Logic Resynthesis of Majority-Based Circuits by
Top-Down Decomposition

Siang-Yun Lee
Integrated Systems Lab, EPFL
Lausanne, Switzerland

Abstract—Logic resynthesis is the problem of finding a depen-
dency function to re-express a given Boolean function in terms
of a given set of divisor functions. In this paper, we study logic
resynthesis of majority-based circuits, which is motivated by the
increasing interest in majority logic optimization due to the recent
development of beyond-CMOS technologies. To meet the need for
an efficient majority resynthesis heuristic, we propose a top-down
decomposition algorithm, whose complexity is linear to both n
and m, where n is the number of divisors and m is the number
of majority operations in the dependency function. We evaluate
the resynthesis algorithms by using them in a resubstitution
run applied on the EPFL benchmark suite. The experimental
results show that, comparing to the state-of-the-art enumeration
algorithm whose complexity grows exponentially with m, using
the proposed decomposition algorithm leads to 1.5% more circuit
size reduction by lifting the limitation on m, within comparable
runtime.

Index Terms—Logic synthesis, combinational circuit, peephole
optimization, majority-inverter graph, Boolean resubstitution

I. INTRODUCTION

Majority-based circuits are gaining interests recently due
to their applications in emerging technologies such as the
adiabatic quantum flux parametron (AQFP) [1], spin-wave de-
vices [2], and quantum-dot cellular automata (QCA) [3]. As the
computation of these technologies are inherently based on the
majority function [4], the majority-inverter graph (MIG) [5] is
a natural choice for the technology-independent representation
during logic synthesis and optimization for them [6]. Existing
optimization techniques targeting MIGs include algebraic
transformation [5], safe bit-error insertion [5], cut rewriting
with functional hashing [7], look-up table (LUT) mapping [8],
detecting functional equivalences with don’t-care consideration
by node merging [9], and Boolean resubstitution [10]. Despite
these, the performance of size optimization for MIGs is
still lagging behind the heavily-researched counterpart in the
classical two-input AND/OR-based logic synthesis.

In this work, we focus on logic resynthesis for MIGs, which
arises from peephole logic optimization algorithms, which
are usually Boolean methods capable of utilizing don’t-care
information, such as Boolean resubstitution [11], [12]. These
algorithms focus on a small portion of the circuit at a time

This research was supported in part by the EPFL Open Science Fund and
by the SNF grant “Supercool: Design methods and tools for superconducting
electronics,” 200021_1920981.

978-1-6654-3595-6/21/$31.00 ©2021 European Union

Heinz Riener
Integrated Systems Lab, EPFL
Lausanne, Switzerland

Giovanni De Micheli
Integrated Systems Lab, EPFL
Lausanne, Switzerland

and try to locally optimize the subcircuit by resynthesizing
it. To this end, logic resynthesis, or simply resynthesis, is the
problem of finding a Boolean function, called the dependency
function, which takes some given functions, called the divisors,
as inputs and produces a desired function, called the farget,
at its output. In addition, as we target size optimization for
MIGs, dependency functions corresponding to smaller MIGs,
called the dependency circuit, are particularly favored.

Pioneering research on the theory of majority functions [4]
and majority synthesis [13] date back to the 60s. In [13], a
majority synthesis algorithm was proposed, which builds up
the circuit bottom-up from primary inputs to simple gates
and finally realizes the target. However, this algorithm is
based on high-complexity bit manipulations which cannot be
easily parallelized. The original paper did not include any
experimental result, and our complexity analysis and experi-
mental assessment show that its efficiency is not promising in
practice. An alternative approach to logic resynthesis is based
on enumeration. This method was proposed in [11] for AIGs
and adapted for MIGs in [10]. By fixing the structure of the
dependency circuit, enumerating all the possible combinations
of divisors connected to its inputs, and comparing the output
function to the target, the enumeration-based algorithm shows
good quality in finding optimal dependency circuits composed
of a few gates. However, its complexity is exponential in the
number of divisors, with the size of the dependency circuit
being in the exponent. This algorithm is thus limited and cannot
be further scaled up.

To address the drawbacks of the existing algorithms, in
this paper, we propose an efficient top-down decomposition
algorithm for majority resynthesis. Decomposition is a common
approach in logic synthesis [14], [15], which tries to decompose
the given target into simpler or easier-to-synthesize forms. The
proposed algorithm is based on computing the “care” bits for
each fanin of a node where we need it to be the same as the
target and counting the number of care bits each candidate
covers.

The experimental results show that, without limitation
on the size of the dependency circuit, using the proposed
decomposition in resubstitution gives 9.99% circuit size reduc-
tion on average, while the state-of-the-art enumeration-based
resubstitution [10] can achieve at most 8.45% average reduction
within comparable runtime.

II. PRELIMINARIES

In this paper, all functions are, unless otherwise specified,
single-output Boolean functions, which are functions defined
over the Boolean space B = {0, 1}.

A. Logic Resynthesis

Logic resynthesis (or simply resynthesis) is the problem of
re-expressing a function in terms of other functions. More
precisely, the resynthesis problem is stated as follows: Given
a target function f : B¥ — B over k£ Boolean variables
Z = x1,...,2 and a collection G = {g1,...,9n} of n
existing functions g; : B* — B over the same variables, find a
dependency function h : B™ — B satisfying

f(f) = h(gl(f)v"-vgn(f))' (D

for all # € B*. In this formulation, variables x1, ...,z are
not the direct inputs of the function h, but any subset of them
can be embedded by defining g1 (Z) = 1, g2(Z) = 2, and so
forth. Also, the Boolean expression of h does not necessarily
depend on all of its n inputs. In the remaining of this paper,
the function f is called the farget and the functions g; € G
are referred to as divisors.

With this formulation, the resynthesis problem can be seen
as a generalization of the classical logic synthesis problem,
where the inputs of h are typically the same Boolean variables
x1,...,T. Logic resynthesis is different from logic decompo-
sition [14], [15] or functional decomposition [16], [17], where
the problem also involves identifying the divisors g;.

B. Majority-Inverter Graphs

Logic networks, or simply networks, are technology-
independent representations of digital circuits used as the
data structure during logic optimization. Networks are directed
acyclic graphs, where nodes represent logic gates and edges
represent interconnecting wires. Incoming edges of a node
are called fanins, whereas outgoing edges are called fanouts.
For convenience, the fanins of a node are said to be siblings
of each other. In this paper, we focus on majority-inverter
graphs (MIGs) [5], which are networks where each node
represents a three-input majority (MAJ) gate and edges can be
complemented to represent inverters. Each MAJ gate in the
network computes the majority function M of its fanins [4],
ie.,

M(z1,x9,23) = (x1 Ax2) V (B2 Ax3) V (21 Ag). (2)

The size of a network is determined by its number of nodes,
and inverters are not counted towards the network size.

C. Truth Tables and Bit Operations

We use truth tables to describe single-output Boolean func-
tions and to manipulate them. The truth table T[f] = uy -+ - wy
of a Boolean function f : B¥ — B over k Boolean variables
is a string of | = 2F bits u; € B. The bit u; at the i-th
position is equal to the output of f(&) for the input assignment
a=ay,...,a, Where

3)

Since the length | of a truth table T'[f] grows exponentially
with the number % of Boolean variable in f, i.e., [= 2, truth
tables are typically only used to represent functions if % is
small (k < 16).

We use T'[f]; to denote the i-th bit in the truth table of a
function f, and

l
#1(f) = ZT{f]Z—.)

to denote the number of 1-bits of the truth table of f.

III. THE TOP-DOWN DECOMPOSITION ALGORITHM

In this section, we propose a heuristic algorithm for majority
resynthesis using a top-down decomposition. The algorithm
receives a target and a set of divisors as inputs and returns
a dependency circuit composed of MAJ gates. The term fop-
down indicates how the dependency circuit is constructed: The
algorithm gradually “refines” the dependency circuit by adding
more nodes to the bottom.

Before we describe the algorithm in detail in the following
sections, we give a brief overview of the overall design
decisions:

1) Tree-like circuit structure: We restrict the dependency
circuit to be tree-like, i.e., we forbid logic sharing of the
constructed nodes such that each majority gate is used
only once as fanin.

2) Input inversion: Due to the self-duality property of the
majority function [4], inverters can always be pushed to
the primary inputs. Hence, we can limit our search to
circuit structures without internal inverters by considering
that only divisors at the leaves can be complemented.
Moreover, the consideration of input inversions is made
implicit by supplementing the divisor set G with com-
plemented divisors.

3) Usage of truth table: In our algorithm, all functions are
represented by truth tables of the same length, i.e., the
target and the divisors are truth tables and each node in
the constructed dependency circuit has a truth table that
represents its function.

4) Normalization: As in [13], the divisors are normalized by
computing their XNOR (<) with the target. By doing so,
the logic of the algorithm is simplified—comparing the
output function of the dependency circuit with the target
simplifies to testing if the output function is equivalent
to the constant 1 function.

Given the target f and the set of divisors G = {¢1,...,9n},
the set of normalized divisors to be chosen from as inputs to
the dependency circuit is denoted by

D={dyi1=9if di=g < f|1<i<n} (5

A. The Care Function

Consider a node with function f, = M(f1, fo, f3) and
a certain bit position p in its truth table. In order to have
T[fn]p = 1, we must have

Tfilp = Tfjlp =1, where ¢,j € {1,2,3} and i # j.

1110 0111

1111 1111
1111 1111

1111 1111

1110 0001 O
1111 1111 O 0111 1110
0111 1110 T\ 0111 1110
0111 1110 1101 1011 d
d ds / \ 1101 1011 3
1010 0101
d- di ds / 1100 0011 1010 0101 T 1010 0101
0110 1001 1100 0011 1010 0101 OO IR d dy do /T
0111 1110 1101 1110 1011 1110 d2 dy dg

0011 1100 0101 1010 0110 0110

Fig. 1. Top-down decomposition of the target f(Z) =

dy dy ds
1100 0011 0101 1010 1001 1001

1 @ x2 @ z3 using divisors G = {g1(Z) = z1,92(Z) = x2,93(F) = z3,94(F) = 0}

The (upper) truth tables represent either the divisor functions normalized with Equation (5) or the output functions of the nodes. The care functions,
if relevant, are presented below as the second truth table. The yellow-shaded parts are those being updated after the expansion. The final solution is

h(g1,92,93,94) = M(M(G1,g2,73), M (91, 32, 93), 92)-

A bit position p is said to be a care bit for a fanin edge if
T[fs1]p =0 or T[fs2]p, = 0 is known, where fq; and fso are
the sibling functions of the concerned fanin. Extending to all
positions, we define the care function of a fanin edge as

c:(fslvfs2>/\cn7 (6)

where fs1 and fso are the sibling functions and ¢, is the care
function of the node the edge points to. The care function of
a node is the care function computed for its unique fanout
edge, as a fanin of another node. For the topmost node, the
care function is simply constant 1 because all bits are under
concern. A care bit of a fanin edge is said to be covered if
the fanin is coming from a divisor or a node whose truth table
indeed provides a 1 at this bit. To achieve this with a node, at
least two fanins of the node have to cover the bit by providing
a 1 in their truth tables.

B. Choosing Divisors

We start with a heuristic to choose three divisors f1, fa, f3
from D as fanins of a node with function f,, = M(f1, f2, f3)
and care function c,,, aiming at maximizing #1(f, A ¢,).

f1 = argmax(#1(d A ¢y,))
deD

fo = argmax(#1(fi AdAcy) +2-#1(fi ANdAcy))
deDo

f3 = argmax(#1((f1 ® f2) AdAep)
debs +2-#1(fi A) AdAcy)

where Dy = D\{f1, f1}, D3 = D2\{f2, f2}

The first divisor is chosen to cover the most care bits for
the first time. When choosing the second divisor, the care
bits covered by the first divisor still have to be covered again
(f1 A d A ¢,). But more importantly and thus the doubled
weight, the care bits that are not covered by the first divisor
are more eager to be covered (fl Ad A ¢y). For the last divisor,
the care bits that are already covered twice can be ignored;
the care bits covered only once ((f1 ® f2) Ad A c,) seek to
be covered again; the care bits that are never covered before
((fi A f2) Ad A c,) appear to be more difficult to cover than
the other bits and they are thus doubly weighed. In the last

case, it may seem non-intuitive to cover these bits with the
last divisor because covering them only once is not enough.
However, the first two divisors may be replaced by new nodes
later on in the algorithm. Hence, it is useful to have covered
them at least once.

C. Expansion

When all care bits of the three fanins of the topmost node
are covered, the constant 1 function is successfully derived at
its output and the algorithm terminates. After constructing the
first node with three divisors, we choose one of the fanins with
uncovered care bits, if any, and try to cover more care bits by
replacing the divisor with a new node. This process is called
an expansion.

To expand a fanin, the original divisor is temporarily taken
away. Then, three divisors are chosen as the fanins of the
new node with the same heuristic as in Section III-B. After
an expansion, the function provided to the expanded fanin is
different, and the care functions of its siblings are updated
accordingly. Until constant 1 is derived at the output of the
topmost node by covering all the care bits, the algorithm
proceeds by choosing another position to expand. An expansion
position is a fanin of any node which is connected to a divisor
and whose care function is not fully covered. Heuristically, we
choose the position with the least uncovered care bits to be
expanded first because it is closest to be fully covered.

It is possible that the majority output of the three chosen
divisors does not cover more care bits than the original divisor.
Hence, the new node is only constructed and used to replace
the original divisor if the number of covered care bits increases.
When an expansion position is tried but the coverage of care
bits does not increase, the new node is discarded and the
position is marked as visited to avoid trying it again. However,
if its care function is updated because of an update in the
function of one of its siblings, the visited flag is reset and the
expansion position may be tried again. To avoid constructing
nodes with the same divisors repeatedly in a chain, when the
care function of a node is the same as one of its fanins, the
expansion position at this fanin is directly marked as visited
without trying to expand it.

Input: target f, divisors G = {g1,...,9n}

Output: dependency circuit H
1 D + normalize(f,G)
2 ng < choose_divisors(1, D)
3 H + {no}
4 while no.output # 1 do
5 (np,i) < choose_expansion_position(H)
6 n < choose_divisors(ny.fanin(z).care, D)
7 if accept_expansion(ny,i,n) then
8 np.fanin(z) <~ n
9 else
10 mark_visited(np, 1)
11 return H

Algorithm 1: Maj. resynthesis by top-down decomposition.

D. Quality and Efficiency Enhancements

1) Computation Cache: The heuristic presented in Sec-
tion III-B is used many times during the execution of the
algorithm, and its result depends solely on the care function c,.
To avoid repeating the same computation, a computed table
can be used to cache the results, implemented with a hash
table mapping from a care function to three divisors.

2) Exhaustive Trials for the Topmost Node: In general, the
first few choices of a heuristic algorithm usually have a greater
impact on the quality of the final result. For better quality,
exhaustive trials are applied for the topmost node as it largely
determines the overall decomposition. These include: (1) when
choosing the three divisors for the first node, all the divisors
which score the highest; and (2) all of the three fanins of the
topmost node, which to be expanded first. All possibilities are
tried independently and the best result is returned as the final
solution.

E. Summary

Algorithm 1 illustrates the decomposition algorithm. Proce-
dure normalize (line 1) derives the set D of normalized divisors
by Equation (5). Procedure choose_divisors (lines 2 and 6)
builds a new node by choosing three divisors from D with
the scoring functions described in Section III-B or looking
up in the computation cache as described in Section III-D1.
The first argument to choose_divisors is the care function,
which is constant 1 for the topmost node and is computed by
Equation (6) otherwise. Procedure choose_expansion_position
(line 5) returns a pair of a parent node n, and a fanin index
i € {1,2,3} representing an expansion position chosen as
described in Section III-C. The condition in line 7 decides if
the expansion is accepted by whether the coverage of care bits
increases with the new node n. If so, fanin 7 of the parent
node n,, is replaced by n (line 8); otherwise, the expansion
position is marked as visited (line 10). The expansion attempt
is repeated until constant 1 is derived at the output of the
topmost node ng. Figure 1 shows an execution example of the
algorithm with two expansions.

IV. COMPARISONS TO EXISTING ALGORITHMS

In this section, we briefly introduce the two existing algo-
rithms for majority resynthesis mentioned in the introduction,

TABLE I
COMPARISONS OF THREE RESYNTHESIS ALGORITHMS.

Akers’ algorithm | Enumeration Decomposition

Soundness yes yes yes
Completeness | only for m <1 yes/no no
Optimality only for m <1 yes no
Complexity O(n?*ml?) O™+ | O(nml)

Akers’ algorithm and enumeration, and provide theoretical
analysis and comparisons with our proposed algorithm.

Akers’ majority synthesis algorithm [13] adopts a bottom-up
approach that builds new nodes from the constructed ones. This
algorithm is based on iterative row and column manipulations
on a binary table, where each column corresponds to a divisor
or a constructed node and each row corresponds to a bit position
in their truth tables. Akers’ algorithm is an heuristic and is not
guaranteed to terminate if no resource constraint is given. In
contrast, the recent alternative, proposed in the context of MIG
resubstitution [10], tries to find the optimal solution if it is
small enough. This algorithm enumerates dependency circuits
of at most one or two nodes with all possible combinations of
divisors connected to their inputs and compares their output
function to the target. Some filters can be applied to enhance
its efficiency, but the algorithm is, in its nature, difficult to be
extended for finding larger solutions in terms of reasonable
runtime as well as algorithm implementation.

In the following analysis, n is the number of divisors, m
is the number of nodes in the dependency circuit, [= 2%
is the length of the truth tables and k is the number of
variables of the target and divisors. Table I compares the
characteristics and complexities of the three algorithms. We
omit the details on complexity analysis due to the limited
space. All of the three algorithms are sound, meaning that the
dependency circuits they produce, if any, indeed realize the
given target correctly. However, completeness is not always
achievable—none of the algorithms guarantees to find solutions
to all the problems for which solutions exist, unless m < 1.
For enumeration, completeness depends on the implementation
choice on the tradeoff between efficiency and quality. When
exhaustive enumeration is too time-consuming, over-filtering to
reduce the search space may be used, sacrificing completeness.
Lastly, the optimality discussed here is with respect to minimal
m. Enumeration is optimal when it finds a solution, whereas
the two heuristics do not always guarantee optimality.

V. EXPERIMENTAL RESULTS

The three majority resynthesis algorithms are implemented
in C++-17 as part of the EPFL logic synthesis library mock-
turtle' [18]. We evaluate the proposed algorithm and compare
to existing algorithms by using them to solve the resynthesis
problem in a Boolean resubstitution framework similar to the
one proposed in [11]. Resubstitution is applied on MIGs derived
from the EPFL combinational benchmark suite [19] using
windows with at most 8 inputs. The experiments are performed

! Available: github.com/Isils/mockturtle

Quality-efficiency tradeoff of resynthesis algorithms

16
m=2 X
14 1) X m=20
X m=3
o 12 m=1 m=2
< o
=10 %
8
g 8 m=1
9
26
8
3 4
5 O enumeration
X decomposition
0
0 0.5 1 1.5 2 2.5

runtime (s)

Fig. 2. Average size reduction and runtime of resubstitution using enumeration
and the proposed top-down decomposition as the internal resynthesis engine
and with different m values.

on a Linux machine with Xeon 2.5 GHz CPU and 256 GB
RAM.

In the following tables, the gain is measured as the difference
of the network sizes before and after one run of resubstitution.
Column (%) shows the percentage of network size reduction
with respect to its original size. The overall runtime in seconds
is shown in column (). The parameter m is the user-specified
upper bound on the number of nodes in the dependency circuit.
When m is set to a larger value, the size of the dependency
circuit is more often bounded by the size of the subnetwork
to be replaced, which is the size of the maximum fanout-free
cone (MFFC) [20] in resubstitution.

A. Evaluation of the Existing Algorithms

First, we provide experimental evaluation of our re-
implementation of the existing algorithms analyzed in Sec-
tion IV. The resubstitution results using them as the internal
resynthesis engine are shown in Table II. As can be seen
from the table, Akers’ algorithm is inefficient due to its high
complexity. It is thus excluded for comparison in the following
sections. With m = 1, the enumeration-based resubstitution
achieves an average size reduction of 10.58% in 0.49 seconds.
The runtime is much better than in the original paper [10]
because of implementation improvements.

B. Quality-Efficiency Tradeoff

In this section, we compare the proposed top-down decompo-
sition algorithm against enumeration and examine their quality-
efficiency tradeoff curves. Figure 2 shows the size reduction
and runtime, averaged over all benchmarks, of resubstitution
runs using the two algorithms as the internal resynthesis engine
and with different settings of the parameter m. The results
using enumeration are plotted with circles, whereas those using
decomposition are plotted with crosses.

There is a tradeoff between quality and efficiency for both
algorithms. Although the trending curve of decomposition
lies below that of enumeration, decomposition is easier to be
extended further to achieve better quality when higher runtime

is affordable. This is for two reasons: (1) the implementation
of enumeration is hard to be generalized for any m because
different circuit structures are separated coded; and (2) each
increment of m increases the complexity of the algorithm in
the exponent of n (number of divisors) by 2 (Table I).

C. Resubstitution Quality on Pre-optimized Benchmarks

Resubstitution is often used as a fine-tuning optimization
step after applying some larger-scale optimization algorithms
such as cut rewriting [7] or LUT-mapping [8]. To capture the
impact of different resynthesis algorithms in resubstitution in a
more practical scenario, in this section, we compare the quality
of resubstitution applied on benchmarks that are pre-optimized
with three iterations of cut rewriting.

Table III shows the resubstitution results with the proposed
algorithm compared to enumeration. Since the benchmarks
are already optimized, there is less space left for simple
resubstitution. This highlights the advantages of the heuristic
decomposition algorithm. With m = 2 for both algorithms,
decomposition achieves higher average size reduction (9.46%
as opposed to 8.45%) in lower average runtime (0.59 seconds
as opposed to 0.67 seconds). Extending to m = 3, the proposed
algorithm obtains 9.99% average size reduction in a still-
comparable runtime of 0.81 seconds.

VI. CONCLUSIONS

Motivated by its need in peephole optimization, we study
logic resynthesis for majority-based circuits in this paper. Our
results show that Akers’ algorithm is inefficient and that
enumeration is not scalable with respect to m. Hence, we
propose a top-down decomposition algorithm whose complexity
is linear to the number of divisors (n), the length of truth
tables (I), and size of the dependency circuit (m). Using the
proposed resynthesis algorithm in a resubstitution framework,
our experimental results show that it provides good quality
and efficiency comparable to enumeration with small m values.
Moreover, it is more flexible to be extended for larger m
values to achieve better optimization quality. On a set of
pre-optimized benchmarks, the proposed algorithm leads to
1.5% more circuit size reduction (from 8.45% to 9.99%) in
1.3x runtime (from 0.67 to 0.81 seconds), comparing to the
state-of-the-art enumeration-based resubstitution. Our future
work includes improving the decomposition algorithm to
consider logic sharing and leveraging don’t-care information
in resynthesis and resubstitution.

REFERENCES

[1] R. Cai, O. Chen, A. Ren, N. Liu, C. Ding, N. Yoshikawa, and Y. Wang,
“A majority logic synthesis framework for adiabatic quantum-flux-
parametron superconducting circuits,” in Proceedings of GLSVLSI, 2019,
pp. 189-194.

[2] A. Khitun and K. L. Wang, “Non-volatile magnonic logic circuits
engineering,” Journal of Applied Physics, vol. 110, no. 3, p. 034306,
2011.

[3] C.S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum

cellular automata,” Nanotechnology, vol. 4, no. 1, p. 49, 1993.

S. Muroga, I. Toda, and S. Takasu, “Theory of majority decision elements,”

Journal of the Franklin Institute, vol. 271, no. 5, pp. 376-418, 1961.

[4

=

TABLE II
RESUBSTITUTION RESULTS USING AKERS’ ALGORITHM AND ENUMERATION.

Akers’ algorithm Enumeration
m =1 m=1 m =2

benchmark size gain (%) t(s) gain (%) t (s) gain (%) t(s)

adder 1020 127 12.45 3.8 127 1245 0.01 132 12.94 0.02

bar 3336 380 11.39 12.13 392 11.75 0.02 448 13.43 0.10

div 57247 4796 8.38 > 60 5333 932 095 12256 2141 2.64

hyp 214335 15012 7.00 > 60 15519 724 6.80 24004 11.20 11.64

log2 32060 39 0.12 > 60 62 0.19 0.24 1775 5.54 0.90

max 2865 25 0.87 6.77 25 0.87 0.01 26 0.91 0.03

multiplier 27062 218 0.81 > 60 266 098 0.23 1633 6.03 1.11

sin 5416 55 1.02 333 99 1.83 0.08 281 5.19 0.89

sqrt 24618 3823 15.53 > 60 4208 17.09 0.34 4216 17.13 0.41

square 18484 216 1.17 > 60 424 229 0.16 1438 7.78 0.47

arbiter 11839 128 1.08 13.08 128 1.08 0.06 128 1.08 0.12

cavlc 693 14 2.02 9.58 78 1126 0.09 107 15.44 4.72

ctrl 174 14 8.05 4.04 88 50.57 0.07 90 51.72 0.21

dec 304 0 0.00 797 0 0.00 0.00 0 0.00 0.00

i2c 1342 62 4.62 3.8 97 723 0.02 116 8.64 0.05

int2float 260 15 5.77 1.34 38 14.62 0.01 43 16.54 0.13

mem_ctrl 46836 2298 491 > 60 3389 724 058 3744 7.99 1.21

priority 978 240 24.54 448 310 31.70 0.01 324 3313 0.02

router 257 0 0.00 1.13 0 0.00 0.00 11 4.28 0.00

voter 13758 2427 17.64 > 60 3296 2396 0.17 4219 30.67 0.47

average 1494.45 6.37 1693.95 10.58 0.49 2749.55 13.55 1.26

TABLE IIT
RESUBSTITUTION RESULTS ON OPTIMIZED BENCHMARKS.
Enumeration Decomposition
m = m = 2 m=1 m =2 m =

benchmark size gain (%) t (s) gain (%) t (s) gain (%) t (s) gain (%) t (s) gain (%) t (s)
adder 512 0 0.00 0.00 1 0.20 0.01 0 0.00 0.01 128 25.00 0.01 128 25.00 0.01
bar 3079 134 435 0.02 265 8.61 0.07 134 435 0.05 325 10.56 0.13 325 10.56 0.20
div 35993 227 0.63 0.19 237 0.66 037 241 0.67 047 283 0.79 0.88 341 095 092
hyp 166673 4393 2.64 1.76 12142 728 3.50 4317 259 312 8150 4.89 430 11856 7.11 6.08
log2 30404 22 0.07 0.24 1229 4.04 0.80 22 0.07 0.56 1101 3.62 1.50 1102 3.62 220
max 2321 20 0.86 0.01 20 0.86 0.03 20 0.86 0.04 20 0.86 0.12 23 099 0.14
multiplier 24532 57 023 0.21 992 4.04 099 57 023 045 802 327 0.84 802 3.27 1.22
sin 4958 35 0.71 0.10 108 218 0.83 36 073 0.13 111 224 029 121 244 0.36
sqrt 13449 2099 15.61 0.08 2097 1559 0.28 1979 14.71 0.19 1979 14.71 0.29 1979 14.71 0.31
square 17255 220 1.27 0.15 1021 592 041 206 1.19 0.28 1025 594 047 1172 6.79 0.53
arbiter 11839 128 1.08 0.06 128 1.08 0.12 128 1.08 0.13 128 1.08 0.35 128 1.08 0.73
cavle 656 59 899 0.10 86 13.11 431 54 823 0.05 84 12.80 0.11 100 1524 0.14
ctrl 127 46 3622 0.03 46 3622 033 42 3307 0.01 45 3543 0.02 45 3543 0.01
dec 304 0 0.00 0.01 0 0.00 0.01 0 0.00 0.02 0 0.00 0.02 0 0.00 0.02
i2c 1260 88 698 0.02 95 7.54 0.05 104 825 0.03 128 10.16 0.06 144 1143 0.06
int2float 217 12 553 0.01 14 645 0.08 9 4.15 0.01 18 829 0.03 20 922 0.03
mem_ctrl 43045 1842 428 042 2803 6.51 1.02 1481 344 0.78 2288 532 1.82 2968 6.90 2.59
priority 896 199 2221 0.01 207 23.10 0.06 92 10.27 0.06 101 11.27 032 106 11.83 0.32
router 245 1 0.41 0.00 1 0.41 0.01 0 0.00 0.01 1 0.41 0.02 1 0.41 0.04
voter 7292 1439 19.73 0.05 1836 25.18 0.14 1541 21.13 0.11 2381 32.65 0.20 2386 3272 0.25
average 551.05 6.59 0.17 1166.4 845 0.67 523.15 575 033 954.9 946 0.59 1187.35 9.99 0.81

[5]

[6]

[7]

[8]

[9]

[10]

(11]

(12]

L. Amaru, P-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A new paradigm for logic optimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 35, no. 5, pp.
806-819, 2015.

E. Testa, S.-Y. Lee, H. Riener, and G. De Micheli, “Algebraic and
Boolean optimization methods for AQFP superconducting circuits,” in
Proceedings of ASP-DAC, 2021, pp. 779-785.

M. Soeken, L. G. Amaru, P.-E. Gaillardon, and G. De Micheli, “Opti-
mizing majority-inverter graphs with functional hashing,” in Proceedings
of DATE. 1EEE, 2016, pp. 1030-1035.

W. J. Haaswijk, M. Soeken, L. Amaru, P.-E. Gaillardon, and
G. De Micheli, “LUT mapping and optimization for majority-inverter
graphs,” in Proceedings of IWLS, 2016.

C.-C. Chung, Y.-C. Chen, C.-Y. Wang, and C.-C. Wu, “Majority logic
circuits optimisation by node merging,” in Proceedings of ASP-DAC.
IEEE, 2017, pp. 714-719.

H. Riener, E. Testa, L. Amaru, M. Soeken, and G. De Micheli,
“Size optimization of MIGs with an application to QCA and STMG
technologies,” in Proceedings of Symposium on Nanoscale Architectures,
2018, pp. 157-162.

A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in Proceedings of IWLS, 2006.

A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

don’t-care-based logic optimization and resynthesis,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 4, no. 4, pp. 1-23, 2011.
S. B. Akers, “Synthesis of combinational logic using three-input majority
gates,” in Proceedings of Symposium on Switching Circuit Theory and
Logical Design. 1EEE, 1962, pp. 149-158.

V. Bertacco and M. Damiani, “The disjunctive decomposition of logic
functions,” in Proceedings of ICCAD, vol. 97, 1997, pp. 78-82.

A. Mishchenko, B. Steinbach, and M. Perkowski, “An algorithm for
bi-decomposition of logic functions,” in Proceedings of DAC, 2001, pp.
103-108.

Z. Chu, M. Soeken, Y. Xia, and G. De Micheli, “Functional decomposition
using majority,” in Proceedings of ASP-DAC. 1EEE, 2018, pp. 676-681.
Y.-T. Lai, K.-R. Pan, and M. Pedram, “OBDD-based function decomposi-
tion: Algorithms and implementation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 15, no. 8, pp.
977-990, 1996.

M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, and G. De Micheli, “The EPFL logic synthesis libraries,”
arXiv preprint arXiv:1805.05121v2, 2019.

L. Amaru, P.-E. Gaillardon, and G. De Micheli, “The EPFL combinational
benchmark suite,” in Proceedings of IWLS, no. CONF, 2015.

J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 2, no. 2, pp. 137-148, 1994.

