Three-Input Gates for Logic Synthesis

Dewmini Sudara Marakkalage*, Eleonora Testa*, Heinz Riener*,
Alan Mishchenko®, Mathias Soeken*, Giovanni De Micheli*

*Integrated Systems Laboratory, EPFL, Lausanne, Switzerland
TDepartment of EECS, UC Berkeley, Berkeley, California, USA

Abstract—Most logic synthesis algorithms work on graph
representations of logic functions with nodes associated with
arbitrary logic expressions or simple logic functions and attempt
to iteratively optimize such graphs. While early logic synthesis
efforts focused primarily on graphs with 2-input nodes such as
AND and OR gates, the recently proposed paradigm of Majority-
Inverter Graphs instead uses the 3-input Majority gate as the
node function. As this technique proved to be a success, it is
natural to ask: Are there other 3-input gates better suited for
logic synthesis?

Motivated by this question, we investigate the relative ad-
vantages of 3-input gates as constituents of logic networks.
We consider representative gates from each of the ten non-
degenerate 3-input NPN classes and study how powerful they
are at representing Boolean functions. Using SAT-based exact
synthesis, we evaluate each 3-input gate using the minimum
number of such gates (together with inverters) needed to syn-
thesize all 4-input Boolean functions and a subset of commonly
used 5-input and 6-input Boolean functions. We show that the
logic gate Dot(x, y,z) := x®(zV xy) outperforms the rest in terms
of expressive power. Motivated by this result, we introduce a set
of rewriting rules to manipulate Dot-Inverter Graphs.

Index Terms—Logic synthesis, Exact synthesis, 3-input gates.

I. INTRODUCTION

Given a Boolean function, what is the minimume-size
circuit that computes it? This is one of the driving questions
in logic synthesis, which is the process of optimizing logic
representations under various criteria. Decades of research
on this problem have considered various circuit models and
produced many synthesis algorithms [1I, [2], [3], [4], [5]. In
general, the problem of finding the smallest circuit for a
given Boolean function is a computationally difficult task,
and exact minimization can be done reasonably fast only
for Boolean functions with a small number of inputs. Con-
sequently, most synthesis algorithms do not find optimum
representations but focus on heuristic solutions. They usually
work on graph representations of logic functions where each
node is associated with an arbitrary logic expression (e.g.,
YLE [6], MIS [7]) or a simple logic function, and they try to
incrementally modify such graphs in order to minimize the
size or depth.

Early logic synthesis efforts on this front considered graphs
with nodes computing 2-input ANDs and ORs together with
inverters (or NANDs and NORs), which included the well-
known And-Inverter Graphs (AIGs). An AIG is a Directed
Acyclic Graph (DAG) where each internal node has in-
degree two and represents a 2-input AND gate, and each
directed edge is either complemented or regular indicating

the presence/absence of an inverter along that edge. As
an example use-case, the logic synthesis tool ABC [3] uses
AIGs as the primary logic representation and implements
associated re-writing techniques [8], [9] for optimizing them.
We call graph representations such as AIGs homogeneous
as each internal node in the graph computes the same
logic function. Optimizing homogeneous multilevel logic
representations is typically more scalable and leads to better
results.

Recently, Amaru et al. [10], [11] proposed Majority-Inverter
Graphs (MIGs) as a new paradigm for logic synthesis. An
MIG is also a homogeneous DAG representation similar to
an AIG: The only difference is that internal nodes of an MIG
have in-degree three and represent 3-input majority gates.
The authors further introduced a set of algebraic rules for
manipulating MIGs, proposed new synthesis algorithms, and
showed significant results for depth optimization over ASIC
and FPGA designs. The success of MIGs for logic synthesis
begs the following question: Are there other Gate-Inverter
Graphs (i.e., homogenous DAGs where each internal node
is associated with some fixed 3-input logic gattﬂ) that are
better suited for logic synthesis?

The answer depends on several criteria, such as the
expressive power of the 3-input gate, the rules to manipulate
such gate networks, and practical considerations such as the
suitability of the gate for physical design. This work primarily
focuses on the expressive power of the 3-input gates. To
elaborate, we study how succinctly different Gate-Inverter
Graphs can represent a given Boolean function, assuming
that the use of inverters does not count towards the size of
such graphs. We note that the homogeneity of Gate-Inverter
Graphs makes their manipulation using synthesis algorithms
easier compared to the non-homogeneous ones.

There are 28 = 256 3-input Boolean functions to be
considered as potential 3-input gates. However, due to the
zero cost of inverters and the ability to rewire a gate’s
inputs in any order, many of these 3-input gates can be
considered equivalent (the transformations do not incur
any additional cost). For instance, the function g(x,y,z):=
XA(yVz) is equivalent to the function h(x, y,z):=(zA (X V y))
with respect to input negations, input permutations, and
output negations because g(x, y, z) = h(J, z, x). This notion of
equivalence is called NPN (Negation-Permutation-Negation)

lUnlike the 3-input majority gate, a general 3-input gate can be
asymmetric, thus in such a DAG representation, the ordering of the fan-in
must be specified as well.

Table I: 10 NPN classes for 3-input functions and their representa-
tive functions. The column Class is the class representative, which
is the lexicographically smallest truth table (as two hexadecimal
digits) for each NPN class, and the column Function represents
the truth table of the candidate 3-input function selected from
each class. The column MC reports the multiplicative complexity
of each function [14], [15].

Class Expression Function | Cube Name MC
#01 xXyz #80 @ And3 2
#06 x(yoz) #28 @ XorAnd 1
#07 x(yvz) #a8 @ OrAnd 2
#16 | xjzexyzexjz #16 @ Onehot 2
#17 (xyz) #e8 @ Majority 1
#18 Xyz®exyz #81 @ Gamble 1
#19 x®(zvxy) #52 @ Dot 2
#1b x?%y:z #d8 @ Mux 1
#le xeyz #6a @ AndXor 1
#69 xeyez #96 @ Xor3 0

equivalence [12], [13]. Formally, two Boolean functions
are NPN equivalent if one can be obtained by the other
using a combination of input negations, input permutations,
and output negation. Consequently, all n-input Boolean
functions can be partitioned into NPN equivalence classes.
The 256 3-input functions fall into 14 different NPN classes,
out of which, four classes only depend on at most two
variables (f(x,y,2) =0, f(x,y,2) =x, f(x,y,2) =xAy, and
f(x,y,2) =x@y). Thus, we only consider the remaining ten
3-input NPN classes that depend on all three variables and
select one function from each class as candidate gates for
building Gate-Inverter Graphs. lists the ten 3-input
NPN classes and the candidate functions, together with their
names.

As the main result of this work, we present a comparison
of the expressive powers of the 3-input gates mentioned in
To this end, we measure the minimum size of a
Gate-Inverter Graph of each type needed to compute each 4-
input Boolean function using SAT-based exact synthesis [16],
[17]. Note that the size of Gate-Inverter Graph is the number
of gates in it excluding inverters. We omit the 3-input Xor
(Xor3) gate from our analysis because it is not a universal
3-input gate as we show in

Our results show that Dot gate has the highest expressive
power closely followed by the Onehot gate: Dot-Inverter

Graph and Onehot-Inverter Graph require at most four
gates to compute any given 4-input Boolean function. On
the opposite end, 3-input And (And3) gates have the least
expressive power, as there exist some 4-input Boolean
functions that need up to nine gates. We further confirm
these results by running SAT-based exact synthesis for some
commonly used 5-input and 6-input Boolean functions.

For a Gate-Inverter Graph to be useful for optimizing
logic networks, in addition to the expressive power of the
gates, we also need the ability to easily manipulate such
graphs. For example, there exists a sound and complete
axiomatization and a comprehensive set of rewriting rules
for MIGs [10], [18]. Since the Dot gate has high expressive
power, we also present several non-trivial rewriting rules for
Dot-Inverter Graphs, which can be employed to manipulate
and optimize them.

II. SAT-BASED EXACT SYNTHESIS

In this section, we introduce SAT-based exact synthesis as
presented in [16], [17], [I9], and [20], and show how it is
applied in the context of 3-input gate networks.

Exact synthesis is the problem of finding a logic network
that exactly meets its specification or determines whether it
is impossible to do so. In our case, given a 3-input gate 9, a
non-negative integer r, and a Boolean function f, the goal is
to find whether there exists a 9 -Inverter Graph of size r that
computes f. Starting with r = 0 and incrementing it until the
synthesis algorithm finds a valid circuit, we determine the
minimum number of gates to compute f. In the following,
we first formalize the notion of 3-input gate networks, and
then we show how to encode the exact synthesis problem
as a Boolean satisfiability (SAT) problem [17]. The exact
synthesis algorithm uses a SAT solver to find a satisfying
assignment to the problem or to determine its unsatisfiability.
If a satisfying assignment is found, the algorithm decodes
it into a valid logic network. We refer the interested reader
to [21], [20] for a more detailed review on exact synthesis,
while the first example of SAT-based exact synthesis can be
found in [22], and successive analyses and improvements
have been considered in [16], [17].

A. 3-Input Gate Networks

Let P be a collection of 3-input Boolean operators
¢:B3— B where B = {0,1} is the Boolean alphabet. We
call P the set of primitives. (For the purpose of encoding
as a SAT problem, we will describe how to construct P in
[Section TI-B]) Let f(xi,...,x,) be a Boolean function on n
inputs, and for notational convenience, define xy = 0. We
call a sequence (X;4+1,Xp+2,-..,Xn+r) @ 3-input gate network
of size r if x; = ¢;(xj,xj,,xj;) for all n+1<j<n+r
where ¢; € P and 0 < ji, j2, j3 < j. Note that such a network
corresponds to a Directed Acyclic Graph (DAG) where each
leaf node corresponds to an input variable or constant 0,
and each non-leaf node has in-degree 3 and corresponds to
some Boolean operator in P. The sequence (X;+1,-.., Xn+r)
defines a topological ordering of non-leaf vertices.

We say a given gate network (X;+1,Xp+42,...,Xp+r) COM-
putes f if f(x1,...,%x,) = Xp4r. In general, if F={f1, fo,... fi}
is a set of k Boolean functions on the common support
X1,...,Xn, we say the gate network computes F if each
function fj € F is computed by some x, in the network.

B. Encoding as a SAT Problem

We encode the problem of finding a 3-input gate network
of size r that computes a given set F of output functions
on n input variables as a SAT problem using the Single
Selection Variable (SSV) encoding [19], [20], [21]. The SSV
encoding uses a single variable per Boolean operator to
encode the inputs of the operator. Namely, it uses binary
variables sy ; ;x which are set to 1 if x;, xj, and xi are the
inputs for the /-th operator in the network.

In the SSV encoding, to reduce the number of variables,
the variables sy ; j are only defined for i < j <k < /. How-
ever, since we should instead consider repeated inputs in a
gate’s fan-in as well as different orderings of those inputs for
non-associative operators, we add all input-permuted (with
repetitions) versions of an operator as primitives for SAT-
based exact synthesis. To elaborate, if ¢(x, y, z) € P, we make
sure that ¢(x, x,x),d(x,x,¥),d(x,x,2),p(x, y,x),d(x,y,y), etc.
also belong to P.

To allow inverters at no additional cost, for every Boolean
operator ¢(x,y,z), we add input negated versions to P, i.e.,
we add ¢(x, y,2),¢(x, 7, 2),¢(x,¥,2) and so on to P. Further-
more, to avoid explicitly considering constants as inputs,
for each operator ¢(x,y,z) € P we also add its versions
where subsets of inputs are replaced by constants, i.e., we
add ¢(x,y,0),¢(x,y1),¢(x,0,2),$(x,0,0),¢(x,0,1),p(x,1, 2),
etc. to P.

Note that the different primitives in P correspond to
the different fan-in configurations a 3-input gate in a Gate-
Inverter Graph can have. The primitives obtained by different
permutations with repetitions take care of the different fan-
in orders a gate can have and the fact that it can have multi-
edges (repeated inputs). Similarly, having input negated
versions of the primitives take care of the fact that a gate’s
fan-in edges being either regular or complemented.

The SSV encoding also uses the symmetry-breaking
assumption that all logic primitives are normal (i.e., the
output is zero when all inputs are zero), thus, we negate
any primitive that is not normal. Note that, due to the zero-
cost inverters, this normality assumption does not affect the
accuracy of the SAT-based exact synthesis.

III. EVALUATION METHOD AND RESULTS

In this section, we study how the 3-input gates of
can be used as a basis of representing logic functions with
larger support. Using exact methods, we investigate the
minimum number of each such 3-input gate needed to
compute each 2-input (Section IIT-A), 3-input (Section III-B),
and 4-input logic functions. As the main result

of this work, we summarize our findings for 4-input logic
functions in [Table IV} which serves as a relative measure

of the expressive power of the considered 3-input gates.
Finally, in [Section 1II-D} we present synthesis results of some
common 5-input and 6-input functions. Note that applying
the same exact methods for all 5-input NPN functions would
be vastly time-consuming in a conventional computing
setting, and prohibitively so for functions with even larger
supports.

For exact synthesis, we use the SAT-based exact synthesis
library percyE] which is a part of EPFL logic synthesis
libraries [23], and we choose the SSV encoding described
in [Section II| as our encoding method. Given a 3-input logic
gate 9 : B% — BB, to synthesize a Gate-Inverter Graph using
base gate I with percy, we first compute the correct set of
primitives. Note that I is one of the ten gates from
and recall that the primitives should represent all versions
of 9 obtained by

. permuting the inputs (with repetition),
- negating a subset of the inputs, and
. replacing a subset of the inputs with constants.

However, also recall that the SSV encoding uses the assump-
tion that all primitives are normal. Hence, we replace any
primitive that is not normal with its complement. Formally,
let

Qs =4{J (a,b,c):(a,b,c) € {x,%,,7,2,20,1}°}.

Then, we define the set of primitives Pg as follows: For
each g € Qg, if g(0,0,0) =0 then we add g to Pg, otherwise
we add g to Pg. Using the set of primitives P4, we invoke
percy’s exact synthesis algorithm using the standard synthesis
engine with ABC’s BSAT2 as the default SAT solver, which is
a modified MiniSAT solver [3], [24].

Using the aforementioned procedure, for each 3-input
gate type, we study the minimum number of such gates
needed to compute all n-input NPN classes for n=2,3,4,
and a selected set of NPN classes for n =5 and 6 . These
results are presented next.

A. Synthesizing 2-Input NPN Classes

The only two non-trivial NPN classes of 2-inputs are
the AND and the XOR functionf][Table 1Il shows how to
compute the 2-input AND and the 2-input XOR functions
using each 3-input gate type. For example, using the 3-
input Dot gate, we can construct the 2-input AND gate as
Dot(x,y,0). Concerning the 2-input XOR function, note that
it takes two 3-input OrAnd gates to implement the 2-input
XOR gate, while the Majority and And3 gates need three
instances each. Indeed, these three are the only monotoneE]
ones out of the ten functions. Moreover, the Majority and
And3 gates are also symmetric. It turns out that their best
representation for a 2-input XOR is to implement the usual
xy+ xy formula.

2Available at: https://github.com/lsils/percy

3The remaining two classes are the constant function f(x,y) =0 and the
projection function f(x,y)=y.

4The representative function is monotone. For other NPN classes, no
member function is monotone.

Table II: Representations of 2-input And and Xor gates

2-input AND 2-input XOR
Gate Type | Number of Gates | xAy | Number of Gates xey
Dot 1 (x,7,0) 1 (x,0,y)
Onehot 1 (%,7,1) 1 (x,5,0)
Mux 1 (x,,0) 1 x, 7,5
AndXor 1 0,x,y) 1 [E))]
XorAnd 1 (x,7,0) 1 1,x,y)
Gamble 1 (x,5,1) 1 (x,x,7)
OrAnd 1 (x,,0) 2 (T)ZO), %)
Majority 1 (x,,0) 3 ((x,7,0),1,(x,50))
And3 1 (x, 1) 3 ((x, 7, D1(%, y, 1)
Xor3 - - 1 (x,5,0)

As evident from all the gates except Xor3 can be
used to construct the 2-input AND gate. Note that AIGs can
represent any Boolean function. We call such representations
universal, and the results of thus implies that all
3-input Gate-Inverter Graphs where “Gate" is any 3-input
gate from except Xor3 are universal representations.
The Xor3-Inverter Graph is not a universal representation as
the truth-table of each node in such a graph must have an
even number of ‘1’s in the output column which prevents
them from representing Boolean function that has an odd
number of ‘1’s in the output column. Hence, in the following,
we further restrict our focus to the remaining nine 3-input
gates.

B. Synthesizing 3-Input NPN Classes

In this section, we synthesize the ten 3-input NPN classes
using the selected gates. Note that these classes are the
3-input functions we considered in Table

summarizes the synthesis results. Each column
represents one of the nine candidate gates for universal 3-
input Gate-Inverter Graphs and shows the number of gates
to compute each of the other 3-input functions. For example,
the third column is for 3-input Mux gates. It means that, to
implement the Dot function, 2 Muxes are needed, while, to
implement the Onehot function, we need 3 Muxes, and so
on.

It is worth noting that Dot and Onehot gates need the
smallest number of gates to compute the remaining three
input classes. As noted previously, the monotone functions
OrAnd, Majority, and And3 need a high number of gates
to synthesize other functions. However, the property of
symmetry does not appear to affect the expressiveness as
demonstrated by the Onehot gate.

Also note that no 3-input function pair needs five
gates, whereas implementing Xor3 needs six And3 gates.
This implies that for And3 gates, implementing the Xor3
function is significantly more complex than implementing
the remaining functions in

Table III: Minimum number of gates to synthesize 3-input NPN
classes.

Gate Type 2 _8 § 5 E ..'% E ? 3
ST A

Function c é 23| © §
Dot 1122|1222 (2|4]|3
Onehot 211(3|3(3|3|4(4]|4
Mux 212|1]12(2(3|2[3]3
AndXor 2122|122 |3|4]|4
XorAnd 2121212112 |2|3]3
Gamble 313(3|3(2|1|3[4]|3
OrAnd 2122|2221]2]2
Majority 212121332214
And3 212212122221
Xor3 2122|222 |4|13]|6
Total 20120(21(22|21|21|25[30(33

C. Synthesizing 4-Input NPN Classes

The results of the previous section hint that Dot and
Onehot gates seem to outperform the rest in their expressive
power. We further confirm this claim by synthesizing all 222
4-input NPN classes using each type of 3-input gates.

shows, for each 3-input gate I~ and for each gate
count r, the number of NPN classes (number of functions)
that need r gates of type J . For example, consider the first
column: There are two 4-input NPN classes (ten functions)
that do not need any Dot gate (i.e., the trivial functions),
three classes (252 functions) that need only one Dot gate
(2-input And and Xor, and the Dot function itself), 32 NPN
classes (9128 functions) that need two Dot gates, etc.

As shown in the nine 3-input gates roughly
correspond to three categories. The Dot and Onehot gates
clearly outperform the rest and use the smallest number of
gates to represent 4-input functions. On the other side of
the spectrum, OrAnd, Majority, and And3 gates use the most
number of gates. Notice that, for the And3 gate, there is one
NPN class whose synthesis needs nine gates. Unsurprisingly,
it turns out to be the NPN class of the 4-input Xor function
(recall that the synthesis of the 3-input Xor (Xor3) function
needed six 3-input And gates). The remaining four gates,
Mux, AndXor, XorAnd, and Gamble fall in the middle of the
two former categories.

D. Synthesizing Common 5-Input and 6-Input Functions

In this section, we search for an indication of the
expressive power of the considered nine 3-input gates
on some commonly used 5-input and 6-input functions.
At this purpose, we computed the 50k most popular 5-
input and 6-input functions from the LUT mapping of the
EPFL benchmarks and classified them according to NPN-
classification. We obtained 387 5-input NPN classes and
1905 6-input NPN classes on which we apply our exact
synthesis method. To keep the runtime under control, we

5Available at: https://github.com/lsils/lbenchmarks

Table IV: Classification of the 222 4-input classes (65536 4-input functions). This shows, for each 3-input gate 9~ and for each gate
count r, the number of 4-input NPN classes (number of 4-input functions) whose synthesis needs r gates of type 9. The last row

shows the total number of gates needed to separately synthesize all 4-input NPN classes (all 4-input functions).

Gate Count Dot Onehot Mux AndXor XorAnd Gamble OrAnd Majority And3
0 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10) 2 (10)
1 3 (252) 3 (124) 3 (156) 3 (156) 3 (156) 3 (92) 2 (240) 2 (80) 2 (112)
2 32 (9128) 18 (2856) 17 (3224) 15 (2776) 18 (2336) 13 (1272) 14 (3020) 5 (640) 4 (544)
3 158 (51770) | 151 (50490) 92 (31554) 86 (27202) 83 (26786) 63 (14242) 46 (14528) 18 (3300) 13 (2508)
4 27 (4376) 48 (12056) | 100 (29936) | 110 (34864) | 109 (35032) | 115 (41856) 89 (30854) 42 (10352) 46 (14944)
5 8 (656) 6 (528) 7 (1216) 26 (8064) 55 (15064) | 117 (40064) 68 (24024)
6 14 (1810) 35 (11058) 55 (17376)
= 1 (32)| 26 (5680)
8 5 (336)
9 1 (2)
Total 649 (191322) | 684 (205530) | 753 (224290) | 761 (229410) | 759 (231394) | 808 (253106) | 883 (259500) | 1036 (319560) | 1134 (335342)

Table V: Common 5-input classes. This shows, for each 3-input
gate 9 and for each gate count r, how many of the 316 common
NPN classes need r gates in exact synthesis. The last row shows
the total number of gates needed to separately synthesize each
such NPN class.

= = =] 2 = 2
Gue | 2 5 2 %5 f F f I %
Count A = 5l o=

5 g =2 8§ 9 S
2 2 1 3 4 2
3 97 7 49 58 68 18 72 11 12
4 208 | 249| 204| 189| 180| 154| 136 60 73
5 11 60 56 68 65| 143 90| 131 94
6 5 1 14| 114 83
7 52
Total | 1178|1317 |1277|1272| 1255|1391 | 1302|1612 | 1664

Table VI: Common 6-input classes. This table, similarly to
shows the results for 1905 6-input classes. The row CLE reports
the number of conflict limit exceeded cases — thus the number of
non-synthesized classes.

- = =] < -] z
S =

cae | Z 5| 2 % € E Z & %
Count i~ ‘=
5 g 8 § o S

3 6 15 31 51 1 65 7 12

4 551 33| 262| 400| 424 75| 377 55 96

5 931 | 923| 965| 771| 815| 796| 490| 296| 323

6 32 31| 162| 421| 254

CLE 417 949| 631| 703| 615|1002| 811|1126| 1220

set a maximum conflict limit for the SAT solver of 10M
(5-input) and 1M (6-input), respectively.

For the 5-input classes, 316 (out of 387) classes have been
synthesized — within the conflict limit — by all nine Gate-
Inverter Graphs. In we summarize the results for
these 316 NPN classes which confirms the trend observed
in Dot uses fewer number of gates, while And3
and Majority instead have the highest number of gates. It
is also worth mentioning that And3 and Majority have the
highest number of non-synthesized classes (conflict limit
exceeded) equal to 59 and 30 classes (out of a total of 387),
respectively.

Regarding the 6-input classes, only 213 classes (out of
1905) were synthesized by all 9 Gate-Inverter Graphs within
the conflict limit of 1M. In this case, we thus present the

complete set of results on all 1905 classes, showing also
the number of classes that could not be synthesized within
the conflict limit. The results are shown in and
they confirm our previous observations as well. The Dot
gate synthesizes the highest number of classes (1488) within
the conflict limit, and it uses at most 5 gates on each
synthesized class. On the other side, And3 and Majority
could synthesize only 779 and 685 classes within the conflict
limit, respectively.

IV. REWRITE RULES FOR DOT-INVERTER GRAPHS

As the results of [Section IlI| suggest, the Dot gate seems
to minimize the number of gates required to represent

general Boolean functions. Consequently, the exact synthesis
of Dot-Inverter Graphs is faster and hence can be applied
to relatively large logic synthesis problems, suggesting that
such graphs could be useful as representations for logic
optimization. However, as mentioned earlier, the exact
synthesis of logic functions with five or more inputs is highly
time-consuming and hence it is impractical today. Motivated
by this computational hurdle, in this section, we show that
Dot-Inverter Graphs admit a set of rewrite rules that can
be useful in heuristic-based optimization algorithms.

To find useful rewrite rules, we considered all possible
Dot-Inverter Graphs of up to five primary inputs and up
to three Dot gates, and considered the output function of
the top gate of each such graph. Then we grouped together
the Dot-Inverter Graphs that compute the same function
and manually observed the graph structures to identify non-
trivial rewrite rules. As the second major contribution of
this work, we present the identified rules below with their
proofs.

For convenience, we use the notation (x, y,z) to denote
the Dot gate with inputs x,y, and z. In the proofs of the
rewrite rules, we use the following simplifications of the Dot
gate when one input is a constant.

e (0,y,2)=0®(zv0y) =2,

s Lyz)=1e(zv1y)=yVvz=7Z,

e (x,0,2)=x0(zvx0)=xoz,

. (x,1,2)=x®(zvxl)=x®(zVXx) =Xz,
e (,y,0)=x0(0Vvxy)=x0XYy=XxJ,

e« (x,y=xe(lvxy)=x0l=Xx.

Rule I - (xyz)=(x(zxy)2):

Proof. If z=0, then RHS = (x,(0,x,y),0) = (x,y,0) = LHS.
On the other hand, if z=1, then both LHS and RHS are Z
according to the last simplification rule. O

Rule 2 - (zx(xy2)=(yx(xzy):

Proof. When x=0, we have LHS = (z,0,(0, ¥,2)) =(2,0,2) =
(z®z) =0. Since RHS is equal to swapping y and z in
LHS, RHS=(y®y) =0 as well. On the other hand, when

x =1, we have LHS = (z,1,(1,),2)) = (2,1,72) = Z2yZ = jZ,
and swapping y and z as before, RHS is also jZ. O

Rule 3 - (xz(yx2)=(yz(xy=z) :

Proof. When z=0, then LHS = (x,0,(y,x,0)) = (x,0,(y X)) =
x®yX = (xVvy). As before, since RHS is obtained by swapping
x and y in LHS, RHS = xVv y as well. For the case when
z=1, we have LHS = (x,1,(y,x,1)) = (x,1,j) = Xy, and again
by swapping x and y, RHS is also the same. O

Rule 4 - (xy(yzu) =(uy(yzx):

Proof. When y =0, LHS = (x,0,(0,z,u)) = (x,0,u) = x & u.
Swapping x and u, we get x®u=RHS as well. When y=1,
LHS=(x,1,(1,z,u) = (x,1,Z@1) = XZ i1, and again swapping
x and u as before, we get LSH = RHS. O

Rule 5 - (xy=2)xu)yu)=((xy2)yu)xu):

Proof. For u = 0, we have LHS = (((x,),2),x,0),y,0) =
((x,»2xy0 = (xy20)y = Wxpyadyx) =
(((x,,2),7),x,0) = ((x,,2),¥,0),x,0) = RHS. For u=1, we
have LHS = (((x,¥,2),x,1),y,1) = (x,y,2),y,1) = (x,¥,2)
and a similar simplification yields RHS = (x, y,z) as well. O

Finding a concise set of rewriting rules for 3-input
functions is challenging and requires more fundamental
research, but we are already able to prove several useful
rewrite rules for the manipulation of Dot-Inverter Graphs.

Nevertheless, we think that there remain many other such
rules to be discovered, and extending it to a more useful
algebra will be an interesting research challenge.

V. DISCUSSION

State-of-the-art logic optimization tools use data struc-
tures such as AIGs or MIGs which are based on simple logic
primitives such as And gates, 3-input Majority gates, and
Inverters to represent logic networks. In the optimization
stage, these data structures are manipulated using various
algorithms to achieve different objectives such as depth or
size reduction. Two desired qualities of such data structures
are (i) the expressive power of the used logic primitives and
(ii) the ability to easily manipulate them.

In this paper, we studied whether there exist better logic
primitives for this task. In particular, we considered different
3-input logic gates and analyzed their expressive power using
SAT-based exact synthesis. We show that the 3-input logic
gate Dot is the most powerful in terms of expressibility and
it uses a significantly fewer number of gates to represent

4-input functions as compared to And3 or Majority gates.
We provided further evidence to support this observation
by synthesizing a set of common 5-input and 6-input NPN
classes. Finally, we presented a few rewriting rules that are
useful for manipulating Dot-Inverter Graphs.

Our results show that monotone gates (And3, Majority,
and OrAnd) have less expressive power as compared to
their non-monotone counterparts even in the presence
of zero-cost inverters. This is intuitive as we certainly
need a combination of monotone gates to represent non-
monotone functions. However, somewhat counter-intuitively,
the symmetric property of the gates seems not to affect
their expressibility as suggested by the results for Onehot
gates when synthesizing 4-input functions. In general, if a
function is highly asymmetric in its variables, this means
that permuting the inputs makes it compute different logic
functions. In particular, a single Dot gate can compute six
different logic functions by just permuting its inputs. Thus,
intuitively, a few of them are sufficient to compute a large
number of logic functions. On the other hand, a symmetric
function such as Onehot stays the same when inputs are
permuted, hence one would expect its expressive power to
be relatively low.

In terms of manipulative power, the existence of non-
trivial rewrite rules seems promising for Dot-Inverter Graphs.
However, we need further research to expand the set of
rewriting rules for Dot-Inverter Graphs and to determine
whether such rules exist for other types of Gate-Inverter
Graphs as well. In particular, it seems reasonable to explore
such rules for logic networks of gates with moderate
expressive power such as AndXor, XorAnd, and Gamble
as there seems to be a trade-off between a gate’s expressive
power and the ability to manipulate networks of such gates.

ACKNOWLEDGMENTS

We acknowledge Niklas Een for having suggested the
interesting problem addressed in this work. This research
was supported by the Swiss National Science Foundation
(200021-169084 MAJesty), by H2020-ERC-2014-ADG 669354
CyberCare, by the EPFL Open Science Fund, and by SRC
contract 2867.001.

REFERENCES

[1] E. Testa, M. Soeken, L. Amard, and G. De Micheli, “Logic synthesis
for established and emerging computing,” Proceedings of the IEEE,
pp. 1-20, 2018.

[2] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proceedings of the IEEE, vol. 78, no. 2,
pp. 264-300, 1990.

[3] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in Computer Aided Verification, 2010, pp.
24-40.

[4] H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. Amardg,
G. De Micheli, and M. Soeken, “Scalable generic logic synthesis:
One approach to rule them all,” in Design Automation Conference,
2019, pp. 1-6.

[5] S. Muroga, “Logic design and switching theory,” 1979.

[6] R. K. Brayton, “The yorktown silicon compiler,” Silicon Compilation,
pp. 204-311, 1988.

[7]

(8

9

(10]

(11]

[12]
(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R. Wang,
“MIS: A multiple-level logic optimization system,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 6,
no. 6, pp. 1062-1081, 1987.

P. Bjesse and A. Boralv, “DAG-aware circuit compression for formal
verification,” in Int'l Conf. on Computer-Aided Design, 2004, pp. 42-49.
A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Design
Automation Conference, 2006, pp. 532-535.

L. Amard, P. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Design Automation Conference, 2014, pp. 1-6.

——, “Majority-inverter graph: A new paradigm for logic optimization,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 35, no. 5,
pp. 806-819, 2016.

E. Goto and H. Takahasi, “Some theorems useful in threshold logic for
enumerating Boolean functions,” in IFIP Congress, 1962, pp. 747-752.
S. L. Hurst, D. M. Miller, and J. C. Muzio, “Spectral techniques in
digital logic,” 1985.

M. Turan Sonmez and R. Peralta, “The multiplicative complexity
of Boolean functions on four and five variables,” in Lightweight
Cryptography for Security and Privacy, Cham, 2015, pp. 21-33.

J. Boyar, R. Peralta, and D. Pochuey, “On the multiplicative complexity
of Boolean functions over the basis (A,®,1),” Theoretical Computer
Science, vol. 235, no. 1, pp. 43-57, 2000.

A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, “Finding efficient
circuits using SAT-solvers,” in Int’l Conf. on Theory and Applications
of Satisfiability Testing, 2009, pp. 32-44.

D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability. Addison-Wesley, 2015.

E. Testa, M. Soeken, L. Amarti, W. Haaswijk, and G. De Micheli,
“Mapping monotone Boolean functions into majority,” IEEE Trans. on
Computers, pp. 1-1, 2018.

W. J. Haaswijk, “SAT-based exact synthesis for multi-level logic
networks,” Ph.D. dissertation, EPFL, Lausanne, 2019.

M. Soeken, W. Haaswijk, E. Testa, A. Mishchenko, L. Amari, R. K.
Brayton, and G. De Micheli, “Practical exact synthesis,” in Design,
Automation and Test in Europe, 2018, pp. 309-314.

W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “SAT-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Trans. on CAD of Integrated Circuits and Systems, pp. 1-1, 2019.
N. Een, “Practical SAT - a tutorial on applied satisfiability solving,”
2007, slides of invited talk at FMCAD.

M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
E Mozafari, and G. De Micheli, “The EPFL logic synthesis libraries,”
Nov. 2019, arXiv:1805.05121v2.

N. Eén and N. Sorensson, “An extensible SAT-solver,” in Int’l Conf. on
Theory and Applications of Satisfiability Testing, 2003, pp. 502-518.

	Introduction
	SAT-based Exact Synthesis
	3-Input Gate Networks
	Encoding as a SAT Problem

	Evaluation Method and Results
	Synthesizing 2-Input NPN Classes
	Synthesizing 3-Input NPN Classes
	Synthesizing 4-Input NPN Classes
	Synthesizing Common 5-Input and 6-Input Functions

	Rewrite Rules for Dot-Inverter Graphs
	Discussion
	References

