SYNTHESIS AND OPTIMIZATION OF SYNCHRONOUS
LOGIC CIRCUITS

A DISSERTAITON
SUBMITTED TO THE DEPARTMENT OF ELECTRI CAL ENGI NEERI NG
AND THE COMM TTEE ON GRADUATE STUDI ES
OF STANFORD UNI VERSI TY
I N PARIT AL FULFI LLMENT OF THE REQUI REMENTS
FOR THE DEGREE OF
DOCTOR OF PHI LOSOPHY

By
Maurizio Damiani
May, 1994

| certify that | have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation
for the degree of Doctor of Philosophy.

Giovanni De Micheli
(Principal Adviser)

| certify that | have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation
for the degree of Doctor of Philosophy.

David L. Dill

| certify that | have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation
for the degree of Doctor of Philosophy.

Teresa Meng

Approved for the University Committee on Graduate Stud-
ies:

Dean of Graduate Studies

Abstract

The design automation of complex digital circuits offers important benefits. It allows the
designer to reduce design time and errors, to explore more thoroughly the design space,
and to cope effectively with an ever-increasing project complexity.

This dissertation presents new algorithms for the logic optimization of combinational
and synchronous digital circuits. These algorithms rely on a common paradigm. Namely,
global optimization is achieved by the iterative local optimization of small subcircuits.

The dissertation first explores the combinational case. Chapter 2 presents algorithms
for the optimization of subnetworks consisting of a single-output subcircuit. The design
space for this subcircuit is described implicitly by a Boolean function, a so-cdted
care function. Efficient methods for extracting this function are presented.

Chapter 3 is devoted to a novel method for the optimization of multiple-output sub-
circuits. There, we introduce the notion @impatible gatesCompatible gates represent
subsets of gates whose optimization is particularly simple.

The other three chapters are devoted to the optimization of synchronous circuits. Fol-
lowing the lines of the combinational case, we attempt the optimization of the gate-level
(rather than the state diagram -level) representation. In Chapter 4 we focus on extending
combinational techniques to the sequential case. In particular, we present algorithms for
finding a synchronoudont carefunction that can be used in the optimization process.

Unlike the combinational case, however, this approach is exact only for pipeline-like
circuits. Exact approaches for general, acyclic circuits are presented in Chapter 5. There,
we introduce the notion afynchronous recurrence equation.Eventually, Chapter 6
presents methods for handling feedback interconnection.

Acknowledgements

This thesis would not have been possible without the perseverance and guidance of my
thesis advisor, Professor Giovanni De Micheli. His continuous support, encouragement,
supervision and and constructive criticism made him a reliable reference in the most
critical moments of my research.

| wish to thank Professor D. Dill for his key suggestions in the many discussions on
my work, and the other members of my reading and oral committees, Proff. T. Meng
and C. Quate, for their time and patience.

| also need to thank my group mates, Polly Siegel, David Ku, Dave Filo, Rajesh
Gupta, Frederic Mailhot, Thomas Truong, for making my stay at Stanford especially
enjoyable.

Special thanks go to Jerry Yang for sharing late night efforts in code and paper writing.
He showed plenty of tolerance and self-control towards an impatient writer.

| must also acknowledge the dear friends outside my research group. Among them
John and Noriko Wallace, Tony and Lydia Pugliese.

But | am most indebted to my parents for their love, caring, and understanding, and
to my wife Elena, for sharing this experience with me, and helping me in making it
through the difficult times.

Contents

Abstract

Acknowledgements

1

Introduction

11
1.2

VLSI and logic synthesis.
Previous work and contributions of this thesis.
1.2.1 Combinational logic optimization..
1.2.2 Synchronous logic optimization.

Combinational networks

2.1
2.2

2.3

2.4
2.5

2.6

Introduction
Terminology.
2.2.1 Boolean functions and their representations.
2.2.2 Combinational circuits and logic networks..
2.2.3 Specifications for combinational networks..
2.2.4 Optimization of combinational multiple-level circuits
Perturbation analysis of combinational networks.
2.3.1 Single-vertex optimization and observabiliign't cares.

Multi-vertex optimization and compatibteontcares
Approximating observabilitdontcares
251 Experimentalresults.. L.
SUMMaAry.

(2 IS 2 I N

10

3 Multi-vertex optimization with compatible gates 63

3.1 Related Previous Work. 65
3.1.1 Two-level Synthesis 65
3.1.2 Boolean Relations-based Multiple-level Optimization. 66

3.2 Compatible Gates. 69

3.3 Optimizing Compatible Gates 70
3.3.1 Implicant Extraction 70
3.32 CoveringStep. 71

3.4 Finding Compatible Gates. 75

3.5 Unate Optimization. 81
3.5.1 Optimizing Unate Subsets. 81
3.5.2 Implicant Extraction 81
3.53 CoveringStep. 84

3.6 Implementationand Results. 87

3.7 Summary. ..o e 89

4 Acyclic synchronous networks 91

41 Terminology. 92
4.1.1 Synchronous logic networks. 92
4.1.2 Sequences and sequence functions.. 93
4.1.3 Pattern expressions and functions.. 94
4.1.4 Functional modeling of synchronous circuits. 98

4.2 Sequentialontcares. 99
4.2.1 Retiming-invariantlont careconditions 100
4.2.2 Controllability and observabilitgont cares 101

4.3 Local optimization of acyclic networks 105
4.3.1 Internal observabilitdon't careconditions.. 106

4.4 Computation of observabilitgont caresin acyclic networks 112

45 Experimentalresults.. 114

4.6 SUMMAIY. e 115

Vi

5 Recurrence Equations 116

5.1 Introduction 116
5.2 Synchronous Recurrence Equations 119
5.2.1 Optimization of synchronous circuits by recurrence equations119
5.3 Finding acyclic solutions.. 120
5.3.1 Representing feasible solutions. 120
5.4 Minimum cost solutions. L 125
5.4.1 Extractionofprimes. 126
542 CoveringStep. 130
5.5 Recurrence equations for sequential optimization. 132
551 ImageofaSRE.. 133
5.6 Implementation and experimental results. 134
5.7 Summary. e 135
6 Cyclic synchronous networks 137
6.1 Modeling of cyclic networks.. 138
6.1.1 Theresetassumption.. 139
6.2 Feedback and external controllabildgntcares. 140
6.2.1 Don't caresand state-space traversals 144
6.3 Perturbation analysis of cyclic networks.. 145
6.3.1 An iterative procedure for external observabitipnt cares. . . 148
6.4 Experimentalresults.. 151
6.5 Summary 152
7 Conclusions 153
Bibliography 155

vii

Chapter 1
Introduction

Logic synthesis is the process of transforming a register-transfer level description of a
design into an optimal logic-level representation. Traditionally, it has been divided into
combinational and sequential synthesis. This chapter first reviews the VLSI design pro-
cess, describing the role played by logic synthesis, its status, and previous contributions
in the field. It then provides an outline of this dissertation, highlighting the contributions
of this work.

1.1 VLSI and logic synthesis

Very Large Scale Integratio(VLSI) has emerged as a central technology for the real-
ization of complex digital systems. The benefits in terms of performance, reliability, and
cost reduction of integrating large systems on a single chip have pushed designs from
the tens of thousands of transistors into the millions in just over a decade.

Computer aids play an important role in coping with the complexity of such designs,
by partitioning them into a sequence of well-defined steps. Quality and time-to market
of the final product are also improved by automating the most tedious, lengthy and
error-prone phases of the project.

The design process typically begins with a functional description of the desired func-
tionality by means of ahigh-leveldescription language. Several languages have been
developed to this purpose (VHDL, VerilogHDL, HardwareC) [1].

CHAPTER 1. INTRODUCTION 2

High-level synthesis the first design step for which CAD tools have been developed.

It consists of mapping a functional description of a circuit, along with a set of area and
performance constraints, intosaructural one, in terms of registers and combinational
functional units {primitives”), such as ports, adders, multipliers, shifters, comparators.
At this stage, the view of a circuit is therefore largely independent from the format of
data and control signals [1, 2].

The output of high-level synthesis isregister-transfer leve(RTL) representation of
the circuit. Such representations are typically divided into data path and control portions.
The task of the control unit is to activate portions of the data path according to a given
schedule, so as to achieve the desired computation. The selection of a schedule requiring
a minimal number of computational resources (and possibly satisfying a given timing
constraint) is a classical problem of high-level synthesis.

Logic synthesis follows immediately high-level synthesis. Its task is the mapping
of RTL descriptions intogate-levelcircuit representations. Logic synthesis therefore
introduces constraints on the data representations and on the types of primitives used
(ANDs, ORs, D-type flip-flops etc...)

The level of abstraction of high-level synthesis does not allow accurate estimates
of the figures of merit of a circuit. Consequently, a straightforward mapping of an
RTL design into a logic circuit very seldom meets area, speed, or power requirements.
Optimization at the logic level is therefore a necessary step: indeed, its relevance has
made it the subject of intense research ever since the inception of electronic computers.
The following example highlights the different nature of high-level and logic optimization.

Example 1.

Consider the fragment of code in part (a) of the following figure. The quantity
x 4+ y IS compared against two constant thresholdsands2. A typical
optimization step at high level consists of transforming this code into the
code of part (b), by means of standard software compilation techniques.
This optimization leads to the RTL representation shown in Fig. (1.1-a).

CHAPTER 1. INTRODUCTION 3

t = x+y;
while(x+y < nl) do { while(t < nl1) do {
while (x+y < n2) do { while (t < n2) do {
update(x,y) update(x,y)
} t = xty;
update(x,y); }
} update(x,y);
t = Xty
}

(@)

(b)

At the logic level, this implementation is further simplified, as will be seen
later, by merging the adder and comparator, and by regarding the entire block
as realizing a combinational logic function. This type of optimization requires
the knowledge of the data representation #@nd y (i.e. 2’'s complement,

etc ...), and it is therefore impossible at the RTL levell

Logic
Optimization

PR T D

< n2|—

Comb. <nl—

unit
<n2p—

)

]

Figure 1.1: A logic optimization step.

Over the years, the breadth of the field has led to its fragmentation into a number of
disciplines, most notably into a distinction betwessmbinationaland sequentiallogic
synthesis: while combinational logic circuits have been considered mostly as tools for
the realization ofunctions sequential circuits have mostly been regarded from a state-
machine viewpoint and manipulated accordingly. This distinction is less motivated in a

CHAPTER 1. INTRODUCTION 4

VLSI context, where RTL representations of data path and control are often provided
directly in terms of registers and combinational units.

The notion ofdegrees of freedorfor don't care conditions) is central to every step
of the synthesis process. In high-level synthesis, slacks in the scheduling of operations
represent degrees of freedom which can be used advantageously for sharing computational
resources. These slacks represent degrees of freedom also on the control unit: some
control signals can be delayed or anticipated to simplify the control circuitry at the
sequential logic level. Otheatont caresat the logic level represent our knowledge that
some input combinations or input sequences cannot occur, or that the response to some
input or input sequence sequence is not sampled.

Dont care conditions that arise directly from the specification are due to the inter-
facing of the system in a larger environment. Similarly, the embedding of a functional
block in a larger circuit results idon't careconditions on its functionality. For example,
in the circuit of Fig. (1.1), there are degrees of freedom on the adder, and they arise
because of the “filtering” effect of the comparator.

Unlike don't caresgiven by a specification, those due to embeddingragdicit. The
mathematical characterization, derivation, and efficient use of danh care conditions
are therefore very relevant issues in logic optimization.

This dissertation is concerned with these three topics at the combinational and se-
guential synthesis level. The mathematical characterization is in terrmpsrafrbation
theory don't careconditions are interpreted as the set of possible functional perturbations
of an original description.

Throughout the thesis, perturbation theory is used in several contexts, in particular
for obtaining efficiendont care-extraction algorithms and for the classificationdwin't
care conditions according to their complexity.

These algorithms have been implemented in a logic optimization Amtiilles and
integrated with novel algorithms for combinational and sequential logic optimization al-
gorithms. A more detailed description of these contributions is presented in the upcoming
section.

Achilles is part of Olympus, a CAD system for VLSI synthesis being developed at
Stanford. Achilles has been applied successfully to the optimization of several large

CHAPTER 1. INTRODUCTION 5

combinational and synchronous logic benchmark circuits.

1.2 Previous work and contributions of this thesis.

1.2.1 Combinational logic optimization.

Combinational logic optimization is traditionally divided into two-level and multiple-level
logic synthesis.

Two-level synthesis targets the realization of combinational logic functions by a two-
layer interconnection of elementary logic gates, such as AND-OR, NAND-NAND, etc.

Early research has led to efficient algorithms for the synthesis of combinational logic
circuits in two-level form. Exact algorithms were developed originally in the early 50’s
by Quine [3] and McCluskey [4], and are practical for the synthesis of functions with at
most a dozen inputs.

The popularity of PLA-based synthesis in the early 80’s revamped the interest in their
approach. The necessity of synthesizing functions with a very large number of inputs and
outputs has led to the development of several effective approximate solvers, including
MINI [5], and ESPRESSO [6], as well as to the re-visitation of exact approaches [7].
These solvers have been used for the optimization of very large PLAs, with over fifty
inputs and outputs and thousands of product terms, and their efficiency makes them the
basic engine for most current logic optimization tools.

Degrees of freedom in classical two-level synthesis are representedibgtacare
function. This function represents input combinations that cannot occur and inputs that
generate irrelevant output values.

Somenzet al. considered in [8flont careconditions expressed byBoolean relation
Boolean relations specify the functionality of a combinational circuit by associating with
each input combination aetof possible outputs. Further research in the area showed,
however, that unlikelont carefunctions, this type of degrees of freedom is much more
difficult to use, and efficient optimizers for this case are the object of ongoing research
[9].

Multiple-level combinational logic synthesis targets the implementation of a logic

CHAPTER 1. INTRODUCTION 6

function by an arbitrary, acyclic network of logic gates. The interest in multiple-level
synthesis is due to the fact that very often multiple-level interconnections of logic gates are
much faster and more compact than two-level implementations. Some simple functions,
like 32-bit parity, are indeed practically impossible to realize in a two-level form, while
having simple multiple-level realizations.

Similarly to two-level synthesis, exact multiple-level logic synthesis algorithms have
been known for a long time [10, 11, 12, 13]. All such methods are essentially based on
an orderly, exhaustive enumeration of all possible acyclic graphs. For example, Davidson
[13] considers NAND networks. His procedure starts by enumerating all sets of possible
functions whose NAND can yield the desired function. Once such a set is found, the
procedure is repeated recursively, until a simple function (an input or its complement) is
met or a cost limit is exceeded. The size and complexity of the search space is such that
none of the exact methods could prove itself practical for functions requiring more than
a dozen gates, and the difficulty of exact multiple-level synthesis was referenced as one
motivation for later work in complexity theory [14].

Nowadays, the optimization of multiple-level logic is carried out almost exclusively
by approximate methods developed over the past decade. These methods consist mainly
of the iterative refinement of an initial network, until key cost figures (typically area or
delay) meet given requirements or no improvement occurs. Refinement is carried out
by identifying subnetworks to be optimized and replacing them by simpler, optimized
circuits. Iteration is carried over until cost figures no longer improve.

An important observation in this context is that the embedding of a functional block
in a larger circuit results imlont care conditions on its functionality:

Example 2.

Consider the adder/comparator structure given in Fig. (1.1). Suppose, for
simplicity, thatz and y are two two-bit quantities, and that ands2 are
the numbers 3 and 4.

Consider optimizing the circuitry producing the middle diti, of the adder,
shaded in Fig. (1.2). The function realized at that output is shown in the

CHAPTER 1. INTRODUCTION 7

X R add,
M —
add, | <3
Vi : add,| <4 |—
y >
o R—

Figure 1.2: A two-bit adder. Shading indicates the circuitry generating the owtpyt

%0%1 Xo%y

VoY, 00 01 11 10 VoY) 00 01 11 10
ool oo |1]1 oo|-|o| 1
01l ol 1]l0 |1 o1lo |- o1
111 1|01} o0 11110
1011|000 10| - |1

@) (b)

Figure 1.3: a) Karnaugh map of the function realizeddat,. b) Dont care conditions
atatl 1, represented by a symbol -

Karnaugh map of Fig. (1.3). Consider the situations where the input com-
binations result in a sum larger than, or equal to, 4. The MSB of the adder
is 1, and both outputs of the comparator will take valuee@ardlessof the
values taken bydl o andall 1. the outputatl ; has become irrelevant. By
similar reasonings, one gets that the value#f; is also irrelevant whenever
the inputs produce a sum equal to O or 2. Thdeat care conditions are
shown in table of Fig. (1.3-b).O

Optimization methods can be classified by the size of the subnetworks considered
(e.g consisting of a single-output logic gate versus multiple-output subcircuits) and by the
complexity of the optimization style. There are two main optimization styd&gbraic
andBoolean in order of complexity.

Algebraic methods are based on treating logic expressions as ordinary polynomials
over a set of logic variables. Common factors in such polynomials are extracted and

CHAPTER 1. INTRODUCTION 8

a logic network is restructured and simplified accordingly. Algebraic methods form the
backbone of the interactive logic optimization system MIS [15], developed at Berkeley
by Braytonet al.

Example 3.

In the circuit of Fig. (1.4), the primary outputs are expressedby(a+b)d
andy= «+t. By recognizing thay= («+b) cand extracting the common
factora+ 4 the circuit of Fig. (1.4-b) is obtained.C

T Ly
—EBD—V S D

@) (b)

Figure 1.4: a) original circuit. b) Circuit optimized by factorization.

Algebraic methods do not take full advantage of the properties of Boolean algebra.
For this reason, they take advantagedonht care conditions only to a limited extent.
Boolean methods target instead the full use of impticih't cares. In order to construct
a dont care-based logic optimization system, it is therefore necessary to :

e characterize first mathematically sudbnt care conditions, and
e provide algorithms for their efficient extraction and use.

With regards to the characterization problem in the combinational case, Battgit
[16] and Murogeet al. [17] have shown that théon't careson single-output subnetworks
can be described by an ordinary Boolean function, termeditimd care functionof the
gate. An important consequence of this property is that ordinary two-level synthesis
algorithms can be applied. Boolean optimization of single-output subnetworks is a part
of the program MIS.

CHAPTER 1. INTRODUCTION 9

Somenziet al. [8] have showed that the optimization of arbitrary multiple-level logic
gates requires instead modelidgn't care conditions by a Boolean relation:

Example 4.

Consider optimizing simultaneously the entire adder in the adder/comparator
of Fig. (1.1). The functional requirement on the adder are the following:
corresponding to each input combination with sum less than three (namely,
r120y1y0 = 000Q 0001, 0010 0100 0101 or 1000) , the adder output can be
any pattern drawn from the set = {000,001 010}, as all such patterns
result in the same output at the comparator. Similarly, corresponding to all
input combinations with sum 4 or more, the adder output can be any pattern
drawn from the se3 = {100 101 110,111}. If the sum is three, then the
network output is drawn from the one-element 6et {011}. O

This specification style cannot be summarized into a set of indepexderitcare
conditions on the individual outputs. For the circuit of Example (4), corresponding to
the input pattern 0000, the first and second output are both allowed to change, but not
simultaneously: choosingl 1(0000 = 1, however, implies that#(0000 must be 0.
This is reflected by complications in the subsequent logic optimization step [8]. Approx-
imations to Boolean relations are representeddaypatible dont cares first introduced
by Murogaet al. *. Informally, compatibledon't caresrepresention't carefunctions that
allow us to optimize each vertex independently in multiple-vertex optimization. Since
compatibledon't caresrepresent only a subset of degrees of freedom, the key issue in
the extraction of compatibldont caresis their maximality

Contributions to combinational synthesis

Chapter 2 of this dissertation is concerned with the problem of extrackimg care
representations (be don't carefunctions, Boolean relations, or compatililen't cares)

in combinational networks in an efficient way. In this respect, the following contributions
are presented:

IMuroga actually referred toompatible sets of permissible functions

CHAPTER 1. INTRODUCTION 10

e The general problem of characterizidgn't care conditions is cast uniformly in
terms of perturbation theory The modification of one or more logic functions
inside a network is regarded as the introduction of local errors, that are modeled
by added error signals. The conditions for which such errors are tolera¢ed (
they do not affect the primary outputs) represent the degrees of freedom available
for optimization.

o Efficient algorithms for the derivation afont care functions are presented. The
efficiency of such algorithms is drawn from lacal paradigm: thedont care
function of a logic gate is derived from that of adjacent gates by means of local
rules. Such algorithms are completed by a suite of methods for approximating such
rules in case the explicit representationgloht carefunctions become intractable.
The theoretical understanding of the problem provided by perturbation analysis
provides a means for evaluating previous approaches to the problem.

¢ New algorithms are presented for deriving compatitbban't cares. It is argued
that maximal compatiblelont carescannot be derived on a local basis. Those
presented in this work constitute, however, the best approximations known so far.

In Chapter 3, the problem of multiple-vertex optimization is considered from a differ-
ent angle. The difficulty of multiple-vertex optimization is due in part to the arbitrariness
of the subnetwork selected for optimization. This difficulty is circumvented by intro-
ducing the notion otompatible gates.A set of compatible gates is a subset of gates
for which the problem of solving a Boolean relation is substantially simplified, and in
particular ordinary two-level synthesis algorithms can be used for exact optimization.
An approach for multiple-vertex optimization based on the search of compatible gates,
instead of optimizing arbitrary subnetworks, is presented.

1.2.2 Synchronous logic optimization.

The presence of clocked memory elements (for reference, assumed to be D-type flip-
flops) and possibly of feedback distinguishes synchronous circuits from combinational
ones.

CHAPTER 1. INTRODUCTION 11

A common model of such circuits is thHmite-state machin@SM) model, shown in
Fig. (1.5). Flip-flops and combinational logic elements are grouped into a register and
a combinational network, respectively. The content of the register is termestdtes
of the circuit, and the combinational portion implements output and next-state functions.
A finite-state machine description of a circuit is typically provided in terms ctade
diagram (also shown in Fig. (1.5) ostate table

[
v/

Figure 1.5: A synchronous circuit and its finite-state machine model.

The classical approach towards the optimization of synchronous circuits consists of
extracting their FSM description and then resorting to known FSM synthesis algorithms.

FSM synthesis is a classic subject of switching theory. The process is typically
divided into three main steps, consisting of state minimization, state assignment, and
the synthesis of the combinational portion. State minimization has two main objectives,
namely to minimize the number of flip-flops and to increase the number of unused
combinations of state variables. Such unused combinations represent dofetctare
conditions for the combinational portion.

State assignment is the process of encoding each state in a binary format. It defines
to a large extent the functionality of the combinational circuit, and therefore good state
assignment algorithms are still object of research. Heuristics targeting two-level [18] and
multiple-level [19] implementations of the combinational logic have been considered.
Other strategies include tltkiecompositiorof a FSM into a set of smaller, interconnected
machines [20, 21], for which the optimal state assignment problem can be solved more

CHAPTER 1. INTRODUCTION 12

accurately.

Similarly to the combinational case, an exact synthesis algorithm for finite-state ma-
chines is also available, but it reduces essentially to the orderly enumeration of all possible
state assignments, and it is impractical for all but very small machines.

Unfortunately, the difficulty of evaluating the effect of state manipulation operations
(most notably state assignment) on the final hardware makes it impossibteséahis
approach towards an actual reduction of the original circuit. It is also worth noting that
in modern VLSI technology the cost of flip-flops is actually comparable to that of a few
logic gates. The significance of state minimization is in this context greatly reduced, in
favor of more general network restructuring approaches.

These difficulties motivate the search of algorithms targeted at the direct optimiza-
tion of synchronous netlists. The underlying model for this style of optimization is the
synchronous logic networkinformally, a synchronous logic network is a generalization
of the combinational logic network, with vertices representing logic elements and edges
representing logic dependencies. Registers are modelddlay elementsand intervene
in the description of the logic as delay labels in logic expressions.

One optimization strategy, proposed originally by Madikal. [22] and later refined
by Deyet al. [23], is peripheral retiming Retiming is a circuit transformation originally
developed by Leisersoat al. [24] for the optimal placement of delay elements in a
circuit so as to minimize the clock period. The basic step of retiming is illustrated in
Fig. (1.6).

= e |

Figure 1.6: An elementary retiming operation.

Peripheral retiming consists of identifying pipeline-like subnetwdrksd pushing all
registers to their periphery by retiming, so as to evidence the underlying combinational

Informally, a pipeline is a synchronous circuit where all paths from each input to each output contain
the same number of delay elements.

CHAPTER 1. INTRODUCTION 13

structure. This portion is then optimized using ordinary combinational techniques, and
eventually registers are re-distributed along the pipeline. An example of this transforma-
tion is shown in Fig. (1.8).

b — T
| Salinl =

@ (b) (©)

o o I
Eb I
|n

-

Figure 1.7: (a) A pipeline circuit. (b) A peripherally-retimed version. Notice the tempo-
rary introduction of a negative-delay register. (c) Optimized circuit, after the elimination
of the negative-delay register.

In practice, in most circuits pipelined subnetworks are too small or have too many
outputs, which leaves little room for optimization. A second difficulty occurs when
different inputs have different register counts to the primary outputs, as in Fig. (1.7).
In this case, peripheral retiming requires the introduction of “ negative-delay” registers.
After optimization, it may be impossible to eliminate such registers, thereby invalidating
the result. One such instance is the circuit of Fig. (1.8), borrowed from [22].

(@) (b)

Figure 1.8: (a) Original circuit and (b), an unrealizable optimized version.

The extension of algebraic operations for synchronous logic networks was considered

CHAPTER 1. INTRODUCTION 14

by De Micheli in [25]. An example of synchronous algebraic transformation is illustrated
by the following example.

Example 5.

The functionality of the circuit of Fig. (1.9-(a)) can be expressed by the two
relationsz= a 1 + bandy = d az + b1) , where the subscripts indicate the
delays associated withandb. The expressiom , + b1 is then an algebraic
factor of 3, and coincides with the delay by 1 af Outputy can then be
expressed a&:;, leading to the realization shown in Fig. (1.9-(b)K

—+ D Ly,
c > D_y E iD— y

C

[

(@) (b)

Figure 1.9: A circuit before (a) and after (b) optimization by synchronous factorization.

These optimization methods are typically not powerful enough to capture the opti-
mization space for a synchronous circuit, and Boolean optimization models are required.
Unlike the combinational caselont care conditions for synchronous circuits have
been far less characterized. Classical works on FSMs considered almost exclusively

incompletely specifieSMs,i.e. FSMs whose next-state functions or output functions
containdont care entries. The synthesis path for incompletely specified FSMs follows
closely the one for ordinary FSMs, the main difference being the complications added
by the incomplete specification to the state minimization step.

This model is however inadequate to interpret tlom't care conditions that arise in
the VLSI context. For example, it often impossible to cast degrees of freedom in the

CHAPTER 1. INTRODUCTION

timing of the output signals of a FSM intdon't care entries in its next-state or output

function:

Example 6.

Consider the case of a simple fragment of a control unit, whose task is to
issue an activation pulse one or two clock periods after receiving an input
pulse. Lets denote the state of the control immediately after receiving the
control signal. Insitis necessary to choose whether the FSM should issue an
output pulse and return to the quiescent start state or should count one more
clock period. This choice cannot, however, be represented diyn4 care
condition on the next state entry, or remaining in stateuld be included
incorrectly among the possible optionsJ

A second problem is the characterization of then't caresassociated with the em-
bedding of a synchronous circuit in a larger one. Only the case of two cascaded FSMs
(shown in Fig. (1.10)) has been in practice addressed in the literature. Kim and Newborn
[26] showed that the limitations in the sequences that can be asserfefd bgn be used
for the optimization ofM>,, even if this information cannot be represented in terms of
dont care entries on any state af/,. Their optimization algorithm was rediscovered
later by Devadas [27] and by Rho and Somenzi [28]. Heuristics that attempt to capture
the filtering effect of A/, for the optimization ofA/; have also been considered in the
two latter works, but they lack a formal setting. Moreover, the scope of these works is
limited by the nature of the topologies and optimization steps considered, and by a lack
of a general model of thdon't careconditions that can be associated with a synchronous

circuit.

M

M,

Figure 1.10: Cascaded finite-state machines.

CHAPTER 1. INTRODUCTION 16

Contributions to sequential logic synthesis

This thesis presents an analysisdafin't care conditions for synchronous networks that

is complete both in terms of theory and engineering techniques. Chapter 4 of this thesis
is in particular concerned with the extension of perturbation theory to the synchronous
case. With regards to this point, the following contributions are presented:

¢ the limits to which sequentialon't care conditions can be represented byen't
care function are explored. It is in particular shown thddnt care functions
represent fully the degrees of freedom associated with a vertex only in the special
case of pipelines . Methods for the correct handling of théset caresare
presented.

e For non-pipelined networkgjon't care functions represent approximations of the
full don't care conditions. Algorithms for deriving efficientlgont care functions
are then considered. Two cases are distinguished, depending on whether feedback
is present or not. In the first case, extensions of local algorithms for combinational
networks are presented. The presence of feedback is modeled by introducing
externaldont caresthat interpret the limited controllability and observability of
the feedback wires.

e Dont care-extraction algorithms are coupled with generalized two-level optimiza-
tion procedures that allow a more general restructuring of a logic circuit, by allow-
ing the insertion and removal of delay elements and feedback paths, according to
a predefined cost function.

A characterization oflont care conditions in synchronous networks is presented in
Chapter 5. For acyclic networks, sudbn't careconditions are captured implicitly by a
recurrence equationA solution algorithm for recurrence equations is then presented.

Chapter 2

Combinational networks

2.1 Introduction

The present and the next chapters concern mainly Boolean methods for combinational
logic optimization. In particular, we introduce in the present chapégturbation theory
as a tool for reasoning about local modifications of a Boolean network. We also introduce
the main algorithms for extractindont care information from the Boolean network.
These algorithms use a local paradigm, that is, they attempt the extraction dbritie
care information relative to a gate from that of the adjacent gates. The local paradigm
presents several key advantages. First, it allows us to construct the obsendinility
care functions without an explicit representation of the circuit’s functionality. Second, if
the representation afon't caresgrows too large, it allows us to perform approximations
at run time. Third, it allows us to compare quantitatively previous approaches to the
problem presented in the literature.

These algorithms are presented in Sections (2.3) and (2.4). Approximation techniques
are then presented in Section (2.5).

17

CHAPTER 2. COMBINATIONAL NETWORKS 18

2.2 Terminology

2.2.1 Boolean functions and their representations

Let B denote the Boolean s¢0,1}. A k-dimensional Boolean vectot= [zq,-- - , |7
is an element of the sdt* (boldfacing is hereafter used to denote vector quantities. In
particular, the symbol denotes a vector whose components are all 1).

A n;-input, n,-output Boolean functio is a mapping~: B™ — B™e.

The cofactors (or residue$ of a function F with respect to a variable; are the
functions
F., =F(a,...,2; = 1,...,2,) andE =F(a,...,z; = 0,...,2,) . The universal
guantificationor consensu®f a functionF with respect to a variable; is the function
V.. F = F., Fx;. The existential quantificatioror smoothingof F with respect tox; is
defined asi,,F=F,,+ F... TheBoolean differencef F with respect tor; is the function
OF /& ; = F,, & F,.. A scalar functionF; containsF, (denoted byF; > F,) if F, =1
implies F; = 1. The containment relation holds for two vector functions if it holds
component-wise.

A functionF is termedpositive unaten z; if F,, >F ol andnegative unaté F,, ng;.
Otherwise the function is termdanatein z;.

Boolean expressionare a common means for representing Boolean functions. For-
mally, a Boolean expression is defined as follows:

Definition 2.1 The symbol$), 1 are Boolean expressions, and denote the constant func-
tions0,1 : B™ —PB, respectively. Given a set of ; variablesz y, ..., aliteral «(z) is

an expression, and denotes a functipr’) : B+ —B, taking the value (the complement

of the value) ofr. Finite sums and finite products of Boolean expressions are Boolean
expressions. They denote the functions formed by the logic sums and products of their
terms, respectively. Complements of Boolean expressions are Boolean expressions.

Any given Boolean function can, however, be represented by means of several
Boolean expressions. This makes it difficult to check whether two expressions describe
the same function. For this reason, it is in practice convenient to represent and manipulate
in a computer Boolean functions by means of their associated Binary Decision Diagrams

CHAPTER 2. COMBINATIONAL NETWORKS 19

(BDDs) [29, 30]. BDDs are canonical representation for Boolean functions. We refer to
[29] for a detailed description of the use of BDDs for manipulating Boolean functions.

2.2.2 Combinational circuits and logic networks.

The mathematical model of a combinational multiple-level circuit isldggc network.

Definition 2.2 A combinationallogic network is an annotated graphV = (V, E) .
Vertices correspond to primary inputs, single-output logic gates, or primary outputs,
while edges correspond to interconnections. For each veytex

H,={eV(%y €F
0, ={:eV(y2 €8 (2.1)

denote the vertices corresponding to the inputs of the gagand the vertices where the
output of the gate iyis used as input, respectively. These sets are termefhire and
fanout of v Thetransitive fanin andfanout TH , andTHO , are the sets of vertices
reaching and reachable from respectively.

Each vertexy is associated a Boolean variable, also labelgdand a Boolean
expression of the variables & ,. Hereafter, we denote this expression with The
variable y and local expressiore v represent the gate output and the local behavior
realized by each gate, in terms of the adjacent variables. Variables associated with logic
gates are also termeldbcal variables

Example 7.

Fig. (2.1) shows an example of a combinational logic network. Variables
a b ¢, d e represent the primary inputs, whilev, 4 zando 1,0, denote
internal variables and primary outputs, respectively. All variables, except for
primary inputs, are given expressions in terms of other network variables.
O

The behavior of each vertex can also be described by referring to the function of
the primary inputs it ultimately realizes. In more detail, letlenote a vertex. A

CHAPTER 2. COMBINATIONAL NETWORKS 20

Figure 2.1: A combinational logic network

local function f¥ in terms of the primary inputs can be obtained simply by iteratively
substituting ine¥ each internal variable with its expression, until only primary inputs
appear. In particular, the behavior of a logic network is then described by a function
F:B™ —B "o, wheren; andn, are the number of primary inputs and outputs, respectively.

Example 8.

In the network of Fig. (2.1), the function realized at vertex f “ = &+b 'c
By substituting this expression uY, the functionf? = e+ at+ k. The
functions realized at each vertex are listed below:

fi= bet+te’

f'= de ' +Vak

ff = atbetc’

ff= d+bktc '+& (22)
ff= d+b++e

fr= dbetbe’

f2= atbet+c '+ &
The behavior of the network is captured by
F_ fol B a’b’c—l— er /
= o =

(2.3
at+te+c '+

CHAPTER 2. COMBINATIONAL NETWORKS 21

2.2.3 Specifications for combinational networks.

A common style for specifying the desired behavior of a combinational network is by
means of two function&(x) and DC(x) respectively, the latter in particular representing
the input combinations that are known not to occur or such that the value of some of the
network outputs is regarded as irrelevant [16]. Corresponding to these input combinations,
some network outputs are therefore left unspecified, which represents a degree of freedom
that can be spent during optimization. For this reason, the funbi®rs hereafter termed
dont carefunction. This style of specification will be referred to @sn't care -based

A formally equivalent specification is in terms of the functidag,,, = F - DC and
F... =F+DC. Specifications are met by a functi@if

A more powerful, but also more complex, specification style is by mean8obéean
relation[31, 8, 32]. A Boolean relation for the behavior ofiinput, n,-output network,
with inputs and outputs labeledandy, is a Boolean equation of type

Frin(X) <FOXY) sk (%) (25)

whereF is a Boolean functior: B+t —B 7. A function G: B™* —B ™ satisfies the
specifications if and only if for every input combinatiag B ™,

Foin(X) <F(X,G(X)) zf X) ; (26)
This second specification style is hereafter referred teekadional specification For

simplicity, in the remainder of this chapter, specifications are hereafter assumed to be in
dont careform.

2.2.4 Optimization of combinational multiple-level circuits

The optimization of a networky realizing a functionF, ultimately consists of its re-
placement by a different network, with better figures of merit in terms of area, delay,
or testability. In principle, the new network is allowed to realize a functdifferent
from F, as long asG satisfies the specifications:

CHAPTER 2. COMBINATIONAL NETWORKS 22

F. DC <G <F+DC. (2.7)

We now use the Boolean identity:
a<bsa 'Hbhb=1. (2.8
By applying this identity to both inequalities of (2.7), we obtain

F+G +DC=1
F+G+DC=1. (2.9)

The two equalities (2.9) hold simultaneously if and only their product takes vialue

(F+G+DC) ('R G+DC) =

FIG+DC=1.
(2.10)
By applying the Boolean identity (2.8) to Eq. (2.10) we eventually obtain
FaG <DC . (2.11)

The functionFaG represents the difference, or “error”, in behavior between the original
and optimized network. From Eq. (2.1I)C then takes the “physical” meaning of a
tolerable functional error during optimization.

In practice, due to the complexity of exact optimization, current optimization strategies
are based on the local, iterative optimization of small subsets of verticasNéither
the network topology nor the behavior of the individual vertices need to be exactly
preserved, as long as the outputs of the optimized network satisfy Eq. (2.11): such
degrees of freedom thus represent “errors” on the local funciférthat can be tolerated
by the global functional specifications.

A first necessary step of local optimization is therefore ¢haracterizationof such
local errors. Following alon't care-based style, the characterization is by upper bounds
on the errors tolerated at each vertex, and the means developed in the next section is
perturbation theory

CHAPTER 2. COMBINATIONAL NETWORKS 23

2.3 Perturbation analysis of combinational networks.

In this section perturbation theory is introduced as a main tool for the analysis of the
degrees of freedom in a logic optimization environment. The modification of each logic
function /¥ in a network is modeled by introducing a perturbation signal'he analysis
focuses first on the optimization of a single vertex, described by means of a single pertur-
bation, and is then extended to multiple-vertex optimization, modeled by the introduction
of multiple perturbations. The following general definitions are in order.

Definition 2.3 Given a subsey = {y1,...,y,} <V of variables of a networky we
call perturbed network NV the network obtained fornvby replacing each local
functione¥ with e¥%Y = ¥ @ 4, y; €Y. The added inputs; are termegerturbations.

The functionality of a perturbed network NV is described by a function FY,
which depends also oh=[4,...,6,,] : F= FY(x,6) . In particular,

Fi .. =F (212

and every internal vertexrealizes a functionality described by f ¥ X x,9) .
The functionality of any networkv’ obtained by replacing eacft: with an arbitrary
function g% is described by FY(X, ft g %, ..., f¥ Bg ¥) .

Example 9.

Fig. (2.2) shows the network of Fig. (2.1), perturbed only corresponding to
v. Internal functions are described by

ferv= bet+ e’

fror= (dee’ +bab) B

fov'= at+be+c’

for= (d+bet+c'+d) DO

f7r= e+ (do) @

forv= dbet+a’e +[((do) B'e

forv= b+dé'(atd+d +§ e+d’ + che

CHAPTER 2. COMBINATIONAL NETWORKS 24

Foré = 0, these functions reduce to those of the unperturbed network. Notice
also that only the functions of the verticesThD , are affected by, the
functions f* v, f* ¥ being identical to those of the original network

Figure 2.2: Network perturbed in correspondence of variable

In this work, the vertices of a perturbed network maintain the same labels as in
the original network. Boolean expressions in terms of network variables are therefore
ambiguous: for instance, the expressiofn v ‘v’ denotes two different functions in the
original network Nof Fig. (2.1) and in the networky v of Fig. (2.2). For notational
simplicity, however, this ambiguity is dealt with explicitly only when necessary.

The functional errors of the perturbed network with respect to the original one are
described by therror function

E(x,)Z FY(x,6) @F(x,0) . (213
From Definition (2.3), functiong¥ can simultaneously replacg’ if and only if for
everyx € B, 6; = fyi(X) @¥(X),
E <DC. (2.14)
Eq. (2.14) represents implicitly all the tolerances on the eroré$n this form, however,
such degrees of freedom are very difficult to use. The purpose of this section is to present
algorithms that efficiently transform Eq. (2.14) into a manageable form, namely a set of

individual tolerances on the errofs. To this end, the observabilityont care functions
defined below have a key role:

CHAPTER 2. COMBINATIONAL NETWORKS 25

Definition 2.4 Theobservability don't care of a variabley; in a perturbed network NY

is the function
oDCY (x,)L FLaFY, . (2.15)

Corresponding to each combination of inputs and perturbatioxs ¢) , the quantity
ODCv¥(x, ¢) takes value 1 corresponding to those outputs¥ofiot affected by a
change ino;. In particular, the product of all components@DCY¥ represents the input
combinations for whiclb; cannot affeceany output.

Strictly speaking,ODC¥ depends on the perturbed network under consideration:
ODC¥ = ODC¥"Y. The superscripy is removed for notational simplicity, leaving the
task of specifyingV¥ to the context. Notice also that the complemenO@C¥ is just
the Boolean difference dFY /@ ; with respect ta;, and it represents the combinations
of inputsx and perturbations such that ; affects the primary outputs. For this reason,
it is hereafter denoted b@C:.

Example 10.

The functionalityF” of the network in Fig. (2.2) is given in Example (9).
From Eq. (2.13),

[{aVeta'e +] (d) @' pB(dbet be)

| {e+o(atd+d) +§ etd' +che } D atletc '+ &

E =

[A atc) e
I A dbe+a’e + e’

By applying Eq. (2.15), the observabilijont careof vis

(Weta’e +0e +ce)H dbe+ bee ')
| {et+dtaetd "+edg H atlbetc’ + &

ODC" =

[a'c+ e
| @+ e+ ¢ e '

In this particular case only one perturbation signal was considered, and there-
fore ODC" depends only on primary inputs.

CHAPTER 2. COMBINATIONAL NETWORKS 26

Expressions oODC" need not be given necessarily in terms of primary in-
puts, but network variables can also be used. For instance, another expression
of ODC" is

'+ e
A et

Notice that this second expression has a greater flexibility: it can in fact

ODC" =

express the observabiligon't careof v not only in N ¥, but also in presence

of perturbations at other internal vertices, in this casend/oraz This

is possible thanks to the ambiguity left by not relabeling the vertices in a
perturbed network. O

We now examine the role played by observabilitgnt caresin logic optimization.
The simplest approach to the optimization@onsists of optimizing individual vertices,
one at a time, thus introducing only one perturbation signalhis case is examined
first. The case of joint multi-vertex optimization is analyzed in Sect. (2.4).

2.3.1 Single-vertex optimization and observabilitydon't cares.

From the standpoint of perturbation analysis, the case of a single perturbation is especially
favorable, as constraint (2.14) can be transformed into an array of upper bourids on
only. The algebra of the derivation is as follows: a Shannon decomposition of Eq. (2.14)
results in

0'Es + E s <DC . (2.16)

On the other hand, from Eq. (2.13 = 0 and moreover, by comparing Eq. (2.13)
with Definition(2.4),E; = (ODC)’. Consequently, Eq. (2.16) can be rewritten as

§ ODC) <DC (2.17)
which holds if and only if

01 <DC + ODC VY. (2.18)

By denoting with DCV the product of all components dC + ODC¥, Eq. (2.18)
eventually reduces to
o<y V. (219

CHAPTER 2. COMBINATIONAL NETWORKS 27

Result (2.18)-(2.19) was first obtained independently by Bastedt. [16] and by Muroga
et al. [33], and it shows that:

¢ the global tolerance on the network outputs, representdadycan beransformed
into a local tolerance on the local errgr

¢ this tolerance consists of the sum of a global componB@)(plus a local one,
represented by the observabildpnt care ODCY of yin the networkN v.

Example 11.

The observabilitydon't care of v for the network of Fig. (2.2) is given in
Example (9). The constraints @ireduce to

H

By forming the product of the two bounds,

a'c+ e
a+bet+c e '

$<ae+btet+c 'e=10 "
represents all the functional constraintséon O

Although it is in principle possible to compu@DCY¥ for any variabley by applying
Definition (2.4) in a straightforward manner, the difficulty of representitgexplicitly

renders this operation very time- and memory-consuming and frequently impossible in

practice. In order to make dont care -based logic optimization system practical, it

is thus necessary to develop algorithms that extract representations of the observability

dont caresin a logic network directly from the network topology, thus avoiding explic-
it representations oFY. Moreover, as observabilitdgont caresmay have themselves
large representations, effectident care -extraction algorithms must be able to handle

approximationsof don't cares. This suite of problems consitutes the object of the rest
of this section. In particular, topological methods for extracting the observalityt

caresin a logic network are presented next, while approximation techniques are dealt

with in Sect. (2.5).

CHAPTER 2. COMBINATIONAL NETWORKS 28

Computation of observability don't caresby local rules.

As the observabilitydon't care of a vertexy describes how an error on its functionality
affects the primary outputs, it should be linked by simple local rules to the observability
don't caresof the vertices infO ,. Consequently, one should be able to compute all
observabilitydon't caresby a single sweep of the network from its primary outputs using
only local rules. This perception has led to an intense research [34, 35, 33, 36] of rules
that can be coupled with one such network traversal algorithm to yield the observability
dont caresof all vertices.

One such simple rule indeed exists in the particular case of a vertex with a single
fanout edge [37]. For a vertex labelgdwith a unique fanout edgey z) to a variable

4

ODCY — ODC + (5;) 1 (2.20)

links the observabilitydon't care of y to that of z ODC ¥ can be obtained by adding
(OF /&) ' to all the components o®ODC*. The rationale behind Eqg. (2.20) is that
an error onf¥ will not affect the primary outputs if it does not affe¢t (contribution
represented by Jf* /&) ') or if the error introduced irf * is then tolerated by the network
(contribution represented b®DC*). A simple expression of df /@) ' is any local
expression of @& /a) ' [37]. An expression oDDC? can then be derived from that of
ODC~ by

ODC' — ODC” + (2) 1. (2.21)

Eq. (2.21) shows that, ultimately, an expressiorO&C? can be obtained from that of
ODC? and that ofe®, thereby avoiding the explicit construction of the functipn

Example 12.

In the network of Fig.(2.1), an error grcan affect the primary outputs only
througho,. ConsequentlyDDCY can be derived from

1
opc? - []
0

CHAPTER 2. COMBINATIONAL NETWORKS 29

and froma /)= (2+ 1) & =+ 0) =(=) ' by applying Eq. (2.20):

ODC* =

a

Example (11) showed that an expression of an observaliityt carecan be correct
in more than a perturbed network, thanks to the “ ambiguity” left by the choice in vertex
labeling. An important attribute of Eq. (2.21) is that the expressio®@DBY obtained
in this way is correct in all networks for whic®@DC~ is correct. Local expressions
of & “/a;depend “ by construction” only on the local expression® and not by any
property of the rest of the network.

Complementing rule (2.21) gives a rule for expressions of the observabdity

function:
&Z

a
Rule (2.21) is of course insufficient ifhas multiple fanout edges. In this case, a naive
approach may consist of first finding the observabiibn't caresalong each fanout edge.
Suchdon't caresrepresent the tolerance of an error along each edge: their intersection

ocY — ()ocz . (2.22)

could then represent a tolerance fih The following example shows that, unfortunately,
this rule is incorrect.

Example 14.

Consider computing the observabilithpnt care of y in the simple network
of Fig. (2.3). The observability af and - can be computed by Eq. (2.20):
X *=zand@' ~* = x The observabilitydont care of y computed
according to the previous considerations, would then be

@ (@ ()@ o+ (5))-
(z+a (a+b) =d+ 4 e+d).
In particular, @' ¥ = 1 fora= 0,b = 0,¢c = 0,d = 0O indicates that

a change ofy from 0 to 1 would not affect the primary output, trivially
incorrect. O

CHAPTER 2. COMBINATIONAL NETWORKS 30

In Example (14), the product rule did not take into account that an errog on
propagating along a path crossingcontributes positively to the observability of the
same error propagating along the path crossinglore generally, the product rule fails
to take correctly into account the interplay of the observability along the various paths.

Figure 2.3: Network for counterexample (14).

The general rule for dealing with multiple-fanout vertices is derived here. This rule
is best explained by slightly augmenting the topology of the network as follows: first,
a vertex labeledy;, ,: = 1,...,| FO,| is added along each edge on the fanoutyof
The variablesy; are termed théanout variablesof 4 The local functione ¥ of each
added vertex is the identity functiart: = y so that the network functionality is trivially
preserved.

Second, instead of considering directly a netwdik perturbed at; each new vertex
y; i1s added a perturbation sign&l so that nowy; = y®é ;. The network functionality
is then described by a function FY(X,4....,dr0,|) , and the behavior oV can be
recovered by forcing all perturbations to be identic@, 61 = ¢2 = ..., dp0,| = &

F/(x,0) =H X,84...,0) . (2.23)

Figure (2.4) shows the network of Fig. (2.2), transformed for the calculatiddmT .
Consider first the case of only two fanout edges, as in Fig. (2.4), and, let denote
the added variables. From Eq. (2.23) and Definition(2.4), the observadlity care of
yIs
ODCY(x) =*2(x,0,00F ¥*2(x,1,1) . (2.24)

CHAPTER 2. COMBINATIONAL NETWORKS 31

Figure 2.4: Network of Example (14), but perturbed corresponding to the fanout edges
of v. Notice the introduction of the two auxiliary variableg andv..

By manipulating Eq.(2.24)PDC¥ can be rewritten as
oDCY(x) :{waz(x,0, OFF “2(x, 1, o)@(wwz(x, 1, OFF “2(x,1, 1) (2.25)

where the ternF¥¥2(x,1,0) has been “added and subtracted” in Eq.(2.24). From Defini-
tion (2.4), the first term in parentheses@f)cgél, while the second parentheses describe
ODCY:

ODCY = ODCY70DC 2. (2.26)

Eq. (2.26) links the observabilitgon't careof yto those of its fanout variables. These
dont cares, however, are not evaluated iN¥* and N¥2, respectively, but inV¥¥z,

In order to apply Eq. (2.26) it is then necessary to have available expressions of
ODCY+, ODC" that are correct in presence of multiple perturbations, naratligast

in presence ob, andéy, respectively.

Example 15.

Consider using Eq. (2.26) for computi@PC® in the network of Fig. (2.4).
Expressions of the observabilidont care of v, andwv, are given by

/ 1
v ODC“Z:[] .

¥ +yte

ODC™ =

e

CHAPTER 2. COMBINATIONAL NETWORKS 32

It could be verified that these expressions are valid in every perturbed net-
work, therefore in particular itV *2*2. In order to cofactoODC** andODC"?

with respect ta);, andé;, respectively, it is necessary make explicit their de-
pendencies from those perturbations:

! 1
oDC" — e .ODC"? —
¥ et utvdd £ et vdd 1)
Eg. (2.26) then takes the form:
ODC’ = ODCYTODC ¥ =
2
'+ e = 1 B '+ e
o +et+up A e+ v) £ e+)
The expression oDDC" in terms of the primary inputs is
a'c+ e
at+bket+c e

AssumingDC =0, ' ¥ = (e+ ¢) (@+ e+ ¢'e) = @+ le+ ¢ ' the
same results as in the direct method of Example (11). The optimization of
with this don't care produces the network of Fig. (2.5).0

Some of the substitutions carried out in Example (15) can actually be avoided. Since
Och; assumes, = 0, it coincides with the observabilit§gont care of y;, in absence
of a perturbation orny,. It is thus possible to drop the subscriftand usedirectly the

expression oODDC¥:
ODCY = ODC*d0DC §2 . (12.27)

Example 16.

IThese second expressions@DC" andODC" do not have the same validity as the previous ones.
Sincey and z have been replaced by their unperturbed expressions, the validity is now limited to those
networks with no perturbation opor 2. This is also the validity of the expression@DC * so obtained.
More general expressions could be obtained by taking into account perturbatigrandt:.

CHAPTER 2. COMBINATIONAL NETWORKS 33

Consider using Eqg. (2.27) instead of Eq. (2.26) for compu@@C®. Only
ODC™ needs to be expressed in termségf consequently,

1
{ et)

'+ e
ety

ODC" =

'+ e]
£ etry@m) |

Figure 2.5: An optimized version of the network of Fig. (2.1)

As pointed out by Example (16), Eq. (2.27) does not completely eliminate substitution
operations: it is therefore not entirely local. Such operations, however, are carried out
on ODC functions rather than network functions, and only those variables belonging
to 7FO ,, and actually appearing irODC¥ need be substituted by their expressions.
Notice, for instance, that in Example (16) one substitution iof ODC ¥ was sufficient.

A straightforward application of Definition (2.4) would instead require an expression of
FY: in this casepoth z andy should be substituted in ; and o,.

A second general expression@DCY can be obtained by adding twiée¥2(x,0, 1)

in Eq. (2.24)?

2Another method consisted of the so-callgfthin rule[37], which links the observabilitdon't care of
y to those ofy,, y» by the equation [37]

o _ [H2FYy2 /
OoDCY = ODCyl@ODCW@()

Oy10y2

Its complexity has reduced its applicability.

CHAPTER 2. COMBINATIONAL NETWORKS 34

ODCY = ODC.F0DC * . (2.28)

It follows in particular that the right hand sides of Eq.(2.27) and Eg.(2.28) must be
identical:
ODC§:d0DC *2 = ODC**dODC ;2 . (2.29)

This identity will be used extensively in Sect. (2.5), when considering approximations
to dont cares.
Again, complementation of Eq. (2.27) and (2.28) yields the rules for observability
care
OCY = OC* g0OC # = OC{; 3OC *2, (2.30)

The expansion of Eq. (2.26) into a sum-of-products
ODCY = ODCZ;ODCZf + ocgzocgf (2.31)

evidences its relationship with concepts from the testing literature. Eq. (2.31) shows
that there are two contributions ©DCY. The first, ODCZ;ODCZf, indicates that the
presence of a second fanout varialplecan restrictthe observabilitydon't careof ywith
respect to the single-fanout cases. helps the observability of errors alopg. This fact
is known as “self-evidencing” of errors in testing literature . The second contribution,
OCZ;OCZ?, indicates that an error ayis not observable if an error an; alonewould be
observed, but it isompensatedy the error alongs,. This is known as “self-masking” .
The extension of Eq.(2.27) to the general casg &P ,| > 2 fanout variables is
provided by the following theorem.

Theorem 2.1 Letyandy,...,yro, denote the variables associated with the fanout of

y then:

Oy .
onC' =6p. _, 'oocgz (2.32)

415 - fROy |

oCY — @IFOﬂch:H’__”%yl; (2.33)

=1

where eactODC{',

assuming that only;, ; > are perturbed.

. (Oc?f+1,...,pm |) is the observability don't care (care) gf

CHAPTER 2. COMBINATIONAL NETWORKS 35

Proof.
The following identity can be verified by taking into account Eqg. (2.15):
_ By y _

ODCy — F(Slv oy F%O ylg :/L7 .

TR

Eq.(2.34) can be rewritten as:
—<|FO |
obc' =&, (ngﬁ__”?_l’@’__”%m@giy___yml’__”pmyl) . (235
Eqg. (2.32) then follows by observing that each term of the sum in Eq.
(2.35) is preciselyOD g;ﬂp_le . Eq. (2.33) then follows trivially by
complementing Eq. (2.32)1

Similarly to the case of two fanout variables, a permutation of the order in which
the variableg; are considered results in a different expressio®@BIC?, the same type
as (2.32). All| FO,|! expressions, however, must describe the same function: there are
therefore| FO ,| !(| IQ)|! — 1) /2 identities of the type of Eq. (2.29).

Algorithms for observability dont cares.

It is here shown that rules (2.20) and (2.32) permit the derivation of expressions of all
observabilitydon't caresof a network by a single traversal 6in topological order, from

the primary outputs. Algorithn ©OBSERVABILITY below implements this idea. First,
the network is sorted topologically in the arregriable[] (for example, by a depth-
first routine [24]), and then augmented by the addition of the fanout variables of each
multiple-fanout vertex. The fanout variables of a verigxare inserted right aftey in
variable[] , SO that the new array is still topologically sorted. Whemiable([i]

is processed, the observability of all verticesTi) ,,;.;.[;} kept inodc[] , is thus
already known. The observabiligont care of all internal vertices and primary inputs

is set tol. The observabilitydont care of the :** output vertex is then initialized to a
vector containing a zero in thé" component and 1 otherwise (tié¢ output vertex is of

CHAPTER 2. COMBINATIONAL NETWORKS 36

course perfectly observable at tié output). The arrayariable[] is then scanned
backwards to determine albn't cares. For single-fanout vertices, Eq. (2.20) is applied.
Eq. (2.32) is applied to multiple-fanout vertices bwhile loop on their fanout: as each
fanout variabley; is scanned, its observability is considered and made explicit in terms
of eachy;, j >. The cofactoring operatio®DC g;%._’% is implemented by iteratively
substituting those variables appearin@BC" and in the fanout of; .1, . . ., v, and then
realizing that, foro; = 1,5 >, itisy ; = y',j >. Eachy ;,j > is thus just directly
replaced byy’. These operations are carried outdmpstitute() . Logic optimization

(for example, two-level minimization) of a vertex can be executed immediately after after

computing itsdont care.

OBSERVABILITY(N);
N = topsort(N);
N = augment(N);

init_odc(N);
for (i = |V]; i >= 0; i) {
[* variable is identified by its position “i” in the array */

if (§ = single_fanout(variable[i])) {
I* Apply Eq. (2.20). */
[* j is the index of the fanout node */
odc[i] = odc[j] + local_component(variable][i], variable[j]);
} else {
I* Apply Eq. (2.32) */
/* by scanning the fanout list of variable[i] */
fanout_list = fanout]i];
while (fanout_list !'= NULL) {
j = fanout_list->variable;
fanout_list = fanout_list->next;

tmp_odc = substitute(fanout_list, odc[j]);
odc[i] = odc]i] &tmp_odc;

CHAPTER 2. COMBINATIONAL NETWORKS 37

Theorem 2.2 Algorithm OBSERVABILITY computes correctly an expression of each
observability don't care ofy

Proof.

In order to prove the correctness of the algorithm it is necessary to show that,
when the:'" vertex is considered, rules (2.20)-(2.27) are apptietrectly,

i.e. on expressions that are certainly correct in a sufficiently large set of
perturbed networks.

In the following proof this is accomplished by showing that, when ver-
tex y; is considered, the observabiligont caresof y;,; > derived by
OBSERVABILITY are correct in every network perturbed in at most all ver-
tices inV-1FO ., and that the correctness of these expressions is sufficient
to derive a correct expression ODCY by rules (2.20)-(2.27).

This assertion is proved inductively on the indéxf the verticesy,; of
variable[] ,i=1V,...,0.

Base case Since the vertices ofVare ordered topologically, the vertex
of index [] is a primary output, and has no fanouftO ., = ¢. Its
observabilitydont careis therefore what assigned at initialization time, and
it is trivially correct in everynetwork perturbed in at mosta,...,yv|} =

V-1r1o ., (i.e. every perturbed network).

Inductive step If the i*" vertex has a single fanout edgey, y;) (with i < j
by the topological sorting ofy, thenTfO , = TIO ,, U {y;}.

Eq. (2.20) gives an expression GDCY of the same correctness as that
of ODC¥%. By the inductive hypothesiQDC is correct in all networks
perturbed in at most—7FO .. The expression ddDC" is thus correct in
particular in all networks perturbed in at mdst7ro , = (V-1Ir0) U
{y;} =2v-0 .

CHAPTER 2. COMBINATIONAL NETWORKS 38

If the ! vertexy has multiple fanout edgésy,y;,) , with k=1,...,| O,
and: <y 4, k=1,...,| O ,|, OBSERVABILITY considers first expressions
of eachODCY=. By the inductive hypothesis, each such expression is cor-

rect in every network perturbed in at mdst7IrFO . As noy;, can be in
10 , , the expression is in particular correct in the case of multiple pertur-
bations introduced in all fanout variables »f and Eq. (2.32) is therefore
applicable. The substitution of all variables appearing#@ ,, .j» >j &

and the cofactoring (explicit with respect &9,, j, >j , and implicit with
respect tod;,, j, <J k) results in an expression (storedtmp _odc) which

is correct in every network perturbed in at most

1O, |
V- U mo ., 2V-T0 . (2.36)
h=1, hk

The eventual expression @DC¥ is therefore correct in every network
perturbed in at most —1fO .. O

Figure 2.6: Network augmented in all internal edges, for Example (16)

Example 17.

The algorithmOBSERVABILITY is applied on the network of Fig. (2.1). A
possible topological sorting of the network igsh, d e cunvz0 1,540 2.

The augmented network is shown in Fig. (2.6) (for simplicity, only in-
ternal vertices have been augmented, and the identity functions are not

CHAPTER 2. COMBINATIONAL NETWORKS 39

indicated). Vertices are eventually stored variable[] in the order:

abdecuu 1,upuU3,0V1,02, 521, 22,01, LT 1, T2, 02. INitially,

0 1
ODC* = ;ODC? = :
1 0
Single-fanout verticeg, « , x; are then selected in order, and Eq. (2.20)
applied:
2] ' 1
ODCY = ODC* + (%) 1-
€222
o) ' _ 1
ODC* = ODC™ + (32) 1=
’ | %5ty
dor)’ 1
ODC** = ODC™ + (a_) 1=\

Vertex « has multiple fanout, and Eq. (2.32) is applied. &@OC ** and
ODC™ are independent from, and z;, respectively, no substitutions or
cofactors are necessary:

7
%1

ODC” = ODC"dODC "2 =

2ty
It is then possible to compute the observabitiignt careof 2, andz;. As
they are single-fanout vertices, Eq. (2.20) is applied again, to get:

ODC* =

.opc — | 1|
4y 1

The observabilitydont care of z, computed by rule (2.32), follows. Again,
no substitutions or cofactors are necessary:

4

ODC* = ODC*a0DC * =

vy +y
The observabilitydon't careof v, andwv; are then determined by rule (2.20):

) +e

vy +yte

ODC" = [;ODC™ =

L2222

CHAPTER 2. COMBINATIONAL NETWORKS 40

Notice that no substitutions have been made so far. The expressions derived
up to this point are therefore correct in every perturbed version of the network
of Fig. (2.6), and in particular inV*¥2, The observabilitydont care of v

by rule (2.27) follows:

ODC’ = ODC"JODC ¥ =
) +e

vy +yte

L] Lt |
z2(e+) z2(e+)

This calculation has required some substitutions, analyzed in Examples (15)-

(16). The derived expression is however correct in every network perturbed

in at mostV—7THO ,. OBSERVABILITY determines thelon't caresof

ugz, up, uy NExt, using rule (2.20):

1t a . y 1 .
ODC™* = :ODC"2 = :
I 25+ y+a 222 |
oDCH = A o
(4t V) ("dref) +a(et yd)

The observabilitydont careof wis then found by Eq. (2.32). Let 1, 67, 63
denote the perturbations associated withu, u3:

ODC" = ODCY; TODC {270DC * =

a+b+e
(a+0) ("dee’) +(at (et

21+ a

z+aty

1]@
(at+u 2

Eventually, the observabilitgon't caresof the primary inputs is determined.
These can be used as exterdah't caresfor the stages of logic controlling
the network. O

In practice, fanout variables need not be added, and tiwiit caresneed not be
considered explicitly when traversing the network: for each multiple-fanout vgrtae
while loop can compute the observabiliont care of each fanout variable by one
application of rule (2.20), execute the necessary substitutions and cofactors, and add it to

CHAPTER 2. COMBINATIONAL NETWORKS 41

tmp _odc, without resorting to explicit fanout vertices. This has the obvious advantage
of not introducing any spurious Boolean variables and maintaining generally simpler
expressions.

2.4 Multi-vertex optimization and compatible don't cares

The don't care -based method considered so far focuses on the optimization of one

vertex at a time. A natural extension therefore consists of considering the simultaneous
optimization of multiple vertices. Again, this process can be regarded as the introduction
of error signals in the network, one for each optimized vertex. Eq. (2.14) again represents
the functional constraints on such errors.

Example 18.

Fig. (2.7) shows the introduction of two perturbations. The error function is

0102(a+ d) &+ 61050'(b+ cPe) +
+6102(&’ + €'a+ a'lbe)

0102(by (bt c'e) +adh(B b+be’) +
+6102(b+ @&+ b'e+c'e + de

Figure 2.7: Network perturbed in correspondence of variabéexl v

CHAPTER 2. COMBINATIONAL NETWORKS 42

A first question concerning multiple-vertex optimization is whether the solution space
of Eq. (2.14) can be given a compact explicit representation. A nice extension of the
results of single-vertex optimization would be a representation by means of an array of
independent tolerances:

o; <l V. (2.37)
If this were the case, then each internal functidncould be optimized independently,

using I’ ¥ asdont care. The following example shows that unfortunately such an
extension is not possible:

Example 19.

Consider the optimization of verticesand v in the network of Fig. (2.7).
With the partial assignment of inputs= 0,¢= 1, ¢e= 0, the error function
is

6164
01 @6 2 '
AssumingDC = 0, Eq. (2.14) reduces to

8184 =0
5186 ,=0

which holds if and only if6; = é,. Clearly, perturbations in this case cannot
be independent, as implied by Eq. (2.37)1

The second question is whether multiple-vertex optimization can indeed achieve better
results than single-vertex optimization. This is answered by Example (20) below.

Example 20.

In the network of Fig. (2.7), consider choosing= 6, = bif a= 0,¢=
1le=0, andé; = 6, = 0 elsewhere. In other wordg; = 6, = a’be .
The functions replacing™ and f* are nowg* = f* ®61 = a+ b’cand
g' = fY @6 2 = le+ &, of lower cost than the original ones, and shown in
Fig. (2.8). Notice in particular thag* and ¢¥ differ from f*. f* only for
a=0,c=1e=0.

CHAPTER 2. COMBINATIONAL NETWORKS 43

The separate optimization efcan be regarded as a special case of joint
optimization, in whiché; is set to 0. Folu= 0,c= 1,¢= 0, it must now
be s, = 0: ¢¥ no longer belongs to the functions that can replagte O

©

O N
® s =0

© s
®

Figure 2.8: Network resulting from the simultaneous optimizatiomad v

Example (20) shows that the choices on feasible perturbations for each varjable
must in general beorrelated This correlation is captured in the general case by the
following theorem:

Theorem 2.3 Perturbationsé;, . .., é,, satisfyE <DC (i.e. Eq. (2.14)) if and only if
DC/(Y{lE)gé S(S 21 S (V51E):52 + DC X

DC'(Y, E)s,

PR f1 7

S(Szl < (V517__.7‘5_1 E)gl +DC; 1= 1,. o, m (238)

Proof.

The proof generalizes the derivation @bn't caresfor single perturbations.
By taking the Shannon expansion Bf with respect toé,, Eq. (2.14) is
transformed into:

6’1E51 + 61E5, <DC. (2.39)

CHAPTER 2. COMBINATIONAL NETWORKS 44

Eq. (2.39) holds if and only both terms of its left-hand side are contained in
DC:

5iEs; <DC
61Bs, <DC . (2.40)

By using the Boolean identity
d <cea<b "+e¢ (2.41)
Eq. (2.40) becomes
DC'- E; <611<Ej +DC. (2.42)
One such; can exist only if the bounds expressed by Eq. (2.42) are con-
sistent, that is, if and only if
Es,- DC <Ej, +DC . (2.43)
The same Boolean property (2.41) can then be used to transform Eqg. (2.43)
into
Es;- B, =Vs(E) <DC. (2.44)
Eqg. (2.44) can then be expanded with respect;to By repeating steps
(2.39)-(2.44),
01 (¥,E)s; <DC
61 (¥,E)s, <DC (2.45)
results in
DC'- (¥E)s, <621 <(V5,E);, +DC (2.46)
and in the consistency equation

Vs,(,E) = V,s,E <DC . (2.47)

Steps (2.39-2.44) can be repeated to iteratively generate the boungs on
from the consistency equation of the previous step. Theorem (2.3) is then
proved completely by showing that the last consistency equation

Vs, .. sE <DC (2.48)

holds. But this follows fron¥;, sE<Es =00

CHAPTER 2. COMBINATIONAL NETWORKS 45

Theorem (2.3) has two important consequences, that enlighten the difficulties added by
dealing with multiple perturbations. First, each individual perturbation may héveex
bound to satisfy, in addition to the “ regular” upper bound; second, each bound depends
not only on the primary inputs, but also on other perturbations. Example (20) presented
a case where the lower bound f&r was nonzero and depended &n introducing a
nonzero perturbation in vertexindeedforced us to changg v. The perturbation on
uvalone would have introduced an error in the functionality of the network: the lower
bound oné, takes then the meaning of an error othat isrequired to compensate
error introduced by: These difficulties can be removed by discarding some degrees of
freedom and determining conditions simpler than Eq. (2.38), namely in terms of upper
bounds only. In this respect, one possibility is to consider the degrees of freedom available
for the optimization of eachy; regardlessof the functions chosen to synthesize; # :.
This idea is formalized by the concept cdmpatible don't cares[33, 38]. A second
possibility consists instead of focusing on the network topology and of selecting suitable
subnetworks, based on a “simplified” dependencyEobn ¢,,...,46,,. This approach
leads to the concept alompatible gatesexplored later in Chapter (3).

Definition 2.5 Dont care functionsi@’ ¥i;: = 1,...,nassociated withy 1,...,y,, are
termedcompatible if:

1) none of them depends on anyéef.. .. é,,; and
2)6; <0 v =1 ...,mimply E <DC .
Compatible don't care function&’ ¥ are said to bemaximal if none of them can
be increased (i.e. replaced by larger functioBs >0 v without violatingE <DC.

For a given array of vertices there are in general several possible choices of maximal
compatibledont cares. Theorems (2.4)-(2.5) below link one such choice to ordinary
observabilitydon't cares:

Theorem 2.4 If perturbationsé, . . ., é,, satisfy :
6;1 <ODC gl 5, (X,642,-.+,0m) +DC (2.49

thenE <DC.

CHAPTER 2. COMBINATIONAL NETWORKS

Proof.
The first step of the proof consists of proving the implication :

617 o 15_1 7(2 (2.50)
Es; .5, <DC
12 o4

LREER I v)

51<0ODCY , +DC 51 <E!
e
E517__.715 SDC

for . = mm-1,...,1. The algebra of the derivation is as follows:

6;1 <ODC ¥, +DC 61<0obC¥ , +DC
81y by N 611 ba

=
Es, .5 <DC Ej, .. sTDC=1.
(2.51)
By expandingODC¥ andE’ in terms of F,
Yu ! —
ODCS, .5, by p=
(Bt s F by DT By, Tl g) = (252
y y _
Féiv---v b 4 8 ba 8 T Eliv---v byl -
Using this equality in Eq. (2.51) yields
. Ye . !
6;1 <ODC 5top, T DC N 6;1<E I s DC (253
Es; .5 <DC Es, .5 <DC .
To complete the proof, notice that
62'1 SEfgi’__ng@ +DC = (5¢E517._.715_1 § SDC N
Es .5 <DC. 6;Es, .5, <DC
0iBsy, .5, +OEsy, g, 6 <DC Es,, .5, =DC
(2.54)

46

The last implication is in particular verified by observing that the left-hand

side of Eqg. (2.54) is the Shannon expansion of the right-hand side.

CHAPTER 2. COMBINATIONAL NETWORKS a7

So far, it has been shown that Eqg. (2.49), along with the initial assumption
Es:, .5 <DC, implies in particular

On the other hand, sincE%__,% = 0, the initial assumption is always
verified. In order to prove the theorem it is thus sufficient to observe that
Eq. (2.14) is just Eqg. (2.55) far= 0. O

The bounds expressed by Theorem (2.4) still depend on other perturbation signals.
Compatibledont carescould be obtained from them, however, in a straightforward
manner byconsensusdon't caresid’ ¥ such that

o ¥l SV Big s m i (ODCZL)

T DC) (2.56)
are indeed compatible, as they are independent from any perturbation and ¢ledrly
10 v implies Eq. (2.49). Theorem (2.4) below refines tomsensugperation to obtain
a set of maximal compatibldont cares. The idea behind the result is that when an
upper boundi@’ ¥ for ¢, is derived, perturbations; .., ..., 4, are already bounded by
o v+ ... [0 v, This information is equivalent to saying that combinations of inputs
and perturbations violating these bounds are forbidden, and can be interpreted as external
dont cares. Such combinations are given precisely by the tespisi0’ ¥)'.

Example (20) below compares the compatibn't caresobtained from Eq. (2.56)

with those of Eq. (2.57), in particular proving the usefulness of the teépndo’ ¥)'.
Theorem 2.5 If functions@' ¥;: = 1,... nsatisfy
0 ¥1<DC+CODC¥;i=1,...,m (2.57)
where
CODCY" = ODC¥" s ..,

CODCY: = v5i+l,,_,,él(oocg§m§4 + (Y & Iy % =1,...,m(2.58)
k=141

then they represent compatible don't cares . They are maximal if the inequality (2.57) is
violated by any functiolB>l0' ¥:.

CHAPTER 2. COMBINATIONAL NETWORKS 48

Proof.

The upper bound&?’ ¥ are independent from any,, k=1, ..., hto prove
their compatibility, it is thus sufficient to show that, under the assumptions
(2.57),

6; < Vii=1,....m (2.59)

implies every equation of the group (2.49). To this regard, notice that Eq.
(2.59) and Eq. (2.57) together imply

51<DC+0DCY . + (S 6 1@%)')1 (2.60)

k=t+1
as well as .
Y (V)Y =0 (2.61)
k=t+1

Eqg. (2.49) is thus obtained by substituting Eq. (2.61) into (2.60).
The proof of maximality is by contradiction. It is shown in particular that if
any upper bound&’ Vi are replaced by larger bound¥:, then it is possible
to find a combination of inputs and perturbations that, although satisfying the
new constraint$; <B ¥, nevertheless violates <DC.

To this regard, suppose that there exists at least one indaxch that
Bvi >’ vi. Itis then possible to find an input combinatigg such that
I vi(%) =0,butB() =1. Froml'¥(¥) = 0 and Egs. (2.57)-(2.58)
it follows that
DC(%) +¥.us (ODC _y, +(X sl %)) /=1 (262)
k=t+1
Eq. (2.62) can be rewritten as
Vi s (DO(®) +ODG , +(> a(™))) =1 (263
k=t+1
Eq. (2.63) indicates that there must exist a combinatjaf the perturbations
such that:

DC(%) +ODG; .5, , (% 8i+1,0---:0m0) +(D_ d,d ©'™(¥))1 /=1
k=141
(2.64)

CHAPTER 2. COMBINATIONAL NETWORKS 49

In particular,éo can always be chosen so &sg= ¢20= ... = 6;_1,0= 0,
andé; o= 1. Eq. (2.64) can be rewritten as a pair

DC(2§) + ODQLO’ .y 15_170 (X, (SH_L Qs 6m0) /: 1 (265)

and
Ok, 0I0' V<(%) ;k=i+1,...,m (2.66)

Notice that, sinced’ ¥ <B %;j5=1,...,mthe combinationh , does not
violate the bound$3¥:.

Consider now the identity shown in Theorem (2.4) (specifically, by Eq.
(2.52)):

It is now shown that, corresponding fox, éo) the second term of the
operator in Eq. (2.67) takes valde To this regard, notice that, from Eqg.
(2.66),6,1 <I' ¥»1 <DC + ODC Zf f, k=14 1,...,mIn the proof

of Theorem (2.4) this condition was shown to imply Eq. (2.54), that is, the
identity to 1 of the term. Eq. (2.65) can then be rewritten as

El, .5, .4(¥ +DC(ox =ODG, , (%) +DC(of /=1. (268
Notice also that, from the choicg =6 =...=86;4 =0, 6; =1,
51, 50 %:00) = E(oxdo) . (269
Eq. (2.68) then becomes
E(%,60) +DC(¥x /=1 (2.70)

indicating that Eq. (2.14) is violated by, 6. Consequently, boundBv:
cannot be valid.O

Theorem (2.5) proves the intuition that the degrees of freedom associated,wW#ahd
again expressed by a global plus a local observahilig't care vector CODCYi, here-
after termedcompatible observability dont careof y;) that areindependentfrom the

CHAPTER 2. COMBINATIONAL NETWORKS 50

perturbations of other functiong;,; >: indeed represent maximal compatildent
cares. Independence is actually obtainedplicitly, by performing thev operation in
Eq. (2.58).

Example 21.

Consider the extraction of maximal compatilslent caresfor xand = in
the network of Fig. (2.5). Two perturbations are introduced and atz,
labeledé; andé,, respectively. Expressions &fDC* andODC? are:

! !

X

¥ty

ODC* = ;ODC* =

24y

and they depend o6, andé; throughz and .z Expliciting this dependency
results in

(e+)2
(et+d)B2+y

(at+u)d 1
(at+u)B®1+y

ODC* = ;ODC* =

From Theorem (2.5), a maximal compatilodlent careof xis obtained from

e'v
CODC* = ODCZ =

vty

so that
O "=cv=c¢' bv+y =de’

while a compatibledon't care @' * is obtained from
CODC* =V, (ODC + 61(&)'1) =

at+u'+et+ 0!
a+u'+etv’ 4y

a'u

[a'f e+v')
a'f et v') +y

a'uty

so that eventually

O =dy e+v') =lcta'e’

CHAPTER 2. COMBINATIONAL NETWORKS 51

Notice that if Eq. (2.56) was used instead,

CODC* =V, (ODC) =
a+ u!
atu’'+y

a'u

-|0]

As eachCODCY is contained irODCZgL .5 dont carescomputed under compatibil-
ity constraints are obviously smaller than full observabiignt cares: some degrees of
freedom have been lost. In the context of combinational logic optimization, compatible

a'uty

which would have resulted i@ # =0. O

dont carestherefore represent approximations of the fildint careswhose relevance
lies uniquely in the possibility of changing the optimization strategy: instead of com-
puting eachdon't careand then optimizing each vertex individually, dibn't caresof y
can be computed ahead of time, and then vertices optimized jointly. Compdtibie
caresbecome instead unavoidable when dealing with sequential circuits, as shown later
in Chapter (4).

For the subsequent analysis, it is convenient to introducecalsgpatible observability
care vectors -

coc — vgiﬂ,...,%(ocgg,,,, DDA 1@%)’) (271)

k=141
These vectors represent the conditions under which a perturbatignisfobserved at
the primary outputs, regardless of other (bounded) perturbations.

Compatible don't caresby local rules.

Given an array = [y,...,y,] Of vertices, their maximal compatiblgon't carescan
in principle be computed by first determining their falbn't cares, expliciting their
dependencies of) and applying Eq. (2.57).

This complex procedure could be simplified if the network topology provides suf-
ficient information on the dependency of ea®C" on each¢;, ; >. For arbitrary
network topologies and choices pfthis is obviously not the case. It was however con-
jectured in [38] that if compatiblelon't caresof all vertices are soughi.é. m= | V]

) and if vertices appear in topological orderynthen maximal compatibldont cares

CHAPTER 2. COMBINATIONAL NETWORKS 52

could be determined efficiently by resorting only to local rules. The proposed rules,
unfortunately, do not yield maximal compatilident cares. They are therefore analyzed
together with other approximation methods in Sect. (2.5).

Perturbation analysis is here used to argue that, in presence of vertices with multiple
fanout edges, there cannot be local rules based only on maximal comphtitieares
. Although no formal proof is given here, we believe that it is not possible to extract
the maximal compatiblelon't care of a vertex from those of its fanout, but rather the
full don't caresof the fanout variables are necessary. This is motivated by the following
reasoning.

Consider first the case of a vertex labelgdwith a single fanout edge y,vy;) . The
exactdon't care ODCY is in this case computed by Eq. (2.20), while Theorem (2.5)
relates exactlon't caresto maximal compatible ones. Combining those res@DCY:
is given by

Yi N/ m
copc :vml,__,,él(oocgf A (@C) 113 6 1@%)'1) (272
v Bi/eg .ty S
We should now transform Eq. (2.72) in a way that inclu@3DC? instead of the full
dont care ODCY. The consensusoperation can be split in two operations, regarding
variablesy;, k> andy , k<j:

YN\ m
cobcy :véwlﬁ__”;(vgﬁl,,,,%(oocga r +(&;) 1+ 3 6 101%)'1)) .
v i /8 by k=i +1
(273)

Eq. (2.72) indicates, however, that in order to compQ@DC" one has to know
the dependency oODC¥ from the perturbation$;1,...,6;1 . Notice that, instead,
CODCY as defined by Eq. (2.57) is independent from all perturbatéqns <j.

This difficulty arises wherODCY can actually depend on perturbatiofs k& <
J. Network topologies of the type shown in Fig. (2.9) represent one such case: the
observabilitydon't carefunction ofy; can depend ow;, where: <k <j.

In this caseCODC¥ can be computed exactly only if the dependenc®BiC* and
of the local componen% on ¢, are known. Keeping track of such dependencies is
unfeasible for large circuits.

CHAPTER 2. COMBINATIONAL NETWORKS 53

o

—X

S j
;\QL% jE”

Figure 2.9: Network topology for which local computation of compatidte't cares
may be impossible.

2.5 Approximating observability don't cares

For reasons of representation size and CPU time it is in practice often necessary to
approximate observabilitdont caresby simpler (in terms of representation) function-
s ODCY <ODC¥. The important question here is whether network traversal rules
(2.20)-(2.32) areobust i.e. are still correct if observabilitglon't caresare replaced by
approximations.

Consider first rule (2.20) for single-fanout vertices. Let agasnd -~ denote the
variable and its fanout, respectively, and assume@ix€C* is approximated by)f)vCZ <
ODC?-. It follows immediately that

z

ODC! = ODC + (2) 1<0DC? . (2,74

Thus, rule (2.20) is robust with respect to approximations. Moreover, Eq. (2.74) yields
the true observabilitglont care of yif ODC? = ODC".

The lack of monotonicity oftmakes instead the local rule (2.27) for multiple-fanout
vertices not robust. Consider a vertex labeledith two fanout variableg 1, y,. From
approximationsODC¥* <ODC “ and ODC* <ODC ¥ in general

ODC*“TODCY = ODC*ODC¥ + (ODC")/(ODC¥%)' /<ODC (2.75)

the reason being in particular that, due to complementati@DC")" /<OC:. The
consequences of Eq. (2.75) are severe: by using Eq. (2.27) directly on approximations,

CHAPTER 2. COMBINATIONAL NETWORKS 54

there is danger of attributing erroneously degrees of freedom ttous possibly intro-
ducing functional errors during optimization. Rule (2.27) therefore needs to be replaced
by a robust one whenever approximations are used.

Several substitute rules have been proposed in the past [15, 33, 34, 35]. We use
here Eq. (2.27) first for examining their quality, and then for proposing new ones. For
simplicity, only the case of two reconvergent fanout branches, labeled, is considered,
the extensions being conceptually straightforward [39].

For the purposes of this analysis, it is convenient to evidence the dependencies of
ODC* on 6, and of ODC* on é; by a Shannon expansion:

ODC¥ = hag + 6,1 ; ODCY¥ = &bg + é1bs. (2.76)

where
ap = ODCZ;, a; = 0D f;;, by = ODCZE, b, = ODCfgf) (2.77)

By substituting these expressions in Eq. (2.27) and (2.32), and recalling that perturbations
61 andé, are constrained to be equal = ¢, = ¢), the following identity must hold:

ODCY = (fao + &@18) & B+ 8'b1) = (G+ 6'a))d bo+ dq) . (2.78)

Any combination ofy, a;, bo, b1, é violating identity (2.78) is therefore impossible. In the
scalar case, the Karnaugh map@ v in terms ofag, ai, bo, by andé is shown in Fig.
(2.10). In this map, the symbol* denotes precisely these impossible combinations.

boby bob1
agpan_ 00 01 11 10 agpaN_ 00 01 11 10
00 1 — 0 _ 00 1 _ 0 _
01l -fo|-]1 01| -lo|-]1
11 0 _ 1 — 11 0 — 1 _
10 -l1]|-1o 10 -]1|-1o
8 ()

Figure 2.10: Map of &' Y in terms of the variablesg, a1, b, ;.

Any local method must approximat@DC¥ by some function ofyg, a;, bg, b;. One
first measure of the quality of any such approximation can therefore be provided by the
number of covered 1's in the Karnaugh map.

CHAPTER 2. COMBINATIONAL NETWORKS 55

In [35], the following approximation is proposed. FirshDC* si replaced by its
portionvgz(oﬁéyl) independent frond. Clearly, the new approximatio@DC* is now
contained inapa;. Similarly, ODC* is replaced by its portion independent from.
Consequently, NowdDC¥2 <b gb;. Eventually, their product is formed:

OE)VCy = Of)vC“Of)vaz <a oalbobl. (279)

The portion of the map covered by this approximation is shown in Fig. (2.11): at
most two 1's out of the 8 possible. Therefore, this rule cannot recOREY from
ODCY = ODC“ and ODC* = ODC".

boby boby
gajr_ 00 01 11 10 gan_ 00 01 11 10
ool 1|-]o]- ool 1|-]o0]-
01| -|o|-1]1 01| -0 -1
N N
11lo|-[1)- 11lo|-[1)-
N N/
10l -1]-1o 10| -1]-1o

5’ b)

Figure 2.11: Map ofoDCY as derived by Eq. (2.79)

Muroga proposes in [33] an apparently better approximation. It consists of replacing
ODC¥ by an approximation that isompatiblewith the perturbatior; (the arrow symbol

denotes replacement):
ODC¥ « ODCfgé1 <a;

. 1 (2.80)
OoDC* — 51(ODCy2) Sbobl
and of computingDDC? according to
ODCY = ODC"ODC* = aghghs. (2.81)

The portion ofODCY that can be covered by Eq. (2.81) is shown in Fig. (2.12).
Interestingly, the accuracy of Eq. (2.81) is no greater than that of Eq. (2.79). Note,
however, that Eq. (2.81) requires fewer computations: SIDDG;; is the plaindont
care of y,, assuming no other perturbation in the circuit, and c@QPC¥? needs to be
made independent fromy.

CHAPTER 2. COMBINATIONAL NETWORKS 56

bob1 bob1
gar_ 00 01 11 10 gar_ 00 01 11 10
00| 1|-|o]- ool 1|-|o
o1|-lo|- |1 o1|-lo|- |1
11]0|- 1\ - 11)0]-)1\ -
10]-{1\-]o 1o -1\)0
5 5

Figure 2.12: Map of&' Y in terms of the variablesyg, a1, bg, b1. Circles represent the
approximation given by Eq. (2.81)

This approach was refined by Sawbjal. in [36], and consists essentially of replacing
ODC¥ by the maximal dont careof y,, compatible withy;:

ODC¥ — 4(ODC¥ + 6;(I0'**)'1) . (2.82)

Eventually,
ODCY = ODC*ODC". (2.83)
For a single-output network, this approximation yields

@ Y = ag;
W =V @26 @) = b ap) (284)
0 v = aobo(b+ ah) = @boba
Although the observabilitydont caresof y; and y,, computed by Eqgs. (2.83) or
(2.84) are larger than what provided by Eg. (2.81), still when their product is formed the
coverage ofODCY is not improved over Muroga’s method. All methods proposed so far
therefore capture essentially the same portion of the observathdity cares, although
with different degrees of efficiency.
Several more accurate approximation strategies can be derived by expanding Egs.
(2.27)-(2.32) into two-level expressions. Complements of observakidityt carescan
be replaced by approximatio®C¥ <OC ¥ of observabilitycares. For example, by
taking into account all terms of the sum-of-products expansions, any approximation based
upon:
ODC' < ODC*“ODCY + OC"OC¥+

phdie i (2.85)
ODCY20DC* 4+ OCLOC* ;

CHAPTER 2. COMBINATIONAL NETWORKS 57

OCY < ODC"OCY + OC*ODCY +
ODCY0C* + OCY0DC*?
is therefore correct, and can yie@DC?, OC? if the observabilitydont caresandcares
of y1 andy, are exact. The map of Fig. (2.13) shows that by Eq. (2.85)-(2.86) it is
indeed possible to fully coveDDC".

(2.86)

Figure 2.13: Karnaugh map showing the approximations provided by Eq. (2.86)

Approximations of observabilitgon't carescan be ranked according to the availability
of approximations t®C¥, that is, upon whether Eq. (2.86) is actually used or it is simply
assumedOC¥ = 0. Solid lines represent the coverage attainable without resorting to
approximations oDC¥. It constitutes 75% of the entire map. Dotted lines represent the
contribution by those terms containit@DCY'.

Approximating compatible don't cares.

Since the exact rules for compatibint caresare potentially computationally more
complex than those of fulliont cares, approximation methods yielding approximations
CODCY based on possibly simplified local rules are in this case especially important.

The starting point for single-fanout rules is the exact expression (2.73).

We report again in Fig. (2.14) the network topology causing problems. Recall that the
difficulty in making the rule local was the possibility f@DC" to depend ord,, k<.
This dependency becomes irrelevantjfis suitably constrained, that is, @DCY* is
approximated by a suitable smaller function.

Unfortunately, in order to accomplish this, both rules for single- and multiple- fanout
vertices must be modifie@intly .

CHAPTER 2. COMBINATIONAL NETWORKS 58

o

—X

S j
;\QL% jE”

Figure 2.14: Example network for local approximation of compatdwe't cares

First, vertices are sorted topologically, and multiple-output vertices are augmented by
adding their fanout vertices and variables. Consider a single-output vgrtesth fanout
edge(y y;) . Other inputs toy are represented by variablgs, k> andy ,h <.
Because of the topological order, all observabilit@®DCY are already known when
computingCODCY:. Hence, the range of functions that can replace gaehs known
as well. The observabilitglon't care of y; is thus computed so as not to change this
range. This is accomplished by using the formula

o

7

)/ 14 i 51 1@%)'1). (2.87)

CODCY =V, ;. (CODC% v (
815 By k=i+1

Notice that now theeonsensu®peration is carried out only on the local component
of CODCY, which results in a faster implementation. The penalty paid by this approach
is that perturbations on the fanout variables of a multiple-fanout vertex are now regarded
as independent. Given a multiple-fanout vertea functiong ¥ can replacef¥ now only
if the introduced error satisfies the tolerancesisdéependentlypon each fanout variable.
In [33] the companion local rule for multiple-fanout vertices reduces to computing the

intersection of the compatiblgon't caresof each fanout variable:
CODCY = CODC%CODC¥ (2.88)

wherey; andy, are the (two, for simplicity) fanout variables gf. Example (21) below
shows that this rule is only an approximationG®DC?'.

Example 22.

CHAPTER 2. COMBINATIONAL NETWORKS 59

Consider computing compatibldont caresof verticeszy and z in the
network of Fig. (2.15). First, the compatible observabilignt caresof -
andyare determined. Since in particular their fddn't caresare identically
zero,((¥ =W Y=0.Tocomputelkl =, firstcompatibledon't
caresof the two fanout variables (not shown in Fig. (2.15) are determined,
using rule (2.87), and they are both zero. Consequently, when rule (2.88) is
used,@@ = = 0. It can however be verified that the full observability
dont careof xis identically 1, regardless of the perturbations introduced at
verticesy and z Consequently, the maximal compatildlent careof s as

given by Eq. (2.57), is(’ “*=1. O

x =ab’+a’b Z =xy'+x'y

Figure 2.15: Circuit for Example (2.22)

2.5.1 Experimental results.

The algorithms for extracting observabilitont careshave been written in C and tested
against a series of benchmark combinational logic circuits. Their statistics are summarized
in Table (2.1).

Each circuit was converted into a network of NOR gates only.

All logic functions are represented by their BDDs [29, 30], and manipulated accord-
ingly, using a “home made” BDD package. Variables are ordered according to Malik's
criterion.

It is worth noting that the direct application of Eq. (2.15) requires the knowledge of
the functionF? realized by the perturbed circuit. For some of the benchmarks considered
in this work, this is a well-known difficulty. Moreover, the resulting expression is in
terms of primary input variables.

CHAPTER 2. COMBINATIONAL NETWORKS 60

Circuit | Inputs| Outputs| NOR gates| Interconnectiong
f51m 8 7 127 262
9symml 9 1 153 375
alu2 10 6 263 924
alu4 14 8 522 1682
apex6 | 135 99 746 1411
apex7 49 37 222 508
k2 45 45 297 3129
i9 88 63 408 1475
pair 173 137 1919 3740
x3 135 99 1167 2631
C432 36 7 243 455
C499 41 32 531 945
C880 60 26 459 797
C1355 | 41 32 571 1089
C1908 | 33 25 490 936
C3540 | 50 22 1120 2249
Cc6288 | 32 32 2462 4018

Table 2.1: Benchmark statistics.

To this regardOBSERVABILITY has two key potential advantages. First, it extracts
the observabilitydont careswithout an explicit knowledge of the network functionality.
Second, the expression of thedent caresis in terms of other internal variables.

Table (2.2) shows the memory and CPU requirements (in terms of BDD vertices and
seconds on a Sun SparcStation Classic, respective@PBSERVABILITY versus those
of Eq. (2.15).

In all circuits, OBSERVABILITY clearly outperforms the other approach, in terms
of CPU time. The use of internal variables helps greatly maintaining BDDs simple. As
a result, the overall efficiency of each computation is improved.

With regards to memory occupaticdBSERVABILITY also outperforms direct com-
putation. The improvement, however, is not as marked as in the case of CPU time. The
reason is the following. With the direct computation, during the computation of the
observabilitydont care of one gate, only the BDD of the functidé? needs be stored.
OBSERVABILITY, instead, requires that the BDDs of the observabiitnt caresof

CHAPTER 2. COMBINATIONAL NETWORKS 61

the gates along a cutset be kept at any time. Although these BDDs may individually
be simpler, their size altogether may be of comparable complexity as thgt. oThis
occurs, for example, in the case @ti2 andalu4 . It is well known that the BDD of
adder-type circuits is generally simple. The computation of the observatidityf care
vector for the internal gates is also made simple by the circuit structure. The presence
of plenty of reconvergent fanout, instead, causes a lot of substitution operations during
the execution oOBSERVABILITY. The latter method remains, however, competitive
because of the simplicity of the BDDs on which these operations are performed.

We included here two cases for which the direct approach could not complete, namely,
the two largest ISCAS benchmarks considered here. The extraction of the BDDs for these
two circuits is extremely lengthy and difficult. Therefore, it is practically impossible
to extract the BDD of the perturbed function. On the other hand, we were able to
approximate the BDDs of the observability function at each vertex. The approximation
was obtained by means of rule (2.85), using no observability care set. The BDDs were
approximated whenever the number of BDD vertices in memory reached 200000 vertices.

2.6 Summary

We have presentederturbation theoryas a tool for exploringlon't cares. This idea
allowed us to develop new algorithms for computing and approximating observability
dont cares. The efficiency of the algorithms stems from the use of local rules. These
rules allow us to compute observabilipnt caresof a circuit without an explicit repre-
sentation of the circuit’s functionality, and with the possibility of using internal variables.
Moreover, the local rules we obtained could be easily simplified to yield efficient approx-
imations (with arbitrary trade-offs between accuracy and CPU-time requirements) for the
largest circuits.

CHAPTER 2. COMBINATIONAL NETWORKS 62

BDD nodes CPU time
Circuit | Eqg. (2.15)| OBSERV | EqQ. (2.15)| OBSERV
f51m 912 120 42 14
9symmi 8505 1009 120 26
alu2 680 766 126 224
alu4 1482 2808 122 382
apex6 1350 102 821 46
apex7 2280 480 202 53
k2 5602 14550 342 293
i9 15304 16378 53 14
pair 100033 47023 92 48
x3 3506 870 22 26
C432 62505 7311 1194 255
C499 81911 23200 1531 1170
C880 10281 6070 459 79
C1355 41189 32890 571 1089
C1908 78303 2502 399 103
C3540 * 200006 * 2030
C6288 * 200006 * 4450

Table 2.2: Experimental results on OBSERVABILITY.The supersctifndicates that
approximations have been employed.

Chapter 3

Multi-vertex optimization with
compatible gates

Chapter 2 dealt mainly with the optimization of individual vertices of a logic network.

Exact multiple-vertex optimization had been shown to offer potentially better quality
networks as compared to single-vertex optimization because of the additional degrees
of freedom associated with the re-design of larger blocks of logic. The theory of exact
multiple-vertex optimization was laid down by Brayton and Somenzi in [31, 8]. They
formulated the problem as that of finding a minimum-cost solution to a Boolean relation,
and presented a two-step algorithm for this purpose, conceptually similar to the traditional
Quine-McCluskey algorithm.

Unfortunately, exact multiple-vertex optimization suffers from two major disadvan-
tages. First, even if we consider the simultaneous optimization of only very small subsets
of vertices, the number of prime implicants that have to be derived can be remarkably
large. Second, given the set of prime implicants, it entails the solution of an often
complexbinate covering problemfor which efficient algorithms are still the subject of
investigation. As a result, the overall efficiency of the method is limited.

Heuristic approximations to multiple-gate optimization include the useoofipati-
ble dont cares[33], already analyzed in Sect. (2.4Ront care based optimization is
extended to multiple functions by suitably restricting the individd@ah't care sets asso-
ciated with each function. Although such methods are applicable to large networks, the

63

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 64

restriction placed omon't care sets reduces the degrees of freedom and hence possibly
the quality of the results.

In this chapter, we show that it is possible to perfaract multiple gate optimiza-
tion with an efficiency comparable with ordinary two-level synthesis. We show that
the difficulties of ordinary exact multiple-gate optimization are due essentially from the
arbitrariness of the subnetwork selected for optimization. The careful selection of the sub-
network to optimize can improve the performance of multiple-gate optimization, without
sacrificing exactness. To this regard, first we introduce the noti@omipatible set of
gatesas a subset of gates whose optimization can be saxadtlyby classical two-level
synthesis algorithms. We show that the simultaneous optimization of compatible gates
allows us to reach optimal solutions not achievable by conventot care methods.
We then leverage upon these results and present an algorithm for the optimization of
more general subnetworks in an internally unate network. The algorithms have been
implemented and tested on several benchmark circuits, and the results in terms of literal
savings as well as CPU time are very promising.

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 65

3.1 Related Previous Work

Most Boolean methods for multiple-level logic synthesis rely upon two-level synthesis
engines. For this reason and in order to establish some essential terminology, we first
review some basic concepts of two-level synthesis.

3.1.1 Two-level Synthesis

Consider the synthesis of a (single-output) network whose oyipub satisfy Eq. (2.4),
imposing a realization of as a sum of cubes,:

N
k=1

The upper bound in Eqg. (3.1) holdfisand only ifeach cube:;, satisfies the inequality

Any such cube is termed amplicant. An implicant is termedprime if no literal
can be removed from it without violating the inequality (3.2). For the purpose of logic
optimization, only prime implicants need be considered [40, 41]. Each impligdrds an
associateatost w;, which depends on the technology under consideration. For example,
in PLA minimization all implicants take the same area, and therefore have identical cost;
in a multiple-level context, the number of literals can be taken as cost measure [15]. The
cost of a sum of implicants is usually taken as the sum of the individual costs.

Once the list of primes has been built, a minimum-cost cove¥,pf is determined
by solving:

N N
minimize :) ajwy; subjectto: F, <Y ajex (3.3)
k=1 k=1

where the Boolean variables, are used in this context foarameterize the search
space: they are set to 1df appears in the cover, and to 0 otherwise. The approach is
extended easily to the synthesis of multiple-output circuits by defimndiple-output
primes [40, 41]. A multiple-output prime is a prime of the product of some components
of F,.. . These components are termed thi#tuence setof the prime.

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 66

Branch-and-bound methods can be used to solve exactly the covering problem. En-
gineering solutions have been thoroughly analyzed, for example, in [41], and have made
two-level synthesis feasible for very large problems.

The constraint part of Eq. (3.3) can be rewritten as

V%w4§?wﬂx)ﬁ%(021 (3.4)

The left-hand side of Eq. (3.4) represents a Boolean fundtiprof the parameters;
only; the constraint equation (3.3) is therefore equivalent to

=1 (3.5)

The conversion of Eqg. (3.3) into Eq. (3.5) is known in the literatur@esick’s method
[40].

Two properties of two-level synthesis are worth remarking in the present context.
First, once the list of primes has been built, we are guaranteed that no solution will
violate the upper bound in Eq. (2.4), so that only the lower bound needs to be considered
(as expressed by Eqg. (3.3)). Similarly, only the upper bound needs to be considered
during the extraction of primes. Second, the effect of adding/removing a cube from a
partial cover ofF,;,, is always predictable: that partial cover is increased/decreased.
This property eases the problem of sifting the primes during the covering step, and it is
reflected by the unateness Bf: intuitively, by switching any parameter; from O to 1,
we cannot decrease our chances of satisfying Eq. (3.5). These are important attributes
of the problem that need to be preserved in its generalizations.

3.1.2 Boolean relations-based multiple-level optimization

Dont care -based methods allow us to optimize only one single-output subnetwork at a
time. It has been shown in [8] that this strategy may potentially produce lower-quality
results with respect to a more general approach attempting the simultaneous optimization
of multiple-output subnetworks.

Figure (3.1) shows an arbitrary logic network, in which some gates have been selected
for joint optimization. In the rest of this chapter, given a network output expression
F(X,y) , x is the set of input variables andis the set of gate outputs to be optimized.

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 67

x5 O O Fy xy)
X
1 O— ORN —O F)
O,
O,
ano/ " —OFnO(X'Y)
I

Figure 3.1: Network with Selected Gates

From equation(2.4), the functional constraintsyoare expressed by
Frin(X) <F(XY) 5B (X) (3.6)

An equation like Eq. (3.6) describesBoolean relation. The synthesis problem
consists of finding a minimum-cost realizationaf . . ., y,, such that Eq. (3.6) holds. An
exact solution algorithm, targeting two-level realizations, is presented in [8]. It follows the
Quine-McCluskey algorithm, and consists of the two steps of prime-finding and covering.
The algorithm, however, is potentially very expensive in terms of CPU time. There are
two main reasons. The first reason is that, even for very simple problems, a large number
of primes can be generated. The second reason is that the branch-and-bound solution of
the covering step has more sources of backtracking than the traditional case. We illustrate
the causes of backtracking in the following example.

Figure 3.2: Boolean relations optimization example.

Example 23.

LAn alternative formulation of a Boolean relation is by means diaracteristic equationt R(x,y) = 1,
where His a Boolean function. It could be shown that the two formulations are equivalent.

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 68

Consider the optimization of gatgs and g, with outputsy; andys,, in the
circuit of Figure 3.2. Assuming no externdbn't care conditions, F,;,, =
Fre =dbV +(at+ld @& dc +d'l) , while F=y, Gy 2+ o'V, Eq. (3.6)
then takes the form:

dbtV+(at+bd o dd+dV) <y @y+dt
<a'V+(a+bd @ dd+dl)

By the symmetry of the network with respectitpandy,, cubesd'c’, a; &

a't’ would be listed as implicants for bot)y andy,. Consider constructing
now a cover fory; andy, from such implicants. An initial partial cover,
for example obtained by requiring the cover of the minteimiof F
may consist of the cube: assigned ta, ;. Consider now addingito y »,

in order to cover the minternic ‘dof F,;,,. Corresponding to the minterm
dad nowy 1@y, = 0 while F,;,, = 1; that is, the lower bound of Eqg. (3.6)
is violated. Similarly, with the input assignmemt 0,6=1,¢= 0,d=1,

the network output changed from the correct value 0 to 1, whjlg. = 0.
Thus, also the upper bound is violated.

Contrary to the case of unate covering problems, where the addition of an
implicant to a partial cover can never cause the violation of any functional
constraints, here the addition of a single cube has caused the violation of
both bounds in Eq. (3.6). O

In Sect. (2.4) the difficulties of multiple-vertex optimization were interpreted as
being due to the interplay of the various perturbations that makes it impossible to isolate
individual bounds for each function.

Another interpretation is the following. When trying to express Eqg. (3.6) in a form
similar to Eqg. (3.1), that is, representing individual bounds on the signatach bound
may depend on other variablgs. In turn, it could be shown that this results irbeate
covering step. Fast binate covering solvers are the subject of ongoing research [42];
nevertheless, the binate nature of the problem reflects an intrinsic complexity which is
not found in the unate case. In particular, as shown in the previous example, the effect of

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 69

adding / removing a prime to a partial solution is no longer trivially predictable, and both
bounds in Eq. (3.6) may be violated by the addition of a single cube. As a consequence,
branch-and-bound solvers may (and usually do) undergo many more backtracks than with
a unate problem of comparable size, resulting in a substantially increased CPU time.

3.2 Compatible Gates

The analysis of Boolean relations points out that binate problems arise because of the
generally binate dependence fon the variables;;. In order to better understand the
reasons for this type of dependency, we assume that the vertices of the logic network
actually represent individual elementaggtes(ANDs, NANDs, ORs, NORs, inverters).

We introduce the notion otompatible gatesin order to perform multiple-vertex
optimization while avoiding the binate covering problem.

Definition 3.1 In a logic network, lep; = p;(a,...,z,) andq=q(...,z,) , Where
7 =1,2,...mbe functions that do not depend gn,...,y,.. A subset of gate§ =
{g1,...,9m} With outputsy; ...y, and functionsfs,- - - ,,f is said to becompatible if
the network input-output behavidét can be expressed as:

F=Yyp, +q (37)

=1
modulo a polarity change in the variables or F.

As shown in Sect. (3.3) below, compatible gates can be optimized jointly without
solving binate covering problems. Intuitively, compatible gates are selected such that
their optimization can only affect the outputs in a monotonic or unate way, and thereby
forcing the covering problem to be unate.

Example 24.

Consider the two-output circuit in Figure 3.3. Gatgsandg, are compatible
becausef’fand H can be written as

F=(azi4+as+ay) y+(a+ah+as3)y

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 70

Figure 3.3: Gateg; andg, are compatible.
H=0y 1+ O0y2+ ((@t 3+ xy) (st a5 +23))
O

The compatibility of a sef of gates is a Boolean property. In order to ascertain it,
one would have to verify that all network outputs can indeed be expressed as in Definition
(3.1). This task is potentially very CPU-intensive. In Section (3.4), we present algorithms
for constructing subsets of compatible gates from the network topology only.

3.3 Optimizing Compatible Gates

The functional constraints for a set of compatible gates can be obtained by replacing Eq.
(3.7) into Eq. (3.6). From Eq. (3.7) we obtain:

=1

Eg. (3.8) can be solved using steps similar to that of two-level optimization. In particular,
the optimization steps consist whplicant extractionand covering

3.3.1 Implicant Extraction

Assuming thatg <F ,,. , the upper bound of Eq. (3.8) holdsand only if for each
producty;p; the inequality

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 71

is verified,i.e. if and only if
yjlﬁme—l—p;; j=1....m (3.9)
or, equivalently,
ijFme,j; j:l,...,m (310)

whereF,,., ; is the product of all the componentsfef,.. +p’. A cubeccan thus appear

in a two-level expression af; if and only if ¢ <F' ,,, ;. As this constraint is identical

to Eq. (3.2), the prime-extraction strategies [40, 41] of ordinary two-level synthesis can
be used.

Example 25.

Consider the optimization problem for gatgsand ¢, in Fig. (3.3). From

Example (24)
pr=(a+z3+xy)

p2=1(a+ a5+ a3)

We assume no externalont care set. ConsequentlyF,;,, = F,.. =
10225+ voxzra+ xhab(g+ a4) . The Karnaugh maps df;,, andF,,, are
shown in Fig. (3.4a), along with those pf and p,. Fig. (3.4b) shows the
maps ofF,,,; 1 = Foue +pi andF,,, 2 = F,.. + pb, used for the extraction
of the primes ofy; andy,, respectively. The list of all multiple-output primes
is given in Table (3.1). Note that primes 1 through 5 can be used byihoth
andy,. 0O

3.3.2 Covering Step

Let Nindicate the number of primes. For example, in the problem of Example (25),
N=9. We then impose a sum-of-products representation associated with each variable

Y-

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 72

Primes | Influence setg
c1 | vjrhrs Y1, Y2
co | 2hahay Y1, B
€3 | Thw3T4 Y1, B
C4 T2T4 Y1, »
5 | 1722 Y1, B
ce | T2 Y2
c7 | @5y Y2
cg | xhah 11
cg | hwg Y1

Table 3.1: Multiple-output primes for Example (3.25).

N
Y; = Z 5 | Ck (3'11)
k=1

with the only restriction thatv;, = O if y; is not in the influence set af;. Since the
upper bound of Eg. (3.8) is now satisfied by constructian py implicant computation),
the minimization ofy,...,y, can be formulated as a minimum-cost covering problem

m N
Frin <q+ Zzajkckp]‘ (3.12)

7=1k=1

whose similarity with Eq. (3.3) is evident, the produeisp,; now playing the role of
the primes of two-level synthesis.

Example 26.

In the optimization problem of Example (25), we are to solve the covering
problem
Frivo <pay1+ p2y2

Using the set of primes found in Example (25),andy, are expressed by

Y1 = g €1+ a1, L0+ oy 3+ 44+ a1 g5+

o1 g8 + 1, o9

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 73

3% X3, X3%

Xy X5 00 01 11 10 Xp X 00 01 11 10 Xg %o 00 01 11 10
oo 1)0}111 ool 1|01 |1 ool 1|1 |11
o1 00| 1]0 o1l 1o 1|1 o1l 0|0 |1 |12
111110 11|11 |1 1| 11|11
1000 o|O0]|oO 10| 1 1|1 1 101 1|1 111

Frin F
min ,"max (a) pl p2
X3%, X3 %, X3,

X Xp\00 01 11 10 x;x_00 01 11 10 x;x_00i_01 11 {10
oo Tlit] ity oof{fifo | 1|1 oo| Li o [{ii:
01| O 1 lio 01 l 1 110 o1l © 1 1 0
u|tjtjjo u|it|tgfo w1 ko
10/0l0| o]0 10|/ 0|ofofo 10|00] oo

Fmax;= Fmax +pl’ Fmax2 = Fmax + p2’ Fmax; Fmax 2

(b)

Figure 3.4: (a): Maps of,;, , Fu. ,p1,p2. (b) Maps of £, 1, Frus, 2 @and of the
productF’,, . 1 F,.. 2. Primes ofy; andy, are shown in the maps df,,. 1 andF,,, 2,
respectively. The map of,,,.. 1 F..., 2 Shows the primes common t@ andys.

Yo = Q11+ qp Lo+ G 33+ o 44+ 2 g5+

o &6+ 2 7

The optimum solution has cost 6 and is giveniay= xjz} + 2224, y2 =
xpxg, corresponding to the assignments

a11= Q1 2=013= q1,5= a1, 9= 0; ays4=a1g=1

Q1= Q2= 3= Qpa=a25=0a27=0; aze=1

The initial cost, in terms of literals, was 12. The solution corresponds to the
cover shown in Fig. (3.5), and resulting in the circuit of Fig. (3.6).

It is worth contrasting, in the above example, the roleyefand y, in covering
F,; .. Before optimizationp;y; covered the mintermsizorse), xi1r2x5%4, 112324

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 74

Xx3x4 x3x4 X3x4
X2\ 00 01 11 10 xix2_00 01 11 10 xix2 \ 00 01 11 10
ool 1] 1)1 oof 0|0 | OO vO 1011]|,
onloll1] 1]o o FTTTE o] o0 o1l o] o|[z]lo
uloflt] 1o 11t |1i oo 11 |81 | 1§|1]] o0
10/0|0|o0]o w|ofo]|ofo 10(ofloflofo
Y1 Y2 Fnin

Figure 3.6: Network resulting from the simultaneous optimization of compatible gates
and g,.

of F.; ., while poy, coveredz)ahagal), xiabesr), virorsrs, virhrsrs. After optimiza-
tion, y; andy, essentially “switched role” in the covepi,y, is now used for covering
r1xxhay, x1227514, While pyy; covers all other minterms.

In the general case, the possibility for anywaf. . ., vy, to cover a minterm of,;,
is evident from Eq. (3.8). Standard single-gate optimization methods basedrin
cares[16] regard the optimization of each gate,..., ¢, as separate problems, and
therefore this degree of freedom is not used. For example, in the circuit of Fig. (3.3),
the optimization ofg; is distinct from that ofg,. The dont care conditions associated
with (say) y, are those minterms for which eithgg = O or such thap,y, = 1, and
are shown in the map of Fig. (3.7), along with the initial cover. It can immediately be
verified thaty; can only be optimized int@jz,25 + x,x4, Saving only one literal.

Thedont caresfor y, are also shown in Fig. (3.7). No optimization is possible in this
case. Note also that the optimization result is (in this particular example) independent
from the order in whichy; and g, are optimized. Unlike the compatible gates case, it is

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 75

X3x4 Xx3x4)
x1X2\ 00 01 11 10 X1x2 00: 01 11 :10
ol |~ ||~ ool 1o [i1ifa |
01| 0 __ 0 o1l — | — 1 0
11 |: 10 11— |~ |0]O
10({0(0| 0]O0 10l 00 | 0] 0
Y1 Yo

Figure 3.7:Don't careconditions associated withh andy,: only 1 literal can be removed.

impossible for the covers af; andy, to exchange their role in covering,; ,, .

3.4 Finding Compatible Gates

In this section, we describe an algorithm for finding compatible gates based on network
topology.

Definition 3.2 A network is termedinate with respect to a gate if all reconvergent
paths fromg have the same parity of inversions. A networkinternally unate if it
is unate with respect to each of its gates. All paths frgro a primary outputz; in
an internally unate network have parity,, which is defined to be thegarity of g with
respect toz;.

In the subsequent analysis, we make the assumption that the network is first trans-
formed into its equivalent NOR-only form. In this case, the parity of a path is simply
the parity of the path length.

In defining Equation (3.7) for compatible gates, it is evident that the dependency
of F onyi,...,y, must be unate. In order to increase the chances of finding sets of
compatible gates, it is thus convenient to transform a network into an internally unate
one. This is done by duplicating those gates whose fanouts contain reconvergent paths
with different inversion parity. The resulting network is therefore at most twice the size
of the original one. In practice, the increase is smaller.

Example 27.

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 76

f (b)

Figure 3.8: Internally Unate Example: (a) Network not internally unate due togate
(b) Internally unate network after duplication (Duplicated gates are shaded).

Consider the logic network shown in Figure (3.8.a). The network is not
internally unate because the reconvergent paths from gate the output

y do not have the same parity of inversions. We duplicate gatand its

fan-in cone intoy!, shown by the shaded gates in Figure (3.8.b). Now gates
g; and ¢/ are unate since there are no reconvergent paths from these gates.
The network is now internally unate. The increase in size is in the number
of gates in the fan-in cone of gate. O

Theorem (3.1) below provides a sufficient conditions for a Sebf gates to be
compatible. Without loss of generality, the theorem is stated in terms of networks with
one primary output. The following auxiliary definitions are required:

Definition 3.3 The fanout gate setand fanout edge setof a gateg indicated by
THDg) andTHK), respectively, are the set of gates and interconnections contained

in at least one path frong to the primary outputs. Th&anout gate setand fanout
edge setof a set of gatesS ={g¢1,...,¢x}, indicated byZKDS) and THES),

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 77

respectively, are:
ms)= Umoy o mas) = Umay) (313

Theorem 3.1 In a XR-only network, letS ={¢ 1,...,9.,} be a set of gates all with
parity % and not in each others’ fanout. Lets,...,y, denote their respective outputs.
The following propositions hold:

1): if each gate inH)S) with parity =has at most one input interconnection in
HES), then the primary outputs can be expressed as in Eq. (3.7) for some suitable
functionsp; and ¢, and consequently is a set of compatible gates;

2) if each gate inKDS) with parity = ’ has at most one input iIRES), then it
can be shown that the output can be expressed as in Eqg. (3.7)S aegresents a set of
compatible gates.

Proof.
We prove only Proposition 1) for the case of gategwén parity. The proof
of the other cases is symmetric. Moreover, we prove the stronger assertion:
The output of each gatein the network (and hence the primary outputs)

can be expressed by one of the following two rules:

Rule 1: for gates of even parity,
fo=q 7+ ply (3.14)
j=1

Rule 2: for gates of odd parity,
fo= (qg + Zpiyj) (3.15)
j=1

Consequentlys is a set of compatible gates.

Assume the network gates to be sorted topologically, so that each gate pre-
cedes its fanout gates in the list. Lé&&AK denote the total num-
ber of gates. We prove the above proposition by induction, by showing

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 78

that if it holds for the firstr —1 gates, then it must hold for the!” gate,
r=1 ..., AR

Base step. Consider the first gatey;. If g1 € S, its output is simplyy,
which can be obtained from Eq. (3.14), by settijlg =0,p 1* =1,p #* =
0;7=2,...,mlf ¢ 1 does not belong t&, by the properties of topological
ordering, its inputs can only be among the primary inputs, and consequently
its output is still expressed by Eq. (3.14), by settjrjg=0.

Induction step. Consider now the*" gate,q,. Again, if ¢, € S, the output
is expressed by a single variable {m, ..., v, }, and therefore it satisfies
the proposition. Ifg, does not belong t&, we note that all its inputs are
either primary inputs or gateg..,’ <r, for which the proposition is true
by the inductive assumption. We distinguish two cases:

1. ¢, is of even parity. Consequently, all its inputs have odd parity. By
the assumption of the Theorem, only one of its inputs iSHKS).
Hence, only one of them is a function of the internal variablgsFor
simplicity, letgo denote the output that (possibly) dependg/an. .. y,,.
The output ofg, is then expressed by

m ! m
((q"o +2 0Py + Y qg") = 7+ Ty,

j=1 9i€FI(gr) j=1

where
qgr = 90 H (qgi)/ : pgr =p 90 H (qgi)/
9 &T(gr) 91 (gr)
2. ¢, is of odd parity, and consequently all its inputs are from gates of

even parity and are expressed by Eq. (3.14); therefore the outgut of

is expressed by

m ! m /
> (¢"+ Zp/yj)) = (qgr + Zp/yj)

wdi(g) =1 =1
where

= 2 = 2 W

5 &I gr) g:idT(gr)

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 79

By induction, the output of each gate (in particular, each primary output) is

expressed by Eqg. (3.14) or (3.15); therefore, the gates ame compatible.
O

Example 28.

In the internally unate, NOR-only network of Figure (3.9), consider the set
S :{g 1, 92794}'

All gates of S are ofodd parity and not in each other’s fanout.

Moreover, THOS) ={g s, 97,98, 99, 910, 911, 912} and for all gates in
THDS) of even parity (namely,g s, g9, g10), there is only one input inter-
connection that belongs tAKES). S then represents a compatible set
by rule (1) of Theorem (3.1).

Similarly, the setS ={yg¢ 3,94} is compatible by rule (2), as in this case
TH)S) ={g & 97,910,912}, and the gates ofFDS) with even parity
(namely,gs andg7) have only one input interconnection Ti(ES).

Other compatible sets are, for exampley, g10} (by rule (1)) and{ &, g7}
(by rule (2)).

It is worth noting that some gates (in this cageandg,) can appear in more
compatible sets. O

Figure 3.9: Example of Compatible Gates.

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 80

Theorem (3.1) also provides a technique for constructing a set of compatible gates
directly from the network topology, starting from a “seed” gasnd a parameter{¢)
that specifies the desired criterion of Theorem (3.1) (either 1 or 2) to be checked during
the construction. The algorithm is as follows:

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 81

(OPAIR 15 g, rile)
ldd_faut(g, T,
S ={g};
for (i =0;i < GIES i +4) {
if ((islabeledg,) =FAF & (mityg i) =ity 9)) {
ldd_faut(g , TND;
coptible =g decf g i 1ty g), rle)
if (coptitl) {
ldd_faut(g ;, TH),
S =SU{g};
}
}
}

(OMPAIBES starts by labeling THO the fanout cone of;, as no gates in that

cone can belong to a compatible set containingabeled gates represents elements of
the set7HDS). All gatesg ; that are not yet labeled and have the correct parity are
then examined for insertion i§. To this purpose, the fanout gf that is not already

in THYPS) is temporarily labeled TP, and then visited byfs deckin order to

check the satisfaction ofic. The procedurefs dedk performs a depth-first traversal

on gateg;. The traversal returns 0 whenever gates alreadyHpS) are reached, or

a violation of /e is detected. Otherwise, if the traversal reaches the primary outputs,
then 1 is returned indicating that is compatible. Ifg; is compatible, it becomes part of
S and its fanout is merged witBH)S).

Example 29.

Refer again to Figure(3.9) for this example. Consider constructing a set
of compatible gates aroungh, using rule (1). Gategs, gs, g9, g11, g12 are
labeled first, because they belong)gy). The first unlabeled gate is
thereforeg,. The depth-first scan of its fanout reachgsfirst, which has
parity opposite taj;. The check of the fanin ofs is therefore not needed.

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 82

Gatesg7 and ¢i10 are then reached. In particular, singg has the same
parity as g1, its fanin is checked to verify that there is indeed only one
interconnection (in this caseégz, g10)) to gates inS. dsdekreturns in

this case a valu&R’ Efor the compatibility ofy ,t0 ¢;. O

3.5 Unate optimization

In the previous section we showed that in the case of compatible gates, the functional
constraints expressed by Eq. (3.6) can be reduced to an upper bound (expressed by
Eq. (3.10)) on the individual variables and by a global covering constraint, expressed

by Eg. (3.12). These could be solved by a two-step procedure similar to that of two-
level optimization. We now generalize this result to the optimization of more general,
appropriate subsetS of gates of an internally unate network:

Definition 3.4 A subsetS of gates is termed anate subsetif its elements all have the
same parity and are not in each other’s fanout.

3.5.1 Optimizing Unate Subsets

Assume, for the sake of simplicity, thktis positive unate with respect foy, ...,y } -
We can perform optimization on the corresponding subset of gates in a style that is totally
analogous to compatible gates by dividing it imtgplicant extractiorandcoveringsteps.

3.5.2 Implicant Extraction

In this step, for eachy, to be optimized, a set ahaximal functionds extracted. In
particular, the maximal functions of each eaghcan be expressed as Eq. (3.16), which
is similar to Eqg. (3.10).

Vi <Gz, j3)=1...,m (3.16)

From Eq. (3.16), prime implicants @f can then be extracted.

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 83

Intuitively, the maximal functions are the largest functions that can be used while
satisfying the bounds <F ., . Therefore, they represent the upper bounds;onWe
introduce the following definition:

Definition 3.5 A set of local functions
{ Gz, 1(X), G, 2(X) s+« + s Grg, i (X) }
is said to bemaximal if
F(X, Gruz, 1(X), Gruz, 2(X), -« oy Gruze, m (X)) <F e (X) Vx e B™ . (3.17)

and the inequality (3.17) is violated when a@y,.. ; is replaced by a larger functiok
>G s, -

The idea behind the notion of maximal functions is that by substituting gadly any
function¢; <G ..., ;, We are guaranteed that the upper bound

F(X, 61(X), -, 6 (X)) <F s (X) (3.18)
will not be violated. The conditions
Yi SGme,z

therefore represersufficientconditions for this bound to hold.

The following theorem provides means for finding a set of maximal functions. It
also shows that computing such functions has complexity comparable with computing
ordinarydont caresets.

Theorem 3.2LetS ={¢1,...,9,} be a unate subset of gates. The set of maximal
functions, as defined by Eq. (3.17), with respect to the gaté&sdan be obtained by:

Gmx,j =f 9 410 j (319)

where f9% denotes the output function @f in the unoptimized networkld' ; represents
the dont care set associated witjy calculated with the following rule: the output
functions for gatesys,...,g;2 are set toG,.. 1,k =1,...,7 —1, and the output
functions for gatey,, ..., g, are set tof%; k=j,...,m

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 84

Proof.

The proof is divided into two parts. First, it is shown that the bounds
Gz, i =f 9 0 ; satisfy Eq. (3.17). It is then shown, by contradiction,
that these bounds are indeed maximal.

To prove the first part, suppose that maximal functions for the gates., ¢, 4
have already been computed. They are such that

FOX, Gruz, 15+ vy Gra, ja 5 2, F94 0) <F o
The constraint equation oy} can then be expressed by:
Frin <FX,Gruz1yees Gouz, ja 5 Yj, f7 00 7)) <F s
and is satisfied as long as satisfies
fr-Wi<g; <fPHE

where I0' ; is the dont care set associated witly;, under the theorem’s
assumptions. It is then guaranteed that

F(X7 Grmx,la---aGme,j—l ,Gmw7]‘,fgj+l,...,fgm) SFme

for;=1...,m

To prove maximality, it is sufficient to show thét,,.,; cannot be replaced
by any functionf¥ >G ... ;. Suppose, by contradiction, that a different
bound F' can be used, such that for some input combinakgrwe have
Gus, ; (Xo) =0 but Fj(xo) =1. Notice thatG .. ;(Xo) =0 implies that
f¥(Xo) =0 andXx o) =0. Corresponding ta o, it must then be

F(Xo, Gruz, 1(X0), -+ + ofae ja (X0), 0, Grue j+1(X0), -+« e, m (Xo0)) <F e

but, becausé is positive unate and becaugEx) =0, it must also be

F(Xo, Gruz, 1(X0)s « -+ s Gruz, j2 (X0)y L, G, j+1(X0), + e, m (X0)) /< Bz -

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 85

Hence, if f% is replaced by any other functidrf: such thath¥ (x¢) =1 (as
suggested by the boun#l) and all other functiong ¥+, k /=j are replaced
by G, 1, the upper bouné <F,,. is violated corresponding to the input
combinationxy. O

Note that the computation of each maximal function corresponds to finding the local
dont carefor the associated vertex. Therefore, the maximal functions computation has
the same complexity as computing then't care conditions for each gate.

This theorem states that the maximal function for verteblepends on the maximal
functions already calculated €). This means that unlike the case of compatible gates,
the maximal function for a given vertex may be not unique.

Example 30.

For the network of Fig. (3.10), assuming no exterdaht care conditions,

we find the maximal functions fay1, y2, andys. The o' , terms correspond
to the observabilitglont careaty;, computed using thé,,.. of the previous
gates.

7 . 7 . 7 AN
Y1 =t 12524, Y2 = g(xa+r 2); Y3 =T T2+ 1T,

Maximal functions derived by Theorem (3.2) are :

! ! ! !
Gz, 1 =t 105204 HO') =v j04 Ha 54w 4)xh2)
!
Gmwc,Z =T 3(1’4 +z 2) —I_-&Y yz(yl =G nuw, 1)
= x 4+x gxlz +x 1:1;'2 +r 372

GW%?’ =z éx/Z +r /151?2 +I0' ya(yl = nmax, 15 Y2 =G me,2)

/ 1! /
= X 32 t¥ 175 ¥ 473

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 86

Figure 3.10: Network for Example (8).

3.5.3 Covering Step

Eq. (3.16) allows us to find a set of multiple-output primesifgr. . ., y,,. The covering
step then consists of finding a minimum-cost sum such that the lower bound of Eq. (3.6)
holds.

We now present a reduction for transforming the covering step to the one presented
for compatible gates. We first illustrate the reduction by means of an example.

Example 31.

In Fig. (3.10), consider the combination of inputsesulting inF,,; , (x) =1.

To each such combination we can associate the set of valugsyefys such

that F(x,y) =1. For instance, for the entry jz,x3:4 =1001, it must be
Frimenea(Y) =y 11y 2y3 =1. Let us now denote witlty) the left-hand side

of this constraintj.e. Gy) =y 1 +y 2ys. Notice that@y) is unate in each

y; and changes depending on the combination of values currently selected

for T1,T2, X3, L4.

Any constraint@y) =1 can be represented in a canonical form:

@) =Gy T 1Y 2 4Y 3)(Gyryges 19 14 2)
X -(Gylyzyé Y 3)Gyryaps =1

which, in turn, is equivalent to the 8 constraints

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 87

Gyt vt yotys =1

Gyiyéya—l_ yi1t y2 =1
- (3.20)
Gylyzyé‘l' ys =1
Gylyzya =1

By introducing an auxiliary variable; for eachy;, we can rewrite Eq. (3.20)

as:
Gz)+2 42 oy +e gyz =1 Y 21,22, 23

or, equivalently,
G'(2) <2191+ 292+ 3y3

In this particular example, we get
(2142 223) <z1y1 +2 QY2+ 3y3

a

Example (31) shows a transformation that converts the covering problem of an arbi-
trary unate subset of gates into a form that is similar to optimization of compatible gates,
i.e. Eq. (3.8).

More generally, corresponding to each combinatiosuch thatF,,, (x) =1, the
constraintF(x,y) =1 can be re-expressed as

F(X,2)+ itz sy2+ ..+ | yn =1

The resulting covering problem to find the minimum-cost solution is analogous to the
compatible gates case. The transformation is formalized in the following theorem:

Theorem 3.3 Given F(x), lety be a unate subset of variables with respectto Let
z=[z1,...,2,] denotenauxiliary Boolean variables. The lower bound of Eq. (3.6)
holds if and only if

Frin <F(X,2)+ Y y;(zi1) Vz (3.21)

i=1

Proof.

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 88

We first show by contradiction that

F(x,y) <F(x,z) + Z yj(z:; 1) (3.22)
7=1
Eq. (3.22) can be violated only by a combinatief y,, zo such that one
component oF(Xo, Y,) takes value 1, the same componenE@fo, z,) takes
value 0, and the rightmost term of Eq. (3.22) takes value zero. In any such
combination, there must be at least one value =1 andz ; (=0 (or
otherwise, by the unateness Bf we would haveF(Xo,Y,) <F(Xo, 20)).

But if there exists an indexsuch thaty, o=1,z ; ,=0, then the rightmost
term of Eq. (3.22) takes value 1, and the right-hand side of the inequality
holds, a contradiction.

ThereforeF,; . (x) <F(x,y) together with Eq. (3.22) implies

Foin(X) SF(2) + 3 ui(20)

j=1
To complete the proof, it must now be shown tiiat, (x) < F(x,z) +
7 1y;(241), VzimpliesF,;, (x) <F(x, y). Suppose, by contradiction, that
this is not true. There exists then a vabugy, such that some component
of F.; . (X) takes value 1F(xo,Y,) takes value O, buE,;, (Xo) <F(Xo,2) +
>0 1Y5,.4751), Vz. In this case, it must b&(x,z) + X",y ¢2:1) =
1, regardless ok. But this implies that, forz =y 4, F(x0,z) =1, i.e.
F(Xo,Y,) =1, a contradiction.”

Eqg. (3.21) has the same format of Eq. (3.8), wjtndp, being replaced b¥(x, z)
andz’1, respectively. Theorem (3.3) thus allows us to reduce the covering step to the one
used for compatible gates. Theorems (3.2) and (3.3) show that the algorithms presented
in Sect. (3.2) can be used to optimize arbitrary sets of gates with the same parity, without
being restricted to sets of compatible gates only.

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 89

3.6 Implementation and Results

We implemented the algorithms of Sects. (3.2) and (3.3) in a general logic optimization
framework. The original networks are first transformed into a unate, NOR-only descrip-
tion. All internal functions are represented using BDDs [29]. For each unoptimized gate
¢, the following heuristic is used. First, we try to find a set of compatible gates;for
calledS.. In the case where not enough compatible gates can be found, we find a set of
gates that is unate with respectdg calledsS,.

In the case wheré. is found, we use Eqg. (3.7) to extract the functignsandq.

In particular,q is computed by setting; to 0. The functiong, are then computed by
settingy; to 1, withy,;7 /=j stuck-at 0.

In the case of optimizing arbitrary unate subnetwogs Theorem (5.1) is used
to determine the maximal functions for eagh Note that optimizingsS. is preferable
because for a set ofcompatible gatesy#1 computations fop ; andq are needed
to obtain all the requiredlont cares . For S,, two computations (withy; stuck-at-0
and stuck-at-1) are required for the extraction of tlom't care set of each variablg ;,
resulting in a total of 2Zcomputations.

A set of primes for the gate outputs is then constructed. Because of the possibly large
number of primes, we limit our selection to single-literal primes only. These correposnd
to wires already existing in the network and that can be used as primes for the function
under optimization. The BDD of(x, z) is then built, and the covering problem solved.
Networks are then iteratively optimized until no improvement occurs, and eventually
folded back to a binate form. The algorithms presented in this chapter were implemented
in C program calledAcHI LLES, and tested against a setldicNc synthesis benchmarks.

Table (3.2) illustrates initial statistics for the benchmark circuits considered in this ex-
periment. Table (3.3) provides a comparisondofit LLES with St s usingscript.rugged
The columnlinitial Stat. lists the network statistics before optimization, whéme is
number of internal interconnections agdtesis the gate count. The columninterconn.
shows number of interconnections after optimization. ghéscolumn compares final
gate countsLiteral column shows the final literals in factored form. The results in the
table show that\cur L. LES performs better thaB1 s for all figures of merit. In particular,

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 90

Circuit || Interconnections Gates
cm85a 108 63
cml62a 113 60
pm1 130 60
9symml 375| 152
alu2 924 | 262
alu4 1682| 521
apex6 1141| 745
C499 945 | 530
C880 797 | 458
C1908 936 | 489

Table 3.2: Benchmark statistics.

Interconn. Lits.(fac) Gates CPU

Circuit ACHILLES S1s| ACHILLES | SIS | ACHILLES | SIS | ACHI LLES SIs
cm85a 67 77 42 | 46 31| 34 15 1.2
cml62a 99| 102 47 | 49 41| 52 1.8 1.3
pml 67 78 47| 52 31| 36 1.6 1.3
9symml 288 | 325 163 | 186 88 | 101 108.4 64.2
alu2 366 | 570 303 | 362 215 | 231 309.7| 403.0
alu4 902 | 1128 612 | 703 420 | 487 1612.6| 1718.5
apex6 1009 | 1315 687 | 743 589 | 639 115.1 30.3
C499 913 | 945 505 | 552 498 | 530 202.1| 133.6
C880 643 | 731 355 | 409 295 | 342 340.6 30.7
C1908 828 | 891 518 | 542 445 | 482 422.1| 138.8

Table 3.3: Optimization results. Runtimes are in seconds on DEC5000/240.
AcHI LLES does 11% better thabi s in factored literals.

Note thatscript.ruggedwvas chosen because it is the most robust script dbtlsescript
suite, and it matches closely to our type of optimization. Our objective was to compare
optimization results based only on Boolean operations, namely compatible gates versus
dont cares. Thescript.ruggedcallsfull _simplifyf38], which computes observabilijon't
caresto optimize the network.

The table shows that th&cHr L.LES runtimes are competitive with that ¢fi s. In
this implementation, we are more interested in the quality of the optimization than the
efficiency of the algorithms, therefore amxactcovering solver is used. We can improve
the runtime in the future by substituting a faster heuristic or approximate solvers (such

CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 91

as used iNEs PRES SO [41]).

3.7 Summary

In this chapter we presented a comparative analysis of approaches to multi-level logic
optimization, and described new algorithms for simultaneous multiple-gate optimization.
The algorithms are based on the notioncoimpatible gatesand unate networks. We
identify the main advantage of the present approach over previous solutions in its capa-
bility of exact minimization of suitable multiple-output networks, by means of traditional
two-level optimization algorithms. Experimental results show an improvement of 11%
over existing methods.

Chapter 4
Acyclic synchronous networks

Traditional research on the synthesis of synchronous logic has focused very much on
the manipulation of state diagram-like representation of sequential functions. Finite-
state machine decomposition, state minimization, and encoding are the typical steps
leading to the later construction of the combinational network realizing the output and
next-state functions. If the result of combinational synthesis is unsatisfactory, these
steps need be carried out again. To this regard, it is worth noting that there is little
knowledge on the impact of these steps on the definition of the combinational portion.
Moreover, it is often the case where a sequential circuit is already given a structural
(i.e. netlist) description. To date, however, state minimization and assignment algorithms
work on explicit representations of the state diagram. For most networks, such an explicit
representation is made impossible by the sheer number of internal states and by the
network complexity.

The present and the next two chapters attempt the definitiorstsiatural approach
to synchronous logic optimization. We consider optimization steps such as modifying
logic gates so as to reduce their cost, and adding/removing registers. The internal states
of the network are therefore changedplicitly , i.e. as a result of the optimization steps.

To carry out this task, we need to adopt a non-Huffman model of a synchronous logic
network, and a description of its functionality in terms s#quence functionsrather
than state diagrams or flow tables. The presence of delays and of feedback paths are
distinct causes of difficulties. For this reason, the analysis of networks with feedback is

92

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 93

postponed to Chapter (6).

In the present chapter, we attempt the extension of perturbation analysigoaid
care -based optimization to the synchronous case. Sections (4.1)-(4.2) are devoted to
the modeling of synchronous networks and sequedbailt cares, respectively. Section
(4.3) is then devoted to the extension of perturbation analysis to the case of acyclic
networks. There, however, it is also shown thant caresets are an insufficient means
for representing the degrees of freedom for sequential optimization. A more accurate
analysis leads to the conceptm@currence equations explored later in Chapter (5).

4.1 Terminology

4.1.1 Synchronous logic networks.

The model of synchronous circuits employed here issyr@chronous logic network

The graph of a synchronous network differs from that of a combinational network
in three respects. First, it has non-negative weights associated with its edges. A weight
won an edgec denotes an interconnection containingascaded D-type flip-flops.
Second, more edges with distinct weights are allowed to connect the same two vertices
(i.e. the graph is actually anultigraph. Third, the network may contain feedback
loops. The restriction of not allowing loops of combinational logic is expressed by
constraining all loops to have at least one edge of nonzero weight. A synchronous
network is termedacyclic if it has no loops. Every network can be decomposed into
an acyclic portion, containing in particular all logic and delay elements, and a set of
feedback interconnections.

Vertices are labeled by a Boolean variable, and have associgiattesn function,
formally introduced below by Definition (4.1). Pattern functions are described by
pattern expressiond. They reduce to ordinary Boolean functions and expressions, re-
spectively, in absence of registers: combinational logic networks are thus special cases of
synchronous networks, with identically zero edge weights and consequently no feedback
loops.

1They are also calledynchronous Boolean expressionis [25, 43]

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 94

Example 32.

Fig. (4.1) shows a synchronous circuit and its associated graph. Notice the
presence of feedback loops and of edges of different weights, for instance
those connecting verticesand . Each vertex of the graph encloses the

pattern expression associated with it. Subscripts of variables indicate delays.

Figure 4.1: A synchronous logic network and its associated graph

4.1.2 Sequences and sequence functions.

The functionality of synchronous circuits is here described by explicitly taking into ac-
count the evolution of the network variables over time and reasoning in tersegjoénces
of Boolean values. For this reason it is first necessary to introduce the terminology as-
sociated with sequences and sequence mappings.

Time is represented by a set of integer time-poifits{ —o,...,-1,0,1,...,0d.
A sequences of elements from a finite sef is a mappings: Z —S. The value of the

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 95

sequence at timeis an element ofS, and is denoted by @,. The set of all possible
sequences of elements éhis denoted bys« [44].

A Boolean sequence is a sequence of elemens dihe set of Boolean sequences is
hereafter denoted bg«. The sets of possible sequences of input and output vectors of a
n;-input, n,-output synchronous circuit are denoted (I8) and (B™°)~, respectively.

Given two finite setsS and7, a sequence functionis a mapping~: ¥ —7 “. The
mapping of a sequences S ¢ by F is thus an element af , denoted byF(s). Then!”
element ofF(s) is an element ofl, denoted byF ,.(s). Two functionsF, G are said to
be equalif and only if Fg,.(s) = G @.(s) Vs (B ™)¥, Vne Z.

Boolean operations can be defined on equi-dimensional sequence functions: for two
functionsF, G: (B™)¥ —(B ")“, sum, product and complement are defined as the
bitwise sum, product and complement, respectively:

(F+G)(s) =F(s) +G(3);
(FG)(s) =F(9G(s);
(F)(9) =F(s)

Also, F>G if and only if F g, >G @, Vn>0.
The retiming (or time-shift)F, of a functionF by an integerkis defined by

(Fr)a@n(9) =F @(n#)(s) Vne Z. (4.1)

In other words,F, takes the values of with a delay ofktime units. The following
properties of the retiming operation are self-evident:

(Fr)n =F nyk;

(4.2)
(F4G) . =F » 4G ; (FG), =F +Gy; (F)r =F &) .

4.1.3 Pattern expressions and functions.

Boolean expressions can be adapted to include integer time labels and represent sequence
functions. These expressions are hereafter terpadtbrn expressionsand are defined
as follows.

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 96

Definition 4.1 The symbol$), 1 are pattern expressions, and denote the constant func-
tions0,1 : (B™)~ —B ¢, respectively. Given a set of variablesz; y, . . ., a synchronous
literal (or, shortly, a literal) = (x ') is a synchronous expression, and denotes a function
fz') : (B™)” —B «. For every sequencee (B™)~, the value of a literalz (+) at
timen x @.(s) (v ,(s) coincides with the value of the variablgthe complement of
2 in sat timen

Finite sums and finite products of pattern expressions are pattern expressions. They
denote the function formed by the sum and product of their terms, respectively. The
complement and retiming of a pattern expression are pattern expressions, whose value
at every time point are the complement and retiming of their argument, respectively.
Retiming of literals (e.gxz;) are in particular also termed literals.

Definition 4.2 A sequence functioh is called apattern function if it is expressible by
means of a pattern expression.

Example 33.
The following is a simple pattern expression:
aH(a 1)1 4c 2)1
O

A synchronous expression is said to input-retimedif only literals appear retimed.
An expression can be reduced to its input-retimed form by applying repeatedly (4.2),
until only literals appear retimed.

Example 34.
By applying (4.2) on the expression of Example (33), the new expression
ata 3b 4 3

is obtained. This expression contains only retimed literal§l

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 97

An input-retimed pattern expression contains literals in a finite intgmvdll The
corresponding function takes value 1 at a time-paionly if its literals take a suitable
pattern of values over the time intenjal— Af»— b Pattern functions can then be
used to characterize patterns of events that occur over a finite time span.

Example 35.

For the expression of Example (34)%=0, A=3. The corresponding
function takes value 1 at a timeif and only if ¢ b ¢ satisfy one of the
patterns:

G@n, A@nt d@n2 > A@n3 17 R T T 1 T T T
b@nv b@n—l) b@n-Z) b@ng = 55— 0 S 07 - 5 ST
C@n, C@nt > COn2 > C@n3 T Ty T T T Ty T T T T 1

a

Not every sequence function is a pattern function. Consider, for example, a step
function H defined as follows. For each input sequerc& @, (s) =0 if n<0, and
Hg,(s) =1 forn>0. Clearly, s) =Hs) for all sequences, while H (s is a
step delayed by:and therefore differs frons).

Intuitively, pattern functions can only be used to “detect” the occurrence of a finite-
length pattern of input values. The position of the pattern along the time axis is not
influent. Hence, pattern functions cannot be used to recognize situations that concern,
for example, the value of Hence, they cannot express functions like the step function.

Representation of pattern functions

An input-retimed pattern expression can be regarded as an ordinary logic expression
with literals «;, «!. It is then possible to extend BDD representations of combinational
functions to pattern functions in a straightforward manner.

Fig. (4.2) shows the BDD representation of the pattern function described by the

expressioni+a 3b, +¢ 3.

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 98

(+)

Q/Q\

Figure 4.2: BDD representation of a pattern function.

Shannon expansion of pattern functions.

Consider an arbitrary sequence functibn The value it takes at some time-point

depends, in general, on the values taken by each input variable at each time‘pGint

If we regard these latter values as independent Boolean variables,Fthercan be

regarded as a Boolean function having an infinite number of Boolean variables as support.
One could think of defining a cofactor Bfg,, with respect to a variableat some other

time-pointn’, and then move on to construct a Shannon expansiéipefin this context.

A similar expansion carried oRg,+1, however, may have no relationship whatsoever

with the previous one. The retiming-invariance properties of pattern functions, instead,

allow us to define cofactoring and extend Shannon expansion in a more useful way.

Definition 4.3 The cofactor of a pattern functioR with respect toz (x /), denoted by
F. (F./), is the function obtained by replacing the values 1 and 0, respectively (0 and 1,
respectively) to the literalg = / of aninput-retimed expression of.

Definitions of consensus, smoothing, and Boolean difference can then be extended
to the present case. Eventually, it could then be verified that for a pattern function, the
following expansion holds:

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 99

F=z'Fo+F , (4.3)

The formal proof of Eq. (4.3) is simple but lengthy, it is therefore omitted in this work.

4.1.4 Functional modeling of synchronous circuits.

In order to extend Boolean optimization models to the synchronous case, it is desirable
to first describe their behavior by means of a sequence function.

For an acyclic networky an expressioa v of the functionf realized by each vertex
y (and, in particular, by the primary outputs) can be derived by iteratively substituting
literals appearing ir? with their corresponding pattern expressions, in a fashion entirely
similar to that of combinational networks. The functionality of acyclic networks can then
be described by a pattern functié: (87)Y —(B ")~.

The case of cyclic networks, however, is more complex. In particular, their behavior
cannot, in general, be expressed by a pattern function in terms of the primary inputs. For
this reason, the analysis of the impact of feedback is deferred to Chapter (6).

The initial value problem.

The synchronous network model presented so far implicitly regards D-type registers
as unit-delay elements. This is incorrect at power-up, because the register content is
essentially random and cannot be related to that of any other network variable. Power-up
values, however, are often erased by the preset logic before they can affect the primary
outputs. The error becomes irrelevant in this case. If the power-up value of a register
is relevant for the circuit behavior, the model can be corrected by introducing fictitious
input Ar. and Et. as shown in Fig. (4.3). To represent correctly the circuit behavior,

input Ar. takes value 0 after power-up.

4.2 Sequentialdon't cares

In this chapter we consider extending the ideadaf't care-based and relational speci-
fications to the case of sequence functions. Therefore, this chapter focudes’orare

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 100

Pwr.

Ext.
Logic 0
> 1 Delay

@ (b)

Figure 4.3: (a) A D-type flip-flop driven by logic; (b) equivalent circuit for the insertion
of power -up valueskt. and Rr. are fictitious.

-based specifications and their representations.

The terminal behavior of a circuit is assumed to be specified in terms of a pair
of functions F: (B™)¥ — (B ™)~ and DC: (B™)¥ — (B "), or by means of the
pair F,;, & DC '’ andF,, =F4DC. A circuit, realizing a functionG, satisfies the
specifications if and only if

Frin <G <F u . (4.4)

The optimization of a networkVultimately consists of its replacement by another
network V' of lower cost, in terms of area or timing performance. The funciidh
takes again the meaning oftaleranceon the allowed functional errorN’ can replace
Nif and only if its functionG satisfies

F3G <DC . (4.5)

Of course, in principleN’ may differ widely from J in terms of topology (for
example, it may contain feedback) and functionality.

To limit the complexity of this analysis, only algorithms that optimi¥nd preserve
its acyclic nature are considered here. As combinational networks represent a special case
of synchronous networks, the algorithms developed should then represent extensions of
those presented for combinational networks.

The general framework is again that of optimizing locally subnetworksvVbi
first identifying their don't care conditions and then resorting to known optimization
algorithms. Perturbation analysis is then again instrumental in exploring the nature of
suchdon't care conditions, and is developed in the next section.

Our objective here is to determirgon't care conditions expressible by a pattern
function, and on efficient algorithms for the extraction of swuldn't care sets. There

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 101

are two major motivations for this choice. First, pattern functions are strictly related to
combinational functions, hence they provide compact, though incomplete, representations
of sequentialont cares, and combinational optimization algorithms can easily be gen-
eralized. Second, Theorem (4.1) below indicates that more complex representations are
less likely to be useful for the optimization of acyclic networks.

4.2.1 Retiming-invariant don't careconditions

In Eq. (4.5), no assumption is made on the nature of the fun®@i©Gn Not everydon't

care condition, however, is potentially useful for the optimization of an acyclic network.
Intuitively, in order to be useful, don't care condition must express conditions that

are valid at every time-point . For example, the knowledge that the outputs are not

observed only at a specific time-point is clearly not useful for optimizing a network.
This paragraph identifies the set of usafioin't care conditions for acyclic networks.

Definition 4.4 A sequence functio is termedretiming-invariant if and only if
K.(s) =K(s ») Vn
Trivially, all pattern functions are retiming-invariant.

Definition 4.5 We call retiming-invariant portion DC "* of a dont care functionDC
the function defined as follows:

DC"(s) = JT DC.. (s,) (4.6)

Trivially, DC"" is a retiming-invariant function. Notice also thAC"* <DC.
The following theorem shows that the retiming-invariant portion dba't carespec-
ification is effectively its only “interesting” portion.

Theorem 4.1 Given two retiming-invariant functiong, G, and a dont care function
DC, then
FoG <DC (4.7)

if and only if
FaG<DC ™ (4.8)

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 102

Proof.

Trivially, Eq. (4.8) implies Eq. (4.7). Suppose now, by contradiction, that
Eq. (4.7) does not imply Eq. (4.8). Then, there exist a sequerce a
time-pointn* such that

F@n*(S) oG @n*(S) SDC @n*(s); (49)

and
Fou(5) ©G @ (s) /<DGCg.(3) (4.10)

From Definition (4.5), there must exist a retiming indesuch that

Retiming byrboth members of Eq. (4.11), and using the retiming-invariance
properties ofF andG, results in

Fan+(5n) DG @n+ (1) /<DGs(s,,) (4.12)

that is, Eq. (4.7) is violated at time-point* corresponding to the input
sequence,,. O

4.2.2 Controllability and observability don't cares

We borrow from the combinational case also the distinction between extsnablla-

bility andobservability dont cares. The motivation is analogous to the combinational
case: in an acyclic interconnection of networks, the driving portion constrains the inputs
of the network, while the driven portion limits its observability.

Example 36.

Consider the circuit of Fig.(4.4), representing the cascade interconnection of
two simple synchronous networks. The limited controllability of the inputs
of N, is described by the set of its impossible input sequences. For example,
uv’ represents a pattern of an impossible input sequenceVior For u

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS

Figure 4.4: Cascaded synchronous circuits.

to be equal to 1 at a time-point—1 it must bea @.u =b @1 =1,
consequentlybg,1 =1 andv g, =1 @,.. Hence, forN,, at no time-point:
it can beugns vg, =1.

103

A formal derivation of these impossible patterns will be presented when

dealing with networks with feedback.

Let us now consider the situation at the outputs\af The interconnection
of the two networks limits the observability of the primary outputs\af In
particular, the output ofV, can be expressed in terms @&ndv as

F=y 1Hw 1) =u o1 +u o4 vhw T =0 e v T4

The variablexcan affect the primary outputs after no delay or after 1 clock

period. The conditions for which it can affeétwith no delay can be
expressed by the function

(a) =2

It cannot affect the outputs after one period when the function :

9 N\’
<@—)4 =v-+u '_11)_1 “+u _11/_1
1

takes value 1. The variablecannot affect the outpuwt any time if

ar N aF N
(&) (E), e et

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 104

takes value 1. A similar reasoning can be carried out for the input

The external observabilitgont caresimposed onN; by the presence of
N, are thus expressed in general by a vector of functions. Each function
represents thedont care conditions on one output.d

The distinction between controllability and observabildgnt caresis of course
blurred in presence of global feedback interconnections.

Controllability dont cares

In the previous example, impossible input sequences were characterized as having a value
u=1 at some time-point—1 and the values =0 atn All such sequences were
described by means of a pattern function’. It is worth recalling that pattern functions
are functions fromsequencedo sequenceshenceu v’ is not exactly the characteristic
function of aset of sequences. The sense in which a pattern function can be used,
however, to characterize the set of impossible sequences is defined next.

We restrict our attention to impossible patterns of values in a time span of a predefined,
but otherwise arbitrary, length>0. A sequence € (B ™) is acontrollability dont
care sequencdf it contains one such pattern. We denote the set of these sequen€es by
and define a functiod: (B ™)~ —B <, taking value 1 corresponding to the sequences
in C, and value 0 otherwise.

We use a pattern functiofi@: (B ™) —B “ to represent the impossible patterns.
The literals of(@'are assumed to have time-stamps in the reference intgdval
In particular,d0' @g.(s) =1 @, if and only if s contains an impossible pattern in the
interval [n— L+, and 0 a@n(s) =0 @, otherwise.

Example 37.

For the network of Fig. (4.4), the input controllabilithont caresof N, can
be represented by the functiod®=0, (0'=u ', or by d0'=
u1v’ +u vy, depending on the time-span chosenl

The following Lemma clarifies further the link between the functiéfsand C:

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 105

Lemma 4.1 N
C= Z agw ., (4.13)

Proof.

If a sequences belongs toC, then there exists a time-pointsuch that
a0 @.(s) =1 @.. Hence, for each time-point’, it is possible to find a
retiming indexk=n. ' —nsuch thatl@’ @.(s) =1 @, and the left-hand
side of Eqg. (4.13) takes value 1.

If s does not belong t@, thend@'s) =0 and then®’ «(8) =0, for
everyn and Eq. (4.13) holdsD

Notice in particular that
Cr=C Vke Z (4.14)

Representing Observability don't cares

We represent also observabilidont caresby means of a pattern functio@DC** :
(B™)* —(B ™)«, with literals in a generic time spd, 1. Corresponding to each input
sequencey the vectorODC &7 (s) takes value 1 corresponding to those components of
the output that are not observed time n It is thus assumed that an output is not
observed at a given time-pointcorresponding to the occurrence of some particular
patterns in the intervdln— L.

We thus eventually assume that for a network

DC =1 +0ODC “" . (4.15)

It is worth remarking that consequently the functi@@is used only to represeidt
by means of a pattern function.

In the rest of this dissertation, we use the symlidBndCDC to denote the functions
1 and (01, respectively.

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 106

4.3 Local optimization of acyclic networks

One major result of multilevel combinational synthesis is that the degrees of freedom for
the local optimization of a gate embedded in a network are expresseddbytacare

function.

The first question is then whether this result can be extended to the sequential case,
that is, whether the conditions for replacing a pattern funcftionvith a different oney?
can be expressed by an equation like

fYag? <V (4.16)
Example (38) below shows that this is not the case.
Example 38.

) 1> g I

> >

DD~ O~
@

(b)

Figure 4.5: The simplification of the inverter in a simple network.

The simple circuit of Fig. (4.5) realizes the functibn=x« ' 4. It can
easily be recognized that the inverter can be replaced by a simple connection,
i.e. f¥ =¢ ' can be replaced by =z In this casef ¥dg¢ ¥ =1: a constant

error 1 is therefore introduced at the inverter output. Had an equation like
Eq. (4.16) been applicable, then we should conclude Bat =1, i.e. that

the inverter could also be replaced by a constant O or 1, which is clearly
false . O

Degrees of freedom expressed in the form of Eq. (4.16) are nevertheless the only
ones that can currently be handled by logic optimization engines suElk aREs s o: the

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 107

rest of this chapter is therefore devoted to findsudficientbounds in the form of Eq.
(4.16).

The modification of a local functiorf? in an acyclic network can again be modeled
by introducing a perturbation input with F¥ denoting the function realized by the
perturbed networkvv.

The functionF¥ depends in particular ofjé 1,- - - pg, whereP, denotes the longest
path from the vertex to the primary outputs, in terms of registers.

The error in functionality caused by the presencesa$ expressed by the error
function

ESF o FL . (4.17)

The equation
E <DC (4.18)

represents implicitly the tolerance on such errors, and provides the functional constraints
oné.

By construction,E is a pattern function, expressible in terms&f,,...,ép, and
primary input variables.

Eq. (4.18) represents the functional constraintss,ofor the perturbation signals to
be acceptable. In the rest of this section, we try to explicit this constraint into an upper

bound oné.

4.3.1 Internal observability don't careconditions.

Consider adding a perturbation input to an acyclic network. The value of the primary
outputs at some time-pointmay be affected by the values taken by the perturbation at
time-pointnn—1,- - - ,n— P The impact of the value&g,r ,é@.r+1 .- - -@u00N
the primary output at timeis, in this respect, similar to that of a multiple perturbation
in a combinational network.

Unlike the case of combinational networks, however, we need to take into account
also the fact that the value 6§, may affect the network outputs for more clock cycles,
namely, ath+1,- - - n+Pas well.

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 108

In order to simplify the analysis, we first consider the case where all paths;ftom
the primary outputs have the same length, in terms of registers. A perturbation can thus
only affect the outputs at one time-point in the future. As intuition suggests, this case is
very similar to the combinational case. Later, we tackle the general case.

The methods developed to this purpose hinge upon the definition of observability
dont caresfor acyclic networks:

Definition 4.6 The observability don't care function gf. is the function
ODC% =F |, TFY, (419

Intuitively, the functionODCY* describes when the output at times (not) affected
by a perturbation at time-point— &

Example 39.

Consider the circuit of Fig. (4.6). There are two paths from the multiplexer
output to the primary output, of length 0 and 1, respectively.

Figure 4.6: A non-pipeline acyclic synchronous network.

The two observabilitydont caresare thus
X P =athty 1=atbHa 2a]+a Hb2) D61

and
@ 9 =ath+y=a+tbHa 1a’ +a b)) D6

Notice in particular that each observabildgn't caredepends on the pertur-
bation signak. O

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 109

Let us now consider the special case where all paths from a vegttethe primary
outputs contain the same numbgy of registers. In this casdé;¥ and E depend only
on ép,, and Eq. (4.18) can still be explicited into a tolerancesoifhe derivation is as
follows. A Shannon expansion & results in

op,Es, +0 p,Esp, <DC. (4.20)
On the other hand, from Eq. (4.18,, =0 and therefore Eq. (4.20) reduces to
op,Es,, <DC . (4.21)

or, equivalently,
op,1 < Egpy +DC . (4.22)

Eq. (4.22) is very similar to the combinational case, as it explicits the toleran¢e on
again as a sum of an extern8l@) plus an internaIEgPy) component. By observing that
E; =ODC Y%, the retiming of Eq. (4.22) by-P, yields:

ép,

51<DC p, +ODC ¥ . (4.23)

By using the defining Equation (4.15) &fC and the property (4.14) o, Eq. (4.23)
becomes
0 < C+0DC fjé’ty +ODC ¥ (4.24)

A network is said to be ipelineif for each vertex all paths to a primary output
have the same length. Eq. (4.23) shows that caresets fully describe the degrees of
freedom for the optimization of these networks.

Retiming/resynthesis techniques exploit some of théset cares, by identifying
pipelined subnetworks and optimizing them. It is worth noting that the identification of
pipelines in [22] istopological. It might well be the case where a gate, although having
paths of different length to a primary output, results in a functothat depends only
on a singleé;. Retiming would miss the opportunity of optimizing this gate by ordinary
dont care-based methods.

For non-pipelined networks, Example (39) has shown that an equation like Eq. (4.23)
cannot fully represent allont cares. This is due to the dependency Bffrom mul-
tiple, retimed instances af This dependency, however, also suggests the use of the
approximation methods developed for multiple perturbations.

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 110

Theorems (4.1)- (4.2) below extend the results of Theorems (2.3)-(2.4) on multi-
ple perturbations in combinational networks. Their proofs are very similar to those of

Theorems (2.3)-(2.4), and are therefore omitted here.

Theorem 4.2 A perturbation¢ satisfies Eq. (4.18) if and only if
E{+DC;

DC/E5/ <<
DC/(V(gE)gi < (511 < (VgE)gl +DC ;
DC/(V(g7 & oy ba E)gl < (521 < (V(g7 & oy ba E)g/ —|—DC ; 7 ZO, cey P y (425)
Theorem 4.3 If perturbationsé 64, .., ép, satisfy :
(4.26)

51<DC+ODC %
v Pa

then Eqg. (4.18) (hamel§ < DC) holds.

Example 40.
Consider the circuit of Fig. (4.6). For the optimization of the MUX gate,

we determine
1=atbHa 2a] +a 5b2) D61

W =atbty
and
X P =athty ¢ =atb+a 1d" +a by
From Theorem (4.2), if the modification of the MUX results in a perturbation
6 such that
s< @ v
<@ 7
(4.27)

then the modification is acceptable. Later in this section we show how to

use this information for the optimization of the MUX gats.

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 111

In Eq. (4.26), the bound on each depends in general ofy, ;7 >:. This is also
evident in Example (40). The method for eliminating this dependency consists again of
finding, for eachs;, a portioni@’ ¥i of ODC¥ that is common to all components of the
vectorODC" and independent frory,, 7 >. When findingld’ ¥ it is useful to include
the information thab; is bounded by alon't carefunction:

Theorem 4.4 If each retimeds;; =0,- - - ,As contained inC+I0' ¥ where each
0’ v satisfies
I v1<CcobCc¥;:=0,...,P, (4.28)

and

CODC'» = ODC+ ODC “mvy g

A ,
CODCY = ODCH V 4, .5, (oocgzp_”g WY o yk)’)l);i:O,...,Py.
U Sl
(4.29)
thenE < DC.
Example 41.

Consider extracting theont care for the MUX gate of Fig. (4.6). From
Example (40),

O "= "= @ =atbta 1+4b
(the expression of@' /' has been simplified) while

0w =@ =y 51(0@ 016 (I yl)/) _
atb+a 1ax +a 10, +b 1a50,

(4.30)

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 112

b: | D

Figure 4.7: Optimized version of the MUX gate circuit.

A unique bound o is eventually obtained by retiming and intersecting the individual

bounds given on each:
PZI

oY =C+ [[(I v)s . (4.31)

1 =0
Example 42.
For the MUX gate of Fig. (4.6),
L=l e (D)=
(atb+a qaz +a 165 +b 1a5by)(as +b 4 4atD)

=at+bHa 1 +b 3)araz +a 105 +b 1a505) .
(4.32)

The don't carejust extracted can be used for the optimization of the gate.
An optimal expression ig=a 1 +b 1.

It is also worth noting that in this casgs just a retimed version af-+b.
The final, optimized circuit is shown in Fig. (4.7)0

We conclude this section by observing that the controllabdiiyn't careterm Ccan
be replaced in Eq. (4.31) by the express(@

Theorems (4.3) -(4.4) therefore suggest the following procedure for extracting the
observabilitydon't careof a gate in a synchronous, acyclic network:

. ExtractODC§f7...754 fori=0,- - - P

e Compute the function@ v using Eqg. (4.31), and usin@DC as externaldont
care condition;

e Retime and intersect ead® ¥, and add@'to the result.

Of the three steps, the first one is the most complex. Its description is thus carried
next.

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 113

4.4 Computation of observability don't caresin acyclic

networks

Theorem (4.4) relates don't care function for a network variable to the individual
dont caresODCY. Local methods for computing such functions by a single sweep of
the network can be extended from those of combinational networks as follows.
Consider first the case of a vertex labelgdvith a single fanout edgey, z) with
weightw If ODC ** is known fork=0,..., P ., then the corresponding expression for

yis given by
& i
aJ k4w

ODCY++ =ODC * + () L k=0,...,P . (4.33)

andODC* = . . OB€& =L

Eq. (4.33) is essentially identical to Eg. (2.20) of the combinational case, the only
difference consisting in accounting for the delapy appropriately retiming *. The
same considerations about the validity of Eg. (2.20) in presence of multiple perturbations
hold of course also for Eq. (4.33).

It is similarly possible to extend to the synchronous case Eqg. (2.27) for gates with
reconvergent fanout, by carrying out the same construction as in Chapter (2)ahet
z denote the fanout variables of a two-fanout vertexihe functionF *-“ describes the
function of the perturbed network with two perturbatiaris 6. It follows that

ODC¥ =F 7 FF}7 . (4.34)

By adding twice the ternﬁgéi%, by manipulations similar to those leading to Eq. (2.27)

we obtain
ODC¥ =0DC ”’@ODC?}@) (4.35)
The dual expression is obtained by adding t\AEcgl;ef%,:
ODC¥ =0DC Zg@ODCZ’f) (4.36)

The following pseudocode illustrates a one-pass optimization of a network, evidencing
the computation of the observabilidont cares.

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 114

OBSERVABILITY(G, CDC, ODC);
T = {sink};

S = FI(sink);

while (T <V) {

select(v. €V - T such that FO(v) CS);
if (vertex_type(v) == gate) {
foreach y € FI(v) {
for (=0, j < P, j++) {
ODCII = (9%, /0y0)'1 +
retime(w(y,v), ODCIV][j-w(y,W)]);

}
} else {
y = Fl(v);
oDCY =1,
for(j=0, j < P, j +) +
for (z=fanout_var(y); z '= NULL; z = z->next_fanout) {
ODCly][j] =ODC[y][;j] TODC[=][j Juzyru>-
}

}
DC = compute_dontcare(y, CDC, ODC);

optimize(y, DC);
S = SUFI(v);
T = Tu{v}

The routinecompute _dontcare performs the steps 2) and 3) of the computation
of @' ¥. The routineoptimize does the actual two-level optimization.

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS

Circuit || inputs| outputs| literals | registers| feedback| longest pathP
S208 11 2 166 8 8 1
S298 3 6 244 14 14 2
S344 9 11 269 15 15 1
S444 3 6 352 21 15 2
S526 3 6 445 21 21 1
S641 35 24 537 19 11 2
S820 18 19 757 5 5 3
S832 18 19 769 5 5 3
S1196 14 14| 1009 18 0 3
S1238 14 14 1041 18 0 3
S1494 8 19| 1393 6 6 1
S9234.1 36 39| 7900 211 90 6

Table 4.1: Benchmark statistics

4.5 Experimental results.

We report in this section experimental results concerning the extraction of observability
dont caresets for benchmark synchronous circuits. Table (4.5) shows the statistics of the
benchmark circuits. Most of these circuits contain feedback paths. They were removed

115

using the algorithm by Smith and Walford [45] for the minimum feedback vertex set.

Columnfeedback
Pindicates the longest path of the circuit in terms of register counts. These parameters are
obviously affected by choice of the feedback variables: for example, for the benchmark

s344, a cut based on a depth-first network traversal [46] resultéd-iD.
Table (4.2) reports the results for the computation of observabidityt carefunctions,
in terms of CPU time and peak BDD nodes.

indicates the number of feedback variables that were introduced.

CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 116

Circuit || CPU time| BDD nodes
S208 0.9 1280
S298 2.1 889
S344 2.1 2015
S444 4.1 4547
S526 5.6 3289
S641 10.1 2645
S820 19.0 11788
S832 18 6679
S1196 23.4 305622
S1238 17.9 398591
S1494 19.6 12623
S59234.1 151.4 456017

Table 4.2: Computation of the observabildgnt care sets.

4.6 Summary

In this chapter we took a first step towards the construction of algorithms for the struc-
tural optimization of synchronous hardware. In particular, Sections (4.1) and (4.2) were
concerned with the definition of functional specifications dod' caresat for sequential
circuits. In Section (4.3) we presented an extension of the perturbation theory applied
to combinational circuits. Based on this theory, we developed an algorithm for extract-
ing dont care functions that can be used in the optimization of individual gates in a
synchronous networks. Unlike the combinational case, howela@rt care functions
express only partially the potential for optimization in a synchronous circuit. Moreover,
the algorithms are suited for networks without feedback loops. These two limitations are
removed in the next two chapters.

Chapter 5
Recurrence Equations

In the previous chapter we outlined an approximate technique for optimizing synchronous
circuits, in particular by optimizing each vertex of the network usilogt care sets

The inverter example showed that, unlike the combinational case, even for simple
acyclic networks this approach is not sufficient to characterize atloiné careconditions
that can arise in the synchronous context.

In this chapter we focus on exact methods for acyclic networks. We show that the
problem of optimizing a subnetwork can be cast as that of finding the minimum-cost
solution to a new type of Boolean equation, calgyehchronous recurrence equation

Besides acyclic networks, the method is useful in the optimization of the acyclic
portion of general synchronous networks containing feedback.

We propose a solution algorithm for recurrence equations. The algorithm relies on
the transformation of the equation into a new combinational logic optimization problem.
An exact solution algorithm for this latter problem is presented, and experimental results
on synchronous benchmark circuits demonstrate the feasibility of the approach.

5.1 Introduction

We introduce the idea of recurrence equations by resorting again to the inverter example,
repeated in Fig. (5.1).

117

CHAPTER 5. RECURRENCE EQUATIONS 118

Example 43.

The functionality of the original circuit (shown in Fig. (5.1.a)) is expressed
by the functionF'=r ' 24. Consider another circuit, in which the inverter
is replaced by another (yet unknown) logic block, with inpand outputy

as shown in Fig. (5.1). The functionality of this circuit can be expressed in
terms of the internal signal F'v =y® y ;.

The block is an acceptable replacement of the inverter as long as the global
functionality of the circuit is unchanged, that is, as long as the signal
satisfies the equation:

ydyr=v ' PHay.

This equation can be interpreted as the functional constraint placed on the
signal y (and hence on the block replacing the inverter) for the terminal
behavior of the global circuit to result unchanged.

It is worth noting that there are several solutions to this equation. Some such
solutions are, for instance,=s5 y=x ' (the inverter),y=a@ = 1@ y1.

Each solution corresponds to a possible logic block replacing the inverter.
These are shown in Fig. (5.1.b)0

Example 44.

As a more complex example, consider the optimization of the subnetwork
N in the network of Fig. (5.2). The desired terminal behavior of the entire
network can be described by

F=b 3bi(a1 +h)
Its output is expressed in terms of the internal signiay:

FY =b 1(b+a 14y 1)(yDy1)

CHAPTER 5. RECURRENCE EQUATIONS 119

ﬁD —>—

(b)

Figure 5.2: Local optimization oV1 embedded in a larger network
For every input sequence, must then satisfy

bobi(ar +b) =b 1(yDy1)(b +a1+y 1)

Assume now that the input pattebngt, is impossible at the network inputs.
The above equality must be satisfied only for those input sequences not
containing the impossible pattern, hence the constraint drecomes:

babi(ar +b) (b &b%) < bi(yDyr)(b a1ty 1) < babi(ar +b) +b bl

CHAPTER 5. RECURRENCE EQUATIONS 120

5.2 Synchronous Recurrence Equations

Definition 5.1 We call Synchronous Recurrence EquationSRE) a Boolean equation
of type
F(X7 X - -4, YRy - d) F@(Xv X, o d)7 X (5 1)

whereF, G are ordinary pattern functions. The (nonnegative) integeis termed the
memory depth of the equation.
We call afeasible solutionof the SRE a pattern function

fX, = < a XX - a), Y (5. 2)

and an initial value specification

Yo =9 @4 (X@4 , =+ 24,) X
- (5. 3)
Ye: =0 @1 (X@1, = @#+1X)
such that if
Yar =f @n(X, - - 4, WX - 4) ¥y >0 (5. 4)

then Eq.(5.1) holds true.

The equation resulting from the inverter optimization problem of Example (43) is
thus precisely an SRE, wheté =y &y andG =z ' & 2.

The presence aflon't care conditions in Example (44), however, does not allow us
to cast the optimization problem as an SRE, in the way it is defined above. We extend
the definition by replacing Eq. (5.1) with the pair of inequalities:

an(x7 X - - d)SF(Xv X - -4, YRY - - d);éFme(Xv X - - d)7 X(5 5)

5.2.1 Optimization of synchronous circuits by recurrence equations

The previous section showed that the degrees of freedom associated with a gate in an
acyclic network can be expressed by a recurrence equation in terms of the primary input

CHAPTER 5. RECURRENCE EQUATIONS 121

variables. This equation can be obtained easily if representations of the furi€taom
FY are available. In order to apply recurrence equations in a sequential logic optimization
engine, the following problems must be solved:

1) How to find a minimum-cost solution to a recurrence equation;

2) How to keep into account the presence of internal signals during the synthesis step.

The following sections address these two problems in order.

A synchronous network realizing a function as in Eq. (5.2) may in general contain
feedback interconnections, &sis expressed in terms of the past valygs - - 4. .Iny
this work we focus our attention on simpler solutions, in the fdtm - - ;) .oxly.
Otherwise, the optimization of a vertex may introduce feedback and methods other than
recurrence equation would be needed for its optimization.

Such solutions are hereafter calladyclic. It is worth noting that acyclic solutions
need no initial value specifications.

5.3 Finding acyclic solutions.

Our solution procedure is essentially divided in two steps. The first step consists of
transforming the synchronous synthesis problem into a combinational one, by providing
a characterization of the acyclic solutions to an SRE.

We recall that Eg. (5.1) representsfuanctional equation, i.e. an equation whose
unknown is the functiorf(x, - - 4)., b turn, f is completely described by its truth
table; the truth table entries of the functibthen represent the actual unknowns of the
problem. The preliminary step consists of determining a representation of the truth tables
corresponding to feasible solutions. The second step consists of the search procedure for
optimum solutions. We focus in particular on minimum two-level representatiofhs of

5.3.1 Representing feasible solutions

For the sake of simplicity, we limit our attention to the synthesis of a single-output func-
tion f , the generalization to the multiple-output case being conceptually straightforward,
but computationally more complex.

CHAPTER 5. RECURRENCE EQUATIONS 122

The support off is formed by then x d variables representing the components of
the vectorsx, - - 4. Amy such function can be represented by its truth table, of2
entries. These entries are here denoted’lhpy =0, - - =% 211

A function f is completely specified once aji's have been assigned a value. At
the beginning of the solution process, none of fhare known, and there are in general
several possible assignments, corresponding to feasible solutions of different cost.

Example 45.

For the problem of Example (43), we seek a functjofi: , 1y of minimum

cost that can replace the inverter. The function is entirely described by its
truth table, represented in Table (5.1). The entrigs , 4 4 represent

the unknowns of the problem. Definite feasible solutions are represented by
fo=1, A=1 =0, f3=0 (corresponding to the original inverter) and by
fo=0, A =0, =1 f3=1 (corresponding to the simple interconnection).

O
For each assignment of - - ;, Eq (5.1) specifies a constraint on the possible

assignments t@/, - -4: Such constraints can be expressed by means refation
table associated with the SRE. The left-hand side of the table represents the assignments
of the inputsx, - - 4, while its right-hand side represents the corresponding assignments
toy, - -4 -thatsatisfy the SRE.

v || f

0 Of fo

0 1|h

1 0| f2

1 1]/

Table 5.1: Symbolic tabular representation of an unknown funcfion , 1.

Example 46.
The SRE associated with the problem of Example (43) is

vy Gy Gy

1In this case, the subscript denotes the entry number and is not a time stamp.

CHAPTER 5. RECURRENCE EQUATIONS 123

Corresponding to the assignment, say,) =(0, 1), the SRE reduces to
the constraint Ky ¢y <1, thatis,y &y =1.

Table (5.2) contains the relation table for this SRE. The second column shows
in particular the assignments of, jythat satisfy the SRE, corresponding to
each assignment of, = The relation table for the problem of Example
(44) is shown in Table (5.3). O

T 1 X2 Yy Y
0 0 - |o00 11
0 1 - |01 10
1 0 - |01 10
1 1 - | o0 11

Table 5.2: Relation table for the inverter optimization problem.

a b a by ax b Yy u
- - - 0 - - _
- 00 1 - 00— -0
- 01 1 - 0| o01 10
- -1 1 - 1 00, 11
-1 - 1 - 1 00, 11

Table 5.3: Relation table for the problem of Example (44). Dashes représehicare
conditions.

Recall that we are seeking solutions in the foym=f (x, - - 4)., Corresponding
to each entry of the relation table, we can re-express the right-hand side constraints on
y, - -4-as gonstraints on thg’s, as shown by the following example.

Example 47.

For the relation table of Tab.(5.2), corresponding to the assignfment;)
= (0, 0, 1), the possible assignments foy;) are either(0, 0) or (1, 1).
Since we assumg =f (z,1randys =f (x1, #), we havey =f (0, 0) =§

CHAPTER 5. RECURRENCE EQUATIONS 124

andyi =f (0, 1) =fi. Therefore, the possible assignmentsifor y are also
described by

(fo+f D(fo+f 1) =1 (5. 6)
The same process is repeated for all rows of the relation table. The resulting
constraints on the entry variablgs are described in Table (5.4)0

Ty

0 0 Of(f fo)(fo -I-f 0) =1
0 0 1|(fo+fu)(fo+f1)=1
0 1 O|(fi+f2D(fr+f2) =1
0 1 1| (fi+fofaitfa)=

1 0 O|(fa+folfatfo)=

1 0 1| (fz+f D(f2+f):1
1 1 0| (fa+f2)fs+f3) :1
1 1 1| (fi+fa)fa+fi)=

Table 5.4: Transformed relation table for the inverter optimization problem.

A function /' represents a feasible solution to an SRE if and only if all the constraints

appearing on the right-hand side of the relation table hold true. It is thus possible to

represent such constraints by means of their conjunatenby a single equation of type

K(fiij =0, - -0 21) =1 (5. 7)

Example 48.

In the inverter optimization problem, the conjunction of all the relation table
constraints produces:

K=foBf)(fi® f3)(iTf)

In the problem of Example (44), by considering a solution in the form
f (b ,1,ad), we have eight unknowng;;; =0, - - - , 7. It can be verified
that they must satisfy

= (f1H DA H) fs@® fa)(fs® fo)(fsBfs) faBfr) =1 (5 8)

CHAPTER 5. RECURRENCE EQUATIONS 125

Figure 5.3: BDD representation &f for the optimization problem of Example (48)

It is in practice convenient to represefitby means of its Shannon decomposition
tree, or its BDD. For Example (48), the BDD of the functibnis reported in Fig. (5.3).
It is worth noting that each path of the BDD &f corresponds to a partial assignment of
the entriesf; resulting inK =1, hence it represents a feasible solution: The BDIX of
is a representation of the set of feasible solutions of the SRE.

Definition 5.2 We callsupport setof K (indicated byS U P R) the set of entry variables
f; that appear in its BDD. The don't carsetof X, denoted byDCYx, is the set of entry
variables thatdo not appearin the BDD.

Entry variables belonging t@Cx can be set arbitrarily in every feasible solution:
they represent dont care condition common to all such solutions.

CHAPTER 5. RECURRENCE EQUATIONS 126

5.4 Minimum cost solutions.

In the previous chapter we mapped the solution problem of a recurrence equation into
the following combinational synthesis problem:

given determine
an expressioriC(f;) in terms of the minimum-cost functiorf such
the 22¥ — 1 entriesf; of f ; that € =1.

It is worth remarking on the differences between this problem and other combina-
tional synthesis problems considered in the literature. The classic theory of incompletely
specified functions [4, 3] considers incomplete specifications in which each entry is either
assigned a value, or isdon't care. Unspecified entries can be filled in arbitrarily.

A first generalization to the classic theory (the minimization of Boolean Relations
[31, 8]) has been considered in the context of optimization of multiple-output combi-
national circuits [31, 8]. It was shown in particular that for some multiple-output logic
optimization problems correlations exist between assignments to the same entries of dif-
ferent incompletely specified functions. Note, however, that different entries of a single
function could still be chosen independently. In the present case, instead, assignments
to different entries are "correlated” : for example, by looking at the expressian
Example (48), it is easy to see thatand fs must always be assigned opposite values.

We developed an algorithm for solving the combinational problem, with a strategy
similar to the Quine-McCluskey algorithm for Boolean functions [4, 3, 6, 31, 8]. It
first identifies a set of candidate prime implicants and then synthesizes a minimum-cost
solution.

Definition 5.3 A cube ¢ (X, - -4} onxhe variables ok, - - , is the product of some
such variables, in either true or complemented form. The variables appearingdre
termed thesupport of ¢ . Thesizeof a cube is the number of variables not in the support
of ¢ : cubes with larger size have fewer literals. A cube of size Onsirgterm. A cubec

is a candidate implicant if there exists a feasible solutioh > ¢ . A candidate implicant
is a prime if there exists a feasible solutigh for which ¢ is prime, i.e. for which there
is no implicante of f that strictly contains: .

CHAPTER 5. RECURRENCE EQUATIONS 127

We represent a feasible solution as sum of implicants. If a eulepart of a feasible
solution f , then for each assignment ®f - -, -suck that: =1 it must also bef =1.

Definition 5.4 We call the set of entry variable§ for whiche =1thespan S E of ¢ .

In the solution algorithm, cubes are represented by two different encodings. The first
encoding is by its logic expression in terms of the variablex,of - ;. ,Tke second
encoding reflects that a cube represents a set of entriesfaf A cube is thus also
encoded as a product of entry variabfeswith each entry variablg; appearing in true
form if it appears inS P, and complemented form otherwise.

Example 49.

For the problem of Example (44), the cubgh, covers the entrieg; and f7.
It is thus encoded by a produéff; f5fafifeféfz. O

5.4.1 Extraction of primes

This section describes the steps in the construction of the list of candidate primes.

The starting point of the procedure is a list of all candidate implicants of size.Q, (
all candidate minterms). By definition, a mintermis a candidate implicant if and only
if there is a solutionf > m. Let f denote the (unique) entry ¢f F,,. Hence,m is a
candidate only if there is a solutiofi such thatf =1, i.e. , if there is a path in the
BDD of K with f; set to 1.

It is worth noting that, according to this definition, minterms covering elements of
DC are candidates as well.

The set of candidate minterms can thus be identified by a simple depth-first traversal
of the BDD of the functiontC.

Pairs of minterms that differ in only one literal are merged to form a cube of size 1,
by removing the differing variable. Unlike the Quine-McCluskey procedure, however,
we must check whethéf. =1 has a solution before listing the new cube as an implicant.

This test is equivalent to checking whether the functiorrontains the product rep-
resentingS P. This test can also be performed by a depth-first traversal of the BDD of
K.

CHAPTER 5. RECURRENCE EQUATIONS 128

Example 50.

Consider the BDD of Fig. (5.3). All entries appear in it, except fprand

f2, which representlont carescommon to all solutions. There are thus 8
candidate minterms, each corresponding to an entry. These minterms are
listed in the first column of Tab. (5.4.1).

Following McCluskey ([40]), they are encoded and sorted by syndrome.

Adjacent candidates are then merged, to form candidates of size 1. For
instance, minterm 000 is merged with 001, 010, 100 to form the three can-
didates 06-, 0—0, —00.

Each candidate is then tested #0r = 0. For example, the candidate impli-
cant 10-, resulting for merging 100 and 101, is not acceptable, because no
path in the BDD ofK hasf, =f 5 =1.

The second column of Tab. (5.4.1) shows the remaining candidates of size

1. O
b qbl
size 0| size 1| size 2
000 00- |--0
0-0 |0--y/
001 -00
010 --1y/
100 0-1
-01
011 01-
101 -10
110
-11/
111 |11/

Table 5.5: Extraction of the prime implicants for Example XXX

Adjacent implicants produced at this point are then merged to form candidate impli-
cants of size 2 and so on, until no new implicants are generated.

Example 51.

CHAPTER 5. RECURRENCE EQUATIONS 129

Consider constructing the list of candidates of size 2 of Fig. (5.4.1). First,
candidates of syndrome 0O are first compared against those of syndrome 1:
Candidate 0- — is generated first, by merging 80with 01—. It represents a
cube containingfo, , 4, 4 Itis an acceptable candidate, becak&e, =

fi =f2=f3=1) /=0. Candidate—0— is generated next, by merging

fo, & 4 4 Itis not an acceptable candidate, becakis¢y =f 1 =f 4 =

fs =1) =0. Likewise, the candidate-1— is not acceptable, because

Kfo=f1=fe=f7=1)=0. D

After generating implicants of size it is convenient to discard all implicants of size
k — 1 that are not prime.

An implicant is recognized prime as follows. First, every implicant of gize 1 that
is not contained in any implicant of siZe is immediately recognized prime. Unlike the
case of ordinary two-level synthesis, however, it might be the case where an implicant
although covered by another implicanbf larger size, may still be a prime. This occurs
because each candidate can be an implicant of several different feasible solutions. It may
then be the case that the solutiohsfor which ¢ is an implicant do not coincide with the
solutions for whiche is:

Example 52.

Consider the implicant-11. It is contained in the solution with truth table
entries: fs=fs=f7=1fo=f1=f2=f4=f6=0, and it is a prime
of this solution, although it is contained in — 1. Notice that this second
candidate is not even an implicant of this solutionl

A second check for primeness is then necessary. In particular, for each prime that has
not passed the first check we need to verify if there exists a feasible solution for which
it is a prime.

The routinecheck _primality below performs this check. It takes as inputs the
BDD representations of and of the spans$ £2,, S £, with ¢; < ¢, and tests whether
there exists a feasible solution containinngand notc,.

The routine proceeds by identifying those entrfesuch thatc; =0 andec , =1. It

CHAPTER 5. RECURRENCE EQUATIONS 130

returnsTRUEIf there is a path in the Shannon decomposition tre& dhat contains:;
and such that at least orfe takes value 0.

int check_primality(cl, c2, K)
BDD c1, c2, K;

/* terminal cases */
if (K == ZERO_BDD) || (K == ONE_BDD)) return (FALSE);
if (c_1 == c_2) return(FALSE);

if (c_l.false == c_2.false == ZERO_BDD)
[* current entry is present in both implicants */
return(check_primality(c_1.true, c_2.true, K.true));

if(c_1.true == c2.true == ZERO_BDD) {
[*current entry is absent from either implicant */
result = check_primality(cl.false, c2.false, K.false);
if (result == TRUE) return(result);
return(check_primality(cl.false, c2.false, K.true));
}
if((cl.true == ZERO_BDD) && (c2.true != ZERO_BDD)) {
/* entry present only in c2 */
/* look for solutions containing only cl */
result = cube_in_function(cl.false, K.false));
if (result == TRUE) return(result);
[* if not found, continue search */
return(check_primality(cl.false, c2.true, K.true));
return((K == ZERO_BDD());

CHAPTER 5. RECURRENCE EQUATIONS 131

Table (5.5) indicates with a/ mark the primes for the optimization problem of
Example (44)).

5.4.2 Covering Step.

Once the list of primes has been built, Petrick’'s method is used to construct the subsequent
covering problem [47, 31, 8]. Lel denote the total number of primgsa, - - x},. ¢
The general solution is written as

N
= ac, (5. 9)
r=1

where the parameter variahle is 1 if ¢, is present in the solution, ard. =0 otherwise.

Several cost measures can be applied. One such measure is the number of implicants
in the solution: each implicant has then a unit cost. Another measure may consist of the
total number of literals in the expression. Each implicant would then contribute with a
cost proportional to its size. In either case, the ddSbf a solution is expressed by

N
W= ZwTozT (5. 10)

r=1
wherew, is the cost associated with each prime

Let x denote theg*" assignment (of dimension; x d) to the variablex, - -;(i.ex
x9=00 .. 600 .. 1,..). ForeadlfSUP R, it must be

ﬂzzmqm. (5. 11)

This equation expresses the entrfesn terms of the parameters,. By substituting
these expressions i, we obtain a new expressidn, («,;r =1, - - - , N) of the feasible
solutions in terms of the variables..

The synthesis problem is thus eventually transformed into that of finding the minimum
cost assignment to the variables such thatX, =1, and it is known in the literature
as Minimum Cost Satisfiability or Binate Covering problem. Its binate nature comes

CHAPTER 5. RECURRENCE EQUATIONS 132

from the possibility for some of the parameter variablesto appear in both true and
complemented form in the conjunctive form kf,, as shown by the following example.

Example 53.

For the optimization problem of Example (44), there are five primes, namely:
c1=a 1b1, £=b b1, £=b 4, £=a ', &=b 1. From Eq. (5.11),

fi=astas fs=a24a s
fa=a1tas fo= as; (5. 12
fa= a3 fr=a 140 24a s

The equatioriC =1 can now be rewritten as

Ko = (a sab+a §)(ahab 4o 5)
[(ca +a 5) @ ag][(a1 ta 5) &)
[(c1 4o 5)D (a2 +a 5)]
[(0q e 5)B (a1 +a 2+ 5)] =1L

(5. 13)

There are two minimum-cost solution to this equation, namely-1, «; =
0;; /=5anda=1 « =0;; /=3. These solutions correspond to the
expressions:

y =b; y =by;

respectively. Notice in particular that K is represented in Conjunctive
Normal Form (CNF), then als&,, is automatically expressed in this way.
The construction of the functiok’,, is thus simplest if a CNF fok is
available.

Figure (5.4) shows the circuit after optimization. The gate producing the
signaly has been replaced with a direct wiretto O

We now contrast this procedure against ordinary two-level optimization for combi-
national circuits. In the case of the Quine-McCluskey algorithm for ordinary Boolean
functions, the covering step is also solved by branch and bound methods. Beginning
from a void initial solution, implicants are iteratively added until a complete cover is

CHAPTER 5. RECURRENCE EQUATIONS 133

>

Figure 5.4: Circuit of Example (44) after optimization.

achieved. Different orders of inclusion result in different solutions, among which the one
of minimum cost is selected. It is worth noting, however, that at any step the addition
of an implicant to a partial cover can only improve the cover and, in the worst case,
produce a sub-optimal solution. This is reflected by the unate nature of the fukction
that would result for this class of problems.

In our case, the binate nature of the function has a negative impact on the com-
plexity of the solution procedure. It might in fact be the case that two implicaaip
not appear in the same cover. For our current example, this is precisely the case of
andcs: No feasible solution can in fact contatg andcs together, and this is reflected by
the binate claus@ «; +« 5) & a3 in the constraint equation. During the search process,
the addition of a prime to a partial cover can then invalidate the cover, thus representing
a source of backtrack conditions.

5.5 Recurrence equations for sequential optimization.

The previous sections showed that SREs expressldh& cares associated with a gate

in an acyclic circuit, and outlined an exact two-level synthesis algorithm for SREs. This
algorithm, however, is not yet suitable for a direct implementation in a logic synthesis
environment, for the following two reasons.

First, since the SRE is expressed in terms of the primary inputs only, we would
neglect the possibility of using internal signals for optimizing each gate. Second, the
complexity of the synthesis algorithm makes it very inefficient for more than 5-6 input
variables. To this regard it is worth observing that the suppok girows exponentially
with the number of these variables.

In order to make recurrence equations useful, we must "translate” the degrees of

CHAPTER 5. RECURRENCE EQUATIONS 134

freedom they express intdon't caresin terms ofa limited number of internal signals.
To this regard, the local inputs of the gate represent the obvious choice.

5.5.1 Image of a SRE.

The "translation” problem can be formulated as follows. We are given an SRE in terms
of the primary inputsc of a circuit and an internal variable. This equation can be put
in the form

R(Xv T dy WYX - d):]r Y (5 14)

Let z denote the vector of the local input variables for the gate under optimization. Let
n; denote the dimension & We know that the gates drivingrealize pattern functions
of the same inputg, - - 4, Lex:

z=G(X, %, - - 4)., X (5. 15)
We want to construct a new SRE :

S(z, y, -2)=1 y (5. 16)

expressing the same constraints as Eq. (5.14) in terms of the local vazables

This is accomplished as follows. First, we augment the funcBoimto a function
H(x, X - - 4, ,y%X - a) Withyn; +d components. The first, components oH co-
incide with those ofG, while the remaining components are the identity functions for
Yy,1y - - d- 5 Y

As mentioned in sections (4.1-4.2), corresponding to each pattern of depfhthe
primary input variablex, the SRE describes the set of acceptable pattergs with the
same depth. The functioR thus describes a set of acceptable patterns of the variables
X, Y.

Consider now thémage of the set ofunacceptablepatterns (described bR ') under
the functionH. It represents a particular set of patternszofy , - ;.- Letyr denote
this set of patterns.

One pattern is i, if there exists an unacceptable pattern of varialileg; of depth
d that can produce it. Hence, this pattern must be unacceptable. All patterns not in

CHAPTER 5. RECURRENCE EQUATIONS 135

this set, instead, are perfectly acceptable, as they cannot be the result of an unacceptable
pattern.
Hence, we take as functiofi the following:

BDD *SRE_image(R, y, d, function_list)
BDD *R; /* BDD of the SRE*

var *y; [* variable */

int d; [* depth of the relation */

list *function_list; /* list of local inputs */

function_list = augment(y, d, function_list);
return (COMPLEMENT(image(COMPLEMENT(R), function_list));

In the above pseudocodieinction _list is the list of local inputs of/, expressed
as functions of the primary inputs. This function listasgmented to form the list
representingd. Then, the actual image computation®fis carried out, and the result
complemented.

5.6 Implementation and experimental results.

We implemented in C the algorithms described in this chapter, and tested them on standard
synchronous logic benchmarks. A network is first made acyclic by identifying and break-
ing feedback paths. Several choices are available in this respect. One possibility consists
of identifying a minimum set of feedback vertices and breaking the feedback loops ac-
cordingly. This approach grants a minimum number of feedback variables. Another
possibility we considered was of breaking feedback loops during a depth-first traversal
of the network. We took this second option, thereby granting some minimality of the
varibles we have to deal with. The first five columns of Table (5.6) report the statistics
of the sequential benchmark circuits considered for test.

CHAPTER 5. RECURRENCE EQUATIONS 136

For each circuit, the SRE of each gate is built, and mapped into the gate’s local
inputs. Each gate is then optimized.

The last two columns of Table (5.6) report the final literal count and CPU time after
optimization. The results were obtained on a SUN SparcStation LX.

Circuit || inputs || outputs|| lits || regs|| optl | cpu

s208 | 11 2 166 || 8 108 | 3
s298 | 3 6 244114 || 155 14
s344 || 9 11 269| 15 | 186 | 25
s420 | 19 2 336| 16 | 251 | 258
s444 | 3 6 352| 21 | 202 | 142
s641 | 35 24 539| 19 | 241 302

Table 5.6: Experimental results for some logic optimization benchmarks.

5.7 Summary.

This chapter showed that the representation of structlmalt caresat the sequential

level requires a new means. In the case of acyclic netwalds} caresare represented
fully by a Synchronous Recurrence Equation.The gate optimization problem is then
cast as that of finding a minimum-cost solution to this equation.

A two-step exact solution algorithm has been proposed. The first step transforms
the synchronous problem into a combinational one, which we have shown to differ from
those previously considered in the literature. An exact algorithm for the latter problem
is then presented.

Unfortunately, the algorithm requires treating each truth table entry of a function as
an independent Boolean variable. The number of these variables is then exponential in
the number of gate inputs, and represents the major bottleneck of the algorithm.

Other sources of complexity are presented by the binate nature of the covering problem
and by the complexity of the prime-finding procedure.

CHAPTER 5. RECURRENCE EQUATIONS 137

Nevertheless, the method is very attractive for the optimization of sequential logic,
because it makes available optimal solutions otherwise unreachable. We thus inserted the
SRE solving procedure in a sequential logic optimization program. Experimental results
show an improvement of about 7% over previously optimized circuits. The CPU penalty,
however, is occasionally severe.

The method is thus probably best used only for the optimization of selected gates,
for example those in the critical path of the circuit.

Currently, the global feedback function of the optimized network is not changed.
This actually represents an unnecessary restriction to optimization: the feedback function
can, in principle, be altered, as long as the observable terminal behavior of the entire
network is not affected by this change. Further investigation on this aspect could result
in algorithms leading to better quality optimization results.

Chapter 6
Cyclic synchronous networks

The simplest approach to the optimization of a cyclic netwdrkonsists of optimizing

its acyclic portionN; by the algorithms of Chapters (4-5), and regarding the feedback
inputs and outputs as primary inputs and outputs, respectively. Intuitively, as the feedback
interconnections are not directly controllable nor observable, this approach neglects some
degrees of freedom. For example, some feedback sequences may be never asserted by
the network and may therefore be considered as an external controllalwhty care
condition for N;. Moreover, some values of the feedback input may be never observed

at the primary outputs. As these inputs are generated by the feedback ouphits of
these conditions actually represent an external observabiitst care condition of the
feedback outputs aiv,.

In this chapter, we consider capturing the existence of thdesé care conditions in
the form of virtualexternal dont care seten NNV,.

The rest of the chapter is organized in two major sections. The first section focuses on
the impossible input sequences caused by the presence of feedback, while the subsequent
section is devoted to observabilidont caresinduced by the equivalence of feedback
sequences.

138

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 139

6.1 Modeling of cyclic networks.

In Chapters (4-5) we used extensively pattern functions to model the input/output behavior
of acyclic networks.

The presence of feedback renders the behavior of cyclic networks more complex. In
particular, it may not be captured by a sequence function:

Example 54.

Consider the circuit of Fig. (6.1.a). Corresponding to an input sequence

...0, 0, O, ...,thetwosequences...®, O, ...and... 1 1 1 ...arepossible
at outputy . The two responses are due to the unspecified content of the delay
element.

S 5§>;> s

(@)

Figure 6.1: Circuit requiring a reset to realize a sequence function.

a

The appropriate modeling of one such network would be by meanssegaence
relation. Informally, a sequence relation maps a sequence of input symbols g&toé
sequences of output symbols.

The behavior of a circuit with; inputs andn, outputs is thus captured by a relation

F o (B™) —P((B")*) (6. 1)

For example, for the circuit of Fig. (6.1.af(0) ={ 0, 1}.
We denote byFg,(s) the set of values possibly taken by the network output at time

This modeling, however, is too complex in practice. Most circuits are designed with
a reset sequence, so that their output is uniquely identified, at least for all time-points

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 140

n > 0.1 Moreover, the outputs are regarded as irrelevant at time 0. Under these
assumptions, the terminal behavior of a cyclic network can be modeled by a sequence
function F as well, in the sense that for each input sequencd=(s) could differ from
any of the possible network outpufS(s) only forn < 0.

We now cast these assumptions (namely, not observing the outputs at tiné,
and applying a reset to the circuit) in a more formal setting.

6.1.1 The reset assumption.

We assume that a particular input pattern is applied at time 0, so that the value taken
by all delay elements at time 0 is known. We assume that this pattern has a finite length,
and thus occupies some time interyalR, —1].

All sequences not containing this pattern are regarded as impossible input sequences
for the circuit. To describe this set, it is convenient to introduce a sequence function
R:(B™)¥ —(B ™)~. The functionR(s) takes valuel if the sequence contains the reset
pattern, and takes valu®otherwise.

Not observing the outputs at time < O can be modeled by a suitable sequence
function as well. We introduce a functid: (B)~ —(B ")~. The functionO(s) takes
valuelg, for n < 0, and takes valu@, otherwise.

Reset and initial non-observation are taken into account by assuming that

DC > R 40 (6. 2)

It could be shown easily that, under the assumptions of reset and the non-observation
atn < 0, it is possible to construct a functidghwhose values coincide with the network
outputs forn > 0. In other words, there exists a functiénthat represents adequately
the terminal behavior of a cyclic network for the time-points> O of interest.

1This is usually accomplished by adding a dedicated reset input, as shown in Fig. (6.1.b). We regard
these additional inputs just as ordinary primary inputs.

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 141

6.2 Feedback and external controllabilitydon't cares

In this section, we consider modeling the effect of feedback as an added controllability
dont care on the inputs of the acyclic portion of the network. We explain the methods
by analyzing the case of the circuit of Fig. (6.2) .

P e :

@

) ol

(b)

Figure 6.2: Working example for the computation of controllabitign't cares.

The circuit of Fig. (6.2.a) implements a very simple finite-state machine, namely, a
two-bit shift-register. The circuit was realized from its state diagram after an inappropriate
encoding of the states.

Inputsz andr denote the primary and reset inputs, respectively. Reset is applied at
time —1, zeroing the content of both registers at time 0.

As far as externatlon't caresare concerned, no input sequence wigy =1 is
applied. We also assume, for simplicity, that no other extedoalt caresare present.

The circuit contains two feedback lines, labeledandt , respectively. Cutting these
feedback lines produces the circuit of Fig. (6.2.b). The outputs of the acyclic subnetworks
are described by the pattern functions

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 142

Z=r1{a®[rhaz®t2)]}
S =ri{a® ez ®t2)]} (6. 3)
T = s @[h(xsDt1)]
Hence, the output at each time-poit depends on the values of, r, s, ¢ at time
n, n —1 n — 2. Because of feedback, some patterns of values ,ofr , s, ¢t over a time
span of length 2 may be impossible. In order to simplify the circuit, it is thus necessary
to identify which patterns of , », s, ¢ can occur.
Because we do not observe the outputs at time: 0, we are actually interested in
the patterns that can occur over the time interyals— 2, n| only forn > 0.
Consider first the time-interval-2, 0]. We already know that the value g@f is
1. We also know that the values of and¢ at time O are linked to their past values by
Eq. (6.3). Hence, only some combinations of these values is possible, namely, those
satisfying Eqg. (6.3) at time 0.
We describe this set by a characteristic function

Ceo> = 1 (D(ri{ 4@ (w2 D)})
(t5(s @ [f(z1 1)) = (6. 4)

r1s8't

In general, we describe the set pdssible patterns in the intervdl—2, 0] by means of

a pattern functiorC' o~ . The subscripc : > hereafter is used to indicate an iteration
count. The pattern functiofi o takes value 1 at time O corresponding to those patterns
in the interval[—2, O] that can occur at the network inputs. In other words, taking

Cox @0 =" @1 Sadt@o (6. 5

provides a set of possible patterns over the intepvé, 0]. Eq. (6.5) correctly indicates
that, as a consequence of reset, only-0 and¢ =0 are possible combinations.

Eq. (6.4) represents only a first estimate of the set of possible sequences in that
interval. We have not taken into account, for example, that the valugsasfd¢ at time
—1 are fixed by the feedback network as well, and that therefore only those sequences
that satisfy Eq. (6.3) at time-1 are possible.

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 143

A more refined expression @f o would then be

Coo> = r a(sB(ri{ 4@ [1h(z2 S t2)] }))-
(tS(s & [Hzr B t)]))
(518(rp{ 2 B ry(zs b ta)] }))-
(t2B(s1 B [1h(x2 @ 12)]))

(6. 6)

Further refinements can be obtained by adding similar expressions regagdamgl ¢,

and so on, the limit being fixed by the complexity of the resulting expression. Notice also
that the expression (6.6) contains literals outside the intérval 0] of interest, namely,
r3, 4, . The removal of these spurious literals by existential quantificatiproduces

the following final expression:

Cos =r 15t [rasit] 4 5(s1 D 112 B t2)] . (6. 7)

Notice that estimate (6.7) is smallare{ more accurate) than (6.4).

The next step of the process consists of finding the set of possible patterns of inputs
in the interval[—1, 1], that is, the possible combinations of valuesgaf, ®o, ®1,
s@1, @0 @1 - - -

Consider first a simpler problem, namely, finding the patterns of one of the signals,
say,t , over the time span—1, 1]. We are given the patterns over the time spa2, 0].
Because the two time intervals overlap, all we need to do is express the dependency of

t@l from t@o7 @_1 .

t@xs =t 1, @0
te0 = 0 @0 (6. 8)
t@l =T @1 =T 4, @0 :(T /{ s @ Eﬁxl S%; tl)] } @0 .

Eq. (6.8) expresses the valuestgf, , &o, &1 by means of some pattern functionstof

the first and second one being in particular the retiming by one and the identity function,
respectively. It is thus possible to obtain the combinations of valueg of &o, &1 by
computing the image of' o~ according to these functions.

2Existential quantification is used because we are interested in patterns that can occur, hence, that can
happen for some value afs, t3, r3.

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 144

Now, for the complete problem, we compute the imageCQf. according to the
following equalities:

rT@41 =T 1,@0

T@0 = 0, @0

r@1 =" 4, @0

S@1 =S 1,@0

S@0 =S 0, @0

s@ =5 @1 =5 1,@ =(r '{ s @& ffr1®)]} do 6. 9)
t@xs =T 1, @0

t@o =t o, @0

te1=T @1 =1 1,@0 =(s 1 D [r(z Bt)@b
T@1 =T 1,@0

T@0 =T 0, @0

T@1 =T 1, @0
In this case, we obtain
I'mg (@) =s'y st'ri[ts S(r'z)] (6. 10)
The new estimate of the set of possible patterns is then

Ca> =C o> ‘|‘(I myg (C<0>))1 =
(rls’t’[rzs’lt’l +r 5(s1 P t1bas B tz)]) + (rzs’lt’ls’[t@(r’lxl)])
r1s't'[rasity +r 5(s1 B tiBag B to)] +r 2sitys (P H rix)

(6. 11)

The final estimate is obtained by the followifiged-point iteration:

Cat> =C 4> +(I myg (C<k>))1 (6- 12)

For the circuit of Fig. (6.2), the final result, after four iterations, is:

C = rori(t@r)(t1Bx2)(sDtr)(s1Dt2)+
ror1s't'(s1 @t B ta)+
rositirys (tdar)+

rositirys’t’ .

(6. 13)

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 145

Eq. (6.13) provides much information about the behavior of the circuit. The function
C' indicates in particular that, when no reset is applied for two clock periods (line corre-
sponding to the term beginning witljr5), thent ands represent the input delayed by
1 and 2 clock periods, respectively. Viceversa, if a reset is applied (entries lahgled
thens =0 andt =0.

The complement of’' represents a set of impossible input patterns for the circuit and
can be used for its optimization. We conclude this section by showing that using the
dont carederived so far it is possible to obtain the correctly encoded shift-register.

To simplify the presentation, rather than using the tldht care, we consider its
restriction to the variables in the expressionzof

DC =V 4+ AC") =[r 5ri(s1Dt2) +r Hr1 +r 257] . (6. 14)

The expression oDC was obtained fronC’ by consensu®ver the variables not
appearing inZ , namely,s ;25 t 1. t

Xt %t
rS;_00 01 11 10 TS\ 00 01 11 10

ooflo|-|-11 00|o|-|-1]o

o1| -0 |1]- o1L| - | -|-|-

11| --|-1- 11 --]-1-

10 -| - | - | - 10l 0| -1|1-1]o0

r2' Iy

Figure 6.3: Karnaugh map of the functiohh and of itsdont caresfor the two-bit
shift-register problem

Fig. (6.3) shows the Karnaugh map of the functinalong with itsdont cares.
A minimum-cost realization is provided by the expressign;z,. This expression is
precisely the one realized by the properly-encoded shift-register, shown in Fig. (6.4).

6.2.1 Don't caresand state-space traversals

The problem of finding the input controllabilitgont caresfor a circuit with feedback
bears an evident similarity with the identification of the set of reachable states in a finite-
state machine [48]. In the present iteration, the role of “states” is played by the patterns

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 146

r

Figure 6.4: The correct version of the two-bit shift-register, as obtained by optimization
with controllability dont cares.

of input and feedback variables.

Two aspects that distinguish the two problems are, however, worth remarking. First,
we consider values on the feedback wires over a predefined, but othexrhiserily
longinterval, rather than values at individual time-points. Second, we can extract a set of
impossible patterns of inp@nd feedback values, as opposed to focusing on impossible
feedback combinations only.

We also remark on a difference of the present approach with respect to traditional
finite-state machine optimization. Traditional methods determine the set of unreachable
states and use this set dsn't carefor the combinational portion of the circuit. In the
case of the circuit of Fig. (6.2), every state is reachable, so theredemiocareavailable
for the optimization of the shift-register.

Notice also, however, that in order to determine the set of reachable states, one would
have to work with only three binary variables (the two state bits plus the input variable).
Moreover, convergence would be reached after just two iterations. With the present
method, we needed four iterations to converge and we had to operate on 9 variables.

6.3 Perturbation analysis of cyclic networks.

The algorithms of the previous section still regard the feedback output as a primary output.
The functionality of the network realizing the feedback output is thus left unchanged by
logic optimizationmodulothe external controllabilitgont cares. On the other hand, the
feedback outputs of a network are not primary outputs, and it may be possible to change
their value corresponding to an input pattern that occurs, as long as this modification is
not observable at the true primary outputs of the network.

We thus consider in this section associating an observalabtyt care with the

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 147

feedback outputs of the acyclic portion of a cyclic network. Again, we explain our
methods referring to a working example, namely, the circuit of Fig. (6.5).

(b)

Figure 6.5: a) A cyclic network decomposed into a acyclic subnetwork and a feedback
interconnection. b) Perturbed network for the AND gate optimization.

Consider the problem of optimizing the AND gate with outputin the circuit of
Fig. (6.5.a). The modification of the gate introduces a perturbation that may affect the
function realized at the feedback output. If the optimization algorithms of chapters (4)-(5)
are used, then this perturbation is bound in such a way that neither the primary nor the
feedback outputs are ever affected.

On the other hand, we may wish to let some error propagate through the feedback,
as long as it never affects the the actual output.

In order to derive the bounds on the perturbatiofior the AND gate, it is convenient
to compare the behavior of the original network with the network modifiedviny

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 148

perturbation signals, at the logic gate and feedback input, respectively, as shown in Fig.
(6.5.b). The perturbation signals are here denoted lando, respectively. The behavior
of the perturbed network is described by the output functigfy , o) and by the feedback
function Sv(6 , o).

In particular, F =F ¥(0, 0) andS =9(0, 0). As o represents the perturbation of
the feedback input, it obeys the recurrence

o =S¥(0, 0)& 86, AE 5. (6. 15)

The errors in functionality between the original and perturbed networks is described by
the function
E=FY0, 0O)@&F6, o). (6. 16)
The functiong¥ can replacefV if

Ee. < CDCy! 40DC &' =DC &' Yn > 0. (6. 17)

In the rest of this section we show that Eq. (6.17) can be decomposed into two separate
bounds orv ando , respectively. Ag,, models the perturbation of the feedback function
at timen , its bound represents implicitly an observabilitgn't careset forS at timen .
Moreover, we show that this bound is independent fromand can thus be computed
once and for all before the optimization of the network.

In order to derive this bound, we introduce the following auxiliary error functions:

EF LR s, o) @i, o) ELF v(0,)& KO, 0); (6. 18)
ES€S (s, o) @@, o) FES 10, ¢) @50, 0). (6. 19)
The following theorem allows us to split the problem of boundingand ¢ into two

smaller subproblems, concerniagandé separately, and represented by Eq. (6.20) and
(6.21), respectively.

Theorem 6.1 If the perturbations) , o, resulting from changitignto a different local
functiong¥, are such that
Ef .<DCg:¥n >0 (6. 20)

El 6, < DC*" @ pn >0, (6. 21)
then Eqg. (6.17) holds ang¥ can replacef?.

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 149

Proof.

It is sufficient to observe that Eqs. (6.20)-(6.21) imply
Ef=E o EY <EF+E I < DC* (6. 22)
O

Eq. (6.21) could in particular be resolved by the methods of chapter (4) into a bound
o <CDC™"+0DC % . (6. 23)

Eq. (6.23) can be interpreted as follows: if for each input sequentee perturbationr
is such that
oan < CDCa, +ODC % @, (6. 24)

then Eqg. (6.21) certainly holds.

Notice thatO DC%,, would be just the observabilityon't careof the feedback input
s computed in thexcyclic subnetworky,, assuming as externdbn't carespecifications
the vector:

(6. 25)

Dceﬂ B (CDCext _I_ODC ext)

CDC 41

Again, the subscripk 0 > indicates that the function obtained at this point is actually

the basis of an iteration process. The necessity and details of this process are explained
next.

6.3.1 An iterative procedure for external observability don't cares.

The bound (6.23) represents the extent to which the feedback input can be changed,
without changing the network behavior.

The feedback function can then be modified, as long as the introduced functional
error results in a perturbation obeying Eq. (6.23).

Because the errors on the feedback line obey Eg. (6.15), we must then ensure that

E® < CDC" +ODC %y, (6. 26)

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 150

as well. Equation (6.26) represents a constraint on the feedback output of the perturbed
network. It is formally identical to Eq. (6.17), and Theorem (6.1) could be applied again,
to obtain another pair of sufficient conditions:

E; <CDC* 4ODC %, (6. 27)
B2 < CDC* 4ODC %, (6. 28)

In turn, Eg. (6.28) can be resolved by the methods of chapter (4) into a second bound
placed ons . This second bound must again be regarded as a constraint on the function
E?®, and so on.

We thus face the problem of determining a self-consistent béubd'* < O DC?%;,
on o, namely a bound such that

0; <ODC%j =1, ..., P (6. 29)

implies
E* < CDC*"+ODC * . (6. 30)
This bound is determined by another fixed-point iteration as follows.

Beginning fromO DC%,, , we take as new estimat@DC? ., of ODC* the observ-
ability dont careof s , using as externalont care specifications

Dceﬂ B (CDCext _I_ODC ext)

CDC"" 40DC 2y,
The constrain < ODC;,., is then a sufficient condition for Eq. (6.28). Then, we

(6. 31)

intersect this estimate with DC%;,. , to ensure that the new estimate will be a subset
of the old one. The process is repeated until convergence. More in detail, the iteration
scheme is thus as follows:

¢ Initialize at 1 the external observabiligon't care of the feedback output ;

e Repeat:

— ComputeODC%, ., using the algorithms of chapter (4) on the feedback
input s .

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 151

= ODC% 11, =ODC 414, ODCY,

Theorem (6.2) below proves the correctness of the method. We first show an appli-
cation of the iteration to the circuit of Fig. (6.5).

Example 55.

We derive here the observabiliont caresetO DC* for the cyclic network
of Fig. (6.5). The longest path iB =2, and we assum@ D(C “** =0.

The functions realized by the network are

F =s,+s 16ay

S =alds +a a151 +a 1028152

(6. 32)

Initially, the feedback outputs is taken unobservable. By applying the
algorithms of chapter (40 DC3y, =(s 1 Da)és1.

The functionODC%,., at this point indicates that, whenever an input pat-
tern s;s’a g Or an input patterrs;s’a’s’, is applied at the inputs oiVy,

a perturbatior0 can be introduced without being observable at the primary
output at future times. +1, n +2. Notice, however, that it might change
the feedback output, and then affect the primary outputs in this way. For this
reason, the set of patterns that allow the introduction of a perturbation needs
further shrinking.

Notice also thaD DC?%,, depends os; . This dependency can be resolved
by using the equality

s =S(a, s) Fay4a arsy +a 1028752 . (6. 33)

Carrying out this substitution produc@sDC%,, =a 1s's1. This first estimate
is taken as external observabilidpn't carefor the feedback output . The
second estimate @ DC” is obtained by regardin@ DC%,, as an external
observabilitydont careof S and by applying the algorithms of chapter (4).

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 152

The intersection of this estimate withDC%,, eventually yield<O DC?,. =
a'ays’sy. This is also the final estimate, as a new iteration would produce
the same result.O

Theorem 6.2 For each arbitrary input sequence, suppose that a perturbation sequence
o is injected, such that

ca@; < CDCB@?(Z)HODCo.(2), j =P, ..., =1, (6. 34)
then:
can < CDCGY(z) +ODCH, (2) Vn >0; (6. 35)

and Eq. (6.21) holds.

Proof.

It is sufficient to recall that, because of the convergence of the algorithm,
0; <CDC*'40DC %5 =1, - - - | P (6. 36)

implies
o =FE° < CDC*"" +0DC * (6. 37)

6.4 Experimental results.

We report in this section on optimization results obtained by applyingdthvét care
extraction techniques of chapters 4 and 6.

We considered the synchronous benchmarks reported in Table (4.2). As no infor-
mation about reset sequences or reset states is available for these benchmarks, a reset
sequence consisting of consecutive zeros was selected for each circuit. The parameter
r was then assigned the valués P +1, P +2, with P denoting the longest path (in
terms of register count) in the circuit; feedbadn't care conditions were extracted and

CHAPTER 6. CYCLIC SYNCHRONOUS NETWORKS 153

Circuit r o= r =P +1 r =P 42

lit. | reg.| CPU| lit. | reg.| CPU | lit. | reg.| CPU
S208 72 8 16 || 58 8 21| 52 8 24
S298 109| 12 271 102| 12 44| 99| 12 51
S344 131 15 31| 127| 16 41| 122| 15 49
S444 144 19 291 131| 18 41| 127| 17 51
S526 216| 20 311 188| 21 341149 21 41
S641 209| 14 531 187| 15 64 || 150 14 88
S820 260 5 59 || 255 5 69 || 243 5 73
S832 261 5 65 || 245 5 98 || 245 5| 188
S1196 | 554| 16| 194 531| 15| 278| 521| 15| 456
S1238 | 625| 16| 238 609| 15| 277| 522| 14| 402
S1494 | 582 6 91 || 569 6| 191 565 6| 236
S9234.1)| 747 | 176| 785| 462 | 174| 987 | 398| 177 | 1686

Table 6.1: Optimization results

logic optimization of the acyclic portion were performed for each of these values. De-
lay elements were assigned finite cost, equivalent to 4 literals. It was thus in principle
possible to trade off combinational complexity by the addition of delay elements.

6.5 Summary

In this chapter we explored the possibility of taking into account the presence of feedback
in cyclic networks. We do so by adding suitable exterdaht care conditions to the
acyclic portion of the network. In particular, we presented fixed-point algorithms for the
computation of external controllability and observabildgnt care conditions. These
dont caresneed be computed only once at the beginning of the optimization process.

Chapter 7
Conclusions

In this work, we presented a suite of new algorithms for the structural optimization of logic
networks, both at the combinational and sequential logic level. The paradigm common to
these algorithms is optimization by local re-design of an original network: Each vertex
of the network, corresponding to a logic gate, is iteratively visited and optimized, until
no improvement occurs in the network.

This paradigm presented two main problems. First, we do not aqwiori what
functional changes can be made to a vertex. We thus needed a formal description of the
re-design space for each vertex of the network. Second, we needed to develop algorithms
for extracting quickly and using efficiently this re-design space.

In Chapter 2 we introducegerturbation theoryas a formal model for reasoning on
local perturbations of a network. There, we also restricted our attention to combinational
networks.

The design space for the improvement of a single vertex of a combinational function
is described by a Boolean function, describing implicitly a so-catledt care set for
the vertex. Based on perturbation theory, we were able to develop a new algorithm
for extracting thedont care function associated with each vertex of the network. The
efficiency of the algorithm is based on the optimal use of local rules.

It is often the case where tltmnt carefunction associated to a vertex is too complex
to be represented in practice. Perturbation theory allowed us to develop new approxima-
tion techniques. Unlike previous approaches, these techniques may, in the limit, yield the

154

CHAPTER 7. CONCLUSIONS 155

exact results. Moreover, we were able to compguantitatively these approximations
against previously published ones.

When the simultaneous optimization of more vertices is considered, the interplay of
the local perturbations on each function make the accurate description and the optimal
use of thedon't caresvery complex.

One possible strategy for overcoming these problems is to make conservative approx-
imations on theselont cares. This strategy was considered, for example, in [33, 36].
Perturbation theory allowed us the analysis of this case, and to evaluate the merits and
costs of the different approximation styles. We also developed a new optimization s-
trategy for multiple-vertex optimization. This strategy is presented in Chapter 3. It is
based on the identification of special sets of vertices, whose optimization is likely to
be “simple”. We showed that the joint optimization of these subsets of vertices can be
carried out by classical two-level synthesis algorithms. We were thus able to achieve a
higher optimization quality (with respect to single-vertex optimization) with only a very
reasonable increase in the CPU time.

In Chapter 4 we turned our attention to the case of synchronous networks. The
complete description of the re-design space associated with a single vertex suddenly
becomes much more complex. In particular, it is no longer possible to describe this
space by means of a function. On the other hand, this description is the only one that can
currently be exploited with efficiency. Therefore, Chapter 4 presents a way of extracting
a subset of the design space that can be expressed by a mhitdrgare function. In
Chapter 5, we introduce the notion of recurrence equations as a means for specifying the
dont caresfor a vertex in a general acyclic network. Chapter 6 extends the methods
to cyclic networks. A cyclic network is decomposed into an acyclic portion, containing
all the logic and delay elements, plus a set of feedback interconnections. The presence
of feedback induces an added controllability and observaliliyt caresto the acyclic
portion of the network. These exterr@bn't caresare computed once and for all before
the optimization of the acyclic portion.

Bibliography

[1] D.C. Ku and G.De Micheli. High Level Synthesis of ASICs Under Timing and
Synchronization ConstraintKluwer Academic, 1992.

[2] D. Ku, D. Filo, and G. De Micheli. Control optimization based on resynchronization
of operations. IrProceedings of 1991 Design Automation Confered@91.

[3] W. Quine. The problem of simplifying truth functionsAmerican Mathematical
Monthly, 59(8):521-531, 1952.

[4] E. J. McCluskey. Minimization of Boolean functionBell Syst. Tech J35(5):1417—-
1444, November 1956.

[5] S. J. Hong, R. G. Cain, and D. L. Ostapko. MINI: A heuristic approach to logic
minimization. IBM Journal of Research and Developmeih®74.

[6] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. Sangiovanni-Vincentelli.
Logic Minimization Algorithms for VLSI Synthesisluwer Academic, 1984.

[7] R. Rudell. Logic Synthesis for VLSI DesignPhD thesis, U. C. Berkeley, April
1989. Memorandum UCB/ERL M89/49.

[8] R.K. Brayton and F. Somenzi. An exact minimizer for boolean relationsPrbc.
ICCAD, pages 316—319, November 1989.

[9] M. Pipponzi and F. Somenzi. An iterative algorithm for the binate covering problem.
In European Design Automation Conferenpages 208-211, March 1990.

156

BIBLIOGRAPHY 157

[10] R. Ashenhurst. The decomposition of switching functions.Proceedings of the
International Symposium on Switching Thegpgages 74-116, April 1957.

[11] A. Curtis. New Approach to the Design of Switching circuitan Nostrand, 1962.

[12] E. L. Lawler. An approach to multilevel boolean minimizatioACM Journal
11(3):283—-295, July 1964.

[13] E. S. Davidson. An algorithm for nand decomposition under network constraints.
IEEE Trans. on Computer<-18(12), December 1968.

[14] R.Karp. Combinatorics, complexity, and randomnes€omm. of the ACM
29(2):98-111, February 1986.

[15] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. MIS: A
multiple-level logic optimization systemlEEE Trans. on CAD/ICAS6(6):1062—
1081, November 1987.

[16] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison, R. L.
Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang. Multilevel logic minimization
using implicit don’t careslEEE Trans. on CAD/ICAS/(6):723-740, June 1988.

[17] K. C. Chen and S. Muroga. SYLON-DREAM: A multi-level network synthesizer.
In Proc. ICCAD pages 552-555, November 1989.

[18] G. De Micheli, R. K. Brayton, , and A. Sangiovanni-Vincentelli. Optimal satte
assignment for finite-state machineieEE Trans. on CAD/ICASpages 269-285,
July 1985.

[19] S. Devadas, H.-K. Ma, A. R. Newton, and A. Sangiovanni-Vincentelli. Mustang:
State assignment of finite-state machines targeting multilevel logic implementations.
IEEE Trans. on CAD/ICAS/7(12):1290-1300, December 1988.

[20] J. Hartmains and H. Stearn#lgebraic Structure Theory of Sequential Machines
Prentice-Hall, Englewood Cliffs, N.J., 1966.

BIBLIOGRAPHY 158

[21] S. Devadas and A. R. Newton. Decomposition and factorization of sequential finite-
state machinesEEE Trans. on CAD/ICAS3:1206-1217, November 1989.

[22] S. Malik, E. M. Sentovich, A. Wang, R. Brayton, and A. Sangiovanni-Vincentelli.
Retiming and resynthesis: Optimizing sequential networks with combinational tech-
niques.|lEEE Trans. on CAD/ICASL0:74-84, January 1991.

[23] S. Dey, F. Brglez, and G. Kedem. Partitioning sequential circuits for logic opti-
mization. InProc. 3¢ Int’| Workshop on Logic Synthesi$991.

[24] C.E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing synchronous circuitry by
retiming. InProc. 3¢ CALTECH Conference on Large Scale Integrati@omputer
Science Press, Rockville, 1983.

[25] G. De Micheli. Synchronous logic synthesis: algorithms for cycle-time minimiza-
tion. IEEE Trans. on CAD/ICASpages 63—-73, January 1991.

[26] J. Kim and M. Newborn. The simplification of sequential machines with input
restrictions.IEEE Trans. on Computer<-20:1440-1443, 1972.

[27] S. Devadas. Optimizing interacting finite-state machines using sequadntiatares
. IEEE Trans. on CAD/ICASL0(12):1473-1484, 1991.

[28] J.-K. Rho, G.Hachtel, and F. Somenzi. Don't care sequences and the optimization
of interacting finite state machines. Rtoc. ICCAD IEEE Computer Society Press,
1989.

[29] R. E. Bryant. Graph-based algorithms for Boolean function manipulati&ikE
Trans. on Computers35(8):677—691, August 1986.

[30] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD
package. IrProc. DAG pages 40-45, June 1990.

[31] F. Somenzi and R.K. Brayton. Boolean relations and the incomplete specification
of logic networks. InIFIP VLSI 89 Int. Conferencepages 231-240, 1989.

[32] M. F. Brown. Boolean ReasoningKluwer Academic, 1990.

BIBLIOGRAPHY 159

[33] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The transduction method -
design of logic networks based on permissible functidBEE Trans. on Computers
38(10):1404-1424, October 1989.

[34] G. D. Hachtel, R. M. Jacoby, and P. H. Moceyunas. On computing and approximat-
ing the observabilitydon't careset. Ininternational Workshop on Logic Synthesis
1989.

[35] P. McGeer and R. K. Brayton. The observabilitgnt care set and its approxima-
tions. InICCD, Proceedings of the International Conference on Computer Dgsign
September 1990.

[36] H. Savoj and R. K. Brayton. The use of observability and external don’t cares
for the simplification of multi-level networks. IRroc. DAG pages 297-301, June
1990.

[37] A.C.L. Chang, I. S. Reed, and A. V. Banes. Path sensitization, partial boolean
difference, and automated fault diagnosiEEE Trans. on Computer1(2):189—
194, February 1972.

[38] H. Savoj, R. K. Brayton, and H. Touati. Extracting local don’t cares and network
optimization. InProc. ICCAD pages 514-517, November 1991.

[39] M. Damiani and G. De Micheli. Efficient computation of exact and simplified
observabilitydon't care sets for multiple-level combinational networks. Ilimterna-
tional Workshop on Logic and Architecture Synthegipril 1990.

[40] Edward J. McCluskeylLogic Design Principles With Emphasis on Testable Semi-
custom Circuits Prentice-Hall, 1986.

[41] R.L. Rudell and A.L. Sangiovanni-Vincentelli. Multiple-valued minimization for
PLA optimization.|IEEE Trans. on CAD/ICAS6(5):727—-750, September 1987.

[42] S. W. Jeong and F. Somenzi. A new algorithm for the binate covering problem and
its application to the minimization of boolean relations. Rroc. ICCAD pages
417-420, 1992.

BIBLIOGRAPHY 160

[43] M. Damiani and G. De Micheli.don't care conditions in combinational and syn-
chronous logic networkdEEE Trans. on CAD/ICASMarch 1993.

[44] B. Trakhtenbrot and Y. BarzdinFinite Automata: Behavior and SynthesiSorth
Holland, Amsterdam, 1973.

[45] G. W. Smith and R. B. Walford. The identification of a minimal vertex set of a
directed graphlEEE Transactions on Circuits and Syster@aS-22:9-15, January
1975.

[46] T. H. Cormen, C. E. Leiserson, and R. L. Rivebttroduction to Algorithms MIT
Press, 1990.

[47] S. R. Petrick. A direct determination of the irredundant forms of a boolean function
from the set of prime implicantsAFCRC-TR-56-110 Air Force Cambridge Research
Center April 1956.

[48] O. Coudert and J.C. Madre. A unified framework for the formal verification of
sequential circuits. IfProc. ICCAD pages 126—-129, November 1990.

