az United States Patent

Tang et al.

US009971862B2

US 9,971,862 B2
May 15, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71

(72)

(73)

")

(21

(22)

(65)

(60)

(51

(52)

(58)

PATTERN-BASED FPGA LOGIC BLOCK
AND CLUSTERING ALGORITHM

Applicant: ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE
(EPFL), Lausanne (CH)
Inventors: Xifan Tang, Lausanne (CH);
Pierre-Emmanuel Julien Marc
Gaillardon, Renens (CH); Giovanni De
Micheli, Lausanne (CH)
Assignee: Ecole Polytechnique Fédérale de
Lausanne (EPFL), Lausanne (CH)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 17 days.

Appl. No.: 14/808,506

Filed: Jul. 24, 2015

Prior Publication Data
US 2016/0063168 Al Mar. 3, 2016

Related U.S. Application Data

Provisional application No. 62/041,716, filed on Aug.
26, 2014.

Int. CL

GO6F 17/50 (2006.01)

UsS. CL

CPC ... GO6F 17/5077 (2013.01); GO6F 17/5054

(2013.01)

Field of Classification Search
CPC GOG6F 17/5045; GO6F 17/5054; GO6F
17/5077

(Continued)

Partern-based Logiv Block

(56) References Cited

U.S. PATENT DOCUMENTS

6,725,442 B1* 42004 Cote GO1B 31/318519
716/100
7,725,867 B2* 5/2010 Gude HO3K 19/1737
716/128

(Continued)

OTHER PUBLICATIONS

D. Lewis, V. Betz, D. Jefferson, and et al, The Stratix TM Routing
and Logic Architecture, ACM/SIGDA International Symposium on
FPGAs, 2003, pp. 12-20.s.

(Continued)

Primary Examiner — Paul Dinh
(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.

(57) ABSTRACT

A routing architecture for fast interconnections between
Look-Up Tables (LUTs) in a group of Basic Logic Flements
(BLESs), whereby a size of the group ranges from 1 to k+1,
where k is the number of inputs of a LUT, and LUTs in the
group are indexed from 1 to k+1, and whereby (a) an output
of a LUT,, 1=i=k, connects to one of the inputs of routing
multiplexers of LUT),, i<j=k+1, hence creating a fast inter-
connection between LUTs, each routing multiplexer of
LUT,,, 2sms=k+1, has only one input that is connected to the
output of an other LUT, the output of LUT ;, ,, being devoid
of any connection to any one of the inputs of the routing
multiplexers; (b) a subset of the inputs of LUT, are con-
nected to the outputs of other LUTs by means of fast
interconnections, leaving the remaining inputs of LUT, free
of any fast interconnection, whereby for LUT,, 2sp=k+1,
p-1 inputs of the LUT, are connected to the outputs of
LUT,, 1=qs=j, by means of fast interconnections; and (c) a
cluster-based logic block contains at least one group of
LUTs.

7 Claims, 4 Drawing Sheets

Tocal | | gl ™ LS T
Routing | feerd |
1P s DH ' " OPIV
. i
| i
|
IPIN [
- OPIN
N [
i
. OPIN

US 9,971,862 B2
Page 2

(58) Field of Classification Search
uspC 326/38, 40-41; 716/100, 126, 128;
320/40
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,924,053 B1* 4/2011 Kaptanoglu HO3K 19/177
326/41

2007/0164785 A1* 7/2007 He ...ccovvnvinnnn GOGF 17/5054
326/41

2009/0167349 A1* 7/2009 Madurawe HO3K 19/1736
326/40

2009/0243652 A1* 10/2009 Dorairaj G11C 7/1006
326/38

2013/0093460 Al1* 4/2013 Voogel HO3K 19/17744
326/38

OTHER PUBLICATIONS

K. Wang, M. Yang, L. Wang, X. Zhou, and J. Tong, 4 Novel Packing
Algorithm for Sparse Crossbar FPGA Architectures, International
Conf. on Solid-State and Integrated-Circuit Technology, 2008, pp.
2345-2348.

G. Ni, J. Tong and J. Lai, A New FPGA Packing Algorithm Based
on the Modeling Method for Logic Block, IEEE International Conf.
on ASICs, 2005, pp. 877-880.

E. Ahmed, J. Rose, The Effect of LUT and Cluster Size on Deep-
Submicron F'PGA Performance and Density, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 12, No. 3, 2004,
pp. 288-298.

V. Betz and J. Rose, Cluster-Based Logic Blocks for FPGAs:
Area-Efficiency vs. Input Sharing and Size, IEEE Custom Integrated
Circuits Conf., 1997, pp. 551-554.

A. Marquardt, V. Betz, and J. Rose, Using Cluster-Based Logic
Blocks and Timing-Driven Packing to Improve FPGA Speed and
Density, ACM/SIGDA International Symp. on FPGAs, 1999, pp.
37-46.

E. Bozorgzadeh, S. Memik, X. Yang, and M. Sarrafzadeh, Routabil-
ity-driven Packing: Metrics and Algorithms for Cluster-Based
FPGAs, Journal of Circuits Systems and Computers, vol. 13, No. 1,
2004, pp. 77-100.

A. Singh, G. Parthasarathy, and M. Marek-Sadowksa, Efficient
Circuit Clustering for Area and Power Reduction in FPGAs, ACM
Trans. on Design Automation of Electronic Systems, vol. 7, No. 4,
2002, pp. 643-663.

G. Karypis and V. Kumar, Multilevel K-Way Hypergraph Partition-
ing, DAC, 1999, pp. 343-348.

D. Chen, K. Vorwerk, and A. Kennings, Improving Timing-Driven
FPGA Packing with Physical Information, International Conf. on
Field Programmable Logic and Applications, 2007, pp. 117-123.
J. Rose, J. Luu, C.-W. Yu, O. Densmore, J. Goerders, A. Somerville,
K.B. Kent, P. Jamieson and J. Anderson, The VIR Project: Archi-
tecture and CAD for FPGAs from Verilog to Routing, ACM/SIGDA
International Symposium on FPGAs, Feb. 2012, pp. 77-86.

J. Luu, J. Rose, J. Anderson, Towards Interconnect-Adaptive Pack-
ing for FPGAs, ACM/SIGDA International Symposium on FPGAs,
2014, pp. 21-30.

J. Luu, J. Anderson, and J. Rose, Architecture Description and
Packing for Logic Blocks with Hierarchy, Modes and Complex
Interconnect, ACM/SIGDA International Symposium on FPGA,
2011, pp. 227-236.

G. Lemieux, E. Lee, M. Tom, A. Yu, Directional amd Single-Driver
Wires in FPGA interconnect, IEEE International Conference on
Field Programmable Technology, 2004, pp. 41-48.

S. Yang, Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0, MCNC, Jan. 1991.

W. Feng, K-way Partitioning Based Packing for FPGA Logic
Blocks without Input Bandwidth Constraint, Int’l Conf. on Field
Programmable Technology, 2012, pp. 8-15.

* cited by examiner

U.S. Patent May 15, 2018 Sheet 1 of 4 US 9,971,862 B2

Logic Block
_____________________________ :
l
DFF
IPIN O |:| |- 1 OPIN
_____________________________ |
IPIN Lo "' i
oca L 1
LUT DFF
Routing| == "V T_D:ij OPIN
| 1
IPIN O \BLE2 |] !
————————————————————————————— 1
IPIN O — |
L |
—] LUT DFF
— _l_D-:—:] OPIN
! 1
\BLEINI e ____ !
Figure 1
@
LUT DFF —~ 1| Lur DFF |1
!]
e np——
BLE
(b) 1 i :"_L;T ____________ |
LUT DFF ' L |
| EUT HT e DFF |
== | oo H B ey eyl
BLE 1
LUT BLEO o
Before Pre-pack After Pre-pack

Figure 2

U.S. Patent May 15, 2018 Sheet 2 of 4 US 9,971,862 B2

(@) ino injig infk (b)) inig ino iniky

ino 3(—_ ;
@ <=>)s@zno \ 3(

(c) inO\ insikfu ino\ in;I(..k-Ij (d)in{)‘ infi. ' mg[é"k-l]
S X <= deo.0%

(¢) ino in[1.k-1j inf1.k1

—\ ino
o—s0
QO =kLUT, k21

Figure 3

U.S. Patent May 15, 2018 Sheet 3 of 4 US 9,971,862 B2

™ o
- [— - -

- -~ - -
\\\\\

(@) / u:t;) m[l k] ing1.e (b) / mo infi.x inga s,
\
D zné)

“‘-- _.-—’

ino ini

N

ing.x —b@

S
-

inp2.k1] 50 (3) inp2.i175%9(3)

LUTs Pattern-(X-1)

ino Eim ino N\ P2

in[z..k-zj-\-’@ Infx-1.k-1] -‘-D@
O =kLUT k22 QO =kLUT k2x-1

Figure 4

U.S. Patent May 15, 2018 Sheet 4 of 4 US 9,971,862 B2

Pattern-based Logic Block

Local | | g T e iy
Routing pood " !
IPIN T h\ 6 LUT D¥F N H opiv
I
!
IPIN] BLE2 |
1
6-LUT !
’ :] OPIN
(
IPIN (]| | —————SSSnnd | l
PN BLE7 i
\
i 0PIV
|
l
Figure 5
— GenLib o~ ABC — ! GenLib o~ ABC
(LUT area&kdelay) _ge,,mj (Logic Synthesis) (LUT area&kdelay) .genlﬁ) (Logic Synthesis)
_ b[,‘fl y bif
SRR, AR _VPR Pattern-based CLB | @1 | Pattern-Based
i | i Architecture o Packer
FPGA Architecture [! AA-Pack |
Description g ¥ : nety VPR
(Std./Pattern) : r— i i . [——— A
: S i Pattern-based | X1 Versatile !
* :l_ - __?E‘i‘i‘i&‘i‘ilf_““i FPGA Architecture : Place&Route i
* b
Timing info Area&Delay Timing info ;
(HSPICE) Results | (HSPICE) Area&Delay
Results

Figure 6

US 9,971,862 B2

1

PATTERN-BASED FPGA LOGIC BLOCK
AND CLUSTERING ALGORITHM

The present application claims priority from U.S. provi-
sional patent application having the Ser. No. 62/041,716,
filed on Aug. 26, 2014, which is incorporated herein by
reference.

TECHNICAL FIELD

The invention is in the field of Field Programmable Gate
Array (FPGA) architectures.

1. Prior Art

Field Programmable Gate Arrays (FPGAs) are highly
customizable digital circuits and represent a viable and
economical solution in Non-Recurring Engineering (NRE),
as compared to Application Specific Integrated Circuits
(ASICs). To ensure a high programmability level, modern
FPGA architectures use cluster-based logic blocks, com-
posed of a number of Basic Logic Elements (BLEs) [1].
Inside logic blocks, BLEs are fully connected by local
routing multiplexers. To improve the efliciency of logic
blocks, previous works [2] [3] [4] focused on de-populated
local routing multiplexers. However, very limited works
investigate the efficiency of BLEs.

A Basic Logic Element (BLE), consists of a Look-Up
Table (LUT), a D Flip-Flop (DFF), and a 2:1 multiplexer. It
can work in either combinational or sequential mode. FPGA
clustering algorithms pre-pack LUTs and DFFs into BLEs
and then group BLEs into logic blocks [1].A BLE has only
one fanout, which forces combinational output of LUTs to
pass through the 2:1 multiplexer before reaching the local
routing. This imposes strong limitations on the clustering
algorithm during the pre-packing. In circuits with short
critical paths, for example control-intensive circuits, the
BLE architecture prolongs the critical path and reduces the
performances significantly.

The present patent application aims at proposing

(i) a novel scalable logic block organization called pat-

tern-based logic block. Based on the cluster-based logic
block architecture, we investigate the different inter-
connection patterns that may exist between LUTs. We
then realize a hardware support for those patterns by
creating groups of LUTs with fast combinational short-
cuts. To fully unlock the performances of the new logic
block structure, we introduce

(ii) a pattern-based clustering algorithm, able to efliciently

take advantage of the fast combinational paths. Joint
efforts of pattern-based logic block and clustering algo-
rithm contribute to a 16% performance gain, an 8%
wire length reduction with a 3% area overhead com-
pared to a conventional FPGA architecture at 40 nm
technology node for a set of large control-intensive
benchmarks.

SUMMARY OF INVENTION

In a first aspect, the invention provides a routing archi-
tecture for fast interconnections between Look-Up Tables
(LUTs) in a group of Basic Logic Elements (BLEs),
whereby a size of the group ranges from 1 to k+1, where k
is the number of inputs of a LUT, and LUTs in the group are
indexed from 1 to k+1, and whereby

(a) an output of a LUT,, 1=i=<k, connects to one of the

inputs of routing multiplexers of LUT), i<j<k+1, hence

15

20

30

35

40

45

50

55

60

65

2

creating a fast interconnection between LUTs, each
routing multiplexer of LUT,,, 2=m=k+1, has only one
input that is connected to the output of an other LUT,
the output of LUT 4, ,, being devoid of any connection
to any one of the inputs of the routing multiplexers;

(b) a subset of the inputs of LUT, are connected to the
outputs of other LUTs by means of fast interconnec-
tions, leaving the remaining inputs of LUT, free of any
fast interconnection, whereby for LUT,, 2=p=k+1, p-1
inputs of the LUT, are connected to the outputs of
LUT,, 1sqsj, by means of fast interconnections;

(c) a cluster-based logic block contains at least one group
of LUTs.

In a preferred embodiment, all the inputs of the LUT,, ,
are connected to the outputs of LUT,, 1=n=k, by means of
fast interconnections.

In a further preferred embodiment, the fast interconnec-
tions between LUTs are implemented by multiplexers.

In a further preferred embodiment, the fast interconnec-
tions are arranged to create a layer comprising 2:1 multi-
plexers between the existing local routing architecture and
LUT inputs; one of the inputs of the 2:1 multiplexers is
connected to the output of a LUT; an other of the inputs of
the 2:1 multiplexer is connected to an output of the local
routing architecture. Additional memory bits are comprised
for the 2:1 multiplexers, thereby producing an area over-
head.

In a further preferred embodiment, the fast interconnec-
tions are arranged to be merged into the local routing
architecture; the size of at least one of the multiplexers in the
local routing architecture is increased by 1 for the fast
interconnections; and the output of the at least one multi-
plexers are respectively connected to pre-determined LUT
inputs by means of a fast interconnection.

In a second aspect, the invention provides a method of
clustering algorithm suitable for exploiting the routing archi-
tecture described herein above, which packs Look-Up
Tables (LUTs) of the routing architecture into logic blocks
according to at least the following steps:

(a) in a pre-pack stage, add additional LUTs working as
buffer, only for the LUTs whose fanouts are larger than
the size of LUT groups;

(b) instantiate an empty logic block;

(c) find candidate groups of LUTs that the logic block is
enabled to accommodate;

(d) select a best fit group of LUTs by calculating a cost
function’s attraction;

(e) place the candidate groups of LUTs identified in the
step of finding candidate groups, in a logic block;

(f) cause a router to check if nets are mapped into the
routing architecture, and
(1) if a net is mapped, run step (c) iteratively until the

logic block is full or there is no candidate group, and
(ii) if a net fails to be mapped, record the failure, run
step (¢) to try an other candidate;

(g) when the current logic block is full, start from step (b)
with a new empty logic block, unless all the LUTs are
packed.

BRIEF DESCRIPTION OF THE FIGURES

The invention will be better understood in view of the
detailed description of preferred embodiments and in refer-
ence to the drawings, wherein

FIG. 1 illustrates the architecture of a classical cluster-
based logic block according to prior art;

US 9,971,862 B2

3

FIG. 2 illustrates a step of pre-pack according to prior art,
wherein LUTs and DFFs are packed into BLEs;

FIG. 3 illustrates all possible interconnection cases
between 2 k-L.UTs and demonstrates the pattern covering all
possibilities;

FIG. 4 illustrates all possible interconnection cases
between 3 k-LLUTs and demonstrates the pattern covering all
possibilities;

FIG. 5 contains a schematic of a pattern-7 logic block; and

FIG. 6 shows an EDA flow comparison: (a) Standard
EDA flow (b) Pattern-based EDA flow.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

II. Background In this section, the classical
cluster-based logic block architecture and clustering
algorithms are reviewed.

A. Classical Cluster-Based Logic Block

Modern FPGAs use an island-style architecture, where
logic blocks are surrounded by pre-fabricated routing
resources. The logic block themselves are composed of
Basic Logic Elements (BLEs) and a fully interconnected
local routing [1]. FIG. 1 illustrates the architecture of a
classical cluster-based logic block. A cluster-based logic
block consists of a number N of BLEs. Each BLE contains
a k-input LUT, a DFF and a 2:1 multiplexer. A BLE realizes
fine-grain combinational or sequential operations. Its mode

of operation (combinational or sequential) is controlled by 3

the 2:1 multiplexer. Local routing, composed of a large set
of multiplexers, can route any outputs of BLEs to their
inputs, enhancing the inner logic block routability. The logic
block features I inputs that come from the global routing.

Given k and N, setting I=k(N+1)/2 ensures that 98% BLEs 3:

are utilized on average [5]. To efficiently pack LUTs and
DFFs into cluster-based logic block, clustering algorithms
are of fundamental importance.
B. Clustering Algorithm

Modern FPGA clustering algorithms can be grouped into
two categories: seed-based and partition-based. Seed-based
clustering algorithms select a seed BLE with the highest
criticality, pack it into a logic block and continue to absorb
BLEs until the logic block cannot accommodate any more.
Different seed-based packers use different criticality and
attraction functions to achieve diverse objective efliciencies.
VPack [6] aims to absorb as much nets as possible. T-VPack
[7] adds critical path optimization. To improve routability,
T-RPack [8] and iRAC [9] absorb low-fanout nets. Partition-
based clustering algorithm, such as PPack [10] and T-PPack
[10] depends on a graph partitioner [11] to cut the circuits
into small parts and then modify the results to fit CLB
capacity. HD-Pack [12] carries out seed-based clustering
algorithm after a virtual placement with graph partitioner.
Nevertheless, the above packers only support classical logic
blocks [1]. Developed for general purpose packing, AA-
Pack [14] adapts the techniques used in HD-Pack, iRAC and
TV-Pack to pack heterogeneous logic blocks and supports
flexible local routing architectures inside the logic blocks,
bringing novel opportunities to study the inner logic block
routing. Therefore, we focus on introducing AA-Pack.

AA-Pack groups LUTs and DFFs into logic blocks in two
steps. In the first step, called pre-pack, LUTs and DFFs are
packed into BLEs, as shown in FIG. 2. Note that in FIG.
2(b), an additional BLE has to be created due to the limited
fanout of the BLE architecture [1]. In combinational mode,
the pre-packing step increases the critical path. Indeed, the

15

20

40

45

60

65

4

LUT output has to pass through the 2:1 multiplexer before
reaching the local routing, while additional LUTs may be
inserted to accommodate large fanouts. In circuits with short
critical path, for instance control-intensive circuits, the criti-
cal path can be prolonged significantly. After pre-pack,
timing analysis is carried out and timing slacks are marked
for each BLE, preparing for timing-driven clustering. AA-
Pack 7.0 con- ducts accurate timing-analysis by considering
the architecture physical information and modeling the
inner-cluster delay and inter-cluster delay. In the second
step, AA-Pack pack BLEs into logic blocks. It starts by
initializing an empty logic block, then chooses a seed and
uses an attraction function to select the candidate block, B,
to fill in. The attraction function is composed of two parts:

Attraction=cortiming_criticality(5)+(1-c)-area_attrac-

tion(B) (1)

The first part is used in TV-Pack [7] as criticality and the
second is the attraction function used in AA-Pack 6.0 [13].
The parameter a yields good performance [13] when sets to
0.75. When two candidates B1 and B2 have the same
attraction, AA-Pack selects the one with largest number of
critical/near critical paths, called PathAffects [1], passing
through. If the two candidates have the same PathAffects,

5 AA-Pack selects the one with largest depth from critical path

source, called D__,,,...[1]. In AA-Pack 7.0, each time the most
“attractive” candidate is chosen, a local router is specula-
tively called to determine whether the candidate can be
accepted. When the logic block is full, AA-Pack starts
another iteration until all BLLEs are packed. Besides, AA-
Pack 7.0 enhances routability by intra-logic block place-
ment, which is out of the scope of this paper, and thus not
discussed.

II1. Pattern-Based FPGA Logic Block

In this section, we introduce our novel pattern-based
FPGA logic block architecture. Patterns are defined as
groups of LUTs, among which there exist fast combinational
interconnections. In the first part, we investigate the com-
binational interconnections among LUTSs. In the second part,
the new logic block architecture is presented.

A. Combinational Interconnection Patterns
To improve the routing of combinational paths, we study

the different interconnection possibilities between LUTs. We

first formulate the following characteristics of LUTs:

C1) all the inputs of a LUT are logic equivalent, and thus are
swappable.

C2) LUTs (actually any combinational logic gate) cannot
have combinational loops, which means that the intercon-
nections among LUTs are acyclic.

C3) Any two inputs of a LUT (actually any combinational
logic gate) cannot share the output of a same LUT,
otherwise these shared inputs can be reduced to one.

C4) Combining C2 with C3, there should be only one
combinational connection between two LUTs.

Thanks to the above characteristics, the number of com-
binational interconnection patterns between L.UTs is limited.
We define M as the size of the pattern. It corresponds to the
number of LUTs involved in the pattern. Note that we limit
our study to k=M. In the following, we study the cases of
pattern-2 and pattern-3, then we generalize to pattern-M.
1) Pattern-2: FIG. 3 illustrates all possible interconnection

cases between two k-LUTs and demonstrates the pattern

covering all possibilities. More specifically, FIGS. 3(a)

and 3(b) contain 2 k-LUTs that are directly connected;

FIG. 3(c) contains 2 k-LUTs that are independent, FIG.

US 9,971,862 B2

5

3(d) contains 2 k-LUTs that are indirectly connected, and
FIG. 3(e) contains an interconnection pattern covering
(a)(b)(e)(d). Given two k-LUTS (tagged 1 and 2), only two
cases can be identified for their interconnections. First, a
direct connection may exist between the output of one
LUT and one of the inputs of the second LUT. In FIG.
3(a), the output of LUTI is connected to an input of
LUT2. From C4, there should be only one interconnection
between LUTI and LUT2, and by applying C1, we can
always keep the output of LUT 1 connected to the input
in0 of LUT2. Note that when using local routing in
cluster-based logic block, LUT1 and LUT2 are swap-
pable. Thus, FIG. 3(b) can be regarded as equivalent to
FIG. 3(a). Second, inputs of LUT1 and LLUT?2 can be fully
independent as shown in FIG. 3(c). For instance, all the
LUT inputs are connected to different primary inputs,
LUTs or DFFs. FIG. 3(d) presents a possibility where the
output of LUT1 is connected to the input of LUT?2 through
other LUTs. FIG. 3(¢) and (d) can be regarded as equiva-
lent because they are all connected through the local
routing. Therefore, when two LUTs are considered, only
two cases (FIG. 3(a) and (c¢)) should be considered.
Hence, we can create a universal structure able to map
these different configurations by adding one multiplexer
as shown in FIG. 3(e). This structure is called pattern-2,
and can realize all the interconnection patterns between 2
LUTs.

2) Pattern-3 to Pattern-M: Based on the pattern-2 organiza-
tion, we can extend the structure to three LUTs (tagged 1,

2 and 3). Referring to FIG. 4, this illustrates all possible 3

combinational interconnections between 3 k-LUTs. FIGS.
4(a) and 4(b) contain 3rd k-LUT that is independent; FIG.
4(c) shows one example of 3rd k-LUT connected to one
of the other LUTs; FIG. 4(d) shows 3rd k-LUT that is

connected to all the other LUTs; FIG. 4(¢) shows an 3:

interconnection pattern covering (a)(b)(¢c)(d); and FIG.

4(f) shows an interconnection pattern of M LUTs. First,

FIG. 4(a) shows the case where the inputs of LUT3 are

fully independent from LUT1 and LUT2. Then, we can

repeat the same reasoning that previously for direct con-
nections between LUTs. FIG. 4(b)(c)(d) list all the pos-
sible cases where the inputs of LUT3 are connected to the
outputs of LUT1 and LUT2. The cases where the output
of LUT3 is connected to the inputs of LUT 1 and LUT2
are not listed but can be regarded as equivalent to FIG.
4(b)(c)(d) by swapping LUT3 with LUTI or LUT2.

Considering all the cases in FIG. 4(a)(b)(c)(d), pattern-3

is proposed in FIG. 4(e).

On a general basis, we can extend the pattern size from 3
to M. Since pattern-(M-1) covers all possible interconnec-
tions among (M-1) LUTs, pattern-M can be achieved by
adding another LUT (tagged m). The number of inputs of
LUT m connected to pattern-(M-1) ranges from 0 to (M-1).
Hence, (M-1) 2:1 multiplexer can be added to each input of
LUT m as depicted in FIG. 4(f).

B. Pattern-Based Logic Block Design

To build a logic block based on a pattern-M, the extra 2:1
multiplexers of the patterns can be included (i) in an
independent layer between local routing and BLEs, provid-
ing ultra-fast shortcuts at the cost of more delay from logic
block inputs to LUTs; or (ii) merged into the local routing.
In this paper, we study the second case for simplicity. The
BLE architecture remains unchanged and we simply feed-
back the outputs of LUTs to the local routing. The signal
feedback increases the size of half of local routing multi-
plexers by one additional input. Modern FPGA architectures
typically use 6-input LUTs in their logic blocks. We there-

40

45

55

60

65

6

fore employ a pattern-7 organization. The schematic of a
pattern-7 logic block is given in FIG. 5. The use of larger
multiplexers leads to 0.45% area overhead. The fast com-
binational interconnections between LUTs are highlighted in
thicker lines. Note that a pattern-based logic block can also
contain multiple pattern-M. In this paper, we focus only on
single pattern logic blocks to evaluate the efliciency of the
approach.

IV. Pattern-Based Clustering Algorithm

To support the introduced pattern-based architecture, we
develop a new clustering algorithm. While inspired from
seed-based algorithms, it aims at attracting patterns rather

 than single BLEs. A pattern candidate is composed of a seed

BLE and its unpacked predecessors. The predecessor selec-
tions is bounded by the maximum pattern size available in
the cluster.

Our pattern-based algorithm adapts the attraction func-
tions as well as PathAffects identification of AA-Pack. Let
Ib denotes the logic block, p a pattern and B; the BLEs
involved in the pattern p. As each time we absorb a pattern
including a number of B, BLE candidates. We define the
attraction function as the sum of the attraction (1) of each

° candidate B,.

attraction(/b, p) = Z attraction(/b, B;) =
i

z [-timing_criticalitylb, B;) + (1 — @) - area_attraction(/b, B;)]

i

Area attraction function is modified to increase the
absorption of logic block outputs:

ttraction(p, B;) ! &)
area_attraction(p, b;) = =g
- P G num_ping(/b)

(1 = pB)-share_input nets(/b, B;) + f-absorbed_output nets(/b, B;)]

where share_input_nets(lb,B,) is the number of input nets
shared by 1b and B,, and absorbed_output_nets denotes the
number of output nets of 1b absorbed by B,. In our experi-
ments, parameters (a, [)=(0.75, 0.9) yield good perfor-
mance.

Similarly, we define PathAffects(p) as the average of the
PathAffect of each candidate B,:

> PathAffacts(lb, Bi))
PathAffacts(p) = =
and D,,,,,.. of a pattern as the average of the D,_,,,... of each

candidate B,.

> Deourcelll, By)

Diource(p) = 7

The pseudo code of the clustering algorithm is shown in
Algorithm 1. During the pre-pack stage, additional LUTs are
added to those have more combinational outputs than the
maximum size of interconnection patterns supported by the

US 9,971,862 B2

7

logic block. Then, a new empty logic block is instantiated
and we select suitable pattern candidate. The patterns are
selected according to the maximum size that the current
logic block can support. For the example in FIG. §, if all the
BLEs are not yet assigned, the maximum pattern size is 7.

S
Searching from largest pattern size to the lowest, ie., a
single BLE, we select the candidate with the largest attrac-
tion (2). Exceptionally for seed pattern, average attraction
(2) is used to achieve better routability. If the chosen pattern
passes the local router test, the pattern is inserted into logic |
block. This procedure is iterated until the netlist is mapped.
Algorithm 1 Pattern-based clustering algorithm
1: prepack: add__LUTs_ for_ large_ fanouts; 15
2: timing__analysis_ with__physical__information;
3: while exist_unpacked__netlist_blocks_ do
4 instanciate__new__logic_ block:
5 while logic__block__not__fullllall_patterns_ tried do
6: pattern__size = max__available_ pattern;
7: select__max__pattern__attraction(pattern__size); 20
8: if success == local__router then
9: add__pattern__to__logic__block;
10: end if
11: end while
12: end while
25

V. Architectural-Level Simulations

In this section, experimental results are presented. Experi-
mental methodology is first introduced, and followed by the
discussion of the results.

8
A. Methodology

Modern FPGAs use 6-input LUTs. Therefore, we consider
pattern-7 as a reasonable size to investigate the new logic
block architecture. Logic block architecture is set as k=6,
N=7, I=k(N+1)/2=24. As for routing architecture and physi-
cal design parameters, we refer to the Altera Stratix IV GX
device at 40-nm technology, available from iFAR [16].
Routing architecture uses single-driver length-4 wires [17],
with F_(in)=0.15, F_(out)=0.10. Benchmark set includes the
20 biggest MCNC benchmarks [18], MCNC Finite State
Machine (FSM) benchmarks [18] and some OpenCores
projects [19]. We evaluate the pattern-based architecture and
clustering algorithm by running 3 sets of experiments: 1) the
standard CAD flow shown in FIG. 6(a) with a standard
baseline architecture to serve as reference; 2) the same
standard flow with the novel pattern-based architecture to
evaluate the promises of the novel architecture; and 3) the
pattern-based CAD flow shown in FIG. 6(4) with pattern-
based architecture to evaluate the joint efforts of architecture
and clustering algorithm.

All benchmarks pass through logic synthesis by ABC
[20]. Then they are packed by pattern-based packer or
AA-Pack, and placed and routed by VPR 7 [13].

B. Experimental Results

Table 1 lists the results of the 3 sets of experiments. We
first compare the results obtained using the standard flow,
then we comment on the new flow.

TABLE 1

Comparison between standard flow and pattern-based flow

Std. flow, Std. flow, Pattern-based flow,
Benchmarks Std. arch. Pattern arch. Pattern arch.
Area Crit. Area Crit, Area Crit.
MCNC LUT DFF (# of Delay Wire- (#of Delay Wire- (#of Delay Wire-
FSM No. No. trans.) (ns) length trans.) (ns) length trans.) (ns) length
dk14 8 3 5.23E+04 1.30 58 S31E+04 240 76 S5.07E+04 1.21 54
dk512 7 4 2.54E+04 249 54 2.73E+04 1.94 36 2.73E+04 2.22 46
ex7 6 5 2.71E+04 1.05 13 5.03E+04 1.16 28 2.73E+04 098 9
kirkman 39 4 1.60E+05 2.46 253 1.61E+05 238 214 1.57E+05 2.26 239
lion 3 2 271E+04 133 12 2.73E+04 1.88 20 2.73E+04 0.78 4
markl 29 4 1.34E+405 2.23 256 1.35E+405 1.57 192 1L35E+05 1.86 270
me 7 2 2.82E+04 1.32 37 2.75E+04 1.88 51 290E+04 1.19 25
527 4 3 2.54E+04 1.52 17 2.51E+04 1.66 20 2.55E+04 1.05 10
Avg. 5.99E+04 1.71 88 6.33E+04 1.86 80 S.99E+04 1.44 82
Area Crit. Area Crit. Area Crit.
MCNC LUT DFF (#of Delay Wire- (#of Delay Wire- (#of Delay Wire-
Big20 No. No trans.) (ns) length trans.) (ns) length trans.) (ns) length
alud 503 0 1.87E+06 3.72 4747 1.92E+06 4.44 4859 1.91E+06 4.11 5062
apex2 643 0 2.52E+06 4.32 9362 2.56E+06 4.82 9378 2.63E+06 4.44 9335
apex4 577 0 241E+06 4.17 8781 2.41E+06 4.10 8932 239E+06 4.86 9123
bigkey 571 224 3.21E406 2.15 10225 3.58E+06 2.58 10450 3.22E+06 2.44 11500
clma 2787 32 1.10E+07 6.26 43670 1.14E+07 6.54 46458 1.13E+07 6.79 46147
des 556 0 3.49E+06 3.19 15314 3.48E+06 3.14 15353 3.58E+06 3.56 14523
diffeq 562 305 2.05E+06 4.46 5180 2.67E+06 4.43 7823 2.08E+06 4.41 5577
dsip 681 224 3.41E+06 243 13729 3.37E+06 245 13686 3.28E+06 2.65 13536
elliptic 315 194 1.12E+06 4.48 2349 1.84E+06 4.25 3297 1.17E+06 4.06 2318
ex5Sp 354 0 1.40E+06 4.86 5294 1.44E+06 4.17 5142 1.42E+06 391 5114
ex1010 647 0 2.65E+06 3.93 9329 2.76E+06 4.10 9551 2.73E+06 4.08 9218
frisc 1752 882 7.08E+06 8.18 31410 891E+06 832 34203 7.07E+06 8.36 30119
misex3 438 0 1.61E+06 4.12 4432 1.70E+06 4.08 4911 1.65E+06 4.66 5229
pde 1350 0 5.82E+406 5.37 25541 S.95E+06 5.40 25672 S.83E+06 5.79 25484
538417 2164 1452 8.80E+06 4.27 20465 1.14E+07 448 32293 9.26E+06 4.33 28356
5385841 2093 1257 8.38E+06 4.45 25558 1.00E+07 446 28537 8.55E+06 4.48 29880
8298 18 14 7.49E+04 1.44 107 1.28E+05 1.52 163 7.54E+04 145 103
seq 668 0 2.68E+06 3.87 9598 2. 70E+06 3.66 9622 2. 71E+06 4.00 10521

US 9,971,862 B2

TABLE 1-continued
Comparison between standard flow and pattern-based flow
Std. flow, Std. flow, Pattern-based flow,
Benchmarks Std. arch. Pattern arch. Pattern arch.
spla 1373 0 6.00E+06 538 25413 S595E+06 5.55 26469 6.09E+06 572 26478
tseng 657 384 2.41E+06 4.33 6061 3.40E+06 4.33 6355 2.43E+06 4.64 6699
Avg. 3.90E+06 4.27 13828 438E+06 4.34 15158 3.97E+06 4.44 14716
Area Crit, Area Crit. Area Crit.

Open LUT DFF (#of Delay Wire- (# of Delay Wire- (#of Delay Wire-
Cores No. No. trans.) (ns) length trans.) (ns) length trans.) (ns) length
ac97__ctrl 2790 2199 1.06E+07 3.21 27146 1.60E+07 249 36252 1.06E+07 2.60 26398
Pei__conf_cyc 26 0 1.31E+05 233 567 147E+05 1.80 426 1.47E+05 1.77 456
addr_ dec

Pei_spoci_ctrl 243 60 9.23E+05 3.79 2427 9.82E+05 3.58 2828 9.11E+05 3.36 2425
systemcdes 503 190 2.14E+06 4.08 7191 236E+06 3.66 7337 2.23E+06 3.61 7261
Usb__phy 100 98 4.84E+05 1.84 828 6.59E+05 191 1150 S.09E+05 141 650
Des__perf 6099 8746 S5.10E+07 4.13 154738 6.81E+07 4.09 166445 5.00E+07 3,79 138587
Avg, 1.09E+07 3.23 32150 147E+07 293 35740 1.07E+07 276 29296

1) Standard Architecture—Standard Flow vs. Pattern Archi-
tecture—Standard Flow: In this comparison, we evaluate
the potential of pattern architecture by using standard
flow. Table I compares the area, critical delay and wire-
length between a standard architecture and the novel
pattern architecture using the same CAD flow. In MCNC
FSM benchmarks, pattern architecture with standard flow
increases area by 5%, critical delay by 5% with a 9%

reduction in wirelength, on average. In MCNC big20 3

benchmarks, pattern architecture consumes additional 9%
area, 1% delay and 9% wirelength on average. In Open-
Cores projects, pattern architecture with standard flow
gains a 10% in delay at a cost of 34% area and 11%
wirelength overheads. AA-Pack has no preference in
taking the advantages of the fast combinational paths in
pattern while the additional fanout offered by patterns
alters the area attraction [15], and results in performance
loss. In OpenCores projects, pattern architecture obtains
decent reduction in delay which implies that pattern
architecture can instruct AA-Pack to produce better per-
formance even without utilizing the fast combinational
paths. In some benchmarks, such as markl, ac 97ctr]l and
pei conf cyc addr dec, pattern architecture produces very
significant gain in delay and wirelength.

2) Standard Architecture—Standard Flow vs. Pattern Archi-
tecture—Pattern Flow: In this comparison, we evaluate
the performance of our pattern-based flow. As shown in
Table I, we compare the area, critical delay and wirelength
between standard flow with standard architecture and
pattern-based flow with pattern-based architecture. In
MCNC FSM benchmarks, compared to the standard flow
in FIG. 6(a), pattern-based flow achieves a 16% delay
reduction, a 24% wirelength reduction with only 1% area
overhead on average. Most MCNC FSM benchmarks can
be packed into less than 10 logic blocks, clearly indicating
the strong potential of pattern-based architecture. Taking
the example of circuit lion that consists of 3 LUTs,
pattern-based flow achieves 40% gain in delay. For
MCNC big20 benchmarks, pattern-based flow perform
slightly worse than standard, with 1% overhead in area,
4% in delay, and 5% in wirelength on average. In Open-
Cores projects, pattern-based flow increases 3% area and
shrinks 14% in delay and 8% in wirelength on average.
Compared to the results gathered with the standard flow,
the pattern-based packer reduces the area overhead and
increases the gain in delay. Delay improvements are

40

45

50

55

60

65

accounted for the fast combinational paths and for the
reduction of additional LUTs to accommodate large
fanouts. Critical paths of MCNC FSM benchmarks and
selected OpenCores projects are shorter compared to
MCNC big20, which makes delay gain significant. The
limited area loss comes from the pattern-based candidate
selection, which tends to group LUTs that are intensively
connected to each other instead of simply greedily absorb-
ing the nets. Wirelength gains are accounted for (i) the
novel logic block that can absorb more nets, and for (ii)
the pattern-based clustering algorithm that packs the
circuits with a global optimization instead of local scope
on optimality.

VI. Conclusion

In the present description, we investigated the intercon-
nection patterns of LUTs inside standard cluster-based logic
blocks and proposed a novel pattern-based logic block
architecture. Providing fast combinational path between
LUTs, pattern-based logic block generates 0.45% area over-
head when LUT size is 6. To take the advantage of fast
combinational paths, a pattern-based clustering algorithm is
proposed. Experimental results demonstrate that in MCNC
FSM benchmarks and OpenCores projects, pattern-based
logic block architecture and clustering algorithm contribute
to 14% reduction in critical delay and 8% shrink in wire-
length with 3% area overhead, on average, compared to
standard logic block architecture.

ACKNOWLEDGMENT

This work has been partially supported by the ERC senior
grant NanoSys ERC-2009-AdG-246810.

REFERENCES

[1] V. Betz, J. Rose, A. Marquardt, Architecture and CAD for
Deep-Submicron FPGAs, Kluwer Academic Publishers,
1998.

[2] D. Lewis, V. Betz, D. Jefferson, and et al, The Stratix TM
Routing and Logic Architecture, ACM/SIGDA Interna-
tional Symposium on FPGAs, 2003, pp. 12-20.s

[3] K. Wang, M. Yang, [.. Wang, X. Zhou, and J. Tong, 4
Novel Packing Algorithm for Sparse Crossbar FPGA

US 9,971,862 B2

11
Architectures, International Conf. on Solid-State and Inte-
grated-Circuit Technology, 2008, pp. 2345-2348.

[4] G. Ni, J. Tong and J. Lai, 4 New FPGA Packing
Algorithm Based on the Modeling Method for Logic
Block, 1EEE International Conf. on ASICs, 2005, pp.
877-880.

[5] E. Ahmed, J. Rose, The Effect of LUT and Cluster Size
on Deep-Submicron FPGA Performance and Density,
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems,Vol. 12, No. 3, 2004, pp. 288-298.

[6] V. Betz and J. Rose, Cluster-Based Logic Blocks for
FPGAs: Area-Efficiency vs. Input Sharing and Size, IEEE
Custom Integrated Circuits Conf., 1997, pp. 551-554.

[7]1 A. Marquardt, V. Betz, and J. Rose, Using Cluster-Based
Logic Blocks and Timing-Driven Packing to Improve
FPGA Speed and Density, ACM/SIGDA International
Symp. on FPGAs, 1999, pp. 37-46.

[8] E. Bozorgzadeh, S. Memik, X. Yang, and M. Sarrafza-
deh, Routability-driven Packing: Metrics and Algorithms
Jfor Cluster-Based FPGAs, Journal of Circuits Systems
and Computers, Vol. 13, No. 1, 2004, pp. 77-100.

[9] A. Singh, G. Parthasarathy, and M. Marek-Sadowksa,
Efficient Circuit Clustering for Avea and Power Reduction
in FPGAs, ACM Trans. on Design Automation of Elec-
tronic Systems, Vol. 7, No. 4, 2002, pp. 643- 663.

[10] W. Feng, K-way Partitioning Based Packing for FPGA
Logic Blocks without Input Bandwidth Constraint, Int’]
Conf. on Field Programmable Technology, 2012, pp.
8-15.

[11] G. Karypis and V. Kumar, Multilevel K-Way Hyper-
graph Partitioning, DAC, 1999, pp. 343-348.

[12] D. Chen, K. Vorwerk, and A. Kennings, Improving
Timing-Driven FPGA Packing with Physical Information,

International Conf. on Field Programmable Logic and 37

Applications, 2007, pp. 117-123.

[13] J. Rose, J. Luu, C.-W. Yu, O. Densmore, J. Goerders, A.
Somerville, K. B. Kent, P. Jamieson and J. Anderson, The
VIR Project: Architecture and CAD for FPGAs from
Verilog to Routing, ACM/SIGDA International Sympo-
sium on FPGAs, Feb. 2012, pp. 77-86.

[14] I. Luu, J. Rose, J. Anderson, Towards Interconnect-
Adaptive Packing for FPGAs, ACM/SIGDA International
Symposium on FPGAs, 2014, pp. 21-30.

[15]J. Luu, J. Anderson, and J. Rose, Architecture Descrip-
tion and Packing for Logic Blocks with Hierarchy, Modes
and Complex Interconnect, ACM/SIGDA International
Symposium on FPGA, 2011, pp. 227-236.

[16] Univ. Toronto, Intelligent FPGA Architecture Reposi-
tory, http://www.eecg.toronto.edu/vpr/architectures/

[17] G. Lemieux, E. Lee, M. Tom, A. Yu, Directional and
Single-Driver Wires in FPGA interconnect, IEEE Inter-
national Conference on Field Programmable Technology,
2004, pp. 41-48.

[181 S. Yang, Logic Synthesis and Optimization Benchmarks
User Guide Version 3.0, MCNC, Jan. 1991.

[19] http://www.opencores.org

[20] University of California in Berkeley, ABC: 4 System for
Squential Synthesis and Verification, Available online.
http://www.eecs.berkeley.edu/~alanmi/abe/

30

40

45

12

The invention claimed is:

1. A field programmable gate array (FPGA) device having
a routing architecture with fast interconnections between
Basic Logical Elements of a group of Basic Logical Ele-
ments (BLEs), each BLE including a Look-Up Table (LUT),
a multiplexer associated with an input of each LUT, the
FPGA device comprising:

a plurality of fast interconnections between different
LUTs of the plurality of BLEs, an output of a LUT
connecting to an input of a multiplexer of a different
LUT to form a fast interconnection of the plurality of
fast interconnections, each multiplexer other than a first
multiplexer having one input that is connected to an
output of a different LUT, a remaining input of the first
multiplexer free of the fast interconnections, an output
of a last LUT not connected to an input of a multiplexer
of any LUT.

2. The FPGA according to claim 1, wherein all inputs of

the multiplexers of a LUT other than the first multiplexer are
connected to outputs of another LUT by a fast interconnec-

0 tion.

3. The FPGA according to claim 1, wherein the multi-
plexers are 2:1 multiplexers.

4. The FPGA according to claim 3, further comprising:

a local routing architecture connected to the group of
BLEs,

wherein another input of the 2:1 multiplexers is connected
to an output of the local routing architecture, and

wherein the 2:1 multiplexers include additional memory
bits as an area overhead.

5. The FPGA according to claim 4, wherein

one of the 2:1 multiplexers includes an additional input,
and

the output of a multiplexer is connected to pre-determined
LUT inputs by a fast interconnection.

6. The FPGA according to claim 1, wherein a group of

LUTs form a cluster-based logic block.

7. A method of clustering algorithm using the routing
architecture of the FPGA of claim 1, which packs the
Look-Up Tables (LUTs) of the routing architecture into logic
blocks by the method steps of:

(a) in a pre-pack stage, add additional LUTs working as
buffer to the routing architecture for the LUTs whose
fanouts are larger than a size of LUT groups;

(b) instantiating an empty logic block;

(c) finding candidate groups of LUTs that the logic block
is enabled to accommodate;

(d) selecting a best fit group of LUTs by calculating an
attraction of a cost function;

(e) placing the candidate groups of LUTs identified in the
step (¢) in a logic block;

() causing a router to check if nets are mapped into the
routing architecture, and
(i) if a net is mapped, run step (c) iteratively until the

logic block is full or there is no candidate group, and
(i1) if a net fails to be mapped, record the failure, run
step (¢) to try another candidate; and

(g) when the current logic block is full, starting from step
(b) with a new empty logic block, unless all the LUTs
are packed.

