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malloc C . . . HDL total 551130000X) CPU 
test . optlmlzatlon . t|me 

lfree llnes III'IB'S latency Comb_ non_c_ (in s) 

960- alloc- 344 713 568 269 14.3 
(no sharing) 
gen. alloc. 315 735 391 180 13.8 

test 1 3 / 2 72 
980- alloc- 323 617 405 199 14.4 
(optimized) 
sequence 167 32 135 87 14.3 

gen- aIIOC- 339 1,425 551 271 13.8 
(no sharing) 
gen. alloc. 310 1,732 338 177 13.4 

test 2 3 / 2 66 980- alloc- 318 1,221 372 177 13.2 
(optimized) 
speoalloc. 294 781 190 109 12.9 

sequence 173 298 159 86 13.9 

gen- alIOC- 659 438 1,287 747 21.7 
(no sharing) 

test 2 4 / 4 190 960- alloc- 630 465 1,023 632 20.6 

gen- aIIOC- 640 403 1,025 637 20.6 
(optimized) 

TABLE 3 : 
RESULTS FOR THE DIFFERENT EXAMPLES AND OPTIMIZATIONS 

(SIZE IN LIBRARY UNITS USING THE TSMC.35 TARGET 
LIBRARY; FREQUENCY 100MHz FOR TEST‘I AND TEST 2, 
5OMHZ FOR JPEG; CPU TIME MEASURED ON SUN ULTRA2 

DOES NOT INCLUDE HIGH LEVEL SYNTHESIS) 
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RESOLUTION OF DYNAMIC MEMORY 
ALLOCATION/DEALLOCATION AND 

POINTERS 

BACKGROUNDS OF THE INVENTION 

1. Field of the Invention 

The present invention relates to a device of synthesizing 
a program With a function of pointers and dynamic 
allocation/deallocation, and a method of synthesizing a 
program With a function of pointers and dynamic allocation/ 
deallocation. 

2. Description of the Related Art 
Different languages have been used as input to high-level 

synthesis. HardWare Description Languages (HDLs), such 
as Verilog HDL and VHDL, are the most commonly used. 
HoWever, designers often Write system-level models using 
programming languages, such as C or C++, to estimate the 
system performance and verify the functional correctness of 
the design. Using C/C++ offers higher-level of abstraction, 
fast simulation as Well as the possibility of leveraging a vast 
amount of legacy code and libraries, Which facilitates the 
task of system modeling. 

The use of C/C++ or a subset of C/C++ to describe both 
hardWare and softWare Would accelerate the design process 
and facilitate the softWare/hardWare migration. Designers 
could describe their system using C. The system Would then 
be partitioned into softWare and hardWare blocks, imple 
mented using synthesis tools. The neW SystemC initative is 
an attempt to standardize a C/C++-based language for both 
hardWare and softWare design. 
C Was originally designed to develop the UNIX operating 

system. It provides constructs to directly access memory 
(through pointers) and to manage memories and I/O using 
the standard C library (malloc, free, . . . These constructs 

are Widely used in softWare. Nevertheless, many of the 
netWorking and multimedia applications implemented in 
hardWare or mixed hardWare/softWare systems are also 
using complex data structures stored in one or multiple 
memory banks. As a result, many of the C/C++ features 
Which Were originally designed for softWare applications are 
noW making their Way into hardWare. 

In order to help designers re?ne their code from a simu 
lation model to a synthesizable behavioral description, this 
inventors are trying to ef?ciently synthesize the full ANSI C 
standard. This task turns out to be particularly dif?cult 
because of dynamic memory allocation/deallocation, func 
tion calls, recursions, goto’s, type castings and pointers. 

In the past feW month, different synthesis tools have been 
announced to ease the mapping of C code into hardWare 
(Abhijit Ghosh, Joachim Kunkel, Stan Liao, “HardWare 
Synthesis from C/C++,” proceedings of the Design, Auto 
mation and Test in Europe DATE’99, pp.387—389, Munich, 
1999.), (Kazutoshi Wakabayashi, “C-based Synthesis With 
Behavioral Synthesizer, Cyber,” proceedings of the Design, 
Automation and Test in Europe DATE’99, pp.390—391, 
Munich, 1999.). And other many more companies and 
research projects Work on synthesis of hardWare from C. All 
of these tools support a subset of the language (e.g. restric 
tions on pointers, function calls, etc.). In particular, they do 
not support dynamic memory allocation/deallocation using 
the ANSI standard library functions malloc and free 

In this inventors tool SpC (Luc Semeria, Giovanni De 
Micheli, “SpC: Synthesis of Pointers in C.Application of 
Pointer Analysis to the Behavioral Synthesis from C”, 
proceedings of the International Conference on Computer 
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2 
Aided Design ICCAD’98, pp.321—326, San Jose, November 
98.), pointer variables are resolved at compile-time to syn 
thesize c functional models in hardWare ef?ciently. In 
description of the preferred embodiment, this inventors Will 
focus on an implementation of dynamic memory allocation/ 
deallocation (malloc, free) in hardWare. By de?nition, in 
general, storage for dynamically allocated data structures 
cannot be assigned at compile time. The synthesis of C code 
involving dynamic memory allocation/deallocation requires 
access to some allocation and deallocation primitives imple 
mented either in softWare, as in an operating system, or in 
hardWare. 

Dynamic memory allocation/deallocation is tightly 
coupled With pointers and the notion of a single address 
space. Pointer dereferences (load, stores, etc.) as Well as 
memory allocation/deallocation are all referring to a main 
memory. HoWever, in application-speci?c hardWare, design 
ers may Want to optimize the memory architecture by using 
register banks, multiple memories etc. Therefore, memory 
allocations may be distributed onto multiple memories and 
pointers may reference data stored in registers, memories or 
even Wires (e.g. output of a functional unit). To enable 
ef?cient mapping of C code With pointers and malloc’s into 
hardWare, the synthesis tool has to automatically generate 
the appropriate circuit to dynamically allocate, access (read/ 
Write) and deallocate data. Memory management as Well as 
accurate pointers resolution are key features for C-based 
synthesis. They are enablers for the ef?cient design of 
applications involving complex data structures. 
The contribution of description of the preferred embodi 

ment is to present a solution for ef?ciently mapping arbitrary 
program code With pointers and dynamic allocation 
allocation/deallocation into hardWare. This solution ?ts cur 
rent memory management methodologies. It consists of 
instantiating a hardWare allocator tailored to an application 
and a memory architecture. This Work also supports the 
resolution and optimization of pointers Without restriction 
on the data structures. 

METHODOLOGY AND RELATED WORK 

For decades, memory management has been one of the 
major development area both for softWare and computer 
architecture. In softWare, at the user-level, memory man 
agement is typically performed by the operating system. In 
hardWare, memory bandWidth is often a bottleneck in appli 
cations such as netWorking, signal processing, graphics and 
encryption. Memory architecture exploration and ef?cient 
memory management technology are key to the design of 
neW high-performance systems. Memory generators com 
mercially available today enable fast integration of memo 
ries in a system. Scheduling of memory accesses has also 
been integrated into most commercial high level synthesis 
(ELS) tools. Most of the re?nement and compilations steps 
developed for softWare applications can also be used for 
hardWare. Nevertheless, a softWare methodology usually 
assumes a ?xed memory architecture Which may be general 
purpose or application speci?c like in a DSP or ASIP. In 
hardWare, at the behavioral level, designers Would typically 
explore different memory architectures in order to trade-off 
area and poWer for a given timing constraint. 
AfeW projects and tools have recently been announced to 

ease the mapping of C models into hardWare. In practice, 
current tools don’t support dynamic memory allocation/ 
deallocation and have restriction on pointers’ usage 
(Giovanni De Micheli , “HardWare Synthesis from c/c++,” 
in the proceeding of the Design, Automation and Test in 
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Europe DATE’99, pp.382—383, Munich, 1999.). SpC , 
enables the behavioral synthesis of C code with pointer 
variables to variables and arrays. In description of the 
preferred embodiment, this inventors present how pointers 
in general (e.g. array of pointers, pointers in structures, 
pointers to structures etc.) and dynamic memory allocation/ 
deallocation can also be ef?ciently synthesiZed. 
Amethodology for the design of custom memory systems 

has been described by Catthoor et al. (Francky Catthoor, 
Sven Wuytack, Eddy De Greef, Florin Balasa, Lode 
Nachtergaele, Arnout Vandecappelle, “Custom Memory 
Management Methodology,” Kluwer Academic Publishers, 
Dordrecht, June 98.). It is de?ned for two sets of 
applications, networking and signal processing, and sup 
ports a limited subset of C/C++. The basic concepts pre 
sented in Catthoor’s work can be generaliZed to support a 
larger subset of the C syntax for an extended set of appli 
cations. Two main steps can be distinguished in the meth 
odology: this inventors describe brie?y here the transforma 
tions performed ?rst at the system level, and then at the 
architectural level. 

At the system level, the functionality of the algorithm is 
veri?ed. Data formats are re?ned. For example, after 
quantization, the format of data can be re?ned from ?oating 
point to ?xed-point Keding, M. Willems, M. Coors, H. 
Meyr, “FRIDGE: A Fixed-Point Design And Simulation 
Environment,” proceedings of the Design Automation and 
Test in Europe DATE’98, pp.429—435, 1998.). Data struc 
tures can also be re?ned for example to reduce the number 
of indirect memory references. Examples of such transfor 
mations for networking applications have been studied by 
Wuytack et al. in (Sven Wuytack, Julio da Silva Jr., Francky 
Catthoor, Gjalt de Jong, Chantal Ykman, “Merrory Man 
agement for Embedded Network Applications,” transactions 
on Computer Aided Design, Volume 18, number 5, pp. 
533—544, May 99.), (Sven Wuytack, Francky Catthoor, 
Hugo De Man, “Transforming set data types to power 
optimal data structures,” IEEE Transactions on Computer 
Aided Design, pp.619—629, June 1996.). 

At the architectural level, after partitioning, the system 
typically consists of multiple communicating processes to be 
mapped to hardware or software (Abhijit Ghosh, Joachim 
Kunkel, Stan Liao, “Hardware Synthesis from C/C++,” 
proceedings of the Design, Automation and Test in Europe 
DATE’99, pp.387—389, Munich, 1999.). Memory segments 
are de?ned for internal storage and/or shared memory. These 
memory segments can then be mapped to one or multiple 
memories during synthesis. Some of the storage area (eg 
internal variables, etc.) can be statically allocated during 
synthesis or compilation. However, to support dynamic 
storage allocation/deallocation (eg for recursive data 
structures), allocation and deallocation primitives imple 
mented in software or hardware shall be de?ned. 

In software, memory allocation and deallocation are 
implemented as primitives part of the operating system 
(OS). These primitives can be called in a C program using 
the functions de?ned in the standard library (e.g. malloc, 
free, etc.) Many schemes have been developed for OS to 
manage memory. An extensive survey of the techniques used 
for memory allocation and deallocation can be found in 
(Paul Wilson, Mark Johnstone, David Doles, “Dynamic 
Storage Allocation: A Survey and Critical Review,” pre 
sented at Int. Workshop Memory Management, Kinross, 
Scotland, September 95.). 
Memory management can also be implemented in hard 

ware. For memory allocation and deallocation, instead of the 
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4 
system calls to the OS, requests are sent through signals to 
an allocator block virtual memory manager) imple 
mented in hardware. Its interface is shown on FIG. 10. 
Internally, the allocator stores a list of the free blocks in 
memory as well as a list of the allocated blocks. To allocate 
memory, the siZe of the block to be allocated (mallocisiZe) 
is sent. The allocator then searches in its free list a big 
enough block and returns the address of the beginning of this 
block (mallociaddress). Two techniques are often used: ?rst 
?t where the ?rst acceptable free block is returned or best ?t 
where the block of minimal siZe is returned. To free previ 
ously allocated memory, the address of the block to be 
deallocated (freeiaddress) is sent to the allocator. The 
allocator then searches inside of the allocated list the block 
and adds it back to the free list. Adjacent free blocks can then 
be merged. The implementation itself of the allocator can 
vary according to the application and the data structures. A 
number of these implementations are presented by Wuytack 
et al. (Sven wuytack, Jullio da Silva Jr., Francky Catthoor, 
Gjalt de Jong, Chantal Ykman, “Memory Management for 
Embedded Network Applications,” transactions, on Com 
puter Aided Design, Volume 18, number 95, pp. 533—544, 
May 99.), (J. Morris Chang, Edward R. Gehringer “A 
High-Performance Memory Allocator for Object-Oriented 
Systems,” IEEE trans. on Computers, vol. 45, no. 3, march 
96.). 

FIG. 10 is a diagram for explaining the interface of the 
allocator block implementing malloc and free functions. 
Once an architecture is decided, hardware can be imple 

mented using synthesis tools and compilers can be used for 
software. As far as memory management is concerned, 
memory accesses scheduling, register/memory allocation 
and address generation can be integrated into synthesis tools 
and compilers. The latest development for hardware synthe 
sis have been presented by Catthoor et al (Francky Catthoor, 
Sven Wuytack, Eddy De Greef, Florin Balasa, Lode 
Nachtergaele, Arnout Vandecappelle, “Custom Memory 
Management Methodology,” Kluwer Academic Publishers, 
Dordrecht, June 98.) and Panda et al. (Preeti Ranjan Panda, 
Nikil D.Dutt, Alexandru Nicolau, “Memory Issues in 
Embedded Systems-On-Chip OptimiZations and 
Exploration,” Kluwer Academic Pub, October 1998.). 

This contribution ?ts in the methodology described 
above. In particular, this inventors present techniques to 
automate the synthesis of program code with pointers and 
dynamic memory allocation/deallocation into hardware. The 
outcome of this research is a tool that maps and optimiZes 
hardware models in program code with pointers and 
dynamic memory allocation/deallocation into verilog HDL 
synthesiZable by commercially available synthesis tools. 

SUMMARY OF THE INVENTION 

It is an object of the present invention to provide the 
circuit synthesis method of synthesiZing the semiconductor 
circuit of executing the program containing pointer and 
dynamic allocation/deallocation. 

According to the ?rst aspect of the invention, a circuit 
synthesis method of a semiconductor circuit for executing a 
program with a function of pointers and dynamic allocation, 
comprising the steps of: 

resolving pointer and dynamic allocation in the code of 
the program; and 

changing the code of the program into the code which 
does not contain the pointer and the dynamic alloca 
tion; 

wherein synthesiZing the semiconductor circuit which 
executes the program with a function of pointers and 
dynamic allocation. 
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In the preferred construction, the program is C-language 
program. 

In another preferred construction, the circuit synthesis 
method further comprising 

a step of changing the code changed by the resolution step 
into the code of HardWare Description Languages, and 

a step of synthesiZing the semiconductor circuit based on 
the code of HardWare Description Languages. 

In another preferred construction, the resolution step 
including a step of checking the kind of the variable Which 

is the object of dynamic allocation and the quantity of 
a memory assigned in the code, 

a step of performing beforehand variable declaration of 
the variable Which is the object of the dynamic alloca 
tion statically in the converted code, 

a step of replacing the command Which performs dynamic 
allocation in the code With the command Which gives 
the pointer to the variable by Which variable declaration 
Was carried out. 

According to the second aspect of the invention, a circuit 
synthesis method of a semiconductor circuit for executing a 
program With a function of pointers and dynamic allocation, 
comprising the steps of: 

resolving pointer and dynamic allocation in the code of 
the program; and 

changing the code of the program into the code Which 
does not contain the pointer and the dynamic alloca 
tion; and 

the resolution step including 
a step of checking the kind of the variable Which is the 

object of dynamic allocation and the quantity of a 
memory assigned in the code, 

a step of performing beforehand variable declaration of 
the variable Which is the object of the dynamic 
allocation statically in the converted code, 

a step of replacing the command Which performs 
dynamic allocation in the code With the command 
Which gives the pointer to the variable by Which 
variable declaration Was carried out, 

Wherein synthesiZing the semiconductor circuit Which 
executes the program With a function of pointers and 
dynamic allocation. 

According to the third aspect of the invention, a circuit 
synthesis method of a semiconductor circuit for executing a 
program With a function of pointers and dynamic allocation, 
comprising the steps of: 

resolving pointer and dynamic allocation in the code of 
the program; and 

changing the code of the program into the code Which 
does not contain the pointer and the dynamic alloca 
tion; and 

the resolution step including 
a pointer analysis step of ?nding pointer variable in the 

code, and checking the information on the variable 
Which substitutes an address to each pointer variable, 

a step of executing variable declaration of a structure 
object comprising a variable tag and a integer vari 
able index in the code after the conversion corre 
sponding to each pointer variable, Which variable tag 
shoWs the kind of variable substituted to a pointer 
variable, and Which integer variable index records 
the addition-and-subtraction processing in the code 
to the pointer variable, 

a step of replacing the command Which substitutes the 
address of other variables to the pointer variable in 

6 
the code With the command Which substitutes the 
information on the kind of other variables to the 
variable tag and substitutes value “0” to the variable 
index, 

5 a step of replacing the command Which ?uctuates the 
value of the pointer variable in the code With the 
command Which ?uctuates the value of the variable 
index of the structure object corresponding to the 
pointer variable, 
step of replacing the command Which refers to the 
address shoWn by the pointer variable With the 
command Which refers to the value of the arrange 
ment position of the value of the variable index in the 
variable shoWn by the variable tag, 

a step of checking the kind of the variable Which is the 
object of dynamic allocation and the quantity of a 
memory assigned in the code, 

a step of performing beforehand variable declaration of 
the variable Which is the object of the dynamic 
allocation statically in the converted code, 

a step of replacing the command Which performs 
dynamic allocation in the code With the command 
Which gives the pointer to the variable by Which 
variable declaration Was carried out, 

Wherein synthesiZing the semiconductor circuit Which 
executes the program With a function of pointers and 
dynamic allocation. 

In another preferred construction, the circuit synthesis 
method further comprising 

10 a 

15 

25 

recording the number of block allocated to block of the 
pointer variable, 

accessing the block by specifying the number of block in 
free area by allocator, 

Wherein synthesiZing the semiconductor circuit Which 
executes management of optimiZed free area. 

In another preferred construction, the resolution step 
including 

35 

When the siZe of the variable to be allocated has to be 
constant, and dynamically-allocated variable have to be 
both allocated and deallocated Within the same 
unbounded loop, 

40 

a step of performing beforehand statically variable dec 
laration of the array variable Which is the same siZe as 
the dynamically-allocated variable in the converted 
code, 

45 

a step of replacing the command Which performs dynamic 
allocation With the command Which references the 
variable to the array variable by Which variable decla 

50 ration Was carried out, 

a step of removing the command performs dynamic 
deallocation in the code. 

According to another aspect of the invention, a circuit 
synthesis system of a semiconductor circuit for executing a 
program With a function of pointers and dynamic allocation, 
comprising: 

55 

a means for resolving pointer and dynamic allocation in 
the code of the program; and 

a means for changing the code of the program into the 
code Which does not contain the pointer and the 
dynamic allocation; 

Wherein synthesiZing the semiconductor circuit Which 
executes the program With a function of pointers and 
dynamic allocation 

In another preferred construction, the program is 
C-language program. 

60 
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In another preferred construction, the circuit synthesis 
system further comprising 

a means for changing the code changed by the resolution 
meaning into the code of HardWare Description 
Languages, and 

a means for of synthesiZing the semiconductor circuit 
based on the code of HardWare Description Languages. 

In another preferred construction, the resolution meaning 
including 

a means for checking the kind of the variable Which is the 
object of dynamic allocation and the quantity of a 
memory assigned in the code, 

a means for performing beforehand variable declaration 
of the variable Which is the object of the dynamic 
allocation statically in the converted code, 

a means for replacing the command Which performs 
dynamic allocation in the code With the command 
Which gives the pointer to the variable by Which 
variable declaration Was carried out. 

According to another aspect of the invention, a circuit 
synthesis system of a semiconductor circuit for executing a 
program With a function of pointers and dynamic allocation, 
comprising: 

a means for resolving pointer and dynamic allocation in 
the code of the program; and 

a means for changing the code of the program into the 
code Which does not contain the pointer and the 
dynamic allocation; and 

the resolution meaning including 
a means for checking the kind of the variable Which is 

the object of dynamic allocation and the quantity of 
a memory assigned in the code, 

a means for performing beforehand variable declara 
tion of the variable Which is the object of the 
dynamic allocation statically in the converted code, 

a means for replacing the command Which performs 
dynamic allocation in the code With the command 
Which gives the pointer to the variable by Which 
variable declaration Was carried out, 

Wherein synthesiZing the semiconductor circuit Which 
executes the program With a function of pointers and 
dynamic allocation. 

According to another aspect of the invention, a circuit 
synthesis system of a semiconductor circuit for executing a 
program With a function of pointers and dynamic allocation, 
comprising: 

a means for resolving pointer and dynamic allocation in 
the code of the program; and 

a means for changing the code of the program into the 
code Which does not contain the pointer and the 
dynamic allocation; and 

the resolution meaning including 
a pointer analysis means for ?nding pointer variable in 

the code, and checking the information on the vari 
able Which substitutes an address to each pointer 

variable, 
a means for executing variable declaration of a struc 

ture object comprising a variable tag and a integer 
variable index in the code after the conversion cor 
responding to each pointer variable, Which variable 
tag shoWs the kind of variable substituted to a pointer 
variable, and Which integer variable index records 
the addition-and-subtraction processing in the code 
to the pointer variable, 

a means for replacing the command Which substitutes 
the. address of other variables to the pointer variable 
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in the code With the command Which substitutes the 
information on the kind of other variables to the 
variable tag and substitutes value “0” to the variable 
index, 

a means for replacing the command Which ?uctuates 
the value of the pointer variable in the code With the 
command Which ?uctuates the value of the variable 
index of the structure object corresponding to the 
pointer variable, 

a means for replacing the command Which refers to the 
address shoWn by the pointer variable With the 
command Which refers to the value of the arrange 
ment position of the value of the variable index in the 
variable shoWn by the variable tag, 

a means for checking the kind of the variable Which is 
the object of dynamic allocation and the quantity of 
a memory assigned in the code, 

a means for performing beforehand variable declara 
tion of the variable Which is the object of the 
dynamic allocation statically in the converted code, 

a means for replacing the command Which performs 
dynamic allocation in the code With the command 
Which gives the pointer to the variable by Which 
variable declaration Was carried out, 

Wherein synthesiZing the semiconductor circuit Which 
executes the program With a function of pointers and 
dynamic allocation. 

Other objects, features and advantages of the present 
invention Will become clear from the detailed description 
given herebeloW. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention Will be understood more fully from 
the detailed description given herebeloW and from the 
accompanying draWings of the preferred embodiment of the 
invention, Which, hoWever, should not be taken to be limi 
tative to the invention, but are for explanation and under 
standing only. 

In the draWings: 
FIG. 1 is a How chart shoWing synthesis operation of the 

synthesiZing system according to one embodiment of the 
present embodiment; 

FIG. 2 is a How chart shoWing remove pointers operation 
of the synthesiZing system according to one embodiment of 
the present embodiment; 

FIG. 3 is a diagram shoWing an example of representation 
for an array of structures; 

FIG. 4 is a diagram for explaining the encoding of 
pointers in array; 

FIG. 5 is a diagram for explaining the implementation of 
*(q+1)=*P+1; 

FIG. 6 is a diagram shoWing an example of architecture 
for multiple memory and allocator; 

FIG. 7 is a diagram shoWing an example of allocator; 
FIG. 8 is a How chart shoWing resolution of dynamic 

memory allocation and pointers for hardWare synthesis from 
C; 

FIG. 9 is a diagram shoWing a table of result for the 
different examples and optimiZations; 

FIG. 10 is a diagram for explaining the interface of the 
allocator block implementing malloc and free functions. 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

The preferred embodiment of the present invention Will 
be discussed hereinafter in detail With reference to the 
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accompanying drawings. In the following description, 
numerous speci?c details are set forth in order to provide a 
thorough understanding of the present invention. It Will be 
obvious, hoWever, to those skilled in the art that the present 
invention may be practiced Without these speci?c details. In 
other instance, Well-knoWn structures are not shoWn in detail 
in order to unnecessary obscure the present invention. 

In softWare, the semantics of pointers is the address of an 
element in memory. This de?nition implies that the C 
program is targeted to a virtual architecture consisting of one 
memory in Which everything is stored. Even though register 
declaration may alloW programmers to specify the variables 
to place in registers, the assignment of variables to registers 
is generally done by the compiler. The notions of caches and 
memory pages are transparent to programmers. 

In hardWare, at the behavioral level, designers Want to 
have control on Where data are stored and Want to optimiZe 
the locality of the storage. Typically, a chip design contains 
multiple memory banks, register ?les, registers and Wires. 
Pointers may be used to reference any variable no matter 
Where its information is available. Pointers must be consid 
ered as references: references to memory elements, registers, 
Wires or ports. In particular, pointers can be used to allocate, 
read, Write and deallocate data. In this description of the 
preferred embodiment this inventors call the action of read 
ing data using a pointer a load. Subsequently, a store is the 
action of Writing data using a pointer. Allocation and deal 
location are performed through the standard library func 
tions malloc and free. Their implementation is hoWever 
tailored for a given application and memory architecture. 

The synthesis of pointers in general consists of generating 
the appropriate circuit for allocating and accessing data. For 
this purpose, this inventors change the addresses into num 
bers (i.e. encode pointers values) and replace loads and 
stores by some assignments directly accessing the data the 
pointer may reference (i.e. resolve pointers). Functions 
malloc and free are subsequently changed as memory allo 
cation/deallocation can be distributed onto multiple memo 
r1es. 

EXAMPLE 1 

Consider an application, Where a hardWare block receives 
objects of different siZes and processes them. Some of these 
objects are copied in a register (reg) Some other are only 
used Within this block and are stored in private memory 
(localiRAM). Finally some, larger, may also to be accessed 
by other blocks and are stored in a shared memory (sharedi 
RAM). 

if(object.isireg) p=&req; 
if(object.isiinternal) //allocate memory in localiRAM 

p=malloc(4); 
else //allocate memory in sharediRAM p=malloc(8); 

//store in reg, localiRAM or sharediRAM 
*p=object.data; 

if(!object.isireg) //free storage in localiRAM or in 
sharediRAM free(p); 

In order to implement the store (*p=object.data), the tool 
has to schedule a Write operation into the register reg, the 
memory localiRAM or the memory sharediRAM. It also 
needs to instantiate the correct circuit (steering logic) to 
access these locations. For this purpose, this inventors need 
to knoW at compile-time the set of locations the pointer p 
may point to (points-to set). 
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To implement free(p), assuming that each memory locali 

RAM and sharediRAM is managed by a speci?c allocator, 
the tool also needs to schedule a deallocation operation on 
one allocator or the other. The points-to information for the 
pointer p is also necessary. 
As this inventors can see in Example 1, in order to map 

loads, stores as and free operations into hardWare, this 
inventors need to knoW at compile-time the set of locations 
the pointers may reference (points-to information). 

Such information is also Widely used in compilers. In 
order to paralleliZe programs onto distributed architectures, 
the independent sets of data Which can be processed in 
parallel have to be extracted. The problem there is to ?nd 
statements in the program that may read or Write the same 
locations (aliasing problem). For this purpose, the aliasing 
information has to be determined betWeen pointers. The 
points-to information and the aliasing information are 
equivalent and can be determined by recent analysis tech 
niques called pointer-analysis or alias-analysis. 

FIG. 1 is a How chart shoWing synthesis operation of the 
synthesiZing system according to one embodiment of the 
present embodiment. 

FIG. 2 is a How chart shoWing remove pointers operation 
of the synthesiZing system according to one embodiment of 
the present embodiment. 
Pointer Analysis 

Pointer analysis is a compiler technique to identify at 
compile-time the potential values of the pointers in the 
program. This information is used to determine the set of 
locations the pointer may point to. For synthesis, in the case 
of loads, stores, and free, this inventors Want to synthesiZe 
the logic to access, modify or deallocate the location refer 
enced by the pointer. For this purpose, the points-to infor 
mation must be both safe and accurate: safe because this 
inventors have to consider all of the locations the pointer 
may reference and accurate because the smaller the points-to 
set is, the less logic this inventors have to generate. 
TWo main types of analyses can be distinguished. First 

?oW- and context-insensitive analyses (Dj arne Steensgaard 
“Point-to Analysis by Type Inference of Programs With 
Structures and Unions”, proceedings of the 1996 Interna 
tional Conference on Compiler Construction, pp.136—150, 
April 96.) don’t distinguish the order in Which the statements 
are executed (?oW-insensitivity) and the different calls of a 
function (context-insensitivity). They are the least accurate 
but the relative simplicity of their implementation makes 
them more suitable for very large programs. FloW- and 
context-sensitive analyses, such as by Wilson and Lam 
(Robert Wilson, “Ef?cient, Context-Sensitive Pointer Analy 
sis For C Programs”, Ph.D. Dissertation, Stanford 
University, 1997., Robert Wilson, Monica Lam, “Ef?cient 
Context-Sensitive Pointer Analysis for C Programs”, pro 
ceedings of the ACM SIGPLAN’95 Conference on Pro 
gramming Languages Design and Implementation, pp.1—12, 
June 95 ), on the other hand, provide more accuracy With an 
increased complexity. 
Even though the complexity of ?oW- and context 

sensitive analyses may be exponential, it is not a limitation 
for hardWare synthesis because this inventors deal With 
rather small and simple programs With limited calling con 
texts for functions and often no recursions. Beside these 
analyses leads to more accurate results, Which makes them 
more suitable for hardWare synthesis. Most of the inaccuracy 
comes from the Way memory in represented. Different 
techniques have been used to identify the different locations 
in memory. 
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Memory Representation 
The simplest memory representation consists of a single 

address space in Which all data are stored. This trivial 
representation hoWever prevents from optimizing the local 
ity and paralleliZing the code. On the other hand, the most 
accurate representation, Which Would distinguish each ele 
ment of arrays or of recursive data structures, is not prac 
tical. As a result, most analysis techniques combine elements 
Within a single data structure. Some techniques combine 
elements based on their allocation contexts (Robert Wilson, 
“Ef?cient, Context-Sensitive Pointer Analysis For C 
Programs”, Ph.D. Dissertation, Stanford University, 1997., 
Robert Wilson, Monica Lam, “Ef?cient Context-Sensitive 
Pointer Analysis for C Programs”, proceedings of the ACM 
SIGPLAN’95 Conference on Programming Languages 
Design and Implementation, pp.1—12, June 95.) or on lim 
iting the length of access paths to some ?xed constant 
(k-limiting). Shape analysis (Alain Deutsh, “Interprocedural 
may-alias analysis for pointers: Beyond k-limiting,” pro 
ceedings of the ACM SIGPLAN’94 Conference on Pro 
gramming Language Design and Implementation, pp. 
230—241, June 94., Rakesh Ghiya and Laurie Hendren, “Is 
it a tree, a DAG, or a cyclic graph? A shape analysis for 
heap-directed pointers in C,” proceedings of the 23th Annual 
ACM Symposium on Principle of Programming 
Languages.) gives the most accurate representation as they 
may distinguish trees from DAGs, linear lists from cyclic 
lists and so on. HoWever its implementation to support large 
C programs remains challenging. 

In order to ?nd both an accurate and practical represen 
tation for hardWare synthesis, this inventors propose to use 
the notion of location sets de?ned in (Robert Wilson, 
“Ef?cient, Context-Sensitive Pointer Analysis For C 
Programs”, Ph.D. Dissertation, Stanford University, 1997., 
Robert Wilson, Monica Lam, “Ef?cient Context-Sensitive 
Pointer Analysis for C Programs”, proceedings of the ACM 
SIGPLAN’95 Conference on Programming Languages 
Design and Implementation, pp.1—12, June 95.). Locations 
sets support any of the data structures available in C includ 
ing arrays, structures, arrays of structures and structures 
containing arrays. This representation is also relatively 
simple as it combines the different elements of an array or 
of recursive data structures. It can therefore be used for large 
C programs. 
A location set <f,s>eN><Z (Nznatural number, Zzinteger) 

represents the set of locations With offsets {f+is:ieZ} in a 
particular block of memory That is, f is an offset Within a 
block and s is the stride. If the stride is Zero, the location set 
contains a single element. OtherWise, it is assumed to be an 
unbounded set of locations. Table 1 shoWs the location sets 
for various expressions. 

TABLE 1 

LOCATION SET EXAMPLES (F = OFFSET OF FIELD F), 
(s = STRIDE OR ARRAY ELEMENT SIZE) 

Type Expression Location Set 

Int a a <0,0> 

Struct {int F; } s s.F <F,O> 
Int a[]; a[i] <O,s> 
Struct{int F; } r[ ]; r[i].F <f,s> 

FIG. 3 is a How chart shoWing synthesis operation of the 
synthesiZing system according to one embodiment of the 
present embodiment: 

For simple data structures (arrays, structures, array of 
structures), offsets are used to identify the different ?elds of 
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structures Whereas strides are used to record array-element 
siZes. FIG. 3 gives an example of representation for an array 
of structures. The representation doesn’t distinguish the 
different elements Within the array but it distinguishes the 
different instantiations of variables and structures. This 
makes sense since all elements of an array are usually alike. 

Nested arrays and structures, type casting and pointer 
arithmetic are making things more complicated, leading to 
some more inaccuracies. Example 2 shoWs hoW references 
to array nested in structures are represented approximately. 
The array bound information in the declared type cannot be 
used because the C language does not provide array-bounds 
checking. Areference to an array nested in a structure could 
access other elements of the structure by using out-of-bound 
array indices. 

EXAMPLE 2 

Consider the array r.F[ ] nested in a structure r: struct { 

char a; 

char b; 
int F[8];} r; 
References to one of the array element (eg r.F[2]) are 

represented approximately by the locations set <0, siZeof 
(int)>Which regroups all of the elements of the array as Well 
as r.a. 

Dynamically allocated memory locations (heap-allocated 
objects) are represented by a speci?c location set. As far as 
accuracy, the goal is to distinguish complete data structures. 
The different elements of a recursive data structure Would 
typically be combined. For example, this inventors Want to 
distinguish one list from another hut this inventors do not 
Want to distinguish the different elements of a list. Heuristics 
are used to partition the heap. Storage allocated in the same 
context is assumed to be part of the same equivalence class. 
These heuristics have been proven to Work Well as long as 
the program uses the standard memory allocation routines 
(Robert Wilson, “Ef?cient, Context-Sensitive Pointer Analy 
sis For C Programs”, Ph.D. Dissertation, Stanford 
University, 1997.). 
De?nition of the Sunset 
The pointer analyses and memory representation pre 

sented in “Memory representation” support the complete 
ANSI C syntax. In this description of the preferred embodi 
ment hoWever, this inventors de?ne synthesiZable subset. 
This subset includes malloc/free as Well as all types of 
pointers and type casting. Nevertheless this inventors set the 
folloWing tWo restrictions. 
The ?rst restriction applies to systems described as a set 

of parallel processes: pointers that reference data outside of 
the scope of a process (eg global variables or data internal 
to some other process) are not alloWed. Their resolution 
Would require the synthesis of some kind of interface 
betWeen the processes. Such interface is usually de?ned 
during system partitioning and, hence, before synthesis. As 
a result, memory allocated in one process is assumed to be 
accessed and deallocated only Within this same process. 
The second limitation stems from the fact that most 

commercial synthesis tools also have restrictions on func 
tions. Recursions are usually not supported. Procedures that 
are mapped to components typically have restrictions both 
on their functionality and their parameters. For example, the 
same function called Within different contexts may usually 
not be shared. Besides, most synthesis tools do not synthe 
siZe parameter passed by reference, because this is not 
supported by most HDL syntax. The synthesis of functions 
in C, and therefore the resolution of pointers and malloc/free 
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inside of functions, is beyond the scope of this description 
of the preferred embodiment. 

Other restrictions are also added in the implementation 
section in order to be able to translate C models into Verilog 
synthesiZable by commercial high-level synthesis tools. 
These restrictions are hoWever not required for the resolu 
tion of pointers and dynamic memory allocation and do not 
apply for the next “SYNTHESIZING MALLOC AND 
FREE”. 
SynthesiZing Malloc and Free 

Resolution of pointers in complex data structures 
This implementation uses a ?oW- and context-sensitive 

pointer analysis (Robert Wilson, “Ef?cient, Context 
Sensitive Pointer Analysis For C Programs”, Ph.D. 
Dissertation, Stanford University, 1997., Robert Wilson, 
Monica Lam, “Ef?cient Context-Sensitive Pointer Analysis 
for C Programs”, proceedings of the ACM SIGPLAN’95 
Conference on Programming Languages Design and 
Implementation, pp.1—12, June 95 in Which memory loca 
tions are represented by location sets. The points-to infor 
mation is then used to encode the pointers’ value and to 
generate the appropriate logic for accessing and deallocating 
data. 

After encoding, the siZe of the pointers can be reduced as 
shoWn in (Luc Semeria, Giovanni De Micheli, “SpC: Syn 
thesis of Pointers in C.Application of Pointer Analysis to the 
Behavioral Synthesis from C”, proceedings of the Interna 
tional Conference on Computer-Aided Design ICCAD’98, 
pp.321—326, San Jose, November 98., Luc Semeria, Gio 
vanni De Micheli, “Encoding of Pointers for HardWare 
Synthesis,” proceedings of the International Work-shop on 
IP-based Synthesis and System Design IWLAS’98, pp. 
57—63, Grenoble, December 98.). HoWever, in order to 
support type casting and out-of-bound array accesses, this 
inventors assume that pointers have a ?xed siZe. The siZe of 
a pointer itself is not de?ned by the ANSI standard. It is 
therefore implementation (or compiler in this case) depen 
dent. In order to map pointers into hardWare, the addresses 
(i.e. pointers’ values) are encoded. Memory locations are 
represented by location sets. 

Next, it explains using an example using tWo items, a tag 
and an index. 

De?nition 1. 
The encoded value of a pointer p consists of tWo ?elds: 

the tag p.tag (left part of the code) corresponds to the 
location set referenced by the pointer, 

the index p.index (right part of the code) stores the 
number of strides corresponding to the data referenced 
Within the location set. 

These ?elds don’t have to be ?elds of a structure. They are 
a notation for “sections” of the code named tag and index. 

FIG. 4 is a diagram for explaining the encoding of 
pointers in array. 

EXAMPLE 3 

FIG. 4 gives an illustration of pointers’ encoding inside of 
an array: 

int *tableip[]; 
If the element tableip[i] Were to point to s[2].b de?ned 

on FIG. 3, index tableip[i].index Would be equal to 2. 
The index part of the code is stored Within the ?rst bits 

(least signi?cant bits) to support pointer arithmetic, espe 
cially When a pointer is type-cast into an integer. This 
encoding scheme has limitations on the number of location 
sets in the points-to set and on the number of elements 
addressable Within each location set. For example, if this 
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inventors allocate 8 bits for the tag and 8 bits for the index. 
The pointer can reference at most 256 location sets and the 
index can grave at most 256 values (eg from —127 to 128). 
These limitations should hardly be a problem in most 
designs. 

EXAMPLE 4 

Consider the expression (*(q+1)=*p+1), in Which pointer 
p points to variables a and b and pointer q points to an 
element of array table. The value of p is encoded. Its tag 
p.tag is de?ned as folloWs: the value 0 is associated With 
variable a and the value 1 is associated With variable b. Since 
pointer p doesn’t point to any array element, its indexp.index 
is not used. On the other hand, pointer q points to a single 
location set Which represents the elements of array table. 
Only q.index is being used. After removing the pointers, this 
inventors end up With the folloWing code for *(q+1)=*p+1, 
Where tmpip and tmpiq are tWo temporary variables: 

sWitch p.tag: 
case 0: tmpip=a; 
case 1: tmpip=b; 

An implementation for this code segment is shoWn in 
FIG. 5. The load is implemented using a 2-input multiplexer 
controlled by p.tag. Assuming the array table is mapped to 
a memory. The index q.index is used directly as the data 
address in memory. 

FIG. 5 is a diagram for explaining the implementation of 
*(q+1)=*p+1. 

This inventors have presented simple techniques to trans 
form a C code With pointers into a code Without pointers. 
The resolution of pointers can be further optimiZed. When 
the pointers’ location set contains a single element (eg 
pointer variable), the number of live variables before loads 
and stores can be reduced (Luc Semeria, Giovanni De 
Micheli, “SpC: Synthesis of Pointers in C.Application of 
Pointer Analysis to the Behavioral Synthesis from C”, 
proceedings of the International Conference on Computer 
Aided Design ICCAD’98, pp.321—326, San Jose, November 
98.). Heuristics can also be applied to encode the pointers’ 
values (tag part) (Luc Seneria, Giovanni De Micheli, 
“Encoding of Pointers for HardWare Synthesis,” proceed 
ings of the International Work-shop on IP-based Synthesis 
and System Design IWLAS 98, pp. 57—63, Grenoble, 
December 98.). 
Resolution of Malloc and Free 

In order to support dynamic memory allocation and 
deallocation, the hardWare needs to access an allocator. In 
general the allocator could be implemented in softWare (for 
mixed hardWare/softWare implementations) or completely in 
hardWare. Since this Work is on the hardWare synthesis of C 
code, only a hardWare implementation is presented. 
Nevertheless, the techniques presented here could also be 
targeted to a softWare implementation. 

In softWare, malloc and free are implemented as standard 
library functions. Similarly, for hardWare synthesis, this 
inventors use a library of hardWare components implement 
ing malloc and free. The idea here is have one component, 
called allocator, implementing both the malloc and free 
functions as introduced in description of the related art. In 
order to efficiently manage memory, the memory space is 
partitioned into different memory segments in Which data 
can be allocated. 

De?nition 2. 
A memory segment is de?ned as an array of ?nite siZe in 

Which data are allocated by unique allocator. This array may 
later on be mapped to one or more memories during syn 
thesis. 
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In this tool, the partitioning of the memory into the 
different memory segments is done by the designer. Other 
tools could be used to assist this task at the system-level. For 
each malloc in the code, the designer selects in Which 
memory segment the storage is allocated. Since the siZe of 
the dynamically allocated memory is a priori unknown at 
compile time, the designer also sets the siZe of each memory 
segment. The tool instantiates then the allocators corre 
sponding to each memory segment and synthesiZes the 
appropriate circuit to allocate, access and deallocate data. 

For each memory segment, a different allocator is instan 
tiated. Each malloc mapped to this memory segment is then 
replaced by a call to the speci?c allocator. The pointer that 
takes the result of the malloc function is de?ned as folloWs: 
its tag is set according to the corresponding memory seg 
ment and its index is set by the allocator. When multiple 
malloc calls are mapped to a single memory segment., the 
corresponding allocator is shared. 

For a call free(p), the data to be deallocated may be in one 
memory segment or another depending on the value of the 
pointer p. This inventors generate a branching statement in 
Which the different allocators corresponding the different 
memory segments may be called according to the pointer’s 
tag. The pointer’s index is then sent to the allocator to 
indicate Which block should be deallocated. Loads, stores 
and addresses are resolved as shoWn in “Resolution of 
pointers in complex data structures”. Examples 5 and 6 
illustrate hoW malloc and free calls are resolved While 
removing pointers. 

EXAMPLE 5 

Consider the folloWing code segment. 
p=malloc(1); 

free(p); 
If malloc is mapped to a memory segment called seg1 of 

siZe 32 bytes, this inventors generate the folloWing code 
(assuming that the siZe of char is one byte): 

char seg1[32]; //memory segment: seg1 
p.index=allociseg1(SPCiMALLOC,1); 
out=seg1[p.index]; 
allociseg1(SPCiFREE,p.index); 
The allocator component corresponding to the function 

allocisegl is called for both malloc and free. It implements 
both the allocation and deallocation functions. 

EXAMPLE 6 

NoW consider a more complex example Where pointer p 
can point to different memory segments: 

if(i==0) 
p=malloc(1); //malloc1 

else 
p=malloc(4); //malloc2 

free(p); 
This inventors assume mallocl is mapped to the memory 

segment seg1 and malloc2 is mapped to the memory seg 
ment seg2. Both memory segment are of siZe 32 bytes (set 
by the user). The resulting code, after removing malloc/free 
is the folloWing: 

p.tag=0; 
p.index=alloc13 seg1(SPCiMALLOC,1); 
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}else{ 

p.tag=1; 
p.index=allociseg2(SPCiMALLOC,4); 

if(p.tag==0) 
out=seg1[p .index]; 

else 

if(p.tag==0); 
allociseg1(SPCiFREE,p .index); 

else 
allociseg2(SPCiFREE,p.index); 

If each memory segment is mapped to a different RAM 
during synthesis, this inventors end up With the architecture 
on FIG. 6. 

FIG. 6 is a diagram shoWing an example of architecture 
for multiple memory and allocator. 

FIG. 7 is a diagram shoWing an example of allocator. 
Allocators and OptimiZations 

This inventors present three optimiZations. The ?rst tWo 
optimiZations aim at simplifying the allocator architecture. 
The goal for the last optimiZation is to automatically remove 
some of the dynamic memory allocation/deallocation for 
sequences of malloc and free. 

This library of allocator components contains three main 
types of allocators synthesiZed directly from C using SpC. 
the notion a hardWare allocator, Which implements both the 
malloc and free functions, Was introduced. This inventors 
de?ne as general purpose an allocator that can allocate 
blocks of any siZe. In “Optimized general purpose allocator” 
this inventors present an optimiZed general purpose 
allocator, for Which the deallocation scheme is optimiZed. 
When the siZe of the block to be allocated is a ?xed constant, 
the architecture of the allocator can be greatly simpli?ed. 
The speci?c purpose allocator presented in “Speci?c pur 
pose allocator” can be used in such case. 

Different implementations of these allocators can be gen 
erated by changing the allocation and deallocation schemes 
as Well as the data structures internal to the allocator (Sven 
Wuytack, Julio da Silva Jr., Francky catthoor, Gj alt de Jong, 
Chantal Ykman, “Memory Management for Embedded Net 
Work Applications,” transactions on Computer Aided 
Design, Volume 18, number 5, pp. 533—544, May 99.). They 
can be added to this framework as neW components in the 
library. The designer or the tool Would select Which allocator 
?ts the application best. 
OptimiZed General Purpose Allocator 
When a block is freed using the free function call, the 

address of the beginning of the block is passed as an 
argument. The allocator then searches for the exact block 
characteristics (e g. siZe) in the list of allocated blocks before 
adding it back to the list of free blocks. 

In order to simplify the process of looking up for a given 
block during deallocation, this inventors propose to encode 
the characteristics of the allocated block inside of the 
pointer’s tag. In this implementation, the allocator stores the 
list of allocated blocks in an array. The index corresponding 
to an allocated block in this array is then encoded inside of 
the tag. During deallocation, the allocator can then directly 
?nd the allocated block according to this index, Without 
having to search the entire array. The resulting optimiZed 
allocator is called optimiZed general purpose. 
Speci?c Purpose allocator 
The malloc function takes one argument: the siZe of the 

block to be allocated. When this siZe is a unique constant K 
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for all of the malloc mapped a single memory segment, this 
memory segment can then be represented as an array of 
elements of siZe K. Allocating memory in this segment can 
simply be performed by returning the ?rst available element 
in the array. For deallocation, the address of the block to 
deallocate can easily be derived from its address. The 
architecture of the corresponding allocator can then be 
simpli?ed. For example a simple bit-vector can be used to 
keep track of the allocated and free blocks in the memory 
segment. Such an allocator, Which can only deal With blocks 
of one siZe, is called speci?c purpose. 

Constant propagation can be performed before selecting 
the allocator in order to have as many malloc as possible 
With constant siZe. 
Removing Sequences of Malloc and Free Calls 
Some of the dynamic memory allocations are sometimes 

not necessary and can be removed at compile-time. This is 
especially true for legacy code in Which malloc/free are used 
to manually control storage. The idea here is to isolate the 
?nite sequences of malloc calls Which can be replaced by 
references to statically allocated data. 

EXAMPLE 7 

Consider the folloWing code segment. 
p[1]=malloc(4); //malloc1 
p[2]=malloc(8); /malloc2 

free(p[1]); //free1 
free(p[2]); //free2 
In this example, a ?nite number of objects (tWo) are 

allocated by mallocl and malloc2. Later on, these blocks are 
freed by freel and free2. The dynamic memory allocation in 
this case can be optimiZed by creating the tWo temporary 
array elements tmpimalloc1[4] and tmpimalloc2[8]. The 
siZe of these elements corresponds to the siZe of the object 
allocated at each malloc. The malloc calls are then replaced 
by references to these temporary variables arid the free calls 
are removed. This inventors end up With the folloWing code 
segment in Which memory is statically allocated. 

char tmpimalloc1[4]; 
char tmpimalloc2[8]; 
p[1]=tmpimalloc1; //malloc(4) 
p[2]=tmpimalloc2; //malloc(8) 

//free(p[1]); 
//free(p[2]); 
This optimiZation can be performed under tWo conditions. 

First, the siZe of the data to be allocated has to be constant. 
If the siZe of the data to be allocated is not knoWn at 
compile-time, a general purpose allocator Would have to be 
used. Second, dynamically-allocated data have to be both 
allocated and deallocated Within the same unbounded loop 
(e.g. cannot optimiZe malloc in a While loop). Using the 
results of the pointer analysis, this inventors have imple 
mented a data?oW analysis Which ?nds at compile time the 
malloc and free calls that can be optimiZed (i.e. removed). 

The idea is to have a counter for each dynamically 
allocated location set. During the analysis, the counter is 
incremented each time an element of the corresponding 
location set is allocated. Subsequently, each time an element 
of the location set is deallocated (result from the pointer 
analysis), the associated counter is decremented. This Way, 
location sets allocated and not deallocated Within these 
locations cannot be optimiZed. OtherWise, they can be 
optimiZed. 
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During optimiZation a temporary variable is created for 

each malloc Which can be removed. The siZe of the tempo 
rary variables corresponds to the siZe in the malloc call. 
These temporary variables are then statically allocated dur 
ing synthesis. The corresponding free calls are removed. 

Another sequence optimiZation as the second example is 
provided in this tool. The above sequence optimiZation 
considers the constant siZe of the dynamic allocated area. 
Another can deal With the variable siZe. 

p=malloc(x); // assigned to RAMl 

q=malloc(y); // assigned to RAM2 

free(p); 
p is allocated With the siZe X on RAMl and q is allocated 

With the siZe y on RAM2. 
Finally, p is freed. Focusing on the same kind of the 

memory segment, p=malloc(x) is folloWed by free(p). The 
condition inside the allocator before p=malloc(x) is the same 
as just after free(p). It turns out that changing the free-list at 
the allocation and merging the free area at the deallocation 
are not necessary. 

Therefore, another mode of the allocation is provided. In 
this mode the free area is only searched and free() can be 
removed. The performance of the circuit can be improved 
thereby. In the case of the above example, the folloWing 
code can be generated. 

p=allociseg1(SPCiMALLOC2, X); // assigned to 
RAM1 

q=allociseg2(SPCiMALLOC1, y); // assigned to 
RAMZ 

// free(p); this can be removed. 
SPCiMALLOCl is the regular allocation and SPCi 

MALLOC2 is the above neW allocation. 
Implementation and Results 

Tool How 
In “SYNTHESIZING MALLOC AND FREE”, this 

inventors have shoWn hoW pointers and malloc/free can be 
resolved at compile-time. It is the ?rst step for the synthesis 
of C code involving pointers and dynamically allocated 
memory. 

This inventors present an implementation based on 
today’s commercial synthesis tools. This inventors are not 
trying to solve the problem of ef?ciently synthesiZing all of 
the ANSI C syntax at once here. As a result, the examples 
used here do not contain type casting and structures Which 
are hard to translate into ef?cient synthesiZable HDL code. 

This inventors have implemented the different techniques 
presented here using the SUIF environment (R. P. Wilson et 
al. “SUIF: An Infrastructure for Research on ParalleliZing 
and OptimiZing Compilers”, ACM SIPLAN Notices 28(9), 
pp.67—70, Sept.1994.). The tool?oW is shoWn on FIG. 8. 
This implementation takes a C function With pointers and 
malloc/free and generates a Verilog module. This module 
can then be synthesiZed using the Behavioral Compiler of 
Synopsys. 

In addition to the C input function, the designer de?nes a 
set of memory segments as Well as the mapping of each 
malloc call to one of these memory segments. The malloc/ 
free calls that are not removed by the optimiZation are then 
replaced by calls to the custom allocator function (speci?c, 
general purpose or optimiZed general purpose). Pointers are 
then removed and the code gets translated into Verilog. Each 
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type of allocator is de?ned as an hardware component in a 
library. During the translation into HDL, the different allo 
cators corresponding to each memory segment are instanti 
ated and the custom allocator functions are mapped to these 
allocator modules. The communication betWeen each allo 
cator and the main module is done using hand-shakes. The 
resulting HDL code can then be synthesiZed using traditional 
high-level synthesis tools. 

FIG. 8 is a How chart shoWing resolution of dynamic 
memory allocation and pointers for hardWare synthesis from 
C. 
Experimental Results and Discussion 

For the set of examples presented here, this inventors have 
synthesiZed three types of allocators in this library. In the 
results presented in Table 2, allocators are designed to 
allocate up to 16 blocks of memory. They are synthesiZed 
directly from C using SpC and Synopsys Behavioral Com 
piler. The general purpose allocators use ?rst-?t to allocate 
blocks and merge adjacent free blocks during deallocation. 
The ?rst roW presents the results for the general purpose 
allocator Without any optimiZation. The second roW shoWs 
the siZe of the optimiZed general purpose allocator for Which 
the deallocation scheme has been optimiZed using the modi 
?ed tag as presented in “Optimized general purpose alloca 
tor”. Even though the complexity of controller is reduced 
(from 52 states to 46), the siZe of the optimiZed allocator is 
roughly the same because of an increase in the steering logic 
The latency of the deallocation task Will hoWever be reduced 
as this inventors see in the examples beloW. Finally the third 
roW presents the results for the speci?c purpose allocator 
introduced in “Speci?c purpose allocator”. As expected its 
siZe is much smaller than the general purpose allocators. 

TABLE 2 

IMPLEMENTATION OF THE DIFFERENT ALLOCATORS 
(AREA IN LIBRARY UNITS USING THE TSMC.35 TARGET 

LIBRARY; comb. AND non-comb. REPRESENT 
RESPECT IVELY THE AREA OF COMBINATIONAL 
LOGIC AND NON-COMBINATIONAL LOGIC (i.e. 

REGISTERS etc.) AT 100 MHZ) 

lines size 

allocator C HDL comb. noncomb 

general purpose 297 353 204,191 80,193 
general purpose (opt) 289 349 212,065 81,652 
speci?c purpose 85 135 33,579 19,830 

Table 3 shoWs the results for three different examples. The 
?rst tWo examples test1 and test2 consists of three malloc 
calls and tWo free calls. All malloc calls allocate objects of 
the same constant siZe. Hence a speci?c purpose allocator 
can be used. For the ?rst example, all calls malloc and free 
can be removed during optimiZations. For the second 
example, one of the mallocs is called inside of a unbounded 
loop and cannot be removed. The third example is a ?lter 
used in the JPEG library of Synopsys COSSAP and is used, 
for example, for RGB to YCrCb transformations. The ?lter 
implements the operation Y[i]=clip(A-X[i]+B,C) for i={1,2, 
. . . , n}, Where Ais a 3*3 matrix, B and C are vectors and 

Y and X are 3*n dynamically-allocated matrix. 
For each example, the ?rst set of results illustrates the 

case Where malloc calls are mapped to tWo general-purpose 
allocators (no sharing). For the other results, one allocator is 
shared. As expected, the latency (measured by simulation at 
the RTL level) increases Without sharing With a decrease in 
area. In the table, this inventors can also verify that the total 
latency of the design decreases When the optimiZed general 
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20 
purpose allocator (gen. alloc. optimiZed) is used. The use of 
a speci?c purpose allocator (spec. alloc.)When possible 
provides signi?cant reduction both in latency and area. 
Finally, further optimiZations can be performed When 
sequences of malloc and free calls can be removed 
(sequence). 
Conclusion 

This inventors have presented an extension of the syn 
thesiZable C subset to pointers and malloc/free. Moreover, 
this extension is realiZable similarly to other a program With 
a function of pointers and dynamic allocation/deallocation, 
C++, Java. The resolution of dynamic memory allocation/ 
deallocation and pointers enables the implementation of 
complex data structures into hardWare. This solution ?ts into 
current application speci?c memory management method 
ology. In order to ef?ciently partition the storage among the 
different data structures during analysis and synthesis, 
memory is represented by location sets. Dynamic memory 
allocation and deallocation are performed Within each user 
de?ned memory segments by an optimiZed hardWare allo 
cator. 

This tool SpC takes a C function With pointers and 
malloc/free and generates a Verilog module Which can be 
synthesiZed by commercial tools. This inventors provide a 
library of hardWare allocators. The different allocators are 
selected and optimiZed according to the application and the 
memory architecture. 

According to another aspect of the invention, a computer 
readable memory that records a circuit synthesiZing program 
for synthesiZing a circuit of executing a C-language 
program, Wherein the circuit synthesiZing program causes 
the computer to carry out the processes of pointer analysis 
and Resolution of pointer and malloc/free OptimiZations and 
Removing sequences of malloc and free calls. 

Although the invention has been illustrated and described 
With respect to exemplary embodiment thereof, it should be 
understood by those skilled in the art that the foregoing and 
various other changes, omissions and additions may be 
made therein and thereto, Without departing from the spirit 
and scope of the present invention. 
What is claimed is: 
1. A circuit synthesis method of a semiconductor circuit 

for executing a program With a function of pointers and 
dynamic allocation, comprising: 

resolving pointer and dynamic allocation in a code of the 
program; and 

changing the code of the program into another code Which 
does not contain said pointer and said dynamic alloca 
tion; 

Wherein the semiconductor circuit executes the program 
With a function of pointers and dynamic allocation 
When a synthesis of said semiconductor circuit is 
performed. 

2. The circuit synthesis method as set forth in claim 1, 
Wherein, 

said program is C-language program. 
3. The circuit synthesis method as set forth in claim 1, 

further comprising: 
changing said another code into a code of HardWare 

Description Languages, and 
synthesiZing said semiconductor circuit based on said 

code of HardWare Description Languages. 
4. The circuit synthesis method as set forth in claim 1, said 

resolving step including: 
checking the kind of the variable Which is the object of 

dynamic allocation and the quantity of a memory 
assigned in the code, 
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performing beforehand variable declaration of the vari 
able Which is the object of the dynamic allocation 
statically in the converted code, 

replacing a command Which performs dynamic allocation 
in the code With a command Which gives the pointer to 
the variable by Which variable declaration Was carried 
out. 

5. A circuit synthesis method of a semiconductor circuit 
for executing a program With a function of pointers and 
dynamic allocation, comprising: 

resolving pointer and dynamic allocation in a code of the 
program; and 

changing the code of the program into another code Which 
does not contain said pointer and said dynamic alloca 
tion; and 

said resolving step including 
checking the kind of the variable Which is the object of 

dynamic allocation and the quantity of a memory 
assigned in the code, 

performing beforehand variable declaration of the vari 
able Which is the object of the dynamic allocation 
statically in the converted code, 

replacing a command Which performs dynamic alloca 
tion in the code With a command Which gives the 
pointer to the variable by Which variable declaration 
Was carried out, 

Wherein the semiconductor circuit executes the pro 
gram With a function of pointers and dynamic allo 
cation When a’synthesis of said semiconductor cir 
cuit is performed. 

6. A circuit synthesis method of a semiconductor circuit 
for executing a program With a function of pointers and 
dynamic allocation, comprising: 

resolving pointer and dynamic allocation in a code of the 
program; and 

changing the code of the program into another code Which 
does not contain said pointer and said dynamic alloca 
tion; and 

said resolution step including a pointer analysis step of 
?nding a pointer variable in the code, and checking 
information on a variable Which substitutes an address 

to each pointer variable, 
executing variable declaration of a structure object com 

prising a variable tag and a integer variable index in the 
code after conversion corresponding to each pointer 
variable, Wherein a variable tag shoWs the kind of 
variable substituted to a pointer variable, and an integer 
variable index records addition-and-subtraction pro 
cessing in the code to the pointer variable, 

replacing a command Which substitutes the address of 
other variables to said pointer variable in said code With 
a command Which substitutes information on the kind 
of other variables to the variable tag and substitutes 
value “0” to the variable index, 

replacing a command Which ?uctuates the value of the 
pointer variable in the code With a command Which 
?uctuates the value of the variable index of the struc 
ture object corresponding to the pointer variable, 

replacing a command Which refers to the address shoWn 
by the pointer variable With a command Which refers to 
the value of the arrangement position of the value of the 
variable index in the variable shoWn by the variable tag, 

checking the kind of the variable Which is the object of 
dynamic allocation and the quantity of a memory 
assigned in the code, 
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performing beforehand variable declaration of the vari 

able Which is the object of the dynamic allocation 
statically in the converted code, 

replacing the command Which performs dynamic alloca 
5 tion in the code With the command Which gives the 

pointer to the variable by Which variable declaration 
Was carried out, 

Wherein the semiconductor circuit executes the program 
10 With a function of pointers and dynamic allocation 

When a synthesis of said semiconductor circuit is 
performed. 

7. The circuit synthesis method as set forth in claim 6, 
further comprising 

recording a number of a block allocated to block of the 
pointer variable, 

accessing the block by specifying the number in free area 
by an allocator, 

Wherein synthesiZing the semiconductor circuit executes 
management of an optimiZed free area. 

8. The circuit synthesis method as set forth in claim 6, said 
resolution step including 
When the siZe of the variable to be allocated has to be 

constant, and dynamically-allocated variable have to be 
both allocated and deallocated Within the same 
unbounded loop, 

performing beforehand statically variable declaration of 
the array variable Which is the same siZe as the 
dynamically-allocated variable in the converted code, 

replacing a command Which performs dynamic allocation 
With a command Which references the variable to the 
array variable by Which variable declaration Was car 
ried out, and 

removing the command that performs dynamic dealloca 
tion in the code. 

9. A circuit synthesis system of a semiconductor circuit 
for executing a program With a function of pointers and 
dynamic allocation, comprising: 

a means for resolving pointer and dynamic allocation in a 
code of the program; and 

a means for changing the code of the program into another 
code Which does not contain said pointer and said 
dynamic allocation; 

Wherein the semiconductor circuit executes the program 
With a function of pointers and dynamic allocation 
When a synthesis of said semiconductor circuit is 
performed. 

10. The circuit synthesis system as set forth in claim 9, 
Wherein, 

said program is C-language program. 
11. The circuit synthesis system as set forth in claim 9, 

further comprising 
a means for changing said another code into a code of 

HardWare Description Languages, and 
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55 a means for synthesiZing said semiconductor circuit based 
on said code of HardWare Description Languages. 

12. The circuit synthesis system as set forth in claim 9, 
said resolution meaning including 

60 a means for checking the kind of the variable Which is the 
object of dynamic allocation and the quantity of a 
memory assigned in the code, 

a mean s for performing beforehand variable declaration 
of the variable Which is the object of the dynamic 
allocation statically in the converted code, and 

a means for replacing a command Which performs 
dynamic allocation in the code With a command Which 
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