US20100080124A1

a2 Patent Application Publication (0 Pub. No.: US 2010/0080124 A1l

as) United States

Angiolini et al.

43) Pub. Date: Apr. 1, 2010

(54) METHOD TO MANAGE THE LOAD OF
PERIPHERAL ELEMENTS WITHIN A
MULTICORE SYSTEM

Federico Angiolini, Bologna (IT);
David Atienza Alonso, Chavannes
(CH); Giovanni De Micheli,
Lausanne (CH)

(75) Inventors:

Correspondence Address:

DLA PIPER LLP (US)

ATTN: PATENT GROUP

P.O. Box 2758

Reston, VA 20195 (US)
(73) Assignee: ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE
(EPFL), Lausanne (CH)

(1) Appl.No. 12/412,742

(22) Filed: Mar. 27, 2009

Related U.S. Application Data

(63) Continuation-in-part of application No. PCT/IB2007/
053909, filed on Sep. 26, 2007.

(60) Provisional application No. 60/847,368, filed on Sep.

27, 2006.
Publication Classification
(51) Imt.CL
HO4L 12/56 (2006.01)
(52) US.Cl ot 370/235
(57) ABSTRACT

A method to provide reliability, power management and load
balancing support for multicore systems based on Networks-
on-Chip (NoCs) and to efficiently implement architectural
support for this method by introducing complex packet han-
dling mechanisms is achieved by modifying the basic net-
work interfaces attached to the cores of multicore computa-
tion systems. It also proposes policies to leverage the
proposed hardware extensions. This aim is achieved with a
method to manage the load of peripheral elements within a
multicore system comprising several processing units access-
ing peripheral elements through a NoC, each processing unit
and peripheral element attached to a Network Interface in
charge of formatting and driving the packets sent to or
received from the NoC, wherein, while considering at least
two peripheral elements having a similar function, the Net-
work Interface dedicated to a first peripheral element reroutes
the incoming packets to a second Network Interface dedi-
cated to a second peripheral element.

Patent Application Publication Apr.1,2010 Sheet1 of 3 US 2010/0080124 A1

WD
s A >
?
e
- : -,
¢ i Y
E 1
ST
b
"
<
e
.
b
:
3 s : el
N T VR P PP P02 S SN A PR 3

st
SEREE O
RS A I AR R XS 0"("("}’:}'“‘{""‘0'"

WA WA S R A AR &
w ¢

A R o MR e W e

Patent Application Publication Apr. 11,2010 Sheet2 of 3 US 2010/0080124 A1

LI
4 : N kS
[pesponge }
e
L
2 e
et LGP 4
kg b b
&1 et b
Ay Y
it 4
o £}
&)
L
L
[t
l
e w
k4 *
3 3
3 2
H :
B 3
H :
B b
- %
w £Y
* S
3 % : H
| Y i i
d ¢ : F
* ¥
« <
SR R e

e
P

Patent Application Publication Apr. 11,2010 Sheet3 of 3 US 2010/0080124 A1

Fig. 3¢ Fig %

a2

US 2010/0080124 Al

METHOD TO MANAGE THE LOAD OF
PERIPHERAL ELEMENTS WITHIN A
MULTICORE SYSTEM

CROSS REFERENCE TO APPLICATIONS

[0001] The present application is a Continuation-In-Part of
an international application serial number PCT/IB2007/
0539009 filed Sep. 26, 2007, which claims priority from U.S.
Provisional Application Ser. No. 60/847,368 filed Sep. 27,
2006, both of which is incorporated herein by reference in its
entirety.

INTRODUCTION

[0002] NETWORKS-ON-CHIP (NOCS), a packet-
switched interconnection system for on-chip communication
among cores, represent a scalable infrastructure for next gen-
eration multicore computation systems. Multicore computa-
tion system applications include a very important part of the
consumer electronics market, like mobile phones, encryption
systems, wireless communication products, GPS navigators,
set-top boxes and multimedia portable devices (such as MP3
or video players) among others.

[0003] The broad potential field of application of NoCs
means that target devices will have very diverse requirements.
Some of them will demand high performance processing,
some will need very low-power operation, and some others
will require maximum reliability.

[0004] One of the main advantages of NoCs, thanks to their
packet-switching paradigm and distributed nature, is the
extensive possibility of adaptation to the aforementioned dif-
ferent requirements for final devices. This is feasible thanks to
the large available spectrum for configuration and customi-
zation of several characteristics and power/performance/cost
tradeoffs. Inthis patent application, we leverage these degrees
of freedom to show techniques which allow the optimization
of NoCs towards one or more of the objectives mentioned
above: higher performance, power management and/or reli-
able operation. In all these cases, our invention advocates
modifications in the Network Interface (NI) of the affected
components to provide effective solutions.

BRIEF DESCRIPTION OF THE INVENTION

[0005] The aim of the present invention is to propose a
method to provide reliability, power management and load
balancing support for multicore systems based on Networks-
on-Chip (NoCs) as well as a way to efficiently implement
architectural support for this method by introducing complex
packet handling mechanisms achieved by modifying the
basic network interfaces attached to the cores of multicore
computation systems. The present invention provides also a
solution in interrupt-based support in NoCs for multicore
computation systems against transient failures or other sys-
tem-level issues while the system is executing a certain appli-
cation. It also proposes policies to leverage the proposed
hardware extensions.

[0006] This aim is achieved thanks to a method to manage
the load of peripheral elements within a multicore system,
said multicore system comprising several processing units
accessing peripheral elements through a Network on Chip
(NoC), each processing unit and peripheral element attached
to a Network Interface in charge of formatting and driving the
packets sent to or received from the Network on Chip,
wherein, while considering at least two peripheral elements

Apr. 1, 2010

having a similar function, the Network Interface dedicated to
a first peripheral element reroutes the incoming packets to a
second Network Interface dedicated to a second peripheral
element.

BRIEF DESCRIPTION OF THE FIGURES

[0007] The present invention will be better understood
thanks to the attached figures in which:

[0008] the FIG. 1 illustrates a general view of a multicore
system based on a NoC.

[0009] the FIG. 2 illustrate examples of target Network
Interface additions:

[0010] (2a) Plain target Network Interface architecture,
[0011] (2b) Extended target Network Interface architec-
ture.

[0012] the FIG. 3 illustrate examples of packet handling in

the system upon a hardware failure.

[0013] (3a) Normal operation
[0014] (3b) First phase of recovery for failures
[0015] (3¢) Final operation mode after recovery from per-
manent failures
[0016] (3d) Operation mode while a transient failure is
pending
BASELINE MULTICORE SYSTEM
ARCHITECTURE
[0017] The reference multicore computation system archi-

tecture that we consider is composed (FIG. 1) of multiple
processing units or peripheral elements (performing compu-
tation, DSP, data storage, I/O), and a communication system
implemented by means of a NoC. The NoC transfers data
among the cores in chunks typically called packets. The pro-
cessing units are the active elements, i.e. requesting and
building data such as DSP, processor. The peripheral elements
comprise memories, input-output devices, encryption/de-
cryption module, i.e. elements that provide functionalities for
the processing units. These elements could be any other hard-
ware device on the chip too.

[0018] A typical NoC is built around three main conceptual
blocks: NETWORK INTERFACES (NIS), SWITCHES
(also called routers) and LINKS. Network interfaces perform
protocol conversion from the native pinout of system cores to
NoC packets, or vice versa; switches deliver packets to their
recipients; and finally, links connect the previous blocks to
each other.

[0019] In a multicore system, some peripheral elements
could be permanently or temporarily in a state of either activ-
ity or inactivity. Assuming for example that the active state is
the normal mode of operation, a peripheral element may
become inactive for example upon a (permanent or tempo-
rary) failure, or upon a power off event (allowing for energy
savings). Peripheral elements may transition back to the
active state if the temporary failure is resolved, or if the power
supply is resumed. Additional conditions could drive the tran-
sition among the active and inactive states.

Complex Packet Handling and its Applications

[0020] In the present application, we propose extensions to
the hardware of the NoC to support sophisticated handling of
packets, namely, we present modifications of the basic NI
modules.

US 2010/0080124 Al

[0021] Thesimplest, and most commonly used, packet flow
in a NoC is as follows.

[0022] The elements attached to the NoC are either “initia-
tors” (processing units i.e. active) or “targets” (peripheral
elements i.e. passive); for instance, a typical initiator is a
processor, whereas a usual target is a memory.

[0023] Moreover, some devices may be both initiators and
targets, such as Direct Memory Access (DMA) blocks or /O
controllers. In the system, initiators are the only components
which are allowed to initiate a communication; to this end,
they send a packet (“request”) to a system target. The target
then may or may not issue a reply packet (“response”). For
instance, a request by an initiator to load data will mandato-
rily trigger a response, while a request to store data typically
will not. In addition, note that targets send packets only upon
requests and only to the initiators who had queried them.
[0024] InaNoC, packets are delivered among initiators and
targets along “routes” across the network. The routes that
packets should follow are normally chosen at design time and
physically stored on chip in memory elements called “routing
tables”. Routing tables contain a list of destination peripheral
elements and of routes to reach them from the current location
in the network. They can be part of NoC switches, but more
often they are a part of each NI. For example, the routing table
at an initiator NI will typically contain routes to all target
peripheral elements towards which communication is
needed, and vice versa, the routing table at a target NI will
typically contain routes to all processing units towards which
communication is needed.

[0025] We propose NoC modifications to extend this para-
digm, while keeping the hardware overhead low. Our scheme
does not require modifications to the switches and links of the
NoC; only the NIs are extended to support the enhanced
functionality. The main idea relies on the exploitation of the
presence of multiple (identical or similar) instances of the
same type of peripheral element attached directly to the NoC.
Inthe following, we will collectively refer to these as a “pool”
of cores.

[0026] For instance, a pool can consist of a set of accelera-
tors, a set of memories, etc.

[0027] This arrangement is a very commeon property of
multicore computation systems, either to comply with per-
formance requirements or to improve reliability via redun-
dancy.

[0028] As a consequence, in the present application, the
routing tables of at least some of the NIs in the NoC are
extended with a new memory element, or are made larger,
such that they can also store routes to alternate peripheral
elements. The extended routing tables contain a list of all
possible alternate peripheral elements and the routes to send
packets to each of them.

[0029] The extended routing tables can be instantiated
either at the initiator NI or at the target N1. In the first case,
packets can directly carry information describing multiple
possible routes to multiple possible destinations, so that it
becomes possible to send them to any of these. In the second
case, packets reaching a target NI can be re-injected in the
network by the target NI with a modified route to a new
destination.

[0030] The extended routing tables can be populated at
design time, since the number and position of the alternate
peripheral elements does not change. Thanks to this and other
proposed extensions (see Section “Hardware Extensions to
Support Complex Packet Handling”), NIs acquire the capa-

Apr. 1, 2010

bility of redirecting packets towards alternate peripheral ele-
ments in the pool. This capability can be exploited to achieve
the following:

[0031] Balance the communication load among a pool of
peripheral elements (identical or not), which improves per-
formance.

[0032] Allow some of the devices in the pool to switch to a
“power off” state to save power, while still being able to
process incoming requests by transparently diverting them to
alternate devices in the pool.

[0033] Handle permanent or transient failures of devices,
by first keeping up-to-date synchronized copies of stored
information, and then, upon the failure, by transparently
diverting the traffic towards a working alternate device in the
pool.

[0034] Theextensions we propose are outlined in Section 4,
while a more detailed description of some of the aforemen-
tioned possible uses is provided in Section 5.

Hardware Extensions to Support Complex Packet Handling

[0035] In the target Network Interface we implement the
necessary extra logic to make possible one or more of the
following actions:

[0036] Diverting some or all incoming packets to another
peripheral element, attached elsewhere to the NoC. The
incoming packets are received, partially modified by modi-
fying at least their field which specifies the destination or
route, and injected again into the network. The updated des-
tination or route field can come either from an extended
routing table in the target NI, or be directly contained in the
incoming packet as an alternative to the current destination
(which is the present target NI). In addition to the field of the
incoming packet specifying its destination or route, other
fields can be modified before reinjection into the network, for
example to tag the packet as having been rerouted. In this
action, the local peripheral element, attached to the Network
Interface, does not receive the original packets, only the alter-
nate peripheral element does receive and process them. This
structure supports the processing of transactions even if the
local peripheral element attached to the Network Interface is
inactive for any reason, such as being turned off to save
power, or having experienced a failure.

[0037] Forwarding a copy of some or all incoming packets
to another peripheral element, attached elsewhere to the NoC.
This action is similar to the action above and it can feature the
same capabilities, but with the difference that the local
peripheral element still receives the original packets. This is
especially useful, for example, for request packets that
modify the internal state of the local peripheral element (e.g.
in case of a memory, the write requests), because it enables
keeping the two peripheral element in a consistent state.
[0038] Sending status information to one or more initiators
or targets, even without having received a direct request in the
first place. This information is carried through packets that
can be called “interrupt” packets. Interrupts are widely used
in computing and have several uses; we are however not
aware of any specific implementation to carry interrupts
across a NoC. We focus on the delivery of such interrupts to
notify changes of state, such as from active to inactive (e.g.
due to power being switched off, or upon occurrence of a
failure) and vice versa (e.g. due to power being switched on,
or upon successful completion of a self-test routine). Inter-
rupts could also convey information about the current load
experienced by the target.

US 2010/0080124 Al

[0039] Receiving and processing incoming interrupt mes-
sages. This modification can be used to keep up-to-date infor-
mation on whether peripheral elements in a pool are active or
inactive, for example due to power management or hardware
failures, or on their current load.

[0040] An example picture representing some of the exten-
sions possible inside of a target NI is shown in FIG. 2.
Example of target Network Interface additions required for
one embodiment of the invention: (2a) Plain target Network
Interface architecture, (2b) Extended target Network Inter-
face architecture. In this example, the target Network Inter-
face has an OCP pinout (the protocol could be another one) to
communicate with a memory peripheral element, and fea-
tures input and output buffering (which is optional). The
extended target NI contains a “dispatcher unit”; this block is
notified about rerouting opportunities or needs based, for
example, on interrupts coming from the local memory periph-
eral element, indicating, for example, a hardware failure in
the memory peripheral element or the entry into a low-power
operation mode of the memory peripheral element. The dis-
patcher unit also features an extra routing table which has
been programmed at design time with routes to possible alter-
nate peripheral elements. The extended target Network Inter-
face has the ability to process incoming packets (“request
channel”) as normally done in NoCs, but also to re-inject
them into the NoC through its “redundancy channel”, based
on the decisions of the dispatcher unit, towards an alternate
peripheral element. In this case, the dispatcher unit updates
the incoming packet header to specify the new Network Inter-
face NI before re-injecting into the NoC.

[0041] In the initiator Network Interface we implement
additional logic that allows for one or more of the following
actions:

[0042] Appending extra information within the request
packets. This extension can be used to flag packets which
require or tolerate special routing treatment. Thus, the receiv-
ing target Network Interface can more easily dispatch the
packets. Request packets can also contain multiple destina-
tion or route fields, coming from an extended routing table
and specifying multiple destinations within a pool of alternate
peripheral elements, so that the receiving target Network
Interface can more easily dispatch the packets.

[0043] Detecting the sender of response packets, by check-
ing a special SourcelD field in the header of such packets.
This architectural modification can be used to detect whether
a request packet received a response from the intended
peripheral element, or from another peripheral element
attached to the NoC.

[0044] Receiving and processing incoming interrupt mes-
sages. This modification can be used to keep up-to-date infor-
mation on whether peripheral elements in a pool are active or
inactive, for example due to power management or hardware
failures, or on their current load.

[0045] Switching among multiple alternate entries in its
routing tables to choose where to direct some of its requests.
This modification allows to pick any of the peripheral ele-
ments in a pool as recipients for the transactions.

APPLICATIONS OF THE INVENTION

Performance Improvement: Load Balancing

[0046] The invention can be used to improve the system
performance by balancing the workload among the peripheral
elements available within a pool. Let us assume that Device A

Apr. 1, 2010

and Device B are twin coprocessors. If excessive load is
detected at Device A, the NI attached to Device A can divert
(reroute) incoming request packets to Device B, reducing the
load on Device A.

[0047] Optionally, the initiator NIs in the multicore com-
putation system, upon detecting that requests to Device A
received answers from Device B, can leverage secondary
entries in their internal routing tables to directly send trans-
actions to Device B. This optional behavior increases perfor-
mance further, by reducing the number of hops that requests
have to go through to reach the final destination (i.e. Device
B).

[0048] Another possible extension is the use of interrupt
packets to notify initiators of the load of Device A and Device
B, or to let the Devices exchange information about their
loads. Additional support at the software level may in this
case be envisioned.

Load Balancing Policies

[0049] The sensing of the current load may e.g. happen
within Device A itself, within the NI attached to Device A, or
within dedicated monitoring logic. A possible metric may be
the activity of the Device (if measured within Device A), the
amount of incoming packets per time window (if measured
within the attached NI), or the global load on the peripheral
element pool (if measured by a centralized component). The
rerouting may happen when some load threshold is tres-
passed, and may involve only a certain percentage of the
incoming packets, or be based on time slots where no requests
are accepted at all.

[0050] To provide proper balancing, a priority chain may be
established; in an example with four devices (Device A to D),
Device A may always redirect its excess load to Device B,
which in turn may resort to Device C, which in turn may resort
to Device D, and from here back to Device A (“daisy chain™).
As a possible alternative, devices may be arranged in pairs to
absorb load spikes. To prevent endless loops (live-locks),
where packets are always rerouted and never processed, the
rerouted packets may carry a flag to avoid being further
rerouted. As a different option, Device A may be outright
redirecting its excess load to all of the Devices B to D (“broad-
cast”), some of which will accept the additional load.

[0051] The alternate peripheral elements in the pool may be
identical or not. For example, a request may be preferentially
directed to a specifically tailored accelerator (Device A),
which is optimally suited for the task. The alternate device
(Device B) may be a more general-purpose component,
maybe serving as an alternate processing resource for several
different tasks, and therefore less efficient at the task at hand.
[0052] The rerouting may in this case still happen, but
thresholds and policies may be adjusted to favor the most
suitable peripheral element in the pool.

[0053] System initiators may try to natively balance the
system load, i.e. by explicitly accessing all the Devices with
equal frequency. This behavior can either be achieved in
hardware or dictated by the software. However, the success of
this strategy is limited by the lack of knowledge of what other
system initiators are doing, resulting in unbalanced traffic
over given time windows. The support for load balancing
within the NoC helps in absorbing such load peaks, resulting
in better overall performance. The system initiators may
always send requests to a single device in the pool, and let the
NoC smooth the load by itself.

US 2010/0080124 Al

[0054] System initiators may be instructed to assist the load
balancing strategies through an interrupt mechanism. In this
case, they would be aware of the current load level of all
peripheral elements in the pool. Hence, they would be able to
direct traffic in a better way to each specific peripheral ele-
ment according to the current peripheral element situation.
Alternatively, the same information could be shared among
the peripheral elements in the pool by sending interrupts to
each other. This is not a requirement, but enables the devel-
opment of additional flexible load balancing policies at the
software/application level.

[0055] All the discussed policies can be readily imple-
mented given the hardware facilities discussed above.

Power Management Powering Devices on and Off

[0056] Upon varying load conditions, if a pool of parallel
peripheral elements is available, it is desirable to power on
and off some of the devices over time to minimize the energy
drain.

[0057] As an example, let us assume that a processor is
leveraging two coprocessors (Device A and Device B) to
achieve better performance. However, the peak load occurs
only rarely, while the average one is less than 50% of'the peak.
In this case, the initiator NI attached to the processor could be
configured to send requests to both coprocessors. However,
upon detection of low load, Device A could be completely
powered off. Its NI would then redirect transactions to Device
B, therefore guaranteeing proper processing while still saving
power. This is more effective than simply turning Device A on
and off repeatedly, as it incurs a lower performance overhead
while maximizing power savings and reliability.

[0058] Efficiency canbe increased even more by optionally
leveraging functionality in the initiator. When the initiator
detects that all transactions are actually being handled by
Device B, latency can be saved by querying Device B directly.
This is achieved by querying secondary routing table entries
that have been added to the basic initiator NI.

Power Management Policies

[0059] The sensing of the current load may e.g. happen
within Device A itself, within the NI attached to Device A, or
within dedicated monitoring logic. A possible metric may be
the activity of the Device (if measured within Device A), the
amount of incoming packets per time window (if measured
within the attached NI), or the global load on the peripheral
element pool (if measured by a centralized component).
[0060] Power management strategies could be based on
centralized knowledge, where a global module is aware of the
whole system behavior and takes system-wide decisions,
which are then broadcast to all the peripheral elements. How-
ever, such modules may be complex to design, also because it
is not always practical to inform every system module about
the power state of all the others. While still leaving this
possibility open, the NoC extensions we propose also enable
local decisions to be taken.

[0061] Another issue is that powering a device on and off
may imply a time overhead, and doing it too often may affect
the reliability of the device as well. Therefore, while a device
could be turned on and off on-demand, it would be desirable
to provide a facility to limit the frequency of the power man-
agement events. This unfortunately is not easily achievable in
a multi-processor system, where several initiators may be
accessing the same devices simultaneously. Our extensions

Apr. 1, 2010

provide a transparent handling of the power states, possibly
removing the need for higher-level protocols to constrain the
frequency of the switching events.

[0062] Asanexample, Device A may spontaneously decide
to turn itself off when the detected load is below a certain
threshold, letting its associated NI reroute all the incoming
traffic to another peripheral element in the pool. Then, Device
A may turn on again only when the incoming traffic tres-
passes another threshold, indicating that its computational
help is required again. The thresholds can be set in such a way
that the power state transitions happen with optimal fre-
quency to maximize reliability of the component, and they
may even be tuned at runtime by predictive algorithms.
[0063] The existence of the latter threshold also provides
one of the possible solutions to the problem where all the
devices in the pool may try to turn themselves off, leaving no
resource available for the actual processing.

[0064] Many of the considerations in Section “Load Bal-
ancing Policies” still apply in this context. All the discussed
policies can be implemented by only relying on the hardware
facilities discussed in Section “Hardware Extensions to Sup-
port Complex Packet Handling”.

Reliable Operation Handling Permanent and Transient Faults

[0065] In this case, let us take an example where the NoC
connects a Processor to two memories, called Main Memory
and Backup Memory. During normal operation, requests by
the Processor are sent to the Main Memory. The NI attached
to the Main Memory keeps the Backup Memory in sync by
forwarding all write transactions, such that the contents ofthe
two are always the same (albeit potentially after a short
delay). Upon a permanent failure, all traffic requests (includ-
ing read requests) are diverted to the Backup Memory with an
unchanged SourcelD field. Therefore, the Backup Memory
directly replies to the Processor and the failure is transpar-
ently handled.

[0066] A schematic depiction of some relevant packet rout-
ing conditions is presented in FIG. 3 which shows examples
of packet handling in the system upon a hardware failure. The
system comprises one processing element (“Processor”) and
two memory peripheral elements (“Main Memory” and
“Backup Memory”). (3a) Normal operation: the Main
Memory is used, but the transactions which modify at least a
critical subset of the Main Memory contents are also rerouted
to the Backup Memory, so as to have a backup of critical data.
(3b) First phase of recovery for failures: if a failure occurs,
read transactions concerning the critical data portion can be
rerouted to the Backup Memory, which sends responses
directly to the Processor. (3¢) Final operation mode after
recovery from permanent failures: the Processor notices that
responses to requests of critical data are now coming from the
Backup Memory, and therefore queries it directly. Non-criti-
cal data, for which no backup is available, is still retrieved
from the Main Memory. (3d) Operation mode while a tran-
sient failure is pending: since the Main Memory is not fully
reliable, but may recover functionality later, it is still the
default recipient for all transactions.

[0067] Efficiency can be increased even more by optionally
leveraging functionality in the initiator. In this case, when the
initiator detects that responses to transactions are coming
from the Backup Memory, latency can be saved by querying
the Backup Memory directly. This is achieved by querying
secondary routing table entries that have been added atdesign
time to the initiator NIs.

US 2010/0080124 Al

[0068] The case of transient failures is a bit different,
namely, the memory is supposed to be able to recover from
the failure at a certain (unpredictable) moment in the future.
An example of this type of failure could be a condition of
overheating, which induces faults; the faults disappear if the
device cools down at a later point in time. At the time of the
failure, the recovery mechanism is the same outlined above,
namely, all transactions are rerouted to the Backup Memory.
It is important to note that a side effect is that the Backup
Memory and the Main Memory contents begin to diverge at
this point, with the Backup Memory being the most up-to-
date. If a thermal probe subsequently notifies that the tempo-
rary failure has been recovered from, an interrupt should be
sent to the Processor. The interrupt handling routine may
choose how to best respond to restore system operation, as
exemplified below.

Fault Handling Policies

[0069] The sensing of failures may e.g. happen within the
Memory itself, within the NI attached to the Memory, or
within dedicated monitoring logic. The sensing may be based
on error detection codes, such as Cyclic Redundancy Check
(CRC) codes, or on the analysis of operating parameters, like
results obtained via temperature sensing, coupled with fault
occurrence models.

[0070] One possible efficient embodiment of the proposed
scheme is based on the presence of large, fast Main Memories
coupled with slower, more reliable Backup Memories. In this
case, the Backup Memories would provide a very dependable
replacement for the faulty Main Memories upon errors, while
limiting the power consumption of the architecture under
normal operation.

[0071] The size of the Backup Memories could also be
trimmed down for a large class of applications, such as mul-
timedia, forwhich only some data structures are really key for
proper computation, while most of the input data can be
affected by some errors without a large impact on the user-
perceived quality of the results (e.g. few blurred or black
pixels on the user screen). In this type of applications with
very limited fundamental data, the initiator NIs may be pro-
grammed to only flag the relevant critical transactions for
backup storage, exploiting the extensions in the header for-
mat introduced in Section 4, and increasing significantly the
efficient utilization of Backup Memories (e.g. one Backup
Memory can be used to store the critical data of several input
streams due to their small size).

[0072] Several schemes can be used to recover from tran-
sient failures using interrupts, which can signal the return to
normal functionality of a temporarily faulty Memory to the
Processors. A first possible scheme in this case is that the data
in the Backup Memory could be immediately copied back to
the Main Memory, at which point the system operation could
be resumed in a normal way. A second feasible scheme would
be the continuation of the processing directly on the Backup
Memory. In a third possible scheme, processing could con-
tinue on the Backup Memory until some checkpoint is
reached. This checkpoint could represent a program condi-
tion upon which most or all the data in memory could be
discarded. Hence, the remaining small relevant portions of
data, if any, could more efficiently copied back to the Main
Memory, or simply new input data (e.g. new image frames)
could be fetched from an external device, such as a video
camera, directly into the Main Memory to replace the old
data.

Apr. 1, 2010

[0073] Many of the considerations in Section “Load Bal-
ancing Policies” still apply in this context. All the discussed
policies can be implemented by only relying on the hardware
facilities discussed in Section “Hardware Extensions to Sup-
port Complex Packet Handling”.

What is claimed is:
1. A method to manage the load of peripheral elements
within a multicore system, said multicore system comprising
several processing units accessing peripheral elements
through a Network on Chip, each processing unit and periph-
eral element being attached to a Network Interface in charge
of formatting and driving the packets sent to or received from
the Network on Chip, this method comprising the steps of:
sending a data packet from a sender Network Interface
dedicated to a processing unit to a first target Network
Interface dedicated to a first peripheral element through
the Network on Chip, said data packet having routing
information allowing the Network on Chip to route the
data packet to the target Network Interface;

determining at least one second peripheral element having
similar function to the first peripheral element, said sec-
ond peripheral element being attached to a second target
Network Interface;

updating the incoming data packet in said first target Net-
work Interface with routing information suitable to
transmit it across the Network on Chip towards the sec-
ond peripheral element; and

reinjecting the updated incoming data packet from said

first target Network Interface into the Network on Chip.

2. The method of claim 1, wherein the Network Interface of
the first peripheral element comprises an internal memory
storing the routing information suitable to transmit it across
the Network on Chip towards the second peripheral element.

3. The method of claim 1, wherein routing information of
the incoming data packet comprises information suitable to
transmit said packet across the Network on Chip towards the
first peripheral element as main choice and additional routing
information suitable to transmit it across the Network on Chip
towards one or more additional peripheral elements as sec-
ondary choice, the updating of the incoming data packet by
the target Network interface of the first peripheral element
consisting of setting one of the secondary choices as the main
choice.

4. The method of claim 1, wherein the incoming data
packet is not only rerouted to the second peripheral element,
but also processed internally by the first peripheral element.

5. The method of claim 1, wherein the rerouting of the data
packets is enabled when the first peripheral element reaches a
predefined working condition.

6. The method of claim 5, wherein when a packet is sent to
the Network Interface of a peripheral element in active state,
the packet is processed by the peripheral element and also
rerouted to another peripheral element having a similar func-
tion, while when a packet is sent to the Network Interface of
a peripheral element in inactive state, the packet is only
rerouted to another peripheral element having a similar func-
tion.

7. The method of claim 5, wherein when the rerouting rate
of the Network Interface associated to an inactive peripheral
element exceeds a predefined threshold, and the peripheral
element can be switched to the active state, the peripheral
element is switched to the active state.

8. The method of claim 5, wherein when the rate of packets
reaching the Network Interface associated to an active periph-

US 2010/0080124 Al

eral element becomes lower than a predefined threshold, and
the peripheral element can be switched to the inactive state,
the peripheral element is switched to the inactive state.

9. The method of claim 1, wherein if more than two periph-
eral elements having a similar function are present in the
multicore system, packets can be rerouted multiple times by
Network Interfaces associated to peripheral elements to other
Network Interfaces associated to other peripheral elements.

10. The method of claim 9, wherein the multiple reroutings
occur sequentially.

11. The method of claim 9, wherein the multiple reroutings
occur concurrently.

12. The method of claim 1, wherein a response related to
the incoming data packet received by the second peripheral
element is sent directly to the sender Network Interface by
said second peripheral element.

13. The method of claim 12, wherein the response sent by
the second peripheral element contains an indication that said
second peripheral element has processed the packet instead of
the first peripheral element, and the sender Network Interface
contains means allowing to direct further packets directly to
said second peripheral element.

14. The method of claim 1, wherein a response related to
the incoming packet received by the second peripheral ele-
ment is sent to the Network Interface of the first peripheral
element for further transmission to the sender Network Inter-
face.

15. The method of claim 14, wherein the response sent by
the second peripheral element contains indication that said
second peripheral element has processed the packet instead of
the first peripheral element, and the sender Network Interface

Apr. 1, 2010

contains means allowing to direct further packets directly to
said second peripheral element.

16. The method of claim 1, wherein the processing units
embed in the data packets information to specify whether a
rerouting or forwarding is or is not desirable.

17. The method of claim 1, wherein the peripheral elements
may send status packets to the processing units indicating
their current load or state, and this information is used by the
processing units to tag subsequent requests as either suitable
or not for rerouting.

18. The method of claim 1, wherein the peripheral elements
may send status packets to the processing units indicating
their current load or state, and this information is used by the
processing units to select to which peripheral elements sub-
sequent requests should be sent.

19. The method of claim 1, wherein the peripheral elements
may send status packets to each other indicating their current
load or state, and this information is used by the peripheral
elements to select whether it is desirable or not to reroute
subsequent requests.

20. The method of claim 1, wherein the peripheral elements
may send status packets to each other indicating their current
load or state, and this information is used by the peripheral
elements to select to which peripheral elements subsequent
requests should be rerouted.

21. The method of claim 1, wherein rerouted packets may
additionally be modified to carry information about the
occurrence of said reroutings or to adjust said rerouted pack-
ets to a different packet format possibly required by the Net-
work Interface attached to the new destination peripheral
element.

