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Abstract

In high-performance digital CMOS systems, excessive power dissipation reduces re-

liability and increases the cost imposed by cooling systems and packaging. Power is

obviously is the primary concern for portable applications, since battery technology

cannot keep the fast pace imposed by Moore's Law, and there is large demand for

devices with light batteries and long time between recharges.

Computer-Aided Engineering is probably the only viable paradigm for designing

state-of-the art VLSI and ULSI systems, because it allows the designer to focus on

the high-level trade-o�s and to concentrate the human e�ort on the most critical

parts of the design. We present a framework for the computer-aided design of low-

power digital circuits. We propose several techniques for automatic power reduction

based on paradigms which are widely used by designers. Our main purpose is to

provide the foundation for a new generation of CAD tools for power optimization

under performance constraints. In the last decade, the automatic synthesis and op-

timization of digital circuits for minimum area and maximum performance has been

extensively investigated. We leverage the knowledge base created by such research,

but we acknowledge the distinctive characteristics of power as optimization
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Chapter 1

Introduction

When Gordon Moore of Intel Corporation observed in 1965 that the number of transis-

tors per chip had been doubling every year for a period of 15 years, he was formulating

one of the fundamental laws of the semiconductor industry [moor96]. The so-called

\Moore's Law" has held for the last 35 years, although recently the rate has slowed

to about 1.5 times per year, or to quadrupling every three years [mein95]. In the

dominant CMOS technology the increase in integration comes with numerous bene�-

cial e�ects. Transistors become faster (the delay of a ring oscillator stage in in 0:1�m

technology with 1:0V supply voltage is less than 5ps) and performance increases. In

1996, commercially available microprocessors run with clock speed exceeding 500MHz

and contain more than 9 million transistors [alpha96, expo96]. Processors in the GHz

clock frequency range are expected to be announced in the next two to three years.

While top-of-the line microprocessors provide impressive computational power

and lead the way addressing the formidable challenges of Ultra-Large Scale of In-

tegration (ULSI) design, less aggressive products target the rapidly expanding mar-

ket of portable electronic devices for personal communication, automotive systems,

biomedical instruments and many other applications. In both kinds of applications,

1



2 CHAPTER 1. INTRODUCTION

the reduction of power consumption is a primary concern. In high-performance sys-

tems, excessive power dissipation reduces reliability and increases the cost imposed

by cooling systems and packaging. Power is obviously is the primary concern for

portable applications, since battery technology cannot keep the fast pace imposed by

Moore's law, and there is large demand for devices with light batteries and long time

between recharges.

The design of electronic circuits with low power dissipation is an old art. Several

micropower techniques were introduced in the 1970's and commercially exploited

in the �rst low-power applications: electronic wristwatches and implantable units

for biomedical applications [bult96]. Although the basic issues are unchanged, the

designers of today's low-power systems are faced with a much more complex task:

power must be minimized while maintaining high performance. To further complicate

the problem, the pressure for fast time-to-market has become extremely high, and

it is often unacceptable to completely re-design a system just to reduce its power

dissipation.

Computer-Aided Engineering (CAE) and Computer-Aided Design (CAD) are prob-

ably the only viable paradigms for designing state-of-the art Very Large Scale of In-

tegration (VLSI) and ULSI systems, because they allow the designer to focus on the

high-level trade-o�s and to concentrate the human e�ort on the most critical parts of

the design. Low-power VLSI systems are no exception: although human contribution

is essential for taking architectural decisions and providing creative solutions of the

most critical problems, computer-aided design support reduces the turn-around time

and improves the e�ciency of the design process.

In this thesis we present a framework for the computer-aided design of low-power

digital circuits. We propose several techniques for automatic power reduction based

on paradigms which are widely used by designers. Our main purpose is to provide

the foundation for a new generation of CAD tools for power optimization under
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tight performance constraints. In the last decade, the automatic synthesis and opti-

mization of digital circuits for minimum area and maximum performance has been

extensively investigated. We leverage the knowledge base created by such research,

but we acknowledge the distinctive characteristics of power as optimization target.

It will become clearer in the following sections that power is a complex cost measure

whose optimization poses original and exciting new challenges.

The remaining of this chapter is organized as follows. Section 1.1 describes the

main sources of power consumption in the dominant CMOS technology. Section 1.2

describes the basic design techniques to reduce power dissipation. Section 1.3 is a

review of related work in synthesis techniques for low power. Section 1.4 is a summary

of the contributions of this thesis.

1.1 Sources of power consumption

As power dissipation becomes a high-priority cost metric, researchers and designers

have increased their e�orts in understanding its sources and minimizing its impact.

In this section we review the main causes of power dissipation in CMOS digital

circuits, then we discuss the most e�ective strategies for power minimization. Power

dissipation is not constant during the operation of a digital device. The peak power

is an important concern. Excessive peak power may cause a circuit to fail because of

electromigration and voltage drops on power and ground lines. Fortunately, correct

and reliable circuit operation can be ensured by designing for worst-case conditions.

For this reason peak power estimation is the main focus and we do not address it here

(see [najm95] for an excellent overview). On the other hand, the time-averaged power

consumption is inversely proportional to the battery life time. Hence, minimization

of average power consumption is a key issue for the success of numerous electronic

products, and it is the primary focus of the following treatment.
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The average power dissipation in a CMOS circuit can be described by a simple

equation that summarizes the four most important contributions to its �nal value

Pavg = Pdynamic + Pshort + Pleakage + Pstatic (1.1)

The four components are respectively Pdynamic, dynamic, Pshort short-circuit, Plk

leakage and Pstatic static power consumption. The partition of Pavg among its com-

ponent strongly depends on the application and the technology. We analyze each

contribution in detail, using a simple combinational static CMOS gate as a motivat-

ing example. Dynamic circuits and sequential gates show similar behavior.

Pull−up
(PMOS)

Pull−down
  (NMOS)

Vdd

GND

Cout

(a)

i d

Vin

Vout

C

Vdd

out

icc

(b)

icc

Figure 1: CMOS gate structure and power dissipation

Dynamic power consumption, Pdynamic is the power consumed during the output

switching of a CMOS gate. Figure 1 (a) shows the structure of a generic static CMOS

gate. The pull-up network is generally built with PMOS transistors and connects the

output node Out to the power supply V dd. The pull-down network is generally

composed of NMOS transistors and connects the output node to the ground node
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GND. In a CMOS gate, the structure of the pull-up and pull-down networks is such

that when the circuit is stable (i.e. the output rise or fall transients are exhausted)

the output is never connected to both V dd and GND at the same time.

When a transition on the inputs causes a change in the conductive state of the pull-

up and the pull-down network, electric charge is transferred from the power supply to

the output capacitance Cout or from the output capacitance to ground. The transition

causes power dissipation on the resistive pull-up and pull-down networks. Let us

consider a rising output transition. Power is by de�nition Pdynamic(t) = dE(t)=dt =

id(t)v(t), where id(t) is the current drawn from the supply and v(t) is the supply

voltage (v(t) = V dd). The total energy provided by the supply is:

Er =
Z T r

0
id(t)v(t)dt = Vdd

Z Vdd

0
CoutdVout = CoutV

2
dd (1.2)

where T r is a time interval long enough to allow transient exhaustion. Notice that

we implicitly assumed that all current provided by Vdd is used to charge the output

capacitance. We also assumed that the output capacitance is a constant.

At the end of the transition, the output capacitance is charged to Vdd, and the

energy stored in it is Es = 1=2CoutV
2
dd. Hence, the total energy dissipated during the

output transition is Ed = CoutV
2
dd � 1=2CoutV

2
dd = 1=2CoutV

2
dd. If we now consider a

falling transition, the �nal value of the output node is 0, and the output capacitance

stores no energy. For conservation of energy, the total energy dissipated during a

falling transition of the output is again 1=2CoutV
2
dd.

This simple derivation leads us to the fundamental formula of dynamic power

consumption:

Pdynamic = K
CoutV

2
dd

T
= KCoutV

2
ddf (1.3)

where T is the clock period of the circuit and f = 1=T is the clock frequency.

The factor K is the average number of transitions of the output node in a clock cycle
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divided by two. Setting K = 1=2 is equivalent to assuming that the gate performs

a single transition every cycle. Clearly, in any digital circuit the clock cycle is much

longer than the time for a gate transition. Hence, a single gate may have multiple

transitions in any given clock cycle. On the other hand, the output of a gate may not

switch at all during a clock cycle. Equation 1.3 is important mainly because it includes

the most important parameters in
uencing power dissipation, namely supply voltage,

capacitance switched, clock frequency and the average number of output transitions

per clock cycle.

Figure 1 (b) illustrates the origin of the short circuit power dissipation Pshort.

While in deriving Pdynamic we assumed that all charge drawn from the power supply

is collected by the output capacitance, this is not the case in realistic digital circuits.

Since the inputs have �nite slope, or, equivalently, the input transit time tr=f is larger

than 0, the pull-down and the pull-up are both on for a short period of time. During

this time, there is a connection between power and ground and some current is drawn

from the supply and 
ows directly to ground. We call this current short-circuit

current. The total current drawn from Vdd is therefore i(t) = id(t) + ishort(t). The

following formula was proposed to describe the short circuit power dissipation of an

inverter with no external load (the analytical derivation of the formula under several

simplifying assumption is carried out in [veen84]):

Pshort =
�

12
(Vdd � 2VT )

3�f (1.4)

where � is the gain factor of a MOS transistor, VT is its threshold voltage and � is

the rise (or fall) of the input of the inverter. The analysis in [veen84] shows that Pshort

depends on the ratio between the transit time of the output and the transit time of

the input, the worst case being slow input edges and fast output edges. Although the

Pshort of a single gate is minimized for very fast input edges and slow output edges,

the best design point for cascade of gates is when the transit times of all gate outputs
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is kept roughly constant [veen84].

Several authors observed that short-circuit power dissipation is usually a small

fraction (around 10%) of the total power dissipation, in \well-designed" CMOS cir-

cuits. The rationale for the observation is that Pshort becomes sizable when a gate

is driven by an excessively loaded driver which generates slow transitions at its in-

put. This situation is generally avoided in circuits designed for high performance.

As a consequence, it is reasonable to expect that traditional design techniques for

high performance lead to circuits where short-circuit power dissipation is not a major

concern.

The third component of the total power dissipation in Equation 1.1 is Pleakage, the

power dissipated by leakage currents. Leakage power is mainly caused by two phe-

nomena: diode leakage current due to the reverse saturation currents in the di�usion

regions of the PMOS and NMOS transistors and sub-threshold leakage current of tran-

sistors which are nominally o�. Both currents have an exponential dependence on the

voltage: diode leakage depends on the voltage across the source-bulk and drain-bulk

junctions of the transistors, while sub-threshold current depends on both the voltage

across source and drain and across gate and source.

Diode leakage is an important concern for circuits that are in standby mode for a

very large fraction of operation time and it is usually reduced by adopting specialized

device technologies with very small reverse saturation current. Sub-threshold leak-

age is becoming increasingly important because of reductions in power supply. As

power supply voltages decrease, the transistor threshold is lowered to keep turned-on

transistors well within the conductive region of operation. Consequently, transistors

operating in a non-conductive region are only weakly turned o�, and conduct some

current even in their \OFF" state.

In today's VLSI circuits Pleakage is still a small fraction (less than 10%) of the

total power dissipation. Reductions in Pleakage is achieved mainly through device
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technology improvements (di�usion region engineering and threshold control), and by

enforcing stricter design rules. It may be possible, however, that specialized design

techniques for minimizing Pleakage may be required, as power supply voltages continue

to decrease.

The last component in Equation 1.1 is the static power dissipation, Pstatic, caused

by DC current 
ow from Vdd to GND when the pull-up and pull-down are both con-

ducting and the gate output is not transitioning. Correctly designed CMOS circuits

do not have static power dissipation, and it is fair to say that the absence (in nomi-

nal conditions) of static power dissipation is probably the most important distinctive

characteristic of the CMOS technology. Unfortunately Pstatic may become non null in

faulty circuits. Circuits where Pstatic 6= 0 must be detected and discarded because i) if

present, Pstatic becomes the major contributor to the total power dissipation ii) static

current is often associated with incorrect or unpredictable functional behavior. As an

example of a faulty circuit with Pstatic 6= 0 consider the inverter of Figure 1 (b) and

assume that the gate of the PMOS transistor is connected GND. When the input is

high, both PMOS and NMOS transistors are conducting and current 
ows from Vdd

to GND even if the input is stable.

Summarizing the discussion on the contributions to power dissipation in CMOS

circuits, we conclude that the dominant fraction (around 80%) of Pavg is attributed to

Pdynamic, the dynamic power dissipation caused by switching of the gate outputs. The

reader should refer to the detailed survey by Chandrakasan [chan95] for more infor-

mation. The vast majority of power reduction techniques concentrate on minimizing

the dynamic power dissipation by reducing one or more factors on the right hand

side of Equation 1.3. In the next section we will consider each controlling variable

in greater detail, and give a brief overview of the techniques currently employed by

designers to reduce power dissipation.
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1.2 Design techniques for low power

1.2.1 Power minimization by frequency reduction

Probably the most obvious way to reduce power consumption is to decrease the clock

frequency f . Decreasing the clock frequency causes a proportional decrease in power

dissipation. However, in digital systems we are interested in performing a given task

(e.g. adding two numbers). Slowing the clock merely results in a slower computation,

but no e�ective savings for that task. The power consumption over a given period

of time is reduced, but the total amount of useful work is reduced as well. In other

words, the energy dissipated to complete the task has not changed.

Assume that we want to perform the task with a portable battery-operated system.

Assume the system is clocked with a clock period T1, and the task takes NT1 clock

cycles to complete. During each cycle, the system dissipates an average power P1.

If we now decrease the frequency in half, we will dissipate P2 = 1=2P1, over

the original time period, because average power is directly proportional to the clock

frequency. However, it now takes a total time of 2NT1 to complete the task. As

a consequence, the average energy consumed by the system is E = P1NT1 in both

cases. It is true that we consumed less power per cycle with the slower frequency, but

we had to operate the system for a longer time to execute the same task.

Under the assumption that the total amount of energy provided to complete the

task is a constant, decreasing the clock frequency has negative consequences, because

it just increases the time needed to complete the given task. This observation has

been often reported in the literature [chan95, burd95].

For portable systems, we are interested in power reduction as a way to maximize

battery life. Recent studies [mart96] have shown that the total amount of energy

provided by actual batteries is not a constant, but depends on the rate of discharge

of the battery, so the frequency of operation comes back into play here. According to



10 CHAPTER 1. INTRODUCTION

an empiric equation known as Peukert's formula we have [mart96]:

C =
�

I�
(1.5)

where C is the total energy that can be drawn from a battery (also know as

the energy capacitance), � is a technology-dependent constant (a characteristic of

the particular type of battery used), I is the average discharge current and � is

a technology-dependent �tting factor. For typical NiCd batteries, for instance, �

ranges between 0:1 and 0:3. The most important consequence of Equation 1.5 is that

if we decrease the discharge current, we can actually increase the total amount of

energy that is provided by the battery. In other words, there may be some advantage

in reducing the clock frequency, because batteries are more pro�ciently utilized when

the discharge current is small.

Although this interesting and somewhat counterintuitive observation may open a

new avenue of research for portable systems where clock frequency is reduced (thereby

reducing the average current per clock cycle) to maximize the energy capacitance,

there are still other important factors that limit the impact of power optimization

techniques based on clock frequency reduction. One factor is the constraint on peak

performance. For many digital systems such as microprocessors, the peak performance

is very important, beacuse it allows to favorably compare to the competitor's products

when running benchmark programs and it is related to the user waiting time which

is subject to hard limits.

Even if peak performance is not the primary objective, a very large fraction of dig-

ital systems are throughput-constrained. In order for the system to meet the design

speci�cations, a given number of computations per second must be performed. This

kind of speci�cation is typical of signal processing systems where the sampling rate is

often decided by high-priority system-level constraints. For both peak-performance-

constrained and throughput-constrained systems, clock frequency reduction is not a
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viable alternative for power optimization. Since such systems are the vast major-

ity of VLSI applications implemented today, clock frequency control is used only in

conjunction with other techniques to achieve power savings [chan95].

1.2.2 Power minimization by voltage scaling

Voltage scaling is the most e�ective way to reduce power consumption. This is appar-

ent from Equation 1.3, since Pdynamic has quadratic dependence on the power supply

voltage. A large body of research has been devoted to voltage scaling for power reduc-

tion. The most complete work in the area is the pioneering research of Chandrakasan

and Brodersen, summarized in [chan95].

In CMOS, reducing supply voltage causes the circuit to run slower. The delay of

a CMOS inverter can be described by the following formula [chan95]:

Td =
CoutVdd

I
=

CoutVdd

�(W=L)(Vdd � Vt)2
(1.6)

where � is a technology-dependent constant, W and L are respectively the transis-

tor width and length, and Vt is the threshold voltage. Many simplifying assumption

are made in the derivation of Equation 1.6. The most important assumptions are:

i) the current through the MOS transistor is well �tted by the quadratic model,

ii) during the transient, the device controlling the charge (discharge) of the output

capacitance is in saturation.

Unfortunately, deep sub-micron devices such as those used in modern VLSI sys-

tems are velocity saturated and are not modeled correctly by the simple quadratic

model. A MOS transistor is said to be velocity saturated if no improvement in tran-

sit time of the electrons through the conductive channel can be obtained by increasing

the drain-source voltage. Equation 1.6 should not be regarded as an accurate analyt-

ical model of gate delay (not even for a simple inverter) because it assumes that Td
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can be arbitrarily reduced by increasing Vdd.

Nevertheless, the equation is important because it contains the variables on which

gate delay actually depend, and the nature of their e�ect is correctly represented.

In other words, Td increases with Cout and 1=(W=L), and it strongly depends on the

voltage supply and the threshold voltage.
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Figure 2: Normalized gate delay versus supply voltage

We can study Td as a function of the voltage supply with all other parameters �xed.

A plot depicting the functional dependency of delay from Vdd is shown in Figure 2.

Two main features emerge from the analysis of the plot: i) further increasing the

supply voltage above 3V has little impact on performance; ii) the speed decreases

abruptly as Vdd gets closer to the threshold voltage Vt. The physical phenomena

responsible for this behavior are respectively the velocity saturation of the MOS

transistors at high Vds [chan95] and the low conductivity of the channel when Vgs

approximates Vt.

If speed decreases when we decrease the power supply, power decreases as well,

and quadratically. Clearly there is no point in increasing the supply voltage beyond
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velocity saturation, because little, if any, performance advantage can be obtained.

This straightforward observation explains the supply voltage reduction observed in

CMOS circuits in the last few years. However, if power dissipation is the primary

target, we may push power supply reduction in the region where some speed penalty

is paid.

In the following discussion we target power reduction of a digital system with

throughput constraints and a �xed cycle time T . We assume that the system was

originally designed just to meet the throughput constraints (i.e. the critical path of

the circuitry is matched to the cycle time T ). If we lower the power supply, the circuit

becomes slower and the computation does not complete within a single clock cycle.

However, the designer can still use voltage scaling to reduce power consumption

if design modi�cations are made to satisfy the throughput constraints. This ap-

proach is known as architecture-driven voltage scaling [chan95]. The transformations

employed in architecture-driven voltage scaling are based on increasing the level of

concurrency in the system: more hardware is used and several tasks are performed in

parallel. Typical transformations are pipelining and parallelization. But, pipelining

and parallelization result in an area penalty, because they require additional hard-

ware. Increased area in turn implies increased capacitance, which increases power

dissipation. However, power decreases quadratically with Vdd, but increases only lin-

early with switched capacitance. Thus, there will be a net reduction in power with

these techniques.

Example 1.2.1. This example is taken from [chan95]. Consider the add-
compare circuit shown in �gure 3 (a). The power consumed by the circuit
is

Pref = CrefV
2

ref

1

T

The cycle time is matched to the critical path T = Tadd + Tcmp and the
throughput constraint is 1=T add-compares per second. Hence, we cannot
simply reduce the supply voltage. However, we can pipeline the circuit. The
pipelined implementation is shown in Figure 3 (b). The critical path becomes
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Figure 3: Transformation for architecture-driven voltage scaling

MaxfTadd; Tcmpg < T . Now we can lower the power supply until the new
critical path matches T . Notice that the switched capacitance is increased, be-
cause of the additional pipeline registers. The power consumed by the pipelined
implementation is, for this example [chan95]:

Ppipe = CpipeV
2

pipe1=Tpipe = (1:15Cref) � (:58Vref)
2
�
1

T
= :39Pref :

Alternatively, we can utilize a parallel architecture, as shown in Figure 3 (c).
Notice that the two parallel data-paths are clocked respectively on the odd and
even clock cycles, and the multiplexer selects alternatively the result of one or
the other data-path. In the parallel implementation, every add-compare circuit
has 2T�Tmux to complete the computation, and we can lower the voltage supply
until the critical path matches the available time. The power dissipation of the
parallel implementation is

Ppar = CparV
2

par1=Tpar = (2:15Cref) � (:58Vref)
2
�
1

2T
= :36Pref

The two transformations can be combined to obtain a parallel and pipelined im-

plementation, with even better power savings (and higher hardware overhead).

The power dissipation of the combined parallel and pipelined implementation

is Pparpipe = :2Pref . 2

Obviously there is a point of diminishing returns for architecture-driven voltage
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scaling. As Vdd approaches Vt, the incremental speed reduction paid for an incre-

mental voltage reduction becomes larger. Moreover, the area cost of highly parallel

implementation increases more than linearly because of the communications overhead.

Several other voltage scaling techniques for low power have been proposed (the

book by Chandrakasan contains an excellent survey [chan95]), however the main

limitation of all voltage scaling approaches is that they assume the designer has the

freedom of choosing the voltage supply for his/her design. Unfortunately this is

almost always impossible. For many real-life systems, the power supply is part of

the speci�cation and not a variable to be optimized. Accurate voltage converters are

expensive, and multiple supply voltages complicate board and system-level design

and increase overall system cost. Thus, it may not be economically acceptable to

arbitrarily control the supply voltage.

Even if low-cost reliable voltage converters became widely available [stra94], there

is a more fundamental limitation. Device technologies are designed to perform opti-

mally at a given supply voltage. Since sub-micron devices are velocity saturated, and

there is almost no advantage to choose a high voltage supply, the semiconductor indus-

try is moving to low-voltage technologies (the current standard is 3:3V and advanced

microprocessors are already operating at 2V ). In current (and future) technologies,

voltage scaling will become almost impossible because of reduced noise margins and

deterioration of device characteristics. Since the best supply voltage for a technology

is set by higher priority items than power dissipation, it appears that voltage scaling

techniques will have only a marginal practical impact.

1.2.3 Power optimization by capacitance reduction

Equation 1.3 shows that there is a linear dependence of Pdynamic on the capacitance.

The capacitive load Cout of a CMOS gate G consists mainly of i) gate capacitance of

transistors in gates driven by G, ii) capacitance of the wires that connect the gates,
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iii) parasitic (junction and gate-source or gate-drain) capacitance of the transistors

in gate G. In symbols:

Cout = Cfo + Cw + Cp (1.7)

where Cfo is the capacitance of fan-out gates, Cw is the wiring capacitance and

Cp is the parasitic capacitance. We analyze the three components in more detail.

The fan-out capacitance depends on the number of logic gates driven by G and

the size of their transistors. The capacitance of a MOS transistor depends on the

technology (more precisely, the gate oxide thickness) and the dimensions of the tran-

sistor, Cg =WL�ox=tox, where �ox is the electric permittivity of the silicon oxide and

tox is the oxide thickness. Since tox is set by the technology, and it is not under the

designer's control, the gate capacitance can be reduced only by shrinking the dimen-

sion of the transistors. Another way to reduce the contribution of Cfo is to reduce

the number of fan-out gates. In technologies with channel length above 1�m, Cfo is

by far the most important component in Cout. Unfortunately, this is not the case for

today's deep sub-micron devices, with channel length in the order of :3�m.

For deep sub-micron technologies, the wiring capacitance Cw is becoming the dom-

inant component of Cout. It is extremely hard to accurately estimate Cw. If the circuit

is manually laid out, the topology of the wires and their sizing can be decided by the

designer (or at least estimated with some accuracy). Unfortunately, state-of-the art

technologies have multiple levels of metal and extremely small minimum feature size

and therefore wires are very close to each other. Hence, the coupling between wires is

becoming the most important factor for determining the wiring capacitance. Accurate

modeling of such cross-talk capacitance can be achieved only through computation-

ally expensive computations of two and three-dimensional electric �eld. Even a rough

approximation of these e�ects requires a good deal of engineering ingenuity.
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For automatically laid-out circuits, the situation is even worse, because the de-

signer does not know what the wire's topology and sizing will be. The wiring ca-

pacitance can be estimated after placement and routing, but it is not clear how the

knowledge of the wiring capacitance after placement and routing can be exploited to

reduce the impact of Cw. Currently the estimation, and worse, the control of wiring

capacitance is a problem for which no satisfactory solution is available.

The parasitic capacitance Cp is probably the component causing the least concern,

because it is well characterized and constant (to a �rst approximation) since it depends

only on the transistors of the gate itself, and it is relatively small compared to the

other two contributions.

In summary, in state-of-the art technologies, approximatively 50% of Cout is due

to Cfo, 40% is due to Cw and 10% is due to Cp. The wiring capacitance already

dominates Cout for data busses and global control wires, and will become largely

dominant in the next two to three years.

Reducing Cout not only improves power, but also reduces area and increases speed.

For this reason, techniques for capacitance minimization have been practiced for a

long time, in practice since the birth of VLSI technology. Capacitance minimization

is not the distinctive feature of low-power design, since in CMOS technology power

is consumed only when the capacitance is switched. Focusing on reducing power

by decreasing Cout is a tempting alternative since it allows to exploit the mature

technology for area minimization (capacitance is proportional to active silicon area).

What di�erentiates power optimization from capacitance minimization is the fact

that we do not need to minimize capacitance if it is seldom switched. Although a

minimum capacitance (i.e. minimum area) circuit has generally low power dissipa-

tion, a minimum power circuit does not necessary have minimum capacitance. Pure

capacitance reduction is not generally the most e�ective to reduce power dissipation,

because it is useless to reduce capacitance when there is little activity. Moreover, as
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we will see later, a slight capacitance increase (i.e. the addition of some redundant

circuitry) may lead to remarkable power reduction.

1.2.4 Power optimization by switching activity reduction

We can summarize the previous subsections as follows: the supply voltage Vdd is usu-

ally not under designer control; the clock frequency, or more generally, the system

throughput is a constraint more than a design variable; capacitance is important only

if switched. What really distinguishes power is its dependence on the switching ac-

tivity (i.e. factor K in Equation 1.3). More precisely, power minimization techniques

should target the reduction of the e�ective capacitance, de�ned as Ceff = K � Cout.

The fundamental equation of dynamic power dissipation can be rewritten as:

Pdynamic = CeffV
2
ddf (1.8)

Equation 1.8 helps clarifying our fundamental claim: power minimization is achieved

through the reduction of Ceff . It is important to reiterate the assumptions behind

this claim. First, Pdynamic is the dominant factor in power dissipation. Second, Vdd

is a technology-related parameter that cannot be directly controlled. Third, the per-

formance (in terms of amount of work carried out in given amount of time) of the

system is constrained.

The implications of Equation 1.8 have been clear to digital designers for a long

time. In surveying the description of commercial chips with low power consumption,

it is obvious that once a technology and a supply voltage have been set, power savings

come from the careful minimization of the switching activity.

We can de�ne types of switching activity: functional and useless. Functional

switching activity is required to compute the desired results. For example, the switch-

ing activity in an arithmetic unit that computes a fast Fourier transform is functional.
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Useless switching activity is produced by units that are not taking active part in a

computation or whose computation is redundant. For example, the result of an arith-

metic operation is useless when an exception is raised that invalidates it.

Thus, the key to designing low-power VLSI systems is to minimize the amount of

switching activity needed to carry out a given task within its performance constraints.

There are many examples of e�ective applications of this idea.

� Nap and doze modes of operation in portable computers [elli91, harr95, debn95,

slat95]. With these techniques, power is reduced by stopping the clock of parts

of the microprocessor, or of the entire system, when the system is not performing

any useful task. This is an example of minimizing useless switching activity.

� Dynamic power management through the use of gated clocks [harr95]. The same

principle of the processor-level low-power modes of operation is applied at a �ner

granularity: the clock distribution to a unit in a chip can be disabled at run

time if the unit is not needed for a given computation. The clock is enabled as

soon as the unit is required.

� Algorithmic transformations for signal processing tasks [meng95, chan95b, mehr96].

Reducing the number of operations needed to carry out a give computation may

not be always useful in terms of performance (if the operations are paralleliz-

able), but it is often useful for reducing power. In this case the functional

switching activity is reduced.

� Communication protocol design [mang95]. Communication protocols can be

modi�ed to improve the activity patterns. For example, an asynchronous com-

munication protocol for pagers may be less power e�cient than a synchronous

protocol, because in the �rst case the receiving unit must be continuously turned

on, while in the second case it must be on only during the time slots where some

incoming data is expected.
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Notice that in many cases the reduction in Ceff comes with a concomitant increase

of Cout. For example, the addition of the circuitry for controlling the Nap mode in a

microprocessor marginally increases the area, and consequently the total capacitance.

However, the Cout increase is more than paid o� by the reduction of the switching

activity. Whenever investigating some power reduction technique that implies some

area overhead, we should always consider the trade o� between increasing Cout and

decreasing K, to guarantee an overall decrease in Ceff .

Design techniques that reduce the useful switching activity are inherently harder

to apply than those targeting useless switching. Reducing useful switching is usually

accomplished through algorithm redesign and optimization, a task that largely relies

on human skills. In this thesis we will investigate examples of both techniques, and

propose practical ways to partially automate the process of reducing Ceff .

1.2.5 Revolutionary approaches

Before concluding the section we brie
y mention techniques for power reduction that

adopt a more radical approach by removing one of more of the assumption leading

to the conclusions of Subsection 1.2.4. We call these approaches revolutionary to

contrast with the evolutionary nature of the power optimization strategies previously

discussed. We consider two revolutionary approaches that have been proposed in the

literature in the last few years, namely: asynchronous circuits and adiabatic circuits.

Asynchronous circuits [birt95] are an interesting alternative to standard syn-

chronous circuits for low-power design. Synchronous circuits de�ne one or more

clock signals that are used used to synchronize the sequential elements. Although

a common clock simpli�es the interface of sub-modules in complex systems, clocking

circuitry is hard to design and power consuming. The Ceff of the clock is almost

invariably the largest of the chip, since it has large switching activity and capaci-

tance. Asynchronous design techniques eliminate the need for clock signals. Units
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interface through handshake signals which are activated only when necessary and do

not require global synchronization. Several asynchronous chips have been designed

targeting low power [niel94, mars94, gars96].

It is often claimed that asynchronous circuits are inherently more power e�cient

than synchronous circuits, because they eliminate global synchronization signals that

do not actually perform any \useful computation". Furthermore, as the size and clock

speed of VLSI circuits increases, new clocking paradigms are emerging that have much

in commonwith asynchronous circuits: sub-units of a large digital systems are clocked

at di�erent speeds and require handshaking to communicate among them.

Unfortunately, asynchronous circuits have not yet become a mainstream technol-

ogy, mainly because of the lack of computer-aided design tools to help engineers de-

sign large chips and the overhead of local handshaking signals that erode the claimed

power savings. The few large asynchronous designs described in the literature have

not incontrovertibly proven that there are substantial advantages with respect to

synchronous designs, mainly because they compared to functionally equivalent syn-

chronous designs that were not optimized for power. Although the author is a believer

in asynchronous design methodologies, their �nal success as a revolutionary design

style for low power is yet to be realized.

Design techniques typical of asynchronous design have been employed within the

realm of synchronous circuits: a typical example is clock gating. With clock gating,

power is reduced by stopping the clock of idle units. Clock gating can be seen as a

specialized use of asynchronous techniques, because the clock becomes an activation

signal that is provided to a sub-system only when its computation is required. It

is likely that asynchronous design techniques will be integrated in the mainstream

synchronous paradigm in an evolutionary fashion.

Adiabatic computation has been proposed as a low-power design technique [benn88,

atha94, denk94]. The principles of adiabatic computation are rooted in a simple
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Figure 4: Simple adiabatic inverter

physical principle: since power is p(t) = i(t)v(t), little power is dissipated if the charge

transfer needed to perform computation is performed at v(t) � 0. Obviously, if v(t) =

0 no charge is transferred. If we keep v(t) small and change it slowly, we can transfer

charge (i.e. perform useful computation) with minimal power dissipation. Key to

the practical applicability of adiabatic computation is the quantitative meaning of

the word \slowly". For charge transfer to be adiabatic, the transfer time must be

Tt >> � , where � is the RC time constant of the circuit performing the computation.

The simplest adiabatic circuit is the adiabatic inverter [denk94] shown in Figure 4.

When the input A switches, the CLK line is low. The transistor is turned on, but no

power is dissipated through it, because the voltage across its drain and source is zero.

When the transient on A is exhausted, the CLK line is raised with a slow transition.

In this case, \slow" means that the rise time of CLK Tr has to be Tr >> CoutR,

where R is the equivalent resistance of the transistor and Cout is the load capacitance.

Since Tr is slow, the output voltage Vout tracks the clock waveform and the voltage

across the source and drain of the transistor is always very close to zero (Vds �

0). Since power is dissipated on the transistor resistance, P = V I = V 2
ds=R � 0.
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Theoretically, limTr!1P = 0. In practice Tr � 10CoutR is su�cient for the circuit

to operate adiabatically, with negligible power dissipation. Notice that, at the end of

the transition on CLK, OUT is equal to A', thus the circuit behaves as an inverter.

Several adiabatic logic families have been proposed [raba96] and actually imple-

mented in silicon, showing extremely low power dissipation. Unfortunately there

are numerous practical and theoretical objections to the concept of adiabatic cir-

cuits. Probably the most convincing one has been proposed by Indermaur and

Horowitz [inde94]. In their paper, the authors claim that adiabatic circuits should be

compared to voltage-scaled CMOS circuits with similar performance, and show that

the operation frequencies at which adiabatic circuits become more power-e�cient

than voltage-scaled CMOS are extremely low.

Nevertheless, many papers have been presented where adiabatic circuits are im-

plemented successfully within standard CMOS systems [raba96]. It appears that

adiabatic techniques may help in designing critical sub-units and save some power,

but it is unlikely that fully adiabatic designs will ever become a practical alternative

to mainstream CMOS.

1.3 CAD techniques for low power

Designers faced with the challenges of tight power constraints optimize power dissipa-

tion following the basic principles outlined in the previous section. Designing for low

power is at least as di�cult as designing for maximumspeed or minimumarea. Power

is a pattern-dependent cost function, unlike area, which is constant with respect to

input patterns. Delay is pattern dependent as well, but as far as delay is concerned,

we are interested in reducing its worst case value (i.e. the critical path delay) and rel-

atively simple and fast estimates of the worst case can be obtained. The main source

of di�culty in low-power design is the dependence of power on the switching activity
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of the internal and output nodes, which in turn depends on the input statistics.

As design turnaround time decreases, designers must rely on automatic optimiza-

tion techniques, to speed up the design process. Low-power designs are no exception.

Since power becomes increasingly important as a design evaluation metric, a new

generation of computer-aided design tools targeting power minimization is urgently

needed by the design community. In the last few years, signi�cant research and

development e�ort has been undertaken by numerous academic and commercial in-

stitutions targeting the creation of a new generation of CAD tools for low power. As

a result, hundreds of papers and several books have been published on the subject.

We will focus on approaches that target the reduction of the e�ective capacitance

Ceff . More precisely, we will outline optimization techniques for sequential circuits.

The reasons for this decision are the following.

� When automatic power optimization techniques are applied, high-level decisions

such as the choice of the supply voltage or the device technology have already

been taken. Hence, we do not consider power minimization techniques based on

voltage scaling, although voltage scaling is an important weapon in the early

phases of the design process.

� The original contribution of this thesis is the formulation of techniques for

power minimization of sequential circuits. An overview of the literature on the

same topic will help the understanding of the novelty and speci�city of our

work. Moreover, good overviews of power minimization algorithms targeting

combinational logic do exist [deva95, raba96].

In the next subsections we will review several low-power synthesis techniques that

have been recently proposed. All optimization techniques discussed in this section

share a commonmodel of synchronous sequential circuit with single clock and sequen-

tial elements which sample their input value only on the raising edges of the clock
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signal (edge-triggered 
ip-
ops). Some of the techniques described in the following

subsections can be applied to di�erent clocking schemes, but we will assume a single

clock scheme for the sake of simplicity.

1.3.1 High-level optimizations

We �rst consider techniques that operate at high level of abstraction, more precisely

at the behavioral level. At the behavioral level, the gate-level structure is abstracted

away, and the circuit is represented by a graph (called control-data-
ow or sequencing

graph [dmc94]) where vertices are operations and edges represent functional or control

dependencies between operations. The mapping of this abstract structure to hardware

is done in two steps: scheduling and resource allocation.

During scheduling, operations are assigned to the clock cycles in which they will be

executed. During resource allocation the operations are mapped to actual hardware

resources (such as adders, multipliers, etc.). If the result of an operation is to be

used in a clock cycle following its computation, it must be stored in a sequential

element (a register). Register binding is the part of the resource allocation step

where the outputs of operations are assigned to registers. The last part of resource

allocation is steering logic generation, where the hardware connections among units

or between units and registers are created. Steering logic consists of multiplexers,

decoders, encoders and data busses. A good overview of behavioral synthesis can be

found in [dmc94].

There are two basic approaches to high-level power minimization. One approach

attempts to minimize the switching activity of the circuit, because accurate estimation

of the capacitance is not available at this level of abstraction. In other words, this

approach attempts to minimize the average activity factor K of Equation 1.3. The

second approach tries to minimize of Ceff = KCout, by taking the active area into

account as well. This approach relies on behavioral power estimation tools that
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provide accurate information on Cout.

We �rst outline the synthesis 
ow followed by techniques in the �rst approach. To

collect information about the switching activity of the initial design, the behavioral

description of the design is simulated, prior to scheduling and resource allocation.

Each edge of the sequencing graph is associated with a unique identi�er called a

variable. Information on the switching activity of all variables is collected. More

precisely, an activity matrix is constructed. An element of the matrix is the average

number of bit di�erences between a variable and all other variables.

The sequencing graph is then scheduled, usually with constraints on resource

usage, latency and throughput. After scheduling, resource allocation is performed

targeting the minimization of switching activity. The key idea is to assign hardware

resources trying to minimize the average functional switching activity at their inputs

and outputs, since it is experimentally observed that low input and output activity is

accompanied by low internal power dissipation in register and data-path units. More-

over, low switching on the input and outputs implies that the capacitance associated

to the steering logic is switched less frequently.

Raghunatan and Jha [ragh94] focus on allocation of data-path units to minimize

their input-output switching activity, while Chang and Pedram [chan95] focus on

register allocation. Mussol and Cortadella [muss95] modify the scheduling algorithm

as well in order to approximatively take into account switching activity.

The reduction of the switching activity in the steering logic is targeted in the

papers by Dasgupta and Karri [dasg95] and by Raghunatan et al. [ragh96a, ragh96b].

In the �rst paper, the authors target functional switching activity in bus-based sys-

tems: exploiting the same intuition as in the resource allocation case, they assign data

transfers to the bus in a sequence that minimize the average number of transitions

between values output on the bus in successive cycles. By contrast, Ragunathan et

al. target the useless switching activity on the steering logic when it is not used to
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communicate data required for the computation. Such switching activity is doubly

harmful because it dissipates power in both the steering logic and the units connected

to it.

The techniques targeting minimization of Ceff leverage the behavioral power es-

timation capability of a class of power analysis tools that has been recently devel-

oped [land96, sanm96]. The key improvement of these analysis tools with respect

to behavioral simulation is that they exploit power information on data-path units,

steering logic and registers that have been pre-characterized once for all in a prelim-

inary step.

Behavioral power analysis tools are fast, therefore they can be used in the in-

ner loop of an optimization algorithm. The basic 
ow of power optimization is the

following. First, a scheduling and resource allocation is generated, then the analy-

sis tool is used to estimate its power. Alternative solutions are then generated and

their power consumption is estimated as well. Finally, the solution with minimum

estimated power is chosen.

What di�erentiates the approaches in this area is the strategy used to generate

alternative solutions and the behavioral power estimation tool used. Chandrakasan et

al. [chan95b] propose a transformation-based approach. The synthesis tool operates

a set of power-optimizing transformations on the original speci�cation. Transforma-

tions that deeply modify the structure of the circuit are �rst applied one at a time

using heuristic rules. The best resulting circuits are then memorized and become the

starting points for a probabilistic algorithm that attempts to further improve power

dissipation by local, low-impact transformations. The power analysis tool used to

estimate the quality of the generated solutions is pattern independent. The power of

an implementation is estimated using only information on the switching activities of

the variables in the control data-
ow graph (collected once for all at the beginning of

the synthesis process) and the back-annotated library of hardware component used
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for synthesis [land96].

In contrast, Kumar et al. [kuma95], propose an approach based on pattern-dependent

power estimation. A fast simulation with a user-speci�ed input pattern set is per-

formed on a candidate solution, and the power is estimated using the switching activ-

ities and the back-annotated library of components. Notice that, di�erently from the

approach of Chandrakasan et al., a new simulation is performed for each candidate

solution. The candidate solutions are generated from a set of valid solutions that

satisfy timing and area constraint using simple enumerative techniques.

Concluding this brief overview, we notice that all algorithms surveyed so far rely

on transformations and optimization tools developed for traditional cost functions

(power and timing), with the important di�erence that the quality of a solution

generated by the transformations is estimated using a power-related cost measure

(i.e. either K or Ceff ).

1.3.2 Logic-level sequential optimizations

Logic-level synthesis techniques operate on a speci�cation at a level of abstraction

lower than behavioral-level synthesis. We could view logic-level synthesis as a post-

optimization step on the results produced by behavioral-level synthesis. Alternatively,

since many digital system are directly speci�ed at the logic level, logic-level synthesis

may be applied in a stand-alone fashion on the original speci�cation.

Logic-level speci�cations describe sequential circuits as �nite-state machines (FSMs).

A �nite state machine can be represented in an abstract or a structural fashion. The

abstract representation of a FSM is the state transition graph (STG), where nodes rep-

resent states and edges state transition. The main limitation of STG representation

is that its size is proportional to the number of states.

Practical sequential circuits may have billions or more states. For such circuits

the STG representation is simply too large. A structural representation is then used,
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called synchronous network. A synchronous network is a graph consisting of two

kinds of nodes: combinational and sequential. Combinational nodes represent logic

functions, while sequential nodes represent state elements (i.e. 
ip-
ops). The main

advantage of this representation is that the number of sequential nodes is only loga-

rithmic in the number of states. The synchronous network representation has several

disadvantages as well, since it hides many important properties of the sequential

circuit that are apparent in the STG representation.

Logic-level sequential synthesis may target circuits speci�ed by STGs or by syn-

chronous networks. The algorithms and data structures employed are remarkably

di�erent, therefore we use the speci�cation format as a distinguishing factor in our

overview.

Algorithms for low-power state assignment target sequential circuits speci�ed by

a STG, where each state (node of the STG) is uniquely identi�ed by a symbolic name.

State assignment algorithms choose the binary codes to assign to the symbolic states

so as to minimize a given cost function.

When minimum power is the target, the state codes are chosen trying to mini-

mize the switching activity on the state variable inputs and outputs. This is because

a limited switching activity of the state lines, if combined with an appropriate imple-

mentation of the combinational logic, may lead to a dramatic decrease in power of

the circuit implementation.

Since state codes are binary strings that uniquely identify each state, the switch-

ing activity of the state lines reaches a minimumwhen all admissible state transitions

require only one bit change. Notice that the theoretical minimum is often not reach-

able, but it can be used at (loose) lower bound to estimate the quality of a state

encoding.

Numerous state encoding algorithms for low power have been proposed in the

literature [roy93, olso94, hahe94, tsui94]. They di�erentiate among themselves mainly
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by the heuristic algorithms used for choosing the state codes, but they have similar

cost functions. Although the problem of minimizing the average switching activity of

the state lines lends itself to a clean mathematical formulation, an important issue is

the impact of state assignment on the power dissipation of the combinational logic

that implements the computation of the next state and output given the present state

and output. Hence, another distinctive factor for state assignment algorithm is the

heuristic used to take combinational logic into account, so as to minimize the global

power and not only the switching activity on the state lines.

We do not describe here in detail the analogies and di�erences among state assign-

ment algorithms. A more complete comparative analysis will be given in Chapter 6,

when the necessary formalism and background will be available.

A sequential optimization that is applied to synchronous networks is retiming [dmc94].

Similarly to all other techniques described so far, retiming was originally formulated

to improve the performance of sequential circuits, by moving sequential elements

within a synchronous network. The retiming transformation does not change the

input-output behavior of the network, but it completely changes the state space. Re-

timing for low power has been proposed by Monteiro et al. [mont93]. The basic idea

is that sequential elements can be moved to positions where their presence reduces

the global Ceff . If the wire where the 
ip-
op is moved by retiming has high capaci-

tance and large switching activity due to spurious transitions, the 
ip-
op will only

latch the last value appearing on the wire before the clock edge, and will therefore

propagate a maximum of one transition to the high capacitive load.

Obviously, retiming for power has to be constrained. The cycle time of the circuit

must not increase because of retiming, and bounds on the maximum increase in the

number of registers may be speci�ed as well. The strongest objection to retiming

for low power is that it is very di�cult to accurately estimate the spurious switching

activity in a logic circuit without layout data back-annotation and accurate (and
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slow) simulation. When a 
ip-
op is moved, glitches disappear on its output, but

other glitches may be generated because the timing of the combinational logic is

changed. Consequently, it is hard to estimate not only the opportunity of a retiming

move, but also its impact on the power dissipation of the �nal implementation.

1.3.3 Power management schemes

All power minimization strategies discussed so far leverage ideas and algorithms orig-

inally developed for traditional cost functions (timing and area). A criticisms that

may be moved to these approaches is that they try to use \old weapons for a new

enemy". The technique analyzed in this section is speci�c to the power minimiza-

tion problem and rely on an important basic observation that is valid for power, but

incorrect for area and timing.

While area depends on the totality of the hardware instantiated in a system and

performance is controlled by the worst-case path, power depends only on the hardware

that is actively switching. Thus it is neither an extensive nor an intensive quantity.

For instance, the cycle time of a circuit may be set by a critical path that is exercised

one time on a million. Similarly, circuits that are almost never used contribute to

the total area. On the contrary, parts of the chip that have low e�ective switched

capacitance contribute very little to the total power dissipation. Thus, it may be

bene�cial to insert some redundant circuitry (which increases area) if it allows to

shut down large parts of the chip for a substantial fraction of the operation time.

This intuition is at the basis of a power minimization technology introduced by

Alidina et al. [alid94] known as precomputation. Consider the sequential circuit shown

in Figure 5 (a). The blocks marked with A and B represent combinational networks,

while blocks R1 and R2 represents registers (i.e. banks of 
ip-
ops). The key idea in

precomputation is that some additional logic can be added to A to pre-compute the

value of B one cycle in advance. If B can be pre-computed, we can disable register
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Figure 5: A precomputation architecture

R1 for one clock cycle and save power in B, since the inputs of B are held constant

and no transition activity takes place.

Two are the main requirements for precomputation to be successful. First, we

need to generate circuitry not only to recompute B, but also to recognize the con-

ditions for which B can actually be precomputed. Second, the precomputation logic

added in A should be small, otherwise the power it dissipates may swamp the power

saved by stopping B. The modi�ed circuit including precomputation logic (i.e. the

block Pre) is shown in �gure 5 (b). Notice that i) the precomputation logic has one

additional output that is used to disable register R1 when B can be precomputed, ii)

the precomputed output is delayed by one clock cycle and multiplexed on the out-

put of block B. The multiplexer is controlled by the same signal used to disable R1

delayed by one clock cycle.

We presented here just one 
avor of precomputation. The work by Alidina et

al. describes several similar architectures, and discusses the details of e�ciently

generating precomputation logic. One important issue to be taken into account is

that precomputation logic increases area and may degrade performance (if the critical

path of the circuit goes through it). Hence, the technique is applicable only if it does

not lead to violations of timing or area constraints.

A technique similar to precomputation, called guarded evaluation is applicable to

combinational circuits as well. Guarded evaluation has been proposed by Tiwari et.
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al [tiwa95] as a general-purpose power reduction technique. Unfortunately, guarded

evaluation requires the insertion of transparent latches within combinational logic and

imposes increased e�ort in timing veri�cation. Moreover, the experimental results

obtained by the authors seem to indicate that the power savings enabled by guarded

evaluation may not fully compensate the increase in circuit complexity and analysis

e�orts to ensure correctness.

1.4 Thesis contribution

We focus on control-dominated application-speci�c integrated circuits (ASICs) syn-

thesized starting from a high-level description in a hardware description language

(HDL). Within the synthesis-based design 
ow, we propose a set of techniques for au-

tomatically detecting opportunities for power optimization and generating low-power

implementations.

More in detail, the work presented in this thesis is an attempt to address the

problem of reducing power consumption of sequential circuits using techniques tar-

geting the distinctive characteristics of power dissipation as a cost metric. Similarly

to the precomputation-based approach (which was concurrently and independently

proposed), we exploit the ideas at the basis of all dynamic power management schemes

illustrated in Section 1.2.4.

Our techniques are applicable in a bottom-up as well as a top-down fashion. In

the top-down paradigm, we synthesize low-power implementations from a behavioral

speci�cation of the target system. In the bottom-up paradigm, we start from a

logic-level structural description of the target system, and we re-optimize the original

description.

Power management techniques are applied in two 
avors: reduction of wasted
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power and reduction of functional power. In the �rst case, the dynamic power dissi-

pation of unused units is nulli�ed by stopping their clocks. Power is saved not only

by avoiding useless switching activity in the disabled logic, but also in the clock dis-

tribution network, which is probably the main single contributor to the total power

dissipation. In the second case, power is saved even for units that are never idle. This

result is achieved by transforming the initial speci�cation in a functionally equivalent

description whose implementation has reduced power consumption.

Power optimization is not possible without tight integration with analysis tools

to steer the search for optimal solutions. A comprehensive analysis framework is

developed to this purpose. Given the knowledge of input statistics, we derive the

information needed to estimate i) power optimization opportunities during optimiza-

tion and ii) the quality of the �nal results. The tight relationship between power

estimation and optimization is one of the recurring themes in our treatment.

Throughout all our research work, a substantial e�ort has been dedicated to bridg-

ing the gap between theory and practical application. Experimental results are always

provided and carefully discussed, in order to show the practical applicability of our

power optimization techniques. Moreover, the importance of timing and/or area

constraints is always acknowledged and taken into account, since all realistic VLSI

synthesis problems involve the minimization of a cost measure subject to some kind

of constraints on other metrics.

The application of the techniques presented in this thesis on several benchmark

designs shows that sizable reduction of power dissipation can be achieved. For some

designs, the average power consumption is reduced by more than a factor of two.

It is however important to stress the fact that the quality of the results is strongly

in
uenced by the initial speci�cation and the input statistics.
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1.5 Outline of the following chapters

In the �rst part of this thesis, we target wasted power dissipation by stopping the

clock when the system is idle (a clock that can be conditionally disabled is called

gated clock). In the second part, we propose two techniques, namely decomposition

and state encoding, to reduce the power of a system even when it is performing useful

computation.

In Chapters 3 and 4, we propose a set of techniques for automatically detect-

ing clock-gating opportunities and generating clock-gating circuitry. The pattern-

dependent nature of power dissipation is taken into account in our methodology and

our algorithms automatically detect the most likely input conditions for clock gating.

We develop an analysis framework to direct the synthesis tool towards the generation

of optimal clock control logic that dissipates minimum power, has minimum area and

performance overhead and stops the clock with maximum e�ciency. Heuristic and

exact algorithms are developed to accomplish the synthesis task. In Chapter 3 we

follow a top-down paradigm and we target sequential circuits of small and medium

size, while in Chapter 4 we describe a bottom-up methodology that is suitable for

much larger sequential circuits.

A decomposition approach is proposed in Chapter 5, where a behavioral speci�ca-

tion of a sequential circuit is decomposed in several smaller, interacting components.

The circuit is then synthesized using an implementation style in which only one com-

ponent at a time is performing useful computation, while all other components are

shut down. The decomposition approach reduces the power dissipation even for sys-

tems that are never idle, since only a small part of the system is active at any given

time. Algorithms are developed to direct the search for optimal decompositions which

have minimum interface cost and maximum locality of computation.
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In Chapter 6 we formulate state encoding algorithms that reduce the power dis-

sipation of 
ip-
ops in the implementation of controllers speci�ed as �nite state ma-

chines. We propose exact and heuristic solutions for the minimization of the average

transition activity on the state lines. Additionally, we heuristically take into account

the impact of state encoding on the complexity of the combinational logic of the state

machine. Thus, we produce encodings that reduce the power dissipation due to the

activity on the state lines and, at the same time, keep the area an power dissipation

of the combinational logic under control.

Finally, Chapter 7 contains a summary of the theoretical and experimental results

obtained in this thesis and a discussion of future direction of research and develop-

ment.



Chapter 2

Background

The main purpose of this chapter is to provide the necessary background for the ideas

and algorithms presented in the following chapters. In the �rst section we de�ne the

basic concepts of Boolean algebra and of �nite state machines with binary inputs and

outputs. This material is prerequisite for all following sections.

In the second section, we delve into the algorithms and data structures that al-

low the manipulation of large Boolean functions and �nite state machines. We will

then extend our treatment to similar structures and algorithms for dealing with a

generalization of Boolean functions known as discrete functions.

Finally, in the third section we will describe the analysis techniques that allow the

accurate estimation of the power-related cost functions used in our algorithms. The

theory of �nite Markov chains will be brie
y introduced and algorithms for dealing

with small and large-size Markov chains will be described.

2.1 Boolean algebra and �nite state machines

The following treatment is by no means complete. The reader is referred to the many

books on Boolean algebra and sequential machines published in the last few decades

37
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(see, for example [koha70, davi78, brow90]). We adopt the formalism and terminology

used by De Micheli [dmc94]. We will use boldface fonts for vectors and matrices.

2.1.1 Boolean algebra

A binary Boolean algebra is de�ned by the set B = f0; 1g and the operations dis-

junction and conjunction which are represented by the symbols +, �, respectively.

Disjunction is often called sum or OR, while conjunction is called product or AND.

We will use these terms interchangeably.

The multi-dimensional space spanned by n binary-valued variables is denoted by

Bn. A point in Bn is a binary-valued vector of dimension n. Every variable is

associated with a dimension of the Boolean space and is called Boolean variable. In

addition, any Boolean variable a with values in B has a complement, denoted by a0,

such that a+a0 = 1, a �a0 = 0. A literal is an instance of a variable or its complement.

For convenience, we de�ne the exclusive or (XOR) operation, denoted by the symbol

�, as a� b = ab0 + a0b.

A completely speci�ed Boolean function is a mapping between Boolean spaces:

f : Bn ! Bm. An incompletely speci�ed Boolean function is de�ned over a subset

of Bn. The points where the function is not de�ned are called don't care conditions.

For the sake of compactness, incompletely speci�ed functions can be represented as

f : Bn ! f0; 1;�gm, where the symbol \�" denotes a don't care condition. For each

output, the subset of the domain for which the function assumes values 1, 0 and �

are respectively called on set, o� set and don't care set.

In order to simplify the following treatment, we restrict ourselves to single-output

Boolean functions, i.e. f : Bn ! B. Generic (multiple output) Boolean functions can

be represented as arrays of single-output Boolean functions f = (f1; f2; :::; fm). We

also de�ne two special Boolean functions: i) 1 : Bn ! f1g (also known as tautology)

and ii) 0 : Bn ! f0g (the null function). Tautology maps all points in Bn to the
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point 1 in B. The null function maps all points in Bn to the point 0.

Let f(x1; x2; :::; xn) be a Boolean function of n variables. We call the set fx1; x2; :::; xng

the support of the function. We now give some de�nitions that will be extensively

used.

De�nition 2.1 The positive cofactor of f(x1; x2; :::; xn) with respect to variable xi is

fxi = f(x1; x2; :::; xi�1; 1; xi+1; :::; xn):

The negative cofactor is

fx0

i
= f(x1; x2; :::; xi�1; 0; xi+1; :::; xn):

In words, a cofactor of a Boolean function w.r.t xi is the restriction of the func-

tion to the semi-space where variable xi has a �xed value. Hence, the support of

the cofactor does not contain xi, because fxi, fx0

j
do not depend on xi. The de�-

nition of cofactor allow us to de�ne three important operators of Boolean algebra,

namely Boolean di�erence (Boolean derivative), consensus (universal quanti�er) and

smoothing (existential quanti�er).

De�nition 2.2 The Boolean di�erence of f(x1; x2; :::; xn) with respect to variable xi

is @f=@xi = fxi � fx0

i
.

The Boolean di�erence represents the sensitivity of the value of f to the value of

xi, in other words, @f=@xi = 1 for all values of input variables (di�erent from xi) for

which a value change on xi causes a value change of f .

De�nition 2.3 The consensus of f(x1; x2; :::; xn) with respect to variable xi is 8xif =

fxi � fx0

i
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The consensus is a fundamental operator in Boolean algebra and will be often used

in this thesis. It represents the component of f whose value is independent of xi. In

other words, 8xif = 1 for all values of input variables (di�erent from xi) for which

f = 1 no matter what is the value of xi. We will often call consensus the universal

quanti�er with respect to xi, because it represents conditions that make f = 1 for all

values of xi

De�nition 2.4 The smoothing of f(x1; x2; :::; xn) with respect to variable xi is 9xif =

fxi + fx0

i
.

The smoothing is the dual of the consensus: 9xif = 0 for all values of input

variable (di�erent from xi) for which f = 0 no matter what the value of xi is. The

smoothing is often called existential quanti�er.

The greater or equal relation between two Boolean functions f � g holds if and

only if f � g0 = 1. An equivalent notation is g ) f . The de�nition given so far will

be clari�ed through an example.

Example 2.1.1. Consider the Boolean function f(a; b; c) = ab+ b0c+ a0b0c0.

The positive cofactor w.r.t c is fc = f(a; b; 1) = ab + b01 + a0b00 = ab + b0.

The negative cofactor is fc0 = f(a; b; 0) = ab + b00 + a0b01 = ab + a0b0. The

partial derivative is @f=@c = fc�f 0

c = (ab+b0)� (ab+a0b0) = ab0 The universal

quanti�er is 8cf = fcf
0

c = (ab+b0) �(ab+a0b0) = ab+a0b0. Finally, the existential

quanti�er is 9cf = fc + f 0

c = (ab + b0) + (ab+ a0b0) = ab+ b0. Notice that all

operations involving cofactors reduce the support of the function by eliminating

the variable with respect to which the cofactors are taken. As an example of �

relation, observe that 9cf � 8cf (this is actually true for any Boolean function

f). 2

Boolean functions can be represented as sets (there is an isomorphism between set

algebra and binary Boolean algebra). We will sometimes adopt the set representation,

because it helps clarifying some concepts. A minterm is a point in the n-dimensional

Boolean domain of a Boolean function where the function has value 1. Thus, a
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Figure 6: Pictorial representations of a Boolean Function

completely speci�ed Boolean function can be represented by the set of its minterms

(i.e. on set). An incompletely speci�ed Boolean function is de�ned by two sets (either

on set and o� set, or on set and don't care set, or o� set and don't care set).

Any Boolean function can be represented as a sum of products (SOP) of literals,

or as a product of sums of literals. A product of literals is often called a cube. One

particular sum of product representation is the minterm canonical form, where each

product has n literals. Each product in the minterm canonical form is a minterm of

the function. This representation is unique for any given function.

Example 2.1.2. Refer to function f of Example 1. f = ab + b0c + a0b0c0

is a sum of product representation, but so is f = abc + abc0 + b0c + a0b0c0.

Hence, there are many SOP representations for a single Boolean function. The

minterm canonical form of f is: f = abc+abc0+ab0c+a0b0c+a0b0c0. The function

has �ve minterms. Figure 6 shows three equivalent graphical representations of

f . In Figure 6 (a), the three-dimensional cube represents B3 and the darkened

vertices are the on set of f . In Figure 6 (b), the Karnaugh map of the function

is shown [mccl86]. Finally, Figure 6 (c) shows the representation of the function

as a list of cubes: the ones, represent positive literals, the zeros negative literals

and the \�" literals that do not appear in the product. For instance, ab0
! 10�

and ab0c0
! 100. 2

Several important de�nitions and concepts are related to the SOP representation

of Boolean functions.

De�nition 2.5 An implicant of a Boolean function f is a product of literals such

that f � p.
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Any product in a SOP representation is obviously an implicant of f . Particular

relevance has the concept of prime implicant.

De�nition 2.6 A prime implicant of f is an implicant of f is not contained in any

other implicant.

To better understand the de�nition, notice that a product in a SOP represents

a set of minterms. If we drop a literal from a product we expand the product (i.e.

we increase the number of minterms it contains by a factor of 2). A prime implicant

is a product that cannot be expanded. If we expand a prime implicant, some of

its minterm will not be contained in the on set of f . Thus, the product is not an

implicant any more.

De�nition 2.7 A cover of a Boolean function is a set (list) of implicants that covers

all its minterms

Any SOP representation of a Boolean function is a cover. A minimum cover is a

cover of minimum cardinality. The concept of minimum cover is important because

there is correlation between the number of implicants in a cover of a function (and

the number of literals in a cover) and the area of the hardware implementation of the

function [dmc94, mccl86]. Numerous algorithms for the minimization of covers have

been developed in the recent past (the book by De Micheli [dmc94] contains a good

overview). All these algorithms are based on a the following theorem:

Theorem 2.1 [Quine theorem]. There is a minimum cover that is prime.

The most important implication of this theorem is that it de�nes the search space

where a minimum cover can be found. If we restrict our search to covers formed by

prime implicants only, we are guaranteed to �nd a minimum cover. Although the

number of prime implicants can be exponential in the number of inputs of a Boolean
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function, several e�cient algorithms for SOP minimization based on Quine theorem

have been developed and successfully applied in industrial-strength CAD tools.

Boolean algebra provides a convenient framework for reasoning about properties

of digital circuits. In particular, the steady-state input-output behavior of a feedback-

free digital circuits (a.k.a. combinational circuits) can be modeled by a multi-output

Boolean function. Large combinational circuits are often better described in a struc-

tural fashion by logic networks (also called combinational networks). A logic network is

an interconnection of modules, representing input/output ports, logic gates or single-

output logic functions. The logic network can be represented as a directed acyclic

graph (DAG), with vertices corresponding to the modules and edges corresponding

to two-terminal nets to which the original module interconnects are reduced.

Notice that a circuit behavior (i.e. a multiple output Boolean function) can be

mapped to many equivalent structures. The lack of uniqueness is the main limita-

tion of the the structural description. Given two circuit descriptions, checking their

equivalence is not an easy task. On the other hand, there are Boolean function for

which all known abstract descriptions have unmanageable size. For such functions, a

structural representation is the only viable alternative. Moreover, structural descrip-

tions are conceptually closer to the physical implementation, and are widely used for

simulation and performance analysis.

2.1.2 Finite state machines

We formally de�ne a �nite state machine with binary inputs and outputs as a 6-tuple

(X;Z; S; s0; �; �), where X = Bn is the input space, Z = Bm the output space, S is a

�nite set of states, s0 is the initial (reset) state, �(x; s) : X �S ! S is the next state

function and �(x; s) : X � S ! Z is the output function. FSMs are categorized in

two classes [hart66, henn68, koha70]:
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Figure 7: State transition graph and state table of a FSM

De�nition 2.8 A Moore machine is a FSM where �(x; s) = �(�; s), i.e. the outputs

do not depend directly on the input value, but the depend only on the state. A Mealy

machine is a FSM for which this property does not hold.

Finite-state machines can be incompletely speci�ed. An incompletely speci�ed

FSM is one where �(x; s) and/or �(x; s) are incompletely speci�ed Boolean functions.

Notice that in the de�nition of FSM, the state set S is not de�ned as a Boolean

space. In other words, the states are elements of a generic set, and they are uniquely

identi�ed by a symbol (a string or any other unique identi�er). A FSM can be

represented by a graph or, equivalently by a table. The two representations ale called

state transition graph (STG) and state transition table (or state table, for brevity),

respectively. The states of the STG are labeled with the unique symbolic state name,

the edges are labeled with the inputs and output values. The state table is simply

the list of edges of the STG. An example will better illustrate these de�nitions.

Example 2.1.3. Consider the FSM in Figure 7 (a), (b). Part (a) shows the

STG of the FSM, while Part (b) shows the state table. The notation used in

the STG for edge labeling is that the inputs are followed by the outputs. Each

edge in the STG correspond to an entry in the state table. The �st two �elds in

the state table are respectively present state and input. The last two �elds are

next state and output. The FSM of Figure 7 is incompletely speci�ed, because

for present state S2 and input 01 the �rst output is not speci�ed (i.e. it can be
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either one or zero). The output is incompletely speci�ed for the �rst transition

in the table as well. 2

Notice that both STG and state table completely de�ne the input-output behavior

of a FSM, but they do not provide any information about the circuit implementation.

Hence, STG and state table are behavioral representations of the FSM. In order to

obtain a representation which is closer the the circuit implementation, we need to

introduce the concept of state-encoding.

De�nition 2.9 A state encoding is a one-to-one mapping from S to BNs, a function

E : S ! BNs. Ns is the number of state variables.

By specifying the state encoding function E, we associate each symbolic state

to a particular binary vector of Ns elements, i.e. to a vertex in the Ns-dimensional

Boolean space. The vertex is called state code. Notice that we have numerous degrees

of freedom in the choice if E. The only important constraint for E is that BNs has

enough vertices to assign a di�erent one to each symbolic state, thus Ns � dlog2jSje.

Once we have speci�ed Ns and E, the state of a FSM is completely expressed by Ns

binary variables called state variables.

If we specify E, the output and next state functions become Boolean functions:

�(x; v) : Bn�BNs ! BNs, �(x; v) : Bn�BNs ! Bm, where v = E(s). If the number

of elements in BNs is larger than jSj, both �(x; v) and �(x; v) become incompletely

speci�ed, since their value is not relevant for values of v that do not correspond to

any valid state. For the sake of brevity, we will often use the notation �(x; s) and

�(x; s) even for FSM where E has been speci�ed, with the convention that s is the

state code of the symbolic state.

Once the state encoding has been speci�ed, the structural model of FSM shown

in Figure 8 can be used to represent the FSM. A (combinational) logic network

implements � and �, while state elements (
ip-
ops) store the value of one state
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Figure 8: Structural representation of a FSM

variable. The structural model is called sequential or synchronous network. We

assume that the 
ip-
ops are triggered on the raising edge of the clock CLK (the

triangular shape within each 
ip-
op symbol identi�es the 
ip-
ops as positive-edge-

triggered). Numerous types of sequential elements and clocking styles can be used to

implement real-life circuits, but it is useful to reason about a single implementation

model.

The representation of Figure 8 is structural, because it refers to a particular circuit

structure implementing the FSM. Notice that there are in�nite structural represen-

tations for a single STG (they can be generated by changing Ns and E). The main

reason why structural representations are useful even when developing algorithm or

studying properties of FSMs is that they may be much more compact than the state-

based representations.

Example 2.1.4. Consider a FSM with ten millions of states. If we represent

each symbolic state with a string of characters from an alphabet with 32 sym-

bols, we need at least 4 characters (minimum length identi�ers) for each state.

We want to estimate the memory needed to store the behavioral representation
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of the FSM. Only storing the names of the states requires 106 �4�5=8 � 25Mb.

In contrast, the minimum number of state variables needed to uniquely rep-

resent all states is Ns = dlog210
7
e = 21. Just 21 
ip-
ops are su�cient for

encoding the 107 states. In other words, the STG of a relatively small sequen-

tial circuit with 21 
ip-
ops may already be unmanageably large. 2

Although it is often convenient to reason about small-size sequential system using

behavioral representations, structural representations are the only viable alternative

for large sequential systems. Similarly to the case of combinational network, the

main limitation of the sequential network representation is its lack of uniqueness.

Additionally, checking the equivalence of two sequential networks is at least as hard

as checking the equivalence of their combinational part.

2.1.3 Discrete functions

We have introduced the concept of Boolean functions and we showed how FSMs can

be represented by Boolean functions. We now present a simple extension of Boolean

functions.

De�nition 2.10 A discrete function f : Bn ! V is a mapping from a Boolean space

to a �nite set V .

Discrete functions encompass Boolean functions as a particular case. When V =

B = f1; 0g, a discrete function is Boolean. Notice however that discrete functions are

not more expressive than Boolean functions: since set V is �nite, we can \encode"

it with Ne = dlog2jV je binary variable. Thus a generic discrete function f can be

represented by a multi-output Boolean function and an encoding function. Despite

this fact, discrete functions are an useful abstraction that will be employed in the

development of algorithms for power minimization.



48 CHAPTER 2. BACKGROUND

2.2 Implicit representation of discrete functions

Digital circuits may have unmanageably large abstract representations. The reason is

that both Boolean functions and FSMs can be represented in tabular format, but the

size of the tables is worst-case exponential in the number of inputs (and states, in the

case of FSMs). One approach that mitigates this problem is to resort to structural

representations. The main limit of structural representations is that they are not

unique. A Boolean function can be represented by an in�nite number of combinational

networks, and a FSM can be represented by in�nite sequential networks. Hence, it is

hard to develop algorithms based on the properties of a Boolean function or a FSM

when starting from a structural representation.

In this section we will describe a powerful data structure that allows the repre-

sentation of Boolean functions and state machines in a canonical fashion (i.e. with

a unique representation) which has in many cases manageable size, even when the

tabular representation is excessively large.

2.2.1 Binary decision diagrams

Binary decision diagrams (BDDs) are a data structure developed for the compact

representation of large Boolean functions. Several variants of BDDs have been devel-

oped by di�erent groups of researchers (see, for instance, [brya86, brac90, madr88,

mina90]). The di�erences are generally small. In our description we will follow [brya86]

and [brac90], though with slightly di�erent notation. We introduce the keys concept

of the BDD representation by means of a simple example

Example 2.2.5.

Let us consider the following Boolean function:

f = abc+ b0d+ c0d:

A BDD for this function is given in Figure 9.
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Figure 9: A Binary Decision Diagram.

If we want to know the value of f for a particular assignment to the variables a,
b, c, and d, we just follow the corresponding path from the square box labeled
f (this node is the root of the BDD) to one of the square boxes labeled 1 and
0 (these nodes are the leaves of the BDD). Suppose we want to determine the
value of function f for the assignment a = 1, b = 0, c = 1, and d = 0. The
�rst variable encountered from the root is a, whose value is 1. We then follow
the arc labeled T (which stands for then). We then come across a node labeled
b. Since the value of b is 0, we follow the arc labeled E (else). The next node
is labeled d, which implies that for a = 1 and b = 0, the value of f does not
depend on c. Following the E arc we �nally reach the leaf labeled 0. This tells
us that the value of the function is 0, as can be easily veri�ed from the sum of
products formula.

The BDD of Figure 9 is an ordered binary decision diagram, because the vari-
ables appear in the same order along all paths from the root to the leaves. The
ordering in this case is

a � b � c � d:

The appearance and the size of the BDD depend on the variable ordering. This
is illustrated in Figure 10, where a di�erent BDD for f is given according to
the following variable ordering:

b � c � a � d;
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Figure 10: An Optimal BDD.

This is an optimal ordering, since there is exactly one node for each variable.

We will assume that BDDs are ordered. 2

The BDD of f constructed as shown in the example may not be reduced, that is,

it may contain duplicated and super
uous nodes. However, a non-reduced BDD can

be systematically transformed into a reduced one by iteratively applying:

� Identi�cation of isomorphic sub-graphs;

� Removal of redundant nodes.

Given an ordering, the reduced graph for a function is unique. Hence, the Reduced

Ordered BDD (ROBDD) is a canonical form, that is, two functions f1 and f2 are

equivalent (i.e., f1 = f2) if and only if they have the same BDD. This is the �rst

important characteristics of binary decision diagrams. Other interesting properties of

BDDs are:

� The size of the BDD (the number of nodes) is exponential in the number of

variables in the worst case; however, BDDs are well-behaved for many functions
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that are not amenable to tabular representations (e.g., EXCLUSIVE-OR).

� The logical AND and OR of BDDs have the same complexity (polynomial in

the size of the operands). Complementation is inexpensive (constant time).

� Both satis�ability (i.e. proving that a Boolean function has at least one satis-

fying assignment) and tautology (i.e. proving that a Boolean function is always

1) can be solved in constant time. Indeed, f if satis�able if and only if its BDD

is not the terminal node 0, it is a tautology if and only if its BDD consists of

the terminal node 1.

On the other side, BDDs have some drawbacks:

� BDD sizes depend on the ordering. Finding a good ordering is not always

simple.

� There are functions for which the sum of products or product of sums represen-

tations are more compact than the BDDs.

� In some cases sum of products/product of sums forms are closer to the �nal

implementation of a circuit. For instance, if we want to implement a PLA, we

need to generate at some point a sum of products or product of sums form.

BDDs allow to compactly store and manipulated multiple Boolean function, since

it is possible to share nodes in the BDD representations of two or more Boolean

functions. As a limit case, notice that two equivalent functions fully share all nodes,

i.e. they are represented by the same BDD (not just two identical BDDs).

Given that we are interested in reduced BDDs, instead of generating non-reduced

BDDs and then reducing them, we guarantee that, at any time, there are no iso-

morphic sub-graphs and no redundant nodes in the multi-rooted DAG. This can be

achieved by checking for the existence of a node representing the function we want to
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add, prior to the creation of a new node. A straightforward approach would consist

of searching the whole DAG every time we want to insert a new node. However, that

would be far too ine�cient. Instead, a hash table called unique table is created. The

unique table contains all functions represented in the DAG. In other words, the table

has one unique entry for each node.

BDDs are manipulated with recursive algorithms based on the cofactor expansion

of Boolean functions f with respect to a variable:

f = xi � fxi + x0ifx0

i
: (2.9)

The usefulness of Equation 2.9 lies in the fact that after cofactor expansions, the

two cofactors fxi and fx0

i
are simpler functions. All Boolean operations de�ned in

Section 2.1 can be e�ciently carried out on the BDDs representing the functions on

which they apply. The complexity of the computations is polynomial in the number

of BDD nodes of the functions (more precisely, linear in the product of the number

of BDD nodes of each operand).

BDD manipulation packages keep a cache of recently computed functions, called

computed table, for e�ciency reasons. The purpose of this table is di�erent from that

of the unique table. With the unique table we answer questions like: \Does there

exist a node labeled v with children g and h?" On the other hand, the computed table

answers questions like: \Did we recently compute the AND of f1 and f2?" We can

ask this question before we actually know that the AND of f1 and f2 is a function

whose top node is labeled v and whose children are g and h. Hence we can avoid

recomputing the result.

2.2.2 Algebraic decision diagrams

Since discrete functions are a straightforward extension of Boolean functions, the

intuition suggests that data structures similar to BDDs could be used to e�ciently
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manipulate them. Indeed, several \BDD-like" data structures have been developed

to this purpose [clar93, lai94, baha95]. The one we adopt is the algebraic decision

diagram (ADD) [baha95]. We do not describe the de�nition and the properties of

ADDs since they are analogous the the ones we illustrated for BDDs: reduced and

ordered ADDs are a canonical representation of discrete functions and all important

operations with ADDs can be performed in polynomial time in the ADD size.

The main di�erence between BDDs and ADDs is in the terminal nodes. While

all BDDs terminate in either the \0" or the \1" terminal nodes, ADDs have multi-

ple terminal nodes. The terminal nodes (leaves) of an ADD are associated with the

values of the discrete function it represents. Since operators on discrete functions

are generalizations of Boolean operators, the ADD algorithms that implement such

operators are very similar to the procedures used for BDDs. We review three im-

portant operators on ADDs that will be used in later chapters: ITE, APPLY, and

ABSTRACT.

ITE takes three arguments: f , an ADD restricted to have only 0 or 1 as terminal

values (called \0/1-ADD", and fully equivalent to a BDD), and g and h, generic

ADDs. It is de�ned by:

ITE(f; g; h) = f � g + f 0 � h (2.10)

Intuitively, the resulting ADD has the same leaves as g when f is 1 and the leaves of

h when f is zero.

APPLY takes one operator, op (e.g., +, �, �), and two operand ADDs as argu-

ments; it applies op to all corresponding elements of the two operands and returns the

resulting ADD. Notice that APPLY generalizes the Boolean operators. For example,

the APPLY of � (multiplication) to two 0/1-ADDs degenerates to the Boolean AND

operator.
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Figure 11: (a)-(b) A discrete function f and its ADD. (c) The ABSTRACT of f w.r.t
c, n+c f .

ABSTRACT reduces the dimensionality of its argument function through exis-

tential arithmetic abstraction of some variables. Let x; y be the support of a pseudo-

Boolean function f(x; y), where x and y be two disjoint sub-sets of Boolean variables.

The arithmetic existential abstraction of x from f(x; y) with respect to the arithmetic

sum is de�ned as:

n
+
x f(x; y) =

X
x

f(x; y): (2.11)

This de�nition tells that, instead of taking the Boolean sum of all the the cofactors

associated with the minterms of the x-variables, as in Boolean existential abstraction,

the ABSTRACT operator computes precisely the arithmetic sum. Notice that the

ABSTRACT operator eliminates x from the support (i.e n+x f(x; y) = g(y)). Similarly,

the arithmetic existential abstraction of x with respect to theMAX operator is de�ned

as:

nMAXx f(u) = max
x

f(u): (2.12)

Example 2.2.6. A discrete function f is given in tabular form in Fig-

ure 11 (a). The ADD of the function is shown in Figure 11 (b), with the
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variable order a � b � c. The arithmetic existential abstraction of f with re-

spect to variable c is shown in Figure 11 (c). As expected, n+c f does not depend

on c any more. 2

2.3 Markov analysis of �nite state machines

Power is a strongly pattern-dependent cost function, since it depends on the switching

activity of a circuit, which in turn depends on the input patterns applied to the circuit.

Hence, we need to specify some information about the typical input patterns applied

to a circuit if we want to optimize or even only estimate its power dissipation. The

most straightforward way to provide information about input patterns is to actually

provide a long input stream representing a typical usage pattern together with the

speci�cation of the circuit.

This approach gives the most complete information, but it su�ers from two serious

drawbacks i) the input traces can be very large and cumbersome to manage, ii) in

many cases only incomplete information about the environment may be available.

A more synthetic description of the input streams can be provided by providing

information about input probabilities. Given a sequential circuit, we may simply

provide one real number for each input: the probability for the input to be one. This

statistical parameter is called signal probability.

Obviously, signal probabilities express much less information than a complete in-

put trace, for example they do not give any indication about correlation between suc-

cessive input values (called temporal correlations) or between di�erent inputs (called

spatial correlations). Nevertheless, input probabilities are often used to synthetically

describe the statistics of the input patterns.

Even if we assume that the input patterns can be described by signal probabilities

with su�cient accuracy (i.e. spatio-temporal correlations are a second-order e�ect),

it is not obvious how to estimate, in a FSM, the probability of a state transition, since
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it depends not only on the inputs, but also on the state information. For example, if

an FSM has a transition from state si to state sj for all possible input con�gurations,

we may think that this transition will happen with very high probability during the

operation of the machine. This may not be the case: if state si is unreachable,

the machine will never perform the transition, because it will never be in state si.

Similarly, if the probability of being in state si is very low, a transition from state si

to state sj is very unlikely.

We model the stochastic behavior or a FSM by a Markov chain. A Markov chain is

a representation of a �nite state Markov process [triv82], a stochastic model where the

transition probability distributions at any time depend only on the present state and

not on how the process arrived in that state. The Markov chain model for the STG

is a directed graph isomorphic to the STG and with weighted edges. For a transition

from state si to state sj , the weight pi;j on the corresponding edge represents the

conditional probability of the transition (i.e., the probability of a transition to state

sj given that the machine was in state si). Symbolically this can be expressed as:

pi;j = Prob(Next = sjjPresent = si) (2.13)

Note that edges with zero conditional probability are never drawn in the graph

representation of the Markov chain.

De�nition 2.11 The conditional probability distribution is the set of pi;j values.

The conditional probability distribution is external input information. It does

not depend on the structure of the Markov chain and we assume that it is known.

Although conditional transition probabilities can be used as a rough approximation

to the transition probabilities [roy93], we need to know the probability of a transition

independent of the present state. These probabilities are called total transition prob-

abilities, Pi;j, and can be calculated [triv82] from the state probabilities, where the
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Figure 12: (a) A �nite state machine (b) its Markov chain model

state probability, Pi, represents the probability that the machine is in a given state i.

Pi;j = pi;jPi (2.14)

Equation 2.14 implies that, in order to have high total transition probability both

the state probability and the conditional transition probability must be high. Using

only the conditional transition probability can lead to incorrect estimates.

Example 2.3.7. Consider the FSM shown in Figure 12 (a) with two in-

puts, in1 and in2, and one output. Assume that the input probabilities are

Prob(in1 = 1) = :5 and Prob(in2 = 1) = :5. The Markov chain model of the

FSM is shown in Figure 12 (b). The edges of the Markov chain are labeled

with the conditional transition probabilities of the patterns on the edges of the

FSM. For instance, consider the transition between S2 and S1. Its conditional

probability is p2;1 = Prob(in1 = 1) � Prob(in2 = 1) = :24 = 1=4. Observe that

the conditional transition probabilities are computed using only the input prob-

ability information, and they are generally di�erent from the total transition

probabilities. 2

The next step is to show that it is possible to compute the state probabilities and,

more importantly, to show that these values are not time-dependent. Intuitively, this

implies that as the observation time increases, the probability that the machine is in
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each of its states converges to a constant (stationary) set of real numbers. In other

words, we must show that it is possible to compute a steady state (or stationary)

probability vector whose elements are the stationary state probabilities.

It is quite easy to �nd STGs for which the stationary state probabilities do not

exist, because, for example, their value is oscillatory. The general theory explaining

the asymptotic behavior of the state probabilities is too involved to be described here,

but it can be found in reference [triv82]. Here we just state an an important theorem

that allows us de�ne a large class of STGs whose corresponding Markov chains have

a steady state probability vector.

Theorem 2.2 For an irreducible, aperiodic Markov chain, with all states recurrent

non-null, the steady state probability vector exists and it is unique

An irreducible Markov chain with all the states recurrent non null is a chain where

every state can be reached from any other state, and the greatest common divisor

of the length of the possible closed paths from every state is one. For the sake of

simplicity, we assume in the following that we deal only with FSMs for which the

corresponding Markov chain satis�es all requirements of Theorem 2.2 for existence

and uniqueness of the state probability vector. We will prove in a later chapter that

the presence of a unique reset state is su�cient to ensure the existence of the steady

state probability vector. Notice however that state probabilities can be computed in

much more relaxed assumptions than those of Theorem 2.2 even for FSMs without a

unique reset state [hama94].

In the next subsections we describe the basic methods for computation of the state

probability vector i) for small-size FSMs that can be described in a behavioral style,

ii) for large FSMs described in a structural fashion.
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2.3.1 Explicit methods

The methods for computation of the state probability vector presented in this sub-

section are called explicit because they are based on the direct representation of the

conditional transition probabilities with a matrix of size jSj � jSj. Let P be the con-

ditional transition probability matrix whose entries pi;j are the conditional transition

probabilities, and q the steady state probability vector whose components are the

state probabilities Pi (i.e q = [P1; P2; :::; PjSj]
T ). Then we can compute the steady

state probabilities by solving the (ns + 1) system of equations:

qT P = qT (2.15)
nsX
i=1

Pi = 1 (2.16)

The problem of �nding the steady state probability vector is thus reduced to �nd-

ing the left eigenvector of the transition matrix corresponding to the unit eigenvalue,

and normalizing it in order to make the sum of its elements equal to unity [triv82].

The normalization condition (Equation 2.16) is required because matrix P is singular

(since all its columns sum to one), and the Equation 2.15 has in�nite solutions. The

only valid solution is found by imposing that the sum of all the components of q

is one, because the elements of q are probabilities of mutually exclusive events that

cover the complete event space (i.e. the Markov chain is always in one and only one

of its states).

Example 2.3.8. For the Markov chain of Example 7, the stationary state

probabilities calculated solving Equation 2.15 are shown in Figure 13 besides

the nodes in the chain. Obviously, the state probabilities sum to one, as en-

forced by the normalization condition. The �gure shows also the total transi-

tion probabilities (the products pi;j � Pj) on the edges. Notice that the total

transition probabilities are completely di�erent from the conditional transition

probabilities: while all conditional transition probabilities leaving a state sum

to one, the sum of all total transition probabilities is one. 2
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Figure 13: Stationary state probabilities and total transition probabilities

For sparse and large conditional transition probability matrices, the solution of

System 2.15 can be carried out using iterative methods that do not require matrix

inversion. One iterative method that is very simple and well-suited for state proba-

bility computations is the power method. With this approach, the state probability

vector q can be computed using the iteration:

qTn+1 = qTn P (2.17)

with the normalization condition
PjSj

i=1 Pi = 1 until convergence is reached. The

convergence properties of this method are discussed in [hama94]. The main advan-

tage of the power method is that it can leverage well-developed techniques for the

manipulation of large matrices for which the computation of matrix by vector product

has complexity proportional to the number of nonzero elements of P.

The main limitation of the methods presented in this section is that they are not

applicable to Markov chains derived from large sequential circuits for which the state

set large enough to make even the storage of matrix P a formidable task.
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2.3.2 Implicit methods

When dealing with sequential circuits with thousands or even millions of states, spec-

i�ed by a structural description, it is very hard to extract and manipulate the tran-

sition probability matrix. Implicit methods allow the manipulation of large systems

by representing the transition probability matrix with an ADD.

The STG of a �nite state machine is implicitly represented by the BDD (or,

equivalently, by a 1/0-ADD) of its transition relation [coud89]. The transition relation

is a Boolean function T (x; s; ns) : BN�BNs�BNs ! B. The support of the transition

relation consists of: i) the input variables x, ii) the state variables s, iii) the next state

variables ns. T has value 1 when the STG of the machine has a transition from state

s to state ns with input x, zero otherwise.

The transition relation can be extracted directly from the next state function

�(x; s) with an iterative procedure of �xed point computation. Starting from an initial

state (e. g. the reset state of the machine), the set of states that can be reached from

it in one clock cycle is computed. The procedure then iterates computing all states

reachable from the set of states reached in the previous iterations. The iteration stops

a soon as no new states are reached in two successive iterations (i.e. a �xed point has

been reached).

The �xed point computation can be carried out by operating directly on BDDs.

The transition relation is computed without ever enumerating the states. BDD-based

algorithms for the computation of T (x; s; ns) have been able to completely explore the

state spaces of machines with more than 1020 states, for which any enumerative algo-

rithm would be completely impractical. The interested reader can refer to [some96]

for a review of BDD-based procedures for transition relation computation.

Similarly, the input probabilities can be represented by an ADD. The ADD PI(x)

is extracted from the array of input probabilities, with the simple formula PI(x) =Qm
i=1 PIi(xi) where each PIi(xi) is a single-node ADD, with two leaves with value pi
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Figure 14: Symbolic computation of the conditional transition probability matrix

and 1� pi.

Given T and PI, the implicit representation of matrix P can be obtained with

the following symbolic formula

P(x; s) = PI(x) � n+nsT (x; s; ns) (2.18)

Equation 2.18 produces an ADD with leaves the conditional input probabilities of

the transitions of the STG. Notice that the value of x and s are su�cient to identify

every transition in the STG. Notice that the ADD of P can be exponentially smaller

than the traditional matrix representation.

Example 2.3.9. The STG of a �nite state machine is given in Figure 14 (a).

Notice that each edge is labeled with input, output and conditional transition

probability. The transition relation T (x; s; ns) is shown in Figure 14 (b) in
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the tabular format. The BDD (0/1 ADD) of T is shown in Figure 14 (c).

The ADD of the conditional input probability is shown in Figure 14 (d). If we

compute the ADD of matrix P using Equation 2.18, we obtain the result shown

in Figure 14 (e). Although we used a small example for the sake of explanation,

notice that symbolic representation based on ADD becomes useful when the

STG and the truth table of T are unmanageably large. 2

Once P(x; s) has been computed, the state probability vectors can be computed

using the symbolic version of the power method. The matrix-by-vector multiplication

required for the application of the power method (Equation 2.17) is implemented as

an ADD operator, and the �nal result is q(s), the ADD whose leaves are the state

probabilities. Notice that other implicit methods have been presented in the work

by Macii et al. [hach94], as well as a detailed study of the convergence properties of

symbolic algorithm for the calculation of q in the case of large FSMs that do not

satisfy theorem 2.2.

2.4 Summary

In this chapter we covered the background material required for full understand-

ing of the power optimization algorithms presented in the following chapters. The

key concepts introduced so far are: Boolean and discrete functions, the quanti�-

cation operators, BDDs, ADDs and Markov models for �nite state machines. The

BDD/ADD-based symbolic representation of Boolean functions, FSMs and Markov

chains is a useful tool when dealing with systems with a large number of inputs and

state variables.



Chapter 3

Synthesis of gated-clock FSMs

3.1 Introduction

In synchronous circuits, it is possible to selectively stop the clock in portions of the

circuit where active computation is not being performed. As discussed in Chapter 1,

local clocks that are conditionally enabled are called gated clocks, because a signal

from the environment is used to qualify (gate) the global clock signal. Gated clocks

are commonly used by designers of large power-constrained systems [sues94, schu94]

as the core of dynamic power management schemes. Notice however that it is usually

responsibility of the designer to �nd the conditions that disable the clock.

We consider sequential systems described by �nite state machines and we target

the reduction of the useless switching activity as de�ned in Chapter 1. We move

from the observation that during the operation of a FSM there are conditions such

that the next state and the output do not change. Therefore, clocking the FSM

only wastes power in the combinational logic and in the registers. If we are able to

detect when the machine is idle, we can stop the clock until a useful transition must

be performed and the clocking must resume. The presence of a gated clock has a

two-fold advantage. First, when the clock is stopped, no power is consumed in the

64
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FSM combinational logic, because its inputs remain constant. Second, no power is

consumed in the sequential elements (
ip-
ops) and the gated clock line.

Obviously, detecting idle conditions requires some computation to be performed by

additional circuitry. This computation dissipates power and requires time. Sometimes

it will be too expensive to detect all idle conditions. It is therefore very important

to select a subset of all idle conditions that are taken with high probability during

the operation of the FSM. We will show that idle conditions correspond to self-loops

of Moore FSMs, and therefore it is relatively easy to detect them. Idle conditions in

Mealy FSMs can also be detected, but with more e�ort.

We address the synthesis of the clock-stopping logic. More in detail, we formulate

and solve a new logic synthesis problem, namely the choice of a minimum-complexity

sub-function Fa of a given Boolean function fa, such that its probability of being

true is larger than a prede�ned fraction of the total probability of fa. This is the

main theoretical result in this chapter, and it is applicable to a variety of dynamic

power management schemes, such as precomputation or guarded evaluation. From a

practical point of view, our algorithm chooses a subset of all idle conditions such that

the clock-stopping circuitry dissipates minimum power but stops the clock with high

e�ciency.

Experimental results will be presented for a number of benchmark circuits speci�ed

by state tables. Since state table speci�cations are suitable only for small sequential

systems, the largest example we present has a few hundreds of states. One observation

that could be made is that controllers speci�ed as state table are responsible for a

small fraction of the total power dissipation of a chip, therefore the impact of our

technique is likely to be small. It is however important to notice that small FSMs

control large data-paths and idle conditions for the controller are often idle for the

data-path as well. Thus, detecting idle conditions on the controller leads to detecting

(and exploiting) idle conditions for the controlled data-path, obtaining much larger
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power savings. Moreover, in Chapter 4 we will introduce symbolic techniques that

drastically enlarge the spectrum of applicability of automatic gated clock generation

to sequential systems for which the behavioral description is unacceptably large.

We embedded our tool in a complete synthesis path from state-table speci�ca-

tion to transistor-level implementation and we employed accurate switch-level simu-

lation [salz89] to verify our results, because gate-level power estimation has limited

accuracy. Since the clock-gating logic may add its delay to the critical path, particu-

lar care must be taken in detecting and eliminating timing violations that may arise

when the cycle time closely matches the critical path of the original FSM. For some

circuits more than 50% reduction in average power dissipation has been obtained,

but quality of the results is strongly dependent on the type of �nite-state machine we

start with. In particular, our method is well suited for FSMs that behave as reactive

systems: they wait for some input event to occur and they produce a response, but for

a large fraction of the total time they are idle. Practical examples of such machines

can be found for instance in portable devices such as pagers which are typical reactive

systems, and for which power minimization in important.

The rest of the chapter is organized as follows. In Section 3.2 we describe the

architecture of the gated-clock FSM and we discuss the detailed timing of the signals

that control the clock. In Section 3.3 we formulate the problem of �nding idle condi-

tions for a FSM and we introduce a novel transformation that enables the extraction

of such condition. Section 3.4 is dedicated to algorithms for the synthesis and op-

timization of the clock-stopping logic. Section 3.5 describes implementation details,

experimental setting and results. Finally, in Section 3.6 we draw some conclusions.
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3.2 Gated-clock FSMs

We will assume hereafter a single clock scheme with edge-triggered 
ip-
ops, shown

in Figure 15 (a). This is not a limiting assumption. We have indeed applied our

methods to di�erent clocking schemes in [beni94a] (where we used transparent latches

and multi-phase clocks). The FSM model of Figure 15 (a) is di�erent from the generic

FSM structure we described in Chapter 2, where the primary inputs are not latched.

The FSM structure without latched inputs is seldom used in the design practice. In a

large system, control logic and data-path are always decomposed in interacting sub-

units, for obvious reasons of complexitymanagement. The interface between sub-units

(interacting FSMs in our case) is usually composed by sequential elements [west92] (in

our case, D-
ip-
ops). If such boundary does not exist, there is a combinational path

between adjacent sub-units. This is seldom allowed in industrial design methodologies

(it makes timing analysis harder and increases the risk of timing violations). Even if

we consider a design that is simple enough to be described by a single FSM, 
ip-
ops

are usually inserted on the inputs to obtain better signal quality and synchronization.

From a more theoretical point of view, the FSM with latched inputs di�ers from

the FSM without input latches because the outputs in the �rst model lag the outputs

by one clock cycle. The input-output behavior of the two models is therefore equiva-

lent modulo a translation in time of the output stream (assuming that the 
ip-
op on

the inputs are reset at the same values taken in the �rst clock cycle by the primary

inputs of the machine without input 
ip-
ops).

A gated clock FSM is obtained modifying the structure in Figure 15 (a). We

de�ne a new signal called activation function (fa) whose purpose is to selectively

stop the local clock of the FSM, when the machine does not perform state or output

transitions. When fa = 1 the clock will be stopped. The modi�ed structure is shown

in Figure 15 (b). The block labeled \L" represents a latch, transparent when the
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Figure 15: (a) Single clock, 
ip-
op based �nite-state machine. (b) Gated clock

version.

global clock signal CLK is low. Notice that the presence of the latch is needed for a

correct behavior, because fa may have glitches that must not propagate to the AND

gate when the global clock is high. Moreover, notice that the delay of the logic for

the computation of fa is on the critical path of the circuit, and its e�ect must be

taken into account during timing veri�cation.

The modi�ed circuit operates as follows. We assume that the activation function

fa becomes valid before the raising edge of the global clock. At this time the clock

signal is low and the latch L is transparent. If the fa signal becomes high, the

upcoming edge of the global clock will not �lter through the AND gate and therefore

the FSM will not be clocked and GCLK will remain low. Note that when the global

clock is high, the latch is not transparent and the inverted input of the AND gate

cannot change at least up to the next falling edge of the global clock.

The activation function is a combinational logic block with inputs the primary

input IN and the state lines STATE of the FSM. No external information is used, the

only input data for our algorithm is the behavioral description of the FSM and the

probability distribution of the input signals.
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Figure 16: Timing diagrams of the activation function fa, the global clock CLK and

the gated clock GCLK when (a) a simple AND gate is used, (b) a latch and the AND

gate are used.

3.2.1 Timing analysis

The activation function uses as its inputs the state and input signals of the FSM,

therefore it is on the critical path of the circuit. In order to verify the correctness

of the gated clock implementation, we need to make sure that the delay that the

activation function adds to the delay of its inputs is less than the cycle time T of

the circuit. We can test this condition performing static timing analysis on the

network composed by the activation function and the logic that feeds its input (the

combinational part of the FSM and the logic in the previous stages that computes

the primary inputs). We call the critical path delay through this network Tcrit.

If we collect the delays through the latch and the AND gate (Figure 15) and

the setup time of the input 
ip-
ops in one worst-case parameter Twc we obtain the

following constraint inequality for the activation function:

Tcrit < T � Twc (3.19)

Moreover, the presence of a gate on the clock path usually implies increased clock

skew. In a completely automated synthesis environment it should be possible for

the designer to specify accurate skew control for the gated clock line, thus preventing

possible races or timing violation involving the logic blocks in the fan-out of the FSM.

Finally, it should be noticed that the presence of the latch L is fundamental for the

correct behavior of the proposed gated clock implementation. A simple combinational
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AND gate is not acceptable because the activation function is not guaranteed to

change when the global clock signal is low. If the activation function changes when

the clock is high and it is not latched, it may create spurious pulses (glitches) on

the local clock line. An example of this problem is shown in Figure 16. In part (a)

the behavior of the gated clock line simply ANDed with f 0a is shown. The glitch on

fa produces a glitch on the gated clock line that will very likely produce incorrect

behavior in the FSM. In contrast (Figure 16 (b) ), when fa is latched the glitch does

not pass through the latch when the clock is high. Function fa may also produce

glitches when the clock is low , but in this case the AND gate itself will �lter out the

spurious transitions, because the global clock signal has the controlling value.

The presence of the latch could be avoided if we could guarantee that the acti-

vation function changes only after the falling edge of the global clock, or that the

circuitry that implements the activation function is hazard free. These constraints

may be acceptable in some particular examples, but the general solution that we have

discussed has a small overhead (only one latch) and it does not require specialized

techniques for the synthesis of fa.

3.2.2 Mealy and Moore machines

The de�nitions of Mealy and Moore FSMs have been given in Chapter 2. Conceptu-

ally, Mealy and Moore machines are equivalent, in the sense that it is always possible

to specify a Moore machine whose input-output behavior is equal to a given Mealy

machine behavior, and vice versa [hart66]. Practically, however, there is an impor-

tant di�erence. The Mealy model is usually more compact than the Moore model.

Indeed the transformation from Mealy to Moore involves a state splitting procedure

that may signi�cantly increase the number of states and state transitions [hart66].

Example 3.2.1. In Figure 17 (a), a Mealy machine is represented in form

of state transition graph (STG). It is transformed into the equivalent Moore
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Figure 17: (a) STG of a Mealy machine. (b) STG of the equivalent Moore machine.

machine (using the procedure outlined in [hart66]) and the new STG is shown in

Figure 17 (b). The STG of the Moore machine has the output associated with

the states, while in the Mealy model the outputs are associated with the edges.

The higher complexity in terms of states and edges of the Moore representation

is evident. 2

3.3 Problem formulation

Given the speci�cation of the FSM and its probabilistic model (i.e. the Markov chain

associated with it, with the conventions of Chapter 2), we �rst want to identify the

idle conditions when the clock may be stopped. This is a simple task for Moore-type

FSMs. For each state si we identify all input conditions such that �(x; si) = si. We

de�ne for each state si, i = 1; 2; :::; jSj, a self-loop function Selfsi : X ! f0; 1g such

that Selfsi = 1 8x 2 X where �(x; si) = si.

We then encode the machine. After the encoding step every state si has a unique

code ei and ei = [ei;1; ei;2; :::; ei;jV j], where V is the set of the state variables used in

the encoding .

The activation function is de�ned as fa : X � V ! f0; 1g:
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fa =
X

i=1;2;:::;jSj

Self si � ei (3.20)

Example 3.3.2. For the Moore machine in Example 3.2.1, the self-loop

function for state M2a is SelfM2a = in0

0in1 Similarly, all other self-loop state

functions can be obtained. We encode the states using three state variables,

v1, v2, v3. The encodings are: M0a ! v0

1
v0

2
v0

3
, M1a ! v0

1
v2v

0

3
, M2b !

v1v2v
0

3, M0b ! v1v2v3, M1b ! v0

1v2v3, M2a ! v0

1v
0

2v3. The activation func-

tion is therefore: fa = in2v
0

1v
0

2v
0

3 + in2v
0

1v2v
0

3 + in1in
0

2v
0

1v2v
0

3 + in1in
0

2v1v2v
0

3 +

in1in
0

2v1v2v3 + in0

1in2v
0

1v
0

2v3. 2

If the machine is Mealy-type, the problem is substantially more complex. The

knowledge of the state and the input is not su�cient to individuate the conditions

when the clock can be stopped. If only the next state lines and the inputs are available

for the computation of the activation function, we do not have a way to determine

what was the output at the previous clock cycle. This is a direct consequence of the

Mealy model: since the outputs are de�ned on the edges of the STG, we may have

the same next state for many di�erent outputs. The important consequence is that,

even if we know that the state is not going to change, we cannot guarantee that the

output will remain constant as well, and therefore we cannot safely stop the clock.

Example 3.3.3. Consider the Mealy FSM in Example 3.2.1, and refer to

Figure 15 for the implementation. If we use only the lines IN and STATE

as inputs for the calculation of the activation function, we may for example

observe state S2 on the next state lines, and input 10. Observing the STG, we

know that for this state and input con�guration the state will not change and

the output will be 10 in the next clock cycle. Unfortunately, we do not have

any way to know what is the output value in the current clock cycle (it could

be either 10 or -1). The Moore model does not have this problem, since we

know the output when we know what the state is. 2

There are two ways to solve this problem. The simpler way is to use the outputs

of the FSM as additional inputs to the activation function. The other approach is to

transform the STG in such a way that the FSM will be functionally equivalent to the
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original one, but it is possible to detect conditions where the clock can be stopped by

observing only input and state lines.

In this chapter, we investigate the second method because our initial speci�cation

is in state table format. The state table is a behavioral, implementation-independent

speci�cation, therefore we still have the freedom to modify the number of states and

the STG structure (this is not the case if we start from a synchronous network that is

an implementation of the STG). In the next chapter, when we will assume a structural

speci�cation, the second method is not viable, since the initial circuit is given. We

will then explore the �rst method.

The simplest transformation that enables us to use only input and state signals

as inputs of the activation function fa, is a Mealy to Moore transformation. The

algorithm that performs this conversion is well known [hart66] and its implementation

is simple, but it may sensibly increase the number of states and edges (correlated with

the complexity of the FSM implementation). In the next subsection we propose a

novel transformation that enjoys the advantage of the Mealy-to-Moore transformation

(namely, it is su�cient to sample input and state signals to decide when the clock

can be stopped), but does not su�er from the drawback (i.e. the excessive increase

in number of states).

3.3.1 Locally-Moore machines

We now de�ne and study a new kind of FSM transformation that enables us to

use a Moore-like activation function without a large penalty in increased complexity

of the FSM. We de�ne a Moore-state as a state such that all incoming transitions

have the same output. Formally, the subset of Moore-states of a Mealy machine is:

fs 2 S j 8x 2 X;8r 2 S; �(x; r) = s ) �(x; r) = constg. States that are not

Moore-states will be called Mealy-states.
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Proposition 3.1 A Mealy-state s with k di�erent values of the output �elds on the

edges that have s as a destination can be transformed in k Moore-states. No other

state splitting is required.

We could transform the FSM by simply applying the Mealy to Moore transforma-

tions locally to states that have self-loops. The local Moore transformation has the

advantage that it allows us to concentrate only on states with self-loops, avoiding the

useless state splitting on the states without self-loops. The potential disadvantage

is an increase in the number of states related to the number of di�erent outputs on

incoming edges of Mealy states (Proposition 3.1). We devised a heuristic strategy to

cope with this problem. We split Mealy states with self-loops into pairs of states,

where one is Moore-type with a self-loop that has maximum probability.

Thus, for each state we de�ne themaximum probability self-loop functionMPselfs :

X ! f0; 1g. Its on set represents the set of input conditions for a state that: (i) are

on self-loops, (ii) produce compatible outputs (two outputs �elds are compatible if

they di�er only in entries where at least one of the two is don't care), (iii) are taken

with maximum probability.

The procedure that outputs MPselfs is shown in Figure 18. Its inputs are: the

state under consideration s, the self-loop function Selfs (that includes all self-loops

leaving state s) and the state transition graph STG of the �nite-state machine. In

the pseudo-code, SLO is a partition of the self-loops. An element of SLO consists of

all self-loops from state s that have the same output (i.e. two self-loops with outputs

di�ering only by don't cares will be in two di�erent elements of SLO). The elements

of SLO are mutually disjoint sets.

We then generate Q, a cover of the self-loops leaving state s. Initially Q is empty.

In the �rst outermost iteration of the generation procedure, the �rst element of SLO

becomes the �rst element of Q. Then, for each element of SLO, we check if it is

compatible with any of the elements of Q. If this is the case, we incrementally modify
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find Mpself(s, Selfs, STG) f

SLO = self loop const out(s, Selfs, STG) ; /*Partition in classes with same output*/

Q = ;;

foreach ( slo 2 SLO ) f /*Iterate on all self-loops classes in SLO*/

compatible = 0;

foreach ( q 2 Q ) f /*Iterate on all compatible classes of self-loops*/

if ( is compatible( slo, q ) ) f /*increase compatible class*/

q = q [ slo;

merge out field( q );

compatible = 1;

break;

g

g

if ( !compatible ) Q = Q [ fslog; /*generate new compatible class*/

g

return( choose max prob f( Q ) ); /*Choose the max. probability compatible class*/

g

Figure 18: Algorithm for the computation of max. probability self-loop function
MPselfs.

the elements of Q. Otherwise we create a new element.

The elements of Q are output-compatible, possibly overlapping sets of self-loops.

Whenever we include an element of SLO in one of the elements in Q, we need to

specify the don't care entries in the output �eld that are not always don't cares

for all components of the set (this is done by procedure merge out field in the

pseudo-code). This step is needed to guarantee pairwise compatibility. Notice that

an element of SLO can be included in more than one element of Q. Finally, the

procedure choose max prob f selects the output-compatible set of self-loops with

maximum probability. The input conditions corresponding to this set form the on

set of MPselfs. In general, function MPselfs does not include all self-loop leaving

state s. Consequently, MPselfs � Selfs, with equality holding when there is a sin-

gle output-compatible class. Notice that the probability of the output-compatible

classes can be compared using only the conditional input probability, because they

are collection of self-loops leaving the same state.
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Example 3.3.4. In the Mealy machine of Example 3.2.1, if we consider

state S2, we have two self-loops: in1in
0

2 with output 10 and in0

1in2 with output

�1. The two output �elds are not compatible, therefore we have two compat-

ible classes (the same two functions). We will choose the class that is more

probable. In this particular example, we assumed equi-probable and indepen-

dent inputs and both functions have the same probability, therefore one of

the two is randomly chosen. Assume now that Prob(in1 = 1) = :7 and prob

Prob(in2 = 1) = :5. The probability of the �rst class is p1 = :7 � :5 = :35, while

the probability of the second class is p2 = :3 � :5 = :15. In this case, the �rst

class will be chosen. Observe that the probability of state S2 does not come into

play, because state S2 is the tail of both self-loops, and the two total transition

probabilities di�er from the conditional probabilities only by the same scaling

factor (i. e. the probability of S2). 2

Once the MPselfs functions have been found for all states with self-loops, the

second step of our transformation algorithms is performed. A Mealy-state s with at

least one self-loop is split in two states sa and sb. State sb has the same incoming

and outgoing edges as the original one, with just one important di�erence: the edges

corresponding to the self-loops represented by MPselfs become transitions from sa

to sb.

The second state sb is reached only from sa and has a self-loop corresponding to

MPselfs. All the outgoing edges that leave sa are replicated for sb, keeping the same

destination. State sb is now Moore-type, because, by construction, all edges that have

sb as head have the same output.

This procedure is advantageous for many reasons. First, the increase in the num-

ber of states is tightly controlled. In the worst case, if all states are Mealy-type and

have self-loops, we can have a twofold increase in the number of states. Second, the

self-loops with maximum probability are selected. Third, if we really want to limit

the increase in the number of states, we may de�ne a threshold: only the �rst k states

in a list ordered for decreasing total probability of MPselfs are duplicated.

We call the FSM obtained after the application of this procedure locally-Moore

FSM, because in general only a subset of the states is Moore-type.
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Figure 19: STG of the locally-Moore FSM

Example 3.3.5. The transformation of the Mealy machine of Example 3.2.1
produces the locally-Moore FSM shown in Figure 19. The shaded areas enclose
states that have been split. The Moore-states with self-loops are drawn with
thick lines. The number of states and edges of the locally Moore machine
is smaller than those that we obtained with the complete Mealy to Moore
transformation (state S0 has not been split).

The inputs are in1 and in2. Assume that we use three state variables for the

encoding: v1, v2 and v3. The state codes are LM0a ! v0
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2v3,
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3. 2

Once the activation function has been found, we still need to solve the problem

of synthesizing the clock-stopping logic in an optimal way. This problem will be

addressed in the next section.
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3.4 Optimal activation function

The most obvious approach to the synthesis of the activation function is use the

complete fa. This is seldom the best solution, because the size of the implementation

of fa can be too large, and the corresponding power dissipation may reduce or nullify

the power reduction that we obtain by stopping the clock. Roughly speaking, it

is necessary to be able to choose a function contained in fa whose implementation

dissipates minimum power, but whose e�ciency in stopping the clock is maximum.

We call such function Fa � fa a subfunction1 of fa.

An straightforward solution to this problem is the following. First, a minimum

cover of fa is obtained by a two-level minimizer. Then, the largest cubes in the cover

are greedily selected until the number of literals in the partial cover exceeds a user-

speci�ed literal threshold. The rationale of this approach is that generally large cubes

have high probability and the primes that compose a minimum cover are as large as

possible. There are several weak points in this approach.

� There is no guarantee that choosing the largest cubes in a cover will maximize

the probability of the cover, because in general the probability of a cube depends

on the input and state probability distribution. Even if we assume uniform

input probability distribution, the state probability distribution is in general

not uniform.

� The function sought may not be found by looking only at a subset of cubes of

the minimum cover of the original activation function. The number of possible

subfunctions of fa is much larger than the functions that we can generate using

subsets of the cubes of the minimum cover.

1here, we exploit the isomorphism between set theory and Boolean algebra: Boolean function are
seen as sets of minterms. A subfunction of fa is therefore a function whose on set is contained in
the on set of fa.
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� Even if we restrict our attention to the list of cubes in the minimum cover of fa

assuming uniform distribution for input and states, the cubes of the cover are

in general overlapping (the minimum cover is not guaranteed to be disjoint).

Finding the minimum-literal, maximum-probability subset of cubes becomes a

set covering problem that certainly is not solved exactly by a greedy algorithm.

� The relation between the number of literals in a two-level cover of the activa-

tion function and the power dissipation of a multilevel implementation is not

guaranteed to be monotonic.

In the next subsection, we will propose an algorithm that overcomes the �rst three

limitations listed above. As for the last issue, we will assume that there is correlation

between the number of literals of a two-level cover and the power dissipated in the

�nal implementation, as suggested by experimental results presented in [land95]. We

now formulate the problem that we want to solve in a more rigorous way.

Problem 3.1 Given the activation function fa, �nd Fa � fa such that its probability

P (Fa) is P (Fa) � MinProb = �P (fa), (with 0 � � � 1) and the number of literals

in a two level implementation of Fa is minimum.

We call this problem constrained-probability minimum literal-count covering (CPML).

Notice that we could as well formulate the dual problem, constrained literal count

cover with maximum probability. The two problems can be solved using the same

strategy, and are equivalent for our purposes. With the assumption of a good correla-

tion between number of literals and power dissipation, we propose an exact solution

to CPML and, by consequence to the problem of �nding the best reduced activation

function given a complete fa to start with.
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3.4.1 Solving the CPML problem

Apparently, the �rst source of di�culty comes from the fact that we are not con-

strained to completely cover fa, therefore, the \algorithmic machinery" developed in

the area of two-level minimization seems not useful. We �rst show that this is not

true. Consider the set of primes of fa, called Primes(fa). Consider the set Subfa of

all possible subfunctions of fa. The set of primes of a generic subfunction Fa 2 Subfa

is called Primes(Fa). We state the following theorem.

Theorem 3.1 For every prime p 2 Primes(Fa) only two alternatives are possible.

� p 2 Primes(fa).

� p is contained in at least one element q of Primes(fa) (consequently its literal

count is larger than the literal count of q).

Proof: Assume that p 2 Primes(Fa), (Fa � fa). Two alternatives are

possible: i) p 2 Primes(fa), ii) p 62 Primes(fa). We will prove by contra-

diction that, if (ii) is true, there is always at least a prime q 2 Primes(fa)

such that p � q = p (in other words, p is contained in at least a prime

of fa). Assume that the assert is not true, therefore, p is not contained

in any prime of fa. Notice that p is an implicant of Fa therefore it is

an implicant of fa because Fa � fa. By consequence, p is an implicant

of fa not contained in any prime of fa. Therefore p is a prime of fa by

de�nition. This is not possible, because we assumed (ii) to start with. ]

The important consequence of this theorem is that we do not need to generate

all possible subfunctions of fa. We can restrict our search to subfunctions that are

formed by subsets of Primes(fa) if we want to �nd a minimum literal subfunction.

Functions that belong to this class have all primes in the �rst category of Theorem

3.1.

Now that we have de�ned our search space (Primes(fa)), we must �nd a search

strategy that guarantees an optimum solution. The choice of a subset of Primes(fa)
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with minimum literal count satisfying the probability constraint cannot be done using

a greedy strategy, because the primes are in general overlapping and a choice done in

one step a�ects the following choices. An example will help to clarify this statement.

Example 3.4.6. Suppose that fa is a function of four variables: a; b; c; d.

The set of primes is Primes(fa) = fa0b0; a0c0; bc0; abg. Assume for simplicity that

all minterms are equi-probable (Prob = 1=16) and our probability constraint

MinProb (the minimum allowed probability of the subfunction) is MinProb =

1=2. All primes in this example are equi-probable (they have the same size).

If we choose a0b0 �rst, the following choices are biased. Since a0c0 is partially

covered by a0b0, it will not be the right next choice because we want to cover

the largest number of minterms (remember that we are assuming equi-probable

minterms). Consequently either bc0 or ab must be chosen. 2

CPML complexity is at least the same as two-level logic minimization, because

CPML becomes two-level logic minimization for the particular case � = 1. We

describe here a branch-and-bound algorithm that has been shown to work e�ciently

on the benchmarks, even though its worst case behavior is exponential. Furthermore,

the branch-and-bound can be modi�ed to provide heuristic minimal solutions when

the exact minimum is not attainable in the allowable computation time or memory

space.

3.4.2 Branch-and-bound solution

Our algorithm operates in two phases. In the �rst phase, a heuristic solution is found

in polynomial time (in the number of primes NP ). The second phase �nds the global

minimum cost solution using a branch-and-bound approach. The pseudo-code of the

algorithm is shown in Figure 20.

We exploit the similarity of this problem with knapsack [gajo93]. We need to

�nd the set of items (primes) with total size (probability) larger than or equal to the

knapsack capacity (MinProb) minimizing the total value (number of literals). This

formulation di�ers from knapsack in two important details. First, knapsack targets



82 CHAPTER 3. SYNTHESIS OF GATED-CLOCK FSMS

FindFa (fa, �)

f

PrimeList = Generate primes(fa);

MinProb = �P (fa);
CurBest = FindFa PH1(PrimeList, MinProb); /* Phase 1 */

CurPartial = ;;

FindFa PH2 (PrimeList, CurBest, CurPartial, MinProb); /* Phase 2 */

return(CurBest);

g

Figure 20: Two-phases algorithm for the exact solution of CPML

the maximization of value given a constraint of the maximum allowed size (we face

the opposite situation). Second, and most important, in knapsack the size of an

item is a constant, while in our case the probability of a prime varies when other

primes are selected. To clarify this statement, observe that primes may overlap and

they contribute to the total probability of the reduced activation function only with

minterms that are not covered by other already selected primes (Example 3.4.6). As

a consequence, CPML is not solved in pseudo-polynomial time [gajo93] by dynamic

programming. Notice however that CPML reduces to knapsack if all primes are

disjoint (by complementing values and sizes).

In the �rst phase of our algorithm, we employ a greedy procedure that is rem-

iniscent of an approximation algorithm for the solution of knapsack [mart90]. The

solution obtained is heuristic and it is employed as a starting point for the second

phase of the algorithm, that provides an exact solution.

The pseudo-code of �rst phase of the algorithm is shown in Figure 21. Let us call

PME the total probability of minterms in p which are not covered by already chosen

primes. We de�ne value density D for a prime p the ratio PME(p)=Nlits(p). We

greedily select the primes with largest D until the constraint onMinProb is satis�ed.

The selection is done by function sel prime maxPMENlitsratio in the pseudocode

of Figure 21. We then check if there is a single prime whose probability satis�es the
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FindFa PH1(PrimeList, MinProb, CurBest)

f

Selected = ;; Pr = 0; ;

while (Pr < MinProb ) f /* Greedy selection of primes */

NewPrime = sel prime maxPMENlitsratio(PrimeList);

Pr = Pr + Prob(NewPrime);

Selected = Selected [ NewPrime;

ComputePME(NewPrime, PrimeList); /* Recompute PME for unselected primes */

g

MaxPrPrime = maxProb prime(PrimeList);

Pr1 = Prob(MaxPrPrime);

if ( Pr1 � MinProb && Nlits(MaxPrPrime) < Nlits(Selected) ) f /*Single-prime solution*/

Pr = Pr1;

Selected = MaxPrPrime;

Nlits = Nlits(MaxPrPrime);

g

return(Selected);

g

Figure 21: First phase of CPML solution.

MinProb constraint and whose literal count is smaller than the total literal count of

the greedily selected primes. If this is the case, the list is discarded and the single

prime is selected.

The single prime solution is tested for two reasons. First, the same test is per-

formed in the greedy algorithm for the heuristic solution of knapsack [mart90]. Sec-

ond, and most importantly, it corresponds to a particular case that can be encountered

in practice. Some machines have a halt state and a halt input value. If the machine

is in halt and the inputs are �xed at the halt value, no output and state transitions

are allowed. The cube of the activation function corresponding to the halt state and

inputs may have a small value of D, because even if its probability is high, so is the

number of speci�ed literals in the cube. When synthesizing the activation function

we want to early detect the halt condition, that is indeed the most natural candidate

for clock-gating. The single cube test helps in detecting such condition as soon as

possible, before the time consuming exact search is started.
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When the �rst phase of the algorithm terminates, it returns a feasible solution

that is used as starting point for the branch-and-bound algorithm employed in the

second phase. At the beginning of the second phase, we order the primes for decreas-

ing ratio P (p)=Nlits(p). The probability P (p) of a prime is computed multiplying the

conditional probability of the input part by the probability of the state part (remem-

ber that the probability of a transition is computed by multiplying the conditional

input probability by the state probability), and it is computed once for all (contrasts

with phase 1 of the algorithm, where PME that is recomputed whenever a new prime

is chosen).

At the starting point of the branch-and-bound we have a search list corresponding

to all primes. Moreover, we have a current best solution generated by the �rst phase.

The current partial solution is initially empty. Each time the recursive procedure is

invoked, all primes in the prime list are considered one at a time. If the prime being

considered (together with the current-partial solution) yields more literals than the

best solution seen so far, the prime is discarded and another prime is considered.

Otherwise, a solution feasibility check is done (i.e. if the probability is larger than,

or equal to MinProb). If this is the case, the current best solution is updated.

Otherwise, a new recursive search is started, where the prime just being considered is

kept as part of the current partial solution but the primes considered at the previous

level of the recursion are discarded. The pseudo-code of the algorithm is shown in

Figure 22.

Notice that the backtracking involved in the branch and bound is implicitly ob-

tained in the pseudo-code. For each iteration of the inner loop, we generate a new

partial solution adding to the original partial solution a single prime from the search

list. In this way, each new iteration backtracks on the choice of the prime in the

previous iteration. The algorithm terminates when all choices in the search list of the

upper level of the recursion have been tried.



3.4. OPTIMAL ACTIVATION FUNCTION 85

FindFa PH2 (PrimeList, CurBest, CurPartial, MinProb)

f

if(Bound(PrimeList, CurBest, CurPartial, MinProb)) return; /* Bounding step */

DoneList = ;;

foreach (Prime 2 PrimeList) f /* Branching step */

DoneList = DoneList [ Prime;

NewPartial = CurPartial [ Prime;

if ( Nlits(NewPartial) < Nlits(CurBest) ) f

if ( Prob(NewPartial) � MinProb )

CurBest = NewPartial; /* New Best solution */

else

FindFa PH2 (PrimeList � DoneList, CurBest, NewPartial, MinProb); /* Recursion */

g

g

g

Figure 22: Second phase of CPML solution.

The bound is based on the approximation algorithm for the solution of knapsack

mentioned above. The greedy procedure guarantees a solution to knapsack within a

factor of 2 from the optimum [mart90]. The optimum knapsack solution itself is an

upper bound to the solution of our problem (it becomes the exact solution if all primes

are disjoint). Intuitively, the bound eliminates the partial solutions that could not

improve the current best solution even if all primes in the search list were mutually

disjoint and not overlapping with primes in the current partial solution.

The bounding procedure (Bound) works on the search list. If the search list

(Primelist) is empty, obviously the return value is 1. If the current partial solu-

tion (CurPartial) is empty, the return value is 0. In the general case, we select

primes from the top of the search list until the sum of their literal count becomes

larger than Nlits(CurBest)�Nlits(CurPartial). We compute the sum of the prob-

abilities of all selected primes (excluding the last selected one) and call it Ptot. We

choose the maximum Pmax between Ptot and Pone, where Pone is the largest prob-

ability value of a single prime in the search list whose literal count is less than

Nlits(CurBest)�Nlits(CurPartial).
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Once Pmax has been obtained, we can prune the partial solution if the following

inequality is veri�ed:

Pmax < (MinProb � Prob(CurPartial))=2 (3.21)

The rationale behind this bound requires further explanation. In the Bound proce-

dure we are trying to discover if a selection of primes from PrimeList can increase the

probability of the current partial solution by �P > MinProb � Prob(CurPartial)

(an amount large enough to satisfy the bound on probability), without increasing the

number of literals by more than DeltaLits (the di�erence between the number of

literals in the best solution so far and the number of literals in the current partial

solution).

If such a selection exists, its probability Pexact is Pexact � Pknap, where we ob-

tain Pknap by assuming that all primes are disjoint (remember that primes can be

overlapping, hence the inequality). An upper bound Pmax for Pknap is obtained by

the greedy algorithm described above, because �nding Pknap requires the solution

of a knapsack problem and the greedy algorithm provides an approximate solution

Pmax � Pknap=2 [mart90]. Thus, we have established the following chain of inequali-

ties:

Pexact � Pknap � 2Pmax (3.22)

If 2Pmax < �P , the same will hold for Pexact, thus proving the correctness of the

bound.

Example 3.4.7. Assume that we have a current best solution that satis�es

the constraint on the probability (MinProb = :4) with a cost of Nlits = 40.

Assume that the current partial solution has cost Nlits0 = 36 and probability

Prob(CurPartial)= :35. Suppose that the �rst two element of the unselected

prime list are a0b0 with probability :01 and a0c0 with probability :012. The

maximum probability prime with at most 4 literals has probability :015. Pmax
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Bound(PrimeList, CurBest, CurPartial, MinProb);

f

if ( PrimeList == ; ) return(1);

if ( CurPartial == ; ) return(0);

Selected = ;; Nlits = 0; Pr = 0; exit = 0;

DeltaLits = Nlits(CurBest) � Nlits(CurPartial);

while ( !exit ) f /* Greedy selection of primes */

NewPrime = sel max PNratio(PrimeList);

if ( Nlits + Nlits(NewPrime) > DeltaLits ) exit = 1;

else f

Pr = Pr + Prob(NewPrime);

Selected = Selected [ NewPrime;

Nlits = Nlits + Nlits(NewPrime);

g

g

MaxPrPrime = maxProb prime(PrimeList);

Pr1 = Prob(MaxPrPrime);

if ( Pr1 � Pr && Nlits(MaxPrPrime) < DeltaLits ) f /*Single-prime solution*/

Pr = Pr1;

Selected = MaxPrPrime;

Nlits = Nlits(MaxPrPrime);

g

if ( Pr < .5 (MinProb � Prob(CurPartial)) ) return(1); /*Bound test*/

else return(0);

g

Figure 23: Bounding function.

is therefore Pmax = maxf:015; :012+:01g= :022. This branch of the search tree

is pruned, because Pmax < (MinProb� Prob(CurPartial))=2 = :025. Notice

that the two primes are partially overlapping, therefore the actual increase in

probability for the current solution if we select the two primes would be smaller

than the estimated one. 2

The bound can be made even tighter if after selecting a new prime in a partial

solution, the probabilities of the remaining primes are reduced accordingly to the

overlap with the chosen prime. Notice that the computation of this second bound

requires the re-calculation of all probabilities of the currently unselected primes (and

the reordering of the search list). As a consequence, the second bound should be

computed only after the �rst has been unsuccessful in pruning the search tree.

We want to point out that there are two possible sources of complexity explosion
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in our algorithm. First, the number of primes for a Boolean function is worst case

exponential in the number of the function inputs. Second the branch-and-bound

algorithm has a worst case exponential complexity in the number of primes that form

the candidate list.

The double source of exponential behavior may seem worrisome. Nevertheless,

the structure of our algorithm is 
exible enough to generate fast heuristic solutions

if the execution time and/or memory requirements exceed some user-de�ned limit.

The problem of the large number of primes can be avoided if we apply the algorithm

to a reduced set of primes. The most natural candidate is obviously a prime and

irredundant cover of the function, obtainable using two-level minimizers that can

provide optimum or near-optimum covers for single output functions with a large

number of inputs [mcg93].

If either the branch-and-bound is interrupted or a reduced set of primes is used,

the exact minimality of the last solution found is not guaranteed, but we will have in

general a good quality heuristic solution. Notice that the �rst phase of our algorithm

�nds a feasible solution in polynomial time, and we could even completely skip the

branch-and-bound if we consider it too expensive.

3.4.3 The overall procedure

We can now brie
y outline the full procedure used for the synthesis of the low-power

gated-clock FSMs. Our starting point is a FSM speci�ed with a transition table or a

compatible format. The synthesis 
ow is the following.

� The Mealy machine is transformed to an equivalent locally-Moore machine

� The complete activation function fa is extracted from the Moore-states of the

locally-Moore machine.

� The probability of the complete fa is computed.
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� The prime set Primes(fa) is generated.

� The branch-and-bound algorithm �nds the minimum literal count solution Fa

whose probability is a pre-speci�ed fraction � of the probability of fa

� Fa is used as additional don't care set for optimizing the combinational logic of

the FSM.

The last step can sensibly improve the quality of the results, in particular if Fa

is large. Unfortunately, it is hard to foresee the e�ects of Fa used as don't care set.

Sometimes it may be convenient to choose a Fa that is not minimal in the sense

discussed above, if it allows a large simpli�cation in the combinational part of the

FSM. Our heuristic approach is to try di�erent Fa that range from the complete fa

to a much smaller subfunction, in an attempt to explore the trade-o� curve.

This iterative search strategy raises the problems of choosing appropriate values

of the parameter � � 1 used to scale down the probability of fa when the reduced

activation functions are generated. The approach that we adopted is to generate a

set of reduced activation functions CandF using di�erent values of �, in such a way

that the possible range of solutions is uniformly sampled. We have devised a heuristic

procedure that generates suitable � values and we brie
y outline it.

Initially, the user speci�es the number of candidate solutions Ncand that should

be generated by the tool. Then, the values of � are generated by uniformly dividing

the interval (0; 1):

�i = i=Ncand i = 1; 2; :::; Ncand (3.23)

It may be the case that for two or more consecutive values �i the algorithms

generates the same solution. This happens for example when eliminating even a

single prime from a solution generated for i+1 causes a decrease in the P (Fa) in the
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solution generated for i larger than P (fa)=Ncand. In this case our algorithm adaptively

select new values of � such that the new candidates will have a probability between

those of solutions generated with two consecutive values of � that have maximum

literal cost di�erence.

Obviously, if large Ncand are used, the computational time required to generated

CandF increases. Notice however that only the last two steps in the overall procedure

describe before need to be iterated, and usually a small number of di�erent values of

� is su�cient to �nd a satisfying solution.

One more point is worth noting. Although our procedure for the synthesis of a

constrained probability minimum literal cover of Fa is exact, the overall synthesis

path is heuristic. As a consequence, �nding an exact solution to CPML may not

be essential, because the approximation introduced may cause large errors that we

do not control. Nevertheless, the strength of our approach lies in its 
exibility: our

algorithm o�ers the possibility of exploring the search space with a �ne granularity,

and it can �nd heuristic solutions at a very low computational cost.

3.5 Implementation and experimental results

We implemented the algorithms as a part of our tool-set for low-power synthesis. The

tool reads the state transition table of the FSM. The �rst step is the transformation

of the Mealy machine to a locally-Moore machine and the extraction of the self-loops

from the Moore-states.

An input probability distribution must be speci�ed by the user. For our exper-

iments we set the input probabilities to .5 for all inputs, since we did not have any

information on the environment where the FSMs are embedded. Moreover, we as-

sumed that every input line has a maximum of one transition per clock cycle. This
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is an optimistic assumption, because multiple input transitions (high transition den-

sity) may increase the power dissipated in the activation function logic (but not in the

FSM logic because the input are guarded by 
ip-
ops). If inputs with high transition

activity are present, smaller activation function should be allowed.

The power method is applied to compute the exact state probabilities given a

conditional input probability distribution. Notice that this step can be modi�ed

to use the exact and approximate methods described in [hama94, mont94, marc94]

that have been demonstrated to run on very large sequential circuits. Presently,

our procedure employs sparse matrix techniques and it has been able to process all

MCNC [mcnc91] benchmarks provided in state transition table format in a small time

(less than 10 sec. on a DECstation 5000/240 for the largest example s298).

We then state assign both the original machine and the locally-Moore FSM using

JEDI [lin89]. Once the state codes have been assigned, our probabilistic-driven pro-

cedure for the selection of the activation function can start. First, all primes of the

activation function are generated using symbolic methods [coud92], then the prob-

ability of the minimized cover (obtained with ESPRESSO [sent92]) of the complete

activation function fa is computed. The number of literals of the complete minimized

cover is used as initial literal cost limit in the branch-and-bound algorithm.

The user speci�es the number of activation functions that the procedure should

generate, and the branch-and-bound algorithms solves the CPML as many times as

it is requested. Surprisingly, for all MCNC benchmarks this step has never been

the bottleneck, the CPU time being in the order of 30 seconds maximum. This is

certainly due to the fact that the majority of the FSM MCNC benchmarks do not

have a large number of self-loops (in particular the larger ones). Nevertheless, even

if di�cult cases are found, our algorithm stops the search when a user speci�ed CPU

time limit has been reached. The solution becomes then suboptimal, but there are

other sources of inexactness in the overall procedure. Therefore the search for an



92 CHAPTER 3. SYNTHESIS OF GATED-CLOCK FSMS

exact optimum solution of CPML is not of primary practical importance.

The combinational logic of the locally-Moore FSM is then optimized in SIS [sent92]

using the additional don't care set given by the activation function. This step is

repeated for all activation functions generated in the preceding step, and alternative

solutions are generated. The don't care-based minimization of the combinational logic

using the activation functions is the main bottleneck of our procedure. In our tool the

user has the possibility to specify a CPU-time limit for each minimization attempt.

This of course limits the possible improvements obtainable on large FSMs.

The activation functions are also optimized using SIS, then the alternative solu-

tions are mapped with CERES [mail91], and the gated clock circuitry is generated.

Again the same optimization and library binding programs are used for both the

original Mealy machine and the locally-Moore gated clock machines. We employed

a simple target library which includes two, three and four input gates. Our 
ip-


ops have a master-slave structure, and their cost (in terms of area and input load

capacitance) is approximatively equivalent to 2 three-input logic gates.

Finally the alternative gated clock implementations and the implementation of

the original Mealy FSM are simulated with a large number of test patterns using a

switch level simulator (IRSIM [salz89]) modi�ed for power estimation.

The quality of the results strongly depends on two factors. First, how much state

splitting has been needed to transform the machine to a locally-Moore one. Second,

for what percentage of the total operation time the FSM is in a self-loop condition

(this depends on the FSM structure and on the input probability distribution). For

machines with a very small number of self-loops or a very low-probability complete

activation function, the chance of improvement is limited or null. This is the case for

many MCNC benchmarks for which the �nal improvement is negligible. As for the

�rst problem, it may be worth to investigate if, in case the state duplication is too

high, using an activation function with the outputs of the FSM as additional inputs
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Original Locally-M. Gated
Circuit Size P Size P Size P % Fa Size �

bbara 330 67 422 72 408 34 49 74 1
bbsse 640 121 742 137 736 119 2 140 1

bbtas 142 56 138 57 164 44 21 34 .93

keyb 721 128 754 132 820 114 10 62 .91
lion9 188 60 226 60 248 52 13 8 .25

s298 7492 899 7496 900 7502 810 10 14 1

s420 544 132 544 132 602 108 18 44 .75
scf 3222 437 3222 437 3169 400 8 26 1

styr 1474 159 2468 230 2534 208 0 560 .75
test 348 73 442 76 374 32 56 64 .88

Table 1: Results of our procedure applied to MCNC benchmarks. Size is number of

transistors. P (power) is in �W.

may lead to better results.

Example 3.5.8. The Mealy machine of Example 3.2.1 has been synthesized
without any gated clock. The number of states is 3, the mapped implementation
has 124 transistor and a total nodal capacitance of 2.32 pF. The average power
dissipation is 52 �W.

Using our algorithm, the minimum power implementation (obtained with the

complete activation function in this case) of the equivalent locally-Moore gated

clock machine has 178 transistors and a total nodal capacitance of 3.14 pF. The

average power dissipation is 42 �W. Notice that the e�cacy of the activation

function in stopping the clock allows substantial power savings (24%) even if the

total capacitance is larger (35%). This is due to the fact that the locally-Moore

machine has 5 states, and its combinational logic is more complex. In contrast,

with a complete Moore transformation the minimum power implementation has

196 transistors and total nodal capacitance of 3.39 pF. Its power dissipation is

48 �W. 2

Table 1 reports the performance of our tools on a subset of the MCNC benchmarks.

The �rst six columns show the area (number of transistors) and the power dissipation

of the normal Mealy FSM, the locally-Moore FSM without gated clock and the locally-

Moore machine with gated clock. The last three columns show the percentage power
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reduction (computed as 100(Pmealy � Pgated)=Pmealy)), the size (in transistors) of the

activation function and the � factor used in the solution of CPML leading to the best

result. Notice that, if there is no power improvement the improvement is set to 0.

The tool is able to process all benchmarks, but in the table we list examples rep-

resentative of various classes of possible results. The benchmarks bbara and test are

reactive FSMs. The high number and probability of the self-loops allow an impressive

reduction of the total power dissipation, even if the area penalty can be not negligible.

For this class of FSMs our tool gives its best results.

In contrast, for bbsse and styr there is no power reduction or even a power

increase. The bbsse benchmark is representative of a class of machines where the

number and probability of the self-loops is too small for our procedure to obtain

substantial power savings. The styr benchmark has many self-loops, but they all

have low probability. Moreover, the transformation to locally-Moore machine has

a too large area overhead in this case, therefore, even if there are power savings

with respect to the locally-Moore implementation without clock, the smaller Mealy

implementation has the lowest power consumption.

For all other examples in the table the power savings vary between 10% and

30%. For some of these machines (s420 and scf), there is no area overhead for

the locally-Moore transformation. This happens when all states with self-loops are

already Moore states in the original FSM. We included some of the larger examples

in the benchmark suite ( s298 and scf) to show the applicability of our method to

large FSMs.

From the analysis of the results, it is quite clear that several complex trade-o�s

are involved. First, the transformation to locally-Moore machine can sometimes be

very expensive in terms of area overhead. Second, the choice of the best possible

activation function is paramount for good results. In fact, for many examples, the

complete activation function was too large, and reduced activation functions gave
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Circuit PComb
Gated=P

Clk
Gated PComb

Loc M=P
Clk
Loc M PComb

Gated =P
Comb
Loc M PClk

Gated=P
Clk
Loc M

bbara 1.2777 2.7006 0.3624 0.7660

bbsse 1.5317 2.5386 0.7601 1.2597
bbtas 1.2242 1.8715 0.6861 1.0488

keyb 2.4024 3.2242 0.8185 1.0985

lion9 2.0734 2.2749 0.8937 0.9806
s298 17.7560 17.9872 0.9887 1.0016

s420 1.3517 1.5251 0.8126 0.9169

scf 2.8988 2.7368 0.9274 0.8755
styr 4.2330 4.3990 0.8969 0.9320

test 1.1751 2.8957 0.3048 0.7512

Table 2: Partition and comparison between power dissipation in clocking logic and
FSM logic for locally-Moore and gated-clock FSMs

better results. Notice however that for some examples the e�ciency of the activation

function in stopping the clock was such that the power was sensibly reduced even

with large area overhead.

Having discussed how much power is saved, we address now the problem of where

the power is saved. In our approach the FSM clock is stopped only when the next

state variables and the outputs are not going to change in the upcoming clock cy-

cle. It may be possible to think that power is saved only in the 
ip-
ops and the

clock line. This intuitive observation is deceiving, because power is also saved in the

combinational logic, as it is shown in Table 2. We have compared in the table the

power dissipation of the locally-Moore implementation with and without gated clock.

We compare to the locally-Moore FSM because its STG is isomorphic to those of the

gated-clock FSM. Hence, all modi�cations are due only to the insertion of the acti-

vation function. The comparison with the Mealy machine is less explicative because

the locally-Moore transformation modi�es the STG and consequently the next state

and output function, making impossible to distinguish how the clock-gating circuitry

alone a�ects the power dissipation.
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In the �rst two columns of the table, for the two implementations, we compare the

ratio of the power dissipated in the combinational logic (
ip-
ops outputs, all nodes

in the FSM logic and outputs) and the power dissipated in the clock-related circuitry

(activation function, clock lines, NAND gate, latch, inputs and internal nodes of the


ip-
ops). In the last two columns we show the power ratio for the combinational

logic and the power ratio for the clock-related circuitry for the two implementations.

First, notice that the ratio PComb=PClk is almost always smaller for the gated-clock

FSMs. This result is quite intuitive, because PClk in the gated-clock FSM includes

the power dissipation of the activation function. The results of columns 3 and 4 are

somewhat counterintuitive, because they show that there is consistently higher power

saving in the combinational logic than in the clock-related circuitry. This result is due

to three factors. First, the reduced switching activity on the outputs of the 
ip-
ops,

that are generally highly loaded. Second, the absence of propagation to internal nodes

in the FSM logic of input transitions when the FSM is in a self-loops. Third, and

most importantly, the simpli�cation in the FSM's logic that is obtained using the on

set of the activation function as additional controllability don't care set.

We want to point out that our methodology attains consistent power savings not

only when the clock line is heavily loaded and large 
ip-
ops are used, but also for

very small FSMs with optimized 
ip-
ops. It is however important to remark that

the full extent of the possible savings is obtained only if the combinational logic is re-

optimized with the increased don't care set previously described. Moreover, for classes

of FSMs such as synchronous counters, or more generally, FSM without self-loops,

our methodology is ine�ective in reducing power consumption.

In summary, the power savings depend on the fraction of the total operation time

that the FSM spends in idle condition. Don't care optimization is very helpful when

the FSM is small and the idle time is a relatively small fraction of the total, because

it helps in reducing the overhead of the clock-gating circuitry. For large FSMs the
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impact of don't cares is generally less relevant. Even if the power savings are basically

decided by the initial structure of the FSM, it is important to have an automated

synthesis procedure such ours, so as to avoid unnecessary e�ort from designers in

trying to manually design clock-stopping logic.

3.6 Summary

In this chapter we have described a technique for the automatic synthesis of gated

clocks for Mealy and Moore FSMs.

From the practical point of view, we want to emphasize that our method is part of

a complete procedure, starting from FSMs state-table speci�cation to fully mapped

network, and it has been tested with accurate power estimation tools. The quality

of our results depends on the initial structure of the FSM, but we obtain important

power reductions for a large class of �nite-state machines, where the probability of

being in a self-loop (idle) is high. Even if our tool cannot fully replace the knowledge

of the designer in �nding idle conditions at the architectural level, it may enable

design exploration for cases where it is not clear if clock gating may produce sizable

power savings.

From the theoretical point of view, this chapter makes two contributions. First,

we presented a transformation for Mealy FSMs that makes them suitable for gated-

clock implementation, allowing for greater 
exibility in the choice of clock-stopping

functions with small support and lower complexity. Second, we have proposed a logic

optimization problem, called \constrained probability minimum literals" problem,

and we have described its exact and heuristic solutions. Our solver has large applica-

bility, and can improve the performance of any power management scheme that relies

on optimized combinational logic that stops the clock with maximum e�ciency.

In this chapter we did not address how the presence of the clock-control circuitry
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a�ects the testability of the gated-clock FSM. This is an important practical issue

that will be addressed in Appendix A. Probably the main limitation in our approach

is its applicability to relatively small sequential system (with a few hundred states)

speci�ed with state tables. In the next chapter we will take a step towards extending

the basic ideas and principles introduced so far to larger sequential circuits described

by synchronous networks.



Chapter 4

Symbolic gated-clock synthesis

4.1 Introduction

In the previous chapter we proposed and e�ective way for obtaining power savings

on a design whose initial speci�cation is given as a state transition graph (STG).

More speci�cally, the strategy adopted to save power is based on the concept of

clock gating. Given the STG of the circuit to be synthesized, conditions under which

the next state and the output signals do not change are identi�ed. In presence of

such conditions, the clock is disabled, since no useful computation is performed by

the circuit, thus avoiding node switching that causes useless power dissipation. We

described techniques for calculating the conditions under which the clock can be

stopped, as well as exact and approximate algorithms for synthesizing the FSM with

embedded clock gating mechanisms.

We now investigate two directions of improvement. First, the algorithms and

data structures described in the previous chapter can e�ectively handle only FSMs

described by state transition tables. Controllers which are automatically synthesized

from high-level speci�cations may have millions of states; explicitly enumerating all

of them in a state transition table, as required by the algorithms described in the

99
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previous chapter, may thus be simply unacceptable. Second, the computation of the

clock gating conditions is performed without considering the controller as a piece of a

more complex system but, rather, as a component running in isolation. This implies

an inevitable loss of information which could have been exploited to achieve a more

e�ective global optimization.

In this chapter we address both the critical issues pointed out above. The problem

of optimizing larger controllers is tackled in two ways. First, by resorting to symbolic

data structures, that is, BDDs and ADDs, to simplify the representation of the clock

gating conditions as well as the calculation of the probability of the activation function

(i.e., the set of clock gating conditions). Second, by employing a new and e�cient

algorithm for the search of the optimal activation function that is able to dynamically

estimate the savings, in terms of power consumption, that di�erent realizations of the

clock gating logic produce on the circuit.

For what concerns the calculation of the activation function, in the previous chap-

ter it was computed by assuming that the FSM is as a self-standing computing el-

ement. We implicitly assumed equiprobable input statistics, because environmental

information were not available. Control-dominated systems are usually interacting

with other controllers and/or data-paths; this may pose some constraints on the sig-

nals that appear at the circuits I/O interfaces. One way of properly modeling the

in
uence of the environment on the behavior of a design is through non-equiprobable

primary input statistics. In addition, even when the circuit's primary inputs are to-

tally independent from the other components, there may be cases in which assuming

a 0.5 input transition probability is not realistic (think, for example, to the external

reset signal of a microcontroller). We therefore propose to use non-equiprobable pri-

mary input probability distributions in the computation of the activation function.

Such distributions can be determined from the knowledge of the speci�c functionalities

associated with the various input signals or, alternatively, by performing system-level
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simulation over a large number of clock periods.

We present experimental results that show the feasibility and the e�ectiveness

of the proposed techniques. Power savings of up to 36% have been obtained on

some of the mid-sized circuits belonging to the Iscas'89 suite [isca89]). Moreover,

experimental data show the impact that an accurate knowledge of the primary input

statistics can have on both the total probability of the activation function and the

power savings obtainable through implementation of the gated clock architecture.

The rest of the chapter is organized as follows. In the next section we brie
y review

some background material (refer to Chapter 2 for a more complete treatment). In

Section 4.3 we illustrate how idle conditions can be detected for sequential circuits us-

ing symbolic methods. Section 4.4 describes BDD-based algorithms for the synthesis

the activation function. Section 4.5 and 4.6 discuss the optimization of the activation

function the sequential circuit. Section 4.7 describes an enhancement to the synthesis

of the activation function that allows more idle conditions to be detected. Finally, in

Section 4.8 we report the experimental results.

4.2 Background

We assume the reader to be familiar with the basic concepts of Boolean functions

and with the data structure commonly used for the symbolic manipulation of such

functions, that is, the binary decision diagrams (BDDs). Background material on

this subject has been given in Chapter 2. Recall from Chapter 2 that given a single-

output Boolean function, f(x1; x2; : : : ; xn), the positive and the negative cofactors of

f , with respect to variable xi, are de�ned as: fxi = f(x1; : : : ; xi�1; 1; xi+1; : : : ; xn) and

fx0

i
= f(x1; : : : ; xi�1; 0; xi+1; : : : ; xn); the existential and the universal abstraction of

f with respect to xi are de�ned as: 9xif = fxi + fx0

i
and 8xif = fxi � fx0

i
.



102 CHAPTER 4. SYMBOLIC GATED-CLOCK SYNTHESIS

4.2.1 Sequential Circuit model

We assume the same clocking scheme as introduced in the previous chapter. All 
ip-


ops are controlled by the same clock, and are all resetable to a given state. Associated

with a sequential circuit is an encoded, Mealy-type, �nite-state machine (FSM) that

describes the behavior of the circuit. An FSM,M , is a 6-tuple (X;Z; S; s0; �; �), where

X is the input alphabet, Z is the output alphabet, S is the �nite set of states of the

machine, s0 is the reset (initial) state, �(x; s) is the next state function (� : X �S !

S), and �(x; s) is the output function (� : X � S ! Z). Boolean functions � and �

have multiple outputs: they implicitly de�ne the state transition graph (STG) of the

given FSM.

Elements x 2 X are encoded by vectors of n Boolean variables, x1; : : : ; xn, called

input variables. Similarly, present states s 2 S are encoded by k Boolean variables,

s1; : : : ; sk, called present-state variables, elements z 2 Z are encoded by vectors of

m Boolean variables, z1; : : : ; zm, called output variables, and next states t 2 S are

encoded by k Boolean variables, t1; : : : ; tk, called next-state variables.

4.2.2 Symbolic Probabilistic Analysis of a FSM

The ADD-based representation of discrete functions has been introduced in Chap-

ter 2 as well as the most important operators for e�cient ADD manipulation: ITE,

APPLY, and ABSTRACT. Remember that the probabilistic analysis of a FSM is

performed studying the Markov chain associated with it. Given the STG of the FSM

representing the circuit and the conditional input probability distribution, we showed

in Chapter 2 that it is possible to compute the vector p whose entries ps are the

steady-state probability of the FSM to be in state s. Unfortunately, the extraction

of the STG from a sequential circuit with many 
ip-
ops is a di�cult task, and the

storage of the STG itself (using traditional data structures such as adiacency lists or
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Figure 24: (a) Single Clock, Flip-Flop Based Sequential Circuit. (b) Gated-Clock

Version.

matrices) is extremely memory demanding.

ADD-based procedures enable the computation of the state probability vector

for very large FSMs (transition graphs with up to 1027 states can be successfully

handled). Note that the the state probability vector is represented by an ADD,

and explicit state enumeration is never required. Complex primary input probability

distributions can be speci�ed and e�ciently represented with ADDs in order to have

more detailed hardware modeling options. We rely on the performance of these

algorithms to overcome some of the limitations which appeared in the implementation

of the optimization methods proposed in the previous chapter.

4.3 Detecting idle conditions

We refer to the FSM implementation with latched inputs introduced in the previous

chapter and reproduced in Figure 24 for the reader's convenience. Given the gate-level

description of the circuit and its probabilistic model, we �rst want to identify the idle

conditions when the clock may be stopped. A gate-level netlist is the implementation

of a sequential circuit that can be represented by a �nite-state machine. In the

following we will refer to the FSM associated with the netlist to clarify some important

points. First, remember that identifying idle conditions is a simple task for circuits
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Figure 25: Fragment of a Mealy FSM. S2 is Mealy-State while S3 is a Moore-State.

implementing Moore-type FSMs. When the present state and the inputs are such

that the next state does not change, the Moore FSM is idle; in symbols: �(x; s) = s

(i.e., the self-loops). We have shown that this property does not hold for Mealy FSMs.

Consider for example the fragment of a Mealy FSM shown in Figure 25. State

S2 has a self-loop, but we cannot stop the clock when we observe the code of S2

and inputs 00 on the state and input lines. The reason is that the self-loop does

not change the next state, but it changes the output if the previous transition was

S1 ! S2. Intuitively, the self-loop on S2 becomes an idle condition only if it is taken

for two consecutive clock cycles. In contrast, the self-loop on S3 is an idle condition,

because every incoming edge of S3 has the same output and knowing that the next

state is S3 provides enough information to infer the output value.

This observation has been formalized in the previous chapter where the states of

a Mealy-type FSM have been divided into two classes. States like S2 where self-loops

are not idle conditions (unless taken twice), are called Mealy-states, while states like

S3 are calledMoore-states. For Mealy-states it is not possible to stop the clock of the

circuit just by observing the state and input lines. Hence, we formulated an algorithm

that operates on the STG of the FSM to transform Mealy-states into Moore-states,

thus allowing the exploitation of more self-loops as idle conditions where the clock

can be stopped.

Our starting point is now completely di�erent: we are not given the STG (or the
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state table) of the FSM and we want to extract the idle conditions available in the

synchronous network implementing the FSM. It is generally computationally infeasi-

ble to extract the STG representation for large sequential circuits. As a consequence,

the transformation from Mealy-states to Moore-states is not practically applicable

and we must restrict ourselves to the Moore-states of the Mealy FSMs. In other

words, while in the previous chapter we could increase the number of idle conditions

by transforming the STG of the FSM, we will now momentarily assume that only the

self-loops leaving Moore-states of the original FSM can be selected as clock-gating

conditions. This assumption will be relaxed later.

4.3.1 Activation Function

Given an FSM implemented by a synchronous network, we want to �nd the self-loops

of Moore-states. Such self-loops are uniquely identi�ed by the present-state and input

values and represent the set of idle conditions that may be exploited to stop the clock.

For example, for the FSM fragment in Figure 25, the only useful idle condition is the

self-loop on S3 (identi�ed by input value 00 and state value S3).

The complete activation function Fa(x; s) is de�ned by the union of all self-loop

conditions for Moore-states (x and s are respectively the input and state variables).

The set of all self-loops in the FSM includes Fa, because it contains also the self-loops

of Mealy-states.

The identi�cation of the Moore-states can be performed implicitly (i.e., without

extracting the STG) by a procedure that requires a single unrolling of the sequential

circuit, i.e., duplicating the combinational logic to represent two consecutive time

frames, as shown in Figure 26. There are two cascaded logic blocks: the inputs of

the �rst combinational block are x and s, representing respectively primary and state

inputs. The outputs are z and t. The next state outputs t of the �rst block are fed

into the state inputs of the second block. The primary input values in the second
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Figure 26: Unrolling of a FSM.

block are represented by x+, while the output of the second block are z+ and the next

state outputs.

With this model, �nding the Moore-states is quite simple. For a Moore state t,

the following property holds: if in the second combinational logic block the state

transition is a self-loop (i.e. �(x+; t) = t), for each state transition s ! t in the

�rst block, the output z = �(x; s) and z+ = �(x+; t) are the same. Intuitively, this

property expresses the requirement that every incoming edge for state t has the same

output value, but we are interested only in states with self-loops, because otherwise

no idle conditions are available. Finding all states for which the condition is true

is equivalent to �nding all Moore-states with self-loops, but no STG extraction is

required. This procedure lends itself to an elegant symbolic formulation that will be

described in the next section.

4.4 Symbolic Synthesis of the Clock Gating Logic

In this section we describe a symbolic algorithm to generate the clock gating circuitry

and we discuss the issues related to the global optimizations that are enabled by

the presence of the new logic into the circuit. The expression giving the activation
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function Fa in symbolic form is the following:

Fa(x
+; t) =

kY
i=1

�
�i(x

+; t) � ti
�
� 8x;s

 
mY
i=1

�
�i(x; s) � �i(x

+; t)
�
+ (

kY
i=1

(�i(x; s) � ti))
0

!

(4.24)

We analyze each term of the seemingly complex Equation 4.24 in greater detail.

� The term
Qm

i=1(�i(x
+; t) � ti) imposes the condition that, in the second frame

of the unrolled circuit, the machine has a self-loop. This is expressed by having

each present-state variable ti identical to the next state function �i(x
+; t).

� The term
Qm

i=1(�i(x; s) � �i(x
+; t)) describes the constraint on the output val-

ues. Since we are detecting Moore-states, we require that the output values of

the incoming edge and the self-loop are the same. Notice that the unrolling

implies the use of di�erent variables for the two frames of the unrolled circuit.

� The term (
Qm

i=1(�i(x; s) � ti))
0 is ORed with the second term to express the fact

that the equality of the outputs in two frames does not need to be enforced for

transitions not in the next state functions of the FSM.

The universal quanti�cation on the inputs x and the state variables s enforces the

condition for all states and input values. Is is important to notice that we do not

use the transition relation of the FSM to compute Fa. This implies that we are

considering all states as reachable, even if this is not generally true. Fortunately, this

assumption does not lead to incorrect implementation.

To justify this claim, consider the following situation. Assume that state s0 is

unreachable, and for input i0, Fa(s0; i0) = 1, in other words, the clock would be

stopped when the state is s0 and the input is i0. However, since s0 is unreachable,

the state lines will never hold that state value, therefore the point s0, i0 in the

controllability don't care set of Fa.
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Figure 27: Example of symbolic computation of Fa.

The activation function Fa produced by Equation 4.24 is expressed in terms of

the auxiliary variables (x+; t) for convenience, and can be easily re-expressed as a

function of the inputs x and present states s by variable renaming.

Example 4.4.1. Consider the FSM of Figure 27 (a). The next state function
�(x+; t) and output function �(x+; t) of the FSM are shown in Figure 27 (b)
and (c), respectively. We represent Boolean functions using truth tables, which
are conceptually equivalent to BDDs but more human-readable. The functions
�(x; s) and �(x; s) can be obtained by simply rotating the truth tables of �(x+; t)
and �(x+; t) by 90 degrees (clockwise), and are not shown.

The truth table of the �rst term in Equation 4.24 (
Qm

i=1(�i(x
+; t) � ti)) is shown

in Figure 27 (d). The truth table of the second term (
Qm

i=1(�i(x; s) � �i(x+; t)))
is shown in Figure 27 (e), while the third term (i.e. (

Qm

i=1(�i(x; s) � ti))
0) is

shown in Figure 27 (f).

The truth table of the activation function Fa(x
+; t) is shown in Figure 27 (g).

The reader can verify the correctness of the result by observing that the Fa is



4.5. OPTIMIZING THE ACTIVATION FUNCTION 109

one in both self-loops of the STG. This is correct, since both states of the FSM

are Moore-states. 2

4.5 Optimizing the Activation Function

Direct application of Equation 4.24 yields, in the general case, functions whose power

dissipation may partially mask o� the potential power savings. Therefore, it is manda-

tory to develop a systematic method to reduce the power consumption of the imple-

mentation of Fa, while keeping as high as possible the probability of its ON-set.

The reader should notice that this is exactly the same problem discussed in Chap-

ter 3 where we formulated an exact procedure for the minimization of a sum-of-

product implementation of Fa. The two main limitations of such procedure were i)

its high computational cost, ii) the fact that we are interested in minimizing power

dissipation of Fa, thus minimizing the number of literals is only a rough approximan-

tion.

In this section we address both limiations: the algorithms presented in this section

are highly e�cient because they operate directly on the BDD representation of Fa,

moreover they explictly target the power minimization of a multi-level implementation

of Fa.

First, we build a pseudo-Boolean function, PFa, which implicitly represents the

probability of the minterms in the ON-set of Fa. Then, we iteratively remove from Fa

some of its ON-set minterms until a given cost criterion breaks the loop. Clearly, both

the minterm removal and the stopping condition must be guided by a combination

of the size improvement in the implementation of Fa and the probability decrease of

the ON-set of Fa. We have devised several heuristics that help in keeping together

these two requirements.
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Figure 28: The ADD of a two-input probability distributions.

4.5.1 Computing PFa

Let us assume the pseudo-Boolean functions of the primary input probabilities, Pinputs(x)

and of the state occupation probabilities, Pstates(s), to be available (for the details

on how these two functions can be computed implicitly using ADDs the reader may

refer to Chapter 2). The probability PFa can be simply obtained as:

PFa(x; s) = Pinputs(x) � Pstates(s) � Fa(x; s): (4.25)

Obviously, PFa is stored as an ADD, whose paths from the root to the leaves give the

probability of all the minterms in the ON-set of Fa. The total probability of the ON-

set of Fa, (i.e., a real number) can then be computed by applying the ABSTRACT

operator: PROB(Fa) = n+x;sPFa(x; s).

Notice that the ADD representation of the input probabilities Pinputs(x) is com-

plete and accurate. The ADD represents a discrete function that may theoretically

have as many leaves as di�erent values of x. Hence, we can represent exactly any

generic input probability distribution where the inputs have arbitrarily complex cor-

relations.

Example 4.5.2. Consider a circuit with two inputs q and r. Assume that the
inputs can assume only the values 00 and 11 and that the occurrences of such
patterns are equally probable. The probability the �rst input is PROB(q =
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1) = :5 and the probability of the second input is PROB(r = 1) = :5. If we now
consider an input probability distribution where all input patterns 00, 01, 10, 11
are equally probable, we still have PROB(q = 1) = :5 and PROB(r = 1) = :5,
but the input streams associated with the two distributions are completely
di�erent.

Assume that Fa = qr0 + q0r (we neglect state variables for the sake of simplic-
ity). We want to compute PROB(Fa). If we exploit only the information on
PROB(p = 1) and PROB(q = 1) we obtain PROB(Fa) = :5(1� :5) + (1 �
:5):5 = :5 for both input probability distributions. This is obviously incorrect,
since PROB(Fa) = 0 for the �rst distribution, PROB(Fa) = :5 for the second.

The ADD representation allows us to capture the di�erence and to correctly

estimate PROB(Fa) in both cases. The ADDs of Pinputs(x) for the two input

probability distributions are shown in Figure 28 (a) and (b), respectively. The

0/1 ADD (i.e the BDD) of Fa is shown in Figure 28 (c). Multiplying the 0/1

ADD of Fa by Pinputs(x) and applying the ABSTRACT operator lead to the

correct PROB(Fa) value in both cases. 2

4.5.2 Iterative Reduction of Fa

Given the activation function, Fa, and its probability function PFa, the reduction

algorithm iteratively prunes some of the minterms of Fa until an acceptable solution

is found. The pseudo-code of the procedure is shown in Figure 29.

As mentioned earlier, the objective of procedure Reduce Fa is to determine a new

activation function, FBest
a , which is contained into the original Fa, has a high global

probability, and is less costly (in terms of both power and area) if compared to Fa.

Three main routines are called inside Reduce Fa:

� Prune Fa eliminates some of the minterms of Fa producing a function whose on

set is strictly contained into that of the origial Fa

� Compute Cost evaluates the power cost of the implementation of the current

Fa. It can be designed to take into account di�erent cost metrics such as area

and timing.
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procedure Reduce Fa(Fa; PFa) f

FBest
a = Fa; PBest = PFa ;

FCurrent
a = Fa; PCurrent = PFa ;

Best Cost = Compute Cost (FCurrent
a );

while (not Stop Test(FBest
a ,PBest)) f

FCurrent
a = Prune Fa (FCurrent

a );

Curr Cost = Compute Cost (FCurrent
a );

if (Curr Cost � Best Cost) f

FBest
a = FCurrent

a ;
PBest = PCurrent;
Best Cost = Curr Cost;

g

g

return (FBest
a );

g

Figure 29: The Reduce Fa Algorithm.

� Stop Test is the exit condition. It returns one when it estimated that further

reduction of the on set of Fa cannot improve the circuit's power dissipation.

The algorithm in Figure 29 is a simple greedy procedure that decreases the size

of the activation function until the point of diminishing returns. The quality of

the optimization depends on the implementation of the three routines Prune Fa,

Compute Cost and Stop Test. We discuss them in this order.

4.5.3 Pruning of Fa

We have experimented with two di�erent pruning heuristics. The �rst one is based

on the idea of removing from the ON-set of Fa the minterms whose probability is

smaller than a relative, user-selected threshold, � 2 [0; 1]. Given the probability

function PFa(x; s), we �rst compute the maximum value of its leaves:

Max = n
MAX
x;s PFa(x; s):
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Figure 30: Pruning the activation function.

Then we set to 0 all the leaves of the PFa(x; s) ADD whose values are smaller than

�Max, and we set to 1 the remaining leaves. This is accomplished through an ad-hoc

ADD operator called THRESHOLD; we denote as ~PFa the so obtained ADD. Finally,

the current activation function is computed by application of the ITE operator:

FCurrent
a = ITE( ~PFa ; Fa; 0):

Preserving a high probability for Fa is essential. However, it is equally important

to keep the area of the clock gating circuitry under control. It is well known that

reducing the number of minterms in the on set of a function does not guarantee that

the size of the corresponding (optimized) circuit decreases. On the other hand, if some

on set minterms are moved to the don't care set instead of the o� set, then the �nal

realization of the circuit can always be better optimized than the original function. To

take this aspect into account, we need to generate the don't care function, DCCurrentFa
,

associated with Fa, which can be computed as:

DCCurrentFa
= Fa � FCurrent

a : (4.26)

Clearly, DCCurrent
Fa

can be used to optimize FCurrent
a at each iteration of the reduction

process.
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Example 4.5.3. Consider the ADD of PFa shown in Figure 30 (a). The
paths in the ADD leading to leaves of with non-zero value are minterms of
Fa. Thus, the sum of products description of the full activation function is
Fa = ABC + AB + AB0C, with empty don't care set. We now apply the
pruning procedure, with � = :2. The maximum leaf of the ADD has value :15,
therefore, the THRESHOLD operator will prune all leaves with value smaller
than :15� = :03.

The ADD of FCurrent
a after pruning is shown in Figure 30 (b). Now the sum

of products description of the reduced activation function is FCurrent
a = AB +

AB0C. The don't care set is DC
Current
Fa

= ABC. 2

In the rare cases where a large fraction of minterms of Fa has the same probability,

we propose a solution based on the concept of BDD subsetting [ravi95]. We retain

only the \dense" subset of minterms with probability p, in the hope that to a small

ADD for the probability function corresponds a compact logic circuit realizing the

reduced Fa. Experimental evidence has proved this choice to be e�ective.

The reduction technique outlined above uses as primary pruning criterion the

probability of the minterms to be added to the don't care set. An alternative heuris-

tic is reminiscent of the strategy presented in [alid94], and it is based on the key

observation that reducing the number of variables in the support of Fa may cause

a reduction in the size of its implementation, since the number of circuit inputs de-

creases accordingly. The second heuristic selects a variable xi to be eliminated from

the support of Fa based on the probability of the universal abstraction qi = 8xiFa(x).

Variables with the highest P (qi) are eliminated, one at a time, until a user-selected

cost requirement (which accounts for both the total probability of the reduced Fa

and the size of its implementation) is met. Also in this case, the reduced activation

function can be further optimized at each iteration of procedure Reduce Fa by using

the don't care information that can be computed using Equation 4.26.
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4.5.4 Computing the Cost of Function Fa

The pruning heuristics described in the previous section use, as driving criterion,

the total probability of the reduced activation function as well as the size of its

implementation. However, the ultimate objective of the optimization algorithm is the

reduction of the dissipated power of the overall design. Therefore, the cost function

we employ to decide whether the current solution is acceptable considers power as

primary target. We have considered three di�erent options of increasing accuracy

and computational cost.

1. Curr Cost = POWER(Circuit)(1� PROB(FCurrent
a )) + POWER(FCurrent

a ).

This is the simplest cost function; POWER(Circuit) is the average power dis-

sipation of the original circuit, computed through Monte-Carlo or symbolic

simulation. POWER(FCurrent
a ), on the other hand, is the average power dissi-

pation of an optimized multi-level implementation of FCurrent
a . The �rst term of

the summation represents an estimate of the expected power dissipation of the

circuit when clock gating is present. The second contribution is the additional

power consumed by the activation function. The biggest source of approxima-

tion is in the assumption that the power of the gated-clock circuit (excluding

the activation function) scales linearly with the probability of FCurrent
a . The ad-

vantage of this cost function stands in its limited computational requirements,

since POWER(Circuit) is calculated once and for all before starting the Fa re-

duction process. The negative side is, obviously, that the possibly bene�cial

e�ects of simplifying the logic of the overall circuit using FCurrent
a as external

don't care set are not accounted for. In contrast, POWER(FCurrent
a ) is clearly

recomputed for each new activation function, that is, at each iteration of the

Reduce Fa algorithm.
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2. Curr Cost = POWER(FCurrent
a + Circuit).

This is a more accurate cost function. Each FCurrent
a is �rst synthesized and

optimized, and then connected to the original circuit as in Figure 24-b. The

power dissipation of the overall network is then estimated. The improved ac-

curacy of this cost function stems from the fact that it does not assume that

the power saved in the FSM is proportional to the probability of the activation

function. On the other hand, the complexity of the computation is increased

because a power estimation of the FSM and the activation function is required

at each iteration.

3. Curr Cost = POWER(OPTIMIZE(FCurrent
a + Circuit)).

This is the most accurate cost function. Each FCurrent
a is �rst synthesized and

optimized, then it is connected to the original circuit, and the so obtained global

network is optimized using standard techniques which exploit FCurrent
a as addi-

tional external don't care set. Notice that the complexity of this cost function is

much higher than the previous two. In this case, the computationally intensive

logic minimization of the FSM logic is performed for each cost evaluation. In

fact, using this cost function is equivalent to generating a set of solutions and

estimating the power savings for each one.

We choose the �rst cost function for the �nal implementation, because its (relative)

low computational cost allowed us to generate and evaluate a much larger number

of reduced activation functions. However, the second activation function may be the

preferred choice for a conservative version of our algorithm. The �rst cost function

may lead to incorrectly predicting power savings for cases where actually there is

power increase. For some circuits the power savings in the FSM logic and 
ip-
ops

may grow less than linearly with the probability of the activation function. If this

is the case, the �rst cost function will bias the algorithm toward excessively complex
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(and power consuming) high-probability activation functions.

In contrast, the second cost function is strictly conservative because it assumes

that the clock gating logic is added to the original circuit (i.e. it is fully redundant),

then, power is estimated for the full gated-clock implementation. Compared to the

third cost function, the second one is only more conservative, because it does not

estimate the possible additional power reductions obtainable by optimizing the com-

binational logic of the FSM using Fa as don't care set. As a result, using the second

activation function may lead to convergence on excessively small activation functions

(with almost no power savings), but it will never lead to circuits with increased power

consumption compared to the initial implementation without gated-clock.

The third cost function was not used because of its excessive computational cost,

since the time spent in the optimization of the FSM logic completely swamps the

time spent in all other parts of the optimization procedure. Including this expensive

step in the inner loop of the optimization procedure would intolerably slow town the

search.

4.5.5 The Stopping Criterion

As in any gradient-based re�nement procedure (where the iterations continue as long

as there are improvements, and stop as soon as the cost function starts increasing

again), we reduce the on set of Fa at each iteration and we exit the reduction loop

the �rst time the cost function starts increasing, i.e., Curr Cost > Best Cost . This

choice is based on following observation. The reduction of the activation function is

such that the newly generated Fa is contained into the one generated at the previous

iteration, and therefore once a minimum is hit, it is di�cult to hit another one. This

argument is plausible as long as the circuitry implementing Fa and the original circuit

are kept separated (this is the assumption made by the �rst two cost functions). In

fact, in this case, a smaller activation function improves the power dissipation only
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by reducing the consumption in the clock-gating circuitry. A size reduction of Fa

that increases the power implies that the power not saved in the circuit is larger than

the power saved in the clock-gating circuitry, and using an even smaller activation

function will only make this situation worse.

However, reality is more complex. If we use the most accurate cost function, this

line of reasoning may no longer be correct. This is because a complex Fa with a large

ON set may enable drastic optimizations in the logic of the FSM. Remember that

the ON set of Fa is used as don't care set for the optimization of the FSM logic. It

is clear then that, due to the complexity of the third cost function, �nding a direct

relationship between such function and the optimality of the computed solution is

not an easy task. Moreover, the computational complexity of the third cost function

prevents its use for any large scale example. We therefore chose to trade o� some loss

in optimality of results for the applicability of our method to large circuits.

4.6 Global Circuit Optimization

The result produced by procedure Reduce Fa is a gate-level speci�cation of the acti-

vation function, Fa, which is expected to reduce power dissipation when appropriately

connected to the original sequential design.

After the logic is included in the circuit in the way shown in Figure 24-b, some

global optimization can be performed. Notice that the activation function is func-

tionally redundant. Since we employed redundancy removal procedures targeting

area minimization rather than power minimization, the optimizer may remove the

clock-gating logic in its entirety, thus producing a circuit which is very similar to the

original one. This is most likely to happen when Fa is used as external don't care set

for each primary and state output and redundancy removal methods are used for the

optimization. Clearly, this is something we must avoid.
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The solution we have adopted to overcome this problem consists of adding to

the circuit an extra output pin to make function Fa directly observable. With this

artifact, redundancy removal procedures can be applied to the circuit. This type of

optimization has highly bene�cial e�ects on the gated-clock circuits: not only it may

reduce the power dissipation, it also increases the testability of the system, because it

eliminates the untestable faults in the combinational logic generated by the insertion

of the redundant clock-activation logic [fava96]. Testability issues regarding gated-

clock FSMs are addressed in more detail in Appendix A

4.7 Covering Additional Self-Loops

If a sequential circuit is an implementation of a Mealy FSM with no Moore-states, the

activation function obtained by Equation 4.24 is the null function 0. In this section

we discuss generalizations of the procedure used to �nd the initial Fa that allow the

exploitation of di�erent kinds of idle conditions.

We target self-loops on Mealy states. As discussed above, these self-loops are

not idle conditions because we cannot guarantee that output transitions will not be

required, even if the next state does not change. While in Chapter 3 we solved the

problem by transforming the STG, we now investigate the alternative solution: the

outputs of the sequential circuit are taken as inputs of the activation function as well

as the state and primary inputs.

The gated-clock architecture can be modi�ed as shown in Figure 31. If all outputs

are taken as inputs of the activation function, all self-loops can be exploited to stop

the clock. As an example, consider again Figure 25: if we are allowed to observe the

output values, then a state value of S2, an input value 00, and an output value 11

uniquely identi�es the self-loop in S2. Observing these values we can stop the clock

because: i) the FSM is in a self-loop, ii) the output is not going to change in the next
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Figure 31: Modi�ed Gated-Clock Architecture to Take into Account Circuit Outputs.

clock cycle.

The expression of the activation function including output values is very similar

to the one presented in Equation 4.24:

Fa(x
+; t; z+) =

kY
i=1

(�i(x
+; t) � ti) � 8x;s

 
mY
i=1

�i(x
+; t) � z+i ) + (

kY
i=1

(�i(x; s) � ti))
0

!

(4.27)

Notice that the support of Fa has been extended to include the output variables z+.

The term
Qm

i=1(�i(x
+; t) � z+i ) expresses the condition that the observed output value

must be equal to the output that would be computed if we clocked the machine when

traversing a self-loop. If this is true, we do not need to clock the FMS, hence, Fa = 1.

This term is the main di�erence between Equation 4.24 and Equation 4.27: since we

have increased the input support of Fa, we now possess additional information for

stopping the FSM more frequently.

We observed in Chapter 3 that the number of outputs in a sequential circuit is

often very large, thus, the size of the activation logic may increase too much if we

include all outputs in its support. However, it is often the case that we do not need

to use all outputs as inputs of Fa. For example, referring to Figure 25, to exploit the

self-loop on S2 it is su�cient to sample the second output, because the �rst output

does not change on all transition reaching S2. Formula 4.27 can be modi�ed so that
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only a subset of the outputs becomes part of the support of Fa. We have:

Fa(x
+; t; z+) =

kY
i=1

(�i(x
+; t) � ti) �

8x;s

0
@ wY
i=1

(�i(x
+; t) � z+i ) �

mY
i=w+1

(�i(x; s) � �i(x
+; t))+

(
kY
i=1

(�i(x; s) � ti))
0

!
(4.28)

where w is the number of circuit outputs we want to include in the support of the ac-

tivation function. Equation 4.28 can be seen as a compromise between Equation 4.24

and Equation 4.27. The smaller w is, the closest the activation function is to the one

computed by Equation 4.24.

There is clearly a trade-o� between the additional self-loops that can be included

in the activation function by adding one or more outputs to its support and its

size (and power dissipation). We have devised the following heuristic procedure to

perform the selection of an optimal subset of outputs for inclusion in the support of

the activation function.

� For each output, z+i , we �rst compute Fa(x
+; t; z+i ) and we determine the value

of its probability. Notice that Fa(x
+; t; z+i ) � Fa(x

+; t), therefore PFa(x+;t;z+i )
�

PFa(x+;t).

� We build Fa(x
+; t; z+) incrementally by adding to the previously computed

activation function the new activation function obtained by inserting one more

output in its support. The outputs are picked in order of decreasing PFa(x+;t;z+i )
.

In symbols:

F (0)
a = Fa(x

+; t) (4.29)

F (k)
a = F (k�1)

a + Fa(x
+; t; z+1 ; z

+
2 ; :::; z

+
k ) (4.30)

The �rst activation function F (0)
a is the one computed by Equation 4.24.
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The rationale behind the procedure is that we want to increase the support of Fa

by adding �rst the outputs that contribute more to increasing the total probability

of Fa. After each new F (k)
a is generated, we optimize the activation function with the

algorithm described in Section 4.5. The best optimized activation function is chosen.

To reduce the computational burden we stop the generation of new F (k)
a as soon

as increasing k by one leads to a new activation function that, after optimization,

performs worse than the last computed one.

4.8 Experimental Results

The power optimization algorithms of this chapter have been implemented within the

SIS [sent92] environment, and their e�ectiveness benchmarked onto some examples

taken from the literature.

The original synchronous circuits have been optimized for area through the SIS

script script.rugged and mapped for speed using the SIS command map -n 1 -AFG.

These mapped circuits have been used as the starting point for our experiments.

The logic for the reduced activation function has been computed through procedure

Reduce Fa and connected to the original circuit as indicated in Figure 24-b. The

functional speci�cation of Fa has then been added as external don't care set for each

circuit output, and the circuit optimized for area through script.rugged.

The library we used for the experiments had NAND and NOR gates with up to

four inputs, and bu�ers and inverters with 3 di�erent size/drive options. Power values

of the initial and �nal circuit implementations were obtained using Irsim [salz89]. All

the experiments were run on a DEC-Station 5000/240 with 64 MB of memory.

Tables 3 and 4 summarize our results obtained on some Iscas'89 synchronous

networks [isca89]. In particular, columns PI , PO and FF of Table 3 show the char-

acteristics of the circuits. Column Gates, Delay and Power tell the number of gates,
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Circuit PI PO FF Before Optimization After Optimization

Gates Delay Power Gates Delay Power

s208.1 10 1 8 90 11.00/10.98 75 95 11.07/ 11.05 49

s298 3 6 14 131 19.26/19.24 89 140 19.90/19.88 72

s386 7 7 6 148 14.94/14.92 63 160 15.97/15.95 58

s400 3 6 21 168 20.81/20.79 90 185 21.14/21.12 63

s420.1 18 1 16 171 16.42/16.40 106 185 17.61/17.59 67

s444 3 6 21 199 20.31/20.29 101 217 22.12/22.10 76

s510 19 7 6 289 25.62/25.60 95 306 27.31/27.29 81

s526 3 6 21 206 18.24/18.22 119 230 19.83/19.81 114

Table 3: Results for Some Iscas'89 Circuits.

the rise and fall delays (in nsec), and the power dissipation (in �W ), before and after

optimization. Columns Variation in Table 4 give the percentage of gate count and

delay increase and power reduction obtained on each example. Finally, column Fa

Time reports the CPU time (in sec) required by procedure Reduce Fa to determine

the simpli�ed activation function.

The cost function used for the the experiments is the �rst one introduced in

Section 4.5.4. We have tested both pruning heuristics for the generation of the optimal

Fa, but the quality of the results did not change sensibly (for the results in the table

we report the best obtained savings).

The size (and the number states, exponentially related to the number of 
ip-


ops) of the circuits considered in our experiments is such that the application of the

techniques presented in Chapter 3 would be impractical, because of the complexity

of the STG extraction procedure. In contrast, our symbolic algorithms easily deal

with these examples, even with the limited memory available on our machine. To our

knowledge, these are the largest sequential circuits for which gated clocks have been

automatically generated. For some examples the power savings are sizable (25%-

35%), while for others almost no advantage is given by gating the clock. The area
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Circuit Variation Fa Time
Gates Delay Power

s208.1 +5% +1% �34% 7.3

s298 +7% +3% �19% 17.8

s386 +8% +7% �8% 69.9

s400 +10% +2% �30% 80.1

s420.1 +8% +7% �36% 150.3

s444 +9% +9% �25% 51.0

s510 +6% +6% �15% 301.3

s526 +11% +9% �4% 120.2

Table 4: Variations in area delay and power, and runtime for some Iscas'89Circuits.

Circuit PI PO States Power Savings
Symbolic Explicit

bbara 4 2 10 45% 49%

bbtas 2 2 6 12% 21%

keyb 7 2 19 26% 11%

lion9 2 1 9 10% 13%

s420 19 2 18 24% 18%

Table 5: Comparison to the Results of the previous chapter on the Mcnc'91 FSMs.

and the delay are kept under control (8% and 5%, increase, on average).

4.8.1 Comparison with the explicit technique

In Table 5 we compare the power savings achieved by the symbolic method to those

obtained in the previous chapter for some of the small, Mcnc'91 FSMs [mcnc91]

(chosen among those for which the explicit algorithm produced the largest savings).

From the results we can conclude that the symbolic approach is not much worse than

the explicit approach, even for FSMs of small size.
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The comparison reveals that in some cases the Locally-Moore transformation de-

scribed in the previous chapter performs better than the output inclusion technique of

Section 4.7, but this is not always true. This fact can be explained by observing that

the Locally-Moore transformation increases the complexity of the FSM logic itself,

while the output inclusion technique has more controllable e�ects, since it modi�es

only the structure of the activation function.

4.8.2 E�ect of input statistics

Since the reactive nature of a controller typically depends on the external environ-

ment, it is likely to happen that idle conditions are exercised when the circuit is

interacting with the components in its neighborhood. We mentioned before that

such interaction may be modeled through non-equiprobable primary input distribu-

tions. Since the computation of the activation function depends on the input prob-

abilities, we expect the size and the probability of Fa to be a�ected by the use of

non-equiprobable input distributions.

We consider, as an example, the minmax3 circuit [coud89], a sequential circuit

that �nds the maximum and the minimum of a stream of numbers. The circuit has

3 inputs: clear, used to reset the maximum and minimum values, enable, whose

function is to prevent the circuit from analyzing some data and the input data port.

We plot the value of PROB(Fa) for varying values of the probability of the enable

(active high) and clear (active low) control inputs (see Figure 32).

For a �xed value of the probability of clear, PROB(Fa) increases as the proba-

bility of enable decreases, and it goes up as the probability of clear increases. This

is reasonable, since a high probability of both enable and clear to be active drives

the circuit into the hold states, corresponding to the traversal of the self-loops of the

STG.

To show how the knowledge of the primary input statistics impacts the synthesis



126 CHAPTER 4. SYMBOLIC GATED-CLOCK SYNTHESIS

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1

P
R

O
B

(F
a
)

p(clear)

p(enable)=0.25
p(enable)=0.5

p(enable)=0.75

Figure 32: Case Study: The minmax3 Circuit.

and the re�nement of the activation function, and thus the power savings achievable

with our optimization technique, we present results for the same circuits of Table 3

in which the probability of some of the inputs has been set to values di�erent from

0.5.

Since no information was available for both the circuit functionalities and the

environment in which the controllers are supposed to operate, we have chosen to

modify the statistics of the primary inputs belonging to the support of the activation

function calculated for the equiprobable case. More speci�cally, we have set the input

probabilities so as to emphasize the reactivity of the benchmarks. As expected, power

savings have gone up sensibly.

The results of Table 6 con�rm that power is a strongly pattern-dependent cost

function. It is therefore important to formulate algorithms for power minimization

that can take input statistics into account with the highest possible accuracy. We

showed in Section 4.5 that the ADD-based input statistic characterization is much

more accurate than the simple information provided by input probabilities. As a

consequence, our gated-clock generation algorithm is very 
exible and e�ective even
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Circuit Equiprobable Inputs Non-Equiprobable Inputs
PROB(Fa) Power PROB(Fa) Power

Orig. Opt. Savings Orig. Opt. Savings

s208.1 0.314 75 49 34% 0.831 64 17 73%

s298 0.241 89 72 19% 0.902 53 10 81%

s386 0.110 63 58 8% 0.642 52 18 65%

s400 0.249 90 63 30% 0.809 67 15 77%

s420.1 0.311 106 67 36% 0.829 90 21 76%

s444 0.249 101 76 25% 0.811 69 19 72%

s510 0.140 95 81 15% 0.670 81 45 44%

s526 0.244 119 114 4% 0.798 88 43 51%

Table 6: Results for Di�erent Input Probability Distributions.

for complex input statistics with strong correlation between inputs.

4.9 Summary

In this chapter, we presented a fully symbolic approach to the automatic generation

of clock-gating logic for control-oriented sequential circuits. Our methodology starts

from synchronous networks and does not require the extraction of the STG, a very

computationally expensive operation. We leverage the BDD-based representation

of Boolean and pseudo-Boolean functions to extend the applicability of clock-gating

techniques to classes of sequential systems of size unattainable by previous methods

based on explicit algorithms.

The generality of our symbolic formulation enables the application of the synthe-

sis procedure to activation functions with extended support (including some of the

circuit outputs). The compactness and expressive power of ADDs allow us to accu-

rately compute the probability of the activation function, and to formulate algorithms

that control the optimization of the global power dissipation with superior accuracy,
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compared to previous methodologies.

Our power optimization strategy also relies on an integrated synthesis method-

ology that aims at reducing the overhead of the redundant clock-gating logic by

e�ectively exploiting the additional don't care conditions in the combinational logic.

The results are promising, since we obtain power reductions as high as 36%.

Further investigation on this subject will focus on several directions. First, ap-

proximate algorithms for FSM probabilistic analysis need to be developed to further

enhance the scope of applicability of this technique. This is because the real bot-

tleneck of the symbolic approach is the ADD-based calculation of the exact state

occupation probabilities, which becomes infeasible when the circuits contain more

than 50 registers. Constructing and pruning the activation function, on the other

hand, is neither computationally intensive nor too memory demanding. Second, the

problem of estimating the impact of the activation function as additional don't care

set has to be factored into an e�ciently computable cost function.



Chapter 5

FSM decomposition for low power

5.1 Introduction

In the previous chapters we demonstrated that clock gating is an e�ective technique

for minimizing wasted power. Sizable power reduction are obtained for reactive FSMs

that are idle for a large fraction of the operation time. In this chapter we investi-

gate a more aggressive approach: we attempt the minimization of the useful power

dissipation. In other words, we focus on reducing power consumption in sub-systems

that may be idle for a small fraction of the operation time. For such systems, the

clock-gating techniques presented so far are not e�ective.

The fundamental intuition behind the optimization techniques presented in this

chapter is that a sequential circuit may be decomposed into a set of small interacting

blocks. During operation, only one block is active at any given time and controls

the input-output behavior. In the remaining blocks, the clock can be stopped and,

consequently, the total power consumption is reduced. Obviously, a decompostion

approach allows us to save power even for systems that are never idle.

Unfortunately, in many cases the behavior of the system is speci�ed without any

129
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consideration for power-e�cient decompositions. Hence, we need to develop proce-

dures for the detection of such decompositions and the synthesis of a hardware archi-

tecture where unused parts of the system can be shut down without compromising

the correctness of the global input-output behavior.

We propose a procedure for the automatic synthesis of a network of interact-

ing FSMs starting from a single state-table speci�cation (or an equivalent format).

We call decomposed FSM the interacting FSM implementation. The straightforward

single-machine implementation is called monolithic FSM. The monolithic �nite-state

machine can be decomposed into smaller sub-machines that communicate through a

set of interface signals. Usually, one single sub-machine is clocked at any given time

and it controls the outputs values while all other sub-machines are idle: they do not

receive the clock signal and dissipate little power. When a sub-machine terminates its

execution, it sends an activation signal to another sub-machine which takes control

of the computation, then it de-activates itself. This transition is characterized by a

single cycle for which both sub-machines are clocked.

There is full cycle-by-cycle equivalence between the input-output behavior of the

decomposed and monolithic implementation. It the FSM is embedded in a larger sys-

tem, the decomposed implementation can replace the monolithic one and the beahvior

of the system remains unchanged.

Given the state transition graph (STG), or equivalently, the state table of the

FSM, our procedure decomposes the STG into a set of smaller STGs. Each com-

ponent is then synthesized using standard FSM synthesis algorithms. The resulting

sequential circuits are then connected and dedicated clock-control circuitry is synthe-

sized, which allows selective clocking of the sub-FSMs. The �nal result is a circuit

that is functionally equivalent to the original speci�cation but has reduced power

dissipation and increased speed compared to an monolithic implementation of the

speci�cation.
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The total area of the interacting FSM implementation is larger than that of the

monolithic counterpart. Notice however that the increase in area is accompanied by

more hierarchical structure: the interacting FSMs implementation consists of small

and loosely coupled blocks instead of one large highly coupled block. This charac-

teristic can be very useful during synthesis and the placement and routing phase:

small blocks are more e�ectively synthesized, placed and connected. Consequently

the improved power and performance of our implementation will not be damaged by

excessive wiring even if it has area overhead. Accurate power and timing estimation

shows that the decomposed implementation achieves on average 31% power reduction

and 12% speed improvement at the price of a 48% increase in the number of standard

cells. Since our method trades o� power reduction and speed increase for area usage,

it is well-suited for high-performance VLSI systems where speed and power are the

primary concerns.

It is important to notice that our technique is compatible with sequential power

minimizations such as state assignment [hahe94, tsui94] (see also Chapter 6) and

retiming [mont93], as well as power optimization of the combinational logic [iman96,

baha95, ro
96]. Indeed, after FSM decomposition, the power minimization techniques

can be applied to its components.

5.1.1 Previous work

Finite-state machine decomposition has been extensively studied for several decades.

Its theoretical foundations were laid down by Hartmanis and Stearns [hart66] in

the sixties. Hartmanis and Stearns de�ned several 
avors of decomposition and for-

mulated numerous decompostion procedures. More recent work [geig91] reports ex-

perimental result on the implementation of the decomposition procedures described

in [hart66].

A di�erent viewpoint on the problem was proposed in recent years by Ashar,
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Devadas and Newton [asha91] who presented numerous algorithms for the automatic

decomposition of FSMs speci�ed by an monolithic state transition graph (STG). In

this work, the authors introduced the concept of factorization (an e�cient algorithm

to detect and exploit decomposition opportunities) as well as exact and heuristic

solutions to the problem of two-way FSM decomposition for minimum-area two-level

implementation. The work by Hartmanis and Stearns is based on an algebraic model

of FSMs rooted in lattice theory. By contrast, Ashar et al. rely on Boolean algebra

as the underlying theoretical framework.

More recent work is based on graph theory [royn93, kuo95]. The STG of the FSM

is decomposed using graph partitioning algorithms. Our approach has several points

in common with [royn93]. Most notably, our approach and [royn93] both focus on

a partitioning strategy, where the initial FSM is decomposed in sub-modules that

are never performing useful computation at the same time. However, we target the

minimization of power consumption and we rely on a di�erent assumption on the

hardware implementation (i.e. gated clock versus single clock).

The algorithms mentioned so far target area minimization, or the optimization of

area-related cost functions (i.e. number of input and outputs, connectivity). Although

sizable area reductions can be achieved, the average e�ectiveness of decomposition

techniques for area is not impressive, mainly for two reasons. First, the majority of

real-life FSMs do not have a simple decomposition, and some replication is almost

always required. Second, the computational requirements of the exact decomposition

algorithms are too high on large examples (where the potential savings are substan-

tial), and heuristic solutions fail to �nd good decompositions.

We believe that the potential impact of decomposition techniques for low power

and high performance is much higher. This conjecture is con�rmed in [hasa95], where
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decomposition techniques have reported very promising delay reductions on multi-

level logic implementation. The experimental results presented in this chapter pro-

vide convinging evidence on the e�ectiveness of the tecompositon approach for power

minimization.

5.2 Interacting FSM structure

Let F = (X;Y; S; s0; �; �) be an monolithic Mealy-type FSM speci�cation, where X

is the input set, Y the output set, S the set of states, s0 2 S the reset state. The

next state function is � : X � S ! S and the output function is � : X � S ! Y .

Assume that a partition � on S is given [hart66]. A partition is de�ned as a

collection of n disjoint subsets of S whose set union is S, i.e �(S) = fP1; P2; :::; Png,

such that Pi \ Pj = ; for i 6= j, and
Sn
i=1 Pi = S. We call partition blocks the subsets

Pi.

Given the monolithic F and �(S) we proceed to the formal de�nition of the

decomposed FSM. The decomposed FSM � is a set of n FSMs � = fF1; F2; :::; Fng.

We call sub-machines the FSMs Fi 2 �. A generic sub-machine Fi is de�ned as

Fi = (Xi; Yi; Si; s0;i; �i; 
i), where:

� s0;i is the reset state of Fi.

� Si, the state set of Fi is Si = Pi [ fs0;ig.

� The input set Xi is Xi = X [ GO�;i. We de�ne GO�;i as follows. For each

transition from a state t 2 Pj to a state s 2 Pi in the monolithic FSM F ,

a new signal got;s is created which is an input for Fi and an output for Fj.

The set GO�;i is the set of all go signals which are inputs for Fi. In symbols:

GO�;i = fgot;s j �(�; t) = s; s 2 Pi; t 2 Pj; Pi 6= Pjg



134 CHAPTER 5. FSM DECOMPOSITION FOR LOW POWER

� The output set Yi is Yi = Y [GOi;�. The set GOi;� is the set of all go signals

which are outputs for Fi: GOi;� = fgot;s j �(�; t) = s; s 2 Pj ; t 2 Pi; Pi 6= Pjg

� The next state function �i(x; goq;t; s) is de�ned as follows:

�i(x; goq;t; s) =

8>>>>>>>><
>>>>>>>>:

�(x; s) if s 2 Pi and �(x; s) 2 Pi

s0;i if s 2 Pi and �(x; s) 2 Pj ; Pi 6= Pj

t if s = s0;i and goq;t = 1; q 2 Pj ; t 2 Pi; Pi 6= Pj

s0;i if s = s0;i and 8goq;t 2 GO�;i goq;t = 0

(5.31)

The de�nition means that every transition between states s and t in the mono-

lithic FSM does not change its source and destination if the two states belong

to the same block Pi (this case is shown in Figure 33 (a) and (b)). A transi-

tion from s to t belonging to di�erent partition blocks, respectively Pi and Pj,

becomes: i) a transition from s to the reset state of machine Fi; ii) a transition

from the reset state to t for machine Fj. When a sub-machine Fi is in reset

state, it exits from it only when one of the go signals is set to one.

� The output function �i(x; goq;t; s) takes values on the new output set Yi that

includes the original outputs of the monolithic FSM and the go outputs. We

represent the output value with the notation (x; go).

�i(x; goq;t; s) =

8>>>>><
>>>>>:

(�(x; s);0) if s 2 Pi and �(x; s) 2 Pi

(�(x; s); gos;t = 1) if s 2 Pi and �(x; s) = t 2 Pj ; Pi 6= Pj

(0;0) otherwise

(5.32)

We used the shorthand notation (x;0) to indicate that all go outputs or are

held at value 0. Similarly, the notation (0;0) is used to indicate that all original

outputs in set X and all go signals are held at value 0. The notation gos;t = 1

is used to indicate that only one go output has non-zero value, namely gos;t.
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Figure 33: Pictorial representation of the de�nitions of �i and �i

The de�nition of �i means that whenever there is a transition between two

states belonging to the same Pi, the output of sub-machine Fi is the same as in

the monolithic FSM. A transition toward the reset state has the output value

corresponding to the transition in the monolithic FSM between state s in Si and

state t in Sj, and asserts the gos;t output. All outputs are zero for the self-loop

on s0;i and all transitions leaving s0;i.

The de�nition of the sub-machines Fi completely de�nes our decomposition strat-

egy. To better understand the de�nitions of �i and �i refer to Figure 33. Part (a)

shows a transition in the monolithic FSM. Part (b) shows the transition in the decom-

posed FSM when its source and destination state both belong to the same partition

block Pi (the transition is unchanged). Part (c) shows the case when the source and

destination state belong to di�erent partition blocks. For each transition leaving a

state sub-set Pi in the monolithic FSM, the sub-FSM Fi associated with Pi performs

a transition to its reset state. On the other hand, a transition entering a sub-set

Pi from Pi 6= Pj corresponds to a transition exiting the reset state in the sub-FSM

Fi. A sub-machine can exit the reset state only upon assertion of a go signal by

another submachine. At any given clock cycle only two situations are possible: i) one

sub-machine is performing state transitions and all other sub-machines are in reset

state, ii) one sub-machine is transitioning toward its reset state, while another one is

leaving it.
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Figure 34: Decomposition of the monolithic FSM

All inputs and outputs of the monolithic FSM are inputs and outputs of the

sub-machines. The go signals are new, additional inputs and outputs. If an edge

s! t of the original machine has head and tail state included in sub-machine Fi, the

edge is replicated in Fi, with the same input and output �elds. Edges in the global

FSM connecting states which belong to di�erent partitions are associated with edges

representing transitions to and from the reset states of the corresponding sub-FSMs.

These transitions are labeled as follows: i) edges toward reset have the same input

�eld as the original edge, assert an additional output go = 1 and have the same

output �eld as in the original transition edge of the monolithic FSM. ii) Transitions

leaving reset have only one speci�ed input go and all outputs set to zero. The outputs

of a sub-machine blocked in reset state are zero.

Example 5.2.1. Consider the FSM in Figure 34 (a). We assume that the

state partition is �(S) = fP1; P2g = ffst0; st1g; fst2; st3gg. The two sub-

machines created by the decomposition procedure are shown in Figure 34 (b)

and (c). The additional reset states are shaded. P1 originates sub machine

(b) and P2 originates sub machine (c). Notice that the \go" signals are shown

only on the transitions from and to the reset states. A sub-machine asserts a

\go" signal only when transitioning to the reset state, in all other cases the

signal has value zero. Similarly, a submachine is sensitive to input \go" signals

only when it is in reset state. The \go" inputs are not observed for all other

transitions. 2

After describing our decomposition strategy, we now focus on how to reduce the
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total power dissipation of the interconnection of sub-FSMs.

5.2.1 Clock gating

In the interacting FSM system, most of the machines Fi remain in state s0;i during a

signi�cant number of cycles. If we stop their clock while they stay in reset state, we

would save power (in the clock line, the 
ip-
ops and in the FSM combinational logic)

because only a part of the system is active and has signi�cant switching activity. To

be able to stop the clock, we need to observe the following conditions.

� The condition under which Fi is idle. It is true when Fi reaches the state

s0;i. We use the Boolean function is in reseti that is 1 if Fi is in state s0;i, 0

otherwise.

� The condition under which we need to resume clocking, even if the sub-FSM is

in reset state. This happens when the sub-FSM machine receives a go signal

and must perform a transition from s0i to any other state.

We can derive Fai, the activation function (in negative logic). The clock to Fi is

halted when Fai = 1. Namely:

Fai = is in reseti ^ (
_

q2Fi; p2Fj 6=Fi

gop;q) (5.33)

The �rst term is in reseti(s) stops the clock when the machine reaches s0;i. The

second term ensures that clock is not halted when one of the gop;q is asserted and

the sub-FSM must exit the reset state. This activation function allows the newly

activated sub-FSM to have its �rst active cycle during the last cycle of the previously

active FSM. The two sub-FSMs make a transition in the same clock cycle: one is

transitioning to its idle state, and the other from its idle state. The local clocks of
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Fi and Fj are both active. We call transitions of control the cycles when a sub-FSMs

shuts down and another activates.

Each local clock of the FSMs Fi is controlled by a clock-gating circuit. The circuit

implements the activation function Fai. We could use Fai directly as enable signal

on the 
ip-
ops, but this scheme would let the clock lines active and consume power,

therefore we choose an aggressive implementation: the clock itself is stopped when a

submachine is inactive. The power savings on the clock are sizable because the clock

line is heavily loaded and switches with high frequency. We use a low-level sensitive

latch for Fai, in order to avoid spurious transitions on the clock line that would result

in incorrect behavior. Refer to Chapter 3 for a detailed description of the clock-gating

circuitry.

The clocking strategy discussed so far has two important functions: reducing

power dissipation and keeping the sub-FSM in lock-step. We now address the issue of

ensuring cycle-by-cycle equivalence between the monolithic FSM and the decomposed

implementation. The outputs of the gated-clock sub-machines are connected to n-

way OR gates, one for each primary output. The output equivalence between the

decomposed machine and the speci�cation is guaranteed by the fact that, at any

given clock cycle, only the active sub-machine is controlling the output value, and

all inactive sub-FSMs have their output forced to zero. During the transitions of

control, when a machine stops and another resumes execution, the value of the output

is controlled by the machine terminating execution.

Example 5.2.2. The gated-clock implementation of the interacting FSMs of

Figure 34 is shown in Figure 35. Notice how the external output is obtained by

OR-ing the outputs of the sub-FSMs. Figure 35 also shows the clock waveforms,

the \in reset" signals and the \go" signals. Notice that there is a clock cycle

for which both local clocks are enabled. The waveforms show how sub-FSM 1

is deactivated and sub-FSM 2 activates thanks to the assertion of the gost1;st2
signal. 2
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Figure 35: Gated-clock implementation of the interacting FSMs

The startup of the decomposed FSM is obtained by disabling Fa for all sub-FSMs

when a synchronous RESET is asserted (this can be done by inserting a AND gate

controlled by RESET on the output of Fa). When the RESET signal is high, all

sub-machines receive the clock signal. Notice that only the sub-FSM containing the

original reset state of the monolithic FSM is actually set to the corresponding state

code. All other machines are put in reset state s0;i and they stop and wait for an

external go signal.

5.3 Partitioning

The power savings in the interacting FSM implementation strongly depends on the

quality of the partition �(S). A good partition is characterized by loose interaction

between sub-FSMs and small communication overhead. We analyze these require-

ments in detail.

The ideal mode of operation for the interactive FSM circuit is one of minimum

transition of control between di�erent sub-FSMs. When a sub-FSMs disables itself

and another one takes control, both machines are clocked for one cycle, the go signals
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involved in the control transfer change value, and the clock control circuitry switches

as well. As a result, transitions of control are power consuming and should be avoided

as much as possible.

Minimizing the number of go signals is another important objective. The gener-

ation of such signals requires additional hardware, that increases power dissipation.

Moreover, the go signals increase the coupling between sub-machines, complicating

the placement and routing of the circuit. On the other hand, if we reduce the num-

ber of go signals to zero, i.e. we do not decompose the FSM, no power savings are

achieved.

In summary, we should look for a partition �(S) which maximizes the locality of

the computation and minimizes the hardware overhead for communications between

sub-FSMs. We formally describe this problem in the next subsection.

5.3.1 Partitioning as integer programming

In the following discussion we assume that the probability of occupancy of every state

in the original FSM has been computed. This task can be performed by simulating

the behavioral description of the FSM or by an analysis based on a Markov chain

model, as seen in Chapter 2.

The problem of �nding an optimal partition �(S) can be formalized as an Integer

Programming (IP) problem [nehm88]:

Given:

ai, the probability to be in state i,

bij, the probability to transition from state i to j,

nmax, the maximum number of blocks in the state partition.

A set of binary decision variables fxip, i = 1; 2; :::; jSj, p, p = 1; 2; :::; nmaxg such that

xip = 1 if state i in partition block p and 0 otherwise.
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Minimize:
nmaxX
p=1

Kp � Prob(Fp) (5.34)

With constraints:
nmaxX
p=1

xip = 1;8i (5.35)

i.e. every state has to be assigned to exactly 1 partition.

The formulation of the cost function requires further discussion. The cost of the

interacting FSM implementation can be expressed as the summation over all sub-

FSMs of the cost of each sub-machine (Kp) weighted by its probability to be active

(P (Fp)). The cost of a sub-machine is expressed by a linear combination of the

number of states of the machine and the number of possible transitions from and

to the sub-machine (meaning extra I/O). This is can be expressed by the following

equation:

Kp =

 
1 +

X
i

xip

!
+ �

0
@X
p1 6=p

X
i

X
j

dbijexip1xjp +
X
p2 6=p

X
i

X
j

dbijexipxjp2

1
A (5.36)

The �rst part of the formula is simply the number of states in partition block

p. The second part of the formula accounts for the transitions connecting states in

p with states in other partition blocks. The term dbijexip1xjp is 1 if the transition

probability from state i to state j is bij > 0, with i in partition block p1 and j in

p. It is zero otherwise. By summing over all edges (a sum over i and j) and all

partition blocks p1 di�erent from the one under consideration, we obtain the total

number of transitions into p. Similarly, the term dbijexipxjp2 holds value 1 only for

transitions with non-null probability from a state in partition block p to a state in

another partition block.
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The rationale behind the cost function is that we look for a decomposed im-

plementation with minimum interface cost. The �rst part of the formula penalizes

implementation with excessively coarse granularity, while the second part penalizes

implementations where the interface overhead is high. The coe�cient � expresses

the relative weight that should be given to minimizing the additional gates and wires

needed to implement the interface between sub-FSMs (i.e. the go signals and the

logic generating them) with respect to the number of states of each sub-FSM (i.e. the

granularity of the decomposition).

The probability that a particular machine Fp is powered, Prob(Fp) is equal to

the total state occupancy probability for states in Fp plus the total probability of

transition to Fp. From other partition blocks. In symbols:

Prob(Fp) =
X
i

aixip +
X
p1 6=p

X
i

X
j

bijxip1xjp: (5.37)

Notice that it is important to consider the probability of the incoming edges

for each partition because they mark transitions of controls. During transitions of

controls two sub-machines are powered on at the same time. Therefore, the summation

of Prob(Fp) over all sub-machines Fp is larger than one, accounting for the cycles

when two sub-machines are enabled. The formalism used for the IP formulation will

be clari�ed through an example.

Example 5.3.3. Consider the FSM speci�ed by the STG in Figure 34 (a),
reproduced in Figure 36. We assume equiprobable and independent inputs for
the sake of simplicity. From the input probability distribution and the STG,
the state probabilities are computed: [1=4; 1=4; 1=4; 1=4]T . The transition prob-
abilities are computed from state probabilities and input probabilities. They
are collected in the transition probability matrix:

2
6664

0 1

4
0 0

3

16
0 1

16
0

0 0 0 1

4
1

16
0 3

16
0

3
7775



5.3. PARTITIONING 143
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−1/1
1−/0

00/100/1

1−/0
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−−/0

Figure 36: STG of the example FSM

We assume a 2-way partition of the states, where st0 and st1 are assigned to
block 0 and st2 and st3 to block 1 . The partition is expressed by the matrix
of xip: 2

6664
10
10
01
01

3
7775

Notice that this matrix is constrained by the fact that every row sums up to
1, since every state is assigned to exactly one partition. We calculate the cost
for partition block P1. The �rst term is 1 +

P
i xip = 3, which counts the 2

states of block P1, st0, st1 and the reset state the sub-machine goes into
when it is powered down. The second term in the cost function consists of
two contributions: i) incoming edges, ii) outgoing edges. There is only one
incoming edge, namely for i = 3; j = 0; p1 = 1, and one outgoing edge, for
i = 1; j = 2; p2 = 1. The cost for P1 is therefore 3 + �(1 + 1).

The probability to be in P1 is 1=2. We know from the cost calculation that
there is 1 possible transition into this partition, for i = 3; j = 0; p1 = 1.
The probability of this transition is b30 = 1

16
. Note that the probability of

transitioning out of the partition equals the probability of transitioning into it.
We only have to count one of both. Hence, the total probability is for P1 to be
powered is 9

16
.

The total cost function for this example is given by the scalar product of the

matrix of costs for each partition and the matrix of the probabilities for each

partition to be powered. Considering the symmetry of the example and choos-

ing � = 1, we get 5 9

16
+ 5 9

16
= 45

8
. 2
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Several techniques have been proposed solve the IP problem exactly and heuristi-

cally [nehm88]. The exact solution of IP requires algorithms with above-polynomial

worst-case complexity since IP is NP -complete [nehm88]).

5.3.2 Partitioning algorithm

In our case, exact minimization is unnecessarily computationally expensive because

the cost function is only an approximate measure of the quality of a partition �(S),

which is dependent on the power dissipation of the decomposed implementation. We

implemented a heuristic solution based on a genetic algorithm [gold89] (GA) which

still leverages the IP formulation of the problem. Some properties of the problem

made it well suited for this approach. First, the solution space is easily representable

as a set of bit-strings: a chromosome is encoded as a set of jSj blocks of dlog2nmaxe

bits. Each block is associated with a state and represents the number identifying the

partition block to which the state belongs. The length of the chromosome in bytes is

jSj � dlog2nmaxe=8. This is a very compact encoding and if nmax is chosen as a power

of two, every chromosome represents a valid solution.

Second, the crossover operator is meaningful. If in a given generation the genetic

search �nds a set of states which are good candidates for clustering, thanks to the

crossover operator, the substring representing the set of states will be replicated with

high probability in successive generations.

Third, and more importantly, the cost function can be e�ciently evaluated, and

its computation is O(jEj) where jEj is the number of edges in the STG of the original

machine. The compact encoding (with no invalid solutions) and the inexpensive

computation of the cost function allow us to take very large populations (in the order

of 106 individuals).

To e�ciently evaluate the cost function, the state probability vector and the transi-

tion probability matrix of the monolithic FSM are stored once for all at the beginning
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foreach (state i) f /* Compute partition probabilities */

Cost[partition(i)] ++;

probability[partition(i)] += StateProbability(i);

g

foreach (edge i ! j) f /* Compute cost of transitions of control */

if (partition(i) 6= partition(j)) f

probability[partition(i)] += TransitionProb(i!j)

Cost[partition(i)] += �

Cost[partition(j)] += �

g

g

TotalCost = 0;

foreach (partition p) f /* Compute total cost */

Cost[p] ++;

TotalCost += Cost[p] * probability[p]

g

Figure 37: Algorithm for the computation of the cost function

of each GA run. Other inputs parameters are the relative cost of the I/O overhead

(parameter � in Equation 5.36) and the maximum number of partitions to consider

nmax. The simpli�ed pseudo-code for the evaluation of the cost function in the genetic

algorithm is shown in Figure 37.

There are three loops in the algorithm. The �rst iterates over all the states to

compute the �rst part of the cost function (
P

i xip) and the cumulative probability of

the states in each partition. The second loop computes the second part of the cost

function (i.e. the cost of the interface signals) and the probability of the transitions

of control. Finally, the third loop iterates on the partitions and computes the �nal

value of the cost function (i.e. the weighted sum of Equation 5.36). The worst case

complexity is O(jEj) because, for non-sparse STGs, the number of edges is of the

order of jSj2. The second loop usually dominates the execution time.

It is important to notice that our optimization strategy not only tries to �nd an

optimal partition, but also automatically searches for an optimal number of blocks in

the partition. In particular, if the circuit is not decomposable in a favorable way, the

GA run will produce a degenerate partition consisting of a single block containing
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all states of the original FSM. The only constraint on the partition is the nmax, the

maximum number of allowed blocks.

Concluding this section, we point out that our optimization strategy is based on

a cost function which is not directly proportional to the actual power dissipation.

However, the experimental results con�rm that our cost measure is very informative

in the relative sense (i.e. it can be used to compare the power dissipation of two alter-

native decomposed implementations). If one partition has much better locality and

lower interface cost than another one, the power dissipation of the �rst will be usually

much smaller than the second one. This is because our gated clock implementation

guarantees that only a small part of the system is active at any given cycle, therefore

a system with few transitions of control and few go signals dissipates less power than

a system with poor locality and high interface overhead.

Notice also that our technique can be biased by increasing the relative cost of

the interface overhead in the cost function. Changing the value of coe�cient � the

user can control the likelihood of the generation of a decomposed implementation.

Moreover, by controlling nmax the user can set a lower limit to the granularity of the

partition.

5.4 Re�ned model for partitioning

In the previous sections we have assumed that every transition between states of

two di�erent partition blocks corresponds to an additional interface signal in the

interacting FSM implementation. This is a safe but conservative assumption. In

many cases the number of interface go signals can be highly reduced.

The reduction in the number of go signals is based on the following observation.

When the control is transferred from one sub-FSM to another, the only information

that the newly activated machine needs is the destination state to which it has to
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Figure 38: Decomposition of the monolithic FSM

transition. Assume that there are two incoming edges from states in block Pi to

states in block Pj of the state partition. If the two edges are directed to the same

state in Pj , there is no need to have two di�erent go signals, because sub-machine

Fj should transition to the same state when it is activated by submachine Fi. The

output values during the transfer of control are not a problem, because they are set

by Fi, which can distinguish between the two transitions, since they are originating

from two di�erent states.

Even if the two edges go to di�erent states in Pj , we might be able to use the

input signals that caused the transitions to discern between the destination states. If

the input value labeling the transitions are di�erent, we can use them in sub-machine

Fj to direct the transition from its reset state towards the right destination. The only

case when we need to implement more than one go signal between two sub-FSMs is

if there are transitions to multiple states in Fj which are not distinguishable by their

input �elds.

Example 5.4.4. Consider the STGs of three monolithic machines shown in

Figure 38. In each FSM, states s1 and s2 belong to the same partition block,

states s3 and s4 belong to another. The edges drawn with thick dashed lines

represent transitions of control in the decomposed implementation from the �rst

to the second sub-machine, while the edges drawn with thin dashed lines are

transitions of control from the second to the �rst sub-machine. We focus on the

transitions of control from the �rst to the second sub-machine. Figure 38 (a)

shows a case where two edges between partition blocks do not require two \go"
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if( list of edges from partition(i) to partition(j) == NULL ||

( list of edges from partition(i) to partition(j)

contains an edge going to a different state &&

being triggered by the same input &&

doesn't contain an edge to this state for which a signal was added)) f

Cost[partition(i)] += �

Cost[partition(j)] += �

g

add (i,j) to list of edges from partition(i) to partition(j);

Figure 39: Improved computation of the cost function

signals in the interacting FSM implementation, because they are both directed

towards the same state. Figure 38 (b) shows another case that requires only

one \go" signal, since the input �eld in the two edges allows to distinguish

the destination state. The situation shown in Figure 38 (c) requires two \go"

signals. The input on the edges cannot be used to distinguish the destination

state when, in the decomposed implementation, the sub-machine containing s3

and s4 is activated by the sub-machine containing s1 and s2. 2

Reducing the number of interface signals gives us muchmore freedom in the choice

of the partition. Moreover, many controllers have STG that cannot be partitioned

without cutting numerous edges. For these controllers the basic technique proposed

in the previous section would not �nd any acceptable partition but the trivial one

(i.e. the unpartitioned state set), while the improved partitioning technique leads to

e�ective decompositions.

Since our improved decomposition technique can greatly reduce the number of go

signals required in the interface of the sub-FSMs, the cost function used during the GA

to evaluate the quality of a partition is modi�ed accordingly. In the cost function,

the number of outgoing and incoming edges is replaced by the actual number of

output and input signals to be added to the machine. This is calculated using the

pseudo-code of Figure 39, which replaces lines 8 and 9 in the original algorithm.
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5.5 Experimental results

We speci�cally designed the FSM decomposition tool for seamless embedding into

pre-existing synthesis-based design 
ows. The tool consists of two programs: the

partitioner and the netlister. The partitioner reads in the STG of the monolithic

FSM and �nds an optimal partition �(S). The frame for the genetic algorithm

implemented in the partitioner is provided by the Genesis package [gref90]. The

netlister reads in the partition �(S), the STG of the speci�cation and produces the

decomposed FSM. One important task of the netlister is the reduction of the number

of go signal, which is performed following the approach outlined in Section 5.4.

The input of our tool is a simple state table description (in Berkeley kiss format

or in the similar Synopsys state table format) and a �le containing the state and

input signal probabilities. The output is a set of state tables, one for each partition

of the decomposition and a synthesizable Verilog description of the clocking circuitry,

containing empty modules corresponding to the sub-machines. Thanks to this simple

interface, the user can just read the Verilog code and the state tables in the logic syn-

thesis tool of choice and proceed to the logic-level optimization of the full hierarchical

design.

We also implemented a program for the computation of the state probabilities

given the input probability distribution based on Markov analysis (see Chapter 2).

This is a simple utility that can be used when the state probabilities are not known.

Alternatively, the user can just simulate the behavioral description of the FSM and

collect information on the state occupancy probability. We do not rely on any limiting

assumption on state or input probability distribution, our decomposition algorithm

simply assume that this data is externally provided.

The time spent in decomposition strongly depends on the e�ort that the user want

to dedicate to the search of an optimal solution. This is controlled by a parameter �le
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that is speci�ed once for all by the user and is used to set-up the GA run and control

the parameters in the cost function. The �le contains: i) parameters for the GA

run (population size, number of cost function evaluations, probability of cross-over

and mutation, and other secondary parameters); ii) the values of nmax and � for the

control of the cost function. In our experiments we wanted to explore the maximum

optimization achievable, therefore we speci�ed large population sizes (from 105 to

106) and large numbers of cost function evaluations (from 106 to 5 � 107). Our GA

runs were scheduled for overnight runs on SGI Indy machines with 64Mb of memory.

The parameters for the control of the cost function have been the subject of

careful study. With our technology library, � � 1 gave the best results. If pre-layout

estimates of the interface cost are considered too optimistic, the value of � can be set

to a constant larger than one. Also, � is technology dependent and could change with

the technology library used for mapping. The maximum number of partition blocks

nmax was always set nmax = 8, since initial exploratory analysis with larger nmax

showed that solutions with more than 8 sub-machines were never included among the

best individuals of the GA runs.

Table 7 shows the results on a number of benchmarks. The �rst three examples

are controllers of data-path small full-custom chips implemented in a class project.

The remaining FSMs are standard MCNC benchmarks [mcnc91], with the exception

of the last one which is a modi�ed version of MCNC benchmark s298 (we reduced

the number of states because the commercial tool we used for FSM synthesis could

not optimize the monolithic implementation with the memory resources available on

our machines).

The decomposed and monolithic implementation were both optimized with Syn-

opsys Design Compiler running on a Sun SPARC10 workstation, using the same

optimization script targeting minimum delay. The circuit power was estimated by
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Name Original Partitioned
# of # of # of std power crit. # of std power crit.
states partitions cells path cells path

test1 24 4 67 804 3.81 118 679 3.01
(+76%) ({16%) ({21%)

test2 18 3 58 930 2.83 89 642 2.98
(+53%) ({31%) ({5%)

test6 80 4 252 2115 7.09 336 1209 5.92
(+33%) ({43%) ({17%)

bbsse 13 4 112 1146 4.21 145 847 3.60
(+29%) ({26%) ({14%)

dk512 14 2 61 1138 3.29 88 853 2.79
(+44%) ({25%) ({15%)

keyb 18 3 157 1688 4.15 262 1387 4.69
(+67%) ({18%) (+13%)

planet 48 4 360 4967 6.76 503 3241 5.85
(+40%) ({35%) ({13%)

s1488 48 4 433 2743 6.68 642 1717 5.82
(+48%) ({37%) ({13%)

s820 25 3 191 1717 5.01 238 1171 3.83
(+25%) ({32%) ({24%)

s832 25 3 211 1889 4.61 274 1244 3.72
(+30%) ({34%) ({19%)

sand 32 4 429 3395 7.86 471 2554 6.78
(+10%) ({25%) ({14%)

scf 112 8 672 3719 7.07 988 2280 5.36
(+47%) ({39%) ({24%)

test13 166 8 681 7006 7.38 1610 4124 7.57
(+137%) ({41%) (+3%)

Table 7: Power, area and speed of the decomposed implementation versus the mono-

lithic one
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PPP[bogl96], an accurate full-delay gate-level power estimator. The critical path tim-

ing was estimated after technology optimization by the static timing analysis tool

within Design Compiler. Our technology library is a subset of the Berkeley Low-

Power CMOS library [burd94]. Interestingly, for all larger examples in the table, the

run time of the synthesis tool was much decreased for the decomposed implementa-

tion.

The di�erences in area, power and speed between the partitioned machine and the

original unpartitioned design is given in Table 7 between parentheses in the last three

columns. The average power reduction is 31%. There is also an increase in speed

of 12%. The number of standard cells increases on average by 48%. The results

listed are only for machines that actually are successfully partitioned. Some designs

do not have an e�ective partitioning, and they are left monolithic by our tool. For

example, in the MCNC benchmark suite, the FSMs bbara, bbtas, dk16 and donfile

are not decomposed. Notice that, with the values of Pmax and � we chose, the tool

never produced partitioned machines with power consumption larger than the original

one. This indicates that i) our technique is conservative ii) more aggressive settings

(for example, � < 1) could lead to the decomposition of more machines, but the

uncertainty on the quality of the results would increase.

Notice also that the increase in area is marked on all the examples. The main

reason for this phenomenon is the overhead due to additional 
ip-
ops. We speci�ed

minimum-length state encoding in all our experiments. This encoding style implies

that the number of 
ip-
ops in the monolithic machine increases only logarithmically

with the number of states. When the machine is decomposed, the number of states

in each sub-machine is decreased by a factor of two if the partition is balanced. In

this case each sub-machine has just one 
ip-
op less than the original machine and

the total number of 
ip-
ops is almost doubled. If the partition is unbalanced, the

number of 
ip-
op is generally increased by the 
ip-
ops required in the smaller
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machine. Obviously the sequential overhead is larger for N -way partitions, with

N > 2. We could have performed our tests specifying one-hot encoding. In this case,

the sequential overhead would have been null. However, we feel that the comparison

with minimum-length encoding is fairer towards the monolithic implementation.

It can be observed that the increase in area may translate after layout in increase

in power and delay. However our implementations are more modular, because they

consist of small and loosely connected blocks. This characteristic may actually im-

prove the quality of the layout. Moreover, the power savings are quite large and

unlikely be completely swamped during layout.

5.6 Summary

We have described an algorithm for �nite-state machine decomposition for low power

consumption. We leverage clock-gating techniques to produce an interacting FSM

implementation in which only one or two sub-machines are clocked at any clock

cycle, while the others are inactive and dissipate small power. Our tool integrates

easily in synthesis-based design methodologies and can be seen as a pre-processing

step on the state table speci�cation of the original FSM. Standard synthesis tools (or

the techniques illustrated in previous chapters) can then be used for optimizing the

sub-FSMs and additional power reductions can be obtained.

Our partitioning algorithm takes into account the overhead imposed by the in-

terface signals required for the interaction of the sub-machines and automatically

chooses not only how to partition the state set of the original speci�cation, but also

how many partition blocks will be generated. The algorithm is based on conservative

assumptions and avoids the generation of decomposed FSMs if the expected power

savings are not high. An important byproduct of our technique is the increase in

speed of the interacting FSM.
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The search for an optimal decomposition is based on a Genetic Algorithm and

it is therefore heuristic in nature. However, the compact encoding scheme and the

e�cient computation of the cost function allow us to search e�ectively the solution

space by selecting large population sizes. The results achieved by our algorithm are

very promising: on average, 31% power reduction, 12% speed increase at the price of

a 48% area increase are observed for FSMs that are decomposed.

Several extensions of the decomposition approach are possible. First, determin-

istic graph-based algorithms can be used for improving the quality of the partition,

since the genetic algorithm is a randomized general-purpose technique that does not

exploit information on the particular structure of the optimization problem. Tailored

heuristics may outperform the GA both in speed and quality of results. Moreover, it

is possible to extend the decomposition technique to deal with large sequential sys-

tems for which the state table is not available (or too large to be handled). This can

be accomplished by leveraging implicit state-space decomposition algorithms such as

those presented in [cho94] and the ADD-based approach introduced in Chapter 4.



Chapter 6

State assignment for low power

6.1 Introduction

As seen in previous chapters, the behavioral speci�cation of a �nite-state machine

is typically in the form of a state transition graph, where each state is represented

symbolically. In Chapter 2 we de�ned state assignment as the synthesis step where

binary codes are assigned to the symbolic states. The designer (or the synthesis tools)

is free to decide the length of the code words (i.e. the number of state variables) and

the encoding of each state. Such degrees of freedom can be exploited to obtain an

optimized implementation of the FSM.

Earlier approaches to state assignment have targeted area and performance both

for two-level and multi-level logic implementation ([dmc86] [esch92], [asha91] and

[dmc94] are good surveys of previous work). In this chapter we investigate state

assignment algorithms targeting low power dissipation.

Compared to the approaches described in previous chapters, state assignment does

not require any manipulation of clock-related circuitry. However, it has similarities

with the decomposition techniques presented in Chapter 5. Indeed, FSM decomposi-

tion can be seen as a 
avor of state assignment, where the binary codes assigned to

155
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the symbolic states are chosen so as to enable a decomposed implementation of the

combinational FSM logic. In contrast to the clock-gating techniques introduced in

Chapters 3 and 4, state assignment and FSM decomposition both reduce the useful

switching activity, namely the switching that is required for the correct operation of

the system.

The main theoretical contributions of this chapter are in the formulation of a cost

function and in the study of a new class of algorithms for the search of optimal and

suboptimal solutions to the problem of �nding a state assignment that gives low power

dissipation. It is important to notice that the choice of an adequate cost function

implies a di�cult trade-o� between its accuracy and the complexity of its evaluation.

The power dissipation on state lines and in the 
ip-
ops can be modeled with a

clean mathematical formulation. The key intuition is that power is minimized when

the switching activity on the state lines is reduced. This target can be achieved by

selecting state codes that minimize the number of bit di�erences between states with

high transition probability. In other words, when a transition between two states is

very likely, we should try to assign codes as similar as possible to the states.

Unfortunately, minimizing the switching activity on the state lines in a FSM by

itself does not guarantee reduced total power dissipation, because the power consumed

in the combinational part is not accounted for. We discuss this problem and propose

a more accurate cost metric that also factors in the complexity of the combinational

logic.

We tested our state assignment algorithms on several benchmark FSMs (from the

MCNC suite [mcnc91]), obtaining a 34% average reduction in switching activity of

the state variables, a 16% average reduction of the total switching activity of the

implemented circuit with a corresponding 14% average area increase. Although our

solution is heuristic, and does not guarantee the minimum power dissipation, these

results demonstrate that our approach leads to a reduction in the power dissipated
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in the complete circuit, not just in the part used for the computation and the storage

of the state information. Moreover, the proposed algorithms can be used to explore

the complex tradeo� between area and power dissipation.

The rest of the chapter is organized as follows. In Section 6.2 we give some

theoretical results on the e�ectiveness of the probabilistic approach for describing the

switching behavior of FSMs de�ned by state transition graphs. In Section 6.3 we

formalize the state assignment problem targeting power dissipation in state lines and


ip-
ops and present an exact algorithm for its solution. We implemented heuristics

based on the exact algorithm, which we describe in Section 6.4, along with extensions

to control the e�ect of state assignment on the combinational logic of the FSM. In

Section 6.5 we present some experimental results on the application of the previously

described algorithms. In Section 6.6 we investigate some interesting relationships

between state assignment and the techniques presented in the previous chapters.

6.2 Probabilistic models

As discussed in Chapter 2, given the input probability distribution, it is possible

to calculate the probability of the state transitions in a FSM. This information can

be used to �nd an encoding that minimizes the switching probability of the state

variables. We showed in Chapter 1 that in CMOS circuits power consumption is

proportional to switching activity. We de�ned the average switching activity as the

average number of signal transitions. The switching probability is the limit value of

the average switching activity as the observation time goes to in�nity [ghos92].

Here, we target the minimization of the average switching activity in a sequential

circuit. This is a complex problem because the speci�cation is at a high level of

abstraction. Thus, we concentrate on the state assignment problem whose solution

determines the register con�guration. Note again that the state assignment strongly
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a�ects the size and the structure of the FSM's combinational component.

Given the state transition graph (STG) of a �nite-state machine, we want to com-

pute the transition probabilities. The input probability distribution can be obtained

by simulating the FSM in the context of its environment, or by direct knowledge from

the designer. As discussed in Chapter 2, transition probability information for each

edge in the STG can be determined by modeling the FSM as a Markov chain.

Remember that transition probabilities are strongly dependent upon the initial

state. For example, if an FSM has a transition from state si to state sj for all possible

input con�gurations, we may think that this transition will happen with very high

probability during the operation of the machine. This may not be the case: if state

si is unreachable, the machine will never perform the transition, because it will never

be in state si. Similarly, if the probability of being in state si is very low, a transition

from state si to state sj is very unlikely. Our state assignment algorithm targets the

reduction of the switching activity by assigning similar codes to states with very high

transition probability. We must therefore compute the correct value of the transition

probabilities before applying the optimization procedure.

Consider a FSM with ns states, described by an STG with state set S = fs1; s2; :::; snsg

and a edge set representing the set of transitions from one state to another. The

Markov chain model for the STG is directed graph isomorphic to the STG and with

weighted edges. For a transition from state si to state sj, the weight pi;j on the

corresponding edge represents the conditional probability of the transition (i.e., the

probability of a transition to state sj given that the machine was in state si). In

Chapter 2 we called the set of all conditional probabilities the conditional probability

distribution. The total transition probabilities Pi;j can be computed from the state

probabilities Pi and the conditional input probabilities: Pi;j = pi;jPi.

In Chapter 2 we discussed several methods for the computation of the state prob-

abilities. Such methods rely on a fundamental assumption: the probability that the
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machine is in each state converges to a constant (stationary) set of real numbers as

the running times goes to in�nity. It is quite easy to �nd STGs for which this prop-

erty and the stationary state probabilities do not exist, because, for example, they are

oscillatory. Considerable attention has been devoted in the literature to such \patho-

logic" STGs and several methods have been proposed to deal with them [hach94].

We claim that, for the vast majority of practical sequential circuits, stationary

state probabilities do exist. More in detail, a su�cient condition for their existence

is the presence of a \reset" signal with non-null probability of being active. In other

words, if a FSM is resetable to an initial state, and the reset operation is performed

sometimes, we can guarantee that Pi exists and are well de�ned.

To prove this claim we �rst refer to the fundamental theorem of Markov chains

theory introduced in Chapter 2. The theorem states that: for an irreducible, aperiodic

Markov chain, with all states recurrent non-null, the stationary probability vector

exists and it is unique [triv82]. Remember that an irreducible Markov chain with all

the states recurrent non null is a chain where every state is recurrent non null and

can be reached from any other state. A state is recurrent non null when the greatest

common divisor of the length of the possible cycles from the state is one.

We de�ne the reset state of a FSM, s0, as a state such that there is a transition

(with non-zero probability) to it from every state in the STG. A resetable STG is

de�ned as an STG where all unreachable states (from the reset state) in the original

STG have been eliminated. With these de�nitions, we can state the following theorem:

Theorem 6.1 The Markov chain corresponding to a resetable STG with reset state

s0 and known conditional transition probabilities is irreducible, aperiodic, with all

states recurrent non null.

Proof: First, we prove that the Markov chain is irreducible. Since every

state has a transition to the reset state s0, and every state is reachable
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Figure 40: (a) The STG of a FSM with four states and two input signals. (b)

from s0, we can always reach a state from any other state using a path

through s0.

Second, we need to show that the chain is aperiodic. The reset state is

aperiodic, because it can be reached from every other state and from itself

in one step. It is possible to show that, if a Markov chain is irreducible

and one of its states is aperiodic then all its states are aperiodic [triv82],

therefore the aperiodicity of the chain is proven.

Finally, all the states are recurrent non null because they are reachable

and from every other state including themselves with probability greater

than zero. ]

Note that this theorem is only a su�cient condition, i.e. there are STGs without

a reset state for which we can successfully compute the transition probabilities.

Example 6.2.1. Figure 40 (a) shows the STG for a simple FSM with two
inputs. The example is taken from Chapter 2. We use this STG throughout
the chapter as an example for the application of our algorithms.

The stationary state probabilities (calculated with the methods introduced in

Chapter 2) are shown in Figure 40 (b) besides the nodes in the STG. Recall

that the matrix P of conditional input probabilities is initially known. The

�gure shows the total transition probabilities (the products pi;jPj) on the edges.

Note that the probabilities for self-loops are not shown only because we are not

interested in edges that do not imply any state transition. Note also that
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although our STG does not have a reset state, its stationary probability vector

can be calculated. 2

6.2.1 Transformation of the STG

Once the total transition probabilities have been calculated, we can transform the

original STG into a weighted graph which preserves the relevant information needed

for state assignment. For each pair of connected states, we only need to know the

probability of a transition from one state to the other and vice-versa. Therefore, all

input-related information and self-loops can be eliminated.

The transformations of the STG can be summarized as follows:

� Eliminate all unreachable states, if any.

� Calculate the state stationary probability vector and, from that, calculate the

total transition probabilities.

� Remove any self-loops and label each remaining edge with a weight represent-

ing its total transition probability (the weights are normalized to integers for

notational simplicity).

� Collapse all multiple directed edges between two states into a single undirected

edge with weight wi;j equal to the sum of the directed edges probabilities. Note

that this step can be performed only if the weights are computed from total

transition probabilities.

The STG is thus transformed into a weighted undirected graph G(S;E;W ), called

reduced graph, where the weights on the edges are proportional to the total probability

of a transition (in either direction) between the two states connected by the edge. This

will be the starting point for the state assignment algorithms.



162 CHAPTER 6. STATE ASSIGNMENT FOR LOW POWER

S1 S4

S3S2
9

2796

Figure 41: The reduced graph used as a starting point for the state assignment.

Example 6.2.2. The transformation of the STG is illustrated in Figure 41.

Note that an edge with high conditional probability (like s1 $ s2) can have a

weight (proportional to the total transition probability) equal or even smaller

than an edge with small conditional probability (like s4 $ s2). 2

As a concluding remark for this section, we observe that the calculation of the

total transition probability requires solving a system of equations of size proportional

to the number of states. This can become a computational problem for large systems

whose state graph is extracted from an existing synchronous network, because the

number of states is exponential in the number of storage elements used. In this case

symbolic techniques described in Chapter 2 can be employed, allowing calculation of

the steady state probabilities for very large sequential circuits [hama94].

6.3 State assignment for low power

The main idea in our approach to this problem is to �nd a state assignment which

minimizes the number of state variables that change their value when the FSM moves

between two adjacent states in the reduced graph. Ideally, if we can guarantee that

each state transition results in a single state variable change, we will have optimally

reduced the switching activity associated with the registers in the given STG. We
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now give some examples of possible speci�c solutions for restricted classes of STGs,

then we discuss the general problem and its exact solution.

Given an STG representing a counter, a state assignment that gives the minimum

switching activity in the circuit is a Gray encoding of the states (an encoding used for

binary numbers that guarantees that two successive numbers always have adjacent

codes [mccl86]). Gray encoding is a solution only for this particular form of STG, for

which the problem is quite trivial (note that in a counter inputs are irrelevant, and

all transitions are equiprobable).

Given a STG of arbitrary structure, good performance in terms of reduced switch-

ing activity results from using a 1-Hot encoding [dmc94] of the states. 1-hot encoding

guarantees that exactly two state variables will switch for every state transition, thus

achieving good results with no algorithmic e�ort. However, the number of state vari-

ables needed is equal to the number of states. It has been shown that shorter codes

correlate to smaller area for both two-level [dmc86] and multi-level [du91] implemen-

tations and larger areas often lead to higher power dissipation. In addition, with 1-hot

encoding, two state variables switch for every state transition, while other codes can

lead to a change of a single state variable for most transitions.

For a general solution, we need to �nd a method that does not assume a particular

STG structure and is not heavily constrained in the number of state variables to use.

We will use the probabilistic model developed in the previous section to obtain state

assignments that minimize the average number of signal transitions on the state lines

for a general STG.

6.3.1 Problem formulation

Our algorithm must be valid for an arbitrary STG, and must avoid constraints on

the number of state variables used. The algorithm should be able to �nd the number

of state variables nvar that gives the minimum number of transitions and is close to
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the minimum dlog2nse, to keep the size of the combinational part small.

We can describe a state encoding as a Boolean matrix (i.e. a matrix with 0-1

elements) E with rows fei; i = 1; 2; :::; nsg corresponding to state codes and columns

corresponding to state variables. Let fei;j; i = 1; 2; :::; ns; j = 1; 2; :::; nvarg be the

elements of E. Our problem of �nding a state encoding that results in minimum

switching activity can then be formalized as an integer programming (IP) problem:

Given:

The reduced graph G = (S;E;W ), with weights W = fwi;j; i = 1; 2; :::; ns; j =

1; 2; :::; nsg,

Minimize:

nsX
i=1

nsX
j=1

wi;j

nvarX
l=1

ei;l � ej;l (6.38)

With constraints:

nvarX
l=1

ei;l � ej;l � 1; 8 i; j; i 6= j (6.39)

The cost function expresses the desire to assign adjacent codes to states with

high-probability transitions. The constraint inequalities (6.39) express the fact that

no two states can be allowed to have the same code.

Example 6.3.3. If we decide to use a minimum length encoding for our
example STG, two state variables are needed (log24 = 2). The encoding matrix
E has therefore 4 rows and 2 columns. The constraint equations are:

e1;1 � e2;1 + e1;2 � e2;2 � 1
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e1;1 � e3;1 + e1;2 � e3;2 � 1

:::

e3;1 � e4;1 + e3;2 � e4;2 � 1

while the cost function to minimize is:

Cost = 6(e1;1� e2;1 + e1;2 � e2;2) + 9(e2;1 � e3;1 + e2;2 � e3;2) +

9(e2;1� e4;1 + e2;2 � e4;2) + 27(e3;1� e4;1 + e3;2 � e4;2)

The problem involves 2 � 4 = 8 variables and 3 + 2 + 1 = 6 equations. 2

Note that the number of state variables used, nvar, is an additional degree of

freedom. In theory, the IP should be solved more than once to �nd the nvar that

gives the minimum cost. Because we know that the optimum lies between dlog2nse

and ns, we search on nvar to �nd the minimum. However, area considerations (to

be discussed later) force nvar to be close to the minimum, keeping the number of

iterations on nvar small in most practical cases.

The number of inequalities is O(ns
2), and the solution space to be explored is

O(ns2
ns). For small FSMs, the exact solution of the IP problem can be found by

using either a traditional approach [nehm88] or BDD based techniques [jeon92]. For

larger STGs, the exact solution may be unattainable, being the integer programming

problem NP-complete. However, the exact formulation is still interesting because it

gives insights into more practical heuristic solutions.

Two more observations are of interest. First, for several problems a solution with

distance one between all connected states is impossible; the presence of an odd cycle

in the reduced graph is an example of constraint not satis�able with any distance-one

encoding [dmc86]. However, we do not need a distance-one encoding to reach the

minimum cost. Second, although the exact solution of the problem always yields the

exact minimum of the cost function, it does not guarantee that the power dissipation
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of the synthesized circuit is minimum, because our cost function does not model the

switching activity in the combinational part.

6.4 Algorithms for state encoding

The high computational complexity of the general state assignment problem has mo-

tivated the use of many heuristic approaches to its solution [dmc86, deva88, du91,

esch92, dmc94]. We propose a column-based approach [dolo64, dmc86] that considers

one state variable (one column of the encoding matrix) at a time and assigns its value

for each state in the reduced graph, targeting the reduction of the average switching

activity. The procedure is carried out iteratively for each state variable until the codes

have been completely speci�ed. The algorithm tries to give states that are linked by

high-weight edges the same value for most state variables, while ensuring that each

state has a unique code.

The column-based framework for the solution of the state encoding problem fo-

cuses on one column of E at a time. For each column l, the state bit are optimally

assigned. The cost function is similar to the one introduced in the previous section:

a weighted sum of bit di�erences multiplied by edge weights. After assigning one col-

umn, the weight are updated. The adjustment of the edge weights between iterations

allows us to bias the assignment of the new state variables toward regions of better

global optimality in the search space. This step is useful because we �nd an optimal

solution for a single column at a time, and the column-based approach has no notion

of global optimality across multiple columns.

Moreover, when minimizing the cost function, we need to enforce class constraints.

The class constraints are based on the notion of indistinguishability classes. Two

states having the same partial code are said to belong to the same indistinguishability

class. Similarly, two rows of E belong to the same indistinguishability class when
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the two corresponding states do. If the maximum number of state variables that we

want to use is nvar and we are assigning bit codes for the l-th variable, the maximum

number of indistinguishable partial state codes after the assignment must be less

than 2(nvar�l), otherwise we cannot create unique codes for this set of states with the

remaining unassigned variables.

6.4.1 Column-based IP solution

We present a column-based algorithm that solves a set of simpli�ed IP problems, with

lower average complexity than the exact IP solution (although the �nal solution is not

guaranteed to be optimum). Notice however that, since the simpli�ed IP problems

are still NP-complete, the worst-case complexity is still exponential. Hence, we will

describe next a polynomial-time column-based heuristic that �nds good solution in

short time. The column-based IP can be formalized as follows.

Given:

Column l of encoding matrix E

G = (S;E;W ), the reduced graph with vertex set S equal to the state set of the

FSM, and edge set W with weights wi;j,

fCk, k = 1; 2; :::; nclassg, the indistinguishability classes after the assignment of l � 1

columns.

Minimize:

nsX
i=1

nsX
j=1

wi;j (ei;l � ej;l) (6.40)



168 CHAPTER 6. STATE ASSIGNMENT FOR LOW POWER

S1 S4

S3S2
9

2796

S1   0
S2   0
S3   1
S4   1

S1 S4

S3S2

276

18

18

S1   00
S2   01
S3   10
S4   11

(a) (b)

Figure 42: (a) Reduced graph and assignment of the �rst state variable (b) New
reduced graph and assignment of the second state variable

With constraints: 8><
>:
P

ei2Ck
ei � 2nvar�lP

ei2Ck
e0i � 2nvar�l

8Ck (6.41)

We clarify the IP formalism through an example.

Example 6.4.4. Consider the reduced graph in Figure 41. We select

nvar = 2. Initially, no state variable has been assigned, so all states belong to

the same indistinguishability class C1;1. We want to assign the codes for the

�rst state variable (the �rst column in the encoding matrix). Since we have

four states, the constraint Inequalities 6.41 require that we assign 0 to a pair

of states and 1 to the other pair. One assignment that minimizes (6.40) is

e3;1 = e4;1 = 1 and e1;1 = e2;1 = 0, as depicted in Figure 42 (a). 2

This approach reduces the size of the problem that must be solved at each step.

However, because the column-based IP solution does not consider the impact that

the choice of one state variable has on the other state bits, the solution is not globally

optimal. To improve the the �nal outcome, we can bias the decision at each step by

the results of preceding assignments. This is done by updating the weights in the

cost function after each variable (column assignment) using the following formula:
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wl
i;j = wi;j(d

(l�1)
i;j + 1) (6.42)

where di;j is the Hamming (Boolean) distance between the partially assigned codes

for states si and sj : d
(l�1)
i;j =

Pl�1
k=1 ei;k � ej;k

Example 6.4.5. In Figure 42 (b) the new weights after assignment of the

�rst variable are shown. The �nal solution is found by assigning the second

variable in a way that gives the minimum cost and distinguishes all states. This

is shown in Figure 42 (b). 2

The column based approach produces a simpler set of IP problems than the global

IP. Therefore, it can be successfully applied to a larger class of FSMs. Nevertheless,

the core computation is still an IP and the worst case complexityhas not been reduced.

For this reason, we propose an column-based algorithm whose worst-case complexity

is polynomial in the number of states.

6.4.2 Heuristic algorithm

We want to eliminate the exponential complexity still remaining in the column as-

signment step of the column-based IP approach. Therefore, we use a much simpler

heuristic that considers pairs of states and tries to assign the same state variable

value to states with high transition probability. We �rst describe the structure of the

proposed algorithm, then we discuss its rationale and performance. The pseudo-code

of the algorithm is shown in Figure 43.

The algorithm is based on a greedy choice of the constraint to satisfy; if it is

impossible to assign the same bit code to two states because an indistinguishability

class becomes too big, a di�erent code is assigned. The function select bit makes

a choice between two possible assignments based on the already assigned neighbor

states. Given a pair of states (or a single state), select bit calculates the total edge

violation (de�ned next) caused by the possible assignments (0 or 1) of the current
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assign(S) f

sort edges by weight in decreasing order;

foreach edge fsi,sjg f

/* consider pairs of states with high transition probability */

if(si and sj not assigned) f

if(no Class violations) f

/* if the number of states with the same bit code is not too high */

x=select bit(si,sj); /* chooses a code for the pair of states */

ei = x ej = x; /* the same bit code is given to both the states */

g

else f

x=select bit(si, sj);

ei = x; ej = x0; /* different bit codes are given to the two states */

g

g

else if(si or sj not assigned) f

sh=unassigned(si,sj); /* state whose bit code is unassigned */

sg=assigned(si,sj);

if(no Class violations) f

x=select bit(sh); /* choose a bit code for the unassigned state */

eh = x;

g

else

eh = e0

g; /* only one choice available because of the class constraints */

g

g

g

Figure 43: Heuristic algorithm for column-based state assignment

state variable for the codes of the two states. The total edge violation for a bit code

is de�ned as the sum of weights on all edges connecting one of the considered states

with other states that have already been assigned a di�erent bit code. The selected

bit code is the one resulting in a smaller edge violation. At the end of the outermost

iteration, the value (bit code) of the l-th state variable (corresponding to a column

of the encoding matrix) has been assigned for all states.

Example 6.4.6. For our simple STG, the greedy algorithm gives the same
result as the semi-exact IP based approach. In this case both heuristics �nd an
exact minimum for the cost function:

Cost = 6 � 1 + 9 � 2 + 27 � 1 = 51
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The minimality of the solution can easily be veri�ed by inspection; note that

the solution is not unique. 2

The structure of the algorithm is very simple and its execution time is always

small, in fact no backtrack mechanisms are present and we do not iterate to improve

a solution. The complexity of the algorithm is O(nsnedges). The dependence on

the number of states (ns) comes from the outermost iteration, while the dependence

from the number of edges (nedges) is due to the iteration needed in select bit to

compute the total edge violation. One can envision cases where the greedy choice

of the constraints leads to suboptimal solutions, but, in general, this heuristic gives

good results.

In particular, notice that if our heuristic is run on a reduced graph where all the

edges have equal weight, and nvar is chosen to be equal to ns, the �nal encoding will

be 1-hot (all states will have a single one in their codes and only one state will have

the all-zero code), the reason being that we force the largest indistinguishability class

to be reduced of at least one element at each step. 1-hot encoding is therefore a

particular case of the class of codes that we can generate with our algorithm.

The greedy heuristic can be improved. We could, for example employ local search

techniques like genetic algorithms [olso94] or simulated annealing to improve the

results. If we are not constrained to use the minimum number of state variables, as

is often the case, we can try di�erent solutions for multiple values of nvar. Although

increasing the number of state variables will likely violate fewer constraints, the nvar

should still be kept close to the minimum to avoid an explosion in complexity of the

combinational part of the FSM.

Another approach is to use the greedy heuristic for fast iteration over nvar to �nd

its optimal value. Once the best nvar has been found, more powerful and expensive

algorithms can be applied in order to improve the optimality of the result.

We have assumed that the FSM are given in state-transition table format. For
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FSM described by sequential networks, even the simple heuristic algorithms may not

be applicable, because the state table is too large to be extracted in a reasonable

time. In this case symbolic techniques similar to those presented in Chapter 4 should

be used. Hachtel et al. [hahe94] proposed a symbolic algorithm for re-encoding large

FSMs described by synchronous networks. When the initial speci�cation is a syn-

chronous network, re-encoding bypasses STG extraction step since it assumes that

the states are initially encoded (with the encoding provided by the initial speci�ca-

tion) and searches for a trans-coding function. The trans-coding function translates

the codes of the original encoding to the new codes of the low-power encoding.

6.4.3 Area-related cost metrics

Up to this point, we have used the weighted sum of the Boolean distances between

state codes as the cost function. This only minimizes the switching activity in the

sequential portion of the FSM (the 
ip-
ops). The overall power dissipation is also

dependent on the structure of the combinational part of the �nal synthesized FSM.

Neglecting area considerations in the cost function may lead to non-minimal area

implementations with total power dissipation close to that obtained using traditional

area-related state-assignment techniques. By adding an area-related secondary ob-

jective to our cost metric, we can keep the area of the combinational logic under

control.

To tackle this problem, we incorporated metrics for minimal area into our cost

function, similar to those proposed in MUSTANG [deva88] and later upon improved

in JEDI [lin89]. Two di�erent metrics are provided: a fanout-oriented metric, well

suited for FSMs with a small number of inputs and a large number of outputs, and a

fan-in-oriented metric that performs better in the opposite case.

Details of how the metrics are computed are presented in [deva88]. However two

points are worth remarking on:
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� The area constraints are expressed with edge weights exactly like the power

constraints, and we can allow speci�cation of di�erent trade-o�s in terms of

their relative importance according to the overall design objectives. To do that,

a new parameter � � 1 has been introduced, specifying the relative importance

of power with respect to area constraints. The edge weights on the reduced

graph are then calculated using the following equation:

wi;j = (1 � �)warea
i;j + �w

power
i;j (6.43)

where the weights wpower
i;j are calculated with the algorithms presented earlier,

while warea
i;j are calculated using the heuristics described in [deva88].

� Even if our edge weight calculation for area minimization is similar to the one

proposed in MUSTANG, our state assignment algorithm is column based, and

this allows to dynamically adjust the weights, resulting in a potentially more

e�ective state assignment.

In conclusion, to obtain low power dissipation in the �nal circuit, area must be

taken into account. However, our experiments have shown that using high values of

� in equation (6.43) typically give the best results, implying that there is a strong

correlation between the power-related cost metric and the actual power dissipation.

6.5 Implementation and results

We implemented the heuristic algorithm and applied it to some benchmark circuits.

We computed the total transition probabilities using the methods outlined in Chap-

ter 2. We then applied our state assignment algorithm, POW3, on the reduced

graph to obtain a state encoding. We then used the SIS [sent92] standard script

script.rugged to obtain a multi-level implementation of the state-assigned FSM.
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Circuit nvar Area Tot. trans. % St. trans. %
Jedi/POW3 Jedi/POW2 Red. Jedi/POW3 Red.

bbara 4 67 / 69 3630 / 3448 5 327 / 294 11
bbsse 4 126 / 131 8871 / 7970 11 1033 / 851 18

bbtas 3 25 / 25 2971 / 2690 10 610 / 456 26

dk14 4 120 / 114 7296 / 7083 3 1403 / 1104 22
dk17 5 76 / 77 5548 / 5463 2 1337 / 1081 19

dk512 5 67 / 87 7650 / 4825 38 2355 / 1538 35

don�le 5 102 / 214 5231 / 4573 14 1743 / 1378 21
planet 6 697 / 665 27859 / 19771 30 3204 / 1240 62

planet1 6 708 / 697 25735 / 16306 38 3205 / 1278 61
s1488 6 742 / 727 14073 / 13123 7 628 / 341 55

Table 8: Comparison between POW3 and JEDI after multiple level optimization.

We ran an area-oriented state assignment program, JEDI [lin89], on the same bench-

marks, following the same procedure to generate an implementation. The implemen-

tations were then simulated with random patterns using the MERCURY [dmc90], a

delay-based gate-level simulator, to measure the circuit activity, which gives a good

estimate of the power consumption of the real circuits. The results are shown in Table

8.

For all benchmarks, our state assignment algorithm produced circuits with less

switching activity than those produced by JEDI. In most cases, the area penalty

(linked to the number of literals in the network) was small.

Figure 44 compares area overhead with power reduction. If we call MminA the

minimal area implementation obtained with JEDI and MminP the minimal power

implementation obtained with POW3, the plot shows:

� The area ratio AMminP
=AMminA

(Literal increase).

� The total transition count ratio PTMminA
=PTMminP

(Decrease in total transi-

tions).
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Figure 44: Increase in area and decrease in transition count of the low-power imple-

mentation (for both the complete circuit and the state variables only).

� The state transition count ratio PSMminA
=PSMminP

(Decrease in state transi-

tions).

It is clear that if the area overhead is large, the reduction in power dissipation is less

signi�cant, thus showing that the power dissipated in the combinational part plays

an important role in the total power balance.

Figure 45 plots the average reduction in power dissipation as a function of the

number of state bits. The reader can observe that our methods produce in the

average better results for larger circuits, for which low power consumption is even

more important.

All results use transition count as the estimate of power, because we have not

mapped the circuits using a technology library. The algorithm described above is

intended to be a preprocessing step in a complete synthesis tool that includes a low-

power driven technology mapper, which we did not have. At this regard, notice that

the power in the combinational part of the FSM can be divided in power dissipated in

useful transition and glitch power. The reduced switching activity of the state lines
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Figure 45: Average power reduction as a function of the number of state variables.

can be used to decrease both these quantities, in fact the intuition suggests that a

network with low switching activity on part of the inputs and outputs could be syn-

thesized with also reduced internal switching activity. This is still an open problem,

but accurate power estimation techniques such as those presented in [tsui94b] could

allow combinational synthesis and library binding tools to exploit the low-activity

property of our state assignments.

The last column of Table 8 shows the reduction in switching activity on the state

lines. Note that if power dissipation in the memory elements is signi�cantly higher

than the power dissipated in combinational gates, the power reduction of our imple-

mentation becomes more signi�cant. Also, because the state lines have low activity,

algorithms for optimization of the combinational logic can exploit this information

for further power savings.

Two additional parameters help our algorithms in the search for optimal results.

First, we can control the number of state variables used in the encoding. In all the ex-

amples we tried, the minimumnumber of state variables gave the best result, because

increasing the number of state variables resulted in an area overhead that overcame
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the (small) reduction in average number of transitions on the state lines. Second,

our algorithms can accept di�erent values of the parameter �, controlling the relative

importance of power and area in the cost function. Our experiments with di�erent

values of � showed that setting � � :7 produced the lowest power implementations.

In fact, in some cases, setting � = 1 resulted in a �nal implementation that was

as small as the implementations obtained by using JEDI for state assignment. This

con�rms that the area-related cost metrics used are not very accurate, and more work

has to be done in order to better estimate the area of multilevel implementations.

6.6 Relationships with clock gating and decompo-

sition

There is no apparent connection between the state assignment problem and decom-

position or clock gating. However, the relationships among these problems are deep.

Let us consider FSM decomposition �rst.

The decomposition approach proposed in Chapter 5 is a based on partitioning the

state set S of the FSM. Consider for simplicity a two-way partition �(S) = fS1; S2g.

A state belongs to either S1 or S2: this is a binary decision. The key observation is

that a state variable can be used to distinguish the states [hart66]. If the state variable

has value 1, a state belongs to to S1, otherwise it belongs to S2. The code for a state

consists of two blocks: i) a set of state variables that identi�es the partition block Si

to which the state belongs and ii) a set of state variables that uniquely identi�es the

state within the partition block.

Chow et al. [chow96] recently proposed a low power decomposition approach based

on the relationship between state assignment and FSM decomposition. Compared to

the method proposed in Chapter 5, the method by Chow et al. has a smaller area
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overhead, a similar performance improvement but lower power savings. Our better

power saving are attributed to the fact that Chow et al. do not use gated clocks in

the decomposed implementation, while their smaller area overhead is due to the fact

that block encoding requires a smaller number of 
ip-
ops.

In Chapter 3 and 4 we proposed techniques for reducing the power dissipated when

FSMs are idle. State assignment is related to such techniques as well. Remember that

the key idea in Chapter 3 was to build a logic block that stops the clock when the FSM

is in a some of its self-loops. We can chose the codes of the states whose self-loops are

selected for clock gating in such a way that the implementation of the clock-control

circuitry has reduced size, delay and power dissipation. A similar problem has been

studied in the past and is known as symbolic input encoding [dmc86], a variation of

the general state encoding problem.

The key idea in the symbolic encoding approach is that it is possible to minimize

the number of cubes in the sum of products (SOP) representation of the activation

function by minimizing a representation where implicants contain state values that are

represented by symbolic names. The symbolic implicant list can then be minimized

by building a minimum-cardinality prime cover. It can be shown [dmc86] that the

cardinality of such cover is a lower bound for the cardinality of any cover of two-valued

implicants that can be obtained after state encoding.

After building the minimumsymbolic cover, we can perform state assignment. The

implicants in the cover induce constraints for state assignment: they restrict the choice

of state codes to those that do not impose the splitting of any symbolic implicant

into two or more two-valued ones. In other words, we select a state assignment that

guarantees the minimality of the SOP representation of the activation function. The

main practical problem with this idea is that when we choose state codes to minimize

the clock-control logic, we may produce sub-optimal logic in the combinational part

of the FSM. Thus, a marginal improvement in the quality of the clock-control logic
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may be swamped by the decreased quality of the much larger combinational part of

the FSM.

6.7 Summary

In this chapter, we have presented a general framework for state assignment for low-

power. Within that framework, we described a set of state assignment algorithms

targeting low power consumption, varying in their exactness and computational com-

plexity. We implemented one of the algorithms described, and ran it on standard

benchmark circuits. We found that it compares favorably with existing state as-

signment tools targeting minimal area implementations, achieving a 16% average

reduction of total switching activity, and a 34% average reduction of state variable

related switching activity. We also explored the trade-o�s between power-related and

area-related cost metrics in the context of our algorithm. Our results con�rm that

state assignment has a large impact on power dissipation in the overall circuit.

The framework we have developed is general enough to open the way for explo-

ration of new algorithms for the optimization of the FSMs combinational part that

take into account the reduced switching activity on the present state inputs (
ip-
ip

outputs). We believe that even larger power savings can be attained if new cost met-

rics are employed that relate more directly the power dissipated in the combinational

part with the codes assigned to the states. Moreover, the state assignment step should

be integrated with logic synthesis and library binding algorithms that can optimally

exploit the reduced switching activity of the state variable inputs.

Compared to the clock-gating techniques presented in the previous chapters, state

assignment produces in average lower power savings. This is a somewhat expected

result, because state assignments targets only the power consumption on state lines

while clock-gating techniques have been developed speci�cally for power minimization.
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More speci�cally, clock-gating technique allow to decouple to a greater extent power

optimization from area minimization, while state assignment has a strong in
uence

on area.

Interestingly enough, the problem of minimizing power on the state lines has a

mathematical model that allows us to formulate algorithms for its exact and heuristic

solution. When the power dissipation of the combinational logic is taken into account,

power minimization through state encoding becomes a much more complex problem,

for which we do not have a clean mathematical formulation. Nevertheless, state as-

signment for low power is still an interesting optimization, especially for conservative

design styles, where clock-gating techniques are not allowed.



Chapter 7

Conclusions

7.1 Thesis summary

Power dissipation is widely recognized as one of the hovering limiting factors to the

exponential performance growth of digital CMOS circuits. In this thesis we pre-

sented a set of techniques for the automatic synthesis of digital circuits with reduced

power dissipation. More speci�cally, we focused on the optimization of sequential

synchronous logic, exploiting the basic technique of clock gating.

We proposed strategies for the minimization of the wasted power (i.e. the power

dissipated in useless switching activity) as well as the reduction of the functional

power. Sizable reductions have been obtained in both cases, although the minimiza-

tion of wasted power is e�ective only for reactive system that remain idle for most of

the operation time.

All power-reduction techniques analyzed in this thesis have some cost in area

and/or timing. This is consistent with the characteristics of many engineering ap-

plications: optimization always involves trade-o�s. However, the increasing density

of modern VLSI circuits has lessened the importance of area as a cost metric, while

timing is still the most important �gure of merit. Fortunately, our techniques tend

181
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to have a much smaller impact on timing than on area and we are optimistic on their

practical relevance.

While Chapters 1 and 2 are dedicated respectively to a general introduction and

to background information, Chapters 3 to 6 contain the original contribution of our

work. We brie
y summarize their content.

In Chapter 3 we introduced the �rst 
avor of clock gating. We stop

the clock of a �nite state machine when the machine is idle and does

not perform any useful computation. A limited amount of circuitry is

added whose purpose is to detect the idle conditions (or a subset of them).

Although the detection circuitry increases the area and may increase the

delay, it reduces the power dissipation since its small size guarantees that

the additional power it dissipates is smaller than that saved by stopping

the clock for the original FSM. Moreover, some of the overhead can be

eliminated by re-optimizing the original FSM using the knowledge that

the clock will be stopped whenever the detection circuitry is active. The

application of clock-gating on benchmark FSMs demonstrated that for

reactive FMSs, power saving of more than 50% can be obtained, with

small area (15%) and speed (8%) penalty.

In Chapter 4 we extended the techniques introduced in Chapter 3 to deal

with larger sequential circuits. To this purpose we exploited algorithmic

tools for the manipulation of large-size Boolean and discrete functions,

namely BDDs and ADDs. Additionally, we investigated the relevance of

the input probability distribution on the e�ectiveness of the clock gating

procedures. The experimental results show that the results are compet-

itive with those presented in Chapter 3 but the scope of applicability is
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much increased. Moreover, we found that input statistics strongly in
u-

ence the power reduction achieved by our technique. This con�rms the

usefulness of the accurate computation of the activation probability of the

clock-stopping logic. The results obtained by the methods proposed in this

chapter are comparable to, if not slightly better than, those obtained in

Chapter 3. Power savings up to 40% have been obtained, with area over-

head around 8% and speed penalty of 8%. When pattern with reduced

transition activity are provided to the input of the gated-clock circuits the

power savings rise to 60-70% compared to standard implementations.

In Chapter 5 we introduced a more aggressive 
avor of clock gating

that enables power optimization even for systems that are never idle.

Clock gating is coupled with FSM decomposition to obtain an implemen-

tation where several sub-FSMs interact in a mutually exclusive fashion.

In other words, whenever a given sub-machine is active, it is the only

active one and it fully controls the input-output behavior of the circuit.

Periodically, the active sub-machine disables itself and enables another

sub-machine. The partitioning strategy targets the reduction of the inter-

face overhead and the minimization of the frequency of control transfer

among sub-FSMs. Experimentally we observed that the decomposition

approach is very e�ective in minimizing power consumption and it has

bene�cial side e�ects on speed. Unfortunately, the area overhead is quite

large. More in detail, power savings ranging between 16% and 43% have

been obtained, with a speed improvement averaging around 12% and area

overhead of 48% in average.

Finally, in Chapter 6 we investigated a more conservative technique for

power minimization that does not involve clock gating. Starting from
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a behavioral speci�cation of a �nite-state machine where the states are

identi�ed by symbolic names, we assign binary codes to the states so

as to reduce the power dissipation on the state lines and the 
ip-
ops.

The basic intuition is that we reduce the number of state variables with

di�erent values for pairs of states that have a high transition probability.

Our state assignment algorithm is very e�ective in reducing the average

switching activity of the state lines. Unfortunately, state encoding has a

strong e�ect on the area, delay and power dissipation of the combinational

logic of the FSM. To take such e�ect into account, we employ a hybrid cost

function that produces codes with reduced switching activity and keeps

the combinational logic under control. On a set of benchmark FSMs, the

power saving are in average around 16% with area and speed overhead

around 10%.

It is important to notice that the techniques we introduced are not mutually ex-

clusive: it is possible to apply them in cascade. For instance, we may �rst decompose

FSMs, then apply state assignment and �nally detect idle conditions. However, the

power reduction of the combined techniques would not simply add up. The reason

for this can be understood by observing that the techniques target slightly di�erent

classes of FSMs. While idle condition detection is very e�ective for reactive ma-

chines, decomposition gives best results for FSMs with high activity. Moreover, both

techniques are based on clock gating which is not allowed in some conservative design

styles. If clock gating is disallowed, state assignments is the only applicable technique.

In summary, we proposed a set of transformations that grants a good degree of


exibility. It is the designer's responsibility to choose the technique which is more

suitable for the application at hand and merges seamlessly in the design 
ow.
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7.2 Implementation and integration

The initial implementation of the techniques and algorithms presented in the previ-

ous chapters was in the form of point tools. Each tool was explicitly designed and

optimized to perform a single functionality, and had its own dedicated user interface.

While this implementation style is suitable for result collection and debugging, it is

highly uncomfortable from the end user point of view.

We believe that user interfaces and usage paradigms are one of the main factors

deciding the success of EDA tools (both for commercial and research applications).

Indeed, a large amount of implementation e�ort has been dedicated to providing an

uniform and e�ective user interface to the point tools described in this thesis and

several other tools for power estimation and optimization that have been developed

in our research group.

We have developed an integrated simulation and synthesis environment called

PPP (to be read \p cube") with a modular and highly interactive Web-based inter-

face [bbd96]. Geographically dispersed users can access our environment simply using

a standard Web browser. No download of executables or compilation is required for

testing the functionality of the tools and their performance. Many details of �le for-

mat translation and parameter settings are abstracted away and results are presented

through a simple and immediate graphical interface.

Integration of new features in the environment is simple and the selection of the

computing resources to be used for running the tools is done automatically. The

environment is intrinsically multi-user and distributed, but the end user does not

perceive the complexity of managing several concurrent user sessions and computing

resources.

The implementation of the distributed web-based environment and the optimiza-

tion tools has been done in C and PERL. C was used for the computationally intensive
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optimization tools, while PERL was used as \glue language" for �le format transla-

tion and for managing the interaction with the Internet. Although lines of code are

a poor measure of the amount of work, the implementation of the synthesis tools

required approximatively 20; 000 lines of code, while the user interface required ap-

proximatively 15; 000 lines of code. PPP is freely available for access over the Internet

and the source code of all its components is available as well.

7.3 Future work

Although a large body of research has been devoted to power optimization algorithms,

this area has not yet reached complete maturity. The main limitation of the current

power optimization techniques (including ours) is that they operate at a low level

of abstraction. Even if we can reduce the power of a sequential unit by a factor of

two, such reduction is obtained on a small portion of the entire system. Moreover,

it is often claimed [raba96] that much larger power savings are possible if power

optimization is performed at the system level or the algorithmic level.

The next generation of power optimization tools must rise the level of abstraction

and the generality of the transformations. Modern system and appliances consist

large part of commodity components that cannot be re-designed for cost and time-

to-marked reasons. Even at the chip level, the use of optimized macros (such as

memories, functional units, full microprocessor cores) is becoming widespread. Fine-

grain optimization techniques like the ones we presented will always have a place in

the design 
ow, but the most signi�cant power savings will be obtained at the system

level, where the granularity of the optimizations is much coarser.

An industry-promoted speci�cations for systems with advanced power manage-

ment capabilities has been recently published [ACPI96]. An important assumption
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in such speci�cation is that hardware producers will provide components with a stan-

dardized power management interface. From the system perspective, it will be possi-

ble to dynamically set such components in several operation modes on the trade-o�

curve between performance and power dissipation. The di�usion of power-managed

commodity hardware components opens a huge window of opportunity for system-

level CAD tools, which can automatically generate an optimal power management

strategy that minimizes the total power dissipation of a large system.

For systems with a predictable workload, system level power optimization can be

done at design time. Extensive research and modeling e�ort is needed to develop

algorithms that can automatically and e�ectively perform this task. An even more

exciting challenge is the synthesis of dynamic schedulers that adaptively change the

mode of operation of system components based on non-stationary workload, thermal

control and battery conditions.

As system designers become more conscious of power dissipation issues and an

increasing number of power-optimized commodity components is made available, the

new generation of power optimization tools is expected to choose and manage such

components, and guide the system designer towards power-e�cient implementation.

Numerous unsolved problems and open issues pave the road towards system-level tools

for power optimization, but we believe that this is the main direction of research and

evolution for the next few years.
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Appendix A

Testability of gated-clock circuits

With the exception of state assignment (Chapter 6), all power minimization tech-

niques presented in this thesis rely on clock gating to reduce switching activity. The

main reason for using gated clocks is that they reduce power not only in the functional

logic of the units whose clock is stopped, but also in the clocking circuitry itself.

On the other hand, gated clocks are regarded with suspect by many designers and

explicitly disallowed in some conservative design styles. There are two reasons for

this. First, clock gating requires the insertion of some logic on the clock distribution

tree and increases clock skew. This issue was discussed in Chapter 3. Second, it

is a common conception that gated clocks decrease testability. In this appendix we

brie
y discuss the testability issues raised by clock gating and we propose simple and

e�ective solutions for designing highly-testable gated-clock circuits. Refer to [fava96]

for a detailed treatment.

A.1 Testability issues

We adopt the stuck-at logical fault model to represent physical faults. Moreover,

we focus on static single-fault testability, disregarding transient, intermittent and

202
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multiple faults. In the following, a fully testable FSM is one in which there exist a

test sequence that reveals any given single stuck-at fault.

The automatic synthesis of fully testable FSMs is considerably more di�cult than

the synthesis of testable combinational logic, nevertheless e�ective tools have been

developed and are commonly used in industrial and academic [deva91, cho93] envi-

ronments.

In many practical cases, full testability for single stuck-at faults is considered a

minimum safety requirement. We will show that the addition of clock-gating circuitry

makes the FSM not fully testable. Assume that we have modi�ed our original FSM

implementation by adding the clock-gating circuitry. Let us consider a s-a-0 fault

on the output wire of the activation function. In this case, the clock will always be

enabled, and the FSMs will have the same behavior as in the original implementation.

Observing the outputs, it is not possible to detect the fault. The same problem occurs

for faults in the internal logic of the activation function that can be propagated

only making the output of the activation function 0 for an input con�guration that

produces a 1 in the correct circuit.

In general, we cannot reveal a fault � that transforms the activation function fa

into a faulty function f�a with a smaller ON-set.

f�a � fa ! � is untestable (A.44)

This property implies the existence of at least one untestable fault in the gated-

clock FSM (the s-a-0 on the output of fa). The gated-clock FSM is never fully

testable.

While the existence of untestable faults in the activation function logic is quite

intuitive, it may be possible to overlook that the insertion of clock-gating circuitry can

decrease the testability of the combinational logic of the FSM as well. The activation

function is active (one) in a sub-set of the self-loops. If a testable fault in the original
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Gated-clock implementation.

FSM can be tested only with input sequences that imply traversing a self-loop in the

ON-set of the activation function, the fault becomes untestable in the gated-clock

FSM. This statement can be clari�ed through an example.

Example A.1.1. In the FSM of Figure 46(b), consider a s-a-0 fault on wire
A. In the original FSM, the fault is testable. Assuming that the initial (reset)
state is 0, an input sequence that reveals the fault is (11; 01).

The s-a-0 fault on A is untestable in the gated-clock version of the FSM shown

in Figure 46(c). The input value required at the AND gate to activate the

fault is 01, but this value never appears on the output of the 
ip-
ops. This is

because the activation function is high when IN1 and the state are both one.

When the activation function is high the clock is stopped and the value required

for the activation of the fault is not propagated to the output of the 
ip-
ops.

2

We call I the set of possible input values for the combinational logic of the FSM.

The presence of the activation function reduces the size of set I. In other words, the
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controllability don't care set for the combinational logic of the FSM is increased, and

we can exploit only a subset of the STG arcs to generate test vectors.

In application where testability is a primary requirement, the untestable faults

generated by the clock-gating logic are not acceptable. We will show that it is pos-

sible to generate testable gated-clock FSMs with minimum overhead and no loss in

performance. We will assume that the original FSM is fully testable, because in the

following discussion we want to focus only on untestable faults that are created by

the insertion of the activation function.

A.2 Increasing observability

We �rst address the problem of the s-a-0 untestable fault on the output of fa. Since

we have shown that it is impossible to propagate the e�ect of such fault to the output,

the only way to solve the problem is to increase the observability. If we make the

output of the activation function observable, the s-a-0 fault becomes trivially testable:

any input-state con�guration in the ON-set of the activation function is a valid test

vector.

The penalty of increasing the observability is due to additional wiring needed to

route the output of fa to the closest observation point, or to an additional scan 
ip-


op in full-scan designs. These requirements are not excessive, especially for large

FSM. We call observability increase the addition of one observable output in the FSM.

Notice that the combinational logic of the FSM and the activation function are not

modi�ed.

The observability of fa makes the generation of tests for faults in fa not harder

than the test generation for faults in the combinational logic of the original FSM. This

can be intuitively understood observing that the inputs of the activation function are

exactly the same as those of the combinational logic of the original FSM (anticipated
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by one clock cycle). Notice that the inputs of the activation function do not come from

the output of conditionally enabled 
ip-
ops, therefore they can assume any value

in the original set of allowed input values. If the activation function is synthesized

without internal redundancies, the presence of the additional observation point is

su�cient to guarantee its full testability.

While the use of an additional observation point solves the problem of testing the

activation function, it still does not guarantee full testability of the gated-clock FSM,

as we can see in the following example.

Example A.2.2. Consider the gated-clock FSM of Figure 46(c). Requiring

the observability of fa guarantees the testability of the s-a-0 fault on its output.

Unfortunately, the s-a-0 fault on line A is still untestable. The only input-state

con�guration that reveals it is never observed by the inputs of the combinational

logic of the FSM, because the activation function freezes the clock when it

occurs at 
ip-
op inputs. 2

The gated-clock FSM with increased observability is not fully testable because

even if the additional observation point makes the activation function irredundant, it

does not improve the testability of the combinational logic in the FSM. The activation

function reduces the set I of allowed input values to a set I 0 � I. We assumed full

testability of the original FSM when the full I can be used for test generation, but

nothing can be said on testability with respect to I 0. Insertion of more observability

points is not a viable solution, because the untestable faults are caused by the lack

of fault activation conditions.

Fortunately, we can solve this problem employing the same tools used for the

synthesis of the original fully testable FSM. Synthesis for testability of FSMs can be

performed using standard redundancy removal techniques [cho93]. It is important to

notice that redundancy removal can be applied to the gated-clock circuits only after

the activation function has been made observable. If this is not the case, redundancy

removal may eliminate the clock gating circuitry because it is functionally redundant.
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Example A.2.3. In the gated-clock FSM of Figure 46(c) the s-a-0 fault on

wire A is untestable. The redundancy removal algorithm detects it ad replaces

wire A with a connection to the constant value 0. The constant can then be

propagated to further simplify the circuit. The OR gate on the output can

then be eliminated, and the and gate whose output has been blocked at 0 can

be removed as well. The �nal optimized circuit is shown in Figure 47. It is not

only fully testable, but has also better performance that the original gated-clock

FSM, in terms of area, delay and power dissipation. 2

A.3 Increasing controllability

Eliminating redundancy from a gated-clock FSM with increased observability is an

e�ective way to obtain fully testable implementation with improved performance.

Unfortunately, there are two important cases in which this procedure cannot be ap-

plied.

First, in many applications the combinational logic of the machine consists of

blocks that cannot be modi�ed. This is often the case when gated-clock synthesis is

applied to data-path circuits: the combinational logic may consist of adders, multi-

pliers, comparators or other standard components implemented by highly optimized

cells that the designer is not allowed to modify. Faults inside the standard components

may become untestable and they cannot be removed. Second, the redundancy removal
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process may become very computationally expensive. If the redundancy removal al-

gorithm fails, we do not have guarantees on the testability of our implementation.

This is an unacceptable limitation for a general design methodology.

These problem can be avoided by adding an extra controllability input CT that

inhibits the e�ects of the gating, as shown in Figure 48. When such input is set at

logic 1, the combinational part of the FSM can be tested without worrying about the

e�ects of the activation function. When the activation function becomes active, the

clock is not stopped if CT = 1, and the 
ip-
ops of the FSM sample the input and

state value. Thus, the allowed input set I is exactly the same as the one of the original

FSM. The availability of the complete I guarantees that no untestable faults exist

in the combinational logic (under the assumption of full testability for the original

FSM). If the activation function is observable (through the observability output OB),

we can also guarantee the full testability of fa, as discussed in the previous section.

The insertion of an additional controllability input has two advantages. First,

since we do not need to modify the combinational logic of the FSM in the gated-clock

version, the test set developed for the original FSM can be used to test the gated-clock

FSM as well. More test vectors can just be appended to fully test the activation func-

tion. Second, while testing the gated-clock FSM without added controllability may



A.4. SUMMARY 209

be substantially harder than testing the original FSM, the test generation process in

the added controllability case is generally very e�cient. The reason for this di�erence

is that a large amount of time is spent in the �rst case to prove the untestability

of redundant fault, and to subsequently remove the redundant wires, while the FSM

with added controllability does not have redundant faults (if the original FSM is fully

testable).

A.4 Summary

We proposed two transformations that solve the testability problems of gated-clock

circuits. The �rst transformation, namely increased observability, allows the synthesis

of fully testable gated-clock circuits with improved performance and it is applicable

when the designer is allowed to modify the internal structure of the logic network

whose clock has been gated. The test generation and redundancy removal steps for

increased observability circuits are computationally expensive and should be applied

in aggressive implementations.

The second transformation, namely increased controllability and observability,

guarantees the full testability of the gated-clock circuit if the initial implementation

was fully testable. This transformation is slightly more expensive than the previous

one but does not require any modi�cation of the logic in the gated-clock sub-system.

Moreover, the test generation process is does not require substantially higher compu-

tational e�ort compared to the original implementation.

Both transformations can be seen as customized scan-based approaches [abra90].

Increasing controllability and observability is equivalent to assuming that the latch

in the clock gating circuitry is transformed in a scan-latch and inserted in the scan

chain. However, we presented the transformation in a more general setting, where

scan-based design for testability may not be enforced in the entire design.


