
United States Patent
US006467075B1

(12) (10) Patent N0.: US 6,467,075 B1
Sato et al. (45) Date of Patent: Oct. 15, 2002

(54) RESOLUTION OF DYNAMIC MEMORY 6,021,132 A * 2/2000 Muller et al. 370/412
ALLOCATION/DEALLOCATION AND 6,295,594 B1 * 2/2000 Meier 711/171
POINTERS 6,044,418 A * 3/2000 Muller 710/56

6,067,608 A * 5/2000 Perry 711/203
. - - . - . 6,076,151 A * 6/2000 Meier 711/171

(75) Inventors‘ g?islgins?atlgé Pg’ tl?cuf ss'im'émé’ 6,253,226 B1 * 6/2001 Chidambaran et al. 709/104
CA (Us) ’ O 0 an or ’ 6,308,319 B1 * 10/2001 Bush etal. 717/5

* cited by examiner
(73) Assignees: NEC Corporation, Tokyo (JP); The _ _ _

Board of Trustees of the Leland P r W” y Exam”_1er—Vuthe $16k
Stanford Junior University, Palo Alto, Assistant Exammer—Granv1ll D Lee, Jr.
CA (Us) (74) Attorney, Agent, or Firm—Sughrue Mion, PLLC

(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent is eXtended or adjusted under 35 One of the greatest challenges in C/C++-based design meth
U.S.C. 154(1)) by 0 days. odology is to ef?ciently map C/C++ models into hardWare.

Many of the networking and multimedia applications imple
(21) Appl, No.1 09/533,808 mented in hardWare or mixed hardWare/softWare systems are

_ making use of complex data structures stored in one or
(22) Flled: Mar‘ 24’ 2000 multiple memories. As a result, many of the C/C++ features
(51) Int. Cl.7 G06F 17/50 Which Were Originally designed for Software applications are
(52) U S C] 716/18, 716/17, 716/19, noW making their Way into hardWare. Such features include

' l l """""""""""""" " 71,66, 716%, 716/6’ dynamic memory allocation/deallocation and pointers used

(58) Field of Search 71’6/18 1,7 1_6 to manage data. This inventors present a solution for ef?
"""""""""""""" " ’ 7’16/19’ ciently mapping arbitrary C code With pointers and malloc/

free into hardWare. This solution ?ts current memory man

(56) References Cited agement methodologies. It consists of instantiating a
hardWare allocator tailored to an application and a memory

U.S. PATENT DOCUMENTS architecture. This Work also supports the resolution of
pointers Without restriction on the data structures. An imple

2 i ?eaéltsgilg et a1‘ """"" " mentation using the SUIF frameWork is presented, folloWed
5,903,466 A * 5/1999 Bzausa?g' 364/488 by some case studies such as the realization of a video ?lter.
5,930,827 A * 7/1999 Sturges 711/170

6,263,302 B1 * 1/2000 Hellestrand et al. 703/17 24 Claims, 8 Drawing Sheets

LSB MsBl LSB MSBI LSB MSB‘ LSB MSB‘
talpIe_p[i-1] hj‘ibleipli] rable_p[i+1] I 2

I I I \ I I

tag/ index

ENCODING OF POINTERS IN AN ARRAY

C+ MEMORY BINDING
(FUNCTION DESCRIPTION)

@3
DYNAMIC MEMORY ALLOCATION

RESOLUTION

l POINTERS RESOLUTION k8,,
I HIGH LEVEL SYNTHESIS

803

RESOLUTION OF DYNAMIC MEMORY ALLCATION AND POINTERS
FOR HARDWARE SYNTHESIS FFIOM C

U.S. Patent 0a. 15, 2002 Sheet 1 0f 8 US 6,467,075 B1

FIG . 1

1 1
C FUNCTION .0

I 32
FRONT-END

INLINE FUNCTION

1

POINTER ANALYSIS

U 1 5
REMOVE POINTERS J

" 1 O6

DEADCODE ELIMINATION N

I 107
CSUIFZVEFIILOG "J

VERILOG MODULE

1 9
BEHAVIORAL SYNTHESIZER “9

110
NETLIST

U.S. Patent 0a. 15, 2002 Sheet 2 0f 8 US 6,467,075 B1

2 FIG.

‘ 201

SET POINT-TO SET l’d

RESQLVE ALLOC.

HESO LVE POlNTERS

OPTIMIZE

ENCODE r225

U.S. Patent 0a. 15, 2002 Sheet 3 0f 8 US 6,467,075 B1

FIG. 3

'. i I I
s[O].a s[O].b s[1].a s[1].b s[2].a s[2].b s[3].a 8

OFFSET STRIDE STFHDE STRIDE

REPRESENTATION OF struct{int a; int b;} s[];

FIG. 4

L88 MSB‘ LSB MSB LSB MSB LSB M88;
l I

2 tab|e_p[1-11 t$b|e_p[i 1 tab|e_p[i+1] } 2
| // 1 x 1 |

tag index

ENCODING OF POINTERS IN AN ARRAY

U.S. Patent 0a. 15, 2002 Sheet 4 0f 8 US 6,467,075 B1

FIG. 5
q . index

L+

+1 >

IMPLEMENTATION OF *(q+1) = *p+1

FIG. 6

MAIN MODULE

alloc_seg2

ARCHITECTURE FOR MULTIPLE MEMORY AND ALLOCATOR

U.S. Patent 0a. 15, 2002 Sheet 5 0f 8 US 6,467,075 B1

FIG. 7

Q malloc/free -> send request to allocator

HW size _

ma||oc_address

malloc/free

free

free_address

memory memory

U.S. Patent Oct. 15,2002 Sheet 6 6f 8 US 6,467,075 B1

FIG. 8

6+ MEMORY BINDING
(FUNCTION DESCRIPTION)

I START)

I

,301 DYNAMIC MEMORY ALLOCATION
RESOLUTION

1 802
POINTERs RESOLUTION “j

‘ 803

HIGH LEvEL SYNTHESIS

I

END

RESOLUTION OF DYNAMIC MEMORY ALLCATION AND POINTERS
FOR HARDWARE SYNTHESIS FROM C

U.S. Patent 01:1. 15, 2002 Sheet 7 0f 8 US 6,467,075 B1

malloc C . . . HDL total 551130000X) CPU
test . optlmlzatlon . t|me

lfree llnes III'IB'S latency Comb_ non_c_ (in s)

960- alloc- 344 713 568 269 14.3
(no sharing)
gen. alloc. 315 735 391 180 13.8

test 1 3 / 2 72
980- alloc- 323 617 405 199 14.4
(optimized)
sequence 167 32 135 87 14.3

gen- aIIOC- 339 1,425 551 271 13.8
(no sharing)
gen. alloc. 310 1,732 338 177 13.4

test 2 3 / 2 66 980- alloc- 318 1,221 372 177 13.2
(optimized)
speoalloc. 294 781 190 109 12.9

sequence 173 298 159 86 13.9

gen- alIOC- 659 438 1,287 747 21.7
(no sharing)

test 2 4 / 4 190 960- alloc- 630 465 1,023 632 20.6

gen- aIIOC- 640 403 1,025 637 20.6
(optimized)

TABLE 3 :
RESULTS FOR THE DIFFERENT EXAMPLES AND OPTIMIZATIONS

(SIZE IN LIBRARY UNITS USING THE TSMC.35 TARGET
LIBRARY; FREQUENCY 100MHz FOR TEST‘I AND TEST 2,
5OMHZ FOR JPEG; CPU TIME MEASURED ON SUN ULTRA2

DOES NOT INCLUDE HIGH LEVEL SYNTHESIS)

U.S. Patent 0a. 15, 2002 Sheet 8 0f 8 US 6,467,075 B1

FIG.1O

. _________,_‘ malloo_slze mallgc

malloc_address

free_address —————-- free

INTERFACE OF THE ALLOCATOR BLOCK IMPLEMENTING
malloc AND free FUNCTIONS

US 6,467,075 B1
1

RESOLUTION OF DYNAMIC MEMORY
ALLOCATION/DEALLOCATION AND

POINTERS

BACKGROUNDS OF THE INVENTION

1. Field of the Invention

The present invention relates to a device of synthesizing
a program With a function of pointers and dynamic
allocation/deallocation, and a method of synthesizing a
program With a function of pointers and dynamic allocation/
deallocation.

2. Description of the Related Art
Different languages have been used as input to high-level

synthesis. HardWare Description Languages (HDLs), such
as Verilog HDL and VHDL, are the most commonly used.
HoWever, designers often Write system-level models using
programming languages, such as C or C++, to estimate the
system performance and verify the functional correctness of
the design. Using C/C++ offers higher-level of abstraction,
fast simulation as Well as the possibility of leveraging a vast
amount of legacy code and libraries, Which facilitates the
task of system modeling.

The use of C/C++ or a subset of C/C++ to describe both
hardWare and softWare Would accelerate the design process
and facilitate the softWare/hardWare migration. Designers
could describe their system using C. The system Would then
be partitioned into softWare and hardWare blocks, imple
mented using synthesis tools. The neW SystemC initative is
an attempt to standardize a C/C++-based language for both
hardWare and softWare design.
C Was originally designed to develop the UNIX operating

system. It provides constructs to directly access memory
(through pointers) and to manage memories and I/O using
the standard C library (malloc, free, . . . These constructs

are Widely used in softWare. Nevertheless, many of the
netWorking and multimedia applications implemented in
hardWare or mixed hardWare/softWare systems are also
using complex data structures stored in one or multiple
memory banks. As a result, many of the C/C++ features
Which Were originally designed for softWare applications are
noW making their Way into hardWare.

In order to help designers re?ne their code from a simu
lation model to a synthesizable behavioral description, this
inventors are trying to ef?ciently synthesize the full ANSI C
standard. This task turns out to be particularly dif?cult
because of dynamic memory allocation/deallocation, func
tion calls, recursions, goto’s, type castings and pointers.

In the past feW month, different synthesis tools have been
announced to ease the mapping of C code into hardWare
(Abhijit Ghosh, Joachim Kunkel, Stan Liao, “HardWare
Synthesis from C/C++,” proceedings of the Design, Auto
mation and Test in Europe DATE’99, pp.387—389, Munich,
1999.), (Kazutoshi Wakabayashi, “C-based Synthesis With
Behavioral Synthesizer, Cyber,” proceedings of the Design,
Automation and Test in Europe DATE’99, pp.390—391,
Munich, 1999.). And other many more companies and
research projects Work on synthesis of hardWare from C. All
of these tools support a subset of the language (e.g. restric
tions on pointers, function calls, etc.). In particular, they do
not support dynamic memory allocation/deallocation using
the ANSI standard library functions malloc and free

In this inventors tool SpC (Luc Semeria, Giovanni De
Micheli, “SpC: Synthesis of Pointers in C.Application of
Pointer Analysis to the Behavioral Synthesis from C”,
proceedings of the International Conference on Computer

10

15

25

35

45

55

65

2
Aided Design ICCAD’98, pp.321—326, San Jose, November
98.), pointer variables are resolved at compile-time to syn
thesize c functional models in hardWare ef?ciently. In
description of the preferred embodiment, this inventors Will
focus on an implementation of dynamic memory allocation/
deallocation (malloc, free) in hardWare. By de?nition, in
general, storage for dynamically allocated data structures
cannot be assigned at compile time. The synthesis of C code
involving dynamic memory allocation/deallocation requires
access to some allocation and deallocation primitives imple
mented either in softWare, as in an operating system, or in
hardWare.

Dynamic memory allocation/deallocation is tightly
coupled With pointers and the notion of a single address
space. Pointer dereferences (load, stores, etc.) as Well as
memory allocation/deallocation are all referring to a main
memory. HoWever, in application-speci?c hardWare, design
ers may Want to optimize the memory architecture by using
register banks, multiple memories etc. Therefore, memory
allocations may be distributed onto multiple memories and
pointers may reference data stored in registers, memories or
even Wires (e.g. output of a functional unit). To enable
ef?cient mapping of C code With pointers and malloc’s into
hardWare, the synthesis tool has to automatically generate
the appropriate circuit to dynamically allocate, access (read/
Write) and deallocate data. Memory management as Well as
accurate pointers resolution are key features for C-based
synthesis. They are enablers for the ef?cient design of
applications involving complex data structures.
The contribution of description of the preferred embodi

ment is to present a solution for ef?ciently mapping arbitrary
program code With pointers and dynamic allocation
allocation/deallocation into hardWare. This solution ?ts cur
rent memory management methodologies. It consists of
instantiating a hardWare allocator tailored to an application
and a memory architecture. This Work also supports the
resolution and optimization of pointers Without restriction
on the data structures.

METHODOLOGY AND RELATED WORK

For decades, memory management has been one of the
major development area both for softWare and computer
architecture. In softWare, at the user-level, memory man
agement is typically performed by the operating system. In
hardWare, memory bandWidth is often a bottleneck in appli
cations such as netWorking, signal processing, graphics and
encryption. Memory architecture exploration and ef?cient
memory management technology are key to the design of
neW high-performance systems. Memory generators com
mercially available today enable fast integration of memo
ries in a system. Scheduling of memory accesses has also
been integrated into most commercial high level synthesis
(ELS) tools. Most of the re?nement and compilations steps
developed for softWare applications can also be used for
hardWare. Nevertheless, a softWare methodology usually
assumes a ?xed memory architecture Which may be general
purpose or application speci?c like in a DSP or ASIP. In
hardWare, at the behavioral level, designers Would typically
explore different memory architectures in order to trade-off
area and poWer for a given timing constraint.
AfeW projects and tools have recently been announced to

ease the mapping of C models into hardWare. In practice,
current tools don’t support dynamic memory allocation/
deallocation and have restriction on pointers’ usage
(Giovanni De Micheli , “HardWare Synthesis from c/c++,”
in the proceeding of the Design, Automation and Test in

US 6,467,075 B1
3

Europe DATE’99, pp.382—383, Munich, 1999.). SpC ,
enables the behavioral synthesis of C code with pointer
variables to variables and arrays. In description of the
preferred embodiment, this inventors present how pointers
in general (e.g. array of pointers, pointers in structures,
pointers to structures etc.) and dynamic memory allocation/
deallocation can also be ef?ciently synthesiZed.
Amethodology for the design of custom memory systems

has been described by Catthoor et al. (Francky Catthoor,
Sven Wuytack, Eddy De Greef, Florin Balasa, Lode
Nachtergaele, Arnout Vandecappelle, “Custom Memory
Management Methodology,” Kluwer Academic Publishers,
Dordrecht, June 98.). It is de?ned for two sets of
applications, networking and signal processing, and sup
ports a limited subset of C/C++. The basic concepts pre
sented in Catthoor’s work can be generaliZed to support a
larger subset of the C syntax for an extended set of appli
cations. Two main steps can be distinguished in the meth
odology: this inventors describe brie?y here the transforma
tions performed ?rst at the system level, and then at the
architectural level.

At the system level, the functionality of the algorithm is
veri?ed. Data formats are re?ned. For example, after
quantization, the format of data can be re?ned from ?oating
point to ?xed-point Keding, M. Willems, M. Coors, H.
Meyr, “FRIDGE: A Fixed-Point Design And Simulation
Environment,” proceedings of the Design Automation and
Test in Europe DATE’98, pp.429—435, 1998.). Data struc
tures can also be re?ned for example to reduce the number
of indirect memory references. Examples of such transfor
mations for networking applications have been studied by
Wuytack et al. in (Sven Wuytack, Julio da Silva Jr., Francky
Catthoor, Gjalt de Jong, Chantal Ykman, “Merrory Man
agement for Embedded Network Applications,” transactions
on Computer Aided Design, Volume 18, number 5, pp.
533—544, May 99.), (Sven Wuytack, Francky Catthoor,
Hugo De Man, “Transforming set data types to power
optimal data structures,” IEEE Transactions on Computer
Aided Design, pp.619—629, June 1996.).

At the architectural level, after partitioning, the system
typically consists of multiple communicating processes to be
mapped to hardware or software (Abhijit Ghosh, Joachim
Kunkel, Stan Liao, “Hardware Synthesis from C/C++,”
proceedings of the Design, Automation and Test in Europe
DATE’99, pp.387—389, Munich, 1999.). Memory segments
are de?ned for internal storage and/or shared memory. These
memory segments can then be mapped to one or multiple
memories during synthesis. Some of the storage area (eg
internal variables, etc.) can be statically allocated during
synthesis or compilation. However, to support dynamic
storage allocation/deallocation (eg for recursive data
structures), allocation and deallocation primitives imple
mented in software or hardware shall be de?ned.

In software, memory allocation and deallocation are
implemented as primitives part of the operating system
(OS). These primitives can be called in a C program using
the functions de?ned in the standard library (e.g. malloc,
free, etc.) Many schemes have been developed for OS to
manage memory. An extensive survey of the techniques used
for memory allocation and deallocation can be found in
(Paul Wilson, Mark Johnstone, David Doles, “Dynamic
Storage Allocation: A Survey and Critical Review,” pre
sented at Int. Workshop Memory Management, Kinross,
Scotland, September 95.).
Memory management can also be implemented in hard

ware. For memory allocation and deallocation, instead of the

10

15

25

35

45

55

a O

65

4
system calls to the OS, requests are sent through signals to
an allocator block virtual memory manager) imple
mented in hardware. Its interface is shown on FIG. 10.
Internally, the allocator stores a list of the free blocks in
memory as well as a list of the allocated blocks. To allocate
memory, the siZe of the block to be allocated (mallocisiZe)
is sent. The allocator then searches in its free list a big
enough block and returns the address of the beginning of this
block (mallociaddress). Two techniques are often used: ?rst
?t where the ?rst acceptable free block is returned or best ?t
where the block of minimal siZe is returned. To free previ
ously allocated memory, the address of the block to be
deallocated (freeiaddress) is sent to the allocator. The
allocator then searches inside of the allocated list the block
and adds it back to the free list. Adjacent free blocks can then
be merged. The implementation itself of the allocator can
vary according to the application and the data structures. A
number of these implementations are presented by Wuytack
et al. (Sven wuytack, Jullio da Silva Jr., Francky Catthoor,
Gjalt de Jong, Chantal Ykman, “Memory Management for
Embedded Network Applications,” transactions, on Com
puter Aided Design, Volume 18, number 95, pp. 533—544,
May 99.), (J. Morris Chang, Edward R. Gehringer “A
High-Performance Memory Allocator for Object-Oriented
Systems,” IEEE trans. on Computers, vol. 45, no. 3, march
96.).

FIG. 10 is a diagram for explaining the interface of the
allocator block implementing malloc and free functions.
Once an architecture is decided, hardware can be imple

mented using synthesis tools and compilers can be used for
software. As far as memory management is concerned,
memory accesses scheduling, register/memory allocation
and address generation can be integrated into synthesis tools
and compilers. The latest development for hardware synthe
sis have been presented by Catthoor et al (Francky Catthoor,
Sven Wuytack, Eddy De Greef, Florin Balasa, Lode
Nachtergaele, Arnout Vandecappelle, “Custom Memory
Management Methodology,” Kluwer Academic Publishers,
Dordrecht, June 98.) and Panda et al. (Preeti Ranjan Panda,
Nikil D.Dutt, Alexandru Nicolau, “Memory Issues in
Embedded Systems-On-Chip OptimiZations and
Exploration,” Kluwer Academic Pub, October 1998.).

This contribution ?ts in the methodology described
above. In particular, this inventors present techniques to
automate the synthesis of program code with pointers and
dynamic memory allocation/deallocation into hardware. The
outcome of this research is a tool that maps and optimiZes
hardware models in program code with pointers and
dynamic memory allocation/deallocation into verilog HDL
synthesiZable by commercially available synthesis tools.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide the
circuit synthesis method of synthesiZing the semiconductor
circuit of executing the program containing pointer and
dynamic allocation/deallocation.

According to the ?rst aspect of the invention, a circuit
synthesis method of a semiconductor circuit for executing a
program with a function of pointers and dynamic allocation,
comprising the steps of:

resolving pointer and dynamic allocation in the code of
the program; and

changing the code of the program into the code which
does not contain the pointer and the dynamic alloca
tion;

wherein synthesiZing the semiconductor circuit which
executes the program with a function of pointers and
dynamic allocation.

US 6,467,075 B1
5

In the preferred construction, the program is C-language
program.

In another preferred construction, the circuit synthesis
method further comprising

a step of changing the code changed by the resolution step
into the code of HardWare Description Languages, and

a step of synthesiZing the semiconductor circuit based on
the code of HardWare Description Languages.

In another preferred construction, the resolution step
including a step of checking the kind of the variable Which

is the object of dynamic allocation and the quantity of
a memory assigned in the code,

a step of performing beforehand variable declaration of
the variable Which is the object of the dynamic alloca
tion statically in the converted code,

a step of replacing the command Which performs dynamic
allocation in the code With the command Which gives
the pointer to the variable by Which variable declaration
Was carried out.

According to the second aspect of the invention, a circuit
synthesis method of a semiconductor circuit for executing a
program With a function of pointers and dynamic allocation,
comprising the steps of:

resolving pointer and dynamic allocation in the code of
the program; and

changing the code of the program into the code Which
does not contain the pointer and the dynamic alloca
tion; and

the resolution step including
a step of checking the kind of the variable Which is the

object of dynamic allocation and the quantity of a
memory assigned in the code,

a step of performing beforehand variable declaration of
the variable Which is the object of the dynamic
allocation statically in the converted code,

a step of replacing the command Which performs
dynamic allocation in the code With the command
Which gives the pointer to the variable by Which
variable declaration Was carried out,

Wherein synthesiZing the semiconductor circuit Which
executes the program With a function of pointers and
dynamic allocation.

According to the third aspect of the invention, a circuit
synthesis method of a semiconductor circuit for executing a
program With a function of pointers and dynamic allocation,
comprising the steps of:

resolving pointer and dynamic allocation in the code of
the program; and

changing the code of the program into the code Which
does not contain the pointer and the dynamic alloca
tion; and

the resolution step including
a pointer analysis step of ?nding pointer variable in the

code, and checking the information on the variable
Which substitutes an address to each pointer variable,

a step of executing variable declaration of a structure
object comprising a variable tag and a integer vari
able index in the code after the conversion corre
sponding to each pointer variable, Which variable tag
shoWs the kind of variable substituted to a pointer
variable, and Which integer variable index records
the addition-and-subtraction processing in the code
to the pointer variable,

a step of replacing the command Which substitutes the
address of other variables to the pointer variable in

6
the code With the command Which substitutes the
information on the kind of other variables to the
variable tag and substitutes value “0” to the variable
index,

5 a step of replacing the command Which ?uctuates the
value of the pointer variable in the code With the
command Which ?uctuates the value of the variable
index of the structure object corresponding to the
pointer variable,
step of replacing the command Which refers to the
address shoWn by the pointer variable With the
command Which refers to the value of the arrange
ment position of the value of the variable index in the
variable shoWn by the variable tag,

a step of checking the kind of the variable Which is the
object of dynamic allocation and the quantity of a
memory assigned in the code,

a step of performing beforehand variable declaration of
the variable Which is the object of the dynamic
allocation statically in the converted code,

a step of replacing the command Which performs
dynamic allocation in the code With the command
Which gives the pointer to the variable by Which
variable declaration Was carried out,

Wherein synthesiZing the semiconductor circuit Which
executes the program With a function of pointers and
dynamic allocation.

In another preferred construction, the circuit synthesis
method further comprising

10 a

15

25

recording the number of block allocated to block of the
pointer variable,

accessing the block by specifying the number of block in
free area by allocator,

Wherein synthesiZing the semiconductor circuit Which
executes management of optimiZed free area.

In another preferred construction, the resolution step
including

35

When the siZe of the variable to be allocated has to be
constant, and dynamically-allocated variable have to be
both allocated and deallocated Within the same
unbounded loop,

40

a step of performing beforehand statically variable dec
laration of the array variable Which is the same siZe as
the dynamically-allocated variable in the converted
code,

45

a step of replacing the command Which performs dynamic
allocation With the command Which references the
variable to the array variable by Which variable decla

50 ration Was carried out,

a step of removing the command performs dynamic
deallocation in the code.

According to another aspect of the invention, a circuit
synthesis system of a semiconductor circuit for executing a
program With a function of pointers and dynamic allocation,
comprising:

55

a means for resolving pointer and dynamic allocation in
the code of the program; and

a means for changing the code of the program into the
code Which does not contain the pointer and the
dynamic allocation;

Wherein synthesiZing the semiconductor circuit Which
executes the program With a function of pointers and
dynamic allocation

In another preferred construction, the program is
C-language program.

60

US 6,467,075 B1
7

In another preferred construction, the circuit synthesis
system further comprising

a means for changing the code changed by the resolution
meaning into the code of HardWare Description
Languages, and

a means for of synthesiZing the semiconductor circuit
based on the code of HardWare Description Languages.

In another preferred construction, the resolution meaning
including

a means for checking the kind of the variable Which is the
object of dynamic allocation and the quantity of a
memory assigned in the code,

a means for performing beforehand variable declaration
of the variable Which is the object of the dynamic
allocation statically in the converted code,

a means for replacing the command Which performs
dynamic allocation in the code With the command
Which gives the pointer to the variable by Which
variable declaration Was carried out.

According to another aspect of the invention, a circuit
synthesis system of a semiconductor circuit for executing a
program With a function of pointers and dynamic allocation,
comprising:

a means for resolving pointer and dynamic allocation in
the code of the program; and

a means for changing the code of the program into the
code Which does not contain the pointer and the
dynamic allocation; and

the resolution meaning including
a means for checking the kind of the variable Which is

the object of dynamic allocation and the quantity of
a memory assigned in the code,

a means for performing beforehand variable declara
tion of the variable Which is the object of the
dynamic allocation statically in the converted code,

a means for replacing the command Which performs
dynamic allocation in the code With the command
Which gives the pointer to the variable by Which
variable declaration Was carried out,

Wherein synthesiZing the semiconductor circuit Which
executes the program With a function of pointers and
dynamic allocation.

According to another aspect of the invention, a circuit
synthesis system of a semiconductor circuit for executing a
program With a function of pointers and dynamic allocation,
comprising:

a means for resolving pointer and dynamic allocation in
the code of the program; and

a means for changing the code of the program into the
code Which does not contain the pointer and the
dynamic allocation; and

the resolution meaning including
a pointer analysis means for ?nding pointer variable in

the code, and checking the information on the vari
able Which substitutes an address to each pointer

variable,
a means for executing variable declaration of a struc

ture object comprising a variable tag and a integer
variable index in the code after the conversion cor
responding to each pointer variable, Which variable
tag shoWs the kind of variable substituted to a pointer
variable, and Which integer variable index records
the addition-and-subtraction processing in the code
to the pointer variable,

a means for replacing the command Which substitutes
the. address of other variables to the pointer variable

10

15

35

45

55

65

8
in the code With the command Which substitutes the
information on the kind of other variables to the
variable tag and substitutes value “0” to the variable
index,

a means for replacing the command Which ?uctuates
the value of the pointer variable in the code With the
command Which ?uctuates the value of the variable
index of the structure object corresponding to the
pointer variable,

a means for replacing the command Which refers to the
address shoWn by the pointer variable With the
command Which refers to the value of the arrange
ment position of the value of the variable index in the
variable shoWn by the variable tag,

a means for checking the kind of the variable Which is
the object of dynamic allocation and the quantity of
a memory assigned in the code,

a means for performing beforehand variable declara
tion of the variable Which is the object of the
dynamic allocation statically in the converted code,

a means for replacing the command Which performs
dynamic allocation in the code With the command
Which gives the pointer to the variable by Which
variable declaration Was carried out,

Wherein synthesiZing the semiconductor circuit Which
executes the program With a function of pointers and
dynamic allocation.

Other objects, features and advantages of the present
invention Will become clear from the detailed description
given herebeloW.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention Will be understood more fully from
the detailed description given herebeloW and from the
accompanying draWings of the preferred embodiment of the
invention, Which, hoWever, should not be taken to be limi
tative to the invention, but are for explanation and under
standing only.

In the draWings:
FIG. 1 is a How chart shoWing synthesis operation of the

synthesiZing system according to one embodiment of the
present embodiment;

FIG. 2 is a How chart shoWing remove pointers operation
of the synthesiZing system according to one embodiment of
the present embodiment;

FIG. 3 is a diagram shoWing an example of representation
for an array of structures;

FIG. 4 is a diagram for explaining the encoding of
pointers in array;

FIG. 5 is a diagram for explaining the implementation of
*(q+1)=*P+1;

FIG. 6 is a diagram shoWing an example of architecture
for multiple memory and allocator;

FIG. 7 is a diagram shoWing an example of allocator;
FIG. 8 is a How chart shoWing resolution of dynamic

memory allocation and pointers for hardWare synthesis from
C;

FIG. 9 is a diagram shoWing a table of result for the
different examples and optimiZations;

FIG. 10 is a diagram for explaining the interface of the
allocator block implementing malloc and free functions.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The preferred embodiment of the present invention Will
be discussed hereinafter in detail With reference to the

US 6,467,075 B1
9

accompanying drawings. In the following description,
numerous speci?c details are set forth in order to provide a
thorough understanding of the present invention. It Will be
obvious, hoWever, to those skilled in the art that the present
invention may be practiced Without these speci?c details. In
other instance, Well-knoWn structures are not shoWn in detail
in order to unnecessary obscure the present invention.

In softWare, the semantics of pointers is the address of an
element in memory. This de?nition implies that the C
program is targeted to a virtual architecture consisting of one
memory in Which everything is stored. Even though register
declaration may alloW programmers to specify the variables
to place in registers, the assignment of variables to registers
is generally done by the compiler. The notions of caches and
memory pages are transparent to programmers.

In hardWare, at the behavioral level, designers Want to
have control on Where data are stored and Want to optimiZe
the locality of the storage. Typically, a chip design contains
multiple memory banks, register ?les, registers and Wires.
Pointers may be used to reference any variable no matter
Where its information is available. Pointers must be consid
ered as references: references to memory elements, registers,
Wires or ports. In particular, pointers can be used to allocate,
read, Write and deallocate data. In this description of the
preferred embodiment this inventors call the action of read
ing data using a pointer a load. Subsequently, a store is the
action of Writing data using a pointer. Allocation and deal
location are performed through the standard library func
tions malloc and free. Their implementation is hoWever
tailored for a given application and memory architecture.

The synthesis of pointers in general consists of generating
the appropriate circuit for allocating and accessing data. For
this purpose, this inventors change the addresses into num
bers (i.e. encode pointers values) and replace loads and
stores by some assignments directly accessing the data the
pointer may reference (i.e. resolve pointers). Functions
malloc and free are subsequently changed as memory allo
cation/deallocation can be distributed onto multiple memo
r1es.

EXAMPLE 1

Consider an application, Where a hardWare block receives
objects of different siZes and processes them. Some of these
objects are copied in a register (reg) Some other are only
used Within this block and are stored in private memory
(localiRAM). Finally some, larger, may also to be accessed
by other blocks and are stored in a shared memory (sharedi
RAM).

if(object.isireg) p=&req;
if(object.isiinternal) //allocate memory in localiRAM

p=malloc(4);
else //allocate memory in sharediRAM p=malloc(8);

//store in reg, localiRAM or sharediRAM
*p=object.data;

if(!object.isireg) //free storage in localiRAM or in
sharediRAM free(p);

In order to implement the store (*p=object.data), the tool
has to schedule a Write operation into the register reg, the
memory localiRAM or the memory sharediRAM. It also
needs to instantiate the correct circuit (steering logic) to
access these locations. For this purpose, this inventors need
to knoW at compile-time the set of locations the pointer p
may point to (points-to set).

10

15

25

35

45

55

65

10
To implement free(p), assuming that each memory locali

RAM and sharediRAM is managed by a speci?c allocator,
the tool also needs to schedule a deallocation operation on
one allocator or the other. The points-to information for the
pointer p is also necessary.
As this inventors can see in Example 1, in order to map

loads, stores as and free operations into hardWare, this
inventors need to knoW at compile-time the set of locations
the pointers may reference (points-to information).

Such information is also Widely used in compilers. In
order to paralleliZe programs onto distributed architectures,
the independent sets of data Which can be processed in
parallel have to be extracted. The problem there is to ?nd
statements in the program that may read or Write the same
locations (aliasing problem). For this purpose, the aliasing
information has to be determined betWeen pointers. The
points-to information and the aliasing information are
equivalent and can be determined by recent analysis tech
niques called pointer-analysis or alias-analysis.

FIG. 1 is a How chart shoWing synthesis operation of the
synthesiZing system according to one embodiment of the
present embodiment.

FIG. 2 is a How chart shoWing remove pointers operation
of the synthesiZing system according to one embodiment of
the present embodiment.
Pointer Analysis

Pointer analysis is a compiler technique to identify at
compile-time the potential values of the pointers in the
program. This information is used to determine the set of
locations the pointer may point to. For synthesis, in the case
of loads, stores, and free, this inventors Want to synthesiZe
the logic to access, modify or deallocate the location refer
enced by the pointer. For this purpose, the points-to infor
mation must be both safe and accurate: safe because this
inventors have to consider all of the locations the pointer
may reference and accurate because the smaller the points-to
set is, the less logic this inventors have to generate.
TWo main types of analyses can be distinguished. First

?oW- and context-insensitive analyses (Dj arne Steensgaard
“Point-to Analysis by Type Inference of Programs With
Structures and Unions”, proceedings of the 1996 Interna
tional Conference on Compiler Construction, pp.136—150,
April 96.) don’t distinguish the order in Which the statements
are executed (?oW-insensitivity) and the different calls of a
function (context-insensitivity). They are the least accurate
but the relative simplicity of their implementation makes
them more suitable for very large programs. FloW- and
context-sensitive analyses, such as by Wilson and Lam
(Robert Wilson, “Ef?cient, Context-Sensitive Pointer Analy
sis For C Programs”, Ph.D. Dissertation, Stanford
University, 1997., Robert Wilson, Monica Lam, “Ef?cient
Context-Sensitive Pointer Analysis for C Programs”, pro
ceedings of the ACM SIGPLAN’95 Conference on Pro
gramming Languages Design and Implementation, pp.1—12,
June 95), on the other hand, provide more accuracy With an
increased complexity.
Even though the complexity of ?oW- and context

sensitive analyses may be exponential, it is not a limitation
for hardWare synthesis because this inventors deal With
rather small and simple programs With limited calling con
texts for functions and often no recursions. Beside these
analyses leads to more accurate results, Which makes them
more suitable for hardWare synthesis. Most of the inaccuracy
comes from the Way memory in represented. Different
techniques have been used to identify the different locations
in memory.

US 6,467,075 B1
11

Memory Representation
The simplest memory representation consists of a single

address space in Which all data are stored. This trivial
representation hoWever prevents from optimizing the local
ity and paralleliZing the code. On the other hand, the most
accurate representation, Which Would distinguish each ele
ment of arrays or of recursive data structures, is not prac
tical. As a result, most analysis techniques combine elements
Within a single data structure. Some techniques combine
elements based on their allocation contexts (Robert Wilson,
“Ef?cient, Context-Sensitive Pointer Analysis For C
Programs”, Ph.D. Dissertation, Stanford University, 1997.,
Robert Wilson, Monica Lam, “Ef?cient Context-Sensitive
Pointer Analysis for C Programs”, proceedings of the ACM
SIGPLAN’95 Conference on Programming Languages
Design and Implementation, pp.1—12, June 95.) or on lim
iting the length of access paths to some ?xed constant
(k-limiting). Shape analysis (Alain Deutsh, “Interprocedural
may-alias analysis for pointers: Beyond k-limiting,” pro
ceedings of the ACM SIGPLAN’94 Conference on Pro
gramming Language Design and Implementation, pp.
230—241, June 94., Rakesh Ghiya and Laurie Hendren, “Is
it a tree, a DAG, or a cyclic graph? A shape analysis for
heap-directed pointers in C,” proceedings of the 23th Annual
ACM Symposium on Principle of Programming
Languages.) gives the most accurate representation as they
may distinguish trees from DAGs, linear lists from cyclic
lists and so on. HoWever its implementation to support large
C programs remains challenging.

In order to ?nd both an accurate and practical represen
tation for hardWare synthesis, this inventors propose to use
the notion of location sets de?ned in (Robert Wilson,
“Ef?cient, Context-Sensitive Pointer Analysis For C
Programs”, Ph.D. Dissertation, Stanford University, 1997.,
Robert Wilson, Monica Lam, “Ef?cient Context-Sensitive
Pointer Analysis for C Programs”, proceedings of the ACM
SIGPLAN’95 Conference on Programming Languages
Design and Implementation, pp.1—12, June 95.). Locations
sets support any of the data structures available in C includ
ing arrays, structures, arrays of structures and structures
containing arrays. This representation is also relatively
simple as it combines the different elements of an array or
of recursive data structures. It can therefore be used for large
C programs.
A location set <f,s>eN><Z (Nznatural number, Zzinteger)

represents the set of locations With offsets {f+is:ieZ} in a
particular block of memory That is, f is an offset Within a
block and s is the stride. If the stride is Zero, the location set
contains a single element. OtherWise, it is assumed to be an
unbounded set of locations. Table 1 shoWs the location sets
for various expressions.

TABLE 1

LOCATION SET EXAMPLES (F = OFFSET OF FIELD F),
(s = STRIDE OR ARRAY ELEMENT SIZE)

Type Expression Location Set

Int a a <0,0>

Struct {int F; } s s.F <F,O>
Int a[]; a[i] <O,s>
Struct{int F; } r[]; r[i].F <f,s>

FIG. 3 is a How chart shoWing synthesis operation of the
synthesiZing system according to one embodiment of the
present embodiment:

For simple data structures (arrays, structures, array of
structures), offsets are used to identify the different ?elds of

10

15

25

35

45

55

65

12
structures Whereas strides are used to record array-element
siZes. FIG. 3 gives an example of representation for an array
of structures. The representation doesn’t distinguish the
different elements Within the array but it distinguishes the
different instantiations of variables and structures. This
makes sense since all elements of an array are usually alike.

Nested arrays and structures, type casting and pointer
arithmetic are making things more complicated, leading to
some more inaccuracies. Example 2 shoWs hoW references
to array nested in structures are represented approximately.
The array bound information in the declared type cannot be
used because the C language does not provide array-bounds
checking. Areference to an array nested in a structure could
access other elements of the structure by using out-of-bound
array indices.

EXAMPLE 2

Consider the array r.F[] nested in a structure r: struct {

char a;

char b;
int F[8];} r;
References to one of the array element (eg r.F[2]) are

represented approximately by the locations set <0, siZeof
(int)>Which regroups all of the elements of the array as Well
as r.a.

Dynamically allocated memory locations (heap-allocated
objects) are represented by a speci?c location set. As far as
accuracy, the goal is to distinguish complete data structures.
The different elements of a recursive data structure Would
typically be combined. For example, this inventors Want to
distinguish one list from another hut this inventors do not
Want to distinguish the different elements of a list. Heuristics
are used to partition the heap. Storage allocated in the same
context is assumed to be part of the same equivalence class.
These heuristics have been proven to Work Well as long as
the program uses the standard memory allocation routines
(Robert Wilson, “Ef?cient, Context-Sensitive Pointer Analy
sis For C Programs”, Ph.D. Dissertation, Stanford
University, 1997.).
De?nition of the Sunset
The pointer analyses and memory representation pre

sented in “Memory representation” support the complete
ANSI C syntax. In this description of the preferred embodi
ment hoWever, this inventors de?ne synthesiZable subset.
This subset includes malloc/free as Well as all types of
pointers and type casting. Nevertheless this inventors set the
folloWing tWo restrictions.
The ?rst restriction applies to systems described as a set

of parallel processes: pointers that reference data outside of
the scope of a process (eg global variables or data internal
to some other process) are not alloWed. Their resolution
Would require the synthesis of some kind of interface
betWeen the processes. Such interface is usually de?ned
during system partitioning and, hence, before synthesis. As
a result, memory allocated in one process is assumed to be
accessed and deallocated only Within this same process.
The second limitation stems from the fact that most

commercial synthesis tools also have restrictions on func
tions. Recursions are usually not supported. Procedures that
are mapped to components typically have restrictions both
on their functionality and their parameters. For example, the
same function called Within different contexts may usually
not be shared. Besides, most synthesis tools do not synthe
siZe parameter passed by reference, because this is not
supported by most HDL syntax. The synthesis of functions
in C, and therefore the resolution of pointers and malloc/free

US 6,467,075 B1
13

inside of functions, is beyond the scope of this description
of the preferred embodiment.

Other restrictions are also added in the implementation
section in order to be able to translate C models into Verilog
synthesiZable by commercial high-level synthesis tools.
These restrictions are hoWever not required for the resolu
tion of pointers and dynamic memory allocation and do not
apply for the next “SYNTHESIZING MALLOC AND
FREE”.
SynthesiZing Malloc and Free

Resolution of pointers in complex data structures
This implementation uses a ?oW- and context-sensitive

pointer analysis (Robert Wilson, “Ef?cient, Context
Sensitive Pointer Analysis For C Programs”, Ph.D.
Dissertation, Stanford University, 1997., Robert Wilson,
Monica Lam, “Ef?cient Context-Sensitive Pointer Analysis
for C Programs”, proceedings of the ACM SIGPLAN’95
Conference on Programming Languages Design and
Implementation, pp.1—12, June 95 in Which memory loca
tions are represented by location sets. The points-to infor
mation is then used to encode the pointers’ value and to
generate the appropriate logic for accessing and deallocating
data.

After encoding, the siZe of the pointers can be reduced as
shoWn in (Luc Semeria, Giovanni De Micheli, “SpC: Syn
thesis of Pointers in C.Application of Pointer Analysis to the
Behavioral Synthesis from C”, proceedings of the Interna
tional Conference on Computer-Aided Design ICCAD’98,
pp.321—326, San Jose, November 98., Luc Semeria, Gio
vanni De Micheli, “Encoding of Pointers for HardWare
Synthesis,” proceedings of the International Work-shop on
IP-based Synthesis and System Design IWLAS’98, pp.
57—63, Grenoble, December 98.). HoWever, in order to
support type casting and out-of-bound array accesses, this
inventors assume that pointers have a ?xed siZe. The siZe of
a pointer itself is not de?ned by the ANSI standard. It is
therefore implementation (or compiler in this case) depen
dent. In order to map pointers into hardWare, the addresses
(i.e. pointers’ values) are encoded. Memory locations are
represented by location sets.

Next, it explains using an example using tWo items, a tag
and an index.

De?nition 1.
The encoded value of a pointer p consists of tWo ?elds:

the tag p.tag (left part of the code) corresponds to the
location set referenced by the pointer,

the index p.index (right part of the code) stores the
number of strides corresponding to the data referenced
Within the location set.

These ?elds don’t have to be ?elds of a structure. They are
a notation for “sections” of the code named tag and index.

FIG. 4 is a diagram for explaining the encoding of
pointers in array.

EXAMPLE 3

FIG. 4 gives an illustration of pointers’ encoding inside of
an array:

int *tableip[];
If the element tableip[i] Were to point to s[2].b de?ned

on FIG. 3, index tableip[i].index Would be equal to 2.
The index part of the code is stored Within the ?rst bits

(least signi?cant bits) to support pointer arithmetic, espe
cially When a pointer is type-cast into an integer. This
encoding scheme has limitations on the number of location
sets in the points-to set and on the number of elements
addressable Within each location set. For example, if this

10

15

25

35

45

55

65

14
inventors allocate 8 bits for the tag and 8 bits for the index.
The pointer can reference at most 256 location sets and the
index can grave at most 256 values (eg from —127 to 128).
These limitations should hardly be a problem in most
designs.

EXAMPLE 4

Consider the expression (*(q+1)=*p+1), in Which pointer
p points to variables a and b and pointer q points to an
element of array table. The value of p is encoded. Its tag
p.tag is de?ned as folloWs: the value 0 is associated With
variable a and the value 1 is associated With variable b. Since
pointer p doesn’t point to any array element, its indexp.index
is not used. On the other hand, pointer q points to a single
location set Which represents the elements of array table.
Only q.index is being used. After removing the pointers, this
inventors end up With the folloWing code for *(q+1)=*p+1,
Where tmpip and tmpiq are tWo temporary variables:

sWitch p.tag:
case 0: tmpip=a;
case 1: tmpip=b;

An implementation for this code segment is shoWn in
FIG. 5. The load is implemented using a 2-input multiplexer
controlled by p.tag. Assuming the array table is mapped to
a memory. The index q.index is used directly as the data
address in memory.

FIG. 5 is a diagram for explaining the implementation of
*(q+1)=*p+1.

This inventors have presented simple techniques to trans
form a C code With pointers into a code Without pointers.
The resolution of pointers can be further optimiZed. When
the pointers’ location set contains a single element (eg
pointer variable), the number of live variables before loads
and stores can be reduced (Luc Semeria, Giovanni De
Micheli, “SpC: Synthesis of Pointers in C.Application of
Pointer Analysis to the Behavioral Synthesis from C”,
proceedings of the International Conference on Computer
Aided Design ICCAD’98, pp.321—326, San Jose, November
98.). Heuristics can also be applied to encode the pointers’
values (tag part) (Luc Seneria, Giovanni De Micheli,
“Encoding of Pointers for HardWare Synthesis,” proceed
ings of the International Work-shop on IP-based Synthesis
and System Design IWLAS 98, pp. 57—63, Grenoble,
December 98.).
Resolution of Malloc and Free

In order to support dynamic memory allocation and
deallocation, the hardWare needs to access an allocator. In
general the allocator could be implemented in softWare (for
mixed hardWare/softWare implementations) or completely in
hardWare. Since this Work is on the hardWare synthesis of C
code, only a hardWare implementation is presented.
Nevertheless, the techniques presented here could also be
targeted to a softWare implementation.

In softWare, malloc and free are implemented as standard
library functions. Similarly, for hardWare synthesis, this
inventors use a library of hardWare components implement
ing malloc and free. The idea here is have one component,
called allocator, implementing both the malloc and free
functions as introduced in description of the related art. In
order to efficiently manage memory, the memory space is
partitioned into different memory segments in Which data
can be allocated.

De?nition 2.
A memory segment is de?ned as an array of ?nite siZe in

Which data are allocated by unique allocator. This array may
later on be mapped to one or more memories during syn
thesis.

US 6,467,075 B1
15

In this tool, the partitioning of the memory into the
different memory segments is done by the designer. Other
tools could be used to assist this task at the system-level. For
each malloc in the code, the designer selects in Which
memory segment the storage is allocated. Since the siZe of
the dynamically allocated memory is a priori unknown at
compile time, the designer also sets the siZe of each memory
segment. The tool instantiates then the allocators corre
sponding to each memory segment and synthesiZes the
appropriate circuit to allocate, access and deallocate data.

For each memory segment, a different allocator is instan
tiated. Each malloc mapped to this memory segment is then
replaced by a call to the speci?c allocator. The pointer that
takes the result of the malloc function is de?ned as folloWs:
its tag is set according to the corresponding memory seg
ment and its index is set by the allocator. When multiple
malloc calls are mapped to a single memory segment., the
corresponding allocator is shared.

For a call free(p), the data to be deallocated may be in one
memory segment or another depending on the value of the
pointer p. This inventors generate a branching statement in
Which the different allocators corresponding the different
memory segments may be called according to the pointer’s
tag. The pointer’s index is then sent to the allocator to
indicate Which block should be deallocated. Loads, stores
and addresses are resolved as shoWn in “Resolution of
pointers in complex data structures”. Examples 5 and 6
illustrate hoW malloc and free calls are resolved While
removing pointers.

EXAMPLE 5

Consider the folloWing code segment.
p=malloc(1);

free(p);
If malloc is mapped to a memory segment called seg1 of

siZe 32 bytes, this inventors generate the folloWing code
(assuming that the siZe of char is one byte):

char seg1[32]; //memory segment: seg1
p.index=allociseg1(SPCiMALLOC,1);
out=seg1[p.index];
allociseg1(SPCiFREE,p.index);
The allocator component corresponding to the function

allocisegl is called for both malloc and free. It implements
both the allocation and deallocation functions.

EXAMPLE 6

NoW consider a more complex example Where pointer p
can point to different memory segments:

if(i==0)
p=malloc(1); //malloc1

else
p=malloc(4); //malloc2

free(p);
This inventors assume mallocl is mapped to the memory

segment seg1 and malloc2 is mapped to the memory seg
ment seg2. Both memory segment are of siZe 32 bytes (set
by the user). The resulting code, after removing malloc/free
is the folloWing:

p.tag=0;
p.index=alloc13 seg1(SPCiMALLOC,1);

5

15

25

35

45

55

65

16
}else{

p.tag=1;
p.index=allociseg2(SPCiMALLOC,4);

if(p.tag==0)
out=seg1[p .index];

else

if(p.tag==0);
allociseg1(SPCiFREE,p .index);

else
allociseg2(SPCiFREE,p.index);

If each memory segment is mapped to a different RAM
during synthesis, this inventors end up With the architecture
on FIG. 6.

FIG. 6 is a diagram shoWing an example of architecture
for multiple memory and allocator.

FIG. 7 is a diagram shoWing an example of allocator.
Allocators and OptimiZations

This inventors present three optimiZations. The ?rst tWo
optimiZations aim at simplifying the allocator architecture.
The goal for the last optimiZation is to automatically remove
some of the dynamic memory allocation/deallocation for
sequences of malloc and free.

This library of allocator components contains three main
types of allocators synthesiZed directly from C using SpC.
the notion a hardWare allocator, Which implements both the
malloc and free functions, Was introduced. This inventors
de?ne as general purpose an allocator that can allocate
blocks of any siZe. In “Optimized general purpose allocator”
this inventors present an optimiZed general purpose
allocator, for Which the deallocation scheme is optimiZed.
When the siZe of the block to be allocated is a ?xed constant,
the architecture of the allocator can be greatly simpli?ed.
The speci?c purpose allocator presented in “Speci?c pur
pose allocator” can be used in such case.

Different implementations of these allocators can be gen
erated by changing the allocation and deallocation schemes
as Well as the data structures internal to the allocator (Sven
Wuytack, Julio da Silva Jr., Francky catthoor, Gj alt de Jong,
Chantal Ykman, “Memory Management for Embedded Net
Work Applications,” transactions on Computer Aided
Design, Volume 18, number 5, pp. 533—544, May 99.). They
can be added to this framework as neW components in the
library. The designer or the tool Would select Which allocator
?ts the application best.
OptimiZed General Purpose Allocator
When a block is freed using the free function call, the

address of the beginning of the block is passed as an
argument. The allocator then searches for the exact block
characteristics (e g. siZe) in the list of allocated blocks before
adding it back to the list of free blocks.

In order to simplify the process of looking up for a given
block during deallocation, this inventors propose to encode
the characteristics of the allocated block inside of the
pointer’s tag. In this implementation, the allocator stores the
list of allocated blocks in an array. The index corresponding
to an allocated block in this array is then encoded inside of
the tag. During deallocation, the allocator can then directly
?nd the allocated block according to this index, Without
having to search the entire array. The resulting optimiZed
allocator is called optimiZed general purpose.
Speci?c Purpose allocator
The malloc function takes one argument: the siZe of the

block to be allocated. When this siZe is a unique constant K

US 6,467,075 B1
17

for all of the malloc mapped a single memory segment, this
memory segment can then be represented as an array of
elements of siZe K. Allocating memory in this segment can
simply be performed by returning the ?rst available element
in the array. For deallocation, the address of the block to
deallocate can easily be derived from its address. The
architecture of the corresponding allocator can then be
simpli?ed. For example a simple bit-vector can be used to
keep track of the allocated and free blocks in the memory
segment. Such an allocator, Which can only deal With blocks
of one siZe, is called speci?c purpose.

Constant propagation can be performed before selecting
the allocator in order to have as many malloc as possible
With constant siZe.
Removing Sequences of Malloc and Free Calls
Some of the dynamic memory allocations are sometimes

not necessary and can be removed at compile-time. This is
especially true for legacy code in Which malloc/free are used
to manually control storage. The idea here is to isolate the
?nite sequences of malloc calls Which can be replaced by
references to statically allocated data.

EXAMPLE 7

Consider the folloWing code segment.
p[1]=malloc(4); //malloc1
p[2]=malloc(8); /malloc2

free(p[1]); //free1
free(p[2]); //free2
In this example, a ?nite number of objects (tWo) are

allocated by mallocl and malloc2. Later on, these blocks are
freed by freel and free2. The dynamic memory allocation in
this case can be optimiZed by creating the tWo temporary
array elements tmpimalloc1[4] and tmpimalloc2[8]. The
siZe of these elements corresponds to the siZe of the object
allocated at each malloc. The malloc calls are then replaced
by references to these temporary variables arid the free calls
are removed. This inventors end up With the folloWing code
segment in Which memory is statically allocated.

char tmpimalloc1[4];
char tmpimalloc2[8];
p[1]=tmpimalloc1; //malloc(4)
p[2]=tmpimalloc2; //malloc(8)

//free(p[1]);
//free(p[2]);
This optimiZation can be performed under tWo conditions.

First, the siZe of the data to be allocated has to be constant.
If the siZe of the data to be allocated is not knoWn at
compile-time, a general purpose allocator Would have to be
used. Second, dynamically-allocated data have to be both
allocated and deallocated Within the same unbounded loop
(e.g. cannot optimiZe malloc in a While loop). Using the
results of the pointer analysis, this inventors have imple
mented a data?oW analysis Which ?nds at compile time the
malloc and free calls that can be optimiZed (i.e. removed).

The idea is to have a counter for each dynamically
allocated location set. During the analysis, the counter is
incremented each time an element of the corresponding
location set is allocated. Subsequently, each time an element
of the location set is deallocated (result from the pointer
analysis), the associated counter is decremented. This Way,
location sets allocated and not deallocated Within these
locations cannot be optimiZed. OtherWise, they can be
optimiZed.

1O

15

25

35

45

55

65

18
During optimiZation a temporary variable is created for

each malloc Which can be removed. The siZe of the tempo
rary variables corresponds to the siZe in the malloc call.
These temporary variables are then statically allocated dur
ing synthesis. The corresponding free calls are removed.

Another sequence optimiZation as the second example is
provided in this tool. The above sequence optimiZation
considers the constant siZe of the dynamic allocated area.
Another can deal With the variable siZe.

p=malloc(x); // assigned to RAMl

q=malloc(y); // assigned to RAM2

free(p);
p is allocated With the siZe X on RAMl and q is allocated

With the siZe y on RAM2.
Finally, p is freed. Focusing on the same kind of the

memory segment, p=malloc(x) is folloWed by free(p). The
condition inside the allocator before p=malloc(x) is the same
as just after free(p). It turns out that changing the free-list at
the allocation and merging the free area at the deallocation
are not necessary.

Therefore, another mode of the allocation is provided. In
this mode the free area is only searched and free() can be
removed. The performance of the circuit can be improved
thereby. In the case of the above example, the folloWing
code can be generated.

p=allociseg1(SPCiMALLOC2, X); // assigned to
RAM1

q=allociseg2(SPCiMALLOC1, y); // assigned to
RAMZ

// free(p); this can be removed.
SPCiMALLOCl is the regular allocation and SPCi

MALLOC2 is the above neW allocation.
Implementation and Results

Tool How
In “SYNTHESIZING MALLOC AND FREE”, this

inventors have shoWn hoW pointers and malloc/free can be
resolved at compile-time. It is the ?rst step for the synthesis
of C code involving pointers and dynamically allocated
memory.

This inventors present an implementation based on
today’s commercial synthesis tools. This inventors are not
trying to solve the problem of ef?ciently synthesiZing all of
the ANSI C syntax at once here. As a result, the examples
used here do not contain type casting and structures Which
are hard to translate into ef?cient synthesiZable HDL code.

This inventors have implemented the different techniques
presented here using the SUIF environment (R. P. Wilson et
al. “SUIF: An Infrastructure for Research on ParalleliZing
and OptimiZing Compilers”, ACM SIPLAN Notices 28(9),
pp.67—70, Sept.1994.). The tool?oW is shoWn on FIG. 8.
This implementation takes a C function With pointers and
malloc/free and generates a Verilog module. This module
can then be synthesiZed using the Behavioral Compiler of
Synopsys.

In addition to the C input function, the designer de?nes a
set of memory segments as Well as the mapping of each
malloc call to one of these memory segments. The malloc/
free calls that are not removed by the optimiZation are then
replaced by calls to the custom allocator function (speci?c,
general purpose or optimiZed general purpose). Pointers are
then removed and the code gets translated into Verilog. Each

US 6,467,075 B1
19

type of allocator is de?ned as an hardware component in a
library. During the translation into HDL, the different allo
cators corresponding to each memory segment are instanti
ated and the custom allocator functions are mapped to these
allocator modules. The communication betWeen each allo
cator and the main module is done using hand-shakes. The
resulting HDL code can then be synthesiZed using traditional
high-level synthesis tools.

FIG. 8 is a How chart shoWing resolution of dynamic
memory allocation and pointers for hardWare synthesis from
C.
Experimental Results and Discussion

For the set of examples presented here, this inventors have
synthesiZed three types of allocators in this library. In the
results presented in Table 2, allocators are designed to
allocate up to 16 blocks of memory. They are synthesiZed
directly from C using SpC and Synopsys Behavioral Com
piler. The general purpose allocators use ?rst-?t to allocate
blocks and merge adjacent free blocks during deallocation.
The ?rst roW presents the results for the general purpose
allocator Without any optimiZation. The second roW shoWs
the siZe of the optimiZed general purpose allocator for Which
the deallocation scheme has been optimiZed using the modi
?ed tag as presented in “Optimized general purpose alloca
tor”. Even though the complexity of controller is reduced
(from 52 states to 46), the siZe of the optimiZed allocator is
roughly the same because of an increase in the steering logic
The latency of the deallocation task Will hoWever be reduced
as this inventors see in the examples beloW. Finally the third
roW presents the results for the speci?c purpose allocator
introduced in “Speci?c purpose allocator”. As expected its
siZe is much smaller than the general purpose allocators.

TABLE 2

IMPLEMENTATION OF THE DIFFERENT ALLOCATORS
(AREA IN LIBRARY UNITS USING THE TSMC.35 TARGET

LIBRARY; comb. AND non-comb. REPRESENT
RESPECT IVELY THE AREA OF COMBINATIONAL
LOGIC AND NON-COMBINATIONAL LOGIC (i.e.

REGISTERS etc.) AT 100 MHZ)

lines size

allocator C HDL comb. noncomb

general purpose 297 353 204,191 80,193
general purpose (opt) 289 349 212,065 81,652
speci?c purpose 85 135 33,579 19,830

Table 3 shoWs the results for three different examples. The
?rst tWo examples test1 and test2 consists of three malloc
calls and tWo free calls. All malloc calls allocate objects of
the same constant siZe. Hence a speci?c purpose allocator
can be used. For the ?rst example, all calls malloc and free
can be removed during optimiZations. For the second
example, one of the mallocs is called inside of a unbounded
loop and cannot be removed. The third example is a ?lter
used in the JPEG library of Synopsys COSSAP and is used,
for example, for RGB to YCrCb transformations. The ?lter
implements the operation Y[i]=clip(A-X[i]+B,C) for i={1,2,
. . . , n}, Where Ais a 3*3 matrix, B and C are vectors and

Y and X are 3*n dynamically-allocated matrix.
For each example, the ?rst set of results illustrates the

case Where malloc calls are mapped to tWo general-purpose
allocators (no sharing). For the other results, one allocator is
shared. As expected, the latency (measured by simulation at
the RTL level) increases Without sharing With a decrease in
area. In the table, this inventors can also verify that the total
latency of the design decreases When the optimiZed general

20

30

50

55

60

20
purpose allocator (gen. alloc. optimiZed) is used. The use of
a speci?c purpose allocator (spec. alloc.)When possible
provides signi?cant reduction both in latency and area.
Finally, further optimiZations can be performed When
sequences of malloc and free calls can be removed
(sequence).
Conclusion

This inventors have presented an extension of the syn
thesiZable C subset to pointers and malloc/free. Moreover,
this extension is realiZable similarly to other a program With
a function of pointers and dynamic allocation/deallocation,
C++, Java. The resolution of dynamic memory allocation/
deallocation and pointers enables the implementation of
complex data structures into hardWare. This solution ?ts into
current application speci?c memory management method
ology. In order to ef?ciently partition the storage among the
different data structures during analysis and synthesis,
memory is represented by location sets. Dynamic memory
allocation and deallocation are performed Within each user
de?ned memory segments by an optimiZed hardWare allo
cator.

This tool SpC takes a C function With pointers and
malloc/free and generates a Verilog module Which can be
synthesiZed by commercial tools. This inventors provide a
library of hardWare allocators. The different allocators are
selected and optimiZed according to the application and the
memory architecture.

According to another aspect of the invention, a computer
readable memory that records a circuit synthesiZing program
for synthesiZing a circuit of executing a C-language
program, Wherein the circuit synthesiZing program causes
the computer to carry out the processes of pointer analysis
and Resolution of pointer and malloc/free OptimiZations and
Removing sequences of malloc and free calls.

Although the invention has been illustrated and described
With respect to exemplary embodiment thereof, it should be
understood by those skilled in the art that the foregoing and
various other changes, omissions and additions may be
made therein and thereto, Without departing from the spirit
and scope of the present invention.
What is claimed is:
1. A circuit synthesis method of a semiconductor circuit

for executing a program With a function of pointers and
dynamic allocation, comprising:

resolving pointer and dynamic allocation in a code of the
program; and

changing the code of the program into another code Which
does not contain said pointer and said dynamic alloca
tion;

Wherein the semiconductor circuit executes the program
With a function of pointers and dynamic allocation
When a synthesis of said semiconductor circuit is
performed.

2. The circuit synthesis method as set forth in claim 1,
Wherein,

said program is C-language program.
3. The circuit synthesis method as set forth in claim 1,

further comprising:
changing said another code into a code of HardWare

Description Languages, and
synthesiZing said semiconductor circuit based on said

code of HardWare Description Languages.
4. The circuit synthesis method as set forth in claim 1, said

resolving step including:
checking the kind of the variable Which is the object of

dynamic allocation and the quantity of a memory
assigned in the code,

US 6,467,075 B1
21

performing beforehand variable declaration of the vari
able Which is the object of the dynamic allocation
statically in the converted code,

replacing a command Which performs dynamic allocation
in the code With a command Which gives the pointer to
the variable by Which variable declaration Was carried
out.

5. A circuit synthesis method of a semiconductor circuit
for executing a program With a function of pointers and
dynamic allocation, comprising:

resolving pointer and dynamic allocation in a code of the
program; and

changing the code of the program into another code Which
does not contain said pointer and said dynamic alloca
tion; and

said resolving step including
checking the kind of the variable Which is the object of

dynamic allocation and the quantity of a memory
assigned in the code,

performing beforehand variable declaration of the vari
able Which is the object of the dynamic allocation
statically in the converted code,

replacing a command Which performs dynamic alloca
tion in the code With a command Which gives the
pointer to the variable by Which variable declaration
Was carried out,

Wherein the semiconductor circuit executes the pro
gram With a function of pointers and dynamic allo
cation When a’synthesis of said semiconductor cir
cuit is performed.

6. A circuit synthesis method of a semiconductor circuit
for executing a program With a function of pointers and
dynamic allocation, comprising:

resolving pointer and dynamic allocation in a code of the
program; and

changing the code of the program into another code Which
does not contain said pointer and said dynamic alloca
tion; and

said resolution step including a pointer analysis step of
?nding a pointer variable in the code, and checking
information on a variable Which substitutes an address

to each pointer variable,
executing variable declaration of a structure object com

prising a variable tag and a integer variable index in the
code after conversion corresponding to each pointer
variable, Wherein a variable tag shoWs the kind of
variable substituted to a pointer variable, and an integer
variable index records addition-and-subtraction pro
cessing in the code to the pointer variable,

replacing a command Which substitutes the address of
other variables to said pointer variable in said code With
a command Which substitutes information on the kind
of other variables to the variable tag and substitutes
value “0” to the variable index,

replacing a command Which ?uctuates the value of the
pointer variable in the code With a command Which
?uctuates the value of the variable index of the struc
ture object corresponding to the pointer variable,

replacing a command Which refers to the address shoWn
by the pointer variable With a command Which refers to
the value of the arrangement position of the value of the
variable index in the variable shoWn by the variable tag,

checking the kind of the variable Which is the object of
dynamic allocation and the quantity of a memory
assigned in the code,

22
performing beforehand variable declaration of the vari

able Which is the object of the dynamic allocation
statically in the converted code,

replacing the command Which performs dynamic alloca
5 tion in the code With the command Which gives the

pointer to the variable by Which variable declaration
Was carried out,

Wherein the semiconductor circuit executes the program
10 With a function of pointers and dynamic allocation

When a synthesis of said semiconductor circuit is
performed.

7. The circuit synthesis method as set forth in claim 6,
further comprising

recording a number of a block allocated to block of the
pointer variable,

accessing the block by specifying the number in free area
by an allocator,

Wherein synthesiZing the semiconductor circuit executes
management of an optimiZed free area.

8. The circuit synthesis method as set forth in claim 6, said
resolution step including
When the siZe of the variable to be allocated has to be

constant, and dynamically-allocated variable have to be
both allocated and deallocated Within the same
unbounded loop,

performing beforehand statically variable declaration of
the array variable Which is the same siZe as the
dynamically-allocated variable in the converted code,

replacing a command Which performs dynamic allocation
With a command Which references the variable to the
array variable by Which variable declaration Was car
ried out, and

removing the command that performs dynamic dealloca
tion in the code.

9. A circuit synthesis system of a semiconductor circuit
for executing a program With a function of pointers and
dynamic allocation, comprising:

a means for resolving pointer and dynamic allocation in a
code of the program; and

a means for changing the code of the program into another
code Which does not contain said pointer and said
dynamic allocation;

Wherein the semiconductor circuit executes the program
With a function of pointers and dynamic allocation
When a synthesis of said semiconductor circuit is
performed.

10. The circuit synthesis system as set forth in claim 9,
Wherein,

said program is C-language program.
11. The circuit synthesis system as set forth in claim 9,

further comprising
a means for changing said another code into a code of

HardWare Description Languages, and

25

35

55 a means for synthesiZing said semiconductor circuit based
on said code of HardWare Description Languages.

12. The circuit synthesis system as set forth in claim 9,
said resolution meaning including

60 a means for checking the kind of the variable Which is the
object of dynamic allocation and the quantity of a
memory assigned in the code,

a mean s for performing beforehand variable declaration
of the variable Which is the object of the dynamic
allocation statically in the converted code, and

a means for replacing a command Which performs
dynamic allocation in the code With a command Which

65

