more research in this direction that would
ultimately lead to better heuristics. The globally optimum solutions presented in this
work can serve as the ground truth for evaluating such heuristics.

86

5 Logic Synthesis for AQFP Tech-
nology

Superconducting electronic (SCE) circuits are getting increasingly popular in the electron-
ics industry due to their low energy consumption and high-speed operation. The growing
interest in SCE is further fueled by the escalating challenges and higher costs of transistor
downscaling in traditional CMOS technologies. The potential of SCE to revolutionize
the electronics industry is widely recognized, as evidenced by the growing involvement
of the EDA industry in developing tools and synthesis flows for SCE, supported by
government-funded programs such as IARPA’s SuperTools program [60, 173].

However, the EDA support for SCE is far from reaching the maturity level of CMOS EDA
tools, and there are still many challenges to overcome before SCE can be widely adopted in
the industry. Due to their unique interconnect requirements, the existing made-for-CMOS
synthesis tools often result in suboptimal circuits with a high interconnect overhead.
In this chapter, we propose the simultaneous optimization of logic and interconnect
resources in SCE technologies, focusing on Adiabatic Quantum-Flux-Parametron (AQFP)
circuits.

The work presented in this chapter is based on a paper [110] published in the Interna-
tional Symposium on Nanoscale Architectures 2021, which was also presented in the
International Workshop on Logic Synthesis (IWLS).

5.1 Introduction

SCE circuits are based on superconductive inductors and Josephson Junctions (JJs) [73],
and there are several families of SCE circuits. The examples include Rapid Single
Flux Quantum (RSFQ) [104], Energy-efficient SFQ (eSFQ) [130], Reciprocal Quantum
Logic (RQL) [70], Low-Voltage RSFQ (LV-RSFQ) [159], Dynamic Single Flux Quantum
(DSFQ) [91] etc., and Adiabatic Quantum-Flux-Parametron (AQFP) [157]. While most
of such families use DC-biased junctions which cause static power dissipation, the
technologies such as AQFP achieve superior energy-efficiency using AC-biased junctions,

87

Chapter 5 Logic Synthesis for AQFP Technology

X

0

0 a b

X

0 B

SPL2 B B

B B

0 SPL2 SPL2

a b

Figure 5.1: An example logic network with unit-delay gates (left) and its splitter-inserted,
path-balanced version (right).

and this work focuses on the AQFP technology.

The AQFP technology provides efficient implementations of majority-3 and majority-5
gates that offer more complex logic functionalities at a comparably low resource usage
(see Section 5.3), leading to more compact circuitry. On the other hand, AQFP logic gates
cannot directly drive more than one fanout, necessitating clocked splitters to support
multiple fanouts.

Moreover, the gates are also clocked, requiring each gate’s fanins to arrive at the same
time via logic paths that are balanced with (clocked) buffers. Figure 5.1 shows a simple
logic network with unit-delay gates (left) and its splitter-inserted, path-balanced version
(right). In all figures, green squares labeled “B" denote buffers while blue rectangles
labeled “SPLk" denote splitters of branching factor k.

The path balancing and splitter requirements of AQFP technology pose additional
challenges in logic synthesis because, in addition to the gates that implement logic
functions, buffers and splitters also significantly affect the area and delay of a circuit.
As such, there have been several attempts to optimize the splitter insertion and path
balancing of AQFP circuits [19, 42, 163]. However, existing work suffers from one or
more of the following weaknesses:

1. Lack of consideration for interdependent logic paths [42],

2. Bias towards using balanced splitter trees [163], and

3. Lack of support for more complex logic gates such as majority-5 [19, 42, 163].

In this work, we show how to mitigate these shortcomings using exact synthesis on small
blocks of logic in a given logic network. Our main idea is to generate a database of

88

Logic Synthesis for AQFP Technology Chapter 5

minimum area (the number of JJs for example) AQFP circuits for all single-output,
4-input functions and for a set of different input arrival-time patterns, and then use the
database to rewrite logic blocks of a larger network in the topological order.

Our approach differs from the similar-looking method proposed by Amaru et al. [14] for
exact delay synthesis in two key aspects.

1. First, as their goal was to minimize the delay, their database generation ignores
possible area improvements that result from logic sharing and enumerates only
the tree structures. In contrast, our goal is to minimize the overall area, and logic
sharing can both support (by reducing the gate count) and hinder (by increasing
the splitter count, the number of levels, and consequently the number of buffers)
this goal. Therefore we enumerate all directed acyclic graph (DAG) structures
within a predetermined size bound.

2. Second, the outputs of logic blocks chosen by the algorithm can have multiple
fanouts, and our algorithm takes the splitter requirements of such logic blocks into
account before synthesizing the other logic blocks that use the outputs of already
synthesized logic blocks as inputs. To synthesize such fanout nets, we use balanced
splitter trees. But unlike the work of Testa et al. [163] which uses balanced splitter
trees on all multi-fanout nodes, we use this strategy on only a small fraction of such
nodes (i.e., only on the outputs of the blocks of logic chosen by the algorithm).

We restrict the set of enumerated DAG structures by pruning redundant structures using
several symmetry-breaking heuristics. The database size is further reduced by exploiting
the NPN equivalence of Boolean functions.

We evaluate our synthesis algorithm on the same subset of MCNC benchmarks considered
by Testa et al. [163] using two different strategies, area-oriented and delay-oriented. The
former strategy improves the area by over 21% while reducing the critical path delay by
over 35% on average compared to the optimized results of Testa et al. [163]. Compared
to the same results, the latter strategy reduces the area by over 19% while decreasing
the critical path delay by more than 40% on average. Note that we use the total number
of Josephson Junctions as the measure of area and the number of gate levels (including
buffers and splitters) as the delay measure.

The remainder of this chapter is organized as follows: In Section 5.2, we discuss the
shortcomings of existing approaches which motivated this work, and in Section 5.3, we
provide some relevant background. In Section 5.4, we describe our database generation
method and introduce the algorithm for synthesizing AQFP circuits. In Section 5.5, we
present our experimental results, and in Section 5.6, we conclude with a brief discussion
on our results and some potential improvements to the proposed method.

89

Chapter 5 Logic Synthesis for AQFP Technology

5.2 Motivation

In this section, we discuss existing work on optimizing AQFP circuits and their main
drawbacks.

The work of Cai et al. [42] presents a new framework for inserting the optimum number
of buffers and splitters for a given fanout net with fixed levels. Both Ayala et al. [19]
and Testa et al. [163] proposed new synthesis flows for AQFP circuits. The synthesis
flows first apply logic optimizations, then using the required number of splitters on
multi-fanout nets, determine levels of the gates, and finally insert buffers as required
together with optimizations that move splitters around to decrease the buffer count. In
the logic optimization phase, the work of Testa et al. [163] uses depth optimizations based
on majority-inverter graphs (MIGs) [8] (see Section 5.3), where the depth optimization
algorithms use estimated splitter requirement as the cost heuristic to achieve better
results.

(a)

u

v

X

(b)

u

SPL2

SPL2

B

B B

v

X

(c)

u

SPL2

SPL2

v

X

Figure 5.2: A part of a logic network with unit-delay gates (left), and its path-balanced
versions (middle and right) using two choices of locally optimum splitter-trees with 1-to-2
splitters.

We identify three shortcomings in the existing work:

Lack of consideration for interdependent logic paths Consider Fig. 5.2 which
shows a simple logic network on the left, and two possible splitter tree choices for the
fanout net of node u assuming we have 1-to-2 splitters. (For simplicity, we disregard the
splitter/buffer requirement of all unspecified fanins.) The logic path interdependencies
make the choice on the right a much better option than the choice in the middle.

90

Logic Synthesis for AQFP Technology Chapter 5

(a)

u

X

(b)

u

SPL2

SPL2 SPL2

B B B

B B

B

X

(c)

u

SPL2

SPL2 B

B B

SPL2

B

X

(d)

u

SPL2

SPL2

SPL2

B

X

Figure 5.3: (a) A logic network with unit-delay gates, (b) its path balanced version using
a balanced splitter tree, (c) an optimized version of (a) by pushing one splitter up in the
hierarchy, and (d) optimum path balancing with an unbalanced splitter tree.

To elaborate, consider the three logic paths from node u to node v. The first arrangement
of splitters in Fig. 5.2 (middle) increases the length of the path from u to v that
goes through the right most fanin of v. Consequently, it increases the lengths of the
remaining paths as well due to the balanced path requirement. The existing algorithms
are susceptible to making suboptimal choices in such situations as they reason based
solely on the local view in the vicinity of u and hence consider both splitter trees as
equally good options.

Bias for balanced-splitter trees The approaches in prior work naively use balanced
splitter trees for multiple-fanout nets when deciding the levels of those fanouts [163].
However, always using balanced splitter trees incurs additional buffer costs if the fanouts
of a node have to be placed at uneven depths due to constraints dictated by other shared
logic paths. In such cases, an unbalanced splitter tree can be a better match as shown in
Fig. 5.3. (We again ignore the splitter/buffer requirement of all unspecified fanins for
simplicity.)

For the given logic network (left), the unbalanced splitter tree (right) costs fewer buffers
compared to a balanced splitter tree (middle two trees) assuming 1-to-2 splitters. The
second network naively uses a balanced splitter-tree and adds buffers on top of it whereas
the third network optimizes the buffer count by pushing one of the splitters up in the
hierarchy. Nevertheless, the network on the right with the unbalanced splitter tree has a
better resource usage.

91

Chapter 5 Logic Synthesis for AQFP Technology

Lack of support for more complex gates None of the prior works support the
generation of netlists with majority-k gates for k > 3 although the AQFP technology
can support efficient implementations of such gates [18]. For example, consider the logic
function of majority-5 itself. Using only AND-2, OR-2, and majority-3 gates, computing
this function needs at least four gates which costs at least 24 JJs whereas using a single
majority-5 gate uses only 10 JJs. (See Section 5.3.)

In AQFP technology, the area overhead of buffers and splitters is quite significant. For
example, in the work of Testa et al. [163], the buffers and splitters in optimized circuits
amount to 39% of the total number of JJs. Improved path-balancing algorithms can
result in significant area and delay reductions, but finding the optimal arrangement of
buffers and splitters is a non-trivial task. However, such optimal arrangements can be
computed reasonably fast for small logic networks using an exhaustive search algorithm,
and this eliminates the aforementioned drawbacks when synthesizing such networks. We
exploit this fact to mitigate those shortcomings when optimizing larger networks. To
this end, we precompute a database of minimum area AQFP circuits (i.e., considering
the buffers and splitters as well) for all logic functions with a small number of variables
under different input arrival time patterns. We then use the database to rewrite logic
blocks of larger networks.

5.3 Preliminaries

In this section, we give background on majority-inverter graphs (MIGs), AQFP logic
circuits, and exact synthesis. Many of the concepts here have already been introduced in
Chapter 2, but we restate some key points here for easier reference.

5.3.1 Majority-Inverter Graphs (MIGs)

A majority-inverter graph (MIG) is a directed acyclic graph (DAG) representation of a
Boolean function. The internal nodes of an MIG represent majority gates, and the edges
represent the connections between the gates with optional binary flags indicating the
presence of inverters.

MIGs are supported by a sound and complete set of algebraic rules [13], which includes
the following rules:

Commutativity : ⟨x y z⟩ = ⟨y z x⟩ = ⟨z x y⟩,
Associativity : ⟨x u ⟨y u z⟩⟩ = ⟨z u ⟨x u y⟩⟩

Distributivity : ⟨x u ⟨y z v⟩⟩ = ⟨⟨x u y ⟩ z ⟨x u v⟩⟩,
Majority : ⟨x x y⟩ = x and ⟨x x̄ y⟩ = y,

Inverter Propagation : ⟨x̄ ȳ z̄⟩ = ⟨x y z⟩.

92

Logic Synthesis for AQFP Technology Chapter 5

The rules on commutativity and inverter propagation are particularly useful as they can
be used to simplify the database generation process. These rules help identify MIG
structures that are both functionally and structurally equivalent upto a reordering and
possible negation of gate-fanins. We use such equivalences to simplify the enumeration
of MIG structures in the database generation process.

5.3.2 AQFP logic circuits

As introduced in Section 2.4, AQFP technology offers logic gates which are constructed
using superconductive inductors and Josephson Junctions (JJs) based on the Josephson
effect [72]. Below, we recall some important details relevant to the AQFP technology
including the composition of a target cell library and the resource usage of different gates.

Takeuchi et al. [158] proposed a simple cell library for AQFP technology based on four
primitive cells—buffer, inverter, constant, and branch—where a gate is created using
an array of primitive cells together with a branch while a splitter is constructed using
a buffer and a branch. The majority-3 gate consists of three buffer cells together with
a branch, and different fanin inverted versions of a majority-3 gate are constructed by
substituting a subset of buffer cells with inverter cells [158]. The 2-input AND and OR
gates are constructed by substituting a buffer cell with a constant cell.

Each of the three primitive cells, buffer, inverter, and constant, consists of two JJs, and
hence a splitter also uses 2 JJs while all gates—majority-3, AND-2, and OR-2—as well
as all their input-inverted versions use 6 JJs each. Additionally, the majority-5 gate and
its input-inverted versions can be implemented with 10 JJs each [18]. As a majority-3
gate uses the same resources as an AND-2 or an OR-2 gate, Cai et al. [41] proposed that
majority logic synthesis is more suitable for optimizing AQFP circuits.

Logic gates in AQFP technology cannot drive multiple fanouts and therefore a tree of
splitters must be used in case a gate has to feed several fanouts. The gates and the
splitters are clocked, and consequently, buffers must be inserted to make the circuit
pipelined (see Section 2.4 for more details on clocking in AQFP circuits). Depending on
the design of registers and the used clocking schemes, there can be different requirements
on whether splitters are needed for primary inputs, whether path balancing is needed for
primary inputs, and how the path balancing is done for primary outputs [143].

5.3.3 Exact synthesis

Exact synthesis is the process of synthesizing circuits to meet exact specifications. The
different types and usecase of exact synthesis are discussed in Section 2.3.

Since exact methods are often computation-heavy, it is impractical to use them for large

93

Chapter 5 Logic Synthesis for AQFP Technology

networks. Instead, a typical usecase for exact methods is to construct databases for logic
functions with a small number of variables. Separate rewriting algorithms [123, 139] are
then used to optimize a larger networks in a divide-and-conquer fashion, where small
logic blocks are rewritten using precomputed database entries.

In the context of this chapter, we focus on exact synthesis of minimum-cost AQFP circuit
structures for Boolean functions with small support.

5.4 AQFP Resynthesis Approach

In the first half of this section, we describe in detail the generation of the exact synthesis
database, and in the second half, we present the overall algorithm for synthesizing
path-balanced AQFP circuits using the precomputed database.

5.4.1 Generation of the database

The exact synthesis database contains MIGs that give the minimum area (after splitter-
insertion and path-balancing) for each 4-input NPN classI under different input arrival-
time patterns. We identify the input arrival-time pattern of a single-output MIG structure
by the depths of its inputs with respect to the output. For simplicity, we explain the
method focusing only on 3-input gates, but it is straightforward to extend it to include
k-input majority gates for k > 3. The database is generated in three steps which are
summarized below. Note that we use the term DAG to mean the underlying directed
acyclic graph structure of an MIG without considering inverters.

First, we enumerate all single-output DAGs with two, three, four, and five leaf nodes (up
to four inputs and a constant) and sevenII gates. Next, we compute the area of realizing
those DAGs as splitter-inserted, path-balanced circuits under a set of different input
arrival patterns. We use the number of JJs (proportional to the number of primitive
cells) to measure the area, but our method can support more general measures such as
the physical cell area. Finally, we enumerate the 4-input NPN classes computable by
each DAG structure (considering fanin inverters) and store the best-area MIG (i.e., the
DAG together with a fanin inverter configuration) for each 4-input NPN class and for a
set of input arrival-time patterns. We now describe each of the three steps in detail.

IWe store MIGs that compute the function with the lexicographically smallest truth-table in each
NPN class.

IIIt is known that all 4-input functions can be synthesized with MIGs of at most seven majority-3
gates [153].

94

Logic Synthesis for AQFP Technology Chapter 5

(a)

? ?

? ? ?

(b)

?

? ?

? ? ?

(c)

Figure 5.4: Two partial DAGs (left and middle) and a DAG (right). The partial DAG in
the middle is derived from the one on the left by tying a new gate and connecting it to
one uncommitted leaf in each of the existing gates. The DAG on the right is derived from
the partial DAG on the left by attaching four inputs (leaf nodes) to the five uncommitted
leaves.

Generating DAG structures

To systematically generate DAGs, we first generate partial DAGs, which are DAGs where
some gates have leaves that are not committed to inputs. This notion of partial DAGs is
similar to the one used by Haaswijk [65]. Note that, a partial DAG can be extended to a
larger partial DAG by binding new gates to a subset of uncommitted leaves, or they can
be converted to a DAG by binding inputs to uncommitted leaf nodes. Figure 5.4 shows a
partial DAG (left), and another partial DAG (middle) and a DAG (right) obtained from
the first partial DAG. Note that the uncommitted leaves are designated with question
marks and inputs are shown as filled squares.

Starting with a single-gate partial DAG with three uncommitted leaves, we generate
other partial DAGs by attaching gates to the uncommitted leaves of existing partial
DAGs in a level-by-level fashion. Having generated all partial DAGs with k gate levels,
we generate all partial DAGs that have k + 1 gate levels by extending those with k gate
levels in such a way that each newly added gate has at least one fanout that is in level
k. To generate DAGs from partial DAGs, we consider all different ways of attaching at
most five inputs to available uncommitted leaves of a partial DAG. When enumerating
DAGs, we use the commutativity and majority rules (see Section 5.3.1) to avoid having
redundant gates.

Computing Area of DAGs

Recall from Section 5.3.2 that all input-inverted versions of a logic gate use the same
amount of resources in AQFP technology. Thus, to determine the minimum amount
of resources needed to realize an MIG as an AQFP circuit, we only need to know its

95

Chapter 5 Logic Synthesis for AQFP Technology

underlying DAG structure ignoring the inverters. We now explain how to find the
optimum buffer-splitter insertion for such DAGs. Note that we do not need splitter
insertion or path balancing for constant nodes as we have different versions of majority
gates with implicit constant fanins [158] (see Section 5.3). Thus the optimum buffer-
splitter insertion for a DAG may depend on which leaf (if any) is treated as a constant.
However, at the time of database generation, we do not know which leaf of an MIG in
the database gets connected to a constant during synthesis. Therefore, for each DAG,
we consider all versions of it obtained by assigning a constant to at most one leaf and
compute their optimum splitter-inserted path balanced versions separately. Note that
treating one leaf as a constant affects all shared logic paths. Hence it can also decrease
the splitter-buffer resources needed in other fanout nets.

If we fix the depths of a gate and all of its fanouts, we can find the best buffer-splitter
tree for that fanout net using dynamic programming. Once the gate depths are fixed,
the best splitter-buffer tree for a given fanout net depends only on the relative levels of
the fanout nodes. The relative levels of fanout nodes in the fanout net of a node u are
the level differences between those fanout nodes and u. For example, Fig. 5.5 shows two
fanout nets (of nodes u and v respectively) in red and blue that have the same relative
fanout levels {2, 3, 3}.

1

2

3

4

5

6

u

v

Figure 5.5: Two fanout-nets with the same relative fanout levels.

For a given multiset Slev = {ℓ1, . . . , ℓk} of relative fanout levels, the buffer cost cb, the
splitter cost cs, and the splitter branching factor fs, the recursive function in Algorithm 5.1
computes the optimum buffer-splitter cost or returns ∞ if there is no valid splitter-buffer
configuration.

In any valid fanout net, all relative fanout levels must be positive (Line 2), and if a node
has only one fanout, we only need to add sufficiently many buffers (Line 3). If there are
multiple fanouts, the algorithm iterates over fanout choices for the top-most splitter in
the splitter tree (Line 5), computes the cost of the chosen splitter and that of the buffers
needed on the outputs of the chosen splitter (Lines 6-7), and recursively compute the
best cost for the remaining tree (Line 8), while keeping track of the best cost found so far

96

Logic Synthesis for AQFP Technology Chapter 5

1

2

3

4

5

6

u

B

SPL2

u

B

B

B

B

B

SPL3

Figure 5.6: Computing best area for a relative level configuration using dynamic pro-
gramming.

Algorithm 5.1: Computing minimum cost for a given multiset of relative fanout
levels Slev, buffer cost cb, splitter cost cs, and splitter branching factor fs.

1 function cost(Slev = {ℓ1, . . . , ℓk}, cb, cs, fs):
2 if 0 ≥ minℓ∈Slev ℓ then return ∞
3 if |Slev| = 1 then return cb(ℓ1 − 1)
4 cbest ←∞
5 for all T ⊆ Slev such that 2 ≤ |T | ≤ fs do
6 cT ← cs, ℓmin ← min T

7 for t ∈ T do cT ← cT + cb(t− ℓmin)
8 cT ← cT + cost ({ℓmin − 1} ∪ Slev \ T , cb, cs, fs)
9 cbest ← min(cbest, cT)

10 return cbest

(Line 9). For example, Fig. 5.6 shows two possible choices for the top-most splitter in the
splitter tree (Line 5 of Algorithm 5.1) assuming that the splitter branching factor is at
least three. We can speed-up Algorithm 5.1 by caching the already computed optimum
buffer-splitter costs for different relative level configurations.

To find the minimum area for a DAG structure, we employ a depth bounded search
algorithm. We consider all possible ways of assigning depths (relative to the output
node) to the gates within a gradually increasing bound on the maximum depth. For
each assignment of depths to gates, we compute the best splitter-buffer tree for each
fanout net using Algorithm 5.1. If no valid splitter-buffer configuration is found for the
considered bound on the maximum depth, we increase the bound and try again. Once we
reach a depth bound that gives at least one depth assignment with a valid splitter-buffer
configuration, we stop increasing the maximum depth. However, we still consider all

97

Chapter 5 Logic Synthesis for AQFP Technology

B 0

a B SPL2

b SPL2 SPL2 0

c d

B 0

a SPL2

B B B

b SPL2 SPL2 0

c d

B 0

a SPL2

b B B

SPL2 SPL2 0

c d

Figure 5.7: Three different buffer-splitter configurations to realize the same DAG struc-
ture.

possible depth combinations for the inputs (leaf nodes) and find the best cost for each
such combination over all depth assignments to other gates.

For example, Fig. 5.7 shows three different depth assignments to gates and inputs for
the same underlying DAG structure. One can verify there is no valid splitter-buffer
configuration that achieves a maximum depth of 4, but there are several valid assignments
for a maximum depth of 5 including the three shown in the figure. In the first two
cases, the inputs (a, b, c, d) have the depths (2, 4, 5, 5). (I.e., the input a is at depth 2,
the input b is at depth 4, etc., assuming the top node has depth 0. This correspond to
an arrival-time pattern where inputs a and b, respectively, arrive 3 and 2 unit-delays
later than inputs c and d.) However, the first case uses only (6 · 4 + 2 · 3 + 2 · 2) = 34
JJs whereas the second case uses (6 · 4 + 2 · 3 + 2 · 4) = 38 JJs. Hence, the minimum
cost for the considered DAG under the input depths (2, 4, 5, 5) is 34. In the third case
depicted in Fig. 5.7, the inputs (a, b, c, d) have depths (2, 3, 5, 5) and the total cost is 36
JJs. Since this is the only valid buffer-splitter configuration for this input depth pattern,
the minimum cost for the DAG under this input depth pattern is 36.

Enumerating NPN classes and constructing the database

To generate the database, for each DAG, we compute the different 4-input NPN-classes
computable by it. We do this by considering all possible inverter configurations (i.e.,
different ways of inverting fanins of gates), evaluating the functions computed by the
DAG under these inverter configurations, and determining the corresponding NPN classes
together with the respective NPN transformation (i.e., how to permute and negate inputs
and outputs). For a given majority-3 gate, although there are eight different inverter
configurations for its fanins, we need to explore only half of them due to the inverter
propagation property (see Section 5.3.1). Thus, in total, we explore 4n different inverter

98

Logic Synthesis for AQFP Technology Chapter 5

configurations for a DAG with n gates. We use a pre-computed look-up table to efficiently
find the NPN classes of 4-input functions and their associated NPN transformations.

Recall that, in the cost computation step, we computed costs of DAGs for different input
arrival-time patterns identified by the pattern of the input depths. To construct the
database, we go over different NPN classes computable by the DAG (under a suitable
inverter configuration), and for each NPN class, we go over the different patterns of input
depths and associated costs. For each NPN class f computable by a DAG g and for each
input depths d and associated cost c, we then compute the new input depth pattern d′

we would get if we use DAG g to compute f (this is computed by permuting d according
to the input permutation of the associated NPN transformation). Finally, we update the
database entry for (NPN class, input depth pattern) pair (f, d′) by c and the respective
input permuted DAG if there is no existing entry for the pair (f, d′) or if c is smaller
than the cost of the existing entry for the pair (f, d′).

5.4.2 Synthesis Algorithm

We now describe our algorithm for synthesizing a large logic network as an AQFP circuit
using the generated database. Given a logic network, it outputs a new MIG (which we
refer to as the AQFP circuit) together with an assignment of levels to each gate. The
best splitter-buffer configuration can then be recovered from the level assignment by
adapting Algorithm 5.1 to output the minimum area splitter-buffer configuration instead
of only returning the minimum area.

The algorithm, outlined in Algorithm 5.2, first maps the input network to a 4-LUT
circuit using ABC’s [34] LUT mapping [124]. Then, it maintains two mappings, one
from the 4-LUT nodes to the corresponding signals (a signal denotes the output of nodes
or its complement) in the new AQFP circuit, and another from the majority nodes in
the new AQFP circuit to their assigned levels. Initially, it replicates all primary inputs
in the target AQFP network, assigns level 0 to each primary input, and initializes the
two mappings accordingly. Then it traverses the 4-LUT nodes in the topological order
and resynthesizes each 4-LUT node according to a DAG structure chosen from the exact
synthesis database. To choose the best DAG structure for a given 4-LUT node n with
fanins n1, . . . , n4, the algorithm does the following: First, it computes the node function
h (i.e., h such that the output of n is h(n1, . . . , n4)), its NPN class f , and the input
permutation σ that describes how to permute the inputs n1, . . . , n4 in order to compute h

from f . Then it computes the current levels of the signals in the AQFP circuit that
correspond to nodes n1, . . . , n4. In case any fanin ni has multiple fanouts, its level is
computed assuming a nearly balanced splitter tree at its output. For example, suppose
that n1 has 10 fanouts and we have 1-to-4 splitters. Let n

(aqfp)
1 be the corresponding

node in the new AQFP network. Then, the algorithm assumes a splitter tree with three
splitters and two levels at the output of n

(aqfp)
1 . Consequently, if n

(aqfp)
1 is at some level

99

Chapter 5 Logic Synthesis for AQFP Technology

Algorithm 5.2: Algorithm to synthesize a given logic network as an AQFP circuit.
1 ntkaqfp ← Empty AQFP circuit.
2 ntklut ← ABC_LUT_MAP(ntkmig).
3 mlev ← Empty map from ntkaqfp nodes to integers.
4 msig ← Empty map from ntklut nodes to ntkaqfp signals.
5 foreach primary input p of ntklut do
6 Create new primary input p′ in ntkaqfp.
7 mlev[p′]← 0, msig[p]← p′.

8 foreach node n ∈ ntklut in topological order do
9 ni ← The i-th fanin of n for i = 1, ..., 4.

10 ℓi ← Adjusted level of msig[ni] for i = 1, ..., 4.
11 h← Node function of n.
12 f ← NPN class of h.
13 σ ← Input permutation to get h from f .
14 (ℓ′

1, . . . , ℓ′
4)← σ(ℓ1, . . . , ℓ4).

15 g ← Best DAG from DB for f and (ℓ′
1, . . . , ℓ′

4).
16 g ← Input permuted g according to inverse of σ.
17 g ← Fanin inverted g such that it computes h.
18 Create g in ntkaqfp with inputs (msig[n1], . . . , msig[n4]) and let n′ be the root

node.
19 Update mlev[n′] and msig[n].

ℓ, for two of n1’s fanouts, we assume n1 is available at level ℓ + 1 (the first splitter in the
tree has two slots remaining), and for the other eight of n1’s fanouts, we assume n1 is
available at level ℓ + 2 (after two successive splitters). After finding the input levels of
the fanin nodes, we permute those levels according to σ.

Next, in the database, we go over the entries with different input depth patterns for NPN
class f . Suppose that for NPN class f and input depth pattern d, we have some DAG g

with cost c. If we were to use DAG g to resynthesize node n, the cost would be c plus
the cost of buffers needed to fill in the gaps between the permuted fanin levels and the
input depths d of DAG g. Furthermore, we can also compute the level of the new node
in the AQFP circuit that would represent the 4-LUT node n, using the permuted input
levels and the input depth pattern d. At this point, to choose the best DAG, we propose
two strategies: Either we use an area-oriented strategy where we choose the DAG that
minimizes the area and break ties using the level we would get for the output node, or
we use a delay-oriented strategy where we choose the DAG that minimizes the level of
the output node and break ties using the area cost that would be incurred.

100

Logic Synthesis for AQFP Technology Chapter 5

5.5 Experimental Results

In this section, we present the experimental results obtained from our AQFP synthesis
algorithm and compare them with the results obtained by the AQFP synthesis flow
presented in [163]III. We consider the same subset of 18 MCNC benchmarks [176] used
in that work.

Similarly, we also use the same AQFP cell library discussed in Section 5.3 and use the
number of JJs in the synthesized network as the area measure and the number of levels
on the critical path as the delay measure. We construct two exact synthesis databases
assuming we have 1-to-4 splitters:

DB1 A database that uses DAGs with up to seven 3-input gates without any 5-input
gates.

DB2 DB1 extended with a) DAGs with up to three 5-input gates and three 3-input gates
with a limit of four on the total number of gates and b) DAGs with up to three
5-input gates, four 3-input gates, and three levels with a limit of five on the total
number of gates.

To generate the database, we used a cluster with 48 cores of Intel Xenon E5-2680 v3
CPUs running at 2.5GHz, and 256GB main memory, and each of the three steps was
executed using 48 parallel threads. The generation of all DAGs for DB1 using the method
described in Section 5.4.1 consumed ∼20 minutes, and the output consists of 440 million
DAGs (including different versions obtained by designating one leaf node as the constant
node). The cost computation step Section 5.4.1 took ∼1.5 hours whereas enumerating
computable NPN classes and constructing the final database took ∼30 hours. Extending
DB1 to DB2 using the DAGs with the given constraints took ∼25 hours in total. After
removing redundant input depths patterns, DB1 and DB2 consist of only 5744 and 4317
DAGs respectively over all 222 4-input NPN classes.

We perform two experiments with the two databases: In the first experiment, we first
synthesize the initial MIG as an AQFP circuit using our proposed algorithm with DB1.
Then using the underlying MIG in the synthesized AQFP circuit as the input, the same
algorithm was repeatedly applied for a total of 10 iterations, and considered the best
result obtained among all iterations. The second experiment is the same as the first
one except that we make sure the last iteration of the algorithm is run with DB2. To
elaborate, for each i ∈ 1, . . . , 10, we run i− 1 iterations of the synthesis algorithm using
DB1 and one iteration with DB2, and we pick the best result out of the 10 versions.

The reason not using DB2 in the intermediate iterations is that, if it creates majority-5
IIIIn fact, we reproduced their results using the scripts provided by the authors that are available

online.

101

Chapter 5 Logic Synthesis for AQFP Technology

Ta
bl

e
5.

1:
R

es
ul

ts
fo

r
th

e
ex

pe
rim

en
tw

he
re

th
e

pr
op

os
ed

AQ
FP

sy
nt

he
sis

al
go

rit
hm

is
ap

pl
ied

fo
r

10
ite

ra
tio

ns
un

de
r

th
e

as
su

m
pt

io
n

th
at

no
sp

lit
te

r-
bu

ffe
r

in
se

rt
io

n
is

ne
ed

ed
fo

r
pr

im
ar

y
in

pu
ts

bu
t

pr
im

ar
y

ou
tp

ut
s

ne
ed

pa
th

-b
al

an
ci

ng
.

T
he

re
fe

re
nc

e
co

lu
m

n
sh

ow
s

th
e

op
tim

iz
ed

re
su

lts
fro

m
[1

63
].

R
ef

er
en

ce
A

ll
it

er
at

io
ns

us
e

D
B

1
L

as
t

it
er

at
io

n
us

es
D

B
2

A
re

a-
O

ri
en

te
d

D
el

ay
-O

ri
en

te
d

A
re

a-
O

ri
en

te
d

D
el

ay
-O

ri
en

te
d

B
en

ch
-

m
ar

k
D

el
ay

(L
ev

el
s)

A
re

a
(#

JJ
s)

D
el

ay
(L

ev
el

s)
A

re
a

(#
JJ

s)
D

el
ay

Im
pr

.
%

A
re

a
Im

pr
.

%
D

el
ay

(L
ev

el
s)

A
re

a
(#

JJ
s)

D
el

ay
Im

pr
.

%
A

re
a

Im
pr

.
%

D
el

ay
(L

ev
el

s)
A

re
a

(#
JJ

s)
D

el
ay

Im
pr

.
%

A
re

a
Im

pr
.

%
D

el
ay

(L
ev

el
s)

A
re

a
(#

JJ
s)

D
el

ay
Im

pr
.

%
A

re
a

Im
pr

.
%

5x
p1

8
82

4
8

71
6

0.
00

13
.1

1
8

74
2

0.
00

9.
95

8
67

4
0.

00
18

.2
0

8
73

0
0.

00
11

.4
1

c1
90

8
53

52
42

39
45

12
26

.4
2

13
.9

3
36

52
04

32
.0

8
0.

72
36

40
82

32
.0

8
22

.1
3

32
44

98
39

.6
2

14
.1

9
c4

32
50

21
98

35
21

78
30

.0
0

0.
91

36
29

44
28

.0
0

-3
3.

94
32

19
94

36
.0

0
9.

28
35

26
96

30
.0

0
-2

2.
66

c5
31

5
49

18
93

2
33

14
97

6
32

.6
5

20
.9

0
30

16
31

2
38

.7
8

13
.8

4
31

14
41

0
36

.7
3

23
.8

9
29

14
85

0
40

.8
2

21
.5

6
c8

80
36

45
20

24
34

06
33

.3
3

24
.6

5
21

36
78

41
.6

7
18

.6
3

22
32

00
38

.8
9

29
.2

0
20

34
02

44
.4

4
24

.7
3

ch
kn

28
40

22
18

33
12

35
.7

1
17

.6
5

14
33

98
50

.0
0

15
.5

1
15

29
00

46
.4

3
27

.9
0

13
29

88
53

.5
7

25
.7

1
co

un
t

18
14

26
13

11
84

27
.7

8
16

.9
7

11
13

46
38

.8
9

5.
61

13
11

26
27

.7
8

21
.0

4
11

13
26

38
.8

9
7.

01
di

st
17

42
08

13
38

02
23

.5
3

9.
65

11
39

90
35

.2
9

5.
18

12
35

02
29

.4
1

16
.7

8
10

34
80

41
.1

8
17

.3
0

in
5

20
43

12
15

35
22

25
.0

0
18

.3
2

13
37

54
35

.0
0

12
.9

4
12

30
42

40
.0

0
29

.4
5

12
31

16
40

.0
0

27
.7

4
in

6
17

34
72

12
29

78
29

.4
1

14
.2

3
10

29
52

41
.1

8
14

.9
8

10
25

72
41

.1
8

25
.9

2
8

25
52

52
.9

4
26

.5
0

k2
29

18
29

4
19

16
38

0
34

.4
8

10
.4

6
18

16
30

6
37

.9
3

10
.8

7
16

14
32

6
44

.8
3

21
.6

9
16

14
37

2
44

.8
3

21
.4

4
m

3
13

31
18

12
29

64
7.

69
4.

94
10

30
16

23
.0

8
3.

27
10

26
54

23
.0

8
14

.8
8

9
26

80
30

.7
7

14
.0

5
m

ax
51

2
19

55
36

14
50

18
26

.3
2

9.
36

13
53

34
31

.5
8

3.
65

13
46

10
31

.5
8

16
.7

3
12

46
36

36
.8

4
16

.2
6

m
is

ex
3

29
14

99
6

18
11

92
2

37
.9

3
20

.5
0

15
12

59
8

48
.2

8
15

.9
9

17
10

58
0

41
.3

8
29

.4
5

14
10

58
4

51
.7

2
29

.4
2

m
lp

4
19

36
22

13
32

22
31

.5
8

11
.0

4
11

33
26

42
.1

1
8.

17
11

29
38

42
.1

1
18

.8
8

10
29

98
47

.3
7

17
.2

3
pr

om
2

22
28

77
4

16
26

30
0

27
.2

7
8.

60
14

27
30

2
36

.3
6

5.
12

14
24

37
4

36
.3

6
15

.2
9

13
24

58
6

40
.9

1
14

.5
5

sq
r6

11
11

02
9

96
2

18
.1

8
12

.7
0

8
97

8
27

.2
7

11
.2

5
8

89
6

27
.2

7
18

.6
9

7
90

2
36

.3
6

18
.1

5
x1

dn
15

12
96

11
11

26
26

.6
7

13
.1

2
10

11
48

33
.3

3
11

.4
2

10
98

8
33

.3
3

23
.7

7
10

10
10

33
.3

3
22

.0
7

To
ta

l
45

3
12

58
94

32
2

10
84

80
28

.9
2

13
.8

3
28

9
11

43
28

36
.2

0
9.

19
29

0
98

86
8

35
.9

8
21

.4
7

26
9

10
14

06
40

.6
2

19
.4

5

102

Logic Synthesis for AQFP Technology Chapter 5

gates, the subsequent LUT mapping operation can potentially increase the overall size
since a single 4-LUT cannot compute majority-5.

The two experiments were done using both the area-oriented and delay-oriented strategies
for selecting an appropriate DAG from the database. When using the area-oriented
strategy, we select the circuit with the minimum area over the 10 iterations as the best
result. Similarly, when using the delay-oriented strategy, we select the circuit with the
minimum critical-path length as the best result.

Table 5.2: JJ utilization of majority-3 and majority-5 gates in the output of the proposed
AQFP synthesis algorithm under the assumption that no splitter-buffer insertion is
needed for primary inputs but primary outputs need path-balancing.

All iterations use DB1 Last iteration uses DB2
Area-Oriented Delay-Oriented Area-Oriented Delay-Oriented

Benchmark Maj-3 Maj-3 Maj-3 Maj-5 Maj-3 Maj-5
5xp1 624 654 408 180 384 240
c1908 2334 2616 1716 570 1632 910
c432 1296 1692 864 380 882 650
c5315 7470 8202 6396 920 5886 1800
c880 1890 2094 1236 510 1248 700
chkn 2622 2778 1278 1120 1278 1230
count 774 852 624 130 576 230
dist 3252 3576 1992 1100 1812 1370
in5 2652 2850 1206 1210 1230 1250
in6 2232 2340 996 1030 996 1120
k2 12042 11964 4476 6310 4356 6420
m3 2514 2664 1452 890 1386 1060
max512 4296 4638 2598 1430 2496 1680
misex3 9276 10164 4878 3650 4872 3950
mlp4 2802 2982 1800 840 1596 1180
prom2 22458 23766 14316 7050 12930 9130
sqr6 816 864 516 260 492 330
x1dn 930 948 360 470 390 460
Total 80280 85644 47112 28050 44442 33710
% w.r.t.
area (#JJs) 74.00% 74.91% 47.65% 28.37% 43.82% 33.24%

We first perform all experiments under the same assumptions used by Testa et al. [163]
that no splitters or buffers are needed on primary inputs but all primary outputs have to
be path-balanced using buffers. The results are shown in Table 5.1 together with the
improvements as compared to the results of Testa et al. [163]. As seen from Table 5.1,
the repeated application of our proposed algorithm reduces the delay by 40.62% and
decreases the area by 19.45% when the delay-oriented strategy was used, while achieving a

103

Chapter 5 Logic Synthesis for AQFP Technology

35.98% reduction in delay and a 21.47% decrease in area when the area-oriented strategy
was used. It is evident that having majority-5 gates in the database allows the algorithm
to achieve up to 9% delay improvements with further area reductions as compared to the
case where only majority-3 gates were allowed in the database. Note that, in the output
circuits of our algorithm, the percentage of path balancing resources, i.e., the percentage
of JJs in splitters and buffers compared to the total number of JJs, is ∼25% on average
whereas that quantity is over ∼39% in [163].

In Table 5.2, we show the resource usage by different types of majority gates in the
output circuits. When majority-5 gates are allowed, 28% (33%) of the logic resources are
used by the majority-5 gates in the area-oriented (delay-oriented) strategy, implying that
majority-5-like functions often occur as parts of larger logic networks. Such functions
include 5-input functions that are in the same NPN-class as majority-5, as well as their
versions where one input is repeated. For example, w(xy +yz +xz)+xyz = ⟨w, w, x, y, z⟩
is a four input function synthesizable with a single majority-5 gate.

Table 5.3: Results for the experiment where the proposed AQFP synthesis algorithm
is applied for 10 iterations under the assumption that primary inputs need splitters to
support multiple fanouts and primary outputs need path-balancing.

All iterations use DB1 Last iteration uses DB2
Area-Oriented Delay-Oriented Area-Oriented Delay-Oriented

Benchmark Delay
(Levels)

Area
(#JJs)

Delay
(Levels)

Area
(#JJs)

Delay
(Levels)

Area
(#JJs)

Delay
(Levels)

Area
(#JJs)

5xp1 10 870 10 888 10 830 10 884
c1908 37 5972 37 6328 37 5580 35 5810
c432 41 4002 39 4200 37 3714 35 3944
c5315 31 17600 32 19518 30 17166 31 17914
c880 25 4984 24 5012 23 4070 23 4086
chkn 16 3812 16 3912 13 3496 14 3556
count 12 1632 12 1660 12 1574 12 1592
dist 14 4332 15 4456 13 4060 13 4036
in5 15 3942 14 4070 13 3544 13 3520
in6 12 3360 12 3292 11 3010 10 2930
k2 22 17634 22 17632 20 15696 19 15444
m3 13 3334 13 3320 13 3108 12 3168
max512 17 5798 15 5796 15 5324 14 5306
misex3 21 13160 20 13512 20 11928 19 11996
mlp4 15 3714 14 3820 13 3480 13 3538
prom2 19 29362 19 30238 18 27608 18 27946
sqr6 11 1154 10 1134 10 1084 9 1070
x1dn 12 1348 11 1356 10 1214 10 1214
Total 343 126010 335 130144 318 116486 310 117954

104

Logic Synthesis for AQFP Technology Chapter 5

In Table 5.3, we present the results for the same experiments under the assumption
that splitters are needed for primary inputs to support multiple fanouts and primary
outputs have to be balanced. We still assume that path balancing is not needed for
primary inputs. It is noteworthy that, even when using splitters for primary inputs, our
algorithm achieves better area and delay as compared to the reference work that did not
use splitters on primary inputs.

5.6 Summary

As seen from the results in Section 5.5, our proposed algorithm for the exact synthesis
of AQFP circuits achieves much improved circuits in terms of both area and delay.
These improvements are enabled by holistic and simultaneous optimizations of logic and
path balancing resources that capture more optimization opportunities compared to
prior work in the field. The exact synthesis method employed in this work is able to
use unbalanced splitter trees effectively in most parts of the circuit, and the balanced
splitter tree assumption is used only on outputs of blocks of logic. To the best of our
knowledge, this is the first AQFP synthesis approach that can produce AQFP circuits
with majority-5 gates. Our results demonstrate that having majority-5 gates can help
significantly improve the resource usage and reduce delay.

Moreover, our database generation method is not restricted to using the number of JJs
as the area cost. Instead, it can also work with more general cost functions such as the
cell area and consider multiple types of splitters with varying branching factors and area
with minor modifications to Algorithm 5.1.

We remark that our database can be further improved by considering more DAG structures
at the expense of the one-time computational cost of generating the database. Also, the
current algorithm depends on an external LUT mapping algorithm and hence a better
LUT mapping algorithm can yield better overall results. Alternatively, it is interesting
to see if we can directly integrate the database with a technology mapper to achieve even
better results.

In conclusion, optimizing path balancing resources in AQFP circuits is a non-trivial
problem, and effective path-balancing can heavily reduce the resource usage in AQFP
circuits. Considering logic optimization together with path balancing as a whole while
taking interdependent logic paths into account and effectively using unbalanced splitter
trees when possible leads to faster logic circuits with a better resource utilization in
AQFP technology. It is possible to achieve further area and delay reductions by also
allowing higher fanin majority gates in the synthesis process. The superior performance
of our approach makes it attractive as a state-of-the-art synthesis flow for the AQFP
technology, and we believe that expanding on the insights of this work will yield even
better results.

105

6 Logic Synthesis for FCN Tech-
nologies

The dominance of CMOS technology in the semiconductor industry is being challenged
by emerging technologies that promise ultra-low power dissipation and high-speed compu-
tation. One such family of technologies is Field-Coupled Nanotechnologies (FCN), which
have unconventional design constraints that significantly impact the cost of the final
circuit layout. The existing logic synthesis algorithms, which are optimized for CMOS
technologies, are not adept at handling these constraints. In this chapter, we explore
how logic synthesis can be augmented to incorporate these constraints.

This chapter is based on a paper [114] published in the IEEE International Conference on
Nanotechnology (IEEE-NANO), which was also presented in the International Workshop
on Logic Synthesis (IWLS) 2023 [111].

6.1 Introduction

As Moore’s Law has lost momentum, alternative circuit technologies that transcend
past conventional transistor-based logic are arising from studies into material science
and physics. These beyond-CMOS devices promise enhancements over CMOS circuits
in various aspects. While Photonic Crystals perform logic operations through wave
interference of photons at the speed of light, for instance [82, 179], Silicon Dangling
Bonds (SiDBs) conduct logic-in-memory computations via the repulsion of electric
fields with ultra-low power dissipation [79, 135, 175]. Similar Field-coupled Nanotech-
nologies (FCN) [16] are, e. g., Quantum-dot Cellular Automata (QCA) [101, 102] and
Nanomagnet Logic (NML) [24, 54].I While these and future emerging technologies have
their own design constraints, some similarities that are not captured by conventional
optimization criteria continue to reappear.

To this end, an abundance of design flows for emerging circuit technologies rely on
INew technologies are continually being proposed, but their physical details are not crucial for the

motivation and comprehension of this work.

107

Chapter 6 Logic Synthesis for FCN Technologies

conventional logic synthesis that aggressively optimizes the number of nodes in logic
networks, e. g., represented as an And-Inverter Graphs (AIGs), before incorporating
technology-specific constraints on the physical design level. When dedicated placement
and routing tools attempt to legalize such sub-par logic networks, it usually results in
increased layout costs due to the prior negligence of, e. g., inverter and/or interconnect
costs, which add to the total area, delay, and power metrics [148, 165] (see Section 6.2.1).

In beyond-CMOS technologies, the interconnect costs come from a variety of constraints
such as path-balancing, branching, and planarization (see Section 2.4 and Section 6.2.1 for
details). In some such technologies, interconnect costs commonly dominate gate costs by
several orders of magnitude [148]. Therefore, optimizing logic networks primarily for their
number of nodes can be counterproductive as more important cost factors are completely
ignored. For superconducting electronics technologies, there have been attempts to
mitigate interconnect overheads due to path-balancing and branching constraints [97,
134]. However, in technologies such as FCN, the main source of interconnect cost is
planarization; to the best of our knowledge, no prior work has considered such costs in
logic synthesis.

In this work, we propose to avoid the substantial overhead incurred when generating
beyond-CMOS circuit layouts from conventionally optimized logic networks by incor-
porating recurring generic physical design constraints of emerging technologies into the
logic synthesis step through optimizing for unconventional but realistic cost functions.
To this end, we present a technology mapping algorithm that utilizes databases of exact
subcircuits implemented in specific technologies. Our proposed algorithm provides aver-
age improvements of 84.5 %, 74.5 %, and 65.2 % for the number of buffers, the number of
crossings, and the length of the critical path, respectively, compared to a state-of-the-art
physical design algorithm for FCN. The proposed algorithm is not limited to a particular
technology but applies to a wide range of non-conventional circuit implementations that
may exhibit one or more of the generic design constraints discussed in Section 6.2.1.

The remainder of this chapter is structured as follows: Section 6.5 discusses preliminaries
and related work necessary for the comprehension of this manuscript. Section 6.3 proposes
the novel technology mapping algorithm that constitutes the main contribution of this
work. In Section 6.4, a comparative experimental evaluation is conducted against the
state of the art and its results are discussed in detail. Finally, Section 6.5 concludes the
chapter.

6.2 Preliminaries

This section briefly discusses technology constraints of beyond-CMOS technologies, a
general circuit model, and some related work on technology mapping.

108

Logic Synthesis for FCN Technologies Chapter 6

(a) QCA (b) NML (c) SiDB

Figure 6.1: Elementary FCN devices.

6.2.1 Beyond-CMOS Technologies with Unconventional Costs

In conventional technology-independent logic synthesis, AIGs are often used as circuit
representations. For NAND-based CMOS technologies, the AIG size (or depth) measured
in the number of AND gates in the network (or on the critical path) serves as a good
estimation of the post-mapping area (or delay). However, in many emerging technologies,
additional design constraints are imposed requiring special cells to be inserted to fulfill
them; which increases the discrepancy between technology-independent and post-mapping
layout cost metrics. There exists a plethora of beyond-CMOS technologies with such
additional design constraint, and here we describe two such families. Due to this chapter’s
brevity, the technologies cannot be discussed in-depth. Instead, a general overview with
a focus on cost functions is provided. We then identify a set of generic design constraints
shared by many of these emerging technologies.

Field-coupled Nanocomputing (FCN)

FCN is an umbrella term for a variety of nanotechnologies that have similar high-level
models [16], and it contains Quantum-dot Cellular Automata (QCA) [101, 102], Nano-
magnet Logic (NML) [24, 54], and Silicon Dangling Bonds (SiDBs) [79, 175]. Although
their physical implementations differ, their concepts are nearly identical. In all cases, the
information is represented by the polarization/magnetization of elementary nanometer-
scale building blocks called cells. When placed in close proximity, cells influence each
other’s polarization/magnetization through Coulomb interaction. Thus, they transmit
information through electric/magnetic field coupling without a current flow [16], greatly
reducing power dissipation and requiring less cooling than MOSFETs [28, 165]. Reversible
FCN can operate below the Landauer limit [86, 95], a theoretical energy dissipation
bound of non-reversible computation.

Figure 6.1 shows elementary cells of aforementioned FCN technologies in the two binary
states 0 (left) and 1 (right). The topological arrangements of cells form wire segments
and gates that conduct Boolean operations, as shown in Figure 6.2 for the QCA imple-
mentation [100]. During physical design, gates and wire segments are arranged in uniform
standard tiles [77, 137], which can be viewed as building blocks that abstract physical
effects to the logic design layer. Placement and routing of standard tiles attempt to
create a layout from these building blocks that is functionally equivalent to a given logic
network. Each tile has the same unit cost in both the area and the delay regardless of

109

Chapter 6 Logic Synthesis for FCN Technologies

(a) Majority (b) Inverter

(c) Straight buffer (d) Bent buffer

(e) Splitter

Figure 6.2: QCA gates and wire segments.

whether it is a logic gate, a buffer, an inverter, or a splitter. FCN circuits are functionally
sensitive to delays; signal paths of different lengths (in terms of the number of tiles)
desynchronize, causing incorrect calculations [166].

Photonic Crystals

To realize complete optical logic circuits with information transmission at the speed
of light, research has focused on photonic crystals, that is, optical nanostructures
with periodically changing refractive indices [82]. This property allows or prohibits
electromagnetic radiation to propagate through a photonic crystal based on its wavelength.
Within the crystal lattice, waveguides [83] can be fabricated that restrict incoming light to
propagating along certain channels; effectively creating wires for photons. At intersections,
light originating from two different waveguides interferes to cancel out or amplify, based
on its phase shift. This property has been used to envision optical Boolean gates [179].
However, interacting waveguides of different lengths can cause signals to desynchronize,
thereby distorting or breaking gate functionality.

110

Logic Synthesis for FCN Technologies Chapter 6

Unconventional design constraints and their costs

In logic synthesis, the area cost of an optimized network is typically measured as the sum
of approximate gate area over all gates of the network. In CMOS, this often provides a
good approximation of the final layout area. However, in emerging technologies, the final
area is often dominated by interconnect costs, which arise due to unconventional design
constraints.

We consider the following costs that are shared among many aforementioned emerging
technologies (and more) but not considered in conventional CMOS logic synthesis flows.

1. Path-balancing buffers: Due to the sensitivity to delay differences in signal paths,
the path-balancing constraint is imposed, requiring that all paths from primary inputs
to the fanins of the same gate have the same length. When shortening longer paths is
not possible, buffer cells must be inserted into shorter paths to equalize the delay.

2. Fanout-branching splitters: Because the design of logic gates in these technologies
does not naturally support driving multiple fanout signals, additional splitter cells need to
be inserted at the output of multi-fanout gates to fulfill the fanout-branching constraint.
Moreover, splitters are also counted in the path lengths of path balancing, thus, the
fanout-branching and path-balancing constraints are strongly interwoven.

3. Planarizing crossings: The physical design of these technologies often requires
special crossing cells to realize wire crossings in a 2-dimensional layout. The placement
of logic gates may be altered to minimize such cases, but it is usually not possible to
completely planarize the input network. Similarly to splitters, crossings also contribute
to the path lengths and have to be considered together with path balancing. In some
technologies, crossing cells are hard to fabricate or lead to less robust circuits due to
their weaker signal strengths. In these cases, it is important to minimize the number of
crossings, and unavoidable crossing cells lead to higher costs.

4. Non-cost-free inverters: Unlike traditional logic synthesis, where inverters (com-
plemented edges) in AIGs do not contribute towards their size, inversion is not free in
these technologies. It is not always possible to embed an inversion as a free negated input
to a gate. Mitigating the effects of such inverters has been studied in [160]. However,
these dedicated inverters not only increase the circuit size but also need to be considered
together with the path-balancing constraint.

Through this consideration, it becomes apparent that cost metrics of conventional logic
synthesis algorithms are not suited for the beyond-CMOS due to their negligence of the

111

Chapter 6 Logic Synthesis for FCN Technologies

important aspects enumerated above.

6.2.2 Circuit Model

As we propose a new technology mapping algorithm supporting beyond-CMOS cost
metrics, we locate this work at the intersection of logic synthesis (concerned with logic
networks) and physical design (concerned with circuit layouts). The proposed algorithm’s
output is a mixed logic network consisting of logic gates that are supported by a given
technology library, which we represent as k-input look-up tables (k-LUTs), and special cells
including path-balancing buffers, fanout-branching splitters, and planarizing crossings.
To insert crossings in a meaningful way ensuring the network’s planarity, our mapping
algorithm entails a coarse-grained placement with relative node positions. I.e., all cells
in the mapped network are sorted into path-balanced ranks and are ordered within each
rank.

Thereby, our algorithm outputs a partially placed, mapped network that 1. is functionally
equivalent to the input network; 2. consists only of cells supported by the given technology
library; and 3. satisfies all four constraints described in the previous section (path
balancing, fanout branching, planarization, and dedicated inverters). Additionally, our
algorithm aims to minimize the size and depth of this network model, which considers
both logic gates and special cells. The area cost of each cell type can be parameterized
to reflect the target technology as precisely as possible.

By considering such a circuit model, our size and depth evaluation is closer to the actual
area and delay of the resulting layout after physical design. As design constraints are
already satisfied and cells are ranked and ordered, the remaining placement and routing
tasks become trivial for some technologies, but others may still need the network to
be placed and routed according to the target layout topology, e. g., QCA layouts with
non-linear clocking schemes [46, 63].

6.2.3 Conventional Technology Mapping

In typical logic synthesis flows, technology-aware optimizations are performed in the tech-
nology mapping stage, which happens after heavily optimizing a technology-independent
representation with methods such as rewriting [123]. Technology mapping transforms
a technology-independent logic representation into a technology-dependent one, where
mapped circuits are obtained by substituting small sections with standard cells that
represent the elements of the target technology. Numerous mapping algorithms have been
proposed over the years [52, 94], but most such approaches are specific to CMOS-based
synthesis flows and produce sub-par results when used for emerging technologies as such
methods were not targetting aforementioned unconventional costs.

112

Logic Synthesis for FCN Technologies Chapter 6

6.3 Proposed Methodology

In this section, we describe the proposed novel technology mapping approach for beyond-
CMOS technologies. While we use FCN as the exemplar technology because it has all
four unconventional design constraints of Section 6.5 and it is a promising competitor in
the beyond-CMOS domain due to recent fabrication breakthroughs [79], the proposed
idea is generally applicable to other emerging technologies that require path-balancing,
branching, and (optionally) planarization. To the best of our knowledge, this is the first
algorithm that considers planarization during the logic synthesis stage.

We propose generating

1. a design database of optimal subcircuits up to a certain number of inputs and,

2. using it during technology mapping to rewrite small logic blocks of larger networks.

Although this idea has been considered before [123], it was only ever able to capture
abstract technology-independent costs such as the size or depth of subcircuits. Instead,
we generate the database with an optimal physical design algorithm tuned to the
desired target technology, thus incorporating all elements of potential final circuit costs.
Consequently, our technology mapper’s outputs inherently respect (configurable) inverter,
buffer, splitter, and crossing costs,II thus they represent the final circuit layout much
more closely and prevent overhead at the physical design stage.

∧ ∨ ∧

∧ ∧

∨

∧ ∧

a b c d

o1 o2

∧ ∧ ∧ ∧

∧ ∧

a b c d

× ×

×

o1 o2

Figure 6.3: Two realizations of a network computing o1 = a ∧ b ∧ c ∧ d and o2 =
¬a ∧ ¬b ∧ ¬c ∧ ¬d. Inverters are denoted by dashed edges and crossing cells are denoted
by a × symbol.

To illustrate the need for technology-dependent optimizations in the logic synthesis stage,
consider a circuit with input variables a, b, c, d that computes o1 = a ∧ b ∧ c ∧ d and

IIAlthough we focus on these four cost functions because they represent important roadblocks to
overcome in contemporary emerging technologies, our general approach applies to arbitrary cost functions
as long as there exists a physical design algorithm for generating the optimal design database.

113

Chapter 6 Logic Synthesis for FCN Technologies

o2 = ¬a ∧ ¬b ∧ ¬c ∧ ¬d. Suppose that we are optimizing for a simplified technology
with AND2 and OR2 gates, which has no inversion cost, but needs path-balancing
and planarization with crossings. While there is a mapped configuration with 8 cells
(Figure 6.3 (left)), a naive technology-independent optimization might give a more compact
representation with only 6 gates which need 9 cells in total including 3 additional crossing
cells to meet the planarization constraint (Figure 6.3 (right)).

In the following, we outline our proposed approach to consider technology-specific
constraints during logic synthesis. First, we describe the generation of the database of
optimal subcircuits, which is a one-time computation. Then we present the algorithm for
mapping an input logic network into a path-balanced, fanout-branched, and planarized
circuit using the generated optimal substructures, while also supporting explicit inverters.

6.3.1 Generation of Optimal Subcircuits

Conventional Boolean rewriting has successfully provided the groundwork for utilizing
databases of optimal subcircuits. Usually, NPN canonization is utilized to significantly
reduce the database sizes [123]. Two single-output Boolean functions belong to the
same NPN class if one can be translated into the other by (optionally) negating (N) the
primary inputs, permuting (P) the primary inputs, and negating (N) the primary output.
The representative of each class is its lexicographically smallest member. Since inverters
are considered to be cost-free in AIGs and input permutations can be neglected because
no sense of fixed topology is employed, NPN canonization is a strong tool for complexity
reduction and optimization.

However, in beyond-CMOS technologies, inverters matter, and input permutations can
only be altered using costly crossings. Therefore, only considering NPN representatives is
insufficient as the costs of members belonging to the same NPN class might substantially
differ in the final layouts.

Therefore, we propose exploring a middle ground between the exhaustive enumeration of
all 22n Boolean functions in n variables and their NPN representatives. Namely, we rely
on a class that we call NN that respects input/output permutations but not primary
inversions. The number of NN classes is greater by a factor of n! compared to NPN.
For example, while the number of 4-input NPN classes is 222, our 4-input database has
222 · 4! = 5328 entries, which is still much smaller than the number of 4-input functions
(224 = 65536).

For each canonized (lexicographically smallest) NN representative, we generate an optimal
(with respect to the imposed cost functions) subcircuit layout in the target technology.
To this end, we modified an open-source physical design algorithm [169, 171] to compute
the optimal FCN circuit layouts under different primary input permutations. Since that
algorithm is based on SMT solving, we enforce the input permutation π : x1 ≻ x2 ≻

114

Logic Synthesis for FCN Technologies Chapter 6

· · · ≻ xn by adding an additional constraint. Let pxt be the Boolean variable that, when
set to 1, represents that node x is placed on layout tile t. To enforce that if a primary
input is placed on some tile, any other primary input that follows in the permutation
order must not be placed on a prior tile in the layout, the constraint is defined as:∧

t∈T,x∈π

(pxt =⇒
∧

t′≻t,x≻x′

¬px′t′).

The inclined reader is referred to [169] for an in-depth explanation of existing constraints
for valid node placement, wire routing, crossing insertion, path balancing, etc. Finally,
incremental SMT solver calls that iteratively increase the available layout area for
the physical design process ensure optimality of the eventually found result. Symmetry
breaking allows effective search space pruning, and highly specialized cardinality constraint
engines in the utilized Z3 solver [129] enable critical runtime reductions that keep the
approach scalable up to ≈ 100 layout tiles, which is sufficient to realize all 4-input NN
representatives.

6.3.2 Rewriting Using the Exact Database

This step decomposes the input network into small logic blocks and substitutes them
using the appropriate optimum structures described in the previous section, while also
synthesizing interconnections between logic blocks. The high-level pseudocode of the
algorithm is given in Algorithm 6.1.

Decomposing into small logic blocks

Typical technology-mapping algorithms consider small cuts rooted at different nodes in
the network and replace them with optimized versions, and when doing so, conventional
algorithms give only minor importance to other fanouts of the cut leaves. However,
to consider branching and planarization constraints of emerging technologies, when
replacing a cut, it is important to know the relative positions of the other fanouts of the
cut leaves concerning the part that is being replaced to preserve already instantiated
(partial-)planarization. To this end, we 1. fix the decomposition into small logic blocks
by mapping the network to 4-LUTs using if -K 4 command of the logic synthesis tool
ABC [34] (Line 1), and 2. fix the relative positions of those logic blocks by assigning
ranks to LUTs and imposing an ordering of the LUTs in each rank (Line 2).

Initial path-balancing and crossing optimization

Before rewriting LUTs, the algorithm decides the locations of wires between non-
consecutive LUT logic levels. For example, if there is a LUT a in level 1 which is
a fanin of a LUT d in level 3 and if level 2 has two LUTs b and c in that order, for proper

115

Chapter 6 Logic Synthesis for FCN Technologies

Algorithm 6.1: Proposed technology mapping algorithm.
Input: Input network N and database DB.
Output: A technology-mapped version of N .

1 Nlut ← N mapped to a 4-LUT network with ABC.
2 Assign levels to nodes in Nlut and fix the ordering of nodes.
3 Nbuf ← buffer inserted version of Nlut.
4 Nxing ← crossing minimized version of Nbuf.
5 L← number of logic levels in Nxing.
6 foreach level ℓ ∈ {1, . . . , L} do
7 DesiredOrder ← [].
8 foreach node n of level ℓ do
9 Reorder fanins of n to avoid self-crossings.

10 Update node function of n.
11 Append reordered fanins to DesiredOrder .

12 Construct buffer/splitter/crossing layers in Nxing to achieve the signal order of
DesiredOrder at the outputs of level ℓ− 1.

13 foreach node n of level ℓ do
14 (S, InvConfig)← find best network structure and I/O inversion configuration

for n from DB.
15 Replace n in Nxing with S after applying InvConfig.

16 Add buffers to Nxing to balance the outputs at level ℓ + 1.

17 return Nxing

planarization, the algorithm decides whether the wire from a to d goes through the space
left of b, between b and c, or right of c. The initial path-balancing thus inserts buffers to
denote such path propagation locations for each wire that connects non-consecutive LUT
layers (Line 3). During LUT rewriting, these buffers are extended to buffer chains to
meet the path-balancing constraint.

To minimize crossings, the initial buffers are inserted in a locally optimal way, keeping a
fixed ordering of LUTs. I.e, for a LUT a in level ℓ, if a buffer needs to be inserted in
level ℓ + 1, it is placed at the location that minimizes the number of level-ℓ-to-level-ℓ + 1
connections that cross the path from the LUT to the buffer. After buffer insertion,
crossing optimization is performed for each level (Line 4) by swapping adjacent node
pairs in each level as long as it leads to fewer crossings.

116

Logic Synthesis for FCN Technologies Chapter 6

Substituting LUTs from the database entries

In the final step, the path-balanced network is reconstructed in a level-by-level fashion
(Lines 6-16). Reconstructing level ℓ + 1 consists of three main steps: 1. for each LUT
in ℓ + 1, their fanins are reordered to avoid crossings between pairs of their fanins, and
the node functions are altered accordingly (Lines 9-10); 2. zero or more layers, each
consisting of buffers/splitters/crossings, are inserted between level ℓ and ℓ + 1 to obtain
the fanins of level ℓ + 1 in the correct order (Line 12); and 3. the LUTs in level ℓ + 1 are
replaced with the respective optimal structures from the database (Lines 14-15). The
database includes entries for all 4-input NN classes but does not include all input/output
inverted versions to avoid pre-computing the entire domain of 4-input functions. Hence,
the algorithm considers all possible input/output inversions for LUT node functions and
finds a match in the database. Then, the LUT is replaced with the found entry, after
applying appropriate input/output inversions.

Run-time and space complexity The run-time and space complexity of our algorithm
is dominated by the crossing insertion between two consecutive levels in Line 12. If the
number of gates in layer ℓ is nℓ and mℓ = max(nℓ, nℓ−1), then the worst-case for this step
would need O(mℓ)-many new layers each consisting of O(mℓ) crossings/buffers (consider
the case where outputs of level ℓ− 1 are connected to the inputs of level ℓ in the opposite
order). Thus the total run-time and space needed for this step is O(∑L

ℓ=1 m2
ℓ), which is

O(n2) in the worst-case where n is the size of the network. As the database of optimum
substructures is computed for constant-sized functions, each database entry has constant
size, and with proper indexing, the lookup is also constant time; hence replacing the
LUTs with optimum structures increases the run-time by only a constant factor.

6.4 Experimental Evaluation

This section constitutes a quantitative evaluation of the proposed technology mapping
algorithm. We demonstrate its applicability and compare it against a state-of-the-art
technique. First, we describe the experimental setup in Section 6.4.1 before presenting
and discussing the results in Section 6.4.2.

6.4.1 Experimental Setup

The proposed algorithm was implemented in C++ on top of the open-source tools
mockturtle [154] and fiction [171] and evaluated using the ISCAS85 benchmarks [38]
and EPFL Benchmark Suite [11]. We generated a database of optimal FCN layouts—
relying on state-of-the-art technology constraints [172]—implementing all 5328 canonical
NN representatives as Verilog modules. (Total uncompressed size is 12MB.) We then

117

Chapter 6 Logic Synthesis for FCN Technologies
Ta

bl
e

6.
1:

R
es

ul
ts

of
th

e
pr

op
os

ed
te

ch
no

lo
gy

m
ap

pi
ng

ap
pr

oa
ch

on
th

e
IS

C
A

S
[3

8]
an

d
EP

FL
[1

1]
be

nc
hm

ar
k

su
ite

s.

B
en

ch
m

ar
k

C
ir

cu
it

St
at

e
of

th
e

A
rt

[1
70

]
P

ro
p

os
ed

A
pp

ro
ac

h

N
am

e
P

I
P

O
G

at
es

D
ep

th
To

ta
l

N
od

es
B

uff
er

s
C

ro
ss

in
gs

C
P

To
ta

l
N

od
es

B
uff

er
s

C
ro

ss
in

gs
C

P
R

un
ti

m
e

in
se

c.
B

uff
er

s
im

pr
.

%
C

ro
ss

in
gs

im
pr

.
%

C
P

im
pr

.
%

ISCAS85[38]

c1
7

5
2

6
3

99
69

16
26

63
31

6
13

0.
04

55
.1

62
.5

50
.0

c4
32

36
7

20
8

26
35

77
6

31
13

1
42

01
70

1
14

91
0

12
17

0
19

73
29

9
0.

06
60

.9
53

.0
57

.3
c4

99
41

32
39

8
19

94
62

1
88

26
1

54
56

14
02

11
84

2
87

54
19

48
22

7
0.

06
90

.1
64

.3
83

.8
c8

80
60

26
32

5
25

70
10

8
61

04
0

84
38

10
62

28
92

0
23

05
5

45
93

45
7

0.
07

62
.2

45
.6

57
.0

c1
35

5
41

32
50

2
25

11
7

05
6

10
9

73
8

61
98

17
22

11
56

5
85

21
19

36
21

9
0.

06
92

.2
68

.8
87

.3
c1

90
8

33
25

34
1

27
77

95
0

71
17

7
59

95
12

01
17

20
1

14
02

6
21

87
36

4
0.

06
80

.3
63

.5
69

.7
c2

67
0

15
7

64
71

6
20

32
3

82
4

28
1

06
7

41
26

7
24

64
88

29
5

72
77

7
13

61
3

77
4

0.
11

74
.1

67
.0

68
.6

c3
54

0
50

22
10

24
41

58
7

46
8

53
1

80
7

53
49

8
32

80
97

62
7

65
92

5
28

31
2

97
7

0.
11

87
.6

47
.1

70
.2

c5
31

5
17

8
12

3
17

76
37

1
86

4
28

2
1

71
0

36
9

15
0

22
2

58
69

30
1

88
0

24
6

66
0

50
52

2
15

04
0.

27
85

.6
66

.4
74

.4
c6

28
8

32
32

23
37

12
0

98
8

54
2

93
9

62
6

42
44

7
89

01
97

31
3

73
05

2
15

54
2

12
80

0.
15

92
.2

63
.4

85
.6

c7
55

2
20

7
10

8
14

69
26

1
48

1
31

8
1

35
1

26
6

12
6

75
3

51
69

41
1

38
3

33
3

29
8

73
01

9
17

97
0.

36
75

.3
42

.4
65

.2

EPFL[11]

ad
de

r
25

6
12

9
10

20
25

5
79

4
31

3
70

8
44

7
83

31
6

40
83

2
18

1
85

3
2

14
6

35
9

31
62

5
93

50
1.

65
−

20
3.

0
62

.0
−

12
9.

0
ar

bi
te

r
25

6
12

9
11

83
9

87
61

39
2

43
2

56
34

2
57

8
5

02
5

98
2

36
16

0
7

43
2

96
0

6
66

1
95

9
73

1
08

9
11

64
6

6.
10

88
.2

85
.5

67
.8

ba
r

13
5

12
8

33
36

12
4

05
0

82
3

3
68

0
53

7
36

3
23

0
10

78
2

1
02

3
44

6
44

8
80

4
56

2
23

4
23

69
0.

63
87

.8
−

54
.8

78
.0

ca
vl

c
10

11
69

3
16

28
6

50
9

25
9

80
0

25
10

0
23

33
86

99
9

54
83

9
29

40
3

76
0

0.
09

78
.9

−
17

.1
67

.4
ct

rl
7

26
17

4
10

28
18

8
25

09
7

26
67

65
4

44
80

26
89

12
73

12
8

0.
05

89
.3

52
.3

80
.4

de
c

8
25

6
30

4
3

16
1

85
7

15
4

66
6

68
71

11
43

25
32

1
38

59
19

89
4

21
5

0.
06

97
.5

−
18

9.
5

81
.2

i2
c

14
7

14
2

13
42

20
1

12
9

55
3

1
03

0
76

8
95

96
8

45
68

29
4

76
2

23
8

11
4

52
19

8
11

63
0.

30
76

.9
45

.6
74

.5
in

t2
flo

at
11

7
26

0
16

48
21

9
42

79
3

48
75

83
3

12
16

1
81

75
31

24
29

3
0.

06
80

.9
35

.9
64

.8
m

ax
51

2
13

0
28

65
28

7
5

37
8

86
5

4
72

0
72

9
65

1
64

2
10

13
0

6
18

2
86

0
5

87
9

04
3

29
4

32
1

11
58

9
8.

53
−

24
.5

54
.8

−
14

.4
pr

io
ri

ty
12

8
8

97
8

25
0

66
8

09
7

60
7

82
5

57
91

6
34

77
29

0
81

0
27

3
90

1
13

40
7

24
87

0.
25

54
.9

76
.9

28
.5

ro
ut

er
60

30
25

7
54

54
07

4
45

62
7

79
55

81
4

20
03

3
18

43
9

64
8

34
8

0.
06

59
.6

91
.9

57
.2

si
n

24
25

54
16

22
5

8
23

7
61

4
7

71
1

87
9

51
4

23
4

16
99

0
1

14
5

53
7

93
4

12
9

19
2

74
0

63
40

0.
64

87
.9

62
.5

62
.7

vo
te

r
10

01
1

13
75

8
70

53
95

5
83

9
50

50
0

62
5

3
42

1
11

0
48

86
4

3
37

5
27

3
2

73
4

14
1

60
1

13
9

54
42

7.
60

94
.6

82
.4

88
.9

di
v

12
8

12
8

57
24

7
43

72
ou

t
of

m
em

or
y

10
4

91
8

98
0

10
1

31
0

75
2

3
40

9
19

6
24

9
35

4
56

.4
9

—
—

—
hy

p
25

6
12

8
21

4
33

5
24

80
1

ou
t

of
m

em
or

y
1

12
8

91
7

68
5

1
02

9
59

3
31

3
98

51
9

78
2

1
22

6
86

8
11

72
.2

7
—

—
—

lo
g2

32
32

32
06

0
44

4
ou

t
of

m
em

or
y

24
81

6
04

9
20

49
3

94
7

4
21

5
96

5
47

00
5

10
.2

2
—

—
—

m
em

_
ct

rl
12

04
12

31
46

83
6

11
4

ou
t

of
m

em
or

y
37

1
07

1
74

7
34

1
55

5
50

0
29

36
9

27
9

10
8

01
9

57
7.

26
—

—
—

m
ul

ti
pl

ie
r

12
8

12
8

27
06

2
27

4
ou

t
of

m
em

or
y

33
37

0
84

5
28

61
0

81
1

4
66

8
20

0
28

84
2

16
.8

3
—

—
—

sq
rt

12
8

64
24

61
8

50
58

ou
t

of
m

em
or

y
41

76
8

21
5

41
22

6
18

5
47

0
49

1
16

9
80

0
26

.2
2

—
—

—
sq

ua
re

64
12

8
18

48
4

25
0

ou
t

of
m

em
or

y
17

58
8

91
8

14
25

2
30

9
3

26
6

04
7

14
74

7
7.

36
—

—
—

W
ei

gh
te

d
av

er
ag

e
84

.5
74

.5
65

.2

118

Logic Synthesis for FCN Technologies Chapter 6

applied the proposed technology mapping algorithm to all circuits in the aforementioned
benchmark suites. We measured the resulting gate-level costs concerning the number
of buffers (including splitters), number of crossings, and critical path (CP) length, and
compared them with the results of the best available (to best of our knowledge) large-
scale FCN physical design algorithm that can handle layouts with more than 100 million
tiles [170]. The implementation of [170] is publicly available [171], which enabled us to
run all experiments with the same set of configurations. All evaluations were run on a
MacBook Pro M1 with 10 CPU cores, 16 GPU cores, and 32 GB of RAM.

6.4.2 Results

To enable a fair comparison, we applied both our proposed algorithm and the state-
of-the-art FCN algorithm [170] to all benchmarks, without performing any prior logic
optimization.

The obtained results are shown in Table 6.1. It lists the initial properties of the
benchmarks under Benchmark Circuit; the columns under State of the Art indicate the
statistics of the FCN layouts generated by [170]; and those under Proposed Approach
show results obtained from our technology mapping algorithm when applied to the FCN
domain. For both algorithms, it lists the number of total nodes, the number of buffers
(including splitters) and crossings, and the critical path (CP) length. The last three
columns show relative improvements in buffer, crossing, and CP costs. The final row
states a weighted average for the reductions in costs across all benchmarks (excluding
those for which the state of the art could not generate a solution).

The proposed method consistently achieves over 50 % improvement in the CP length for
all benchmarks except for three. A similar level of improvement is also evident in the
numbers of crossings and buffers for most of the benchmarks within a similar run-time.
The average reductions for the number of buffers, number of crossings, and CP length
are 84.5 %, 74.5 %, and 65.2 %, respectively, which is a major improvement over the state
of the art. Moreover, our method is more scalable as it yields results for the seven EPFL
benchmarks on which the state of the art ran out of memory.

On the downside, a degradation of the CP length for benchmark ‘adder’, and a similar
order of magnitude degradation of the number of crossings for benchmark ‘dec’ can be
noticed, which appear to be outliers. However, it is to be noted that the benchmark
‘adder’ exhibits an improvement in the number of crossings, and the benchmark ‘dec’
shows an improvement in the CP length. Generally, an increase in the number of crossings
results in an increase in the CP length, but, as the results for these outliers suggest,
this is not always the case. The CP length is more related to the maximum number of
crossings a single wire has than to the total number of crossings. That is, if there is a
single wire that crosses m other wires and no other pairs of wires cross, the planarization

119

Chapter 6 Logic Synthesis for FCN Technologies

needs at least m crossing layers and thus increases the CP delay by m levels. On the
other hand, even if there are m crossings between two layers, if each wire only crosses a
handful of other wires, that structure can be planarized with much fewer crossing layers,
so the CP length will be small. Thus, to minimize the CP length, a better objective is to
minimize the maximum number of crossings for any wire, rather than minimizing the
total number of crossings.

Additionally, when our crossing optimization and planarization steps are applied directly
to the ‘adder’ AIG without any LUT-mapping, it yields a much better CP length. This
implies that LUT mapping results in an increased amount of crossings among the resulting
LUT nodes, which, in turn, increases the number of logic levels due to crossings that
occur in series. I.e., LUT mapping on ‘adder’ seems to over-optimize for LUT depth,
inadvertently making it harder to planarize, because the LUT mapping stage is unaware
of the technology constraints. Thus, it seems promising to conduct further research
on technology-aware decomposition techniques, which will help mitigate such outlier
situations.

6.5 Summary

Many technological implementations in the beyond-CMOS domain come with unconven-
tional cost functions that are not respected by classical logic synthesis and, hence, cause
significant overhead in the physical design stage.

In this chapter, we proposed an algorithm for technology mapping of beyond-CMOS
circuitry that respects these unconventional cost functions via the application of a
physical design database of optimal circuit layouts that is employed for logic rewriting,
thus capturing cost factors that would otherwise remain transparent to the logic synthesis.
Via an experimental evaluation, we showed that the proposed algorithm delivers average
improvements of 84.5 %, 74.5 %, and 65.2 % for the number of buffers, the number of
crossings, and the critical path length, respectively, as compared to a state-of-the-art
physical design algorithm for FCN circuits. Furthermore, results could be obtained for the
seven largest EPFL benchmark circuits on which the state of the art ran out of memory,
proving our approach to be more scalable. Thereby, this work constitutes a major
improvement for the design automation of several emerging beyond-CMOS technology
classes, which enables the cost-effective realization and integration of large-scale circuits
in this domain.

120

7 Conclusion

As technology continues to push the boundaries of digital systems, the demand for
efficient, scalable, and adaptable design methodologies becomes increasingly critical.
The field of logic synthesis and optimization plays a pivotal role in Electronic Design
Automation (EDA), facilitating the continued advancement of digital circuits. This thesis
addressed key challenges in logic synthesis and optimization, particularly as the field of
CMOS is rapidly approaching its physical limits. To this end, this thesis considers two
primary directions: scalable sequential synthesis for CMOS technologies and specialized
synthesis techniques for emerging post-CMOS technologies. In this chapter, we summarize
the major contributions of this thesis, reflect on their implications, and outline future
directions for research to extend and deepen this work.

7.1 Scalable Sequential Logic Synthesis

We introduced a scalable algorithm for sequential logic synthesis that utilizes sequential
observability don’t cares (SODCs). SODCs extend the notion of observability don’t cares
(ODCs) by incorporating the concept of reachable states in sequential circuits. The
proposed approach addresses the challenges associated with SODCs, particularly the
dependencies between base and inductive cases in k-step induction. By leveraging a
combination of redundancy removal and resubstitution under SODCs, the algorithm
explores optimization opportunities that have been overlooked by prior methods.

The method was implemented in an industrial EDA tool and achieved significant improve-
ments. Specifically, it demonstrated an average area reduction of 6.9% after technology
mapping, with reductions of 2.89% and 1.43% in combinational and sequential areas,
respectively, after post place-and-route. The rigorous proofs of correctness and empirical
evaluations confirm the effectiveness of the approach in enhancing power-performance-area
(PPA) metrics for advanced designs.

The experimental results demonstrate that the method is scalable and yields significant

121

Chapter 7 Conclusion

area improvements in both technology-mapped circuits and post place-and-route de-
signs. While the runtime is non-negligible, the method proves valuable for area-critical
applications, particularly as a high-effort optimization step.

Future Directions

While the proposed algorithm sets a robust foundation for SODC-based sequential logic
synthesis, several avenues for future exploration exist:

Runtime Enhancements: The method’s runtime can be further optimized by lever-
aging randomized or counter-example-guided simulation techniques to filter out invalid
optimizations early.

Heuristics for Further PPA Gains: Exploring heuristics for optimization candidate
ordering may expose further opportunities for improvement. Additionally, applying
symmetry-breaking logic transformations and more advanced reachability assumptions
could reveal additional optimization potential. Integration of Advanced Assumption
Models: Assumptions in the current method are derived directly from candidate
redundancies. Exploring richer assumption frameworks, possibly informed by formal
verification tools or simulation, could uncover deeper optimization opportunities in
circuits with complex feedback loops.

Extending Resubstitution Capabilities: The integration of resubstitution into the
framework proved effective but was limited by the scope of divisors and the imposed
constraints on network levels. Future improvements could involve dynamic divisor
selection strategies or the adoption of SAT-based techniques to handle larger fanout
cones efficiently.

7.2 Fanout-Bounded Logic Synthesis

This work introduced a comprehensive approach to Fanout-Bounded Synthesis (FBS)
targeted at emerging technologies with strict fanout and path-balancing constraints, such
as superconducting electronics. The problem is formulated as an ILP for fixed target
delays, achieving global optimization for fanout-bounded networks while minimizing
area. To complement the ILP, a scalable top-down heuristic is proposed for practical
applications, yielding significant area and delay improvements.

The proposed methodology was particularly relevant for technologies like AQFP, where
gates exhibit limited fanout capacity and require strict path balancing for correct
operation. For the general FBS problem, the heuristic achieved an 11.82% area reduction
compared to state-of-the-art methods without increasing delay. For the path-balanced
setting, it achieved an average 8.76% delay improvement with a modest 0.5% area

122

Conclusion Chapter 7

reduction, demonstrating its efficacy in optimizing both general and path-balanced
designs.

Although primarily targeted at emerging technologies, the techniques developed in this
work also provide valuable insights for CMOS technology. As CMOS nodes scale further
into advanced geometries, fanout limitations and interconnect delays are becoming
increasingly critical bottlenecks. The proposed FBS framework and heuristics can be
adapted to optimize high-fanout nets and critical paths in CMOS designs, such as clock
trees and reset networks. By drawing parallels between AQFP constraints and emerging
challenges in CMOS, this work offers a foundation for next-generation CMOS logic
synthesis techniques that address fanout and timing constraints more effectively.

Future Directions

We identify several promising directions for future research in fanout-bounded synthesis:

Enhancing ILP Scalability: While the ILP formulation achieves global optimization
for small benchmarks, scaling it to industrial designs is non-trivial. From the solver
side, advances in constraint pruning and parallel solving strategies could provide modest
speedups. On the overall formulation of the ILP, a more pragmatic approach could
involve partitioning the design into smaller subproblems and leveraging divide-and-
conquer strategies to manage complexity.

Path-Balancing Heuristics: Extending the heuristic to incorporate more aggressive
path-balancing optimizations could further reduce the number of splitters and buffers
required, improving both area and delay metrics.

Generalization to Other Technologies: While the focus is on AQFP, the techniques
could be adapted for other post-CMOS technologies with similar constraints, such as
spintronics and quantum-dot cellular automata. However, the framework may require
some non-trivial modifications to accommodate the unique characteristics of these
technologies, such as the preference for fewer wire crossings in FCN circuits.

7.3 Logic Synthesis for AQFP Technology

This work presents a two-stage synthesis framework for optimizing AQFP circuits. The
framework addresses unique challenges in AQFP technology, such as splitter and buffer
requirements for fanout handling and path balancing. The first stage involves generating
a database of minimum-area AQFP circuit structures for all single-output, 4-input logic
functions under varying input arrival-time patterns. This database is then used in the
second stage to synthesize larger networks by locally rewriting logic blocks with optimal
structures from the database in topological order.

123

Chapter 7 Conclusion

The proposed method achieves simultaneous optimization of logic gates, splitters, and
buffers, capturing opportunities missed by conventional approaches that separate logic
optimization from buffer-splitter handling. Experimental evaluations demonstrate over a
40% improvement in delay (critical path) and up to a 21% reduction in area (measured
in Josephson Junctions, JJs) compared to prior work. The inclusion of majority-5 gates
in the synthesis framework further enhances resource efficiency and delay reduction,
providing a new level of optimization granularity for AQFP circuits.

This work establishes a new paradigm for AQFP circuit synthesis, emphasizing the
importance of holistic optimization. By unifying logic and path balancing optimizations,
it achieves substantial improvements in delay and area. This idea can be extended to
other post-CMOS technologies where interconnect overhead is significant compared to
logic resources due to technology-specific constraints. The results also underscore the
utility of incorporating larger and more complex gates, such as majority-5, into AQFP
circuit designs. These gates effectively reduce the need for additional logic layers, buffers,
and splitters, streamlining the synthesis process and reducing resource consumption.

Future Directions

There are two main directions for future research based on the proposed AQFP synthesis
framework:

Database Refinement and Expansion: Increasing the scope of the database by
including a broader range of gate types, splitter configurations, and cost metrics could
significantly enhance the flexibility and applicability of the proposed method. Moreover,
while the current database is limited to 4-input functions, expanding it to support
functions with larger support could further improve overall optimization quality. To keep
the database size manageable, the target functions can be carefully selected based on
their frequency of occurrence in real-world designs.

Improved Splitter-Tree Synthesis: The proposed method uses balanced splitter trees
at the output of each logic block, which may not be the best choice in all cases. It is worth
exploring dynamic splitter-tree synthesis strategies that adapt to the specific requirements
of each logic block. For example, if certain fanouts of a logic block have more relaxed
required times relative to others, an unbalanced splitter tree may be a better choice.
Since this decision has to be made before the downstream logic is synthesized, heuristics
or machine learning models can be used to predict the best splitter-tree configuration for
each logic block.

124

Conclusion Chapter 7

7.4 Logic Synthesis for FCN Technologies

This work introduces a novel technology mapping algorithm tailored for beyond-CMOS
technologies, emphasizing unconventional cost functions such as path-balancing buffers,
fanout-branching splitters, planarizing crossings, and non-cost-free inverters. The ap-
proach leverages a database of optimal subcircuits generated using exact physical design
techniques, enabling technology-aware mapping at the logic synthesis stage. By incor-
porating these constraints early, the method mitigates substantial overhead typically
encountered during physical design.

Experimental evaluations demonstrate significant improvements across key metrics com-
pared to state-of-the-art physical design approaches for FCN. The proposed method
achieves average reductions of 84.5%, 74.5%, and 65.2% in the number of buffers, cross-
ings, and critical path length, respectively. Moreover, it successfully maps circuits that
exceed the memory capacity of existing algorithms, proving its scalability and robustness.

A key takeaway from this work is the importance of integrating technology-specific
constraints into the logic synthesis stage, enabling a seamless transition to physical
design for emerging technologies. By addressing critical challenges like path balancing,
branching, and planarization upfront, the proposed method minimizes inefficiencies that
arise when conventional synthesis flows are adapted to beyond-CMOS technologies. The
scalability of the approach and its applicability to large and complex benchmarks make it
a significant advancement in the design automation domain. The consistent performance
improvements highlight its potential as a foundational tool for future design automation
flows.

Future Directions

One immediate future research direction is to explore better interconnect optimization
strategies for planarized and path-balanced technologies such as FCN. The proposed
method first decomposes the network into logic blocks and processes them level by level.
Between two levels of logic blocks, the interconnects are optimized using existing heuristic
methods, which primarily target the minimization of the number of crossings. However,
interconnect cost is also influenced by the number of buffers used for path balancing. In
certain cases, the buffer cost can be significantly higher than the crossing cost, especially
if a single wire passes through multiple crossings, as each such crossing adds a new layer
of interconnects. As such, it is worth exploring methods that optimize interconnects
while considering buffer cost as well. One possible heuristic is to minimize the maximum
number of crossings a wire has to pass through, which indirectly minimizes the number
of buffers required for path balancing.

125

Chapter 7 Conclusion

7.5 Final Remarks

This thesis makes significant progress in addressing critical challenges in logic synthesis
and optimization, particularly as digital design nears its physical and performance
boundaries. By leveraging scalable sequential synthesis, fanout-bounded logic synthesis,
and innovative approaches to post-CMOS technologies, this research enables substantial
improvements in power, performance, and area (PPA) metrics. In summary, this thesis not
only advances the state of the art in logic synthesis but also establishes a robust foundation
for future research into scalable and technology-specific optimization methodologies.

126

Bibliography

[1] Apple introduces M2 Ultra.[Online June 2023]
https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/.

[2] Opencores: https://opencores.org.

[3] TSMC’s New 3nm Chip Wafers Priced at $20,000.[Online July 2023]
https://www.siliconexpert.com/blog/tsmc-3nm-wafer/.

[4] David A. Papa, Igor L. Markov, David A Papa, and Igor L Markov. Physically-
driven logic restructuring. Multi-Objective Optimization in Physical Synthesis of
Integrated Circuits, pages 83–103, 2013.

[5] Akers. Binary decision diagrams. IEEE Transactions on computers, 100(6):509–516,
1978.

[6] Sheldon B Akers. Synthesis of combinational logic using three-input majority gates.
In 3rd Annual Symposium on Switching Circuit Theory and Logical Design, pages
149–158, 1962.

[7] S. Amarel, G. Cooke, and R. O. Winder. Majority Gate Networks. IEEE Trans.
on Electronic Computers, EC-13(1):4–13, 1964.

[8] L. Amarù, P. Gaillardon, and G. De Micheli. Majority-Inverter Graph: A novel
data-structure and algorithms for efficient logic optimization. In Design Automation
Conference, pages 1–6, 2014.

[9] L. Amarú, P. Gaillardon, and G. De Micheli. Majority-Inverter Graph: A New
Paradigm for Logic Optimization. IEEE Trans. on CAD of Integrated Circuits and
Systems, 35(5):806–819, 2016.

[10] L Amarú, A Ajami, S Chen, Y Zhang, TL Tung, T Arifin, T Liu, M Pan, G Naveen,
JC Vujkovic, et al. First demonstration of a superconducting electronics mi-
crocontroller rtl-to-gdsii flow. In Government Microcircuit Appl. Crit. Technol.
Conf.(GOMACTech), pages 1–4, 2021.

[11] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The EPFL
combinational benchmark suite. In IWLS, 2015.

127

[12] Luca Amarú, Pierre-Emmanuel Gaillardon, Subhasish Mitra, and Giovanni
De Micheli. New logic synthesis as nanotechnology enabler. Proceedings of the
IEEE, 103(11):2168–2195, 2015.

[13] Luca Amarú, Pierre-Emmanuel Gaillardon, Anupam Chattopadhyay, and Giovanni
De Micheli. A sound and complete axiomatization of majority-n logic. IEEE
Transactions on Computers, 65(9):7. 2889–2895, 2016.

[14] Luca Amarú, Mathias Soeken, Patrick Vuillod, Jiong Luo, Alan Mishchenko, Pierre-
Emmanuel Gaillardon, Janet Olson, Robert Brayton, and Giovanni De Micheli.
Enabling exact delay synthesis. In 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 352–359. IEEE, 2017.

[15] Luca Amarú, Mathias Soeken, Patrick Vuillod, Jiong Luo, Alan Mishchenko,
Janet Olson, Robert Brayton, and Giovanni De Micheli. Improvements to boolean
resynthesis. In 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 755–760. IEEE, 2018.

[16] Neal G. Anderson and Sanjukta Bhanja, editors. Field-Coupled Nanocomputing -
Paradigms, Progress, and Perspectives, volume 8280 of Lecture Notes in Computer
Science. Springer, 2014.

[17] Yuki Ando, Ryo Sato, Masamitsu Tanaka, Kazuyoshi Takagi, Naofumi Takagi, and
Akira Fujimaki. Design and demonstration of an 8-bit bit-serial rsfq microprocessor:
Core e4. IEEE Transactions on Applied Superconductivity, 26(5):1–5, 2016.

[18] Christopher Ayala and Nobuyuki Yoshikawa. personal communication.

[19] Christopher L Ayala, Ro Saito, Tomoyuki Tanaka, Olivia Chen, Naoki Takeuchi,
Yuxing He, and Nobuyuki Yoshikawa. A semi-custom design methodology and
environment for implementing superconductor adiabatic quantum-flux-parametron
microprocessors. Superconductor Science and Technology, 33(5):054006, 2020.

[20] Christopher L Ayala, Tomoyuki Tanaka, Ro Saito, Mai Nozoe, Naoki Takeuchi, and
Nobuyuki Yoshikawa. Mana: A monolithic adiabatic integration architecture mi-
croprocessor using 1.4-zj/op unshunted superconductor josephson junction devices.
IEEE Journal of Solid-State Circuits, 56(4):1152–1165, 2020.

[21] D. Baneres, J. Cortadella, and M. Kishinevsky. Layout-Aware Gate Duplication
and Buffer Insertion. In Design, Automation and Test in Europe, pages 1–6, 2007.

[22] Karen A Bartlett, Robert K Brayton, Gary D Hachtel, Reily M Jacoby, Christo-
pher R Morrison, Richard L Rudell, Alberto Sangiovanni-Vincentelli, and A Wang.
Multi-level logic minimization using implicit don’t cares. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 7(6):723–740, 1988.

128

[23] Luca Benini and Giovanni De Micheli. A survey of boolean matching techniques for
library binding. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 2(3):193–226, 1997.

[24] G. H. Bernstein, A. Imre, V. Metlushko, A. Orlov, L. Zhou, L. Ji, G. Csaba, and
W. Porod. Magnetic QCA systems. Microelectronics Journal, 36(7):619–624, 2005.

[25] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In TACAS, pages 193–207. Springer, 1999.

[26] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiability,
volume 185. IOS press, 2009.

[27] Per Bjesse and Koen Claessen. SAT-Based Verification without State Space
Traversal. In FMCAD, page 372–389, 2000.

[28] E. Blair and C. Lent. Clock Topologies for Molecular Quantum-Dot Cellular
Automata. Journal of Low Power Electronics and Applications, 8(3), 2018.

[29] George Boole. The mathematical analysis of logic. CreateSpace Independent
Publishing Platform, 1847.

[30] Daniel Brand. Redundancy and don’t cares in logic synthesis. IEEE Transactions
on Computers, 100(10):947–952, 1983.

[31] Alexander L Braun and David Christopher Harms. RQL majority gates, and gates,
and or gates, September 25 2018. US Patent 10,084,454.

[32] R. K. Brayton and Alan Mishchenko. Sequential Rewriting and Synthesis. In
IWLS, 2007.

[33] R.K. Brayton. Compatible observability don’t cares revisited. In IEEE/ACM
International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM
Digest of Technical Papers (Cat. No.01CH37281), pages 618–623, 2001. doi:
10.1109/ICCAD.2001.968725.

[34] Robert Brayton and Alan Mishchenko. ABC: An academic industrial-strength
verification tool. In Tayssir Touili, Byron Cook, and Paul Jackson, editors, Com-
puter Aided Verification, pages 24–40, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[35] Robert K Brayton. The decomposition and factorization of boolean expressions.
ISCA-82, pages 49–54, 1982.

[36] Robert K Brayton, Gary D Hachtel, Lane A Hemachandra, A Richard Newton,
and Alberto Luigi M Sangiovanni-Vincentelli. A comparison of logic minimization
strategies using espresso: An apl program package for partitioned logic minimization.
In Proceedings of the International Symposium on Circuits and Systems, pages
42–48, 1982.

129

[37] Robert K Brayton, Richard Rudell, Alberto Sangiovanni-Vincentelli, and Albert R
Wang. MIS: A multiple-level logic optimization system. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 6(6):1062–1081, 1987.

[38] F. Brgles and Hideo Fujiwara. A neutral netlist of 10 combinational circuits and a
target translator in fortran. In ISCAS, 1985.

[39] Frank Markham Brown. Boolean reasoning: the logic of Boolean equations. Courier
Corporation, 2003.

[40] Randal E Bryant. Graph-based algorithms for boolean function manipulation.
Computers, IEEE Transactions on, 100(8):677–691, 1986.

[41] Ruizhe Cai, Olivia Chen, Ao Ren, Ning Liu, Caiwen Ding, Nobuyuki Yoshikawa,
and Yanzhi Wang. A majority logic synthesis framework for adiabatic quantum-
flux-parametron superconducting circuits. In ACM Great Lakes Symposium on
VLSI, pages 189–194, 2019.

[42] Ruizhe Cai, Olivia Chen, Ao Ren, Ning Liu, Nobuyuki Yoshikawa, and Yanzhi Wang.
A buffer and splitter insertion framework for adiabatic quantum-flux-parametron
superconducting circuits. In Int’l Conf. on Computer Design, pages 429–436, 2019.

[43] Vehbi Calayir, Dmitri E. Nikonov, Sasikanth Manipatruni, and Ian A. Young.
Static and Clocked Spintronic Circuit Design and Simulation With Performance
Analysis Relative to CMOS. IEEE Trans. on Circuits and Systems I: Regular
Papers, 61(2):393–406, 2014.

[44] Alessandro Tempia Calvino and Giovanni De Micheli. Depth-Optimal Buffer and
Splitter Insertion and Optimization in AQFP Circuits. In Asia and South Pacific
Design Automation Conference, page 152–158, 2023.

[45] Alessandro Tempia Calvino and Giovanni De Micheli. Scalable logic rewriting
using don’t cares. In 2024 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 1–6. IEEE, 2024.

[46] Caio Araujo T Campos, Abner L. Marciano, Omar P. Vilela Neto, and Frank Sill
Torres. USE: A Universal, Scalable, and Efficient Clocking Scheme for QCA. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 35(3), 2015.

[47] Michael Case, Jason Baumgartner, Hari Mony, and Robert Kanzelman. Optimal
redundancy removal without fixedpoint computation. In FMCAD, pages 101–108,
2011.

[48] Michael L. Case, Victor N. Kravets, Alan Mishchenko, and Robert K. Brayton.
Merging nodes under sequential observability. In DAC, pages 540–545, 2008.

[49] Satrajit Chatterjee. On algorithms for technology mapping. University of California,
Berkeley, 2007.

130

[50] Satrajit Chatterjee, Alan Mishchenko, Robert K Brayton, Xinning Wang, and
Timothy Kam. Reducing structural bias in technology mapping. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 25(12):2894–2903,
2006.

[51] Olivia Chen, Ruizhe Cai, Yanzhi Wang, Fei Ke, Taiki Yamae, Ro Saito, Naoki
Takeuchi, and Nobuyuki Yoshikawa. Adiabatic quantum-flux-parametron: Towards
building extremely energy-efficient circuits and systems. Scientific reports, 9(1):
1–10, 2019.

[52] Jason Cong and Yuzheng Ding. Flowmap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst., 13, 1994.

[53] Jason Cong and Yean-Yow Hwang. Structural gate decomposition for depth-
optimal technology mapping in lut-based fpga designs. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 5(2):193–225, 2000.

[54] R. P. Cowburn and M. E. Welland. Room Temperature Magnetic Quantum Cellular
Automata. Science, 287(5457), 2000.

[55] Maurizio Damiani and Giovanni De Micheli. Observability don’t care sets and
boolean relations. In ICCAD, volume 90, pages 502–505, 1990.

[56] Maurizio Damiani and Giovanni De Micheli. Don’t care set specifications in
combinational and synchronous logic circuits. IEEE transactions on computer-
aided design of integrated circuits and systems, 12(3):365–388, 1993.

[57] E.S. Davidson. An algorithm for NAND decomposition under network constraints.
IEEE Transactions on Computers, C-18(12):1098–1109, 1969. doi: 10.1109/T-C.
1969.222593.

[58] Giovanni De Micheli. Synchronous logic synthesis: Algorithms for cycle-time
minimization. IEEE TCAD, 10(1):63–73, 1991.

[59] P Fiser, I Halecek, and J Schmidt. Are xors in logic synthesis really necessary.
In IEEE 20th International Symposium on Design and Diagnostics of Electronic
Circuits and Systems (DDECS), pages 138–143, 2017.

[60] Coenrad Johann Fourie, Kyle Jackman, Matthys M Botha, Sasan Razmkhah,
Pascal Febvre, Christopher Lawrence Ayala, Qiuyun Xu, Nobuyuki Yoshikawa,
Erin Patrick, Mark Law, et al. Coldflux superconducting EDA and TCAD tools
project: Overview and progress. IEEE Transactions on Applied Superconductivity,
29(5):1–7, 2019.

[61] Rongliang Fu, Mengmeng Wang, Yirong Kan, Nobuyuki Yoshikawa, Tsung-Yi
Ho, and Olivia Chen. A Global Optimization Algorithm for Buffer and Splitter

131

Insertion in Adiabatic Quantum-Flux-Parametron Circuits. In Asia and South
Pacific Design Automation Conference, page 769–774, 2023.

[62] M. Golumbic. Combinatorial Merging. IEEE Trans. on Computers, 25(11):1164–
1167, 1976.

[63] Mrinal Goswami, Anindan Mondal, Mahabub Hasan Mahalat, Bibhash Sen, and
Biplab K. Sikdar. An Efficient Clocking Scheme for Quantum-dot Cellular Automata.
International Journal of Electronics Letters, 8(1), 2020.

[64] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL
https://www.gurobi.com.

[65] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli. SAT-based exact
synthesis: Encodings, topology families, and parallelism. IEEE Trans. on CAD of
Integrated Circuits and Systems, pages 1–1, 2019.

[66] Winston Haaswijk, Mathias Soeken, Luca Amarú, Pierre-Emmanuel Gaillardon,
and Giovanni De Micheli. A novel basis for logic rewriting. In 2017 22nd Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 151–156. Ieee,
2017.

[67] Winston Jason Haaswijk. SAT-Based Exact Synthesis for Multi-Level Logic Net-
works. PhD thesis, EPFL, Lausanne, 2019.

[68] Gary D Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms.
Springer Science & Business Media, 2005.

[69] Leo Hellerman. A catalog of three-variable or-invert and and-invert logical circuits.
IEEE Transactions on Electronic Computers, (3):198–223, 1963.

[70] Quentin P Herr, Anna Y Herr, Oliver T Oberg, and Alexander G Ioannidis.
Ultra-low-power superconductor logic. Journal of applied physics, 109(10):103903,
2011.

[71] Gage Hills, Christian Lau, Andrew Wright, Samuel Fuller, Mindy D Bishop,
Tathagata Srimani, Pritpal Kanhaiya, Rebecca Ho, Aya Amer, Yosi Stein, et al.
Modern microprocessor built from complementary carbon nanotube transistors.
Nature, 572(7771):595–602, 2019.

[72] D Scott Holmes, Andrew L Ripple, and Marc A Manheimer. Energy-efficient
superconducting computing—Power budgets and requirements. IEEE Trans. on
Applied Superconductivity, 23(3), 2013.

[73] D Scott Holmes, Alan M Kadin, and Mark W Johnson. Superconducting computing
in large-scale hybrid systems. Computer, 48(12):34–42, 2015.

132

https://www.gurobi.com

[74] H James Hoover, Maria M Klawe, and Nicholas J Pippenger. Bounding fan-out in
logical networks. Journal of the ACM (JACM), 31(1):13–18, 1984.

[75] Bo Hu, Yosinori Watanabe, Alex Kondratyev, and Malgorzata Marek-Sadowska.
Gain-based technology mapping for discrete-size cell libraries. In Proceedings of
the 40th annual Design Automation Conference, pages 574–579, 2003.

[76] Chao-Yuan Huang, Yi-Chen Chang, Ming-Jer Tsai, and Tsung-Yi Ho. An Optimal
Algorithm for Splitter and Buffer Insertion in Adiabatic Quantum-Flux-Parametron
Circuits. In Int’l Conf. on Computer-Aided Design, page 1–8, 2021.

[77] J. Huang, M. Momenzadeh, L. Schiano, M. Ottavi, and F. Lombardi. Tile-based
QCA Design Using Majority-like Logic Primitives. JETC, 1(3):163–185, 2005.

[78] Zheng Huang, Lingli Wang, Yakov Nasikovskiy, and Alan Mishchenko. Fast Boolean
matching based on NPN classification. In 2013 International Conference on Field-
Programmable Technology (FPT), pages 310–313, 2013. doi: 10.1109/FPT.2013.
6718374.

[79] T. Huff, H. Labidi, M. Rashidi, L. Livadaru, T. Dienel, R. Achal, W. Vine, J. Pitters,
and R. A. Wolkow. Binary Atomic Silicon Logic. Nature Electronics, 1:636–643,
2018.

[80] David A. Huffman. A Method for the Construction of Minimum-Redundancy
Codes. Proc. IRE, 40(9):1098–1101, 1952.

[81] Aaron P Hurst, Alan Mishchenko, and Robert K Brayton. Fast minimum-register
retiming via binary maximum-flow. In FMCAD, pages 181–187, 2007.

[82] John D. Joannopoulos, Pierre R. Villeneuve, and Shanhui Fan. Photonic crystals.
Solid State Communications, 102(2-3):165–173, 1997.

[83] Steven G. Johnson, Pierre R. Villeneuve, Shanhui Fan, and John D. Joannopoulos.
Linear waveguides in photonic-crystal slabs. Physical Review B, 62, 2000.

[84] Shrirang K Karandikar and Sachin S Sapatnekar. Logical effort based technology
mapping. In IEEE/ACM International Conference on Computer Aided Design,
2004. ICCAD-2004., pages 419–422. IEEE, 2004.

[85] Maurice Karnaugh. The map method for synthesis of combinational logic cir-
cuits. Transactions of the American Institute of Electrical Engineers, Part I:
Communication and Electronics, 72(5):593–599, 1953.

[86] R. W. Keyes and R. Landauer. Minimal Energy Dissipation in Logic. IBM Journal
of Research and Development, 14(2), 1970.

[87] Donald E Knuth. The art of computer programming, volume 4A: combinatorial
algorithms, part 1. 2011.

133

[88] Donald Ervin Knuth. The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability. Addison-Wesley, 2015.

[89] Arist Kojevnikov, Alexander S Kulikov, and Grigory Yaroslavtsev. Finding efficient
circuits using sat-solvers. In International Conference on Theory and Applications
of Satisfiability Testing, pages 32–44. Springer, 2009.

[90] Victor N. Kravets and Alan Mishchenko. Sequential logic synthesis using symbolic
bi-decomposition. In DATE, pages 1458–1463, 2009.

[91] Gleb Krylov and Eby G Friedman. Asynchronous dynamic single-flux quantum
majority gates. IEEE Transactions on Applied Superconductivity, 30(5):1–7, 2020.

[92] A. Kuehlmann, V. Paruthi, F. Krohm, and M.K. Ganai. Robust Boolean reasoning
for equivalence checking and functional property verification. IEEE TCAD, 21(12):
1377–1394, 2002.

[93] Andreas Kuehlmann. Dynamic transition relation simplification for bounded
property checking. In IEEE/ACM International Conference on Computer Aided
Design, 2004. ICCAD-2004., pages 50–57. IEEE, 2004.

[94] Yuji Kukimoto, Robert K Brayton, and Prashant Sawkar. Delay-optimal technology
mapping by DAG covering. In DAC, pages 348–351, 1998.

[95] R. Landauer. Irreversibility and Heat Generation in the Computing Process. IBM
Journal of Research and Development, 5, 1961.

[96] Chang-Yeong Lee. Representation of switching circuits by binary-decision programs.
The Bell System Technical Journal, 38(4):985–999, 1959.

[97] Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. Beyond local optimality of
buffer and splitter insertion for AQFP circuits. In Rob Oshana, editor, DAC ’22:
59th ACM/IEEE Design Automation Conference, San Francisco, California, USA,
July 10 - 14, 2022, pages 445–450. ACM, 2022. doi: 10.1145/3489517.3530661.
URL https://doi.org/10.1145/3489517.3530661.

[98] Siang-Yun Lee, Heinz Riener, Alan Mishchenko, Robert K. Brayton, and Giovanni
De Micheli. A Simulation-Guided Paradigm for Logic Synthesis and Verification.
IEEE TCAD, 41(8):2573–2586, 2022.

[99] Charles E Leiserson and James B Saxe. Retiming synchronous circuitry. Algorith-
mica, 6(1-6):5–35, 1991.

[100] C. S. Lent and P. D. Tougaw. A device architecture for computing with quantum
dots. Proceedings of the IEEE, 85(4), April 1997. ISSN 0018-9219.

[101] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein. Quantum Cellular
Automata. Nanotechnology, 4(1):49, 1993.

134

https://doi.org/10.1145/3489517.3530661

[102] C. S. Lent, B. Isaksen, and M. Lieberman. Molecular quantum-dot cellular automata.
Journal of the American Chemical Society, 125(4):1056–1063, 2003.

[103] Zhuo Li, David A. Papa, Charles J. Alpert, Shiyan Hu, Weiping Shi, Cliff Sze, and
Ying Zhou. Ultra-Fast Interconnect Driven Cell Cloning for Minimizing Critical
Path Delay. In Proc. 19th Int’l Symposium on Physical Design, page 75–82, New
York, NY, USA, 2010.

[104] K. K. Likharev and V. K. Semenov. RSFQ logic/memory family: a new Josephson-
junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans.
on Applied Superconductivity, 1(1):3–28, 1991.

[105] Mordor Intelligence LLP. Electronic design automation tools (EDA) market -
growth, trends, forecasts (2020 - 2025). https://www.researchandmarkets.com/
reports/4534513/electronic-design-automation-tools-eda-market, May 2020.

[106] Dewmini Sudara Marakkalage and Giovanni De Micheli. Fanout-Bounded Logic
Synthesis for Emerging Technologies - A Top-Down Approach. In International
Logic Synthesis Workshop (IWLS), pages 1–6, 2022.

[107] Dewmini Sudara Marakkalage and Giovanni De Micheli. Fanout-Bounded Logic
Synthesis for Emerging Technologies - A Top-Down Approach. In Design, Automa-
tion and Test in Europe, pages 1–6, 2023.

[108] Dewmini Sudara Marakkalage and Giovanni De Micheli. Fanout-bounded logic
synthesis for emerging technologies. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2023.

[109] Dewmini Sudara Marakkalage, Eleonora Testa, Heinz Riener, Alan Mishchenko,
Mathias Soeken, and Giovanni De Micheli. Three-input gates for logic synthesis.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
40(10):2184–2188, 2020.

[110] Dewmini Sudara Marakkalage, Heinz Riener, and Giovanni De Micheli. Optimizing
adiabatic quantum-flux-parametron (AQFP) circuits using an exact database. In
NANOARCH, pages 1–6, 2021.

[111] Dewmini Sudara Marakkalage, Siang-Yun Lee, Wille Robert, and Giovanni
De Micheli. Technology mapping for beyond-cmos circuitry with unconventional
cost functions. In International Logic Synthesis Workshop (IWLS), 2023.

[112] Dewmini Sudara Marakkalage, Eleonora Testa, Giulia Meuli, Walter Lau Neto,
Alan Mishchenko, Giovanni De Micheli, and Luca Amarù. Scalable sequential
logic synthesis using observability don’t care conditions. In IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, page under review.
IEEE, 2024.

135

https://www.researchandmarkets.com/reports/4534513/electronic-design-automation-tools-eda-market
https://www.researchandmarkets.com/reports/4534513/electronic-design-automation-tools-eda-market

[113] Dewmini Sudara Marakkalage, Eleonora Testa, Walter Lau Neto, Alan Mishchenko,
Giovanni De Micheli, and Luca Amarù. Scalable sequential optimization under
observability don’t cares. In 2024 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pages 1–6. IEEE, 2024.

[114] Dewmini Sudara Marakkalage, Marcel Walter, Siang-Yun Lee, Robert Wille, and
Giovanni De Micheli. Technology mapping for beyond-cmos circuitry with un-
conventional cost functions. In 2024 IEEE 24th International Conference on
Nanotechnology (NANO), pages 51–56. IEEE, 2024.

[115] João P Marques-Silva and Karem A Sakallah. Boolean satisfiability in electronic
design automation. In DAC, pages 675–680, 2000.

[116] Edward J McCluskey. Minimization of boolean functions. The Bell System Technical
Journal, 35(6):1417–1444, 1956.

[117] Giulia Meuli, Mathias Soeken, and Giovanni De Micheli. Xor-and-inverter graphs
for quantum compilation. npj Quantum Information, 8(1):7, 2022.

[118] Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill
Higher Education, 1994.

[119] H. S. Miller and R. O. Winder. Majority-Logic Synthesis by Geometric Methods.
IRE Trans. on Electronic Computers, EC-11(1):89–90, 1962.

[120] Alan Mishchenko and Robert K. Brayton. Scalable logic synthesis using a simple
circuit structure. In IWLS, pages 15–22, 2006.

[121] Alan Mishchenko, Satrajit Chatterjee, Roland Jiang, and Robert K. Brayton.
FRAIGs: A unifying representation for logic synthesis and verification. Technical
report, UC Berkeley, 2005.

[122] Alan Mishchenko, Satrajit Chatterjee, Robert Brayton, and Niklas Een. Im-
provements to combinational equivalence checking. In Proceedings of the 2006
IEEE/ACM international conference on Computer-aided design, pages 836–843,
2006.

[123] Alan Mishchenko, Satrajit Chatterjee, and Robert K. Brayton. DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis. In Ellen Sentovich, editor,
DAC, pages 532–535, 2006.

[124] Alan Mishchenko, Sungmin Cho, Satrajit Chatterjee, and Robert Brayton. Com-
binational and sequential mapping with priority cuts. In 2007 IEEE/ACM In-
ternational Conference on Computer-Aided Design, pages 354–361, 2007. doi:
10.1109/ICCAD.2007.4397290.

[125] Alan Mishchenko, Michael Case, Robert Brayton, and Stephen Jang. Scalable and
scalably-verifiable sequential synthesis. In ICCAD, 2008.

136

[126] Alan Mishchenko, Robert K. Brayton, Jie-Hong R. Jiang, and Stephen Jang.
Scalable don’t-care-based logic optimization and resynthesis. ACM TRETS, 4(4):
34:1–34:23, 2011.

[127] Eric Mlinar, Stephen Whiteley, Anton Belov, Song Chen, Luca Amaru, Tong
Liu, Yalan Zhang, Taufik Arifin, Min Pan, Troy Barbee, et al. An rtl-to-gdsii
flow for single flux quantum circuits based on an industrial eda toolchain. IEEE
Transactions on Applied Superconductivity, 33(5):1–7, 2023.

[128] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman. Exploiting suspected
redundancy without proving it. In DAC, pages 463–466, 2005.

[129] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340, 2008.

[130] Oleg A Mukhanov. Energy-efficient single flux quantum technology. IEEE Trans-
actions on Applied Superconductivity, 21(3):760–769, 2011.

[131] Rajeev Murgai. On the Global Fanout Optimization Problem. In Int’l Conf. on
Computer-Aided Design, page 511–515, 1999.

[132] Saburo Muroga. Threshold Logic and its Applications. New York: Wiley-Interscience,
1971.

[133] Saburo Muroga, Yahiko Kambayashi, Hung Chi Lai, and Jay Niel Culliney. The
transduction method-design of logic networks based on permissible functions. IEEE
Transactions on Computers, 38(10):1404–1424, 1989.

[134] G. Pasandi and M. Pedram. PBMap: A path balancing technology mapping
algorithm for single flux quantum logic circuits. IEEE Transactions on Applied
Superconductivity, 29(4):1–14, 2019. doi: 10.1109/TASC.2018.2880343.

[135] J. Pitters et al. Atomically Precise Manufacturing of Silicon Electronics. ACS
Nano, 2024.

[136] Willard V Quine. The problem of simplifying truth functions. The American
mathematical monthly, 59(8):521–531, 1952.

[137] Dayane Alfenas Reis, Caio Araújo T. Campos, Thiago Rodrigues B. S. Soares,
Omar Paranaiba V. Neto, and Frank Sill Torres. A methodology for standard cell
design for QCA. In ISCAS, pages 2114–2117, 2016.

[138] Giovanni V Resta, Alessandra Leonhardt, Yashwanth Balaji, Stefan De Gendt,
Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. Devices and circuits using
novel 2-d materials: a perspective for future vlsi systems. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 27(7):1486–1503, 2019.

137

[139] Heinz Riener, Winston Haaswijk, Alan Mishchenko, Giovanni De Micheli, and
Mathias Soeken. On-the-fly and DAG-aware: Rewriting Boolean networks with
exact synthesis. In 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1649–1654, 2019. doi: 10.23919/DATE.2019.8715185.

[140] Heinz Riener, Siang-Yun Lee, Alan Mishchenko, and Giovanni De Micheli. Boolean
rewriting strikes back: Reconvergence-driven windowing meets resynthesis. In 2022
27th Asia and South Pacific Design Automation Conference (ASP-DAC), pages
395–402. IEEE, 2022.

[141] J. Paul Roth and R. M. Karp. Minimization over Boolean graphs. IBM Journal of
Research and Development, 6(2):227–238, 1962. doi: 10.1147/rd.62.0227.

[142] Richard L Rudell and Alberto Sangiovanni-Vincentelli. Multiple-valued mini-
mization for pla optimization. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 6(5):727–750, 1987.

[143] Ro Saito, Christopher L. Ayala, Olivia Chen, Tomoyuki Tanaka, Tomohiro Tamura,
and Nobuyuki Yoshikawa. Logic Synthesis of Sequential Logic Circuits for Adiabatic
Quantum-Flux-Parametron Logic. IEEE Trans. on Applied Superconductivity, 31
(5):1–5, 2021.

[144] Ro Saito, Christopher L. Ayala, and Nobuyuki Yoshikawa. Buffer Reduction Via
N-Phase Clocking in Adiabatic Quantum-Flux-Parametron Benchmark Circuits.
IEEE Trans. on Applied Superconductivity, 31(6):1–8, 2021.

[145] Nikhil Saluja and Sunil P Khatri. A robust algorithm for approximate compatible
observability don’t care (CODC) computation. In DAC, pages 422–427, 2004.

[146] Hamid Savoj, Alan Mishchenko, and Robert Brayton. m-Inductive Property of
Sequential Circuits. IEEE TCAD, 35(6):919–930, 2015.

[147] Claude E Shannon. A symbolic analysis of relay and switching circuits. Electrical
Engineering, 57(12):713–723, 1938.

[148] F. Sill Torres, P. A. Silva, G. Fontes, M. Walter, J. A. M. Nacif, R. Santos Ferreira,
O. P. Vilela Neto, J. F. Chaves, R. Wille, P. Niemann, D. Große, and R. Drechsler.
On the Impact of the Synchronization Constraint and Interconnections in Quantum-
dot Cellular Automata. Microprocessors and Microsystems, 76:103–109, 2020.

[149] Ellen M Sentovich Kanwar Jit Singh, Luciano Lavagno Cho Moon Rajeev Mur-
gai, and Robert K Brayton Alberto Sangiovanni-Vincentelli. SIS: A System for
Sequential Circuit Synthesis. University of California, Berkeley, 94720:4, 1992.

[150] Gordon L Smith, Ralph J Bahnsen, and Harry Halliwell. Boolean comparison
of hardware and flowcharts. IBM Journal of Research and Development, 26(1):
106–116, 1982.

138

[151] M. Soeken, W. Haaswijk, E. Testa, A. Mishchenko, L. Amarú, R. K. Brayton,
and G. De Micheli. Practical exact synthesis. In Design, Automation and Test in
Europe, pages 309–314, 2018.

[152] Mathias Soeken, Alan Mishchenko, Ana Petkovska, Baruch Sterin, Paolo Ienne,
Robert K Brayton, and Giovanni De Micheli. Heuristic npn classification for
large functions using aigs and lexsat. In Theory and Applications of Satisfiability
Testing–SAT 2016: 19th International Conference, Bordeaux, France, July 5-8,
2016, Proceedings 19, pages 212–227. Springer, 2016.

[153] Mathias Soeken, Luca Gaetano Amarù, Pierre-Emmanuel Gaillardon, and Giovanni
De Micheli. Exact synthesis of majority-inverter graphs and its applications. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 36
(11):1842–1855, 2017. doi: 10.1109/TCAD.2017.2664059.

[154] Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno Schmitt,
Giulia Meuli, Fereshte Mozafari, Siang-Yun Lee, Alessandro Tempia Calvino,
Dewmini Sudara Marakkalage, and Giovanni De Micheli. The EPFL logic synthesis
libraries, 2022.

[155] Fabio Somenzi. Cudd: Cu decision diagram package release 2.3. 0. 1998.

[156] A. Srivastava, R. Kastner, and M. Sarrafzadeh. Timing driven gate duplication:
complexity issues and algorithms. In Int’l Conf. on Computer-Aided Design, pages
447–450, 2000.

[157] Naoki Takeuchi, Dan Ozawa, Yuki Yamanashi, and Nobuyuki Yoshikawa. An adia-
batic quantum flux parametron as an ultra-low-power logic device. Superconductor
Science and Technology, 26(3):035010, 2013.

[158] Naoki Takeuchi, Yuki Yamanashi, and Nobuyuki Yoshikawa. Adiabatic quantum-
flux-parametron cell library adopting minimalist design. Journal of Applied Physics,
117(17), 2015.

[159] Masamitsu Tanaka, Atsushi Kitayama, Tomohito Koketsu, Masato Ito, and Akira
Fujimaki. Low-energy consumption RSFQ circuits driven by low voltages. IEEE
transactions on applied superconductivity, 23(3):1701104–1701104, 2013.

[160] Eleonora Testa, Mathias Soeken, Odysseas Zografos, Luca Amaru, Praveen Ragha-
van, Rudy Lauwereins, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli.
Inversion optimization in majority-inverter graphs. In NANOARCH, pages 15–20.
Ieee, 2016.

[161] Eleonora Testa, Mathias Soeken, Luca Amarú, and Giovanni De Micheli. Reducing
the multiplicative complexity in logic networks for cryptography and security
applications. In Design Automation Conference, pages 1–6, 2019.

139

[162] Eleonora Testa, Luca Amaru, Mathias Soeken, Alan Mishchenko, Patrick Vuil-
lod, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. Extending Boolean
Methods for Scalable Logic Synthesis. IEEE Access, 8, 2020.

[163] Eleonora Testa, Siang-Yun Lee, Heinz Riener, and Giovanni De Micheli. Alge-
braic and Boolean optimization methods for AQFP superconducting circuits. In
Proceedings of the 26th Asia and South Pacific Design Automation Conference,
ASPDAC ’21, page 779–785, New York, NY, USA, 2021. ISBN 9781450379991.
doi: 10.1145/3394885.3431606.

[164] Eleonora Testa, Dewmini Sudara Marakkalage, Michael Quayle, Sudipta Kundu,
Abhishek Kumar, Diptanshu Ghosh, Giulia Meuli, Giovanni De Micheli, and
Luca Amaru. Enabling scalable sequential synthesis and formal verification in an
industrial flow. In International Logic Synthesis Workshop (IWLS), 2024.

[165] J. Timler and C. S. Lent. Power Gain and Dissipation in Quantum-dot Cellular
Automata. Journal of Applied Physics, 91(2), 2002.

[166] Frank Sill Torres, M. Walter, R. Wille, D. Große, and R. Drechsler. Synchronization
of Clocked Field-Coupled Circuits. In IEEE-NANO, 2018.

[167] Jeng-Liang Tsai, Lizheng Zhang, and Charlie Chung-Ping Chen. Statistical timing
analysis driven post-silicon-tunable clock-tree synthesis. In Int’l Conf. on Computer-
Aided Design, pages 575–581, 2005.

[168] C.A.J. van Eijk. Sequential equivalence checking based on structural similarities.
IEEE TCAD, 19(7):814–819, 2000.

[169] Marcel Walter, Robert Wille, Daniel Große, Frank Sill Torres, and Rolf Drechsler.
An exact method for design exploration of quantum-dot cellular automata. In
DATE, pages 503–508, 2018.

[170] Marcel Walter, Robert Wille, Frank Sill Torres, Daniel Große, and Rolf Drechsler.
Scalable design for field-coupled nanocomputing circuits. In ASP-DAC, 2019.

[171] Marcel Walter, Robert Wille, Frank Sill Torres, Daniel Große, and Rolf Drechsler.
fiction: An open source framework for the design of field-coupled nanocomputing
circuits, 2019.

[172] Marcel Walter, Samuel Sze Hang Ng, Konrad Walus, and Robert Wille. Hexagons
are the bestagons: design automation for silicon dangling bond logic. In DAC,
pages 739–744, 2022.

[173] S. R. Whiteley and J. Kawa. Progress toward VLSI-capable EDA tools for supercon-
ductive digital electronics. In 2019 IEEE International Superconductive Electronics
Conference (ISEC), pages 1–3, 2019. doi: 10.1109/ISEC46533.2019.8990931.

140

[174] Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog syn-
thesis suite. In Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), volume 97, 2013.

[175] R. A. Wolkow, L. Livadaru, J. Pitters, M. Taucer, P. Piva, M. Salomons, M. Cloutier,
and B. V. C. Martins. Silicon Atomic Quantum Dots Enable Beyond-CMOS
Electronics, pages 33–58. Springer, 2014.

[176] Saeyang Yang. Logic synthesis and optimization benchmarks user guide: version
3.0. Microelectronics Center of North Carolina (MCNC), 1991.

[177] Mingfei Yu, Dewmini Sudara Marakkalage, and Giovanni De Micheli. Garbled
circuits reimagined: Logic synthesis unleashes efficient secure computation. Cryp-
tography, 7(4):61, 2023.

[178] He-Teng Zhang and Jie-Hong R. Jiang. SFO: A Scalable Approach to Fanout-
Bounded Logic Synthesis for Emerging Technologies. In Design Automation Con-
ference, pages 1–6, 2020.

[179] Yuanliang Zhang, Yao Zhang, and Baojun Li. Optical switches and logic gates based
on self-collimated beams in two-dimensional photonic crystals. Optics Express, 15
(15):9287–9292, 2007.

[180] Qi Zhu, Nathan Kitchen, Andreas Kuehlmann, and Alberto Sangiovanni-Vincentelli.
Sat sweeping with local observability don’t-cares. In Proceedings of the 43rd Annual
Design Automation Conference, pages 229–234, 2006.

141

Marakkalage Dewmini Sudara
Lausanne, Switzerland

Q dewmini.marakkalage@epfl.ch ° mdsudara

Research Interests
Logic synthesis, electronic design automation, synthesis and optimizations for emerging technologies

Education
Sept 2020 - Present École polytechnique fédérale de Lausanne (EPFL) Lausanne, Switzerland

Ph.D. in Computer Science
+ Advisor: Prof. Giovanni De Micheli.

Sept 2018 - Aug 2020 École polytechnique fédérale de Lausanne (EPFL) Lausanne, Switzerland
Master of Science in Computer Science
+ Specialized in Computer Engineering.
+ Cumulative GPA - 5.62 out of 6.

Oct 2011 - Mar 2016 University of Moratuwa Moratuwa, Sri Lanka
Honours Degree of Bachelor of the Science of Engineering
+ Specialized in Electronic and Telecommunication Engineering.
+ Cumulative GPA - 3.8 out of 4.2 (First class).

Publications
2024 Marakkalage, D. S., Testa, E.,Meuli G., Neto, W. L., Mishchenko, A., De Micheli, G., Amarú, L.,

“Scalable Sequential Logic Synthesis using Observability Don’t Care Conditions”, In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) 2024, (under review).

2024 Marakkalage, D. S., Walter, M., Lee, S-Y., Wille, R., De Micheli, G., “Technology Mapping for Beyond-
CMOS Circuitry with Unconventional Cost Functions”, In EEE 24th International Conference on Nanotech-
nology (NANO) 2024, Available at: https://ieeexplore.ieee.org/document/10628909.

2024 E. Testa, D. S. Marakkalage, M. Quayle, S. Kundu, A. Kumar, D. Ghosh, G. Meuli, G. De Micheli,
L. Amaru, “Enabling Scalable Sequential Synthesis and Formal Verification in an Industrial Flow”, In
International Workshop on Logic and Synthesis (IWLS) 2024.

2024 Marakkalage, D. S., Testa, E., Neto, W. L., Mishchenko, A., De Micheli, G., Amarú, L., “Scalable
Sequential Optimization Under Observability Don’t Cares”, In Design, Automation & Test in Europe
Conference & Exhibition (DATE) 2024, Available at: https://ieeexplore.ieee.org/document/10546595. Best
Paper Award Nominee.

2024 Bairamkulov, R., Lee, S. Y., Calvino, A. T., Marakkalage, D. S., Yu, M., De Micheli, G., “Technology-
Aware Logic Synthesis for Superconducting Electronics”, In Design, Automation & Test in Europe Conference
& Exhibition (DATE) 2024, Available at: https://ieeexplore.ieee.org/document/10546721.

2023 Yu, M., Marakkalage, D. S., De Micheli G., “Garbled Circuits Reimagined: Logic Synthesis Unleashes Effi-
cient Secure Computation”, In Cryptography 2023, Available at: https://www.mdpi.com/2410-387X/7/4/61.

2023 Marakkalage, D. S., De Micheli, G., “Fanout-Bounded Logic Synthesis for Emerging Technologies”, In
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 2023, Available at:
https://ieeexplore.ieee.org/document/10342810.

2023 Marakkalage, D. S., Walter, M., Lee, S-Y., Wille, R., De Micheli, G., “Technology Mapping for Beyond-
CMOS Circuitry with Unconventional Cost Functions”, In International Workshop on Logic and Synthesis
(IWLS) 2023. Best Student Paper Award Nominee. 143

2023 Marakkalage, D. S., De Micheli, G., “Fanout-Bounded Logic Synthesis for Emerging Technologies - A
Top-Down Approach”, In Design, Automation & Test in Europe Conference & Exhibition (DATE) 2023,
Available at: https://ieeexplore.ieee.org/document/10137314. Best Paper Award Nominee.

2022 Marakkalage, D. S., De Micheli, G., “Fanout-Bounded Logic Synthesis for Emerging Technologies - A
Top-Down Approach”, In International Workshop on Logic and Synthesis (IWLS) 2022.

2022 Meuli, G., Possani, V., Singh, R., Lee, S. Y., Calvino, A. T., Marakkalage, D. S., Vuillod, P., Amaru,
L., Chase, S., Kawa, J., De Micheli, G., “Majority-based Design Flow for AQFP Superconducting Fam-
ily”, In Design, Automation & Test in Europe Conference & Exhibition (DATE) 2021, Available at:
https://ieeexplore.ieee.org/document/9774558.

2021 Marakkalage, D. S., Riener, H., De Micheli, G., “Optimizing Adiabatic Quantum-Flux-Parametron (AQFP)
Circuits using an Exact Database”, In IEEE/ACM International Symposium on Nanoscale Architectures
(NANOARCH) 2021, Available at: https://ieeexplore.ieee.org/document/9642241.

2021 Marakkalage, D. S., Riener, H., De Micheli, G., “Optimizing Adiabatic Quantum-Flux-Parametron (AQFP)
Circuits using Exact Methods”, In International Workshop on Logic and Synthesis (IWLS) 2021.

2021 Marakkalage, D. S., Testa, E., Riener, H., Mishchenko, A., Soeken, M., De Micheli, G., “Three-input gates
for logic synthesis”, In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 2021, Available at: https://ieeexplore.ieee.org/document/9233431.

2020 Marakkalage, D. S., Testa, E., Riener, H., Mishchenko, A., Soeken, M., De Micheli, G., “Three-input
gates for logic synthesis”, In International Workshop on Logic and Synthesis (IWLS) 2020.

Work Experience
Mar 2023 - Aug 2023 Research Intern Synopsys Switzerland LLC, Zurich, Switzerland

+ Developed sequential logic optimization flows.

Mar 2020 - Aug 2020 Research Intern Synopsys SARL, Grenoble, France
+ Supervisors: Dr. Patrick Vuillod (Synopsys) and Prof. Giovanni De Micheli (EPFL).
+ Worked on Master’s thesis project based on logic synthesis and optimizations.
+ Developed majority-based logic synthesis algorithms for Fusion Compiler.

Sept 2018 - Aug 2019 Master’s Research Scholar Processor Architecture Laboratory, EPFL
+ Supervisors: Prof. Paolo Ienne and Lana Josipović.
+ Developed a verification tool in C++ for high-level synthesis from C to VHDL, which can

automatically generate VHDL testbenches, simulate them in Modelsim, and verify outputs.
+ Generalized an existing VHDL implementation of a hardware load-store queue, ported it to

Chisel3, and added AXI protocol support (including the support for out-of-order transaction
completions) to the Chisel3 implementation.

Feb 2017 - Jun 2018 Lecturer University of Moratuwa, Sri Lanka
+ Conducted lectures and tutorials for the course Analog Electronics.
+ Conducted tutorials and laboratory experiments, and supervised mini-projects for under-

graduate courses Basic Electronics, Introduction to Telecommunication, Digital Electronics,
Electronic Product Design and Manufacture, Laboratory Practice I, Laboratory Practice II,
Electronics I, and Electronics III.

May 2016 - Jan 2017 Research Assistant Singapore University of Technology & Design, Singapore
+ Supervisor: Prof. David Braun.
+ Performed mathematical analysis of optimal excitation of nonlinear parametric oscillators

and proved that the amplification is bounded even under arbitrarily small weak-dissipation.

144

Oct 2014 - Mar 2015 Research Intern Singapore University of Technology & Design, Singapore
+ Supervisor: Prof. David Braun.
+ Performed numerical simulation of a state-dependent controller for a nonlinear parametric

oscillator governed by the Mathieu equation and developed an electronic platform to
experimentally validate the simulations.

+ Got acknowledged on the following research article: Braun, David J. “Optimal Parametric
Feedback Excitation of Nonlinear Oscillators." Physical Review Letters 116.4 (2016)

Skills
Programming C++, C, Python, Java, Scala, Mathematica, MATLAB, Simulink.
HDL and Simulation ModelSim, VHDL, Chisel3, Verilog.
EDA Tools Synopsys Design Compiler, Cadence Virtuoso, Cadence Innovus, Intel Quartus

Prime, Vivado Design Suite, Synopsys Galaxy Custom Designer, HSPICE.
Other Technical Tools Programming tools for PIC/Atmel microcontrollers and ARM microprocessors,

OrCAD, Proteus ISIS/ARES, Altium Designer, ANSYS Simplorer, Eagle CAD,
NI LabVIEW.

Miscellaneous Excellent analytic, algorithmic, and problem-solving skills.
Good communication, teaching, and interpersonal skills.
Working knowledge in Windows, Linux, and OSX platfroms.

Achievements
+ EPFL EDIC Doctoral Fellowship 2020.
+ EPFL Master’s Research Scholarship 2018.
+ Distinction (2010) and Higher Distinction (2009) in Sri Lankan Mathematics Competition (Organized by Sri

Lanka Olympiad Mathematics Foundation).

Teaching Assistance
+ Design Technologies for Integrated Systems, M.Sc. course, Fall 2022, Fall 2023, EPFL.
+ Digital System Design, B.Sc. course, Spring 2022, Spring 2021, EPFL.
+ Linear Algebra, B.Sc. course, Fall 2021, EPFL.

Professional Service
+ Reviewer for the Design Automation Conference (DAC) in 2022 and 2021.
+ Reviewer for the International Conference On Computer Aided Design (ICCAD) in 2020.
+ Reviewer for IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) in 2022,

2023, and 2024.
+ Reviewer for the International Workshop on Logic and Synthesis (IWLS) in 2023.
+ Reviewer for the Design, Automation & Test in Europe Conference & Exhibition (DATE) in 2024.
+ Graduate Student Member at IEEE.

145

	Acknowledgements
	Abstract (English/Français)
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Electronic Design Automation (EDA)
	Logic Synthesis
	Challenges in Logic Synthesis
	Thesis Contributions Overview
	Scalable Sequential Logic Synthesis
	Fanout-Bounded Logic Synthesis
	Logic Synthesis for AQFP Technology
	Logic Synthesis for FCN Technologies

	Thesis Organization

	Background
	Boolean Algebra and Functions
	Boolean Algebra
	Boolean Functions
	Equivalence of Boolean Functions

	Logic Representations
	Truth Tables
	Algebraic Expressions
	Canonical Forms
	Binary Decision Diagrams (BDDs)
	Logic Networks
	And-Inverter Graphs (AIGs)
	Majority-Inverter Graphs (MIGs)

	Logic Optimization
	Post-CMOS / Emerging Technologies
	Superconducting Electronics (SCE)
	Field-Coupled Nanotechnologies (FCN)

	Scalable Sequential Logic Synthesis
	Introduction
	Preliminaries
	Sequential Logic Optimizations
	Don't Cares in Logic Networks
	Prior Work on Sequential Synthesis

	Scalable Sequential Optimization
	Motivation
	Sequential ODCs
	Framework Definition
	Proposed Method
	Complete Algorithm
	Correctness of the Proposed Approach
	Characterizing SODC-Optimizable Transformations

	Experimental Results
	Comparison of Different Configurations
	Technology Mapped Results
	Post Place & Route Results on Industrial Designs

	Summary

	Fanout-Bounded Logic Synthesis
	Introduction
	Preliminaries
	And-Inverter Graphs / Majority-Inverter Graphs
	Static Timing Analysis
	Node Equivalence
	AQFP Logic Circuits

	Related Work
	General Fanout-Bounded Synthesis
	Path-Balanced Fanout-Bounded Synthesis

	Globally Optimum General Fanout-Bounded Synthesis
	Top-Down Heuristic Approach for General Fanout-Bounded Synthesis Problem
	Improved Top-Down Approach with Over-Duplication

	Path-Balanced Fanout-bounded Synthesis
	ILP Formulation for the Global Optimum
	Scalable Heuristic Approach

	Experimental Results
	Global Optimum for General Fanout-Bounded Synthesis
	Heuristics for General Fanout-Bounded Synthesis
	Global Optimum Splitter/Buffer Insertion for AQFP
	Heuristic Splitter/Buffer Insertion for AQFP

	Summary

	Logic Synthesis for AQFP Technology
	Introduction
	Motivation
	Preliminaries
	Majority-Inverter Graphs (MIGs)
	AQFP logic circuits
	Exact synthesis

	AQFP Resynthesis Approach
	Generation of the database
	Synthesis Algorithm

	Experimental Results
	Summary

	Logic Synthesis for FCN Technologies
	Introduction
	Preliminaries
	Beyond-CMOS Technologies with Unconventional Costs
	Circuit Model
	Conventional Technology Mapping

	Proposed Methodology
	Generation of Optimal Subcircuits
	Rewriting Using the Exact Database

	Experimental Evaluation
	Experimental Setup
	Results

	Summary

	Conclusion
	Scalable Sequential Logic Synthesis
	Fanout-Bounded Logic Synthesis
	Logic Synthesis for AQFP Technology
	Logic Synthesis for FCN Technologies
	Final Remarks

	Bibliography
	Curriculum Vitae

