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Abstract

The design automation of complex digital circuits offers important benefits. It allows the

designer to reduce design time and errors, to explore more thoroughly the design space,

and to cope effectively with an ever-increasing project complexity.

This dissertation presents new algorithms for the logic optimization of combinational

and synchronous digital circuits. These algorithms rely on a common paradigm. Namely,

global optimization is achieved by the iterative local optimization of small subcircuits.

The dissertation first explores the combinational case. Chapter 2 presents algorithms

for the optimization of subnetworks consisting of a single-output subcircuit. The design

space for this subcircuit is described implicitly by a Boolean function, a so-calleddon’t

care function. Efficient methods for extracting this function are presented.

Chapter 3 is devoted to a novel method for the optimization of multiple-output sub-

circuits. There, we introduce the notion ofcompatible gates. Compatible gates represent

subsets of gates whose optimization is particularly simple.

The other three chapters are devoted to the optimization of synchronous circuits. Fol-

lowing the lines of the combinational case, we attempt the optimization of the gate-level

(rather than the state diagram -level) representation. In Chapter 4 we focus on extending

combinational techniques to the sequential case. In particular, we present algorithms for

finding a synchronousdon’t care function that can be used in the optimization process.

Unlike the combinational case, however, this approach is exact only for pipeline-like

circuits. Exact approaches for general, acyclic circuits are presented in Chapter 5. There,

we introduce the notion ofsynchronous recurrence equation.Eventually, Chapter 6

presents methods for handling feedback interconnection.
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Chapter 1

Introduction

Logic synthesis is the process of transforming a register-transfer level description of a

design into an optimal logic-level representation. Traditionally, it has been divided into

combinational and sequential synthesis. This chapter first reviews the VLSI design pro-

cess, describing the role played by logic synthesis, its status, and previous contributions

in the field. It then provides an outline of this dissertation, highlighting the contributions

of this work.

1.1 VLSI and logic synthesis

Very Large Scale Integration(VLSI) has emerged as a central technology for the real-

ization of complex digital systems. The benefits in terms of performance, reliability, and

cost reduction of integrating large systems on a single chip have pushed designs from

the tens of thousands of transistors into the millions in just over a decade.

Computer aids play an important role in coping with the complexity of such designs,

by partitioning them into a sequence of well-defined steps. Quality and time-to market

of the final product are also improved by automating the most tedious, lengthy and

error-prone phases of the project.

The design process typically begins with a functional description of the desired func-

tionality by means of ahigh-leveldescription language. Several languages have been

developed to this purpose (VHDL, VerilogHDL, HardwareC) [1].

1



CHAPTER 1. INTRODUCTION 2

High-level synthesisis the first design step for which CAD tools have been developed.

It consists of mapping a functional description of a circuit, along with a set of area and

performance constraints, into astructural one, in terms of registers and combinational

functional units (“primitives” ), such as ports, adders, multipliers, shifters, comparators.

At this stage, the view of a circuit is therefore largely independent from the format of

data and control signals [1, 2].

The output of high-level synthesis is aregister-transfer level(RTL) representation of

the circuit. Such representations are typically divided into data path and control portions.

The task of the control unit is to activate portions of the data path according to a given

schedule, so as to achieve the desired computation. The selection of a schedule requiring

a minimal number of computational resources (and possibly satisfying a given timing

constraint) is a classical problem of high-level synthesis.

Logic synthesis follows immediately high-level synthesis. Its task is the mapping

of RTL descriptions intogate-levelcircuit representations. Logic synthesis therefore

introduces constraints on the data representations and on the types of primitives used

(ANDs, ORs, D-type flip-flops etc...)

The level of abstraction of high-level synthesis does not allow accurate estimates

of the figures of merit of a circuit. Consequently, a straightforward mapping of an

RTL design into a logic circuit very seldom meets area, speed, or power requirements.

Optimization at the logic level is therefore a necessary step: indeed, its relevance has

made it the subject of intense research ever since the inception of electronic computers.

The following example highlights the different nature of high-level and logic optimization.

Example 1.

Consider the fragment of code in part (a) of the following figure. The quantity

x + y is compared against two constant thresholdsn1 andn2. A typical

optimization step at high level consists of transforming this code into the

code of part (b), by means of standard software compilation techniques.

This optimization leads to the RTL representation shown in Fig. (1.1-a).
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while(x+y < n1) do {

:

while (x+y < n2) do {

:

update(x,y)

}

update(x,y);

}

(a)

t = x+y;

while(t < n1) do {

:

while (t < n2) do {

:

update(x,y)

t = x+y;

}

update(x,y);

t = x+y

}

(b)
At the logic level, this implementation is further simplified, as will be seen

later, by merging the adder and comparator, and by regarding the entire block

as realizing a combinational logic function. This type of optimization requires

the knowledge of the data representation forxandy (i.e. 2’s complement,

etc ...), and it is therefore impossible at the RTL level.2

x

y

n1

n2

x

y

n1

n2

Comb.
unit

Logic
        Optimization

t

Figure 1.1: A logic optimization step.

Over the years, the breadth of the field has led to its fragmentation into a number of

disciplines, most notably into a distinction betweencombinationaland sequentiallogic

synthesis: while combinational logic circuits have been considered mostly as tools for

the realization offunctions, sequential circuits have mostly been regarded from a state-

machine viewpoint and manipulated accordingly. This distinction is less motivated in a
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VLSI context, where RTL representations of data path and control are often provided

directly in terms of registers and combinational units.

The notion ofdegrees of freedom(or don’t careconditions) is central to every step

of the synthesis process. In high-level synthesis, slacks in the scheduling of operations

represent degrees of freedom which can be used advantageously for sharing computational

resources. These slacks represent degrees of freedom also on the control unit: some

control signals can be delayed or anticipated to simplify the control circuitry at the

sequential logic level. Otherdon’t caresat the logic level represent our knowledge that

some input combinations or input sequences cannot occur, or that the response to some

input or input sequence sequence is not sampled.

Don’t care conditions that arise directly from the specification are due to the inter-

facing of the system in a larger environment. Similarly, the embedding of a functional

block in a larger circuit results indon’t careconditions on its functionality. For example,

in the circuit of Fig. (1.1), there are degrees of freedom on the adder, and they arise

because of the “filtering” effect of the comparator.

Unlike don’t caresgiven by a specification, those due to embedding areimplicit. The

mathematical characterization, derivation, and efficient use of suchdon’t careconditions

are therefore very relevant issues in logic optimization.

This dissertation is concerned with these three topics at the combinational and se-

quential synthesis level. The mathematical characterization is in terms ofperturbation

theory: don’t careconditions are interpreted as the set of possible functional perturbations

of an original description.

Throughout the thesis, perturbation theory is used in several contexts, in particular

for obtaining efficientdon’t care-extraction algorithms and for the classification ofdon’t

care conditions according to their complexity.

These algorithms have been implemented in a logic optimization tool,Achilles, and

integrated with novel algorithms for combinational and sequential logic optimization al-

gorithms. A more detailed description of these contributions is presented in the upcoming

section.

Achilles is part of Olympus, a CAD system for VLSI synthesis being developed at

Stanford. Achilles has been applied successfully to the optimization of several large
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combinational and synchronous logic benchmark circuits.

1.2 Previous work and contributions of this thesis.

1.2.1 Combinational logic optimization.

Combinational logic optimization is traditionally divided into two-level and multiple-level

logic synthesis.

Two-level synthesis targets the realization of combinational logic functions by a two-

layer interconnection of elementary logic gates, such as AND-OR, NAND-NAND, etc.

Early research has led to efficient algorithms for the synthesis of combinational logic

circuits in two-level form. Exact algorithms were developed originally in the early 50’s

by Quine [3] and McCluskey [4], and are practical for the synthesis of functions with at

most a dozen inputs.

The popularity of PLA-based synthesis in the early 80’s revamped the interest in their

approach. The necessity of synthesizing functions with a very large number of inputs and

outputs has led to the development of several effective approximate solvers, including

MINI [5], and ESPRESSO [6], as well as to the re-visitation of exact approaches [7].

These solvers have been used for the optimization of very large PLAs, with over fifty

inputs and outputs and thousands of product terms, and their efficiency makes them the

basic engine for most current logic optimization tools.

Degrees of freedom in classical two-level synthesis are represented by adon’t care

function. This function represents input combinations that cannot occur and inputs that

generate irrelevant output values.

Somenziet al. considered in [8]don’t careconditions expressed by aBoolean relation.

Boolean relations specify the functionality of a combinational circuit by associating with

each input combination aset of possible outputs. Further research in the area showed,

however, that unlikedon’t care functions, this type of degrees of freedom is much more

difficult to use, and efficient optimizers for this case are the object of ongoing research

[9].

Multiple-level combinational logic synthesis targets the implementation of a logic
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function by an arbitrary, acyclic network of logic gates. The interest in multiple-level

synthesis is due to the fact that very often multiple-level interconnections of logic gates are

much faster and more compact than two-level implementations. Some simple functions,

like 32-bit parity, are indeed practically impossible to realize in a two-level form, while

having simple multiple-level realizations.

Similarly to two-level synthesis, exact multiple-level logic synthesis algorithms have

been known for a long time [10, 11, 12, 13]. All such methods are essentially based on

an orderly, exhaustive enumeration of all possible acyclic graphs. For example, Davidson

[13] considers NAND networks. His procedure starts by enumerating all sets of possible

functions whose NAND can yield the desired function. Once such a set is found, the

procedure is repeated recursively, until a simple function (an input or its complement) is

met or a cost limit is exceeded. The size and complexity of the search space is such that

none of the exact methods could prove itself practical for functions requiring more than

a dozen gates, and the difficulty of exact multiple-level synthesis was referenced as one

motivation for later work in complexity theory [14].

Nowadays, the optimization of multiple-level logic is carried out almost exclusively

by approximate methods developed over the past decade. These methods consist mainly

of the iterative refinement of an initial network, until key cost figures (typically area or

delay) meet given requirements or no improvement occurs. Refinement is carried out

by identifying subnetworks to be optimized and replacing them by simpler, optimized

circuits. Iteration is carried over until cost figures no longer improve.

An important observation in this context is that the embedding of a functional block

in a larger circuit results indon’t careconditions on its functionality:

Example 2.

Consider the adder/comparator structure given in Fig. (1.1). Suppose, for

simplicity, thatxand y are two two-bit quantities, and thatn1 andn2 are

the numbers 3 and 4.

Consider optimizing the circuitry producing the middle bitadd1 of the adder,

shaded in Fig. (1.2). The function realized at that output is shown in the
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add0

add1

add2
y

0

x1
x0

y1

3

4

Figure 1.2: A two-bit adder. Shading indicates the circuitry generating the outputadd 1.

1

1 1
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-

10
x  x

0 1y  y
10

x  x

0 1y  y

(a) (b)

1

0 0

1

11 0 0

0--

-

-

Figure 1.3: a) Karnaugh map of the function realized atadd 1. b) Don’t care conditions
at add 1, represented by a symbol ‘-’.

Karnaugh map of Fig. (1.3). Consider the situations where the input com-

binations result in a sum larger than, or equal to, 4. The MSB of the adder

is 1, and both outputs of the comparator will take value 0,regardlessof the

values taken byadd 0 andadd 1: the outputadd 1 has become irrelevant. By

similar reasonings, one gets that the value ofadd 1 is also irrelevant whenever

the inputs produce a sum equal to 0 or 2. Thesedon’t care conditions are

shown in table of Fig. (1.3-b).2

Optimization methods can be classified by the size of the subnetworks considered

(e.g, consisting of a single-output logic gate versus multiple-output subcircuits) and by the

complexity of the optimization style. There are two main optimization styles,algebraic

andBoolean, in order of complexity.

Algebraic methods are based on treating logic expressions as ordinary polynomials

over a set of logic variables. Common factors in such polynomials are extracted and
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a logic network is restructured and simplified accordingly. Algebraic methods form the

backbone of the interactive logic optimization system MIS [15], developed at Berkeley

by Braytonet al.

Example 3.

In the circuit of Fig. (1.4), the primary outputs are expressed byx= (a+b)d

andy= ac+bc. By recognizing thaty= ( a+b) cand extracting the common

factora+ b, the circuit of Fig. (1.4-b) is obtained.2

a
b

c y

(a) (b)

d

a

b

d

c

x

x

y

Figure 1.4: a) original circuit. b) Circuit optimized by factorization.

Algebraic methods do not take full advantage of the properties of Boolean algebra.

For this reason, they take advantage ofdon’t care conditions only to a limited extent.

Boolean methods target instead the full use of implicitdon’t cares. In order to construct

a don’t care-based logic optimization system, it is therefore necessary to :

� characterize first mathematically suchdon’t careconditions, and

� provide algorithms for their efficient extraction and use.

With regards to the characterization problem in the combinational case, Bartlettet al.

[16] and Murogaet al. [17] have shown that thedon’t careson single-output subnetworks

can be described by an ordinary Boolean function, termed thedon’t care functionof the

gate. An important consequence of this property is that ordinary two-level synthesis

algorithms can be applied. Boolean optimization of single-output subnetworks is a part

of the program MIS.
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Somenziet al. [8] have showed that the optimization of arbitrary multiple-level logic

gates requires instead modelingdon’t careconditions by a Boolean relation:

Example 4.

Consider optimizing simultaneously the entire adder in the adder/comparator

of Fig. (1.1). The functional requirement on the adder are the following:

corresponding to each input combination with sum less than three ( namely,

x1x0y1y0 = 0000;0001;0010;0100;0101 or 1000) , the adder output can be

any pattern drawn from the setA = f000;001;010g, as all such patterns

result in the same output at the comparator. Similarly, corresponding to all

input combinations with sum 4 or more, the adder output can be any pattern

drawn from the setB = f100;101;110;111g. If the sum is three, then the

network output is drawn from the one-element setC = f011g. 2

This specification style cannot be summarized into a set of independentdon’t care

conditions on the individual outputs. For the circuit of Example (4), corresponding to

the input pattern 0000, the first and second output are both allowed to change, but not

simultaneously: choosingadd 1( 0000) = 1, however, implies thatadd2( 0000) must be 0.

This is reflected by complications in the subsequent logic optimization step [8]. Approx-

imations to Boolean relations are represented bycompatible don’t cares, first introduced

by Murogaet al. 1. Informally, compatibledon’t caresrepresentdon’t carefunctions that

allow us to optimize each vertex independently in multiple-vertex optimization. Since

compatibledon’t caresrepresent only a subset of degrees of freedom, the key issue in

the extraction of compatibledon’t caresis their maximality.

Contributions to combinational synthesis

Chapter 2 of this dissertation is concerned with the problem of extractingdon’t care

representations (be itdon’t carefunctions, Boolean relations, or compatibledon’t cares)

in combinational networks in an efficient way. In this respect, the following contributions

are presented:

1Muroga actually referred tocompatible sets of permissible functions
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� The general problem of characterizingdon’t care conditions is cast uniformly in

terms of perturbation theory. The modification of one or more logic functions

inside a network is regarded as the introduction of local errors, that are modeled

by added error signals. The conditions for which such errors are tolerated (i.e.

they do not affect the primary outputs) represent the degrees of freedom available

for optimization.

� Efficient algorithms for the derivation ofdon’t care functions are presented. The

efficiency of such algorithms is drawn from alocal paradigm: thedon’t care

function of a logic gate is derived from that of adjacent gates by means of local

rules. Such algorithms are completed by a suite of methods for approximating such

rules in case the explicit representations ofdon’t carefunctions become intractable.

The theoretical understanding of the problem provided by perturbation analysis

provides a means for evaluating previous approaches to the problem.

� New algorithms are presented for deriving compatibledon’t cares. It is argued

that maximal compatibledon’t carescannot be derived on a local basis. Those

presented in this work constitute, however, the best approximations known so far.

In Chapter 3, the problem of multiple-vertex optimization is considered from a differ-

ent angle. The difficulty of multiple-vertex optimization is due in part to the arbitrariness

of the subnetwork selected for optimization. This difficulty is circumvented by intro-

ducing the notion ofcompatible gates.A set of compatible gates is a subset of gates

for which the problem of solving a Boolean relation is substantially simplified, and in

particular ordinary two-level synthesis algorithms can be used for exact optimization.

An approach for multiple-vertex optimization based on the search of compatible gates,

instead of optimizing arbitrary subnetworks, is presented.

1.2.2 Synchronous logic optimization.

The presence of clocked memory elements (for reference, assumed to be D-type flip-

flops) and possibly of feedback distinguishes synchronous circuits from combinational

ones.
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A common model of such circuits is thefinite-state machine(FSM) model, shown in

Fig. (1.5). Flip-flops and combinational logic elements are grouped into a register and

a combinational network, respectively. The content of the register is termed thestate

of the circuit, and the combinational portion implements output and next-state functions.

A finite-state machine description of a circuit is typically provided in terms of astate

diagram(also shown in Fig. (1.5) orstate table.

a

b

1-/0

0-/0

-0/0

-1/0
-0/a

-1/a

00 10

11 01

00/0
11/1

10/1

01/0

z

Figure 1.5: A synchronous circuit and its finite-state machine model.

The classical approach towards the optimization of synchronous circuits consists of

extracting their FSM description and then resorting to known FSM synthesis algorithms.

FSM synthesis is a classic subject of switching theory. The process is typically

divided into three main steps, consisting of state minimization, state assignment, and

the synthesis of the combinational portion. State minimization has two main objectives,

namely to minimize the number of flip-flops and to increase the number of unused

combinations of state variables. Such unused combinations represent in factdon’t care

conditions for the combinational portion.

State assignment is the process of encoding each state in a binary format. It defines

to a large extent the functionality of the combinational circuit, and therefore good state

assignment algorithms are still object of research. Heuristics targeting two-level [18] and

multiple-level [19] implementations of the combinational logic have been considered.

Other strategies include thedecompositionof a FSM into a set of smaller, interconnected

machines [20, 21], for which the optimal state assignment problem can be solved more
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accurately.

Similarly to the combinational case, an exact synthesis algorithm for finite-state ma-

chines is also available, but it reduces essentially to the orderly enumeration of all possible

state assignments, and it is impractical for all but very small machines.

Unfortunately, the difficulty of evaluating the effect of state manipulation operations

(most notably state assignment) on the final hardware makes it impossible todrive this

approach towards an actual reduction of the original circuit. It is also worth noting that

in modern VLSI technology the cost of flip-flops is actually comparable to that of a few

logic gates. The significance of state minimization is in this context greatly reduced, in

favor of more general network restructuring approaches.

These difficulties motivate the search of algorithms targeted at the direct optimiza-

tion of synchronous netlists. The underlying model for this style of optimization is the

synchronous logic network. Informally, a synchronous logic network is a generalization

of the combinational logic network, with vertices representing logic elements and edges

representing logic dependencies. Registers are modeled bydelay elements, and intervene

in the description of the logic as delay labels in logic expressions.

One optimization strategy, proposed originally by Maliket al. [22] and later refined

by Deyet al. [23], is peripheral retiming. Retiming is a circuit transformation originally

developed by Leisersonet al. [24] for the optimal placement of delay elements in a

circuit so as to minimize the clock period. The basic step of retiming is illustrated in

Fig. (1.6).

b

c

b

c

Figure 1.6: An elementary retiming operation.

Peripheral retiming consists of identifying pipeline-like subnetworks2 and pushing all

registers to their periphery by retiming, so as to evidence the underlying combinational

2Informally, a pipeline is a synchronous circuit where all paths from each input to each output contain
the same number of delay elements.
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structure. This portion is then optimized using ordinary combinational techniques, and

eventually registers are re-distributed along the pipeline. An example of this transforma-

tion is shown in Fig. (1.8).

a

b

c

a

b

c

a

b

c

(a) (b) (c)

-1

Figure 1.7: (a) A pipeline circuit. (b) A peripherally-retimed version. Notice the tempo-
rary introduction of a negative-delay register. (c) Optimized circuit, after the elimination
of the negative-delay register.

In practice, in most circuits pipelined subnetworks are too small or have too many

outputs, which leaves little room for optimization. A second difficulty occurs when

different inputs have different register counts to the primary outputs, as in Fig. (1.7).

In this case, peripheral retiming requires the introduction of “ negative-delay” registers.

After optimization, it may be impossible to eliminate such registers, thereby invalidating

the result. One such instance is the circuit of Fig. (1.8), borrowed from [22].

(a) 

-1

(b)

Figure 1.8: (a) Original circuit and (b), an unrealizable optimized version.

The extension of algebraic operations for synchronous logic networks was considered
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by De Micheli in [25]. An example of synchronous algebraic transformation is illustrated

by the following example.

Example 5.

The functionality of the circuit of Fig. (1.9-(a)) can be expressed by the two

relationsx= a 1 + b and y= c( a 2 + b1) , where the subscripts indicate the

delays associated withaandb. The expressiona 2 + b1 is then an algebraic

factor of y, and coincides with the delay by 1 ofx. Outputy can then be

expressed ascx 1, leading to the realization shown in Fig. (1.9-(b)).2

a

b

c

x

y

a

b

c

x

y

(a) (b)

Figure 1.9: A circuit before (a) and after (b) optimization by synchronous factorization.

These optimization methods are typically not powerful enough to capture the opti-

mization space for a synchronous circuit, and Boolean optimization models are required.

Unlike the combinational case,don’t care conditions for synchronous circuits have

been far less characterized. Classical works on FSMs considered almost exclusively

incompletely specifiedFSMs, i.e. FSMs whose next-state functions or output functions

containdon’t careentries. The synthesis path for incompletely specified FSMs follows

closely the one for ordinary FSMs, the main difference being the complications added

by the incomplete specification to the state minimization step.

This model is however inadequate to interpret thedon’t careconditions that arise in

the VLSI context. For example, it often impossible to cast degrees of freedom in the
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timing of the output signals of a FSM intodon’t careentries in its next-state or output

function:

Example 6.

Consider the case of a simple fragment of a control unit, whose task is to

issue an activation pulse one or two clock periods after receiving an input

pulse. Lets denote the state of the control immediately after receiving the

control signal. Ins it is necessary to choose whether the FSM should issue an

output pulse and return to the quiescent start state or should count one more

clock period. This choice cannot, however, be represented by adon’t care

condition on the next state entry, or remaining in stateswould be included

incorrectly among the possible options.2

A second problem is the characterization of thedon’t caresassociated with the em-

bedding of a synchronous circuit in a larger one. Only the case of two cascaded FSMs

(shown in Fig. (1.10)) has been in practice addressed in the literature. Kim and Newborn

[26] showed that the limitations in the sequences that can be asserted byM1 can be used

for the optimization ofM2, even if this information cannot be represented in terms of

don’t care entries on any state ofM2. Their optimization algorithm was rediscovered

later by Devadas [27] and by Rho and Somenzi [28]. Heuristics that attempt to capture

the filtering effect ofM2 for the optimization ofM1 have also been considered in the

two latter works, but they lack a formal setting. Moreover, the scope of these works is

limited by the nature of the topologies and optimization steps considered, and by a lack

of a general model of thedon’t careconditions that can be associated with a synchronous

circuit.

M1 M2

Figure 1.10: Cascaded finite-state machines.
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Contributions to sequential logic synthesis

This thesis presents an analysis ofdon’t careconditions for synchronous networks that

is complete both in terms of theory and engineering techniques. Chapter 4 of this thesis

is in particular concerned with the extension of perturbation theory to the synchronous

case. With regards to this point, the following contributions are presented:

� the limits to which sequentialdon’t careconditions can be represented by adon’t

care function are explored. It is in particular shown thatdon’t care functions

represent fully the degrees of freedom associated with a vertex only in the special

case of pipelines . Methods for the correct handling of thesedon’t cares are

presented.

� For non-pipelined networks,don’t care functions represent approximations of the

full don’t careconditions. Algorithms for deriving efficientlydon’t care functions

are then considered. Two cases are distinguished, depending on whether feedback

is present or not. In the first case, extensions of local algorithms for combinational

networks are presented. The presence of feedback is modeled by introducing

externaldon’t cares that interpret the limited controllability and observability of

the feedback wires.

� Don’t care -extraction algorithms are coupled with generalized two-level optimiza-

tion procedures that allow a more general restructuring of a logic circuit, by allow-

ing the insertion and removal of delay elements and feedback paths, according to

a predefined cost function.

A characterization ofdon’t careconditions in synchronous networks is presented in

Chapter 5. For acyclic networks, suchdon’t careconditions are captured implicitly by a

recurrence equation. A solution algorithm for recurrence equations is then presented.



Chapter 2

Combinational networks

2.1 Introduction

The present and the next chapters concern mainly Boolean methods for combinational

logic optimization. In particular, we introduce in the present chapterperturbation theory

as a tool for reasoning about local modifications of a Boolean network. We also introduce

the main algorithms for extractingdon’t care information from the Boolean network.

These algorithms use a local paradigm, that is, they attempt the extraction of thedon’t

care information relative to a gate from that of the adjacent gates. The local paradigm

presents several key advantages. First, it allows us to construct the observabilitydon’t

care functions without an explicit representation of the circuit’s functionality. Second, if

the representation ofdon’t caresgrows too large, it allows us to perform approximations

at run time. Third, it allows us to compare quantitatively previous approaches to the

problem presented in the literature.

These algorithms are presented in Sections (2.3) and (2.4). Approximation techniques

are then presented in Section (2.5).

17
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2.2 Terminology

2.2.1 Boolean functions and their representations

Let B denote the Boolean setf0;1g. A k-dimensional Boolean vectorx= [x1; � � � ; xk]T
is an element of the setBk (boldfacing is hereafter used to denote vector quantities. In

particular, the symbol1 denotes a vector whose components are all 1).

A ni-input, no-output Boolean functionF is a mappingF: Bni ! Bno.
The cofactors (or residues) of a function F with respect to a variablexi are the

functions

Fxi
=F( x1; . . . ; xi = 1; . . . ; xn) and Fx0

i
=F( x1; . . . ; xi = 0; . . . ; xn) . The universal

quantificationor consensusof a functionF with respect to a variablexi is the function

8xiF = Fxi
Fx0

i

. The existential quantificationor smoothingof F with respect toxi is

defined as9xiF=Fxi
+ Fx0

i

. TheBoolean differenceof F with respect toxi is the function

@F=@x i = Fxi
� Fx0

i

. A scalar functionF1 containsF2 (denoted byF1 � F2 ) if F2 = 1

implies F1 = 1. The containment relation holds for two vector functions if it holds

component-wise.

A functionF is termedpositive unatein xi if Fxi
�F x0

i

, andnegative unateif Fxi
�Fx0

i

.

Otherwise the function is termedbinate in xi.

Boolean expressionsare a common means for representing Boolean functions. For-

mally, a Boolean expression is defined as follows:

Definition 2.1 The symbols0;1 are Boolean expressions, and denote the constant func-

tions 0;1 : Bni !B, respectively. Given a set ofn i variablesx; y; . . ., a literal x(x 0) is

an expression, and denotes a functionx( x0) : Bni !B, taking the value (the complement

of the value) ofx. Finite sums and finite products of Boolean expressions are Boolean

expressions. They denote the functions formed by the logic sums and products of their

terms, respectively. Complements of Boolean expressions are Boolean expressions.

Any given Boolean function can, however, be represented by means of several

Boolean expressions. This makes it difficult to check whether two expressions describe

the same function. For this reason, it is in practice convenient to represent and manipulate

in a computer Boolean functions by means of their associated Binary Decision Diagrams



CHAPTER 2. COMBINATIONAL NETWORKS 19

(BDDs) [29, 30]. BDDs are canonical representation for Boolean functions. We refer to

[29] for a detailed description of the use of BDDs for manipulating Boolean functions.

2.2.2 Combinational circuits and logic networks.

The mathematical model of a combinational multiple-level circuit is thelogic network.

Definition 2.2 A combinationallogic network is an annotated graphN = ( V;E) .

Vertices correspond to primary inputs, single-output logic gates, or primary outputs,

while edges correspond to interconnections. For each vertexy2 V

FI y = fz 2Vj( z; y) 2Eg
FO y = fz2Vj ( y; z) 2Eg (2.1)

denote the vertices corresponding to the inputs of the gate inyand the vertices where the

output of the gate iny is used as input, respectively. These sets are termed thefanin and

fanout of y. The transitive fanin and fanout TFI y andTFO y are the sets of vertices

reaching and reachable fromy, respectively.

Each vertexy is associated a Boolean variable, also labeledy, and a Boolean

expression of the variables ofFI y. Hereafter, we denote this expression withey. The

variable y and local expressione y represent the gate output and the local behavior

realized by each gate, in terms of the adjacent variables. Variables associated with logic

gates are also termedlocal variables.

Example 7.

Fig. (2.1) shows an example of a combinational logic network. Variables

a; b; c; d; e represent the primary inputs, whileu; v; x; y; z ando 1; o2 denote

internal variables and primary outputs, respectively. All variables, except for

primary inputs, are given expressions in terms of other network variables.

2

The behavior of each vertex can also be described by referring to the function of

the primary inputs it ultimately realizes. In more detail, lety denote a vertex. A
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d

e

a

b

c

y = uv+u’v’

z = e+v’

x = a+u’

o = xz+y2

1o = x’+z’v = abu+deu

u = b’c+ce’

Figure 2.1: A combinational logic network

local function f y in terms of the primary inputs can be obtained simply by iteratively

substituting iney each internal variable with its expression, until only primary inputs

appear. In particular, the behavior of a logic network is then described by a function

F:Bni !B no, whereni andno are the number of primary inputs and outputs, respectively.

Example 8.

In the network of Fig. (2.1), the function realized at vertexuis f u = ab+b 0c.

By substituting this expression inev, the functionf v = bc+cde+abde. The

functions realized at each vertex are listed below:

fu = b0c+ ce 0

fv = abce 0 + b0cde

fx = a+ be+ c 0

fy = ab+ be+ c 0 + de

fz = a0 + b0 + c0 + e

fo1 = a0b0c+ bce 0

fo2 = a+ be+ c 0 + de

( 2:2)

The behavior of the network is captured by

F =

2
4 fo1

fo2

3
5 =

2
4 a0b0c+ bce 0

a+ be+ c 0 + de

3
5 : ( 2:3)

2
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2.2.3 Specifications for combinational networks.

A common style for specifying the desired behavior of a combinational network is by

means of two functionsF(x) andDC(x) respectively, the latter in particular representing

the input combinations that are known not to occur or such that the value of some of the

network outputs is regarded as irrelevant [16]. Corresponding to these input combinations,

some network outputs are therefore left unspecified, which represents a degree of freedom

that can be spent during optimization. For this reason, the functionDC is hereafter termed

don’t care function. This style of specification will be referred to asdon’t care -based.

A formally equivalent specification is in terms of the functionsFmin = F � DC0 and

Fmax = F+DC. Specifications are met by a functionG if

Fmin �G �F max : ( 2:4)

A more powerful, but also more complex, specification style is by means of aBoolean

relation [31, 8, 32]. A Boolean relation for the behavior of ani-input,ny-output network,

with inputs and outputs labeledx andy, is a Boolean equation of type

Fmin ( x) �F( x; y) �Fmax ( x) ; ( 2:5)

whereF is a Boolean functionF: Bni+ny !B no. A function G: Bni !B ny satisfies the

specifications if and only if for every input combinationx2B ni,

Fmin ( x) �F( x;G( x) ) �Fmax ( x) ; ( 2:6)

This second specification style is hereafter referred to asrelational specification. For

simplicity, in the remainder of this chapter, specifications are hereafter assumed to be in

don’t care form.

2.2.4 Optimization of combinational multiple-level circuits

The optimization of a networkN, realizing a functionF, ultimately consists of its re-

placement by a different network, with better figures of merit in terms of area, delay,

or testability. In principle, the new network is allowed to realize a functionG different

from F, as long asG satisfies the specifications:
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F � DC0 �G �F + DC : ( 2:7)

We now use the Boolean identity:

a�b, a 0 + b= 1 : ( 2:8)

By applying this identity to both inequalities of (2.7), we obtain

F + G0 + DC = 1

F0 + G + DC = 1 : (2.9)

The two equalities (2.9) hold simultaneously if and only their product takes value1:

( F + G0 + DC) ( F0 + G + DC) =

F�G + DC = 1 :

(2.10)

By applying the Boolean identity (2.8) to Eq. (2.10) we eventually obtain

F�G �DC : ( 2:11)

The functionF�G represents the difference, or “error”, in behavior between the original

and optimized network. From Eq. (2.11),DC then takes the “physical” meaning of a

tolerable functional error during optimization.

In practice, due to the complexity of exact optimization, current optimization strategies

are based on the local, iterative optimization of small subsets of vertices ofN. Neither

the network topology nor the behavior of the individual vertices need to be exactly

preserved, as long as the outputs of the optimized network satisfy Eq. (2.11): such

degrees of freedom thus represent “errors” on the local functionsf y that can be tolerated

by the global functional specifications.

A first necessary step of local optimization is therefore thecharacterizationof such

local errors. Following adon’t care-based style, the characterization is by upper bounds

on the errors tolerated at each vertex, and the means developed in the next section is

perturbation theory.
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2.3 Perturbation analysis of combinational networks.

In this section perturbation theory is introduced as a main tool for the analysis of the

degrees of freedom in a logic optimization environment. The modification of each logic

functionf y in a network is modeled by introducing a perturbation signal�. The analysis

focuses first on the optimization of a single vertex, described by means of a single pertur-

bation, and is then extended to multiple-vertex optimization, modeled by the introduction

of multiple perturbations. The following general definitions are in order.

Definition 2.3 Given a subsety = fy1; . . . ; ymg �V of variables of a networkN, we

call perturbed network N y the network obtained formNby replacing each local

functioneyi with eyi;y = eyi�� i, yi 2y. The added inputs� i are termedperturbations.

The functionality of a perturbed network N y is described by a function Fy,

which depends also on�= [ �1; . . . ; �m] : Fy = Fy( x; �) . In particular,

Fy
�01; ...; �0

m

= F ( 2:12)

and every internal vertexy realizes a functionality described by f y; y( x; �) .

The functionality of any networkN 0 obtained by replacing eachf yi with an arbitrary

function gyi is described by Fy( x; fy1 �g y1; . . . ; fym �g ym) .

Example 9.

Fig. (2.2) shows the network of Fig. (2.1), perturbed only corresponding to

v. Internal functions are described by

fu; v = b0c+ ce 0

fv; v= ( abce 0 + b0cde) ��
fx; v = a+ be+ c 0

fy; v= ( ab+ be+ c 0 + de) ��
fz; v= e+ ( abc) ��
fo1; v= a0b0c+ a 0ce 0 + [ ( abc) ��] e0
fo2; v= be+ � 0( a+ c0 + de) + �( ae+ cd 0 + c�e)
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For�= 0, these functions reduce to those of the unperturbed network. Notice

also that only the functions of the vertices inTFO y are affected by�, the

functionsfu; v; fx; v being identical to those of the original network.2

d

e

a

b

c

y = uv+u’v’

z = e+v’

x = a+u’

o = xz+y2

1o = x’+z’
δv = (abu+deu)

u = b’c+ce’

Figure 2.2: Network perturbed in correspondence of variablev

In this work, the vertices of a perturbed network maintain the same labels as in

the original network. Boolean expressions in terms of network variables are therefore

ambiguous: for instance, the expressionuv+ u 0v0 denotes two different functions in the

original networkNof Fig. (2.1) and in the networkN v of Fig. (2.2). For notational

simplicity, however, this ambiguity is dealt with explicitly only when necessary.

The functional errors of the perturbed network with respect to the original one are

described by theerror function

E( x; �)def
= Fy( x; �) �Fy( x;0) : ( 2:13)

From Definition (2.3), functionsgyi can simultaneously replacefyi if and only if for

everyx 2B ni, �i = fyi ( x) �gyi( x) ,

E �DC : ( 2:14)

Eq. (2.14) represents implicitly all the tolerances on the errors�i. In this form, however,

such degrees of freedom are very difficult to use. The purpose of this section is to present

algorithms that efficiently transform Eq. (2.14) into a manageable form, namely a set of

individual tolerances on the errors�i. To this end, the observabilitydon’t care functions

defined below have a key role:
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Definition 2.4 Theobservability don’t care of a variableyi in a perturbed network Ny

is the function

ODCyi( x; �)def
= Fy

�i
�F y

�
0
i

: ( 2:15)

Corresponding to each combination of inputs and perturbations( x, �) , the quantity

ODCyi( x, �) takes value 1 corresponding to those outputs ofNy not affected by a

change in�i. In particular, the product of all components ofODCyi represents the input

combinations for which�i cannot affectany output.

Strictly speaking,ODCyi depends on the perturbed network under consideration:

ODCyi = ODCyi; y. The superscripty is removed for notational simplicity, leaving the

task of specifyingN y to the context. Notice also that the complement ofODCyi is just

the Boolean difference @F y=@� i with respect to�i, and it represents the combinations

of inputsx and perturbations� such that� i affects the primary outputs. For this reason,

it is hereafter denoted byOCyi .

Example 10.

The functionalityFv of the network in Fig. (2.2) is given in Example (9).

From Eq. (2.13),

E =

2
4 fa0b0c+ a 0ce 0 + [ ( abc) ��] e0g �( a0b0c+ bce 0)

fbe+ � 0( a+ c0 + de) + �( ae+ cd 0 + c�e) g �( a+ be+ c 0 + de)

3
5 =

2
4 �( a+ c0) e0

�( a0b0c+ a 0e0 + c0e0)

3
5 :

By applying Eq. (2.15), the observabilitydon’t careof v is

ODCv =

2
4 ( a0b0c+ a 0e0 + b0e0 + c0e0)�( a0b0c+ bce 0)

fbe+ ab+ ae+ cd 0 + c�e) �( a+ be+ c 0 + de)

3
5 =

2
4 a0c+ e

ac+ be+ c 0e

3
5 :

In this particular case only one perturbation signal was considered, and there-

fore ODCv depends only on primary inputs.
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Expressions ofODCv need not be given necessarily in terms of primary in-

puts, but network variables can also be used. For instance, another expression

of ODCv is

ODCv =

2
4 x0 + e

x( e+ u)

3
5 :

Notice that this second expression has a greater flexibility: it can in fact

express the observabilitydon’t careof vnot only inN v, but also in presence

of perturbations at other internal vertices, in this caseu and/or x. This

is possible thanks to the ambiguity left by not relabeling the vertices in a

perturbed network.2

We now examine the role played by observabilitydon’t caresin logic optimization.

The simplest approach to the optimization ofNconsists of optimizing individual vertices,

one at a time, thus introducing only one perturbation signal�. This case is examined

first. The case of joint multi-vertex optimization is analyzed in Sect. (2.4).

2.3.1 Single-vertex optimization and observabilitydon’t cares.

From the standpoint of perturbation analysis, the case of a single perturbation is especially

favorable, as constraint (2.14) can be transformed into an array of upper bounds on�

only. The algebra of the derivation is as follows: a Shannon decomposition of Eq. (2.14)

results in

�0E�0 + �E � �DC : ( 2:16)

On the other hand, from Eq. (2.13),E�0 = 0 and moreover, by comparing Eq. (2.13)

with Definition(2.4),E� = ( ODCy)0. Consequently, Eq. (2.16) can be rewritten as

�( ODCy)0 �DC ( 2:17)

which holds if and only if

�1�DC + ODC y: ( 2:18)

By denoting withDCy the product of all components ofDC + ODCy, Eq. (2.18)

eventually reduces to

��DC y : ( 2:19)
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Result (2.18)-(2.19) was first obtained independently by Bartlettet al. [16] and by Muroga

et al. [33], and it shows that:

� the global tolerance on the network outputs, represented byDC, can betransformed

into a local tolerance on the local error�;

� this tolerance consists of the sum of a global component (DC), plus a local one,

represented by the observabilitydon’t careODCy of y in the networkN y .

Example 11.

The observabilitydon’t care of v for the network of Fig. (2.2) is given in

Example (9). The constraints on� reduce to

�

2
4 1

1

3
5 �

2
4 a0c+ e

ac+ be+ c 0e

3
5 :

By forming the product of the two bounds,

��ae+ be+ c 0e= DC v

represents all the functional constraints on�. 2

Although it is in principle possible to computeODCy for any variableyby applying

Definition (2.4) in a straightforward manner, the difficulty of representingF y explicitly

renders this operation very time- and memory-consuming and frequently impossible in

practice. In order to make adon’t care -based logic optimization system practical, it

is thus necessary to develop algorithms that extract representations of the observability

don’t caresin a logic network directly from the network topology, thus avoiding explic-

it representations ofFy. Moreover, as observabilitydon’t caresmay have themselves

large representations, effectivedon’t care -extraction algorithms must be able to handle

approximationsof don’t cares. This suite of problems consitutes the object of the rest

of this section. In particular, topological methods for extracting the observabilitydon’t

cares in a logic network are presented next, while approximation techniques are dealt

with in Sect. (2.5).
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Computation of observability don’t caresby local rules.

As the observabilitydon’t careof a vertexy describes how an error on its functionality

affects the primary outputs, it should be linked by simple local rules to the observability

don’t caresof the vertices inFO y. Consequently, one should be able to compute all

observabilitydon’t caresby a single sweep of the network from its primary outputs using

only local rules. This perception has led to an intense research [34, 35, 33, 36] of rules

that can be coupled with one such network traversal algorithm to yield the observability

don’t caresof all vertices.

One such simple rule indeed exists in the particular case of a vertex with a single

fanout edge [37]. For a vertex labeledy, with a unique fanout edge( y; z) to a variable

z,

ODCy = ODCz +
�
@f z

@�

�0
1 ( 2:20)

links the observabilitydon’t care of y to that of z: ODC y can be obtained by adding

( @fz=@�) 0 to all the components ofODCz. The rationale behind Eq. (2.20) is that

an error onf y will not affect the primary outputs if it does not affectf z (contribution

represented by( @fz=@�) 0) or if the error introduced inf z is then tolerated by the network

(contribution represented byODCz). A simple expression of( @fz=@�) 0 is any local

expression of( @ez=@y) 0 [37]. An expression ofODCy can then be derived from that of

ODCz by

ODCy = ODCz +
�
@e z

@y

�0
1 : ( 2:21)

Eq. (2.21) shows that, ultimately, an expression ofODCy can be obtained from that of

ODCz and that ofez, thereby avoiding the explicit construction of the functionf z.

Example 12.

In the network of Fig.(2.1), an error onycan affect the primary outputs only

througho2. Consequently,ODCy can be derived from

ODCo2 =

2
4 1

0

3
5
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and from@o 2=@y= ( xz+ 1) �( xz+ 0) = ( xz) 0 by applying Eq. (2.20):

ODCz =

2
4 1

0

3
5+

�
@o 2

@z

�0 24 1

1

3
5 =

2
4 1

xz

3
5 :

2

Example (11) showed that an expression of an observabilitydon’t carecan be correct

in more than a perturbed network, thanks to the “ ambiguity” left by the choice in vertex

labeling. An important attribute of Eq. (2.21) is that the expression ofODCy obtained

in this way is correct in all networks for whichODCz is correct. Local expressions

of @e z=@y depend “ by construction” only on the local expressione z and not by any

property of the rest of the network.

Complementing rule (2.21) gives a rule for expressions of the observabilitycare

function:

OCy =
�
@e z

@y

�
OCz : ( 2:22)

Rule (2.21) is of course insufficient ify has multiple fanout edges. In this case, a naive

approach may consist of first finding the observabilitydon’t caresalong each fanout edge.

Suchdon’t caresrepresent the tolerance of an error along each edge: their intersection

could then represent a tolerance onf y. The following example shows that, unfortunately,

this rule is incorrect.

Example 14.

Consider computing the observabilitydon’t careof y in the simple network

of Fig. (2.3). The observability ofxandz can be computed by Eq. (2.20):

ODC x = z andODC z = x. The observabilitydon’t care of y, computed

according to the previous considerations, would then be

ODC y =
�
ODC x +

�
@x

@y

�0��
ODC z +

�
@z

@y

�0�
=

( z+ a) ( x+ b) = ab+ a0b0( c0 + d0) :

In particular,ODC y = 1 for a= 0; b = 0; c = 0; d = 0 indicates that

a change ofy from 0 to 1 would not affect the primary output, trivially

incorrect. 2
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In Example (14), the product rule did not take into account that an error ony,

propagating along a path crossingz, contributes positively to the observability of the

same error propagating along the path crossingx. More generally, the product rule fails

to take correctly into account the interplay of the observability along the various paths.

z = (b+y)’

x = (a+y)’

y = cd out = (x+z)’ 

a

c

d

b

Figure 2.3: Network for counterexample (14).

The general rule for dealing with multiple-fanout vertices is derived here. This rule

is best explained by slightly augmenting the topology of the network as follows: first,

a vertex labeledyi ; i = 1; . . . ; j FO yj is added along each edge on the fanout ofy.

The variablesyi are termed thefanout variablesof y. The local functione yi of each

added vertex is the identity functioneyi = y, so that the network functionality is trivially

preserved.

Second, instead of considering directly a networkN y perturbed aty, each new vertex

yi is added a perturbation signal�i, so that nowyi = y�� i. The network functionality

is then described by a function Fy( x; �1; . . . ; �jFOy j) , and the behavior ofNy can be

recovered by forcing all perturbations to be identical,i.e. �1 = �2 = . . . ; �jFOy j = �:

Fy( x; �) = Fy( x; �; �; . . . ; �) : ( 2:23)

Figure (2.4) shows the network of Fig. (2.2), transformed for the calculation ofODC v.

Consider first the case of only two fanout edges, as in Fig. (2.4), and lety1; y2 denote

the added variables. From Eq. (2.23) and Definition(2.4), the observabilitydon’t careof

y is

ODCy( x) = Fy1y2( x;0;0)�F y1y2( x;1;1) : ( 2:24)
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x = a+u’

o = xz+y
2

1
o = x’+z’

e

a

d

b

c

v = abu+deu

δ1

δ2
v = v δ22

v = v δ11
z = e+v’1

2 2y = uv  +u’v’

u = b’c+ce’

Figure 2.4: Network of Example (14), but perturbed corresponding to the fanout edges
of v. Notice the introduction of the two auxiliary variablesv 1 andv2.

By manipulating Eq.(2.24),ODCy can be rewritten as

ODCy( x) =
�

Fy1y2( x;0;0)�F y1y2( x;1;0)
�
�
�

Fy1y2( x;1;0)�F y1y2( x;1;1)
�

( 2:25)

where the termFy1y2( x;1;0) has been “added and subtracted” in Eq.(2.24). From Defini-

tion (2.4), the first term in parentheses isODCy1
�02

, while the second parentheses describe

ODCy2
�1

:

ODCy = ODCy1
�02
�ODC y2

�1
: ( 2:26)

Eq. (2.26) links the observabilitydon’t careof y to those of its fanout variables. These

don’t cares , however, are not evaluated inN y1 and Ny2, respectively, but inNy1y2.

In order to apply Eq. (2.26) it is then necessary to have available expressions of

ODCy1;ODCy2 that are correct in presence of multiple perturbations, namelyat least

in presence of�2 and�1, respectively.

Example 15.

Consider using Eq. (2.26) for computingODCv in the network of Fig. (2.4).

Expressions of the observabilitydon’t careof v1 andv2 are given by

ODCv1 =

2
4 x0 + e

x0 + y+ e

3
5 ODCv2 =

2
4 1

xz

3
5 :
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It could be verified that these expressions are valid in every perturbed net-

work, therefore in particular inN v1v2. In order to cofactorODCv1 andODCv2

with respect to�02 and�1, respectively, it is necessary make explicit their de-

pendencies from those perturbations:

ODCv1 =

2
4 x0 + e

x0 + e+ u�v�� 2

3
5 ; ODCv2 =

2
4 1

x( e+ v�� 1)

3
5 :

Eq. (2.26) then takes the form:1

ODCv = ODCv1
�02
�ODC v2

�1
=2

4 x0 + e

x0 + e+ u�v

3
5�

2
4 1

x( e+ v)

3
5 =

2
4 x0 + e

x( e+ u)

3
5 :

The expression ofODCv in terms of the primary inputs is

2
4 a0c+ e

ac+ be+ c 0e

3
5 :

AssumingDC = 0, DC v = ( a0c+ e) ( ac+ be+ c 0e) = ae+ be+ c 0e, the

same results as in the direct method of Example (11). The optimization ofv

with this don’t careproduces the network of Fig. (2.5).2

Some of the substitutions carried out in Example (15) can actually be avoided. Since

ODCy1
�02

assumes�2 = 0, it coincides with the observabilitydon’t care of y1 in absence

of a perturbation ony2. It is thus possible to drop the subscript�02 and usedirectly the

expression ofODCy1:

ODCy = ODCy1�ODC y2
�1
: ( 2:27)

Example 16.

1These second expressions ofODCv1 andODCv2 do not have the same validity as the previous ones.
Sincey and z have been replaced by their unperturbed expressions, the validity is now limited to those
networks with no perturbation ony or z. This is also the validity of the expression ofODC v so obtained.
More general expressions could be obtained by taking into account perturbations ofy andz.
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Consider using Eq. (2.27) instead of Eq. (2.26) for computingODCv. Only

ODCv2 needs to be expressed in terms of�1; consequently,

ODCv =

2
4 x0 + e

x0 + e+ y

3
5�

2
4 1

x( e+ v)

3
5 =

2
4 x0 + e

x( e+ y�v)

3
5 :

2

d

e

a

b

c

y = uv+u’v’

z = e+v’

x = a+u’

o = xz+y2

1o = x’+z’

u = bc+ce’

v = abc+de

Figure 2.5: An optimized version of the network of Fig. (2.1)

As pointed out by Example (16), Eq. (2.27) does not completely eliminate substitution

operations: it is therefore not entirely local. Such operations, however, are carried out

on ODC functions rather than network functions, and only those variables belonging

to TFO y2 and actually appearing inODCy2 need be substituted by their expressions.

Notice, for instance, that in Example (16) one substitution ofz in ODC v2 was sufficient.

A straightforward application of Definition (2.4) would instead require an expression of

Fy: in this case,both z andyshould be substituted ino 1 and o2.

A second general expression ofODCy can be obtained by adding twiceFy1y2( x;0;1)

in Eq. (2.24)2

2Another method consisted of the so-calledchain rule [37], which links the observabilitydon’t careof
y to those ofy1; y2 by the equation [37]

ODCy
= ODCy1�ODCy2�

�
@2Fy1y2

@y1@y2

�
0

Its complexity has reduced its applicability.
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ODCy = ODCy1
�2
�ODC y2 : ( 2:28)

It follows in particular that the right hand sides of Eq.(2.27) and Eq.(2.28) must be

identical:

ODCy1
�2
�ODC y2 = ODCy1�ODC y2

�1
: ( 2:29)

This identity will be used extensively in Sect. (2.5), when considering approximations

to don’t cares.

Again, complementation of Eq. (2.27) and (2.28) yields the rules for observability

care:

OCy = OCy1 �OC y2
�1

= OCy1
�2
�OC y2: ( 2:30)

The expansion of Eq. (2.26) into a sum-of-products

ODCy = ODCy1
�02

ODCy2
�1
+ OCy1

�02
OCy2

�1
( 2:31)

evidences its relationship with concepts from the testing literature. Eq. (2.31) shows

that there are two contributions toODCy. The first, ODCy1
�02

ODCy2
�1

, indicates that the

presence of a second fanout variabley2 can restrictthe observabilitydon’t careof ywith

respect to the single-fanout case:i.e. helps the observability of errors alongy1. This fact

is known as “self-evidencing” of errors in testing literature . The second contribution,

OCy1
�2

OCy2
�01

, indicates that an error ony is not observable if an error ony 1 alonewould be

observed, but it iscompensatedby the error alongy2. This is known as “self-masking” .

The extension of Eq.(2.27) to the general case ofj FO yj > 2 fanout variables is

provided by the following theorem.

Theorem 2.1 Let yandy 1; . . . ; yjFOy j denote the variables associated with the fanout of

y; then:

ODCy =
MjFOy j

i=1
ODCyi

�i+1; ...; �jFOy j
; ( 2:32)

OCy =
MjFOy j

i=1
OCyi

�i+1; ...; �jFO y j
; ( 2:33)

where eachODCyi

�i+1; ...; �jFO y j
( OCyi

�i+1; ...; �jFO y j
) is the observability don’t care (care) ofyi,

assuming that onlyyj ; j >i are perturbed.
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Proof.

The following identity can be verified by taking into account Eq. (2.15):

ODCy = Fy
�1; ...; �jFO y j

�F y
�
0
1; ...; �0

jFO y j

=�
Fy
�1; �2; ...; �jFO y j

�F y
�
0

1; �2; ...; �jFO y j

�
�
�

Fy
�
0

1; �2; ...; �jFO y j
�F y

�
0

1; �
0

2; ...; �jFO y j

�
�

. . .�
�

Fy
�
0
1; �

0
2; ...; �jFO y j

�F y
�
0
1; �

0
2; ...; �0

jFO y j

�
:

( 2:34)

Eq.(2.34) can be rewritten as:

ODCy =
MjFOy j

i=1

�
Fy
�01; ...; �0

i�1; �i; ...; �jFO y j
�F y

�01; ...; �0
i
; �i+1; ...; �jFO y j

�
: ( 2:35)

Eq. (2.32) then follows by observing that each term of the sum in Eq.

(2.35) is preciselyODCyi

�i+1; ...; �jFO y j
. Eq. (2.33) then follows trivially by

complementing Eq. (2.32).2

Similarly to the case of two fanout variables, a permutation of the order in which

the variablesyi are considered results in a different expression ofODCy, the same type

as (2.32). Allj FO yj ! expressions, however, must describe the same function: there are

thereforej FO yj !( j FOyj ! � 1) =2 identities of the type of Eq. (2.29).

Algorithms for observability don’t cares.

It is here shown that rules (2.20) and (2.32) permit the derivation of expressions of all

observabilitydon’t caresof a network by a single traversal ofNin topological order, from

the primary outputs. AlgorithmOBSERVABILITY below implements this idea. First,

the network is sorted topologically in the arrayvariable[] (for example, by a depth-

first routine [24]), and then augmented by the addition of the fanout variables of each

multiple-fanout vertex. The fanout variables of a vertexyi are inserted right aftery in

variable[] , so that the new array is still topologically sorted. Whenvariable[i]

is processed, the observability of all vertices inTFO vari able[i ], kept in odc[] , is thus

already known. The observabilitydon’t careof all internal vertices and primary inputs

is set to1. The observabilitydon’t careof the ith output vertex is then initialized to a

vector containing a zero in theit h component and 1 otherwise (theit h output vertex is of
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course perfectly observable at theit h output). The arrayvariable[] is then scanned

backwards to determine alldon’t cares. For single-fanout vertices, Eq. (2.20) is applied.

Eq. (2.32) is applied to multiple-fanout vertices by awhile loop on their fanout: as each

fanout variableyi is scanned, its observability is considered and made explicit in terms

of eachyj; j >i. The cofactoring operationODC yi

�i+1; ...; ym is implemented by iteratively

substituting those variables appearing inODCyi and in the fanout ofyi+1; . . . ; ym and then

realizing that, for�j = 1; j >i, it is y j = y0; j >i. Eachy j; j >i is thus just directly

replaced byy0. These operations are carried out bysubstitute() . Logic optimization

(for example, two-level minimization) of a vertex can be executed immediately after after

computing itsdon’t care .

OBSERVABILITY(N);

N = topsort(N);

N = augment(N);

init_odc(N);

for (i = |V|; i >= 0; i--) {

/* variable is identified by its position ‘‘i’’ in the array */

if (j = single_fanout(variable[i])) {

/* Apply Eq. (2.20). */

/* j is the index of the fanout node */

odc[i] = odc[j] + local_component(variable[i], variable[j]);

} else {

/* Apply Eq. (2.32) */

/* by scanning the fanout list of variable[i] */

fanout_list = fanout[i];

while (fanout_list != NULL) {

j = fanout_list->variable;

fanout_list = fanout_list->next;

tmp_odc = substitute(fanout_list, odc[j]);
odc[i] = odc[i] �tmp_odc;

}

}

}
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Theorem 2.2 Algorithm OBSERVABILITY computes correctly an expression of each

observability don’t care ofN.

Proof.

In order to prove the correctness of the algorithm it is necessary to show that,

when theit h vertex is considered, rules (2.20)-(2.27) are appliedcorrectly,

i.e. on expressions that are certainly correct in a sufficiently large set of

perturbed networks.

In the following proof this is accomplished by showing that, when ver-

tex yi is considered, the observabilitydon’t caresof yj ; j >i derived by

OBSERVABILITY are correct in every network perturbed in at most all ver-

tices inV�TFO yj
, and that the correctness of these expressions is sufficient

to derive a correct expression ofODCyi by rules (2.20)-(2.27).

This assertion is proved inductively on the indexi of the verticesy i of

variable[] , i= j Vj ; . . . ;0.

Base case. Since the vertices ofNare ordered topologically, the vertex

of index j Vj is a primary output, and has no fanout:TFO yjV j
= �. Its

observabilitydon’t care is therefore what assigned at initialization time, and

it is trivially correct in everynetwork perturbed in at mostfy1; . . . ; yjV jg =
V�TFO yjVj

(i.e. every perturbed network).

Inductive step. If the it h vertex has a single fanout edge( yi; yj) (with i < j

by the topological sorting ofN), thenTFO yj
= TFO yi

[ fyjg.
Eq. (2.20) gives an expression ofODCyi of the same correctness as that

of ODCyj . By the inductive hypothesis,ODCyj is correct in all networks

perturbed in at mostV�TFO yj
. The expression ofODCyi is thus correct in

particular in all networks perturbed in at mostV�TFO yj
= ( V�TFO yi

) [
fyjg �V�TFO yi

.



CHAPTER 2. COMBINATIONAL NETWORKS 38

If the it h vertexyhas multiple fanout edges( yi; yjk) , with k= 1; . . . ; j FOyj
andi <j k; k= 1; . . . ; j FO yj , OBSERVABILITY considers first expressions

of eachODCyj
k . By the inductive hypothesis, each such expression is cor-

rect in every network perturbed in at mostV�TFO yj
k

. As noyjh can be in

TFO yj
k

, the expression is in particular correct in the case of multiple pertur-

bations introduced in all fanout variables ofyi, and Eq. (2.32) is therefore

applicable. The substitution of all variables appearing inTFO yj
h

; jh >j k

and the cofactoring (explicit with respect to�jh; jh >j k and implicit with

respect to�jh; jh <j k) results in an expression (stored intmp odc ) which

is correct in every network perturbed in at most

V�
jFOyj[

h=1; h6=k

TFO yj
h

�V�TFO yi
: ( 2:36)

The eventual expression ofODCyi is therefore correct in every network

perturbed in at mostV�TFO yi
. 2

d

e

a

b

c

v1

v2

u1

x1

z1

u2

z2

x2
u = b’c+ce’

u3 x = a+u’ 3

o = x z +y22 2

z = e+v’1

o = x’ + z’ 1 11

y = u v +u’ v’ 2 2 2 2

1v = abu +deu1

Figure 2.6: Network augmented in all internal edges, for Example (16)

Example 17.

The algorithmOBSERVABILITY is applied on the network of Fig. (2.1). A

possible topological sorting of the network is :a; b; d; e; c; u; v; z; o 1; x; y; o 2.

The augmented network is shown in Fig. (2.6) (for simplicity, only in-

ternal vertices have been augmented, and the identity functions are not
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indicated). Vertices are eventually stored invariable[] in the order:

a; b; d; e; c; u; u 1; u2; u3; v; v 1; v2; z; z 1; z2; o1; x; x 1; x2; y; o 2. Initially,

ODCo1 =

2
4 0

1

3
5 ; ODCo2 =

2
4 1

0

3
5 :

Single-fanout verticesy; x 2; x1 are then selected in order, and Eq. (2.20)

applied:

ODCy = ODCo2 +
�
@o2
@y

�0
1 =

2
4 1

x2z2

3
5

ODCx2 = ODCo2 +
�
@o2
@x2

�0
1 =

2
4 1

z02 + y

3
5

ODCx1 = ODCo1 +
�
@o1
@x1

�0
1 =

2
4 z01

1

3
5 :

Vertex xhas multiple fanout, and Eq. (2.32) is applied. AsODC x1 and

ODCx2 are independent fromx2 and x1, respectively, no substitutions or

cofactors are necessary:

ODCx = ODCx1�ODC x2 =

2
4 z01

z02 + y

3
5 :

It is then possible to compute the observabilitydon’t careof z2 andz1. As

they are single-fanout vertices, Eq. (2.20) is applied again, to get:

ODCz2 =

2
4 1

x02 + y

3
5 ; ODCz1 =

2
4 x01

1

3
5 :

The observabilitydon’t careof z, computed by rule (2.32), follows. Again,

no substitutions or cofactors are necessary:

ODCz = ODCz1�ODC z2 =

2
4 x01

x02 + y

3
5 :

The observabilitydon’t careof v2 andv1 are then determined by rule (2.20):

ODCv2 =

2
4 1

x2z2

3
5 ; ODCv1 =

2
4 x01 + e

x02 + y+ e

3
5 :
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Notice that no substitutions have been made so far. The expressions derived

up to this point are therefore correct in every perturbed version of the network

of Fig. (2.6), and in particular inN v1v2. The observabilitydon’t care of v

by rule (2.27) follows:

ODCv = ODCv1�ODC v2
�1

=2
4 x01 + e

x02 + y+ e

3
5�

2
4 1

x2( e+ v)

3
5 =

2
4 x01 + e

x2( e+ y�v)

3
5 :

This calculation has required some substitutions, analyzed in Examples (15)-

(16). The derived expression is however correct in every network perturbed

in at mostV�TFO v. OBSERVABILITY determines thedon’t caresof

u3; u2; u1 next, using rule (2.20):

ODCu3 =

2
4 z01 + a

z02 + y+ a

3
5 ; ODCu2 =

2
4 1

x2z2

3
5 ;

ODCu1 =

2
4 a0 + b0 + x01 + e

( a0 + b0) ( d0 + e0) + x2( e+ y�v)

3
5 :

The observabilitydon’t careof uis then found by Eq. (2.32). Let� 1; �2; �3

denote the perturbations associated withu1; u2; u3:

ODCu = ODCu1
�2�3
�ODC u2

�3
�ODC u3 =

2
4 a0 + b0 + e

( a0 + b0) ( d0 + e0) + ( a+ u) ( e+ u0)

3
5�

2
4 1

( a+ u) z2

3
5�

2
4 z01 + a

z02 + a+ y

3
5 :

Eventually, the observabilitydon’t caresof the primary inputs is determined.

These can be used as externaldon’t caresfor the stages of logic controlling

the network. 2

In practice, fanout variables need not be added, and theirdon’t caresneed not be

considered explicitly when traversing the network: for each multiple-fanout vertexy, the

while loop can compute the observabilitydon’t care of each fanout variable by one

application of rule (2.20), execute the necessary substitutions and cofactors, and add it to



CHAPTER 2. COMBINATIONAL NETWORKS 41

tmp odc , without resorting to explicit fanout vertices. This has the obvious advantage

of not introducing any spurious Boolean variables and maintaining generally simpler

expressions.

2.4 Multi-vertex optimization and compatible don’t cares

The don’t care -based method considered so far focuses on the optimization of one

vertex at a time. A natural extension therefore consists of considering the simultaneous

optimization of multiple vertices. Again, this process can be regarded as the introduction

of error signals in the network, one for each optimized vertex. Eq. (2.14) again represents

the functional constraints on such errors.

Example 18.

Fig. (2.7) shows the introduction of two perturbations. The error function is

E =

2
6666664

�01�2( a+ c0) e0+ �1�
0
2a

0( b�c+ c�e) +

+�1�2( a0c0 + e0a+ a 0be)

�01�2( be)0( a0c+ c 0e) + �1�
0
2( de)

0( a0 + bce 0) +

+�1�2( ab+ ae+ b 0ce+ c 0e0 + d0e)

3
7777775

2

d

e

a

b

c

y = uv+u’v’

z = e+v’

x = a+u’

o = xz+y2

1o = x’+z’
v = (abc+de)

1

2

u = (b’c+ce’)

Figure 2.7: Network perturbed in correspondence of variablesuandv
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A first question concerning multiple-vertex optimization is whether the solution space

of Eq. (2.14) can be given a compact explicit representation. A nice extension of the

results of single-vertex optimization would be a representation by means of an array of

independent tolerances:

�i �DC yi : ( 2:37)

If this were the case, then each internal functioneyi could be optimized independently,

usingDC yi as don’t care . The following example shows that unfortunately such an

extension is not possible:

Example 19.

Consider the optimization of verticesuandv in the network of Fig. (2.7).

With the partial assignment of inputs:a= 0; c= 1; e= 0, the error function

is

E =

2
4 �1�

0
2

�1�� 2

3
5 :

AssumingDC = 0, Eq. (2.14) reduces to

�1�
0
2 = 0

�1�� 2 = 0

which holds if and only if�1 = �2. Clearly, perturbations in this case cannot

be independent, as implied by Eq. (2.37).2

The second question is whether multiple-vertex optimization can indeed achieve better

results than single-vertex optimization. This is answered by Example (20) below.

Example 20.

In the network of Fig. (2.7), consider choosing�1 = �2 = b if a= 0; c=

1; e = 0, and� 1 = �2 = 0 elsewhere. In other words,�1 = �2 = a0bce 0.

The functions replacingfu and fv are nowgu = fu �� 1 = a+ b 0c and

gv = fv �� 2 = bc+ de, of lower cost than the original ones, and shown in

Fig. (2.8). Notice in particular thatgu and gv differ from f u; fv only for

a= 0; c= 1; e= 0.



CHAPTER 2. COMBINATIONAL NETWORKS 43

The separate optimization ofv can be regarded as a special case of joint

optimization, in which�1 is set to 0. Fora= 0; c= 1; e= 0, it must now

be �2 = 0: gv no longer belongs to the functions that can replacef v. 2

d

e

a

b

c

y = uv+u’v’

z = e+v’

x = a+u’

o = xz+y2

1o = x’+z’

u = a+b’c 

v=bc+de

Figure 2.8: Network resulting from the simultaneous optimization ofuandv

Example (20) shows that the choices on feasible perturbations for each variableyi

must in general becorrelated. This correlation is captured in the general case by the

following theorem:

Theorem 2.3 Perturbations�1; . . . ; �m satisfyE �DC (i.e. Eq. (2.14)) if and only if

DC0E�01
�� 11� E 0

�1
+ DC ;

DC0( 8�1E)�02 �� 21� ( 8�1E)
0
�2
+ DC ;

...

DC0( 8�1; ...; �i�1 E)�i �� i1� ( 8�1; ...; �i�1 E)0
�i
+ DC ; i= 1; . . . ;m (2.38)

Proof.

The proof generalizes the derivation ofdon’t caresfor single perturbations.

By taking the Shannon expansion ofE with respect to�1, Eq. (2.14) is

transformed into:

�01E�01
+ �1E�1 �DC: ( 2:39)
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Eq. (2.39) holds if and only both terms of its left-hand side are contained in

DC:

�01E�
0
1
�DC

�1E�1 �DC : (2.40)

By using the Boolean identity

ab�c,a�b 0 + c ( 2:41)

Eq. (2.40) becomes

DC0 � E�01 �� 11�E 0
�1
+ DC : ( 2:42)

One such�1 can exist only if the bounds expressed by Eq. (2.42) are con-

sistent, that is, if and only if

E�01
� DC0 �E 0

�1
+ DC : ( 2:43)

The same Boolean property (2.41) can then be used to transform Eq. (2.43)

into

E�01
� E�1 = 8�1( E) �DC : ( 2:44)

Eq. (2.44) can then be expanded with respect to�2. By repeating steps

(2.39)-(2.44),

�01 ( 8�1E)�01 �DC

�1 ( 8�1E)�1 �DC (2.45)

results in

DC0 � ( 8�1E)�02 �� 21�( 8�1E)
0
�2
+ DC ( 2:46)

and in the consistency equation

8�2( 8�1E) = 8�1�2E �DC : ( 2:47)

Steps (2.39-2.44) can be repeated to iteratively generate the bounds on�i

from the consistency equation of the previous step. Theorem (2.3) is then

proved completely by showing that the last consistency equation

8�1; ...; �mE �DC ( 2:48)

holds. But this follows from8�1; ...; �mE �E �01; ...; �0
m
= 0. 2
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Theorem (2.3) has two important consequences, that enlighten the difficulties added by

dealing with multiple perturbations. First, each individual perturbation may have alower

bound to satisfy, in addition to the “ regular” upper bound; second, each bound depends

not only on the primary inputs, but also on other perturbations. Example (20) presented

a case where the lower bound for�2 was nonzero and depended on�1: introducing a

nonzero perturbation in vertexu indeed forced us to changef v. The perturbation on

ualone would have introduced an error in the functionality of the network: the lower

bound on�2 takes then the meaning of an error onv that is required to compensatethe

error introduced byu. These difficulties can be removed by discarding some degrees of

freedom and determining conditions simpler than Eq. (2.38), namely in terms of upper

bounds only. In this respect, one possibility is to consider the degrees of freedom available

for the optimization of eachyi regardlessof the functions chosen to synthesizeyj; j 6= i.

This idea is formalized by the concept ofcompatible don’t cares[33, 38]. A second

possibility consists instead of focusing on the network topology and of selecting suitable

subnetworks, based on a “simplified” dependency ofE on �1; . . . ; �m. This approach

leads to the concept ofcompatible gates, explored later in Chapter (3).

Definition 2.5 Don’t care functionsDC yi ; i = 1; . . . ;massociated withy 1; . . . ; ym are

termedcompatible if:

1) none of them depends on any of�1; . . . ; �m; and

2) �i �DC yi i= 1; . . . ;mimply E �DC .

Compatible don’t care functionsDC yi are said to bemaximal if none of them can

be increased (i.e. replaced by larger functionsByi >DC yi without violatingE �DC.

For a given arrayy of vertices there are in general several possible choices of maximal

compatibledon’t cares. Theorems (2.4)-( 2.5) below link one such choice to ordinary

observabilitydon’t cares:

Theorem 2.4 If perturbations�1; . . . ; �m satisfy :

�i1�ODC yi

�01; ...; �0
i�1

( x; �i+1; . . . ; �m) + DC ( 2:49)

thenE �DC.
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Proof.

The first step of the proof consists of proving the implication :
8<
:
�i1�ODC yi

�
0
1; ...; �0

i�1
+ DC

E�
0
1; ...; �0

i
�DC

)
8<
:
�i1�E 0

�
0
1; ...; �0

i�1 ; �i
+ DC

E�
0
1; ...; �0

i�1
�DC

( 2:50)

for i= m;m�1; . . . ;1. The algebra of the derivation is as follows:
8<
:
�i1�ODC yi

�
0
1; ...; �0

i�1
+ DC

E�01; ...; �0
i
�DC

)
8<
:

�i1�ODC yi

�
0
1; ...; �0

i�1
+ DC

E0
�01; ...; �0

i

+ DC = 1 :
)

8<
:
�i1�( ODCyi

�01; ...; �0
i�1

+ DC)�( E0
�01; ...; �0

i

+ DC)

E0
�01; ...; �0

i

+ DC = 1 :

( 2:51)

By expandingODCyi andE0 in terms of Fy,

ODCyi

�01; ...; �0
i�1
�E 0

�01; ...; �0
i

=

( Fy
�01; ...; �0

i�1 ; �i
�F y

�01; ...; �0
i�1 ; �0

i

)�( Fy
�01; ...; �0

i�1 ; �0
i

�F y
�01; ...; �0

i�1 ; �0
m

) =

Fy
�01; ...; �0

i�1 ; �i
�F y

�01; ...; �0
i�1 ; �0

m

= E0
�01; ...; �0

i�1 ; �i
:

( 2:52)

Using this equality in Eq. (2.51) yields
8<
:
�i1�ODC yi

�01; ...; �0
i�1

+ DC

E�01; ...; �0
i
�DC

)
8<
:
�i1�E 0

�01; ...; �0
i�1 ; �i

+ DC

E�01; ...; �0
i
�DC :

( 2:53)

To complete the proof, notice that
8<
:
�i1�E 0

�01; ...; �0
i�1 ; �i

+ DC

E�01; ...; �0
i
�DC :

)
8<
: �iE�01; ...; �0

i�1 ; �i
�DC

�0
i
E�01; ...; �0

i�1
�DC

)

8<
:
�i1�E 0

�01; ...; �0
i�1 ; �i

+ DC

�0
i
E�01; ...; �0

i�1
+ �iE�01; ...; �0

i�1 ; �i
�DC

)
8<
:
�i1�E 0

�01; ...; �0
i�1 ; �i

�DC

E�01; ...; �0
i�1
�DC :

( 2:54)

The last implication is in particular verified by observing that the left-hand

side of Eq. (2.54) is the Shannon expansion of the right-hand side.
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So far, it has been shown that Eq. (2.49), along with the initial assumption

E�
0
1; ...; �0

m
�DC, implies in particular

E�
0
1; ...; �0

i
�DC ; i= m�1;m�2; � � � ;0 : ( 2:55)

On the other hand, sinceE�
0
1; ...; �0

m
= 0, the initial assumption is always

verified. In order to prove the theorem it is thus sufficient to observe that

Eq. (2.14) is just Eq. (2.55) fori= 0. 2

The bounds expressed by Theorem (2.4) still depend on other perturbation signals.

Compatibledon’t cares could be obtained from them, however, in a straightforward

manner byconsensus: don’t caresDC yi such that

DC yi1�8 �i+1; ...; �m

�
ODCyi

�01; ...; �0
i�1

+ DC
�

( 2:56)

are indeed compatible, as they are independent from any perturbation and clearly� i �
DC yi implies Eq. (2.49). Theorem (2.4) below refines theconsensusoperation to obtain

a set of maximal compatibledon’t cares. The idea behind the result is that when an

upper boundDC yi for �i is derived, perturbations�i+1; . . . ; �m are already bounded by

DC yi+1; . . . ;DC ym. This information is equivalent to saying that combinations of inputs

and perturbations violating these bounds are forbidden, and can be interpreted as external

don’t cares. Such combinations are given precisely by the terms�k( DC yk)0.

Example (20) below compares the compatibledon’t caresobtained from Eq. (2.56)

with those of Eq. (2.57), in particular proving the usefulness of the terms�k( DC yk)0.

Theorem 2.5 If functionsDC yi ; i= 1; . . . ;msatisfy

DC yi1�DC + CODC yi; i = 1; . . . ;m ( 2:57)

where

CODCym = ODCym
�01; ...; �0

m�1

...
...

CODCyi = 8�i+1; ...; �m

�
ODCyi

�01; ...; �0
i�1

+ (
mX

k=i+1

�k( DC
yk)0) 1

�
; i = 1; . . . ;m:(2.58)

then they represent compatible don’t cares . They are maximal if the inequality (2.57) is

violated by any functionB>DC yi.
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Proof.

The upper boundsDC yi are independent from any�k; k= 1; . . . ;m; to prove

their compatibility, it is thus sufficient to show that, under the assumptions

(2.57),

�i �DC yi; i= 1; . . . ;m ( 2:59)

implies every equation of the group (2.49). To this regard, notice that Eq.

(2.59) and Eq. (2.57) together imply

�i1�DC + ODC yi

�01; ...; �0
i�1

+
� mX
k=i+1

�k( DC
yk)0

�
1 ( 2:60)

as well as
mX

k=i+1

�k( DC
yk)0 = 0 ( 2:61)

Eq. (2.49) is thus obtained by substituting Eq. (2.61) into (2.60).

The proof of maximality is by contradiction. It is shown in particular that if

any upper boundsDC yi are replaced by larger boundsByi , then it is possible

to find a combination of inputs and perturbations that, although satisfying the

new constraints�i �B yi , nevertheless violatesE �DC.

To this regard, suppose that there exists at least one indexi such that

Byi >DC yi . It is then possible to find an input combinationx0 such that

DC yi( x0) = 0, butByi( x0) = 1. FromDC yi( x0) = 0 and Eqs. (2.57)-(2.58)

it follows that

DC( x0) + 8�i+1; ...; �m

�
ODCyi

�01; ...; �0
i�1

+ (
mX

k=i+1

�k( DC
yk)0) 1

�
6 = 1 : ( 2:62)

Eq. (2.62) can be rewritten as

8�i+1; ...; �m

�
DC( x0) + ODCyi

�01; ...; �0
i�1

+ (
mX

k=i+1

�k( DC
yk)0) 1

�
6 = 1 ( 2:63)

Eq. (2.63) indicates that there must exist a combination�0 of the perturbations

such that:

DC( x0) +ODC�01;0; ...; �0
i�1;0

( x0; �i+1; 0; . . . ; �m; 0) +(
mX

k=i+1

�k; 0( DC
yk( x0) )0) 1 6 = 1:

( 2:64)
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In particular,�0 can always be chosen so as�1; 0 = �2; 0 = . . . = �i�1; 0= 0,

and�i ; 0= 1. Eq. (2.64) can be rewritten as a pair

DC( x0) + ODC�01;0; ...; �0
i�1;0

( x0; �i+1; 0; . . . ; �m; 0) 6 = 1 ( 2:65)

and

�k; 0�DC yk( x0) ; k= i+ 1; . . . ;m: ( 2:66)

Notice that, sinceDC yj �B yj ; j = 1; . . . ;m, the combination� 0 does not

violate the boundsByi .

Consider now the identity shown in Theorem (2.4) (specifically, by Eq.

(2.52)):

E0
�01; ...; �0

i�1 ; �i
+ DC = ( ODCyi

�01; ...; �0
i�1

+ DC)�( E0
�01; ...; �0

i

+ DC) : ( 2:67)

It is now shown that, corresponding to( x0; �0) the second term of the�
operator in Eq. (2.67) takes value1. To this regard, notice that, from Eq.

(2.66),�k1 �DC yk1 �DC + ODC yk

�01; ...; �0
k�1

; k= i+ 1; . . . ;m. In the proof

of Theorem (2.4) this condition was shown to imply Eq. (2.54), that is, the

identity to 1 of the term. Eq. (2.65) can then be rewritten as

E0
�01; ...; �0

i�1 ; �i
( x0) + DC( x0) = ODCyi

�01; ...; �0
i�1

( x0) + DC( x0) 6 = 1 : ( 2:68)

Notice also that, from the choice�1 = �2 = . . . = �i�1 = 0, �i = 1,

E0
�01; ...; �0

i�1 ; �i
( x0; �0) = E( x0; �0) : ( 2:69)

Eq. (2.68) then becomes

E( x0; �0) + DC( x0) 6 = 1 ( 2:70)

indicating that Eq. (2.14) is violated byx0; �0. Consequently, boundsByi

cannot be valid.2

Theorem (2.5) proves the intuition that the degrees of freedom associated withyi (and

again expressed by a global plus a local observabilitydon’t carevectorCODCyi , here-

after termedcompatible observability don’t careof yi) that areindependent from the
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perturbations of other functionsyj ; j >i indeed represent maximal compatibledon’t

cares . Independence is actually obtainedexplicitly, by performing the8 operation in

Eq. (2.58).

Example 21.

Consider the extraction of maximal compatibledon’t cares for xand z in

the network of Fig. (2.5). Two perturbations are introduced atxand atz,

labeled�1 and�2, respectively. Expressions ofODCx andODCz are:

ODCx =

2
4 z0

z0 + y

3
5 ; ODCz =

2
4 x0

x0 + y

3
5

and they depend on�2 and�1 throughz andx. Expliciting this dependency

results in

ODCx =

2
4 ( e+ v0)�� 2

( e+ v0)�� 2 + y

3
5 ; ODCz =

2
4 ( a+ u0)�� 1

( a+ u0)�� 1 + y

3
5 :

From Theorem (2.5), a maximal compatibledon’t careof xis obtained from

CODCx = ODCx

�02
=

2
4 e0v

e0v+ y

3
5

so that

DC x = e0v= e 0v( e0v+ y) = abce 0

while a compatibledon’t careDC z is obtained from

CODCz = 8�1( ODCz + �1( e0v) 01) =

2
4 a0u

a0u+ y

3
5
2
4 a+ u 0 + e+ v 0

a+ u 0 + e+ v 0 + y

3
5 =

2
4 a0u( e+ v 0)

a0u( e+ v 0) + y

3
5

so that eventually

DC z = a0u( e+ v 0) = a0b0c+ a 0ce 0:
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Notice that if Eq. (2.56) was used instead,

CODCz = 8�1( ODCz) =2
4 a0u

a0u+ y

3
5
2
4 a+ u 0

a+ u 0 + y

3
5 =

2
4 0

y

3
5

which would have resulted inDC z = 0. 2

As eachCODCyi is contained inODCyi

�
0
1; ...; �0

m

, don’t carescomputed under compatibil-

ity constraints are obviously smaller than full observabilitydon’t cares: some degrees of

freedom have been lost. In the context of combinational logic optimization, compatible

don’t cares therefore represent approximations of the fulldon’t careswhose relevance

lies uniquely in the possibility of changing the optimization strategy: instead of com-

puting eachdon’t careand then optimizing each vertex individually, alldon’t caresof y

can be computed ahead of time, and then vertices optimized jointly. Compatibledon’t

caresbecome instead unavoidable when dealing with sequential circuits, as shown later

in Chapter (4).

For the subsequent analysis, it is convenient to introduce alsocompatible observability

care vectors

COCyi = 8�i+1; ���; �m

�
OCyi

�01; ���; �
0
i�1

+
mX

k=i+1

�k( DC
yk)0

�
( 2:71)

These vectors represent the conditions under which a perturbation ofyi is observed at

the primary outputs, regardless of other (bounded) perturbations.

Compatible don’t caresby local rules.

Given an arrayy = [ y1; . . . ; ym] of vertices, their maximal compatibledon’t carescan

in principle be computed by first determining their fulldon’t cares , expliciting their

dependencies on�, and applying Eq. (2.57).

This complex procedure could be simplified if the network topology provides suf-

ficient information on the dependency of eachODCyi on each�j; j >i. For arbitrary

network topologies and choices ofy this is obviously not the case. It was however con-

jectured in [38] that if compatibledon’t caresof all vertices are sought (i.e. m= j Vj
) and if vertices appear in topological order iny, then maximal compatibledon’t cares
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could be determined efficiently by resorting only to local rules. The proposed rules,

unfortunately, do not yield maximal compatibledon’t cares. They are therefore analyzed

together with other approximation methods in Sect. (2.5).

Perturbation analysis is here used to argue that, in presence of vertices with multiple

fanout edges, there cannot be local rules based only on maximal compatibledon’t cares

. Although no formal proof is given here, we believe that it is not possible to extract

the maximal compatibledon’t care of a vertex from those of its fanout, but rather the

full don’t caresof the fanout variables are necessary. This is motivated by the following

reasoning.

Consider first the case of a vertex labeledyi with a single fanout edge( yi; yj) . The

exact don’t care ODCyi is in this case computed by Eq. (2.20), while Theorem (2.5)

relates exactdon’t caresto maximal compatible ones. Combining those results,CODCyi

is given by

CODCyi = 8�i+1; ...; �m

�
ODCyj

�01; ...; �0
i�1

+
�
@f yj

@� i

�0
�01; ...; �0

i�1

1+
mX

k=i+1

�k( DC
yk)01

�
: ( 2:72)

We should now transform Eq. (2.72) in a way that includesCODCyj instead of the full

don’t care ODCyj . The consensusoperation can be split in two operations, regarding

variablesyk; k>j andy k; k�j:

CODCyi = 8�i+1; ...; �j

�
8�j+1; ...; �m

�
ODCyj

�01; ...; �0
i�1

+
�
@f yj

@� i

�0
�01; ...; �0

i�1

1+
mX

k=i+1

�k( DC
yk)01

��
:

( 2:73)

Eq. (2.72) indicates, however, that in order to computeCODCyi one has to know

the dependency ofODCyj from the perturbations�i+1; . . . ; �j�1 . Notice that, instead,

CODCyj as defined by Eq. (2.57) is independent from all perturbations�k; k<j.

This difficulty arises whenODCyj can actually depend on perturbations�k; k <

j. Network topologies of the type shown in Fig. (2.9) represent one such case: the

observabilitydon’t care function of yj can depend on�k, wherei <k<j.

In this case,CODCyi can be computed exactly only if the dependency ofODCyj and

of the local component@f
yj

@�i
on �k are known. Keeping track of such dependencies is

unfeasible for large circuits.
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y

y i
y

j

i j

k

y
k

Figure 2.9: Network topology for which local computation of compatibledon’t cares
may be impossible.

2.5 Approximating observability don’t cares

For reasons of representation size and CPU time it is in practice often necessary to

approximate observabilitydon’t caresby simpler (in terms of representation) function-

s gODCyi �ODC yi. The important question here is whether network traversal rules

(2.20)-(2.32) arerobust, i.e. are still correct if observabilitydon’t caresare replaced by

approximations.

Consider first rule (2.20) for single-fanout vertices. Let againy and z denote the

variable and its fanout, respectively, and assume thatODCz is approximated by gODCz �
ODCz. It follows immediately that

gODCy = gODCz +
�
@e z

@y

�0
1�ODC y : ( 2:74)

Thus, rule (2.20) is robust with respect to approximations. Moreover, Eq. (2.74) yields

the true observabilitydon’t careof y if gODCz = ODCz.

The lack of monotonicity of�makes instead the local rule (2.27) for multiple-fanout

vertices not robust. Consider a vertex labeledy, with two fanout variablesy 1, y2. From

approximations gODCy1 �ODC y1 and gODCy2 �ODC y2 in general

gODCy1� gODCy2
�1

= gODCy1 gODCy2
�1
+ ( gODCy1)0( gODCy2

�1
)0 6 �ODCy ( 2:75)

the reason being in particular that, due to complementation,( gODCyi)0 6 �OCyi . The

consequences of Eq. (2.75) are severe: by using Eq. (2.27) directly on approximations,
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there is danger of attributing erroneously degrees of freedom toy, thus possibly intro-

ducing functional errors during optimization. Rule (2.27) therefore needs to be replaced

by a robust one whenever approximations are used.

Several substitute rules have been proposed in the past [15, 33, 34, 35]. We use

here Eq. (2.27) first for examining their quality, and then for proposing new ones. For

simplicity, only the case of two reconvergent fanout branches, labeledy1; y2, is considered,

the extensions being conceptually straightforward [39].

For the purposes of this analysis, it is convenient to evidence the dependencies of

ODCy1 on �2 and ofODCy2 on �1 by a Shannon expansion:

ODCy1 = �02a0 + �2a1 ; ODCy2 = �01b0 + �1b1: ( 2:76)

where

a0 = ODCy1
�02
; a1 = ODCy1

�2
; b0 = ODCy2

�01
; b1 = ODCy2

�1
: ( 2:77)

By substituting these expressions in Eq. (2.27) and (2.32), and recalling that perturbations

�1 and�2 are constrained to be equal (�1 = �2 = �), the following identity must hold:

ODCy = ( �0a0 + �a 1�)�( �b0 + �0b1) = ( �a0 + �0a1)�( �0b0 + �b 1) : ( 2:78)

Any combination ofa0;a1;b0;b1; �violating identity (2.78) is therefore impossible. In the

scalar case, the Karnaugh map ofODC y in terms ofa0; a1; b0; b1 and� is shown in Fig.

(2.10). In this map, the symbol “�” denotes precisely these impossible combinations.
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Figure 2.10: Map ofODC y in terms of the variablesa0; a1; b0; b1.

Any local method must approximateODCy by some function ofa0;a1;b0;b1. One

first measure of the quality of any such approximation can therefore be provided by the

number of covered 1’s in the Karnaugh map.
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In [35], the following approximation is proposed. First,gODCy1 si replaced by its

portion8�2(
gODCy1) independent from�2. Clearly, the new approximationgODCy1 is now

contained ina0a1. Similarly, gODCy2 is replaced by its portion independent fromy1.

Consequently, now gODCy2 �b 0b1. Eventually, their product is formed:

gODCy = gODCy1 gODCy2 �a 0a1b0b1: ( 2:79)

The portion of the map covered by this approximation is shown in Fig. (2.11): at

most two 1’s out of the 8 possible. Therefore, this rule cannot recoverODCy fromgODCy1 = ODCy1 and gODCy2 = ODCy1.
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Figure 2.11: Map of gODCy as derived by Eq. (2.79)

Muroga proposes in [33] an apparently better approximation. It consists of replacinggODCy2 by an approximation that iscompatiblewith the perturbation�1 (the arrow symbol

denotes replacement): gODCy1  gODCy1
�02
�a 0;gODCy2  8 �1(

gODCy2) �b0b1

( 2:80)

and of computing gODCy according to

gODCy = gODCy1 gODCy2 = a0b0b1: ( 2:81)

The portion ofODCy that can be covered by Eq. (2.81) is shown in Fig. (2.12).

Interestingly, the accuracy of Eq. (2.81) is no greater than that of Eq. (2.79). Note,

however, that Eq. (2.81) requires fewer computations: sinceODCy1
�02

is the plaindon’t

care of y2, assuming no other perturbation in the circuit, and onlyODCy2 needs to be

made independent fromy1.
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Figure 2.12: Map ofODC y in terms of the variablesa0; a1; b0; b1. Circles represent the
approximation given by Eq. (2.81)

This approach was refined by Savojet al. in [36], and consists essentially of replacinggODCy2 by themaximal don’t careof y2, compatible withy1:

gODCy2 !8 �1(
gODCy2 + �1( DC

y1)01) : ( 2:82)

Eventually, gODCy = gODCy1 gODCy2: ( 2:83)

For a single-output network, this approximation yields

gODC y1 = a0;gODC y2 = 8�1( ODC
y2 + �1( ODC y1)0) = b0( b1 + a00) ;

gODC y = a0b0( b1 + a00) = a0b0b1

( 2:84)

Although the observabilitydon’t caresof y1 and y2, computed by Eqs. (2.83) or

(2.84) are larger than what provided by Eq. (2.81), still when their product is formed the

coverage ofODCy is not improved over Muroga’s method. All methods proposed so far

therefore capture essentially the same portion of the observabilitydon’t cares, although

with different degrees of efficiency.

Several more accurate approximation strategies can be derived by expanding Eqs.

(2.27)-(2.32) into two-level expressions. Complements of observabilitydon’t carescan

be replaced by approximationsgOCyi �OC yi of observabilitycares . For example, by

taking into account all terms of the sum-of-products expansions, any approximation based

upon: gODCy � gODCy1 gODCy2
�1
+ gOCy1 gOCy2

�1
+gODCy1

�2

gODCy2 + gOCy1
�2

gOCy2 ;
( 2:85)



CHAPTER 2. COMBINATIONAL NETWORKS 57

gOCy � gODCy1 gOCy2
�1
+ gOCy1 gODCy2

�1
+gODCy1

�2

gOCy2 + gOCy1
�2

gODCy2
( 2:86)

is therefore correct, and can yieldODCy;OCy if the observabilitydon’t caresandcares

of y1 and y2 are exact. The map of Fig. (2.13) shows that by Eq. (2.85)-(2.86) it is

indeed possible to fully coverODCy.
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Figure 2.13: Karnaugh map showing the approximations provided by Eq. (2.86)

Approximations of observabilitydon’t carescan be ranked according to the availability

of approximations toOCyi, that is, upon whether Eq. (2.86) is actually used or it is simply

assumed gOCyi = 0. Solid lines represent the coverage attainable without resorting to

approximations ofOCyi . It constitutes 75% of the entire map. Dotted lines represent the

contribution by those terms containinggODCyi .

Approximating compatible don’t cares.

Since the exact rules for compatibledon’t caresare potentially computationally more

complex than those of fulldon’t cares, approximation methods yielding approximationsgCODCyi based on possibly simplified local rules are in this case especially important.

The starting point for single-fanout rules is the exact expression (2.73).

We report again in Fig. (2.14) the network topology causing problems. Recall that the

difficulty in making the rule local was the possibility forODCyj to depend on�k, k<j.

This dependency becomes irrelevant if�k is suitably constrained, that is, ifODCyk is

approximated by a suitable smaller function.

Unfortunately, in order to accomplish this, both rules for single- and multiple- fanout

vertices must be modifiedjointly .
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Figure 2.14: Example network for local approximation of compatibledon’t cares

First, vertices are sorted topologically, and multiple-output vertices are augmented by

adding their fanout vertices and variables. Consider a single-output vertexyi, with fanout

edge( yi; yj) . Other inputs toyj are represented by variablesyk; k>i and y h; h <i.

Because of the topological order, all observabilitiesCODCyk are already known when

computingCODCyi. Hence, the range of functions that can replace eachfyk is known

as well. The observabilitydon’t care of yi is thus computed so as not to change this

range. This is accomplished by using the formula

CODCyi = 8�i+1; ...; �j�1

�
CODCyj +

�
@f yj

@y i

�0
�01; ...; �0

i�1

1+
j�1X

k=i+1

�k( DC
yk)01

�
: ( 2:87)

Notice that now theconsensusoperation is carried out only on the local component

of CODCyi , which results in a faster implementation. The penalty paid by this approach

is that perturbations on the fanout variables of a multiple-fanout vertex are now regarded

as independent. Given a multiple-fanout vertexy, a functiong y can replacefy now only

if the introduced error satisfies the tolerances setindependentlyon each fanout variable.

In [33] the companion local rule for multiple-fanout vertices reduces to computing the

intersection of the compatibledon’t caresof each fanout variable:

gCODCyi = CODCyjCODCyk ( 2:88)

whereyj andyk are the (two, for simplicity) fanout variables ofyi. Example (21) below

shows that this rule is only an approximation toCODCyi .

Example 22.
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Consider computing compatibledon’t cares of verticesx; y and z in the

network of Fig. (2.15). First, the compatible observabilitydon’t caresof z

andyare determined. Since in particular their fulldon’t caresare identically

zero,CODC z = CODC y = 0. To computeCODC x, first compatibledon’t

caresof the two fanout variables (not shown in Fig. (2.15) are determined,

using rule (2.87), and they are both zero. Consequently, when rule (2.88) is

used, gCODC x = 0. It can however be verified that the full observability

don’t careof xis identically 1, regardless of the perturbations introduced at

verticesy andz. Consequently, the maximal compatibledon’t careof x, as

given by Eq. (2.57), isCODC x = 1. 2

y = xb’+x’b

x = ab’+a’b z = xy’+x’y

b

a

Figure 2.15: Circuit for Example (2.22)

2.5.1 Experimental results.

The algorithms for extracting observabilitydon’t careshave been written in C and tested

against a series of benchmark combinational logic circuits. Their statistics are summarized

in Table (2.1).

Each circuit was converted into a network of NOR gates only.

All logic functions are represented by their BDDs [29, 30], and manipulated accord-

ingly, using a “home made” BDD package. Variables are ordered according to Malik’s

criterion.

It is worth noting that the direct application of Eq. (2.15) requires the knowledge of

the functionFy realized by the perturbed circuit. For some of the benchmarks considered

in this work, this is a well-known difficulty. Moreover, the resulting expression is in

terms of primary input variables.
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Circuit Inputs Outputs NOR gates Interconnections
f51m 8 7 127 262

9symml 9 1 153 375
alu2 10 6 263 924
alu4 14 8 522 1682

apex6 135 99 746 1411
apex7 49 37 222 508

k2 45 45 297 3129
i9 88 63 408 1475

pair 173 137 1919 3740
x3 135 99 1167 2631

C432 36 7 243 455
C499 41 32 531 945
C880 60 26 459 797
C1355 41 32 571 1089
C1908 33 25 490 936
C3540 50 22 1120 2249
C6288 32 32 2462 4018

Table 2.1: Benchmark statistics.

To this regard,OBSERVABILITY has two key potential advantages. First, it extracts

the observabilitydon’t careswithout an explicit knowledge of the network functionality.

Second, the expression of thesedon’t caresis in terms of other internal variables.

Table (2.2) shows the memory and CPU requirements (in terms of BDD vertices and

seconds on a Sun SparcStation Classic, respectively) ofOBSERVABILITY versus those

of Eq. (2.15).

In all circuits, OBSERVABILITY clearly outperforms the other approach, in terms

of CPU time. The use of internal variables helps greatly maintaining BDDs simple. As

a result, the overall efficiency of each computation is improved.

With regards to memory occupation,OBSERVABILITY also outperforms direct com-

putation. The improvement, however, is not as marked as in the case of CPU time. The

reason is the following. With the direct computation, during the computation of the

observabilitydon’t care of one gate, only the BDD of the functionFy needs be stored.

OBSERVABILITY, instead, requires that the BDDs of the observabilitydon’t caresof
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the gates along a cutset be kept at any time. Although these BDDs may individually

be simpler, their size altogether may be of comparable complexity as that ofFy. This

occurs, for example, in the case ofalu2 andalu4 . It is well known that the BDD of

adder-type circuits is generally simple. The computation of the observabilitydon’t care

vector for the internal gates is also made simple by the circuit structure. The presence

of plenty of reconvergent fanout, instead, causes a lot of substitution operations during

the execution ofOBSERVABILITY. The latter method remains, however, competitive

because of the simplicity of the BDDs on which these operations are performed.

We included here two cases for which the direct approach could not complete, namely,

the two largest ISCAS benchmarks considered here. The extraction of the BDDs for these

two circuits is extremely lengthy and difficult. Therefore, it is practically impossible

to extract the BDD of the perturbed function. On the other hand, we were able to

approximate the BDDs of the observability function at each vertex. The approximation

was obtained by means of rule (2.85), using no observability care set. The BDDs were

approximated whenever the number of BDD vertices in memory reached 200000 vertices.

2.6 Summary

We have presentedperturbation theoryas a tool for exploringdon’t cares. This idea

allowed us to develop new algorithms for computing and approximating observability

don’t cares. The efficiency of the algorithms stems from the use of local rules. These

rules allow us to compute observabilitydon’t caresof a circuit without an explicit repre-

sentation of the circuit’s functionality, and with the possibility of using internal variables.

Moreover, the local rules we obtained could be easily simplified to yield efficient approx-

imations (with arbitrary trade-offs between accuracy and CPU-time requirements) for the

largest circuits.
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BDD nodes CPU time
Circuit Eq. (2.15) OBSERV Eq. (2.15) OBSERV
f51m 912 120 42 14

9symml 8505 1009 120 26
alu2 680 766 126 224
alu4 1482 2808 122 382

apex6 1350 102 821 46
apex7 2280 480 202 53

k2 5602 14550 342 293
i9 15304 16378 53 14

pair 100033 47023 92 48
x3 3506 870 22 26

C432 62505 7311 1194 255
C499 81911 23200 1531 1170
C880 10281 6070 459 79
C1355 41189 32890 571 1089
C1908 78303 2502 399 103
C3540 * 2000001 * 2030
C6288 * 2000001 * 4450

Table 2.2: Experimental results on OBSERVABILITY.The superscript1 indicates that
approximations have been employed.



Chapter 3

Multi-vertex optimization with

compatible gates

Chapter 2 dealt mainly with the optimization of individual vertices of a logic network.

Exact multiple-vertex optimization had been shown to offer potentially better quality

networks as compared to single-vertex optimization because of the additional degrees

of freedom associated with the re-design of larger blocks of logic. The theory of exact

multiple-vertex optimization was laid down by Brayton and Somenzi in [31, 8]. They

formulated the problem as that of finding a minimum-cost solution to a Boolean relation,

and presented a two-step algorithm for this purpose, conceptually similar to the traditional

Quine-McCluskey algorithm.

Unfortunately, exact multiple-vertex optimization suffers from two major disadvan-

tages. First, even if we consider the simultaneous optimization of only very small subsets

of vertices, the number of prime implicants that have to be derived can be remarkably

large. Second, given the set of prime implicants, it entails the solution of an often

complexbinate covering problem, for which efficient algorithms are still the subject of

investigation. As a result, the overall efficiency of the method is limited.

Heuristic approximations to multiple-gate optimization include the use ofcompati-

ble don’t cares[33], already analyzed in Sect. (2.4).Don’t care based optimization is

extended to multiple functions by suitably restricting the individualdon’t caresets asso-

ciated with each function. Although such methods are applicable to large networks, the

63
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restriction placed ondon’t caresets reduces the degrees of freedom and hence possibly

the quality of the results.

In this chapter, we show that it is possible to performexact multiple gate optimiza-

tion with an efficiency comparable with ordinary two-level synthesis. We show that

the difficulties of ordinary exact multiple-gate optimization are due essentially from the

arbitrariness of the subnetwork selected for optimization. The careful selection of the sub-

network to optimize can improve the performance of multiple-gate optimization, without

sacrificing exactness. To this regard, first we introduce the notion ofcompatible set of

gatesas a subset of gates whose optimization can be solvedexactlyby classical two-level

synthesis algorithms. We show that the simultaneous optimization of compatible gates

allows us to reach optimal solutions not achievable by conventionaldon’t caremethods.

We then leverage upon these results and present an algorithm for the optimization of

more general subnetworks in an internally unate network. The algorithms have been

implemented and tested on several benchmark circuits, and the results in terms of literal

savings as well as CPU time are very promising.
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3.1 Related Previous Work

Most Boolean methods for multiple-level logic synthesis rely upon two-level synthesis

engines. For this reason and in order to establish some essential terminology, we first

review some basic concepts of two-level synthesis.

3.1.1 Two-level Synthesis

Consider the synthesis of a (single-output) network whose outputy is to satisfy Eq. (2.4),

imposing a realization ofy as a sum of cubesc k:

Fmin �y=
NX
k=1

ck �F max ( 3:1)

The upper bound in Eq. (3.1) holdsif and only ifeach cubeck satisfies the inequality

ck �F max ( 3:2)

Any such cube is termed animplicant . An implicant is termedprime if no literal

can be removed from it without violating the inequality (3.2). For the purpose of logic

optimization, only prime implicants need be considered [40, 41]. Each implicantck has an

associatedcostwk, which depends on the technology under consideration. For example,

in PLA minimization all implicants take the same area, and therefore have identical cost;

in a multiple-level context, the number of literals can be taken as cost measure [15]. The

cost of a sum of implicants is usually taken as the sum of the individual costs.

Once the list of primes has been built, a minimum-cost cover ofFmin is determined

by solving:

minimize :
NX
k=1

�kwk; subject to: Fmin �
NX
k=1

�kck ( 3:3)

where the Boolean variables�k are used in this context toparameterize the search

space: they are set to 1 ifck appears in the cover, and to 0 otherwise. The approach is

extended easily to the synthesis of multiple-output circuits by definingmultiple-output

primes [40, 41]. A multiple-output prime is a prime of the product of some components

of Fmax . These components are termed theinfluence setof the prime.
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Branch-and-bound methods can be used to solve exactly the covering problem. En-

gineering solutions have been thoroughly analyzed, for example, in [41], and have made

two-level synthesis feasible for very large problems.

The constraint part of Eq. (3.3) can be rewritten as

8x1; ...; xn

� NX
k=1

�kck( x) + F0
min

( x)
�
= 1 ( 3:4)

The left-hand side of Eq. (3.4) represents a Boolean functionF� of the parameters�i

only; the constraint equation (3.3) is therefore equivalent to

F� = 1 ( 3:5)

The conversion of Eq. (3.3) into Eq. (3.5) is known in the literature asPetrick’s method

[40].

Two properties of two-level synthesis are worth remarking in the present context.

First, once the list of primes has been built, we are guaranteed that no solution will

violate the upper bound in Eq. (2.4), so that only the lower bound needs to be considered

(as expressed by Eq. (3.3)). Similarly, only the upper bound needs to be considered

during the extraction of primes. Second, the effect of adding/removing a cube from a

partial cover ofFmin is always predictable: that partial cover is increased/decreased.

This property eases the problem of sifting the primes during the covering step, and it is

reflected by the unateness ofF�: intuitively, by switching any parameter�i from 0 to 1,

we cannot decrease our chances of satisfying Eq. (3.5). These are important attributes

of the problem that need to be preserved in its generalizations.

3.1.2 Boolean relations-based multiple-level optimization

Don’t care -based methods allow us to optimize only one single-output subnetwork at a

time. It has been shown in [8] that this strategy may potentially produce lower-quality

results with respect to a more general approach attempting the simultaneous optimization

of multiple-output subnetworks.

Figure (3.1) shows an arbitrary logic network, in which some gates have been selected

for joint optimization. In the rest of this chapter, given a network output expression

F( x; y) , x is the set of input variables andy is the set of gate outputs to be optimized.
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Figure 3.1: Network with Selected Gates

From equation(2.4), the functional constraints ony are expressed by

Fmin ( x) �F( x; y) �Fmax ( x) ( 3:6)

An equation like Eq. (3.6) describes aBoolean relation1. The synthesis problem

consists of finding a minimum-cost realization ofy1; . . . ; ym such that Eq. (3.6) holds. An

exact solution algorithm, targeting two-level realizations, is presented in [8]. It follows the

Quine-McCluskey algorithm, and consists of the two steps of prime-finding and covering.

The algorithm, however, is potentially very expensive in terms of CPU time. There are

two main reasons. The first reason is that, even for very simple problems, a large number

of primes can be generated. The second reason is that the branch-and-bound solution of

the covering step has more sources of backtracking than the traditional case. We illustrate

the causes of backtracking in the following example.

F
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c
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d

a’

c’

a’

b’

Figure 3.2: Boolean relations optimization example.

Example 23.

1An alternative formulation of a Boolean relation is by means of acharacteristic equation: R(x; y) = 1,
whereRis a Boolean function. It could be shown that the two formulations are equivalent.



CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 68

Consider the optimization of gatesg1 andg2, with outputsy1 andy2, in the

circuit of Figure 3.2. Assuming no externaldon’t care conditions,Fmin =

Fmax = a0b0 + ( ac+ bd) �( a0c0 + a0b0) , while F= y1�y 2 + a0b0. Eq. (3.6)

then takes the form:

a0b0 + ( ac+ bd) �( a0c0 + a0b0) �y1�y 2 + a0b0

�a 0b0 + ( ac+ bd) �( a0c0 + a0b0)

By the symmetry of the network with respect toy1 andy2, cubesa0c0; ac; bd;

a0b0 would be listed as implicants for bothy1 andy2. Consider constructing

now a cover fory1 and y2 from such implicants. An initial partial cover,

for example obtained by requiring the cover of the mintermabcdof F min ,

may consist of the cubeac assigned toy 1. Consider now addingbd to y 2,

in order to cover the mintermabc 0dof F min . Corresponding to the minterm

abcd, now y 1�y 2 = 0 whileFmin = 1; that is, the lower bound of Eq. (3.6)

is violated. Similarly, with the input assignmenta= 0; b= 1; c= 0; d= 1,

the network output changed from the correct value 0 to 1, whileFmax = 0.

Thus, also the upper bound is violated.

Contrary to the case of unate covering problems, where the addition of an

implicant to a partial cover can never cause the violation of any functional

constraints, here the addition of a single cube has caused the violation of

both bounds in Eq. (3.6).2

In Sect. (2.4) the difficulties of multiple-vertex optimization were interpreted as

being due to the interplay of the various perturbations that makes it impossible to isolate

individual bounds for each function.

Another interpretation is the following. When trying to express Eq. (3.6) in a form

similar to Eq. (3.1), that is, representing individual bounds on the signalsyi, each bound

may depend on other variablesyj . In turn, it could be shown that this results in abinate

covering step. Fast binate covering solvers are the subject of ongoing research [42];

nevertheless, the binate nature of the problem reflects an intrinsic complexity which is

not found in the unate case. In particular, as shown in the previous example, the effect of
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adding / removing a prime to a partial solution is no longer trivially predictable, and both

bounds in Eq. (3.6) may be violated by the addition of a single cube. As a consequence,

branch-and-bound solvers may (and usually do) undergo many more backtracks than with

a unate problem of comparable size, resulting in a substantially increased CPU time.

3.2 Compatible Gates

The analysis of Boolean relations points out that binate problems arise because of the

generally binate dependence ofF on the variablesyi. In order to better understand the

reasons for this type of dependency, we assume that the vertices of the logic network

actually represent individual elementarygates(ANDs, NANDs, ORs, NORs, inverters).

We introduce the notion ofcompatible gatesin order to perform multiple-vertex

optimization while avoiding the binate covering problem.

Definition 3.1 In a logic network, letp
j
= pj( x1; . . . ; xn) andq = q( x1; . . . ; xn) , where

j = 1;2; . . .m, be functions that do not depend ony 1; . . . ; ym. A subset of gatesS =

fg1; . . . ; gmg with outputsy1 . . .ym and functionsf1; � � � ; fm is said to becompatible if

the network input-output behaviorF can be expressed as:

F =
mX
j=1

yjpj + q ( 3:7)

modulo a polarity change in the variablesyj or F.

As shown in Sect. (3.3) below, compatible gates can be optimized jointly without

solving binate covering problems. Intuitively, compatible gates are selected such that

their optimization can only affect the outputs in a monotonic or unate way, and thereby

forcing the covering problem to be unate.

Example 24.

Consider the two-output circuit in Figure 3.3. Gatesg1 andg2 are compatible

becauseFandH can be written as

F= ( x1 + x3 + x04) y1 + ( x1 + x02 + x3) y2
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Figure 3.3: Gatesg1 andg2 are compatible.

H= 0y 1 + 0y2 + ( ( x1 + x3 + x04) ( x1 + x02 + x3) )0

2

The compatibility of a setS of gates is a Boolean property. In order to ascertain it,

one would have to verify that all network outputs can indeed be expressed as in Definition

(3.1). This task is potentially very CPU-intensive. In Section (3.4), we present algorithms

for constructing subsets of compatible gates from the network topology only.

3.3 Optimizing Compatible Gates

The functional constraints for a set of compatible gates can be obtained by replacing Eq.

(3.7) into Eq. (3.6). From Eq. (3.7) we obtain:

Fmin �
mX
j=1

yjpj + q �F max ( 3:8)

Eq. (3.8) can be solved using steps similar to that of two-level optimization. In particular,

the optimization steps consist ofimplicant extractionandcovering.

3.3.1 Implicant Extraction

Assuming thatq �F max , the upper bound of Eq. (3.8) holdsif and only if for each

productyjpj
the inequality
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yjpj
�F max

is verified, i.e. if and only if

yj1�F max + p0
j
; j= 1; . . . ;m ( 3:9)

or, equivalently,

yj �F max; j ; j= 1; . . . ;m ( 3:10)

whereFmax; j is the product of all the components ofFmax +p0
j
. A cubeccan thus appear

in a two-level expression ofyj if and only if c�F max; j . As this constraint is identical

to Eq. (3.2), the prime-extraction strategies [40, 41] of ordinary two-level synthesis can

be used.

Example 25.

Consider the optimization problem for gatesg1 andg2 in Fig. (3.3). From

Example (24)
p1 = ( x1 + x3 + x04)

0

p2 = ( x1 + x02 + x3)
0

We assume no externaldon’t care set. Consequently,Fmin = Fmax =

x1x2x
0
3+x2x3x4+x01x

0
2( x3+x04) . The Karnaugh maps ofFmin andFmax are

shown in Fig. (3.4a), along with those ofp1 andp2. Fig. (3.4b) shows the

maps ofFmax; 1 = Fmax +p01 andFmax; 2 = Fmax +p02, used for the extraction

of the primes ofy1 andy2, respectively. The list of all multiple-output primes

is given in Table (3.1). Note that primes 1 through 5 can be used by bothy1

andy2. 2

3.3.2 Covering Step

Let Nindicate the number of primes. For example, in the problem of Example (25),

N= 9. We then impose a sum-of-products representation associated with each variable

yj :
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Primes Influence sets
c1 x01x

0
2x3 y1; y2

c2 x01x
0
2x

0
4 y1; y2

c3 x01x3x4 y1; y2
c4 x2x4 y1; y2
c5 x1x2x03 y1; y2
c6 x2x03 y2

c7 x01x
0
3x

0
4 y2

c8 x01x
0
2 y1

c9 x01x4 y1

Table 3.1: Multiple-output primes for Example (3.25).

yj =
NX
k=1

�j kck ( 3:11)

with the only restriction that�j k = 0 if yj is not in the influence set ofck. Since the

upper bound of Eq. (3.8) is now satisfied by construction (i.e. by implicant computation),

the minimization ofy1; . . . ; ym can be formulated as a minimum-cost covering problem

Fmin �q +
mX
j=1

NX
k=1

�j kckpj
( 3:12)

whose similarity with Eq. (3.3) is evident, the productsck pj now playing the role of

the primes of two-level synthesis.

Example 26.

In the optimization problem of Example (25), we are to solve the covering

problem

Fmin �p 1y1 + p2y2

Using the set of primes found in Example (25),y1 andy2 are expressed by

y1 = �1; 1c1 + �1; 2c2 + �1; 3c3 + �1; 4c4 + �1; 5c5 +

�1; 8c8 + �1; 9c9
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Figure 3.4: (a): Maps ofFmin ; Fmax ; p1; p2. (b) Maps ofFmax; 1 ; Fmax; 2 and of the
productFmax; 1Fmax; 2 . Primes ofy1 andy2 are shown in the maps ofFmax; 1 andFmax; 2 ,
respectively. The map ofFmax; 1Fmax; 2 shows the primes common toy1 andy2.

y2 = �2; 1c1 + �2; 2c2 + �2; 3c3 + �2; 4c4 + �2; 5c5 +

�2; 6c6 + �2; 7c7

The optimum solution has cost 6 and is given byy1 = x01x
0
2 + x2x4; y2 =

x2x
0
3, corresponding to the assignments

�1; 1= �1; 2= �1; 3= �1; 5= �1; 9= 0; �1; 4= �1; 8= 1

�2; 1= �2; 2= �2; 3= �2; 4= �2; 5= �2; 7= 0; �2; 6= 1

The initial cost, in terms of literals, was 12. The solution corresponds to the

cover shown in Fig. (3.5), and resulting in the circuit of Fig. (3.6).2

It is worth contrasting, in the above example, the role ofy1 and y2 in covering

Fmin . Before optimization,p1y1 covered the mintermsx1x2x
0
3x

0
4; x1x2x

0
3x4; x1x2x3x4
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Figure 3.5: A minimum-cost solution for the covering ofFmin .

x1’

F
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x1’ g
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y1
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2

’x2

x2
3x

x4

H
p2

1p

3x’

x2
x4

Figure 3.6: Network resulting from the simultaneous optimization of compatible gatesg 1

andg2.

of Fmin , while p2y2 coveredx01x
0
2x

0
3x

0
4; x

0
1x

0
2x3x

0
4; x

0
1x2x3x4; x

0
1x

0
2x3x4. After optimiza-

tion, y1 and y2 essentially “switched role” in the cover:p2y2 is now used for covering

x1x2x
0
3x

0
4; x1x2x

0
3x4, while p1y1 covers all other minterms.

In the general case, the possibility for any ofy1; . . . ; ym to cover a minterm ofFmin

is evident from Eq. (3.8). Standard single-gate optimization methods based ondon’t

cares [16] regard the optimization of each gateg1; . . . ; gm as separate problems, and

therefore this degree of freedom is not used. For example, in the circuit of Fig. (3.3),

the optimization ofg1 is distinct from that ofg2. The don’t careconditions associated

with (say) y1 are those minterms for which eitherp1 = 0 or such thatp2y2 = 1, and

are shown in the map of Fig. (3.7), along with the initial cover. It can immediately be

verified thaty1 can only be optimized intox1x2x
0
3 + x2x4, saving only one literal.

Thedon’t caresfor y2 are also shown in Fig. (3.7). No optimization is possible in this

case. Note also that the optimization result is (in this particular example) independent

from the order in whichg1 andg2 are optimized. Unlike the compatible gates case, it is
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Figure 3.7:Don’t careconditions associated withy1 andy2: only 1 literal can be removed.

impossible for the covers ofy1 andy2 to exchange their role in coveringFmin .

3.4 Finding Compatible Gates

In this section, we describe an algorithm for finding compatible gates based on network

topology.

Definition 3.2 A network is termedunate with respect to a gateg if all reconvergent

paths fromg have the same parity of inversions. A network isinternally unate if it

is unate with respect to each of its gates. All paths fromg to a primary outputzi in

an internally unate network have parity�i, which is defined to be theparity of g with

respect tozi.

In the subsequent analysis, we make the assumption that the network is first trans-

formed into its equivalent NOR-only form. In this case, the parity of a path is simply

the parity of the path length.

In defining Equation (3.7) for compatible gates, it is evident that the dependency

of F on y1; . . . ; ym must be unate. In order to increase the chances of finding sets of

compatible gates, it is thus convenient to transform a network into an internally unate

one. This is done by duplicating those gates whose fanouts contain reconvergent paths

with different inversion parity. The resulting network is therefore at most twice the size

of the original one. In practice, the increase is smaller.

Example 27.
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Figure 3.8: Internally Unate Example: (a) Network not internally unate due to gateg i;
(b) Internally unate network after duplication (Duplicated gates are shaded).

Consider the logic network shown in Figure (3.8.a). The network is not

internally unate because the reconvergent paths from gategi to the output

y do not have the same parity of inversions. We duplicate gateg i and its

fan-in cone intog 0
i
, shown by the shaded gates in Figure (3.8.b). Now gates

gi and g0
i

are unate since there are no reconvergent paths from these gates.

The network is now internally unate. The increase in size is in the number

of gates in the fan-in cone of gategi. 2

Theorem (3.1) below provides a sufficient conditions for a setS of gates to be

compatible. Without loss of generality, the theorem is stated in terms of networks with

one primary output. The following auxiliary definitions are required:

Definition 3.3 The fanout gate set and fanout edge setof a gate g, indicated by

TFO(g) andTFOE(g), respectively, are the set of gates and interconnections contained

in at least one path fromg to the primary outputs. Thefanout gate setand fanout

edge setof a set of gatesS =fg 1; . . . ; gmg , indicated byTFO(S) and TFOE(S),
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respectively, are:

TFO(S) =
m[
i=1

TFO(g i); TFOE(S) =
m[
i=1

TFOE(g i) (3:13)

Theorem 3.1 In a NOR-only network, letS =fg 1; . . . ; gmg be a set of gates all with

parity �, and not in each others’ fanout. Lety 1; . . . ; ym denote their respective outputs.

The following propositions hold:

1): if each gate inFO(S) with parity �has at most one input interconnection in

FOE(S), then the primary outputs can be expressed as in Eq. (3.7) for some suitable

functionspj and q, and consequentlyS is a set of compatible gates;

2) if each gate inFO(S) with parity � 0 has at most one input inFOE(S), then it

can be shown that the output can be expressed as in Eq. (3.7), andS represents a set of

compatible gates.

Proof.

We prove only Proposition 1) for the case of gates ofeven parity. The proof

of the other cases is symmetric. Moreover, we prove the stronger assertion:

The output of each gateg in the network (and hence the primary outputs)

can be expressed by one of the following two rules:

Rule 1: for gates of even parity,

fg =q g +
mX
j=1

pg
j
yj (3:14)

Rule 2: for gates of odd parity,

fg =
�
qg +

mX
j=1

pg
j
yj

�0
(3:15)

Consequently,S is a set of compatible gates.

Assume the network gates to be sorted topologically, so that each gate pre-

cedes its fanout gates in the list. LetNGATES denote the total num-

ber of gates. We prove the above proposition by induction, by showing
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that if it holds for the firstr �1 gates, then it must hold for ther t h gate,

r=1; . . . ;NGATES.

Base step. Consider the first gate,g1. If g1 2 S, its output is simplyy1,

which can be obtained from Eq. (3.14), by settingqg1 =0; p g1
1 =1; p g1

j
=

0;j=2; . . . ;m. If g 1 does not belong toS, by the properties of topological

ordering, its inputs can only be among the primary inputs, and consequently

its output is still expressed by Eq. (3.14), by settingp
g1
j
=0.

Induction step. Consider now thert h gate,gr. Again, if gr 2 S, the output

is expressed by a single variable infy1; . . . ; ymg , and therefore it satisfies

the proposition. Ifgr does not belong toS, we note that all its inputs are

either primary inputs or gatesgr0; r0 <r, for which the proposition is true

by the inductive assumption. We distinguish two cases:

1. gr is of even parity. Consequently, all its inputs have odd parity. By

the assumption of the Theorem, only one of its inputs is inTFOE(S).
Hence, only one of them is a function of the internal variablesyi. For

simplicity, letg0 denote the output that (possibly) depends ony1; . . . ; ym.

The output ofgr is then expressed by

�
(qg0 +

mX
j=1

pg0
j
yj)

0 +
X

gi2FI(gr)

qgi
�0

=q gr +
mX
j=1

pgr
j
yj

where

qgr =q g0
Y

gi2FI ( gr)

(qgi)0 ; pgr =p g0
Y

gi2FI ( gr)

(qgi)0

2. gr is of odd parity, and consequently all its inputs are from gates of

even parity and are expressed by Eq. (3.14); therefore the output ofgr

is expressed by

� X
gi2FI ( gr)

(qgi +
mX
j=1

pgi
j
yj)
�0

=
�
qgr +

mX
j=1

pgr
j
yj

�0

where

qgr =
X

gi2FI ( gr)

qgi ; pgr
j

=
X

gi2FI ( gr)

pgi
j
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By induction, the output of each gate (in particular, each primary output) is

expressed by Eq. (3.14) or (3.15); therefore, the gates inS are compatible.

2

Example 28.

In the internally unate, NOR-only network of Figure (3.9), consider the set

S =fg 1; g2; g4g .

All gates ofS are ofodd parity and not in each other’s fanout.

Moreover,TFO(S) =fg 5; g7; g8; g9; g10; g11; g12g and for all gates in

TFO(S) of even parity (namely,g 8; g9; g10), there is only one input inter-

connection that belongs toTFOE(S). S then represents a compatible set

by rule (1) of Theorem (3.1).

Similarly, the setS =fg 3; g4g is compatible by rule (2), as in this case

TFO(S) =fg 6; g7; g10; g12g , and the gates ofTFO(S) with even parity

(namely,g6 andg7) have only one input interconnection inTFOE(S).
Other compatible sets are, for example,fg1; g10g (by rule (1)) andfg5; g7g
(by rule (2)).

It is worth noting that some gates (in this case,g1 andg4) can appear in more

compatible sets.2

i1

i2

1g

2g

3g

4g

5g

6g

7g

8g

9g

10g

11g

12g

Figure 3.9: Example of Compatible Gates.
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Theorem (3.1) also provides a technique for constructing a set of compatible gates

directly from the network topology, starting from a “seed” gategand a parameter (rule)

that specifies the desired criterion of Theorem (3.1) (either 1 or 2) to be checked during

the construction. The algorithm is as follows:
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COMPATIBLES(g; rule)

label fanout(g; TFO);

S =fgg ;

for (i=0; i�NGATES; i++) f
if ((is labeled(gi) =FALSE) & (parity(g i) =parity(g))) f
label fanout(g i; TMP);

compatible=dfs check(g i; parity(g); rule)

if (compatible) f
label fanout(g i; TFO);

S =S [ fg ig ;

g
g

g

COMPATIBLESstarts by labeling “TFO” the fanout cone ofg, as no gates in that

cone can belong to a compatible set containingg. Labeled gates represents elements of

the setTFO(S). All gates g i that are not yet labeled and have the correct parity are

then examined for insertion inS. To this purpose, the fanout ofgi that is not already

in TFO(S) is temporarily labeled “TMP”, and then visited bydfs check in order to

check the satisfaction ofrule. The proceduredfs checkperforms a depth-first traversal

on gategi. The traversal returns 0 whenever gates already inTFO(S) are reached, or

a violation of rule is detected. Otherwise, if the traversal reaches the primary outputs,

then 1 is returned indicating thatgi is compatible. Ifgi is compatible, it becomes part of

S and its fanout is merged withTFO(S).

Example 29.

Refer again to Figure(3.9) for this example. Consider constructing a set

of compatible gates aroundg1, using rule (1). Gatesg5; g8; g9; g11; g12 are

labeled first, because they belong toTFO(g 1). The first unlabeled gate is

thereforeg2. The depth-first scan of its fanout reachesg5 first, which has

parity opposite tog1. The check of the fanin ofg5 is therefore not needed.
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Gatesg7 and g10 are then reached. In particular, sinceg10 has the same

parity as g1, its fanin is checked to verify that there is indeed only one

interconnection (in this case,(g7; g10)) to gates inS. dfs check returns in

this case a valueTRUEfor the compatibility ofg 2 to g1. 2

3.5 Unate optimization

In the previous section we showed that in the case of compatible gates, the functional

constraints expressed by Eq. (3.6) can be reduced to an upper bound (expressed by

Eq. (3.10)) on the individual variablesyi and by a global covering constraint, expressed

by Eq. (3.12). These could be solved by a two-step procedure similar to that of two-

level optimization. We now generalize this result to the optimization of more general,

appropriate subsetsS of gates of an internally unate network:

Definition 3.4 A subsetS of gates is termed aunate subsetif its elements all have the

same parity and are not in each other’s fanout.

3.5.1 Optimizing Unate Subsets

Assume, for the sake of simplicity, thatF is positive unate with respect tofy1; . . . ; ymg .

We can perform optimization on the corresponding subset of gates in a style that is totally

analogous to compatible gates by dividing it intoimplicant extractionandcoveringsteps.

3.5.2 Implicant Extraction

In this step, for eachyi to be optimized, a set ofmaximal functionsis extracted. In

particular, the maximal functions of each eachyi can be expressed as Eq. (3.16), which

is similar to Eq. (3.10).

yi �Gmax; j ; j=1; . . . ;m (3:16)

From Eq. (3.16), prime implicants ofyi can then be extracted.
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Intuitively, the maximal functions are the largest functions that can be used while

satisfying the boundF �F max . Therefore, they represent the upper bounds onyi. We

introduce the following definition:

Definition 3.5 A set of local functions

fGmax; 1 (x); Gmax; 2 (x); . . . ; Gmax; m (x)g

is said to bemaximal if

F(x; Gmax; 1 (x); Gmax; 2 (x); . . . ; Gmax; m (x)) �Fmax (x) 8x 2 Bni : (3:17)

and the inequality (3.17) is violated when anyGmax; j is replaced by a larger functioñF

>G max; j .

The idea behind the notion of maximal functions is that by substituting eachyj by any

function�j �Gmax; j , we are guaranteed that the upper bound

F(x; �1(x); . . . ; �m(x)) �Fmax (x) (3:18)

will not be violated. The conditions

yi �Gmax; i

therefore representsufficientconditions for this bound to hold.

The following theorem provides means for finding a set of maximal functions. It

also shows that computing such functions has complexity comparable with computing

ordinarydon’t caresets.

Theorem 3.2 Let S =fg 1; . . . ; gmg be a unate subset of gates. The set of maximal

functions, as defined by Eq. (3.17), with respect to the gates inS can be obtained by:

Gmax; j =f gj +DC j (3:19)

wherefgj denotes the output function ofgj in the unoptimized network.DC j represents

the don’t care set associated withgj calculated with the following rule: the output

functions for gatesg1; . . . ; gj�1 are set toGmax; k ; k = 1; . . . ; j �1, and the output

functions for gatesgj; . . . ; gm, are set tofgk ; k=j; . . . ;m.
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Proof.

The proof is divided into two parts. First, it is shown that the bounds

Gmax; j =f gj +DC j satisfy Eq. (3.17). It is then shown, by contradiction,

that these bounds are indeed maximal.

To prove the first part, suppose that maximal functions for the gatesg1; . . . ; gj�1

have already been computed. They are such that

F(x; Gmax; 1 ; . . . ; Gmax; j�1 ; f
gj ; fgj+1 ; . . . ; fgm) �Fmax

The constraint equation onyj can then be expressed by:

Fmin �F(x; Gmax; 1 ; . . . ; Gmax; j�1 ; yj; f
gj+1 ; . . . ; fgm) �F max

and is satisfied as long asgj satisfies

fgj � DC 0
j
�g j �f gj +DC j

whereDC j is the don’t care set associated withyj , under the theorem’s

assumptions. It is then guaranteed that

F(x; Gmax; 1 ; . . . ; Gmax; j�1 ; Gmax; j ; f
gj+1 ; . . . ; fgm) �Fmax

for j=1; . . . ;m.

To prove maximality, it is sufficient to show thatGmax; j cannot be replaced

by any functionF̃ >G max; j . Suppose, by contradiction, that a different

bound F̃ can be used, such that for some input combinationx0 we have

Gmax; j (x0) =0 but F̃j(x0) =1. Notice thatG max; j (x0) =0 implies that

fyj (x0) =0 andDC(x 0) =0. Corresponding tox 0, it must then be

F(x0; Gmax; 1 (x0); � � � ; Gmax; j�1 (x0);0; Gmax; j+1(x0); � � � ; Gmax; m (x0)) �F max

but, becauseF is positive unate and becauseDC(x 0) =0, it must also be

F(x0; Gmax; 1 (x0); . . . ; Gmax; j�1 (x0);1; Gmax; j+1(x0); � � � ; Gmax; m (x0)) 6 �Fmax :
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Hence, iffgj is replaced by any other functionhgj such thathyj(x0) =1 (as

suggested by the bound̃F ) and all other functionsf yk ; k 6 =j are replaced

by Gmax; k , the upper boundF �F max is violated corresponding to the input

combinationx0. 2

Note that the computation of each maximal function corresponds to finding the local

don’t care for the associated vertex. Therefore, the maximal functions computation has

the same complexity as computing thedon’t careconditions for each gate.

This theorem states that the maximal function for vertexi depends on the maximal

functions already calculated (j<i). This means that unlike the case of compatible gates,

the maximal function for a given vertex may be not unique.

Example 30.

For the network of Fig. (3.10), assuming no externaldon’t careconditions,

we find the maximal functions fory1, y2, andy3. TheDC yj
terms correspond

to the observabilitydon’t careat yj , computed using theFmax of the previous

gates.

y1 =x 1x
0
3x4; y2 =x 0

3(x4 +x 2); y3 =x 0
3x2 +x

0
1x

0
2

Maximal functions derived by Theorem (3.2) are :

Gmax; 1 =x 1x
0
3x4 +DC y1 =x

0
3x4 +(x

0
3 +x 4)x

0
1x

0
2

Gmax; 2 = x 0
3(x4 +x 2) +DC y2(y1 =G max; 1 )

= x 4 +x
0
3x

0
2 +x 1x

0
2 +x 3x2

Gmax; 3 = x 0
3x

0
2 +x

0
1x2 +DC y3(y1 =G max; 1 ; y2 =G max; 2 )

= x 0
3x2 +x

0
1x

0
2 +x 4x

0
3

2
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x3
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x1

x4

x1

F

y1

y2

y3

Figure 3.10: Network for Example (8).

3.5.3 Covering Step

Eq. (3.16) allows us to find a set of multiple-output primes fory1; . . . ; ym. The covering

step then consists of finding a minimum-cost sum such that the lower bound of Eq. (3.6)

holds.

We now present a reduction for transforming the covering step to the one presented

for compatible gates. We first illustrate the reduction by means of an example.

Example 31.

In Fig. (3.10), consider the combination of inputsx resulting inFmin (x) =1.

To each such combination we can associate the set of values ofy1; y2; y3 such

that F(x; y) =1. For instance, for the entryx 1x2x3x4 =1001, it must be

Fx1x
0

2x
0

3x4(y) =y 1+y 2y3 =1. Let us now denote withG(y) the left-hand side

of this constraint,i.e. G(y) =y 1 +y 2y3. Notice thatG(y) is unate in each

yj and changes depending on the combination of values currently selected

for x1; x2; x3; x4.

Any constraintG(y) =1 can be represented in a canonical form:

G(y) =(G y01y
0
2y

0
3
+y 1 +y 2 +y 3)(Gy01y

0
2y3 +y 1 +y 2)

. . . (Gy1y2y
0
3
+y 3)Gy1y2y3 =1

which, in turn, is equivalent to the 8 constraints
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Gy
0
1y

0
2y

0
3
+ y 1+ y 2+ y 3 =1

Gy
0
1y

0
2y3+ y 1+ y 2 =1

. . .

Gy1y2y
0
3
+ y 3 =1

Gy1y2y3 =1

(3:20)

By introducing an auxiliary variablezj for eachyj, we can rewrite Eq. (3.20)

as:
G(z) +z 0

1y1 +z
0
2y2 +z

0
3y3 =1 8 z 1; z2; z3

or, equivalently,
G0(z) �z 01y1 +z

0
2y2 +z

0
3y3

In this particular example, we get

(z1 +z 2z3)
0 �z 01y1 +z

0
2y2 +z

0
3y3

2

Example (31) shows a transformation that converts the covering problem of an arbi-

trary unate subset of gates into a form that is similar to optimization of compatible gates,

i.e. Eq. (3.8).

More generally, corresponding to each combinationx such thatFmin (x) =1, the

constraintF(x; y) =1 can be re-expressed as

F(x; z) +z 0
1y1 +z

0
2y2 +. . .+z 0

m
ym =1

The resulting covering problem to find the minimum-cost solution is analogous to the

compatible gates case. The transformation is formalized in the following theorem:

Theorem 3.3 Given F(x), let y be a unate subset of variables with respect toF. Let

z =[z 1; . . . ; zm] denotemauxiliary Boolean variables. The lower bound of Eq. (3.6)

holds if and only if

Fmin �F(x; z) +
mX
j=1

yj(z
0
j
1) 8z (3:21)

Proof.
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We first show by contradiction that

F(x; y) �F(x; z) +
mX
j=1

yj(z
0
j
1) (3:22)

Eq. (3.22) can be violated only by a combinationx0; y0; z0 such that one

component ofF(x0; y0) takes value 1, the same component ofF(x0; z0) takes

value 0, and the rightmost term of Eq. (3.22) takes value zero. In any such

combination, there must be at least one valueyi ; 0 =1 and z i ; 0 =0 (or

otherwise, by the unateness ofF, we would haveF(x0; y0) �F(x 0; z0)).

But if there exists an indexi such thatyi ; 0=1; z i ; 0=0, then the rightmost

term of Eq. (3.22) takes value 1, and the right-hand side of the inequality

holds, a contradiction.

Therefore,Fmin (x) �F(x; y) together with Eq. (3.22) implies

Fmin (x) �F(x; z) +
mX
j=1

yj(z
0
j
1)

To complete the proof, it must now be shown thatFmin (x) � F(x; z) +P
m

j=1yj(z
0
j
1); 8z impliesFmin (x) �F(x, y). Suppose, by contradiction, that

this is not true. There exists then a valuex0; y0 such that some component

of Fmin (x) takes value 1,F(x0; y0) takes value 0, butFmin (x0) �F(x 0; z) +P
m

j=1yj ; 0(z0j1); 8z. In this case, it must beF(x0; z) +
P

m

j=1yj ; 0(z0j1) =

1, regardless ofz. But this implies that, forz = y 0;F(x0; z) =1, i.e.

F(x0; y0) =1, a contradiction.2

Eq. (3.21) has the same format of Eq. (3.8), withq andpj being replaced byF(x; z)

andz0
j
1, respectively. Theorem (3.3) thus allows us to reduce the covering step to the one

used for compatible gates. Theorems (3.2) and (3.3) show that the algorithms presented

in Sect. (3.2) can be used to optimize arbitrary sets of gates with the same parity, without

being restricted to sets of compatible gates only.



CHAPTER 3. MULTI-VERTEX OPTIMIZATION WITH COMPATIBLE GATES 89

3.6 Implementation and Results

We implemented the algorithms of Sects. (3.2) and (3.3) in a general logic optimization

framework. The original networks are first transformed into a unate, NOR-only descrip-

tion. All internal functions are represented using BDDs [29]. For each unoptimized gate

gi, the following heuristic is used. First, we try to find a set of compatible gates forgi,

calledSc. In the case where not enough compatible gates can be found, we find a set of

gates that is unate with respect togi, calledSa.
In the case whereSc is found, we use Eq. (3.7) to extract the functionspj and q.

In particular,q is computed by settingyj to 0. The functionspj are then computed by

settingyj to 1, with yi; i 6 =j stuck-at 0.

In the case of optimizing arbitrary unate subnetworksSa, Theorem (5.1) is used

to determine the maximal functions for eachyj . Note that optimizingSc is preferable

because for a set ofmcompatible gates,m+1 computations forp j andq are needed

to obtain all the requireddon’t cares . For Sa, two computations (withyj stuck-at-0

and stuck-at-1) are required for the extraction of thedon’t careset of each variabley j ,

resulting in a total of 2mcomputations.

A set of primes for the gate outputs is then constructed. Because of the possibly large

number of primes, we limit our selection to single-literal primes only. These correposnd

to wires already existing in the network and that can be used as primes for the function

under optimization. The BDD ofF(x; z) is then built, and the covering problem solved.

Networks are then iteratively optimized until no improvement occurs, and eventually

folded back to a binate form. The algorithms presented in this chapter were implemented

in C program calledAchi lles , and tested against a set ofMcnc synthesis benchmarks.

Table (3.2) illustrates initial statistics for the benchmark circuits considered in this ex-

periment. Table (3.3) provides a comparison ofAchi lles with Si s usingscript.rugged.

The columnInitial Stat. lists the network statistics before optimization, whereInt. is

number of internal interconnections andgatesis the gate count. The columnInterconn.

shows number of interconnections after optimization. Thegatescolumn compares final

gate counts.Literal column shows the final literals in factored form. The results in the

table show thatAchi lles performs better thanSi s for all figures of merit. In particular,
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Circuit Interconnections Gates
cm85a 108 63
cm162a 113 60

pm1 130 60
9symml 375 152

alu2 924 262
alu4 1682 521

apex6 1141 745
C499 945 530
C880 797 458
C1908 936 489

Table 3.2: Benchmark statistics.

Interconn. Lits.(fac) Gates CPU
Circuit Achilles Si s Achi lles Si s Achi lles Si s Achi lles Si s

cm85a 67 77 42 46 31 34 1.5 1.2
cm162a 99 102 47 49 41 52 1.8 1.3

pm1 67 78 47 52 31 36 1.6 1.3
9symml 288 325 163 186 88 101 108.4 64.2

alu2 366 570 303 362 215 231 309.7 403.0
alu4 902 1128 612 703 420 487 1612.6 1718.5

apex6 1009 1315 687 743 589 639 115.1 30.3
C499 913 945 505 552 498 530 202.1 133.6
C880 643 731 355 409 295 342 340.6 30.7
C1908 828 891 518 542 445 482 422.1 138.8

Table 3.3: Optimization results. Runtimes are in seconds on DEC5000/240.

Achi lles does 11% better thanSi s in factored literals.

Note thatscript.ruggedwas chosen because it is the most robust script of theSi s script

suite, and it matches closely to our type of optimization. Our objective was to compare

optimization results based only on Boolean operations, namely compatible gates versus

don’t cares. Thescript.ruggedcalls full simplify[38], which computes observabilitydon’t

caresto optimize the network.

The table shows that theAchi lles runtimes are competitive with that ofSi s . In

this implementation, we are more interested in the quality of the optimization than the

efficiency of the algorithms, therefore anexactcovering solver is used. We can improve

the runtime in the future by substituting a faster heuristic or approximate solvers (such
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as used inEspresso [41]).

3.7 Summary

In this chapter we presented a comparative analysis of approaches to multi-level logic

optimization, and described new algorithms for simultaneous multiple-gate optimization.

The algorithms are based on the notion ofcompatible gatesand unate networks. We

identify the main advantage of the present approach over previous solutions in its capa-

bility of exact minimization of suitable multiple-output networks, by means of traditional

two-level optimization algorithms. Experimental results show an improvement of 11%

over existing methods.



Chapter 4

Acyclic synchronous networks

Traditional research on the synthesis of synchronous logic has focused very much on

the manipulation of state diagram-like representation of sequential functions. Finite-

state machine decomposition, state minimization, and encoding are the typical steps

leading to the later construction of the combinational network realizing the output and

next-state functions. If the result of combinational synthesis is unsatisfactory, these

steps need be carried out again. To this regard, it is worth noting that there is little

knowledge on the impact of these steps on the definition of the combinational portion.

Moreover, it is often the case where a sequential circuit is already given a structural

(i.e. netlist) description. To date, however, state minimization and assignment algorithms

work on explicit representations of the state diagram. For most networks, such an explicit

representation is made impossible by the sheer number of internal states and by the

network complexity.

The present and the next two chapters attempt the definition of astructural approach

to synchronous logic optimization. We consider optimization steps such as modifying

logic gates so as to reduce their cost, and adding/removing registers. The internal states

of the network are therefore changedimplicitly , i.e. as a result of the optimization steps.

To carry out this task, we need to adopt a non-Huffman model of a synchronous logic

network, and a description of its functionality in terms ofsequence functionsrather

than state diagrams or flow tables. The presence of delays and of feedback paths are

distinct causes of difficulties. For this reason, the analysis of networks with feedback is

92



CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 93

postponed to Chapter (6).

In the present chapter, we attempt the extension of perturbation analysis anddon’t

care -based optimization to the synchronous case. Sections (4.1)-(4.2) are devoted to

the modeling of synchronous networks and sequentialdon’t cares, respectively. Section

(4.3) is then devoted to the extension of perturbation analysis to the case of acyclic

networks. There, however, it is also shown thatdon’t caresets are an insufficient means

for representing the degrees of freedom for sequential optimization. A more accurate

analysis leads to the concept ofrecurrence equations, explored later in Chapter (5).

4.1 Terminology

4.1.1 Synchronous logic networks.

The model of synchronous circuits employed here is thesynchronous logic network.

The graph of a synchronous network differs from that of a combinational network

in three respects. First, it has non-negative weights associated with its edges. A weight

won an edgee denotes an interconnection containingwcascaded D-type flip-flops.

Second, more edges with distinct weights are allowed to connect the same two vertices

(i.e. the graph is actually amultigraph). Third, the network may contain feedback

loops. The restriction of not allowing loops of combinational logic is expressed by

constraining all loops to have at least one edge of nonzero weight. A synchronous

network is termedacyclic if it has no loops. Every network can be decomposed into

an acyclic portion, containing in particular all logic and delay elements, and a set of

feedback interconnections.

Vertices are labeled by a Boolean variable, and have associated apattern function ,

formally introduced below by Definition (4.1). Pattern functions are described by

pattern expressions1. They reduce to ordinary Boolean functions and expressions, re-

spectively, in absence of registers: combinational logic networks are thus special cases of

synchronous networks, with identically zero edge weights and consequently no feedback

loops.

1They are also calledsynchronous Boolean expressionsin [25, 43]
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Example 32.

Fig. (4.1) shows a synchronous circuit and its associated graph. Notice the

presence of feedback loops and of edges of different weights, for instance

those connecting verticess and y. Each vertex of the graph encloses the

pattern expression associated with it. Subscripts of variables indicate delays.

2

s

y

v
u

z

a

1 1

1

1

1 2

1

a y = a  as  11

1v = (a  )’a’ s = (s  )’y  +y+v  1 1

u = a  s+(a  )’s’1 1

12z = s  +u  

Figure 4.1: A synchronous logic network and its associated graph

4.1.2 Sequences and sequence functions.

The functionality of synchronous circuits is here described by explicitly taking into ac-

count the evolution of the network variables over time and reasoning in terms ofsequences

of Boolean values. For this reason it is first necessary to introduce the terminology as-

sociated with sequences and sequence mappings.

Time is represented by a set of integer time-pointsZ =f�1; . . . ;�1;0;1; . . . ;1g .

A sequencesof elements from a finite setS is a mappings : Z!S. The value of the
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sequence at timenis an element ofS, and is denoted bys @n. The set of all possible

sequences of elements inS is denoted byS! [44].

A Boolean sequence is a sequence of elements ofB. The set of Boolean sequences is

hereafter denoted byB!. The sets of possible sequences of input and output vectors of a

ni-input, no-output synchronous circuit are denoted by(Bni)! and (Bno)!, respectively.

Given two finite setsS andT , a sequence functionis a mappingF: S! !T !. The

mapping of a sequences2 S ! by F is thus an element ofT !, denoted byF(s). Then t h

element ofF(s) is an element ofT , denoted byF @n(s). Two functionsF, G are said to

be equal if and only if F@n(s) = G @n(s) 8s2 (B ni)!;8n2 Z.

Boolean operations can be defined on equi-dimensional sequence functions: for two

functions F, G: (Bni)! !(B no)!, sum, product and complement are defined as the

bitwise sum, product and complement, respectively:

(F +G)(s) =F(s) +G(s);

(FG)(s) =F(s)G(s);

(F0)(s) =(F(s)) 0

Also, F�G if and only if F @n �G @n 8n�0.

The retiming (or time-shift)Fk of a functionF by an integerk is defined by

(Fk)@n(s) =F @( n�k) (s) 8n2 Z : (4:1)

In other words,Fk takes the values ofF with a delay ofk time units. The following

properties of the retiming operation are self-evident:

(Fk)h =F h+k ;

(F +G) k =F k +G k; (FG)k =F kGk; (F0)k =(F k)0 :
(4:2)

4.1.3 Pattern expressions and functions.

Boolean expressions can be adapted to include integer time labels and represent sequence

functions. These expressions are hereafter termedpattern expressions, and are defined

as follows.
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Definition 4.1 The symbols0;1 are pattern expressions, and denote the constant func-

tions0;1 : (Bni)! !B !, respectively. Given a set ofni variablesx; y; . . ., a synchronous

literal (or, shortly, a literal) x(x 0) is a synchronous expression, and denotes a function

x(x 0) : (Bni)! !B !. For every sequences2 (B ni)!, the value of a literalx (x 0) at

time n, x @n(s) (x 0
@n

(s)) coincides with the value of the variablex(the complement of

x) in sat timen.

Finite sums and finite products of pattern expressions are pattern expressions. They

denote the function formed by the sum and product of their terms, respectively. The

complement and retiming of a pattern expression are pattern expressions, whose value

at every time point are the complement and retiming of their argument, respectively.

Retiming of literals ( e.g.xk ) are in particular also termed literals.

Definition 4.2 A sequence functionF is called apattern function if it is expressible by

means of a pattern expression.

Example 33.

The following is a simple pattern expression:

a+((a 1b
0)1 +c 2)1

2

A synchronous expression is said to beinput-retimedif only literals appear retimed.

An expression can be reduced to its input-retimed form by applying repeatedly (4.2),

until only literals appear retimed.

Example 34.

By applying (4.2) on the expression of Example (33), the new expression

a+a 3b
0
2 +c 3

is obtained. This expression contains only retimed literals.2
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An input-retimed pattern expression contains literals in a finite interval[m;M] . The

corresponding function takes value 1 at a time-pointnonly if its literals take a suitable

pattern of values over the time interval[n�M;n�m] . Pattern functions can then be

used to characterize patterns of events that occur over a finite time span.

Example 35.

For the expression of Example (34),m=0;M=3. The corresponding

function takes value 1 at a timen if and only if a; b; c satisfy one of the

patterns:

a@n; a@n�1 ; a@n�2 ; a@n�3

b@n; b@n�1 ; b@n�2 ; b@n�3

c@n; c@n�1 ; c@n�2 ; c@n�3

=

1;�;�;�
�;�;�;�
�;�;�;�

;

�;�;�;1
�;�;0;�
�;�;�;�

;

�;�;�;�
�;�;�;�
�;�;�;1

;

2

Not every sequence function is a pattern function. Consider, for example, a step

functionH, defined as follows. For each input sequences, H @n(s) =0 if n<0, and

H@n(s) =1 for n� 0. Clearly,H(s k) =H(s) for all sequencess, while H k(s) is a

step delayed bykand therefore differs fromH(s k).

Intuitively, pattern functions can only be used to “detect” the occurrence of a finite-

length pattern of input values. The position of the pattern along the time axis is not

influent. Hence, pattern functions cannot be used to recognize situations that concern,

for example, the value ofn. Hence, they cannot express functions like the step function.

Representation of pattern functions

An input-retimed pattern expression can be regarded as an ordinary logic expression

with literals xi; x0i. It is then possible to extend BDD representations of combinational

functions to pattern functions in a straightforward manner.

Fig. (4.2) shows the BDD representation of the pattern function described by the

expressiona+a 3b
0
2 +c 3.



CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 98

a
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c

2

3a

3

0 1

Figure 4.2: BDD representation of a pattern function.

Shannon expansion of pattern functions.

Consider an arbitrary sequence functionF. The value it takes at some time-pointn

depends, in general, on the values taken by each input variable at each time-pointn0 6 =n.
If we regard these latter values as independent Boolean variables, thenF@n can be

regarded as a Boolean function having an infinite number of Boolean variables as support.

One could think of defining a cofactor ofF@n with respect to a variablexat some other

time-pointn0, and then move on to construct a Shannon expansion ofF@n in this context.

A similar expansion carried onF@n+1, however, may have no relationship whatsoever

with the previous one. The retiming-invariance properties of pattern functions, instead,

allow us to define cofactoring and extend Shannon expansion in a more useful way.

Definition 4.3 The cofactor of a pattern functionF with respect tox (x 0), denoted by

Fx (Fx0), is the function obtained by replacing the values 1 and 0, respectively (0 and 1,

respectively) to the literalsx; x 0 of an input-retimed expression ofF.

Definitions of consensus, smoothing, and Boolean difference can then be extended

to the present case. Eventually, it could then be verified that for a pattern function, the

following expansion holds:
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F =x 0Fx0 +xF x (4:3)

The formal proof of Eq. (4.3) is simple but lengthy, it is therefore omitted in this work.

4.1.4 Functional modeling of synchronous circuits.

In order to extend Boolean optimization models to the synchronous case, it is desirable

to first describe their behavior by means of a sequence function.

For an acyclic networkN, an expressione y of the functionf y realized by each vertex

y (and, in particular, by the primary outputs) can be derived by iteratively substituting

literals appearing iney with their corresponding pattern expressions, in a fashion entirely

similar to that of combinational networks. The functionality of acyclic networks can then

be described by a pattern functionF : (Bni)! !(B no)!.

The case of cyclic networks, however, is more complex. In particular, their behavior

cannot, in general, be expressed by a pattern function in terms of the primary inputs. For

this reason, the analysis of the impact of feedback is deferred to Chapter (6).

The initial value problem.

The synchronous network model presented so far implicitly regards D-type registers

as unit-delay elements. This is incorrect at power-up, because the register content is

essentially random and cannot be related to that of any other network variable. Power-up

values, however, are often erased by the preset logic before they can affect the primary

outputs. The error becomes irrelevant in this case. If the power-up value of a register

is relevant for the circuit behavior, the model can be corrected by introducing fictitious

inputPwr: andExt: as shown in Fig. (4.3). To represent correctly the circuit behavior,

input Pwr: takes value 0 after power-up.

4.2 Sequentialdon’t cares

In this chapter we consider extending the ideas ofdon’t care-based and relational speci-

fications to the case of sequence functions. Therefore, this chapter focuses ondon’t care
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Logic 

(a)

Logic 

Ext.

Delay

0

1

(b)

Pwr.

Figure 4.3: (a) A D-type flip-flop driven by logic; (b) equivalent circuit for the insertion
of power -up values.Ext: andPwr: are fictitious.

-based specifications and their representations.

The terminal behavior of a circuit is assumed to be specified in terms of a pair

of functions F: (Bni)! ! (B no)! and DC: (Bni)! ! (B no)!, or by means of the

pair Fmin =F DC 0 and Fmax =F+DC. A circuit, realizing a functionG, satisfies the

specifications if and only if

Fmin �G �F max : (4:4)

The optimization of a networkNultimately consists of its replacement by another

networkN 0 of lower cost, in terms of area or timing performance. The functionDC

takes again the meaning of atoleranceon the allowed functional error:N 0 can replace

Nif and only if its functionG satisfies

F�G �DC : (4:5)

Of course, in principleN 0 may differ widely fromN, in terms of topology (for

example, it may contain feedback) and functionality.

To limit the complexity of this analysis, only algorithms that optimizeNand preserve

its acyclic nature are considered here. As combinational networks represent a special case

of synchronous networks, the algorithms developed should then represent extensions of

those presented for combinational networks.

The general framework is again that of optimizing locally subnetworks ofNby

first identifying their don’t care conditions and then resorting to known optimization

algorithms. Perturbation analysis is then again instrumental in exploring the nature of

suchdon’t careconditions, and is developed in the next section.

Our objective here is to determinedon’t care conditions expressible by a pattern

function, and on efficient algorithms for the extraction of suchdon’t care sets. There
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are two major motivations for this choice. First, pattern functions are strictly related to

combinational functions, hence they provide compact, though incomplete, representations

of sequentialdon’t cares, and combinational optimization algorithms can easily be gen-

eralized. Second, Theorem (4.1) below indicates that more complex representations are

less likely to be useful for the optimization of acyclic networks.

4.2.1 Retiming-invariant don’t careconditions

In Eq. (4.5), no assumption is made on the nature of the functionDC. Not everydon’t

carecondition, however, is potentially useful for the optimization of an acyclic network.

Intuitively, in order to be useful, adon’t carecondition must express conditions that

are valid at every time-point . For example, the knowledge that the outputs are not

observed only at a specific time-point is clearly not useful for optimizing a network.

This paragraph identifies the set of usefuldon’t careconditions for acyclic networks.

Definition 4.4 A sequence functionK is termedretiming-invariant if and only if

Kn(s) =K(s n) 8n

Trivially, all pattern functions are retiming-invariant.

Definition 4.5 We call retiming-invariant portion DC ri of a don’t care functionDC

the function defined as follows:

DCri(s) =
+1Y

n=�1

DC�n (sn) (4:6)

Trivially, DCri is a retiming-invariant function. Notice also thatDCri �DC.

The following theorem shows that the retiming-invariant portion of adon’t carespec-

ification is effectively its only “interesting” portion.

Theorem 4.1 Given two retiming-invariant functionsF;G, and a don’t care function

DC, then

F�G �DC (4:7)

if and only if

F �G �DC ri (4:8)
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Proof.

Trivially, Eq. (4.8) implies Eq. (4.7). Suppose now, by contradiction, that

Eq. (4.7) does not imply Eq. (4.8). Then, there exist a sequences and a

time-pointn� such that

F@n�(s) �G @n�(s) �DC @n�(s); (4:9)

and

F@n�(s) �G @n�(s) 6 �DCri@n�
(s) (4:10)

From Definition (4.5), there must exist a retiming indexnsuch that

F@n�(s) �G @n�(s) 6 �DC�n; @n �(sn) (4:11)

Retiming bynboth members of Eq. (4.11), and using the retiming-invariance

properties ofF andG, results in

F@n�(sn)�G @n�(sn) 6 �DC@n�(sn) (4:12)

that is, Eq. (4.7) is violated at time-pointn� corresponding to the input

sequencesn. 2

4.2.2 Controllability and observability don’t cares

We borrow from the combinational case also the distinction between externalcontrolla-

bility andobservability don’t cares. The motivation is analogous to the combinational

case: in an acyclic interconnection of networks, the driving portion constrains the inputs

of the network, while the driven portion limits its observability.

Example 36.

Consider the circuit of Fig.(4.4), representing the cascade interconnection of

two simple synchronous networks. The limited controllability of the inputs

of N2 is described by the set of its impossible input sequences. For example,

u1v
0 represents a pattern of an impossible input sequence forN2. For u
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a u

v

b

N N
1 2

F

Figure 4.4: Cascaded synchronous circuits.

to be equal to 1 at a time-pointn�1 it must bea @n�1 =b @n�1 =1;

consequently,b@n�1 =1 andv @n =1 @n. Hence, forN2, at no time-pointn

it can beu@n�1 v0@n
=1.

A formal derivation of these impossible patterns will be presented when

dealing with networks with feedback.

Let us now consider the situation at the outputs ofN1. The interconnection

of the two networks limits the observability of the primary outputs ofN1. In

particular, the output ofN2 can be expressed in terms ofuandv as

F=y 1 +(yu 1)
0 =u 1v1 +u

0
1v

0
1 +u

0v+uv 0 +u 0
1 =v 1 +u

0v+uv 0 +u 0
1 :

The variableucan affect the primary outputs after no delay or after 1 clock

period. The conditions for which it can affectF with no delay can be

expressed by the function�
@F

@u

�0
=v 1 +u

0
1:

It cannot affect the outputs after one period when the function :

�
@F

@u 1

�0
�1

=v+u 0
�1 v�1 +u �1 v

0
�1

takes value 1. The variableucannot affect the outputat any time if�
@F

@u

�0
�
�
@F

@u 1

�0
�1

=(v 1 +u
0
1)(v+u

0
�1 v�1 +u �1 v

0
�1 )
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takes value 1. A similar reasoning can be carried out for the inputv.

The external observabilitydon’t cares imposed onN1 by the presence of

N2 are thus expressed in general by a vector of functions. Each function

represents thedon’t careconditions on one output.2

The distinction between controllability and observabilitydon’t cares is of course

blurred in presence of global feedback interconnections.

Controllability don’t cares

In the previous example, impossible input sequences were characterized as having a value

u=1 at some time-pointn�1 and the valuev =0 at n. All such sequences were

described by means of a pattern functionu1v
0. It is worth recalling that pattern functions

are functions fromsequencesto sequences, henceu1v
0 is not exactly the characteristic

function of a set of sequences. The sense in which a pattern function can be used,

however, to characterize the set of impossible sequences is defined next.

We restrict our attention to impossible patterns of values in a time span of a predefined,

but otherwise arbitrary, lengthL�0. A sequences2 (B ni)! is a controllability don’t

caresequenceif it contains one such pattern. We denote the set of these sequences byC,
and define a functionC: (B ni)! !B !, taking value 1 corresponding to the sequences

in C , and value 0 otherwise.

We use a pattern functionCDC: (B ni)! !B ! to represent the impossible patterns.

The literals ofCDCare assumed to have time-stamps in the reference interval[0; L] .

In particular,CDC @n(s) =1 @n if and only if s contains an impossible pattern in the

interval [n�L;n] , andCDC @n(s) =0 @n otherwise.

Example 37.

For the network of Fig. (4.4), the input controllabilitydon’t caresof N2 can

be represented by the functionsCDC=0, CDC=u 1v
0, or by CDC=

u1v
0 +u 2v

0
1, depending on the time-span chosen.2

The following Lemma clarifies further the link between the functionsCDCandC:
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Lemma 4.1

C=
+1X

n=�1

CDC n (4:13)

Proof.

If a sequences belongs toC , then there exists a time-pointnsuch that

CDC @n(s) =1 @n. Hence, for each time-pointn0, it is possible to find a

retiming indexk=n 0�nsuch thatCDC k; @n0(s) =1 @n0, and the left-hand

side of Eq. (4.13) takes value 1.

If s does not belong toC , thenCDC(s) =0 and thenCDC n(s) =0, for

everyn, and Eq. (4.13) holds.2

Notice in particular that

Ck =C 8k2 Z (4:14)

Representing Observabilitydon’t cares

We represent also observabilitydon’t caresby means of a pattern functionODCext :

(Bni)! !(B no)!, with literals in a generic time span[0; L] . Corresponding to each input

sequences, the vectorODC ext

@n
(s) takes value 1 corresponding to those components of

the output that are not observedat time n. It is thus assumed that an output is not

observed at a given time-pointncorresponding to the occurrence of some particular

patterns in the interval[n�L;n] .
We thus eventually assume that for a network

DC =C1+ODC ext : (4:15)

It is worth remarking that consequently the functionCDCis used only to representC

by means of a pattern function.

In the rest of this dissertation, we use the symbolsC andCDC to denote the functions

C1 andCDC1, respectively.



CHAPTER 4. ACYCLIC SYNCHRONOUS NETWORKS 106

4.3 Local optimization of acyclic networks

One major result of multilevel combinational synthesis is that the degrees of freedom for

the local optimization of a gate embedded in a network are expressed by adon’t care

function.

The first question is then whether this result can be extended to the sequential case,

that is, whether the conditions for replacing a pattern functionf y with a different onegy

can be expressed by an equation like

fy �g y �DC y (4:16)

Example (38) below shows that this is not the case.

Example 38.

x zy

x y = x’

(a)

x
z

x

(b)

z=yy’  +y’y 11 z=xx’ +x’x 1 1

Figure 4.5: The simplification of the inverter in a simple network.

The simple circuit of Fig. (4.5) realizes the functionF =x 0 �x 0
1. It can

easily be recognized that the inverter can be replaced by a simple connection,

i.e. fy =x 0 can be replaced bygy =x. In this case,f y�g y =1: a constant

error 1 is therefore introduced at the inverter output. Had an equation like

Eq. (4.16) been applicable, then we should conclude thatDC y =1, i.e. that

the inverter could also be replaced by a constant 0 or 1, which is clearly

false . 2

Degrees of freedom expressed in the form of Eq. (4.16) are nevertheless the only

ones that can currently be handled by logic optimization engines such asEs p re s s o : the
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rest of this chapter is therefore devoted to findingsufficientbounds in the form of Eq.

(4.16).

The modification of a local functionf y in an acyclic network can again be modeled

by introducing a perturbation input�, with F y denoting the function realized by the

perturbed networkN y.

The functionFy depends in particular on�; � 1; � � � ; �Py , wherePy denotes the longest

path from the vertexy to the primary outputs, in terms of registers.

The error in functionality caused by the presence of� is expressed by the error

function

E def
= Fy � Fy

�0; ���; �0
Py

: (4:17)

The equation

E � DC (4:18)

represents implicitly the tolerance on such errors, and provides the functional constraints

on �.

By construction,E is a pattern function, expressible in terms of�; � 1; . . . ; �Py and

primary input variables.

Eq. (4.18) represents the functional constraints on�, for the perturbation signals to

be acceptable. In the rest of this section, we try to explicit this constraint into an upper

bound on�.

4.3.1 Internal observability don’t careconditions.

Consider adding a perturbation input to an acyclic network. The value of the primary

outputs at some time-pointnmay be affected by the values taken by the perturbation at

time-pointn; n� 1; � � � ; n� P. The impact of the values�@n�P ; �@n�P+1 ; � � � ; �@n on

the primary output at timenis, in this respect, similar to that of a multiple perturbation

in a combinational network.

Unlike the case of combinational networks, however, we need to take into account

also the fact that the value of�@n may affect the network outputs for more clock cycles,

namely, atn+1; � � � ; n+Pas well.
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In order to simplify the analysis, we first consider the case where all paths fromy to

the primary outputs have the same length, in terms of registers. A perturbation can thus

only affect the outputs at one time-point in the future. As intuition suggests, this case is

very similar to the combinational case. Later, we tackle the general case.

The methods developed to this purpose hinge upon the definition of observability

don’t caresfor acyclic networks:

Definition 4.6 The observability don’t care function ofyk is the function

ODCyk =F y

�0
k

�Fy

�k
(4:19)

Intuitively, the functionODCyk describes when the output at timenis (not) affected

by a perturbation at time-pointn� k.

Example 39.

Consider the circuit of Fig. (4.6). There are two paths from the multiplexer

output to the primary output, of length 0 and 1, respectively.

a

b

a

b

1

a
1

y

1

Figure 4.6: A non-pipeline acyclic synchronous network.

The two observabilitydon’t caresare thus

ODC y0 =a+b+y 1 =a+b+(a 2a
0
1 +a

0
2b2) � �1

and

ODC y1 =a+b+y=a+b+(a 1a
0 +a 0

1b1)� �

Notice in particular that each observabilitydon’t caredepends on the pertur-

bation signal�. 2
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Let us now consider the special case where all paths from a vertexy to the primary

outputs contain the same numberPy of registers. In this case,Fy and E depend only

on �Py , and Eq. (4.18) can still be explicited into a tolerance on�. The derivation is as

follows. A Shannon expansion ofE results in

�0
Py

E�
0

Py

+� Py
E�Py

� DC : (4:20)

On the other hand, from Eq. (4.17),E�
0
Py

=0 and therefore Eq. (4.20) reduces to

�PyE�Py
� DC : (4:21)

or, equivalently,

�Py1� E0
�Py

+DC : (4:22)

Eq. (4.22) is very similar to the combinational case, as it explicits the tolerance on�

again as a sum of an external (DC) plus an internal (E0
�Py

) component. By observing that

E0
�Py

=ODC yPy , the retiming of Eq. (4.22) by�Py yields:

�1� DC �P y
+ODC y : (4:23)

By using the defining Equation (4.15) ofDC and the property (4.14) ofC, Eq. (4.23)

becomes

�1� C +ODC ext

�P y
+ODC y (4:24)

A network is said to be apipeline if for each vertex all paths to a primary output

have the same length. Eq. (4.23) shows thatdon’t caresets fully describe the degrees of

freedom for the optimization of these networks.

Retiming/resynthesis techniques exploit some of thesedon’t cares , by identifying

pipelined subnetworks and optimizing them. It is worth noting that the identification of

pipelines in [22] istopological. It might well be the case where a gate, although having

paths of different length to a primary output, results in a functionE that depends only

on a single�k. Retiming would miss the opportunity of optimizing this gate by ordinary

don’t care -based methods.

For non-pipelined networks, Example (39) has shown that an equation like Eq. (4.23)

cannot fully represent alldon’t cares. This is due to the dependency ofE from mul-

tiple, retimed instances of�. This dependency, however, also suggests the use of the

approximation methods developed for multiple perturbations.
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Theorems (4.1)- (4.2) below extend the results of Theorems (2.3)-(2.4) on multi-

ple perturbations in combinational networks. Their proofs are very similar to those of

Theorems (2.3)-(2.4), and are therefore omitted here.

Theorem 4.2 A perturbation� satisfies Eq. (4.18) if and only if

DC0E�0 � �1� E 0
�
+DC ;

DC0(8�E)�01 � �11� (8�E)0
�1
+DC ;

...

DC0(8�; �1; ...; �i�1 E)�i � �i1� (8�; �1; ...; �i�1 E)0
�0
i

+DC ; i=0; . . . ; P y (4.25)

Theorem 4.3 If perturbations�; � 1; . . . ; �Py satisfy :

�i1� DC +ODC yi

�0; ...; �0
i�1

(4:26)

then Eq. (4.18) (namely,E � DC) holds.

Example 40.

Consider the circuit of Fig. (4.6). For the optimization of the MUX gate,

we determine

ODC y0 =a+b+y 1 =a+b+(a 2a
0
1 +a

0
2b2) � �1

and

ODC y1
�

=a+b+y �0 =a+b+a 1a
0 +a 0

1b1

From Theorem (4.2), if the modification of the MUX results in a perturbation

� such that

�� ODC y0

�1 � ODC y1
�0

(4.27)

then the modification is acceptable. Later in this section we show how to

use this information for the optimization of the MUX gate.2
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In Eq. (4.26), the bound on each�i depends in general on�j; j >i. This is also

evident in Example (40). The method for eliminating this dependency consists again of

finding, for each�i, a portionDC yi of ODCyi that is common to all components of the

vectorODCyi and independent from�j; j >i. When findingDC yi it is useful to include

the information that�j is bounded by adon’t care function:

Theorem 4.4 If each retimed�i; i =0; � � � ; Py is contained inC+DC yi where each

DC yi satisfies

DC yi1� CODCyi ; i=0; . . . ; P y (4:28)

and

CODCyPy = ODC+ ODC yPy
�0; ...; �0

Py�1

...
...

...

CODCyi = ODC+ 8 �i+1; ...; �Py

�
ODCyi

�01; ...; �0
i�1

+(
PyX

k=i+1

�k(DC
yk)0)1

�
; i=0; . . . ; P y :

(4:29)

thenE � DC.

Example 41.

Consider extracting thedon’t care for the MUX gate of Fig. (4.6). From

Example (40),

DC y1 =CODC y1 =ODC y1
�0

=a+b+a 1 +b 1

(the expression ofODC y1
�0

has been simplified) while

DC y0 =CODC y0 =8 �1

�
ODC y0 +� 1(DC y1)0

�
=

a+b+a 1a2 +a 1b
0
2 +b 1a

0
2b
0
2

(4:30)

2
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a

b

Figure 4.7: Optimized version of the MUX gate circuit.

A unique bound on� is eventually obtained by retiming and intersecting the individual

bounds given on each�i:

DC y =C+
PyY
i=0

(DC yi)�i : (4:31)

Example 42.

For the MUX gate of Fig. (4.6),

DC y =DC y0 � (DC y1
�1 ) =

(a+b+a 1a2 +a 1b
0
2 +b 1a

0
2b
0
2)(a�1 +b �1 +a+b)

=a+b+(a �1 +b �1 )(a1a2 +a 1b
0
2 +b 1a

0
2b
0
2) :

(4.32)

The don’t care just extracted can be used for the optimization of the gate.

An optimal expression isy=a 1 +b 1.

It is also worth noting that in this casey is just a retimed version ofa+b.

The final, optimized circuit is shown in Fig. (4.7).2

We conclude this section by observing that the controllabilitydon’t care termCcan

be replaced in Eq. (4.31) by the expressionCDC.

Theorems (4.3) -(4.4) therefore suggest the following procedure for extracting the

observabilitydon’t careof a gate in a synchronous, acyclic network:

� ExtractODCyi
�0; ���; �0

i�1
for i=0; � � � ; Py;

� Compute the functionDC y using Eq. (4.31), and usingODC as externaldon’t

care condition;

� Retime and intersect eachDC yi, and addCDCto the result.

Of the three steps, the first one is the most complex. Its description is thus carried

next.
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4.4 Computation of observability don’t cares in acyclic

networks

Theorem (4.4) relates adon’t care function for a network variabley to the individual

don’t caresODCyi. Local methods for computing such functions by a single sweep of

the network can be extended from those of combinational networks as follows.

Consider first the case of a vertex labeledy, with a single fanout edge(y; z) with

weightw. If ODC zk is known fork=0; . . . ; P z, then the corresponding expression for

y is given by

ODCyk+w =ODC zk +
�

@e z

k

@y k+w

�0
1; k=0; . . . ; P z (4:33)

andODCy0 =� � � ODCyw�1 =1.

Eq. (4.33) is essentially identical to Eq. (2.20) of the combinational case, the only

difference consisting in accounting for the delaywby appropriately retiminge z. The

same considerations about the validity of Eq. (2.20) in presence of multiple perturbations

hold of course also for Eq. (4.33).

It is similarly possible to extend to the synchronous case Eq. (2.27) for gates with

reconvergent fanout, by carrying out the same construction as in Chapter (2). Letv and

z denote the fanout variables of a two-fanout vertexy. The functionF v; z describes the

function of the perturbed network with two perturbations� v; �z. It follows that

ODCyk =F v; z

�v
k
; �z
k

�Fv; z

�v
k

0
; �z
k

0: (4:34)

By adding twice the termFv; z

�v
k

0
; �z
k

, by manipulations similar to those leading to Eq. (2.27)

we obtain

ODCyk =ODC vk�ODCzk

�v
k

: (4:35)

The dual expression is obtained by adding twiceFv; z

�v
k
; �z
k

0 :

ODCyk =ODC vk

�z
k

�ODCzk : (4:36)

The following pseudocode illustrates a one-pass optimization of a network, evidencing

the computation of the observabilitydon’t cares.
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OBSERVABILITY(G, CDC, ODC);

T = {sink};

S = FI(sink);

while ( T < V ) {

select(v 2V - T such that FO(v) �S);

if (vertex_type(v) == gate) {

foreach y 2 FI(v) {

for (j=0, j < P, j++) {

ODC[y][j] = (@f�
wy

=@y0)
01 +

retime(w(y,v), ODC[v][j-w(y,v)]);

}

}

} else {

y = FI(v);

ODCy
= 1;

for(j=0, j < P, j +) +

for (z=fanout_var(y); z != NULL; z = z->next_fanout) {

ODC[y ][j] =ODC[y ][j ] �ODC[z][j ]u=y0;u>z

}

}

}

DC = compute_dontcare(y, CDC, ODC);

optimize(y, DC);

S = S[FI(v);

T = T[{v};

}

The routinecompute dontcare performs the steps 2) and 3) of the computation

of DC y. The routineoptimize does the actual two-level optimization.
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Circuit inputs outputs literals registers feedback longest pathP
S208 11 2 166 8 8 1
S298 3 6 244 14 14 2
S344 9 11 269 15 15 1
S444 3 6 352 21 15 2
S526 3 6 445 21 21 1
S641 35 24 537 19 11 2
S820 18 19 757 5 5 3
S832 18 19 769 5 5 3
S1196 14 14 1009 18 0 3
S1238 14 14 1041 18 0 3
S1494 8 19 1393 6 6 1
S9234.1 36 39 7900 211 90 6

Table 4.1: Benchmark statistics

4.5 Experimental results.

We report in this section experimental results concerning the extraction of observability

don’t caresets for benchmark synchronous circuits. Table (4.5) shows the statistics of the

benchmark circuits. Most of these circuits contain feedback paths. They were removed

using the algorithm by Smith and Walford [45] for the minimum feedback vertex set.

Columnfeedback indicates the number of feedback variables that were introduced.

Pindicates the longest path of the circuit in terms of register counts. These parameters are

obviously affected by choice of the feedback variables: for example, for the benchmark

s344, a cut based on a depth-first network traversal [46] resulted inP=10.

Table (4.2) reports the results for the computation of observabilitydon’t carefunctions,

in terms of CPU time and peak BDD nodes.
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Circuit CPU time BDD nodes
S208 0.9 1280
S298 2.1 889
S344 2.1 2015
S444 4.1 4547
S526 5.6 3289
S641 10.1 2645
S820 19.0 11788
S832 18 6679
S1196 23.4 305622
S1238 17.9 398591
S1494 19.6 12623
S9234.1 151.4 456017

Table 4.2: Computation of the observabilitydon’t caresets.

4.6 Summary

In this chapter we took a first step towards the construction of algorithms for the struc-

tural optimization of synchronous hardware. In particular, Sections (4.1) and (4.2) were

concerned with the definition of functional specifications anddon’t caresat for sequential

circuits. In Section (4.3) we presented an extension of the perturbation theory applied

to combinational circuits. Based on this theory, we developed an algorithm for extract-

ing don’t care functions that can be used in the optimization of individual gates in a

synchronous networks. Unlike the combinational case, however,don’t care functions

express only partially the potential for optimization in a synchronous circuit. Moreover,

the algorithms are suited for networks without feedback loops. These two limitations are

removed in the next two chapters.



Chapter 5

Recurrence Equations

In the previous chapter we outlined an approximate technique for optimizing synchronous

circuits, in particular by optimizing each vertex of the network usingdon’t care sets.

The inverter example showed that, unlike the combinational case, even for simple

acyclic networks this approach is not sufficient to characterize all thedon’t careconditions

that can arise in the synchronous context.

In this chapter we focus on exact methods for acyclic networks. We show that the

problem of optimizing a subnetwork can be cast as that of finding the minimum-cost

solution to a new type of Boolean equation, calledsynchronous recurrence equation.

Besides acyclic networks, the method is useful in the optimization of the acyclic

portion of general synchronous networks containing feedback.

We propose a solution algorithm for recurrence equations. The algorithm relies on

the transformation of the equation into a new combinational logic optimization problem.

An exact solution algorithm for this latter problem is presented, and experimental results

on synchronous benchmark circuits demonstrate the feasibility of the approach.

5.1 Introduction

We introduce the idea of recurrence equations by resorting again to the inverter example,

repeated in Fig. (5.1).

117
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Example 43.

The functionality of the original circuit (shown in Fig. (5.1.a) ) is expressed

by the functionF=x 0 � x01. Consider another circuit, in which the inverter

is replaced by another (yet unknown) logic block, with inputxand outputy

as shown in Fig. (5.1). The functionality of this circuit can be expressed in

terms of the internal signaly: F y =y� y 1.

The block is an acceptable replacement of the inverter as long as the global

functionality of the circuit is unchanged, that is, as long as the signaly

satisfies the equation:

y� y 1 =x 0 � x01 :

This equation can be interpreted as the functional constraint placed on the

signal y (and hence on the block replacing the inverter) for the terminal

behavior of the global circuit to result unchanged.

It is worth noting that there are several solutions to this equation. Some such

solutions are, for instance,y=x, y=x 0 (the inverter),y=x� x 1 � y1.

Each solution corresponds to a possible logic block replacing the inverter.

These are shown in Fig. (5.1.b).2

Example 44.

As a more complex example, consider the optimization of the subnetwork

N1 in the network of Fig. (5.2). The desired terminal behavior of the entire

network can be described by

F=b 2b1(a1 +b)

Its output is expressed in terms of the internal signaly by:

F y =b 1(b+a 1 +y 1)(y�y1)
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 x y

 x

 x y

y

(a)

(b)

Figure 5.1: Original and optimized versions of the inverter circuit.

a

b

y

a

b

b

N1 1

1

N

F

Figure 5.2: Local optimization ofN1 embedded in a larger networkN

For every input sequence,y must then satisfy

b2b1(a1 +b ) =b 1(y�y1)(b +a1 +y 1)

Assume now that the input patternb b1b02 is impossible at the network inputs.

The above equality must be satisfied only for those input sequences not

containing the impossible pattern, hence the constraint ony becomes:

b2b1(a1 +b )(b b1b
0
2)
0 � b1(y�y1)(b +a1 +y 1) � b2b1(a1 +b ) +b b1b

0
2

2
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5.2 Synchronous Recurrence Equations

Definition 5.1 We callSynchronous Recurrence Equation(SRE) a Boolean equation

of type

F(x; x1; � � � ; xd; y; y1; � � � ; yd) =G(x; x1; � � � ; xd) (5: 1)

whereF; G are ordinary pattern functions. The (nonnegative) integerd is termed the

memory depth of the equation.

We call afeasible solutionof the SRE a pattern function

f(x; � � � ; xd; y1; � � � ; yd) (5: 2)

and an initial value specification

y@�d =g @�d (x@�d ; � � � ; x�2d )
...

y@�1 =g @�1 (x@�1 ; � � � ; x@�d+1 )

(5: 3)

such that if

y@n =f @n(x; � � � ; xd; y1; � � � ; yd) 8 n � 0 (5: 4)

then Eq.(5.1) holds true.

The equation resulting from the inverter optimization problem of Example (43) is

thus precisely an SRE, whereF =y � y1 andG =x 0 � x01.

The presence ofdon’t careconditions in Example (44), however, does not allow us

to cast the optimization problem as an SRE, in the way it is defined above. We extend

the definition by replacing Eq. (5.1) with the pair of inequalities:

Fmin (x; x1; � � � ; xd) � F(x; x1; � � � ; xd; y; y1; � � � ; yd) � Fmax (x; x1; � � � ; xd) (5: 5)

5.2.1 Optimization of synchronous circuits by recurrence equations

The previous section showed that the degrees of freedom associated with a gate in an

acyclic network can be expressed by a recurrence equation in terms of the primary input
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variables. This equation can be obtained easily if representations of the functionsF and

Fy are available. In order to apply recurrence equations in a sequential logic optimization

engine, the following problems must be solved:

1) How to find a minimum-cost solution to a recurrence equation;

2) How to keep into account the presence of internal signals during the synthesis step.

The following sections address these two problems in order.

A synchronous network realizing a function as in Eq. (5.2) may in general contain

feedback interconnections, asy is expressed in terms of the past valuesy1; � � � ; yd. In

this work we focus our attention on simpler solutions, in the formf(x; � � � ; xd) only.

Otherwise, the optimization of a vertex may introduce feedback and methods other than

recurrence equation would be needed for its optimization.

Such solutions are hereafter calledacyclic. It is worth noting that acyclic solutions

need no initial value specifications.

5.3 Finding acyclic solutions.

Our solution procedure is essentially divided in two steps. The first step consists of

transforming the synchronous synthesis problem into a combinational one, by providing

a characterization of the acyclic solutions to an SRE.

We recall that Eq. (5.1) represents afunctional equation, i.e. an equation whose

unknown is the functionf(x; � � � ; xd). In turn, f is completely described by its truth

table; the truth table entries of the functionf then represent the actual unknowns of the

problem. The preliminary step consists of determining a representation of the truth tables

corresponding to feasible solutions. The second step consists of the search procedure for

optimum solutions. We focus in particular on minimum two-level representations off.

5.3.1 Representing feasible solutions

For the sake of simplicity, we limit our attention to the synthesis of a single-output func-

tion f , the generalization to the multiple-output case being conceptually straightforward,

but computationally more complex.
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The support off is formed by theni � d variables representing the components of

the vectorsx; � � � ; xd. Any such function can be represented by its truth table, of 2ni�d

entries. These entries are here denoted byfj; j =0; � � � ; 2ni�d � 1 1

A function f is completely specified once allfj ’s have been assigned a value. At

the beginning of the solution process, none of thefj are known, and there are in general

several possible assignments, corresponding to feasible solutions of different cost.

Example 45.

For the problem of Example (43), we seek a functionf (x ; x1) of minimum

cost that can replace the inverter. The function is entirely described by its

truth table, represented in Table (5.1). The entriesf0; f1; f2; f3 represent

the unknowns of the problem. Definite feasible solutions are represented by

f0 =1; f1 =1; f2 =0; f3 =0 (corresponding to the original inverter) and by

f0 =0; f1 =0; f2 =1; f3 =1 (corresponding to the simple interconnection).

2

For each assignment ofx; � � � ; xd, Eq. (5.1) specifies a constraint on the possible

assignments toy ; � � � ; yd. Such constraints can be expressed by means of arelation

table associated with the SRE. The left-hand side of the table represents the assignments

of the inputsx; � � � ; xd, while its right-hand side represents the corresponding assignments

to y ; � � � ; yd that satisfy the SRE.

x x1 f

0 0 f0

0 1 f1

1 0 f2

1 1 f3

Table 5.1: Symbolic tabular representation of an unknown functionf (x ; x1).

Example 46.

The SRE associated with the problem of Example (43) is

x0 � x01 � y � y1 � x0 � x01
1In this case, the subscript denotes the entry number and is not a time stamp.
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Corresponding to the assignment, say,(x ; x1) =(0; 1), the SRE reduces to

the constraint 1� y � y1 � 1, that is,y � y1 =1.

Table (5.2) contains the relation table for this SRE. The second column shows

in particular the assignments ofy ; y1 that satisfy the SRE, corresponding to

each assignment ofx ; x1. The relation table for the problem of Example

(44) is shown in Table (5.3). 2

x x1 x2 y y1
0 0 � 00; 11
0 1 � 01; 10
1 0 � 01; 10
1 1 � 00; 11

Table 5.2: Relation table for the inverter optimization problem.

a b a1 b1 a2 b2 y y1
- - - 0 - - �
- 0 0 1 - 0 0�; �0
- 0 1 1 - 0 01; 10
- - 1 1 - 1 00; 11
- 1 - 1 - 1 00; 11

Table 5.3: Relation table for the problem of Example (44). Dashes representdon’t care
conditions.

Recall that we are seeking solutions in the formy =f (x; � � � ; xd). Corresponding

to each entry of the relation table, we can re-express the right-hand side constraints on

y ; � � � ; yd as constraints on thefj ’s, as shown by the following example.

Example 47.

For the relation table of Tab.(5.2), corresponding to the assignment(x ; x1; x2)

= (0; 0; 1), the possible assignments for(y ; y1) are either(0; 0) or (1; 1).

Since we assumey =f (x ; x1) andy1 =f (x1; x2), we havey =f (0; 0) =f0
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andy1 =f (0; 1) =f1. Therefore, the possible assignments fory1; y are also

described by

(f0 +f
0
1)(f

0
0 +f 1) =1 (5: 6)

The same process is repeated for all rows of the relation table. The resulting

constraints on the entry variablesfj are described in Table (5.4).2

x x1 x2 y y1
0 0 0 (f 00 +f 0)(f0 +f 0

0) =1
0 0 1 (f 00 +f 1)(f0 +f 0

1) =1
0 1 0 (f 01 +f

0
2)(f1 +f 2) =1

0 1 1 (f 01 +f
0
3)(f1 +f 3) =1

1 0 0 (f 02 +f
0
0)(f2 +f 0) =1

1 0 1 (f 02 +f
0
1)(f2 +f 1) =1

1 1 0 (f 03 +f 2)(f3 +f 0
2) =1

1 1 1 (f 03 +f 3)(f3 +f 0
3) =1

Table 5.4: Transformed relation table for the inverter optimization problem.

A functionf represents a feasible solution to an SRE if and only if all the constraints

appearing on the right-hand side of the relation table hold true. It is thus possible to

represent such constraints by means of their conjunction,i.e. by a single equation of type

K(fj ; j =0; � � � ; 2ni�d � 1) =1 (5: 7)

Example 48.

In the inverter optimization problem, the conjunction of all the relation table

constraints produces:

K =(f 0�f1)(f1 � f3)(f1�f2)

In the problem of Example (44), by considering a solution in the form

f (b ; a1; b1), we have eight unknownsfj ; j =0; � � � ; 7. It can be verified

that they must satisfy

K = (f 0
1 +f

0
4)(f

0
1 +f

0
6)(f3� f4)(f3 � f6)(f3�f5)(f3�f7) =1 (5: 8)

2
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Figure 5.3: BDD representation ofK for the optimization problem of Example (48)

It is in practice convenient to representK by means of its Shannon decomposition

tree, or its BDD. For Example (48), the BDD of the functionK is reported in Fig. (5.3).

It is worth noting that each path of the BDD ofK corresponds to a partial assignment of

the entriesfj resulting inK =1, hence it represents a feasible solution: The BDD ofK
is a representation of the set of feasible solutions of the SRE.

Definition 5.2 We callsupport setofK (indicated byS U P PK) the set of entry variables

fj that appear in its BDD. The don’t careset of K, denoted byDCK, is the set of entry

variables thatdo not appear in the BDD.

Entry variables belonging toDCK can be set arbitrarily in every feasible solution:

they represent adon’t carecondition common to all such solutions.
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5.4 Minimum cost solutions.

In the previous chapter we mapped the solution problem of a recurrence equation into

the following combinational synthesis problem:

given

an expressionK(fj) in terms of

the 2ni�d � 1 entriesfj of f ;

determine

the minimum-cost functionf such

thatK =1.

It is worth remarking on the differences between this problem and other combina-

tional synthesis problems considered in the literature. The classic theory of incompletely

specified functions [4, 3] considers incomplete specifications in which each entry is either

assigned a value, or is adon’t care . Unspecified entries can be filled in arbitrarily.

A first generalization to the classic theory (the minimization of Boolean Relations

[31, 8]) has been considered in the context of optimization of multiple-output combi-

national circuits [31, 8]. It was shown in particular that for some multiple-output logic

optimization problems correlations exist between assignments to the same entries of dif-

ferent incompletely specified functions. Note, however, that different entries of a single

function could still be chosen independently. In the present case, instead, assignments

to different entries are ”correlated” : for example, by looking at the expressionK in

Example (48), it is easy to see thatf4 andf5 must always be assigned opposite values.

We developed an algorithm for solving the combinational problem, with a strategy

similar to the Quine-McCluskey algorithm for Boolean functions [4, 3, 6, 31, 8]. It

first identifies a set of candidate prime implicants and then synthesizes a minimum-cost

solution.

Definition 5.3 A cube c (x; � � � ; xd) on the variables ofx; � � � ; xd is the product of some

such variables, in either true or complemented form. The variables appearing inc are

termed thesupport of c . Thesizeof a cube is the number of variables not in the support

of c : cubes with larger size have fewer literals. A cube of size 0 is aminterm. A cubec

is a candidate implicant if there exists a feasible solutionf � c . A candidate implicant

is a prime if there exists a feasible solutionf for which c is prime, i.e. for which there

is no implicantec of f that strictly containsc .
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We represent a feasible solution as sum of implicants. If a cubec is part of a feasible

solutionf , then for each assignment ofx; � � � ; xd such thatc =1 it must also bef =1.

Definition 5.4 We call the set of entry variablesfj for which c =1 the spanS Pc of c .

In the solution algorithm, cubes are represented by two different encodings. The first

encoding is by its logic expression in terms of the variables ofx; � � � ; xd. The second

encoding reflects that a cube represents a set of entries ofS Pc. A cube is thus also

encoded as a product of entry variablesfj , with each entry variablefj appearing in true

form if it appears inS Pc, and complemented form otherwise.

Example 49.

For the problem of Example (44), the cubea1b1 covers the entriesf3 andf7.

It is thus encoded by a productf 00f
0
1f

0
2f3f

0
4f

0
5f

0
6f7. 2

5.4.1 Extraction of primes

This section describes the steps in the construction of the list of candidate primes.

The starting point of the procedure is a list of all candidate implicants of size 0 (i.e. ,

all candidate minterms). By definition, a mintermm is a candidate implicant if and only

if there is a solutionf � m. Let fj denote the (unique) entry ofS Pm. Hence,m is a

candidate only if there is a solutionf such thatfj =1, i.e. , if there is a path in the

BDD of K with fj set to 1.

It is worth noting that, according to this definition, minterms covering elements of

DCK are candidates as well.

The set of candidate minterms can thus be identified by a simple depth-first traversal

of the BDD of the functionK.

Pairs of minterms that differ in only one literal are merged to form a cube of size 1,

by removing the differing variable. Unlike the Quine-McCluskey procedure, however,

we must check whetherKc =1 has a solution before listing the new cube as an implicant.

This test is equivalent to checking whether the functionK contains the product rep-

resentingS Pc. This test can also be performed by a depth-first traversal of the BDD of

K.
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Example 50.

Consider the BDD of Fig. (5.3). All entries appear in it, except forf0 and

f2, which representdon’t carescommon to all solutions. There are thus 8

candidate minterms, each corresponding to an entry. These minterms are

listed in the first column of Tab. (5.4.1).

Following McCluskey ([40]), they are encoded and sorted by syndrome.

Adjacent candidates are then merged, to form candidates of size 1. For

instance, minterm 000 is merged with 001, 010, 100 to form the three can-

didates 00�; 0� 0; �00.

Each candidate is then tested forKc � 0. For example, the candidate impli-

cant 10�, resulting for merging 100 and 101, is not acceptable, because no

path in the BDD ofK hasf4 =f 5 =1.

The second column of Tab. (5.4.1) shows the remaining candidates of size

1. 2

b a1b1

size 0 size 1 size 2
000 00- - -0

p
0-0 0- -

p
001 -00
010 - -1

p
100 0-1

-01
011 01-
101 -10
110

-11
p

111 1-1
p

Table 5.5: Extraction of the prime implicants for Example XXX

Adjacent implicants produced at this point are then merged to form candidate impli-

cants of size 2 and so on, until no new implicants are generated.

Example 51.



CHAPTER 5. RECURRENCE EQUATIONS 129

Consider constructing the list of candidates of size 2 of Fig. (5.4.1). First,

candidates of syndrome 0 are first compared against those of syndrome 1:

Candidate 0�� is generated first, by merging 00� with 01�. It represents a

cube containingf0; f1; f2; f3. It is an acceptable candidate, becauseK(f0 =

f1 =f 2 =f 3 =1) 6 =0. Candidate�0� is generated next, by merging

f0; f1; f4; f5. It is not an acceptable candidate, becauseK(f0 =f 1 =f 4 =

f5 =1) =0. Likewise, the candidate�1� is not acceptable, because

K(f0 =f 1 =f 6 =f 7 =1) =0. 2

After generating implicants of sizek it is convenient to discard all implicants of size

k � 1 that are not prime.

An implicant is recognized prime as follows. First, every implicant of sizek �1 that

is not contained in any implicant of sizek is immediately recognized prime. Unlike the

case of ordinary two-level synthesis, however, it might be the case where an implicantc ,

although covered by another implicantec of larger size, may still be a prime. This occurs

because each candidate can be an implicant of several different feasible solutions. It may

then be the case that the solutionsf for which c is an implicant do not coincide with the

solutions for whichec is:

Example 52.

Consider the implicant�11. It is contained in the solution with truth table

entries: f3 =f 5 =f 7 =1;f 0 =f 1 =f 2 =f 4 =f 6 =0, and it is a prime

of this solution, although it is contained in� � 1. Notice that this second

candidate is not even an implicant of this solution.2

A second check for primeness is then necessary. In particular, for each prime that has

not passed the first check we need to verify if there exists a feasible solution for which

it is a prime.

The routinecheck primality below performs this check. It takes as inputs the

BDD representations ofK and of the spansS Pc1; S Pc2, with c1 < c2, and tests whether

there exists a feasible solution containingc1 and notc2.

The routine proceeds by identifying those entriesfj such thatc1 =0 andc 2 =1. It
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returnsTRUEif there is a path in the Shannon decomposition tree ofK that containsc1

and such that at least onefj takes value 0.

int check_primality(c1, c2, K)

BDD c1, c2, K;

{

/* terminal cases */

if ((K == ZERO_BDD) || (K == ONE_BDD)) return (FALSE);

if (c_1 == c_2) return(FALSE);

if (c_1.false == c_2.false == ZERO_BDD)

/* current entry is present in both implicants */

return(check_primality(c_1.true, c_2.true, K.true));

if(c_1.true == c2.true == ZERO_BDD) {

/*current entry is absent from either implicant */

result = check_primality(c1.false, c2.false, K.false);

if (result == TRUE) return(result);

return(check_primality(c1.false, c2.false, K.true));

}

if((c1.true == ZERO_BDD) && (c2.true != ZERO_BDD)) {

/* entry present only in c2 */

/* look for solutions containing only c1 */

result = cube_in_function(c1.false, K.false));

if (result == TRUE) return(result);

/* if not found, continue search */

return(check_primality(c1.false, c2.true, K.true));

return((K == ZERO_BDD());

}

}
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Table (5.5) indicates with a
p

mark the primes for the optimization problem of

Example (44)).

5.4.2 Covering Step.

Once the list of primes has been built, Petrick’s method is used to construct the subsequent

covering problem [47, 31, 8]. LetN denote the total number of primesf c1; � � � ; cNg .

The general solution is written as

f =
NX
r=1

�rcr; (5: 9)

where the parameter variable�r is 1 if cr is present in the solution, and�r =0 otherwise.

Several cost measures can be applied. One such measure is the number of implicants

in the solution: each implicant has then a unit cost. Another measure may consist of the

total number of literals in the expression. Each implicant would then contribute with a

cost proportional to its size. In either case, the costW of a solution is expressed by

W =
NX
r=1

wr�r (5: 10)

wherewr is the cost associated with each primecr.

Let xj denote thejt h assignment (of dimensionni� d ) to the variablesx; � � � ; xd (i.e.

x0 = 00: : : 0, x1 = 00: : : 1, ... ). For eachfj in S U P PK, it must be

fj =
NX
r=1

�rcr(xj): (5: 11)

This equation expresses the entriesfj in terms of the parameters�r. By substituting

these expressions inK, we obtain a new expressionK�(�r; r =1; � � � ; N) of the feasible

solutions in terms of the variables�r.

The synthesis problem is thus eventually transformed into that of finding the minimum

cost assignment to the variables�r such thatK� =1, and it is known in the literature

asMinimum Cost Satisfiability or Binate Covering problem. Its binate nature comes
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from the possibility for some of the parameter variables� i to appear in both true and

complemented form in the conjunctive form ofK�, as shown by the following example.

Example 53.

For the optimization problem of Example (44), there are five primes, namely:

c1 =a 1b1; c2 =b b1; c3 =b 0
1; c4 =a 0; c5 =b 1. From Eq. (5.11),

f1 = � 4 +� 5; f5 = � 2 +� 5;

f3 = � 1 +� 5; f6 = � 3;

f4 = � 3; f7 = � 1 +� 2 +� 5:

(5: 12)

The equationK =1 can now be rewritten as

K� = (� 4�
0
5 +�

0
3)(�

0
4�

0
5 +�

0
3)

[ (�1 +� 5) � �3] [ (�1 +� 5) � �6]

[ (�1 +� 5)�(�2 +� 5)]

[ (�1 +� 5)�(�1 +� 2 +� 5)] =1:

(5: 13)

There are two minimum-cost solution to this equation, namely�5 =1; �j =

0;j 6 =5 and�3 =1; �j =0;j 6 =3. These solutions correspond to the

expressions:

y =b 01 ; y =b1;

respectively. Notice in particular that ifK is represented in Conjunctive

Normal Form (CNF), then alsoK� is automatically expressed in this way.

The construction of the functionK� is thus simplest if a CNF forK is

available.

Figure (5.4) shows the circuit after optimization. The gate producing the

signaly has been replaced with a direct wire tob . 2

We now contrast this procedure against ordinary two-level optimization for combi-

national circuits. In the case of the Quine-McCluskey algorithm for ordinary Boolean

functions, the covering step is also solved by branch and bound methods. Beginning

from a void initial solution, implicants are iteratively added until a complete cover is
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Figure 5.4: Circuit of Example (44) after optimization.

achieved. Different orders of inclusion result in different solutions, among which the one

of minimum cost is selected. It is worth noting, however, that at any step the addition

of an implicant to a partial cover can only improve the cover and, in the worst case,

produce a sub-optimal solution. This is reflected by the unate nature of the functionK�

that would result for this class of problems.

In our case, the binate nature of the functionK� has a negative impact on the com-

plexity of the solution procedure. It might in fact be the case that two implicantsmay

not appear in the same cover. For our current example, this is precisely the case ofc3

andc5: No feasible solution can in fact containc3 andc5 together, and this is reflected by

the binate clause[ (�1 +� 5)� �3] in the constraint equation. During the search process,

the addition of a prime to a partial cover can then invalidate the cover, thus representing

a source of backtrack conditions.

5.5 Recurrence equations for sequential optimization.

The previous sections showed that SREs express thedon’t cares associated with a gate

in an acyclic circuit, and outlined an exact two-level synthesis algorithm for SREs. This

algorithm, however, is not yet suitable for a direct implementation in a logic synthesis

environment, for the following two reasons.

First, since the SRE is expressed in terms of the primary inputs only, we would

neglect the possibility of using internal signals for optimizing each gate. Second, the

complexity of the synthesis algorithm makes it very inefficient for more than 5-6 input

variables. To this regard it is worth observing that the support ofK grows exponentially

with the number of these variables.

In order to make recurrence equations useful, we must ”translate” the degrees of
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freedom they express intodon’t caresin terms ofa limited number of internal signals.

To this regard, the local inputs of the gate represent the obvious choice.

5.5.1 Image of a SRE.

The ”translation” problem can be formulated as follows. We are given an SRE in terms

of the primary inputsx of a circuit and an internal variabley . This equation can be put

in the form

R(x; � � � ; xd; y ; � � � ; yd) =1 (5: 14)

Let z denote the vector of the local input variables for the gate under optimization. Let

nl denote the dimension ofz. We know that the gates drivingz realize pattern functions

of the same inputsx; � � � ; xd, i.e. :

z =G(x; x1; � � � ; xd): (5: 15)

We want to construct a new SRE :

S (z; y ; � � � ; yd) =1 (5: 16)

expressing the same constraints as Eq. (5.14) in terms of the local variablesz.

This is accomplished as follows. First, we augment the functionG into a function

H(x; x1; � � � ; xd; y ; � � � ; yd) with nl +d components. The firstn l components ofH co-

incide with those ofG, while the remaining components are the identity functions for

y ; y1; � � � ; yd.

As mentioned in sections (4.1-4.2), corresponding to each pattern of depthd of the

primary input variablesx, the SRE describes the set of acceptable patterns ofy with the

same depth. The functionR thus describes a set of acceptable patterns of the variables

x; y .

Consider now theimageof the set ofunacceptablepatterns (described byR 0) under

the functionH. It represents a particular set of patterns ofz; y ; � � � ; yd. Let IR0 denote

this set of patterns.

One pattern is inIR0 if there exists an unacceptable pattern of variablesx; y of depth

d that can produce it. Hence, this pattern must be unacceptable. All patterns not in
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this set, instead, are perfectly acceptable, as they cannot be the result of an unacceptable

pattern.

Hence, we take as functionS the following:

BDD *SRE_image(R, y, d, function_list)

BDD *R; /* BDD of the SRE*/

var *y; /* variable */

int d; /* depth of the relation */

list *function_list; /* list of local inputs */

{

function_list = augment(y, d, function_list);

return (COMPLEMENT(image(COMPLEMENT(R), function_list));

}

In the above pseudocode,function list is the list of local inputs ofy , expressed

as functions of the primary inputs. This function list isaugmented to form the list

representingH. Then, the actual image computation ofR is carried out, and the result

complemented.

5.6 Implementation and experimental results.

We implemented in C the algorithms described in this chapter, and tested them on standard

synchronous logic benchmarks. A network is first made acyclic by identifying and break-

ing feedback paths. Several choices are available in this respect. One possibility consists

of identifying a minimum set of feedback vertices and breaking the feedback loops ac-

cordingly. This approach grants a minimum number of feedback variables. Another

possibility we considered was of breaking feedback loops during a depth-first traversal

of the network. We took this second option, thereby granting some minimality of the

varibles we have to deal with. The first five columns of Table (5.6) report the statistics

of the sequential benchmark circuits considered for test.
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For each circuit, the SRE of each gate is built, and mapped into the gate’s local

inputs. Each gate is then optimized.

The last two columns of Table (5.6) report the final literal count and CPU time after

optimization. The results were obtained on a SUN SparcStation LX.

Circuit inputs outputs lits regs optl cpu

s208 11 2 166 8 108 3
s298 3 6 244 14 155 14
s344 9 11 269 15 186 25
s420 19 2 336 16 251 258
s444 3 6 352 21 202 142
s641 35 24 539 19 241 302

Table 5.6: Experimental results for some logic optimization benchmarks.

5.7 Summary.

This chapter showed that the representation of structuraldon’t caresat the sequential

level requires a new means. In the case of acyclic networks,don’t caresare represented

fully by a Synchronous Recurrence Equation.The gate optimization problem is then

cast as that of finding a minimum-cost solution to this equation.

A two-step exact solution algorithm has been proposed. The first step transforms

the synchronous problem into a combinational one, which we have shown to differ from

those previously considered in the literature. An exact algorithm for the latter problem

is then presented.

Unfortunately, the algorithm requires treating each truth table entry of a function as

an independent Boolean variable. The number of these variables is then exponential in

the number of gate inputs, and represents the major bottleneck of the algorithm.

Other sources of complexity are presented by the binate nature of the covering problem

and by the complexity of the prime-finding procedure.
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Nevertheless, the method is very attractive for the optimization of sequential logic,

because it makes available optimal solutions otherwise unreachable. We thus inserted the

SRE solving procedure in a sequential logic optimization program. Experimental results

show an improvement of about 7% over previously optimized circuits. The CPU penalty,

however, is occasionally severe.

The method is thus probably best used only for the optimization of selected gates,

for example those in the critical path of the circuit.

Currently, the global feedback function of the optimized network is not changed.

This actually represents an unnecessary restriction to optimization: the feedback function

can, in principle, be altered, as long as the observable terminal behavior of the entire

network is not affected by this change. Further investigation on this aspect could result

in algorithms leading to better quality optimization results.



Chapter 6

Cyclic synchronous networks

The simplest approach to the optimization of a cyclic networkN consists of optimizing

its acyclic portionNd by the algorithms of Chapters (4-5), and regarding the feedback

inputs and outputs as primary inputs and outputs, respectively. Intuitively, as the feedback

interconnections are not directly controllable nor observable, this approach neglects some

degrees of freedom. For example, some feedback sequences may be never asserted by

the network and may therefore be considered as an external controllabilitydon’t care

condition forNd. Moreover, some values of the feedback input may be never observed

at the primary outputs. As these inputs are generated by the feedback ouputs ofNd,

these conditions actually represent an external observabilitydon’t carecondition of the

feedback outputs ofNd.

In this chapter, we consider capturing the existence of thesedon’t careconditions in

the form of virtualexternal don’t care setson Nd.

The rest of the chapter is organized in two major sections. The first section focuses on

the impossible input sequences caused by the presence of feedback, while the subsequent

section is devoted to observabilitydon’t caresinduced by the equivalence of feedback

sequences.

138
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6.1 Modeling of cyclic networks.

In Chapters (4-5) we used extensively pattern functions to model the input/output behavior

of acyclic networks.

The presence of feedback renders the behavior of cyclic networks more complex. In

particular, it may not be captured by a sequence function:

Example 54.

Consider the circuit of Fig. (6.1.a). Corresponding to an input sequence

. . . 0; 0; 0; . . ., the two sequences . . . 0; 0; 0; . . . and . . .; 1; 1; 1; . . . are possible

at outputy . The two responses are due to the unspecified content of the delay

element.

r

z

(b)

x x

(a)

Figure 6.1: Circuit requiring a reset to realize a sequence function.

2

The appropriate modeling of one such network would be by means of asequence

relation. Informally, a sequence relation maps a sequence of input symbols into asetof

sequences of output symbols.

The behavior of a circuit withni inputs andno outputs is thus captured by a relation

F : (Bni)! !P((B no)!) (6: 1)

For example, for the circuit of Fig. (6.1.a),F (0) =f 0; 1g .

We denote byF@n(s ) the set of values possibly taken by the network output at time

n .

This modeling, however, is too complex in practice. Most circuits are designed with

a reset sequence, so that their output is uniquely identified, at least for all time-points
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n � 0. 1 Moreover, the outputs are regarded as irrelevant at timen < 0. Under these

assumptions, the terminal behavior of a cyclic network can be modeled by a sequence

function F as well, in the sense that for each input sequences , F(s ) could differ from

any of the possible network outputsF (s ) only for n < 0 .

We now cast these assumptions (namely, not observing the outputs at timen < 0,

and applying a reset to the circuit) in a more formal setting.

6.1.1 The reset assumption.

We assume that a particular input pattern is applied at timen < 0, so that the value taken

by all delay elements at time 0 is known. We assume that this pattern has a finite length,

and thus occupies some time interval[�R; �1] .

All sequences not containing this pattern are regarded as impossible input sequences

for the circuit. To describe this set, it is convenient to introduce a sequence function

R:(Bni)! !(B no)!. The functionR(s ) takes value1 if the sequences contains the reset

pattern, and takes value0 otherwise.

Not observing the outputs at timen < 0 can be modeled by a suitable sequence

function as well. We introduce a functionO: (Bni)! !(B no)!. The functionO(s ) takes

value1@n for n < 0, and takes value0@n otherwise.

Reset and initial non-observation are taken into account by assuming that

DC � R +O (6: 2)

It could be shown easily that, under the assumptions of reset and the non-observation

at n < 0, it is possible to construct a functionF whose values coincide with the network

outputs forn � 0. In other words, there exists a functionF that represents adequately

the terminal behavior of a cyclic network for the time-pointsn � 0 of interest.

1This is usually accomplished by adding a dedicated reset input, as shown in Fig. (6.1.b). We regard
these additional inputs just as ordinary primary inputs.
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6.2 Feedback and external controllabilitydon’t cares

In this section, we consider modeling the effect of feedback as an added controllability

don’t careon the inputs of the acyclic portion of the network. We explain the methods

by analyzing the case of the circuit of Fig. (6.2) .

x

r

s

t

x

r

s

t

(a)

(b)

Z

S

T

Z

Figure 6.2: Working example for the computation of controllabilitydon’t cares.

The circuit of Fig. (6.2.a) implements a very simple finite-state machine, namely, a

two-bit shift-register. The circuit was realized from its state diagram after an inappropriate

encoding of the states.

Inputsx andr denote the primary and reset inputs, respectively. Reset is applied at

time�1, zeroing the content of both registers at time 0.

As far as externaldon’t caresare concerned, no input sequence withr@�1 =1 is

applied. We also assume, for simplicity, that no other externaldon’t caresare present.

The circuit contains two feedback lines, labeleds and t , respectively. Cutting these

feedback lines produces the circuit of Fig. (6.2.b). The outputs of the acyclic subnetworks

are described by the pattern functions
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Z = r 0
1f s1� [r02(x2� t2)]g

S = r 01f s1� [r02(x2� t2)]g
T = s � [r01(x1 � t1)]

(6: 3)

Hence, the output at each time-pointn depends on the values ofx ; r ; s ; t at time

n ; n � 1; n � 2. Because of feedback, some patterns of values ofx ; r ; s ; t over a time

span of length 2 may be impossible. In order to simplify the circuit, it is thus necessary

to identify which patterns ofx ; r ; s ; t can occur.

Because we do not observe the outputs at timen < 0, we are actually interested in

the patterns that can occur over the time intervals[n � 2; n ] only for n � 0.

Consider first the time-interval[�2; 0] . We already know that the value ofr@�1 is

1. We also know that the values ofs and t at time 0 are linked to their past values by

Eq. (6.3). Hence, only some combinations of these values is possible, namely, those

satisfying Eq. (6.3) at time 0.

We describe this set by a characteristic function

C<0> = r 1 � (s�(r01f s1� [r02(x2 � t2)]g ))�
(t�(s � [r01(x1 � t1)] )) =
r1s

0t0

(6: 4)

In general, we describe the set ofpossiblepatterns in the interval[�2; 0] by means of

a pattern functionC<0> . The subscript< i > hereafter is used to indicate an iteration

count. The pattern functionC<0> takes value 1 at time 0 corresponding to those patterns

in the interval[�2; 0] that can occur at the network inputs. In other words, taking

C<0>; @0 =r @�1 s
0
@0t

0
@0 (6: 5)

provides a set of possible patterns over the interval[�2; 0] . Eq. (6.5) correctly indicates

that, as a consequence of reset, onlys =0 andt =0 are possible combinations.

Eq. (6.4) represents only a first estimate of the set of possible sequences in that

interval. We have not taken into account, for example, that the values ofs andt at time

�1 are fixed by the feedback network as well, and that therefore only those sequences

that satisfy Eq. (6.3) at time�1 are possible.
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A more refined expression ofC<0> would then be

C<0> = r 1(s�(r01f s1� [r02(x2 � t2)]g ))�
(t�(s � [r01(x1 � t1)] ))�
(s1�(r02f s2� r03(x3� t3)]g ))�
(t1�(s1 � [r02(x2 � t2)] ))

(6: 6)

Further refinements can be obtained by adding similar expressions regardings2 and t2,

and so on, the limit being fixed by the complexity of the resulting expression. Notice also

that the expression (6.6) contains literals outside the interval[�2; 0] of interest, namely,

x3; t3; r3. The removal of these spurious literals by existential quantification2 produces

the following final expression:

C<0> =r 1s
0t0[r2s

0
1t
0
1 +r

0
2(s1 � t1�x2� t2)] : (6: 7)

Notice that estimate (6.7) is smaller (i.e. more accurate) than (6.4).

The next step of the process consists of finding the set of possible patterns of inputs

in the interval [�1; 1] , that is, the possible combinations of values ofr@�1 ; r@0; r@1,

s@�1 ; s@0; s@1; � � � .

Consider first a simpler problem, namely, finding the patterns of one of the signals,

say,t , over the time span[�1; 1] . We are given the patterns over the time span[�2; 0] .

Because the two time intervals overlap, all we need to do is express the dependency of

t@1 from t@0; t@�1 :

t@�1 =t 1; @0

t@0 =t 0; @0

t@1 =T @1 =T �1; @0 =(r 0f s � [r01(x1 � t1)]g )@0 :

(6: 8)

Eq. (6.8) expresses the values oft@�1 ; t@0; t@1 by means of some pattern functions oft ,

the first and second one being in particular the retiming by one and the identity function,

respectively. It is thus possible to obtain the combinations of values oft@�1 ; t@0; t@1 by

computing the image ofC<0> according to these functions.

2Existential quantification is used because we are interested in patterns that can occur, hence, that can
happen for some value ofx3; t3; r3.
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Now, for the complete problem, we compute the image ofC<0> according to the

following equalities:

r@�1 =r 1; @0

r@0 =r 0; @0

r@1 =r �1; @0

s@�1 =s 1; @0

s@0 =s 0; @0

s@1 =S @1 =S �1; @0 =(r 0f s � [r01(x1� t1)]g )@0

t@�1 =t 1; @0

t@0 =t 0; @0

t@1 =T @1 =T �1; @0 =(s �1 � [r0(x � t )] )@0

x@�1 =x 1; @0

x@0 =x 0; @0

x@1 =x �1; @0

(6: 9)

In this case, we obtain

I mg (C<0> ) =s 0
�1 s

0t0r1[ t�1 �(r0x )] (6: 10)

The new estimate of the set of possible patterns is then

C<1> =C <0> +(I mg (C<0> ))1 =�
r1s

0t0[r2s01t
0
1 +r

0
2(s1� t1�x2 � t2)]

�
+
�
r2s

0
1t
0
1s
0[ t�(r01x1)]

�
=

r1s
0t0[r2s01t

0
1 +r

0
2(s1 � t1�x2� t2)] +r 2s

0
1t
0
1s
0(t0x01 +t r

0
1x1)

(6: 11)

The final estimate is obtained by the followingfixed-point iteration:

C<k+1> =C <k> +(I mg (C<k> ))1 (6: 12)

For the circuit of Fig. (6.2), the final result, after four iterations, is:

C = r 0
2r
0
1(t�x1)(t1�x2)(s�t1)(s1�t2)+

r02r1s
0t0(s1 � t1�x2� t2)+

r2s
0
1t
0
1r
0
1s
0(t�x1)+

r2s
0
1t
0
1r1s

0t0 :

(6: 13)
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Eq. (6.13) provides much information about the behavior of the circuit. The function

C indicates in particular that, when no reset is applied for two clock periods (line corre-

sponding to the term beginning withr 01r
0
2), thent ands represent the inputx delayed by

1 and 2 clock periods, respectively. Viceversa, if a reset is applied (entries labeledr1),

thens =0 andt =0.

The complement ofC represents a set of impossible input patterns for the circuit and

can be used for its optimization. We conclude this section by showing that using the

don’t carederived so far it is possible to obtain the correctly encoded shift-register.

To simplify the presentation, rather than using the fulldon’t care , we consider its

restriction to the variables in the expression ofZ :

DC =8 s; s2; t ; t1(C
0) =[r 0

2r
0
1(s1�t2) +r 0

2r1 +r 2s
0
1]
0 : (6: 14)

The expression ofDC was obtained fromC0 by consensusover the variables not

appearing inZ , namely,s ; s2; t ; t1.
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Figure 6.3: Karnaugh map of the functionZ and of its don’t cares for the two-bit
shift-register problem

Fig. (6.3) shows the Karnaugh map of the functionZ along with itsdon’t cares .

A minimum-cost realization is provided by the expressionr 02r
0
1x2. This expression is

precisely the one realized by the properly-encoded shift-register, shown in Fig. (6.4).

6.2.1 Don’t caresand state-space traversals

The problem of finding the input controllabilitydon’t caresfor a circuit with feedback

bears an evident similarity with the identification of the set of reachable states in a finite-

state machine [48]. In the present iteration, the role of “states” is played by the patterns
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x

r

Z

Figure 6.4: The correct version of the two-bit shift-register, as obtained by optimization
with controllability don’t cares.

of input and feedback variables.

Two aspects that distinguish the two problems are, however, worth remarking. First,

we consider values on the feedback wires over a predefined, but otherwisearbitrarily

long interval, rather than values at individual time-points. Second, we can extract a set of

impossible patterns of inputand feedback values, as opposed to focusing on impossible

feedback combinations only.

We also remark on a difference of the present approach with respect to traditional

finite-state machine optimization. Traditional methods determine the set of unreachable

states and use this set asdon’t care for the combinational portion of the circuit. In the

case of the circuit of Fig. (6.2), every state is reachable, so there is nodon’t careavailable

for the optimization of the shift-register.

Notice also, however, that in order to determine the set of reachable states, one would

have to work with only three binary variables (the two state bits plus the input variable).

Moreover, convergence would be reached after just two iterations. With the present

method, we needed four iterations to converge and we had to operate on 9 variables.

6.3 Perturbation analysis of cyclic networks.

The algorithms of the previous section still regard the feedback output as a primary output.

The functionality of the network realizing the feedback output is thus left unchanged by

logic optimization,modulothe external controllabilitydon’t cares. On the other hand, the

feedback outputs of a network are not primary outputs, and it may be possible to change

their value corresponding to an input pattern that occurs, as long as this modification is

not observable at the true primary outputs of the network.

We thus consider in this section associating an observabilitydon’t care with the
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feedback outputs of the acyclic portion of a cyclic network. Again, we explain our

methods referring to a working example, namely, the circuit of Fig. (6.5).

(b)

(a)

Nd

F 

S 

s

a

F 

S 

s

a

σ δ

y

y

y

Figure 6.5: a) A cyclic network decomposed into a acyclic subnetwork and a feedback
interconnection. b) Perturbed network for the AND gate optimization.

Consider the problem of optimizing the AND gate with outputy in the circuit of

Fig. (6.5.a). The modification of the gate introduces a perturbation that may affect the

function realized at the feedback output. If the optimization algorithms of chapters (4)-(5)

are used, then this perturbation is bound in such a way that neither the primary nor the

feedback outputs are ever affected.

On the other hand, we may wish to let some error propagate through the feedback,

as long as it never affects the the actual output.

In order to derive the bounds on the perturbation� for the AND gate, it is convenient

to compare the behavior of the original network with the network modified bytwo
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perturbation signals, at the logic gate and feedback input, respectively, as shown in Fig.

(6.5.b). The perturbation signals are here denoted by� and�, respectively. The behavior

of the perturbed network is described by the output functionF y(� ; � ) and by the feedback

functionSy(� ; � ).

In particular,F =F y(0; 0) andS =Sy(0; 0). As � represents the perturbation of

the feedback input, it obeys the recurrence

� =S y(0; 0)� Sy(� ; � )
def
=E S : (6: 15)

The errors in functionality between the original and perturbed networks is described by

the function

E =F y(0; 0) � Fy(� ; � ) : (6: 16)

The functiongy can replacefy if

E@n � CDCext

@n
+ODC ext

@n
=DC ext

@n
8 n � 0: (6: 17)

In the rest of this section we show that Eq. (6.17) can be decomposed into two separate

bounds on� and� , respectively. As�@n models the perturbation of the feedback function

at timen , its bound represents implicitly an observabilitydon’t careset forS at timen .

Moreover, we show that this bound is independent from� , and can thus be computed

once and for all before the optimization of the network.

In order to derive this bound, we introduce the following auxiliary error functions:

EF

�

def
=F y(� ; � ) � Fy(0; � ) EF

�

def
=F y(0; � ) � Fy(0; 0); (6: 18)

ES

�

def
=S y(� ; � )� Sy(0; � ) ES

�

def
=S y(0; � ) � Sy(0; 0): (6: 19)

The following theorem allows us to split the problem of bounding� and � into two

smaller subproblems, concerning� and� separately, and represented by Eq. (6.20) and

(6.21), respectively.

Theorem 6.1 If the perturbations� ; � , resulting from changingfy into a different local

functiongy, are such that

EF

�; @n
� DC ext

@n
8 n � 0 (6: 20)

EF

�; @n
� DC ext ; @n8 n � 0; (6: 21)

then Eq. (6.17) holds andgy can replacefy.
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Proof.

It is sufficient to observe that Eqs. (6.20)-(6.21) imply

EF =E F

�
�EF

�
� EF

�
+E F

�
� DC ext (6: 22)

2

Eq. (6.21) could in particular be resolved by the methods of chapter (4) into a bound

� � CDCext +ODC s

<0> : (6: 23)

Eq. (6.23) can be interpreted as follows: if for each input sequencez the perturbation�

is such that

�@n � CDCext

@n
+ODC s

<0>; @n
(6: 24)

then Eq. (6.21) certainly holds.

Notice thatODCs

<0> would be just the observabilitydon’t careof the feedback input

s computed in theacyclic subnetworkNd, assuming as externaldon’t carespecifications

the vector:

DCext =

 
CDCext +ODC ext

CDCext +1

!
: (6: 25)

Again, the subscript< 0 > indicates that the function obtained at this point is actually

the basis of an iteration process. The necessity and details of this process are explained

next.

6.3.1 An iterative procedure for external observability don’t cares.

The bound (6.23) represents the extent to which the feedback input can be changed,

without changing the network behavior.

The feedback function can then be modified, as long as the introduced functional

error results in a perturbation� obeying Eq. (6.23).

Because the errors on the feedback line obey Eq. (6.15), we must then ensure that

ES � CDCext +ODC s

<0> (6: 26)
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as well. Equation (6.26) represents a constraint on the feedback output of the perturbed

network. It is formally identical to Eq. (6.17), and Theorem (6.1) could be applied again,

to obtain another pair of sufficient conditions:

Es

�
� CDCext +ODC s

<0> (6: 27)

Es

�
� CDCext +ODC s

<0> (6: 28)

In turn, Eq. (6.28) can be resolved by the methods of chapter (4) into a second bound

placed on� . This second bound must again be regarded as a constraint on the function

ES, and so on.

We thus face the problem of determining a self-consistent boundODC s � ODCs

<0>

on � , namely a bound such that

�j � ODCs

j
; j =1; . . . ; P (6: 29)

implies

Es � CDCext +ODC s : (6: 30)

This bound is determined by another fixed-point iteration as follows.

Beginning fromODC s

<0> , we take as new estimateODCs

<1> of ODCs the observ-

ability don’t careof s , using as externaldon’t carespecifications

DCext =

 
CDCext +ODC ext

CDCext +ODC s

<0>

!
: (6: 31)

The constraint� � ODCs
<1> is then a sufficient condition for Eq. (6.28). Then, we

intersect this estimate withODCs

<0> , to ensure that the new estimate will be a subset

of the old one. The process is repeated until convergence. More in detail, the iteration

scheme is thus as follows:

� Initialize at 1 the external observabilitydon’t careof the feedback outputS ;

� Repeat :

– ComputeODCs

<k+1> using the algorithms of chapter (4) on the feedback

input s .
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– ODCs

<k+1> =ODC s

<k+1> ODC
s

<k>
;

� Until ODCs
<k+1> =ODC s

<k>
.

Theorem (6.2) below proves the correctness of the method. We first show an appli-

cation of the iteration to the circuit of Fig. (6.5).

Example 55.

We derive here the observabilitydon’t caresetODC s for the cyclic network

of Fig. (6.5). The longest path isP =2, and we assumeODC ext =0.

The functions realized by the network are

F =s 2 +s 1�a2

S =a 0
1a

0
2 +a a1s1 +a 1a2s

0
1s2

(6: 32)

Initially, the feedback outputS is taken unobservable. By applying the

algorithms of chapter (4),ODC s

<0> =(s �1 �a )s0s1.

The functionODCs

<0> at this point indicates that, whenever an input pat-

tern s1s
0a s�1 or an input patterns1s

0a0s0�1 is applied at the inputs ofNd,

a perturbation� can be introduced without being observable at the primary

output at future timesn +1; n +2. Notice, however, that it might change

the feedback output, and then affect the primary outputs in this way. For this

reason, the set of patterns that allow the introduction of a perturbation needs

further shrinking.

Notice also thatODCs

<0> depends ons�1 . This dependency can be resolved

by using the equality

s =S (a ; s ) =a01a
0
2 +a a1s1 +a 1a2s

0
1s2 : (6: 33)

Carrying out this substitution producesODC s

<0> =a 1s
0s1. This first estimate

is taken as external observabilitydon’t care for the feedback outputS . The

second estimate ofODCs is obtained by regardingODCs

<0> as an external

observabilitydon’t careof S and by applying the algorithms of chapter (4).
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The intersection of this estimate withODCs

<0> eventually yieldsODCs

<1> =

a0a1s
0s1. This is also the final estimate, as a new iteration would produce

the same result.2

Theorem 6.2 For each arbitrary input sequencez , suppose that a perturbation sequence

� is injected, such that

�@j � CDCext

@j
(z ) +ODC s

@j
(z ); j =�P ; . . . ; �1; (6: 34)

then:

�@n � CDCext

@n
(z ) +ODC s

@n
(z ) 8 n � 0; (6: 35)

and Eq. (6.21) holds.

Proof.

It is sufficient to recall that, because of the convergence of the algorithm,

�j � CDCext +ODC s

j
; j =1; � � � ; P (6: 36)

implies

� =E S � CDCext +ODC s (6: 37)

2

6.4 Experimental results.

We report in this section on optimization results obtained by applying thedon’t care

extraction techniques of chapters 4 and 6.

We considered the synchronous benchmarks reported in Table (4.2). As no infor-

mation about reset sequences or reset states is available for these benchmarks, a reset

sequence consisting ofr consecutive zeros was selected for each circuit. The parameter

r was then assigned the valuesP ; P +1; P +2, with P denoting the longest path (in

terms of register count) in the circuit; feedbackdon’t careconditions were extracted and
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Circuit r =P r =P +1 r =P +2
lit. reg. CPU lit. reg. CPU lit. reg. CPU

S208 72 8 16 58 8 21 52 8 24
S298 109 12 27 102 12 44 99 12 51
S344 131 15 31 127 16 41 122 15 49
S444 144 19 29 131 18 41 127 17 51
S526 216 20 31 188 21 34 149 21 41
S641 209 14 53 187 15 64 150 14 88
S820 260 5 59 255 5 69 243 5 73
S832 261 5 65 245 5 98 245 5 188
S1196 554 16 194 531 15 278 521 15 456
S1238 625 16 238 609 15 277 522 14 402
S1494 582 6 91 569 6 191 565 6 236
S9234.1 747 176 785 462 174 987 398 177 1686

Table 6.1: Optimization results

logic optimization of the acyclic portion were performed for each of these values. De-

lay elements were assigned finite cost, equivalent to 4 literals. It was thus in principle

possible to trade off combinational complexity by the addition of delay elements.

6.5 Summary

In this chapter we explored the possibility of taking into account the presence of feedback

in cyclic networks. We do so by adding suitable externaldon’t care conditions to the

acyclic portion of the network. In particular, we presented fixed-point algorithms for the

computation of external controllability and observabilitydon’t care conditions. These

don’t caresneed be computed only once at the beginning of the optimization process.



Chapter 7

Conclusions

In this work, we presented a suite of new algorithms for the structural optimization of logic

networks, both at the combinational and sequential logic level. The paradigm common to

these algorithms is optimization by local re-design of an original network: Each vertex

of the network, corresponding to a logic gate, is iteratively visited and optimized, until

no improvement occurs in the network.

This paradigm presented two main problems. First, we do not nowa priori what

functional changes can be made to a vertex. We thus needed a formal description of the

re-design space for each vertex of the network. Second, we needed to develop algorithms

for extracting quickly and using efficiently this re-design space.

In Chapter 2 we introducedperturbation theoryas a formal model for reasoning on

local perturbations of a network. There, we also restricted our attention to combinational

networks.

The design space for the improvement of a single vertex of a combinational function

is described by a Boolean function, describing implicitly a so-calleddon’t care set for

the vertex. Based on perturbation theory, we were able to develop a new algorithm

for extracting thedon’t care function associated with each vertex of the network. The

efficiency of the algorithm is based on the optimal use of local rules.

It is often the case where thedon’t carefunction associated to a vertex is too complex

to be represented in practice. Perturbation theory allowed us to develop new approxima-

tion techniques. Unlike previous approaches, these techniques may, in the limit , yield the
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exact results. Moreover, we were able to comparequantitatively these approximations

against previously published ones.

When the simultaneous optimization of more vertices is considered, the interplay of

the local perturbations on each function make the accurate description and the optimal

use of thedon’t caresvery complex.

One possible strategy for overcoming these problems is to make conservative approx-

imations on thesedon’t cares. This strategy was considered, for example, in [33, 36].

Perturbation theory allowed us the analysis of this case, and to evaluate the merits and

costs of the different approximation styles. We also developed a new optimization s-

trategy for multiple-vertex optimization. This strategy is presented in Chapter 3. It is

based on the identification of special sets of vertices, whose optimization is likely to

be “simple”. We showed that the joint optimization of these subsets of vertices can be

carried out by classical two-level synthesis algorithms. We were thus able to achieve a

higher optimization quality (with respect to single-vertex optimization) with only a very

reasonable increase in the CPU time.

In Chapter 4 we turned our attention to the case of synchronous networks. The

complete description of the re-design space associated with a single vertex suddenly

becomes much more complex. In particular, it is no longer possible to describe this

space by means of a function. On the other hand, this description is the only one that can

currently be exploited with efficiency. Therefore, Chapter 4 presents a way of extracting

a subset of the design space that can be expressed by a patterndon’t care function. In

Chapter 5, we introduce the notion of recurrence equations as a means for specifying the

don’t cares for a vertex in a general acyclic network. Chapter 6 extends the methods

to cyclic networks. A cyclic network is decomposed into an acyclic portion, containing

all the logic and delay elements, plus a set of feedback interconnections. The presence

of feedback induces an added controllability and observabilitydon’t caresto the acyclic

portion of the network. These externaldon’t caresare computed once and for all before

the optimization of the acyclic portion.
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