
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 9, SEPTEMBER 2019 1675

LUT-Based Hierarchical Reversible Logic Synthesis
Mathias Soeken , Member, IEEE, Martin Roetteler , Member, IEEE, Nathan Wiebe,

and Giovanni De Micheli , Fellow, IEEE

Abstract—We present a synthesis framework to map logic
networks into quantum circuits for quantum computing. The
synthesis framework is based on lookup-table (LUT) networks,
which play a key role in conventional logic synthesis. Establishing
a connection between LUTs in an LUT network and reversible
single-target gates in a reversible network allows us to bridge
conventional logic synthesis with logic synthesis for quantum
computing, despite several fundamental differences. We call our
synthesis framework LUT-based hierarchical reversible logic syn-
thesis (LHRS). Input to LHRS is a classical logic network
representing an arbitrary Boolean combinational operation; out-
put is a quantum network (realized in terms of Clifford+T gates).
The framework allows one to account for qubit count require-
ments imposed by the overlying quantum algorithm or target
quantum computing hardware. In a fast first step, an initial
network is derived that only consists of single-target gates and
already completely determines the number of qubits in the final
quantum network. Different methods are then used to map each
single-target gate into Clifford+T gates, while aiming at optimally
using available resources. We demonstrate the versatility of our
method by conducting a design space exploration using differ-
ent parameters on a set of large combinational benchmarks. On
the same benchmarks, we show that our approach can advance
over the state-of-the-art hierarchical reversible logic synthesis
algorithms.

Index Terms—Combinational circuits, design automation,
quantum computing.

I. INTRODUCTION

RECENT progress in fabrication makes the practical appli-
cation of quantum computers a tangible prospect [2]–[5].

However, as quantum computers scale up to tackle problems
in computational chemistry, machine learning, and cryptoanal-
ysis, design automation will be necessary to fully leverage the
power of this emerging computational model.

Quantum circuits differ significantly in comparison to clas-
sical circuits. This needs to be addressed by design automation
tools.

1) Quantum computers process qubits instead of classi-
cal bits. A qubit can be in superposition and several

Manuscript received June 21, 2017; revised November 11, 2017,
March 2, 2018, and May 20, 2018; accepted June 23, 2018. Date of publica-
tion July 24, 2018; date of current version August 20, 2019. This work was
supported in part by CyberCare under Grant H2020-ERC-2014-ADG 669354,
in part by the Swiss National Science Foundation under Grant 200021-169084
MAJesty, and in part by ICT COST Action under Grant IC1405. A preliminary
version of this manuscript has been presented at the DAC 2017 confer-
ence [1]. This paper was recommended by Associate Editor S.-C. Chang.
(Corresponding author: Mathias Soeken.)

M. Soeken and G. De Micheli are with the Integrated Systems Laboratory,
EPFL, 1015 Lausanne, Switzerland (e-mail: mathias.soeken@epfl.ch).

M. Roetteler and N. Wiebe are with Microsoft Research, Redmond, WA
98052 USA.

Digital Object Identifier 10.1109/TCAD.2018.2859251

qubits can be entangled. We target purely Boolean func-
tions as input to our synthesis algorithms. At design
time, it is sufficient to assume that all input values are
Boolean, even though entangled qubits in superposition
are eventually acted upon by the quantum hardware.

2) All operations on qubits besides measurement, called
quantum gates, must be reversible. Gates with multiple
fanout known from classical circuits are therefore not
possible. Temporarily computed values must be stored
on additional helper qubits, called ancillae. An intensive
use of intermediate results therefore increases the qubit
requirements of the resulting quantum circuit. Qubits
are a limited resource; therefore, the use of ancillae is
restricted and synthesis must find circuits that satisfy the
number of available qubits. Quantum circuits that com-
pute a purely Boolean function are often referred to as
reversible networks.

3) The quantum gates that can be implemented by current
quantum computers can act on a single or at most two
qubits [3]. Something as simple as an AND operation
can therefore not be expressed by a single quantum gate.
A universal fault-tolerant quantum gate library is the
Clifford+T gate set [3]. In this gate set, the T gate is
sufficiently expensive in most approaches to fault tol-
erant quantum computing such that it is customary to
neglect all other gates when costing a quantum cir-
cuit [6]. Mapping reversible functions into networks that
minimize T gates is therefore a central challenge in
quantum computing [7].

4) When executing a quantum circuit on a quantum com-
puter, all qubits must eventually hold either a primary
input value, a primary output value, or a constant. A
circuit should not expose intermediate results to output
lines as this can potentially destroy wanted interference
effects, in particular if the circuit is used as a subroutine
in a larger quantum computation. Qubits that neverthe-
less expose intermediate results are sometimes referred
to as garbage outputs.

It has recently been shown [8]–[10] that hierarchical
reversible logic synthesis methods based on logic network rep-
resentations are able to synthesize large arithmetic designs.
The underlying idea is to map subnetworks into reversible
networks. Hierarchical refers to the property that intermediate
results computed by the subnetworks must be stored on addi-
tional ancilla qubits. If the subnetworks are small enough,
one can locally apply less efficient reversible synthesis meth-
ods that do not require ancilla qubits and are based on
Boolean satisfiability [11], truth tables [12], or decision dia-
grams [13]. However, state-of-the-art hierarchical synthesis
methods mainly suffer from two disadvantages. First, they
do not explicitly uncompute the temporary values from the
subnetworks and leave garbage outputs. In order to use the
network in a quantum computer, one can apply a technique

0278-0070 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-0229-8766
https://orcid.org/0000-0003-0234-2496
https://orcid.org/0000-0002-7827-3215

1676 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 9, SEPTEMBER 2019

called “Bennett trick” [14], which requires to double the num-
ber of gates and add one further ancilla for each primary
output. Second, current algorithms do not offer satisfying solu-
tions to account for qubit limits. Either qubit and gate count
optimization is intertwined in a single step (see [9], [10], [15])
or applied as a post-optimization step [16].

In order to address these two disadvantages, in this paper we
present a hierarchical synthesis framework based on k-feasible
Boolean logic networks, which find use in conventional logic
synthesis. These are logic networks in which every gate, called
LUT, has at most k inputs. They are often referred to as k-LUT
(lookup table) networks. Our main contributions are as follows.

1) We point out a one-to-one correspondence between a k-
LUT in a logic network and a reversible single-target
gate with k control lines in a reversible network. A
single-target gate has a k-input control function and a
single target line that is inverted if and only if the con-
trol function evaluates to 1 (the initial idea for this
correspondence and a preliminary evaluation has been
presented before in [1]).

2) We describe a two-stage algorithm which first maps
a k-LUT network into a reversible single-target gate
network and then each single-target gate into quantum
circuits. The first step is used to quickly derive a single-
target gate network which provides a skeleton for subse-
quent synthesis that already fixes the number of qubits in
the final quantum network. This decouples qubit count
optimization from gate count optimization, which makes
it easier to respect qubit restrictions imposed by the
quantum algorithm or target quantum computing device.

3) We propose new and different methods for the sec-
ond step, which map each single-target gate into a
Clifford+T network. A direct method, introduced in [1],
makes use of the exclusive-sum-of-product (ESOP) rep-
resentation of the control function that can be directly
translated into multiple-controlled Toffoli gates [17].
Multiple-controlled Toffoli gates are a specialization of
single-target gates for which automated translations into
Clifford+T circuits exist. Another method tries to remap
a single-target gate into an LUT network with fewer
number of inputs in the LUTs, by making use of tem-
porarily unused qubits in the overall quantum network.
We show that near-optimal Clifford+T circuits can be
precomputed and stored in a database if such LUT
networks require sufficiently few gates.

We evaluated LHRS on the EPFL arithmetic combinational
benchmarks. The experiments show how the various synthesis
parameters effect the number of qubits and the number of T
gates in the final quantum network as well as the algorithm’s
runtime. We also show that the synthesis results can sig-
nificantly improve state-of-the-art results, particularly when
comparing the number of required qubits. Although some
of the synthesized benchmarks still require a large amount
of resources both in qubits and gate count, our proposed
framework offers a new way to address qubit and gate count
optimization. Quantum programming frameworks [18], such as
Q#, LIQUi|〉 [19], and ProjectQ [20] can link in the Clifford+T
circuits that are automatically generated by LHRS.

II. PRELIMINARIES

A. Some Notation

A digraph G = (V, A) is called simple, if A ⊆ V × V ,
i.e., there can be at most one arc between two vertices for

Fig. 1. Four-feasible network with 11 inputs, 3 outputs, and 13 gates.

each direction. An acyclic digraph is called a dag. We refer
to d−(v) = #{w | (w, v) ∈ A} and d+(v) = #{w | (v, w) ∈ A}
as in-degree and out-degree of v, respectively.

B. Boolean Logic Networks

A Boolean logic network is a simple dag whose vertices
are primary inputs, primary outputs, and gates and whose arcs
connect gates to inputs, outputs, and other gates. Formally, a
Boolean logic network N = (V, A, F) consists of a simple dag
(V, A) and a function mapping F. It has vertices V = X∪Y∪G
for primary inputs X, primary outputs Y , and gates G. We have
d−(x) = 0 for all x ∈ X and d+(y) = 0 for all y ∈ Y . Arcs
A ⊆ (X∪G×G∪Y) connect primary inputs and gates to other
gates and primary outputs. Each gate g ∈ G realizes a Boolean
function F(g) : Bd−(g)→ B, i.e., the number of inputs in F(g)
coincides with the number of ingoing arcs of g.

Example 1: Fig. 1 shows a logic network of the benchmark
cm85a obtained using ABC [21]. It has 11 inputs, 3 outputs,
and 13 gates. The gate functions are not shown but it can
easily be checked that each gate has at most four inputs.

The fanin of a gate or output v ∈ G ∪ Y , denoted fanin(v),
is the set of source vertices of ingoing arcs

fanin(v) = {w | (w, v) ∈ A}. (1)

For a gate g ∈ G, this set is ordered according to the position
of variables in F(g). For a primary output y ∈ Y , we have
d−(y) = 1, i.e., fanin(y) = {v} for some v ∈ X ∪ G. The
vertex v is called driver of y and we introduce the notation
driver(y) = v. The transitive fan-in of a vertex v ∈ V , denoted
tfi(v), is the set containing v itself, all primary inputs that can
be reached from v, and all gates which are on any path from v
to the primary inputs. The transitive fan-in can be constructed
using the following recursive definition:

tfi(v) =
{ {v} if v ∈ X
{v} ∪ ⋃

w∈fanin(v)
tfi(w) otherwise. (2)

Example 2: The transitive fan-in of output y3 in the
logic network in Fig. 1 contains {y3, 1, 2, 4, 5, 9, 13,
x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}. The driver of y3 is
gate 13.

We call a network k-feasible if d−(g) ≤ k for all g ∈ G.
Sometimes k-feasible networks are referred to as k-LUT
networks (LUT is a shorthand for lookup-table) and LUT
mapping (see [22]–[26]) refers to a family of algorithms
that obtain k-feasible networks, e.g., from homogeneous logic
representations, such as And-inverter graphs (AIGs, [27]) or
majority-inverter graphs [28].

Example 3: The logic network in Fig. 1 is 4-feasible.

SOEKEN et al.: LUT-BASED HRLS 1677

(a) (b) (c)

Fig. 2. Reversible circuit for a full adder using (a) two single-target gates,
(b) three Toffoli gates and three CNOT gates, and (c) one Toffoli gate and
six CNOT gates.

C. Reversible Logic Networks

A reversible logic network realizes a reversible function,
which makes it very different as compared to conventional
logic networks. The number of lines, which correspond to
logical qubits, remains the same for the whole network, such
that reversible networks are cascades of reversible gates and
each gate is applied to the current qubit assignment. The most
general reversible gate we consider in this paper is a single-
target gate. A single-target gate Tc({x1, . . . , xk}, xk+1) has an
ordered set of control lines {x1, . . . , xk}, a target line xk+1,
and a control function c : Bk → B. It realizes the reversible
function f : Bk+1 → Bk+1 with f : xi 	→ xi for i ≤ k
and f : xk+1 	→ xk+1 ⊕ c(x1, . . . , xk). It is known that all
reversible functions can be realized by cascades of single-
target gates [29]. We use the “◦” operator for concatenation
of gates.

Example 4: Fig. 2(a) shows a reversible circuit that realizes
a full adder using two single-target gates, one for each output.
Two additional lines, called ancilla and initialized with 0, are
added to the network to store the result of the outputs. All
inputs are kept as output.

A multiple-controlled Toffoli gate is a single-target gate in
which the control function is 1 (tautology) or can be expressed
in terms of a single product term. One can always decompose
a single-target gate Tc({x1, . . . , xk}, xk+1) into a cascade of
Toffoli gates

Tc1(X1, xk+1) ◦ Tc2(X2, xk+1) ◦ · · · ◦ Tcl(Xl, xk+1) (3)

where c = c1 ⊕ c2 ⊕ · · · ⊕ cl, each ci is a product term or 1,
and Xi ⊆ {x1, . . . , xk} is the support of ci. This decomposi-
tion of c is also referred to as ESOP decomposition [30]–[32].
ESOP minimization algorithms try to reduce l, i.e., the num-
ber of product terms in the ESOP expression. Smaller ESOP
expressions lead to fewer multiple-controlled Toffoli gates
in the decomposition of a single-target gate. If c = 1, we
refer to Tc(∅, xk+1) as NOT gate, and if c = xi, we refer to
Tc({xi}, xk+1) as CNOT gate.

Example 5: Fig. 2(b) shows the full adder circuit from the
previous example in terms of Toffoli gates. Each single-target
gate is expressed in terms of three Toffoli gates. Positive and
negative control lines of the Toffoli gates are drawn as solid
and white dots, respectively. Fig. 2(c) shows an alternative
realization of the same output function, albeit with one Toffoli
gate.

For more details on reversible circuits we refer the reader
to [33].

D. Mapping to Quantum Circuits

Quantum circuits are described in terms of a small library
of gates that interact with one or two qubits. One of the most

(a)

(b) (c)

Fig. 3. Mapping Toffoli gates into Clifford+T circuits. (a) Two-controlled
Toffoli gate. (b) Three-controlled Toffoli gate (28 T gates). (c) Three-
controlled Toffoli gate (16 T gates).

frequently considered libraries is the so-called Clifford+T gate
library. It consists of the reversible CNOT gate, the Hadamard
gate, abbreviated H, as well as the T gate [34], and its inverse
T† = T−1 = T7. Quantum gates on n qubits are represented
as 2n×2n unitary matrices. We write T† to mean the complex
conjugate of T , and use the symbol “†” also for other quantum
gates. The T gate is sufficiently expensive in most approaches
to fault tolerant quantum computing [6] that it is reasonable to
only consider the T gate when costing a quantum algorithm.
For more details on quantum gates we refer the reader to [34].

Fig. 3(a) shows one of the many realizations of the two-
controlled Toffoli gate, which can be found in [7]. It requires
seven T gates which is optimum [6], [35]. Several works from
the literature describe how to map larger multiple-controlled
Toffoli gates into Clifford+T gates (see [6], [7], [36], [37]).
Fig. 3(b) shows one way to map the three-controlled Toffoli
gate using a direct method as proposed by Barenco et al. [38]
Given a free ancilla line (that does not need to be initialized
to 0), it allows to map any multiple-controlled Toffoli gate
into a sequence of two-controlled Toffoli gates which can then
each be mapped into the optimum network with T-count 7.
However, the number of T gates can be reduced by modifying
the Toffoli gates slightly. It can be easily seen that the network
in Fig. 3(c) is the same as in Fig. 3(b), since the controlled S†

gate cancels the controlled S gate and the V† gate cancels the
V gate. However, the Toffoli gate combined with a controlled S
gate can be realized using only four T gates [36], and applying
the V to the Clifford+T realization cancels another three T
gates [see Fig. 3(a) and [7], [39]]. In general, a k-controlled
Toffoli gate can be realized with at most 16(k− 1) T gates. If
the number of ancilla lines is larger or equal to
[(k− 1)/2]�,
then 8(k − 1) T gates suffice [7], [38]. Future improvements
to the decomposition of multiple-controlled Toffoli gates into
Clifford+T circuits will have an immediate positive effect on
our proposed synthesis method.

III. MOTIVATION AND PROBLEM DEFINITION

In this paper we address the following problem: given a
conventional combinational logic network that represents a
desired target functionality and a given number of qubits, find
a quantum circuit that does not exceed the number of available
qubits and minimizes the number of T gates. The algorithm
should be highly configurable such that instead of a single
quantum circuit a whole design space of circuits with several
Pareto-optimal solutions can be explored.

1678 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 9, SEPTEMBER 2019

Algorithm 1: Overview of the LHRS Algorithm
Input : Logic network N, parameters pQ, parameters pT
Output : Clifford+T network R

1 set N ← lut_mapping(N, pQ);
2 set R← synthesize_mapping(N, pQ);
3 set R← synthesize_gates(R, pT);
4 return R;

A. Algorithm Outline

Algorithm 1 illustrates the general outline of the procedure.
The following sections provide further details. Input to the
algorithm is a logic network N and it outputs a Clifford+T
quantum network R. In addition to N, two sets of parame-
ters pQ and pT are provided that control detailed behavior of
the algorithm. The parameters will be introduced in the fol-
lowing sections and are summarized in Section VI-A; but for
now it is sufficient to emphasize the role of the parameters.
Parameters in pQ can influence both the number of qubits and
T gates in R, however, their main purpose is to control the
number of qubits. Parameters in pT only affect the number of
T gates.

The first step in Algorithm 1 derives an LUT mapping from
the input logic network. One parameter in pQ is the LUT
size for the mapping which has the strongest influence on
the number of qubits in R. Given the LUT mapping, one
can derive a reversible logic network in which each LUT
is translated into one or two single-target gates. In the last
step, each of the gates is mapped into Clifford+T gates
(Section V).

It is important to know that most of the runtime is consumed
by the last step in Algorithm 1, and that after the first two
steps the number of qubits for the final Clifford+T network
is already known. This allows us to use the algorithm in an
incremental way as follows. First, one explores assignments to
parameters in pQ that lead to a desired number of qubits, par-
ticularly by evaluating different LUT sizes. This can be done
by calling the first two steps of the algorithm with different
values for the parameters in pQ. One can always find a network
with n+ m qubits, where n is the number of inputs and m is
the number of outputs, by setting the LUT size to n. However,
the runtime and memory requirements for the second step can
become tremendously large in this case. Once a network with
a desired number of qubits was found, one can evaluate differ-
ent mapping strategies for the single-target gates to optimize
for the number of T gates by calling the last step by sampling
the parameters for pT . Depending on the parameters used in
the first step, this step can take a large fraction of the overall
runtime.

IV. SYNTHESIZING THE MAPPING

This section describes how an LUT mapping can be trans-
lated into a reversible network. This is the second step of
Algorithm 1. The first step in Algorithm 1 applies conven-
tional LUT mapping algorithms and is not further explained
in this paper. The interested reader is referred to [22]–[26].

A. Mapping k-LUTs Into Single-Target Gates

Fig. 4 illustrates the general idea how k-LUT networks are
mapped into reversible logic networks composed of single-
target gates with control functions with up to k variables.

(a) (b)

(c) (d)

Fig. 4. Simple LUT network to illustrate order heuristics (dashed lines in
the single-target gates mean that the line is not input to the gate). (a) LUT
network. (b) Reversible network. (c) Order: 1, 2, 3, 4, 5. (d) Order: 1, 2, 4,
5, 3.

Fig. 4(a) shows a two-LUT network with five inputs x1, . . . , x5
and five LUTs with names 1 to 5. It has two outputs, y1
and y2, which functions are computed by LUT 3 and LUT 5,
respectively.

A straightforward way to translate the LUT network is by
using one single-target gate for each LUT in topological order.
The target of each single-target gate is a 0-initialized new
ancilla line. The reversible circuit in Fig. 4(b) results when
applying such a procedure. With these five gates, the outputs
y1 and y2 are realized at lines 8 and 10 of the reversible cir-
cuit. But after these first five gates, the reversible circuit has
garbage outputs on lines 6, 7, and 9, indicated by “—,” which
compute the functions of the inner LUTs of the network. The
circuit must be free of garbage outputs in order to be imple-
mented on a quantum computer. This is because the result of
the calculation is entangled with the intermediate results and
so they cannot be discarded and recycled without damaging
the results they are entangled with [34]. To avoid the garbage
outputs, we can uncompute the intermediate results by reapply-
ing the single-target gates for the LUTs in reverse topological
order. This disentangles the qubits, reverting them all to con-
stant 0s. Fig. 4(c) shows the complete reversible circuit; the
last three gates uncompute intermediate results at lines 6, 7,
and 9.

But we can do better! Once we have computed the LUT
for a primary output that does not fan in to another LUT, we
can uncompute LUTs that are not used any longer by other
outputs. The uncomputed lines restore a 0 that can be used to
store the intermediate results of other LUTs instead of creating
a new ancilla. For the running example, as shown in Fig. 4(d),
we can first compute output y2 and then uncompute LUTs 4
and 2, as they are not in the logic cone of output y1. The freed
ancilla can be used for the single-target gate realizing LUT 3.
Compared to the reversible network in Fig. 4(c), this network
requires one qubit less by having the exact same gates.

B. Bounds on the Number of Ancillae

As we have seen in the previous section, the order in which
LUTs are traversed in the LUT network and translated into

SOEKEN et al.: LUT-BASED HRLS 1679

single-target gates affects the number of qubits. Two questions
arise: 1) how many ancillae do we need at least and at most and
2) what is a good strategy? We will answer the first question,
and then discuss the second one. The bounds assume a given
fixed LUT network and a mapping strategy in which each LUT
is mapped to at most two single-target gates.

The example order that was used in the previous example
leading to the network in Fig. 4(c) illustrates an upper bound.
We can always use one ancilla for each LUT in the LUT
network, postulated in the following lemma.

Lemma 1: When realizing an LUT network N = (X ∪ Y ∪
G, A, F) by a reversible circuit that uses single-target gates for
each LUT, one needs at most |G| ancilla lines.

The optimized order in Fig. 4(d) used the fact, that one can
uncompute gates in the transitive fan-in cone of an output,
once the output has been computed.

This observation leads to a lemma providing a lower bound.
Lemma 2: Given an LUT network N = (X ∪ Y ∪ G, A, F),

let l = max{# tfi(y) | y ∈ Y} be the maximum cone size over
all outputs. When realizing the LUT network by a reversible
circuit that uses single-target gates for each LUT, we need at
least l ancilla lines.

The lower bound inspires the following synthesis strategy
that minimizes the number of additional lines. One starts by
synthesizing a circuit for the output with the maximum cone.
Let us assume that this cone contains l LUTs. These LUTs
can be synthesized using l single-target gates. Note that all of
these are in fact needed, because in order to uncompute a gate,
the intermediate values of children need to be available. From
these l gates, l − 1 gates can be uncomputed (all except the
LUT computing the output), and therefore restores l− 1 lines
which hold a constant 0 value. We can easily see that the exact
number of required lines may be a bit larger, since all output
values need to be kept. Note that this strategy uncomputes all
LUTs in the transitive fan-in cone of an output—even if it is
part of a fan-in cone of another output. Therefore, some LUTs
will lead to more than two single-target gates in the reversible
network.

Note that the lower bound only holds when assuming that
each LUT is translated to at most two single-target gates.
When relaxing this assumption, one can find mappings that
require fewer ancillae. One can find such mappings by playing
reversible pebble games [40], however, we are not consider-
ing them in the scope of this paper. More details on reversible
pebble games and how they can be used in reversible logic
synthesis can be found in [41]–[44].

C. Synthesizing LUT Network

Algorithm 2 describes in detail how a k-LUT network
N = (X ∪ Y ∪ G, A, F) is mapped into a reversible network
R that consists of single-target gates with at most k controls.
The main entry point is the function “synthesize_mapping”
(line 1). This function keeps track of the current number of
lines l, available ancillae in a stack C, an LUT-to-line map-
ping m : G→ N that stores which LUT gates are computed on
which lines in R, and a visited list S (lines 3–6). The reference
counter r(g) checks for each LUT g how often it is required as
input to other LUTs. For driving LUTs, stored in D (line 7),
the reference counter is decreased by 1. It is initialized with
the fan-out size and allows us to check if g is not needed any
longer such that it can be uncomputed (line 8). This is the case

Algorithm 2: Synthesizing an LUT Mapping Into a
Reversible Network With Single-Target Gates

1 function
synthesize_mapping(N = (X ∪ Y ∪ G, A, F), pQ)

2 set R← empty reversible network;
3 set l← 1;
4 initialize empty stack C;
5 initialize empty map m;
6 set S← ∅;
7 set D← {driver(y) | y ∈ Y};
8 for g ∈ G do set r(g)← d+(g)− [g ∈ D];
9 for x ∈ X do

10 add input line with name x to R;
11 set m(x)← l;
12 set l← l+ 1;
13 end
14 for g ∈ topo_order(G, pQ) do
15 set t← request_constant();
16 append TF(g)(m(fanin(g)), t) to R;
17 set m(g)← t;
18 if r(g) = 0 then
19 set S← ∅;
20 uncompute_children(g);
21 end
22 end
23 for y ∈ Y do
24 rename output of line m(driver(y)) in R to y;
25 end
26 return R;

27 function request_constant()
28 if C is not empty then
29 return C.pop();
30 else
31 set l← l+ 1;
32 return l;
33 end

34 function uncompute_children(g)

35 for g′ ∈ fanin(g) ∩ G do set r(g′)← r(g′)− 1;
36 for g′ ∈ fanin(g) such that r(g′) = 0 do
37 uncompute_gate(g′);
38 end

39 function uncompute_gate(g)

40 if g ∈ S then return;
41 if g /∈ D then
42 set t← m(g);
43 append TF(g)(m(fanin(g)), m(g)) to R;
44 C.push(t);
45 set m(t)← 0;
46 set S← S ∪ {g};
47 uncompute_children(g);

whenever the reference counter is 0, and therefore the process
of uncomputing is triggered by driving LUTs.

Input lines are added to R in lines 9–13. Input vertices are
mapped to their line in R using m. In lines 14–22 single-target
gates to compute and uncompute LUTs are added to R. Each
gate g is visited in topological order (details on “topo_order”
follow later). First, a 0-initialized line t is requested (line 15).
Either there is one in C or we get a new line by increment-
ing l. Given t, a single-target gate with control function F(g),
controls m(fanin(g)) = {m(g′) | g′ ∈ fanin(g)}, and target line
t is added to R (line 16). The LUT-to-line map is updated
according to the newly added gate (line 17). Then, if g is
driving an output, i.e., r(g) = 0 (line 18), we try to uncom-
pute the children recursively by calling uncompute_children
(line 20). In that function, first the reference counter is decre-
mented for each child g′ that is not a primary input (line 35).

1680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 9, SEPTEMBER 2019

(a) (b)

(c) (d)

Fig. 5. Plots show the upper and lower bound according to Lemmas 1 and 2 as well as the actual number of additional lines when synthesizing different
arithmetic benchmarks with LUT sizes ranging from 3 to 32. The x-axis shows LUT size and the y-axis shows the number of additional lines.

Then, each child g′ that afterward has a reference count of 0, is
uncomputed using uncompute_gate (line 37). In there, first it is
checked whether the child has already been visited (line 40).
If the child is not driving an output, a single-target gate to
uncompute the line is added to R (line 43). The freed line t
is added to C (line 44) and the mapping is cleared accord-
ingly (line 45). The child is stored as visited (line 46), and the
function recurs (line 47). After all gates have been computed,
outputs are added to lines in R (lines 23–25). This procedure
is simplified: two or more outputs may share the same driv-
ing LUT. In this case, one needs additional lines and copy the
output result using a CNOT gate.

With a given topological order of LUTs, the time complexity
of Algorithm 2 is linear in the number of LUTs. As seen in the
beginning of this section, the order in which LUTs are visited
has an effect on the number of qubits. Therefore, there can be
several strategies to compute a topological order on the gates.
This is handled by the function topo_order that is configured
by a parameter in pQ. Besides the default topological order
implied by the implementation of N (referred to as topo_def
in the following), we also implemented the order topo_tfi_sort,
which is inspired by Lemma 2: compute the transitive fan-
in cone for each primary output and order them by size in
descending order. The topological order is obtained using a
depth-first search for each cone by not including duplicates
when traversing a cone.

D. Role of the LUT Size

As can be seen from previous discussions, the number of
additional lines roughly corresponds to the number of LUTs.
Hence, we are interested in logic synthesis algorithms that
minimize the number of LUTs. In classical logic synthesis the

number of LUT-inputs k needs to be selected according to
some target architecture. For example, in field-programmable
gate array (FPGA) mapping, its value is typically 6 or 7. But
for our algorithm, we can use k as a parameter that trades
off the number of qubits to the number of T gates: If k is
small, one needs many LUTs to realize the function, but the
small number of inputs also limits the number of control lines
when mapping the single-target gates into multiple-controlled
Toffoli gates. On the contrary, when k is large, one needs
fewer LUTs but the resulting Toffoli gates are larger and
therefore require more T gates. Further, since for larger k
the LUT functions are getting more complex, the runtime to
map a single-target gate into multiple-controlled Toffoli gates
increases.

To illustrate the influence of the LUT size we performed the
following experiment, illustrated in Fig. 5(a). For four bench-
marks and for LUT sizes k from 3 to 32, we computed an
LUT mapping using ABC’s [21] command if -K k -a. The
resulting network was used to compute both the upper and
lower bound on the number of additional lines according to
Lemmas 1 and 2, and to compute the actual number of lines
according to Algorithm 2 with “topo_def” as topological order.
It can be noted that the actual bound often either matches the
upper bound or the lower bound. In some cases the bounds
are very close to each other, leaving not much flexibility to
improve on the number of additional lines. Further, after larger
LUT sizes the gain in reducing the number of lines decreases
when increasing the LUT size. It should be pointed out that
for benchmark “Log2” an optimum number of additional lines
can be achieved for k = 32, because in this case k matches
the number of inputs of the function. Consequently, the LUT
mapping has as many gates as the number of outputs. In gen-
eral, by setting k to the number of inputs n of the function,

SOEKEN et al.: LUT-BASED HRLS 1681

(a)

(b)

Fig. 6. Algorithms to map a single-target gate into a Clifford+T network. (a) Direct mapping. (b) LUT-based mapping.

one can find reversible single-target gate networks with n+m
qubits, where m is the number of outputs. However, first it
may be very time consuming or infeasible to map the result-
ing single-target gates into quantum circuits, and even if it is
possible, they will likely consists of a very large number of
quantum gates.

V. MAPPING SINGLE-TARGET GATES

For the following discussion it is important to understand
the representation of the logic network that is given as input to
Algorithm 1 and the k-LUT network that results from the first
step. The input network is given as a gate-level logic network,
i.e., all gates are simple logic gates. In our experimental eval-
uation and current implementation the logic network is given
as AIG, i.e., a logic network composed of AND gates and
inverters. The LUT network is represented by annotating in
the gate-level netlist: 1) which nodes are LUT outputs and
2) which nodes are LUT inputs for each LUT. As a result,
the control function of a single-target gate corresponds to an
LUT, which is implicitly represented as a subnetwork in the
gate-level logic network.

A. Direct Mapping

The idea of direct mapping is to represent the control func-
tion as ESOP expression, optimize it, and then translate the
optimized ESOP into a Clifford+T network. Fig. 6(a) illus-
trates the complete direct mapping flow. As described above, a
control function is represented in terms of a multilevel AIG. In
order to obtain a 2-level ESOP expression for the control func-
tion, one needs to collapse the network. This process is called
cover extraction and two techniques called AIG extract and
BDD extract will be described in this section. The number of
product terms in the resulting ESOP expression is typically far
from optimal and is reduced using ESOP minimization. The
optimized ESOP expression is first translated into a reversible
network with multiple-controlled Toffoli gates as described in
Section II-D and then each multiple-controlled Toffoli gate is
mapped into a Clifford+T with the mapping described in [7].

1) ESOP Cover Extraction: There are several ways to
extract an ESOP expression from an AIG that represents
the same function. Our implementation uses two different
methods. The choice of the method has an influence on the
initial ESOP expression and therefore affects both the run-
time of the algorithm and the number of T gates in the
final network.

The method AIG extract computes an ESOP for each node
in the AIG in topological order. The final ESOP can then be
read from the output node. First, all primary inputs xi are
assigned the ESOP expression xi. The ESOP expression of an

AND gate is computed by conjoining both ESOP expressions
of the children, taking into consideration possible comple-
mentation. Therefore, the number of product terms for the
AND gate can be as large as the product of the number of
terms of the children. The final ESOP can be preoptimized by
removing terms that occur twice, e.g., x1x̄2x3 ⊕ x1x̄2x3 = 0,
or by merging terms that differ in a single literal, e.g.,
x1x3⊕x1x̄2x3 = x1x2x3 [32]. AIG extract is implemented sim-
ilar to the command “&esop” in ABC [21]. We were able to
increase the performance of our implementation by limiting
the number of inputs to 32 bits, which is sufficient in our appli-
cation, and by using cube hashing [45]. In general, AIG extract
performs linear many conjunctions of ESOP terms, which are
quadratic in the size of the ESOP terms of the children nodes.
The size of an ESOP term for an AIG node n is exponential
in the number of primary inputs in the structural support of n.

The method BDD extract first expresses the control function
in terms of a BDD (binary descision diagram), again by trans-
lating each node into a BDD in topological order. From the
BDD a pseudo-Kronecker expression [46], [47] is extracted
using the algorithm presented in [48]. A pseudo-Kronecker
expression is a special case of an ESOP expression. For the
extracted expression, it can be shown that it is minimum in
the number of product terms with respect to a chosen variable
order. Therefore, it provides a good starting point for ESOP
minimization.

For the complexity of BDD extract, we consider both steps.
First, the BDD needs to be constructed from the AIG, which
in the worst-case is exponential, since constructing the BDD
that computes an AND node may require the product of the
nodes used in the BDDs for each child function. The algorithm
to construct a Pseudo-Kronecker expression from the BDD is
cubic in the number of BDD nodes, since for each pair of
co-factors one needs to compute the BDD that computes the
XOR of both co-factors.

2) ESOP Minimization: In our implementation we use
exorcism [32] to minimize the number of terms in the
ESOP expression. Exorcism is a heuristic minimization algo-
rithm that applies local rewriting of product terms using the
EXORLINK operation [49]. In order to introduce this oper-
ation, we need to define the notation of distance. For each
product term a variable can either appear as positive literal,
as negative literal, or not at all. The distance of two prod-
uct terms is the number of variables with different appearance
in each term. For example, the two product terms x1x3 and
x1x̄2x3 have distance 1, since x2 does not appear in the first
product term and appears as negative literal in the second one.
It can be shown that two product terms with distance k can
be rewritten as an equivalent ESOP expression with k prod-
uct terms in k! different ways. The EXORLINK-k operation

1682 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 9, SEPTEMBER 2019

Fig. 7. Reversible network from Fig. 4(d). Additional lines which have a
constant 0 value are drawn thicker. These lines can be used as additional
resources when mapping single-target gates.

is a procedure to enumerate all k! replacements for a product
term pair with distance k. Applying the EXORLINK oper-
ation to product term pairs with a distance of less than 2
immediately leads to a reduction of the number of product
terms in an ESOP expression. In fact, as described above,
such checks are already applied when creating the initial cover.
Applying the EXORLINK-2 operation does not increase the
number of product terms but can decrease it, if product terms
in the replacement can be combined with other terms. The
same applies for distances larger than 2, but it can also lead
to an increase in the number of product terms. This can some-
times be helpful to escape local minima. Exorcism implements
a default minimization heuristic, referred to as def in the fol-
lowing, that applies different combinations and sequences of
EXORLINK-k operations for 2 ≤ k ≤ 4. We have modified
the heuristic by just omitting the EXORLINK-4 operations,
referred to as def_wo4 in the following. The complexity of the
exorcism algorithm is cubic in the number of initial product
terms, since it checks whether product terms resulting from an
EXORLINK operation to a pair of product terms can optimize
any existing product term.

B. LUT-Based Mapping

This section describes a mapping technique that exploits two
observations: 1) when mapping a single-target gate there may
be additional lines available with a constant 0 value and 2) for
single-target gates with few control lines (e.g., up to 4) one can
precompute near-optimal Clifford+T circuits and store them in
a database. Fig. 6(b) illustrates the LUT-based mapping flow.
The idea is to apply 4-LUT mapping on the control function of
the single-target gate and use available 0-valued ancilla lines to
store intermediate results from inner LUTs in the mapping. If
enough 0-valued ancilla lines are available, each of the single-
target gates resulting from this mapping is directly translated
into a near-optimum Clifford+T network that is looked up in
a database. The size of the database is compressed by making
use of Boolean function classification based on affine input
transformations and output complementation. This procedure
requires no additional lines being added to the circuit. If the
procedure cannot be applied due to too few 0-valued ancilla
lines, direct mapping is used as fallback.

1) Available 0-Valued Ancilla Resources: Fig. 7 shows the
same reversible network as in Fig. 4(d) that is obtained from
the initial k-LUT mapping. However, additional lines that are
0-valued are drawn thicker. We can see that for the realization
of the first single-target gate, there are three 0-valued lines, but
for the last single-target gate there is only one 0-valued line.
This information can easily be obtained from the reversible
network resulting from Algorithm 2.

The following holds in general. Let g = Tc(X, t) be a single-
target gate with |X| = k and let there be l available 0-valued

(a) (b)

Fig. 8. Single-target gate for (a) Tf and (b) Tg, which can be constructed
from Tf , since f and g are AN-equivalent. (a) Tf . (b) Tg.

lines, besides a 0-valued line for target line t. If c can be
realized as a 4-LUT network with at most l + 1 LUTs, then
we can realize it as a reversible network with 2l − 1 single-
target gates that realizes function c on target line t such that
all inner LUTs compute and uncompute their results on the
l available 0-valued lines. This synthesis procedure is similar
but much simpler than Algorithm 2, since c is a single-output
function. Therefore, the number of additional lines required for
the inner LUTs cannot be improved by a different topological
order and is solely determined by the number of LUTs in the
mapping. Given the k-LUT mapping for the control function,
the synthesis procedure is linear in the number of LUTs.

2) Near-Optimal Four-Input Single-Target Gates: There
exists 22n

Boolean functions over n variables, i.e., 4, 16, 256,
and 65 536 for n = 1, 2, 3, and 4, respectively.
Consequently, there are as many different single-target gates
Tc({x1, . . . , xn}, xn+1). For this number, it is possible to pre-
compute optimum or near-optimal Clifford+T circuits for each
of the single-target gates using exact or heuristic optimization
methods for Clifford+T gates (see [6], [50]–[52]), and store
them in a database. Mapping single-target gates resulting from
the LUT-based mapping technique described in this sections is
therefore very efficient. However, the number of functions can
be reduced significantly when using affine function classifica-
tion. Next, we review affine function classification and show
that two optimum Clifford+T circuits for two single-target
gates with affine equivalent functions have the same T-count.

For a Boolean function f (x1, . . . , xn), let us use the notation
f (�x), where �x = (x1, . . . , xn)

T . We say that two functions f and
g are affine equivalent [53], if there exists an n× n invertible
matrix A ∈ GLn(B) and a vector �b ∈ Bn such that

g(�x) = f
(

A�x+ �b
)

for all �x ∈ Bn. (4)

We say that f and g are affine equivalent under negation [54],
if either (4) holds or g(�x) = f̄ (A�x + �b) for all �x. For the
sake of brevity, we say that f is AN-equivalent to g in the
remainder. AN-equivalence can be considered an extension of
NPN-equivalence, where besides input negation, input permu-
tation, and output negation, also inputs xi may be replaced by
xi ⊕ xj, where j �= i. AN-equivalence is an equivalence rela-
tion and allows to partition the set of 22n

into much smaller
sets of functions. For n = 1, 2, 3, and 4, there only 2, 3, 6,
and 18 classes of AN-equivalent functions (see [53]–[55]).
And all 4 294 967 296 5-input Boolean functions fall into only
206 classes of AN-equivalent functions! The database solu-
tion proposed in this mapping can therefore scale for five
variables given a fast way to classify functions. Before we
discuss classification algorithms, the following lemma shows
that AN-equivalent functions preserve T-cost.

Lemma 3: Let f and g be two n-variable AN-equivalent
functions. Then the T-count in Clifford+T circuits realizing
Tf and Tg is the same.

Proof: Since f and g are AN-equivalent, there exists A ∈
GLn(B), �b ∈ Bn, and p ∈ B such that g(�x) = p⊕ f (A�x + �b)
for all �x. It is possible to create a reversible circuit that takes

SOEKEN et al.: LUT-BASED HRLS 1683

Fig. 9. This plot shows the distribution of AN-equivalence classes among
all four-LUTs that have been discovered in all our experimental results (see
Section VI). The y-axis shows from the bottom to the top all 2, 5, and 17
nonconstant AN-equivalence classes of 2, 3, and 4 variables. The number right
to the truth table is the T-count in the best known Clifford+T realization of the
corresponding single-target gate. The x-axis shows the frequency percentage
with respect to other classes that have the same number of variables. The
small number next to the bar shows the frequency in absolute values.

�x 	→ A�x + �b using only CNOT gates for A and NOT gates
for �b (see [56]). The output can be inverted using a NOT
gate. Fig. 8 illustrates the proof. The subcircuit UA realizes
the linear transformation using CNOT gates, U�b realizes the
input inversions using NOT gates, and Xp represents a NOT
gate, if p = 1, otherwise the identity.

In order to make use of the algorithm we need to compute
an optimum or near-optimal circuit for one representative in
each equivalence class for up to four variables. To match an
arbitrary single-target gate with a control function of up to
four variables in the database, one needs to derive its repre-
sentative. Algorithms as presented in [57] can be used for this
purpose. They need to explore all 2n ∏n−1

i=0 (2n − 2i) possible
affine transformations as in (4) to the control function and its
complement. Since n ≤ 4, this enumeration is feasible.

Fig. 9 lists all the AN-equivalent classes for 2–4 variables;
the class containing the constant functions is omitted. It shows
how often they are discovered in a four-LUT in all our exper-
imental evaluations. Also, it shows the number of T gates
in the currently best-known Clifford+T circuits of the cor-
responding single-target gate found using the optimization
heuristic in [50]. Classes #1, #01, #07, #17, and #0001
occur most frequently. The classes #1, #01, and #0001 con-
tain among others x1x2, x1x2x3, and x1x2x3x4, respectively,
and are therefore control functions of the multiple-controlled
Toffoli gates. Class #17 contains the majority-of-three func-
tion. The table can guide to the classes which benefit most
from optimizing their T-count. Reversible and Clifford+T cir-
cuits of the currently best-known realizations can be found at
quantumlib.stationq.com.

C. Hybrid Mapping

LUT-based mapping cannot be applied if the number of
available 0-valued lines is insufficient. As fallback, the four-
LUT network is omitted and direct mapping is applied on the
k-LUT network, therefore not using any of the 0-valued lines
at all. The idea of hybrid synthesis is to merge four-LUTs
into larger LUTs. By merging two LUTs in the network, the
number of LUTs is decreased by 1 and therefore one fewer
0-valued line is required. Our algorithm for hybrid synthesis
merges the output LUT with one of its children, thereby gen-
erating a larger output LUT. This procedure is repeated until
the LUT network is small enough to match the number of 0-
valued lines. The topmost LUT is then mapped using direct
mapping, while the remaining LUTs are translated using the
LUT-mapping technique. If the number of leaves in the top-
most LUT exceed the number of inputs of the control function,
direct mapping is applied to the control function.

VI. EXPERIMENTAL EVALUATION

We have implemented LHRS as command “lhrs” in the open
source reversible logic synthesis framework RevKit [62].1 All
experiments have been carried out on an Intel Xeon CPU E5-
2680 v3 at 2.50 GHz with 64 GB of main memory running
Linux 4.4 and gcc 5.4.

A. LHRS Configuration

Table I gives an overview of all parameters that can be given
as input to LHRS. The parameters are split into two groups.
Parameters in the upper half have mainly an influence on the
number of lines and are used to synthesize the initial reversible
network that is composed of single-target gates (Section IV).
Parameters in the lower half only influence the number of T
gates by changing how single-target gates are mapped into
Clifford+T circuits. Each parameter is shown with possible
values and some explanation text.

B. Evaluating the Effects of Parameters

As benchmarks, we used the ten arithmetic instances of the
EPFL combinational logic synthesis benchmarks [64], which
are publicly available and commonly used to evaluate logic
synthesis algorithms. In order to investigate the influence of
the initial logic representation, we used different realizations
of the benchmarks: 1) the original benchmark description in
terms of an AIG, called Original and 2) the best known
6-LUT network wrt. the number of lines, called Best-LUT.2

Further statistics about the benchmarks are given in Table II.
All experimental results and synthesis outcomes for the EPFL
arithmetic benchmarks and for a variety of IEEE-compliant
floating point benchmarks can be viewed and downloaded
from a repository github.com/msoeken/lhrs-experiments. The
repository also contains all scripts to generate the results, mak-
ing it easy to perform similar experiments on a different set
of benchmarks.

We evaluated LHRS for both realizations (Original and
Best-LUT) for all ten arithmetic benchmarks with an LUT
size of 6, 10, and 16. Table III lists all results. We chose
LUT size 6, because it is a typical choice for FPGA mapping,
and therefore we expect that LUT mapping algorithms per-
form well for this size. We chose 16, since we noticed in our

1The source code can be found at github.com/msoeken/cirkit.
2See lsi.epfl.ch/benchmarks, version 2017.1.

1684 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 9, SEPTEMBER 2019

TABLE I
PARAMETERS FOR LHRS

TABLE II
EPFL ARITHMETIC BENCHMARKS

experiments that it is the largest LUT size for which LHRS
performs reasonably fast for most of the benchmarks. LUT
size 10 has been chosen, since it is roughly in between the
other two. These configurations allow us to synthesize six dif-
ferent initial single-target gate networks for each benchmark,
therefore spanning six optimization points in a Pareto set.
For each of these configurations, we chose four different
configurations of parameters in pT , based on values to the
mapping method and the ESOP heuristic ({direct, hybrid} ×
{def , def_wo4}).

The experiments confirm the observation of Section IV-D.
A larger LUT size leads to a smaller number qubits. In some
cases, e.g., Log2, this can be quite significant. A larger LUT
size also leads to a larger T-count, again very considerable,
e.g., for Log2.

Slightly changing the ESOP minimization heuristic (note
that def to def_wo4 are very similar) has no strong influence
on the number of T gates. There are examples for both the
case in which the T-count increases and in which it decreases.
However, the runtime can be significantly reduced. The choice

of the mapping method has a stronger influence. For example, in
case of the Adder, the hybrid mapping method is far superior
compared to the direct method. In many cases, the hybrid
method is advantageous only for an LUT size of 16, but not
for the smaller ones. Also, the initial representation of the
benchmark has a considerable influence. In many cases, the
Best-LUT realizations of the benchmarks require fewer qubits,
which—as expected—results in higher T-count. The effect is
particularly noticeable for the Divisor and Square-root. In some
cases, better results in both qubits and T-count can be achieved,
e.g., for Log2 as Best-LUT with an LUT size of 16, and for
the Barrel shifter as Original with an LUT size of 16.

C. Comparison to State-of-the-Art Algorithms

We compare LHRS to three state-of-the-art hierarchical
synthesis algorithms: circuit-based synthesis (CBS, [9]), XOR-
majority graph (XMG)-based synthesis (DXS, [10]), and
BDD-based synthesis [63]. Before we discuss the results from
the experimental evaluation, we compare the three state-of-
the-art approaches conceptually to LHRS.

1) Comparison to CBS: CBS uses a logic network as start-
ing point, in its current implementation an AIG. The scalability
of the approach therefore depends on the size of the logic
network, which makes it comparable to LHRS. CBS decom-
poses the logic network into multioutput subnetworks based
on adjacent and overlapping fan-out free regions. These are
embedded and synthesized using explicit or symbolic func-
tional reversible logic synthesis algorithms (depending on the
size of the subnetworks). The size of the subnetworks can be
controlled with a threshold parameter t. A larger value for t
usually leads to a smaller number of qubits, but if t is chosen
to be too large, the embedding and synthesis algorithms may
take a very long time.

In LHRS, we decompose the initial logic network into
k-input (single-output) LUTs, which are represented as single-
target gates in the intermediate reversible logic network. We
use a variety of different synthesis algorithms to map these
single-target gates into quantum circuits. These approaches are
more scalable as compared to the functional reversible logic
synthesis algorithms used in CBS. The most time-consuming
mapping algorithm that we propose and use in the implemen-
tation of LHRS is direct mapping (Section V-A). It is based on
ESOP-based synthesis, which was demonstrated to scale better
(in runtime) to functional reversible logic synthesis approaches
(see [10, Tables II and III]).

The computational complexity of both approaches is the
same, and exponential in the worst-case. In CBS with thresh-
old value t, it can be that almost all 22t input/output patterns
need to be visited by the functional reversible logic synthesis
algorithm. In LHRS with LUT size k, it can be that ESOP-
based synthesis generates reversible circuits with ≈ 2k Toffoli
gates. Note that both methods are polynomial in the number
of logic gates of the initial logic representation, since both k
and t are constant and fixed parameters that are input to the
synthesis problem.

2) Comparison to DXS: DXS uses an XMG as a starting
point, and is therefore as scalable as CBS and LHRS, since
it depends on the size of the initial logic network. LHRS has
therefore no scalability advantage over DXS. Also, DXS uses
ancillae management strategies very similar to LHRS. DXS is
best considered a special case of LHRS in which k = 3 and
only two LUT functions, namely XOR and majority-of-three

SOEKEN et al.: LUT-BASED HRLS 1685

TABLE III
EXPERIMENTAL EVALUATION OF LHRS ON THE EPFL ARITHMETIC BENCHMARKS

(incl. variants with input complementation), are possible. For
these, compact quantum circuit realizations are known.

As our experimental results will demonstrate, DXS can be
seen as a complementary method to LHRS for small LUT
sizes. DXS scales better than LHRS with k = 3, because
1) only functions with inexpensive quantum circuit realiza-
tions are used in DXS and 2) dedicated optimization routines
to optimize XMGs can be exploited. But due to the small gate
sizes, DXS does not easily reduce the number of required
qubits.

In Section V-B, we discuss the use of function classifica-
tion (AN-classification), since each function in an equivalence
class has the same number of T gates in an T-count optimum
quantum circuit. The statistical information shown in Fig. 9
motivates to investigate dedicated LUT mapping algorithms
that favor LUT functions with smaller T-count. In this way,
LHRS can achieve a similar quality compared to specialized
approaches, such as DXS.

3) Comparison to BDD-Based Synthesis: In BDD-based
synthesis, first the input function is represented as binrary

1686 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 9, SEPTEMBER 2019

TABLE IV
COMPARISON TO STATE-OF-THE-ART ALGORITHMS (QUALITY OF RESULTS)

decision diagram. Then each node is translated into a cor-
responding quantum circuit similar to DXS, where XOR and
majority gates are translated. However, BDD-based synthesis
relies on an efficient construction of a BDD for a given input
function. If a BDD can be obtained within reasonable time
and particularly within the available memory resources, the
synthesis procedure is very fast. However, it is known that the
size of a BDD is exponential in the worst-case and also in the
average case. Large functions often suffer from the memory
explosion problem. Also, the canonicity property of BDDs
prohibits logic optimization besides variable reordering.

Techniques, which are discussed in our proposed decom-
position approach, may also be applied to the BDD-based
approach. The ancillae management heuristic described in
Section IV and Algorithm 2 could in a similar way be applied
to BDD-based synthesis in order to uncompute ancillae early
and reuse them in order to reduce the number of overall
required ancillae. However, this still requires that the BDD
must be constructed and does not address the scalability issue.

In our experimental evaluation we set t = 10 for CBS,
which results in a similar number of additional lines compared
to LHRS with LUT size k = 6. It is important to note that
CBS and BDD-based synthesis do not uncompute results and
produce garbage outputs. For a fair comparison, we update
the numbers returned by the synthesis algorithm, and use the
Bennett trick [14] to uncompute all garbage lines. This trick
requires to add one ancilla for each output and to double the
number of T gates. We have set a memory limit of 100 GB.
This affects particularly BDD-based synthesis, which requires
high memory resources for the construction of the BDD. For
LHRS, we compare LUT sizes 6, 10, and 16, mapping method
hybrid, and ESOP heuristic def_wo4.

Table IV list the quality of results for the comparison with
the state-of-the-art techniques. For each approach we list the
number of qubits and the number of T gates. The runtimes are
listed in Table V. The last row in Table IV lists the geomean
for both qubits and T gates normalized to the results of LHRS
for k = 6. The results demonstrate that LHRS clearly outper-
forms CBS in terms of T-count, while often having a similar
number of qubits. For no benchmark, CBS produced a Pareto-
optimal result. LHRS outperforms DXS in terms of qubits,
except for the Adder benchmark. DXS always produces at

TABLE V
COMPARISON TO STATE-OF-THE-ART ALGORITHMS (RUNTIME)

least one Pareto-optimal result. With the memory limit of 100
GB, it was only possible to apply the BDD-based approach to
the Sine benchmark. But for that function, the resulting qubit
numbers and T-count are several magnitudes higher than those
obtained by LHRS. Since we only have results for a single
benchmark, we omit the geomean for BDD-based synthe-
sis. LHRS produces Pareto-optimal results for all benchmarks
except Adder.

VII. CONCLUSION

We presented LHRS, an LUT-based approach to hierar-
chical reversible circuit synthesis that outperforms existing
state-of-the-art hierarchical methods. Its two-stage approach
allows us to first find an abstract single-target gate reversible
logic network that already determines the number of required
qubits. Several different configuration parameters and mapping
strategies allow for a fast exploration of single-target gate
networks with the aim to find one with a suitable number of

SOEKEN et al.: LUT-BASED HRLS 1687

qubits. In the second step, each single-target gate is mapped
into a quantum circuit, in this case using Clifford+T gates.

LHRS can be regarded as a synthesis framework since
it consists of several parts that can be optimized sepa-
rately. As one example, we are currently investigating more
advanced mapping strategies that map single-target gates into
Clifford+T circuits. Also, most of the conventional synthesis
approaches that are used in the LHRS flow, e.g., the mapping
algorithms to derive the k-LUT network, are not quantum-
aware, i.e., they do not explicitly optimize wrt. the quality of
the resulting quantum network. We expect further improve-
ments, particularly in the number of T gates, by modifying
the synthesis algorithms in that direction. Finally, to address
the tight qubit resources, we plan to employ reversible peb-
bling strategies to find initial single-target gate networks with
fewer qubits, for the expense of a higher gate count.

ACKNOWLEDGMENT

The authors would like to thank M. Amy, O. Di Matteo,
V. Kliuchnikov, G. Meuli, and A. Mishchenko for many useful
discussions. All circuits in this paper were drawn with the qpic
tool.

REFERENCES

[1] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “Hierarchical
reversible logic synthesis using LUTs,” in Proc. Design Autom. Conf.,
Austin, TX, USA, 2017, p. 78.

[2] S. Debnath et al., “Demonstration of a small programmable quantum
computer with atomic qubits,” Nature, vol. 536, pp. 63–66, Aug. 2016.

[3] N. M. Linke et al., “Experimental comparison of two quantum com-
puting architectures,” Proc. Nat. Acad. Sci. USA, vol. 114, no. 13,
pp. 3305–3310, 2017.

[4] E. A. Martinez et al., “Real-time dynamics of lattice gauge theories
with a few-qubit quantum computer,” Nature, vol. 534, pp. 516–519,
Jun. 2016.

[5] P. J. J. O’Malley et al., “Scalable quantum simulation of molecular
energies,” Phys. Rev. X, vol. 6, no. 3, 2016, Art. no. 031007.

[6] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 6,
pp. 818–830, Jun. 2013, doi: 10.1109/TCAD.2013.2244643.

[7] D. Maslov, “Advantages of using relative-phase Toffoli gates with an
application to multiple control Toffoli optimization,” Phys. Rev. A,
vol. 93, no. 2, 2016, Art. no. 022311.

[8] M. Rawski, “Application of functional decomposition in synthesis of
reversible circuits,” in Proc. Int. Conf. Reversible Comput., Grenoble,
France, 2015, pp. 285–290, doi: 10.1007/978-3-319-20860-2_20.

[9] M. Soeken and A. Chattopadhyay, “Unlocking efficiency and scalabil-
ity of reversible logic synthesis using conventional logic synthesis,” in
Proc. Design Autom. Conf., Austin, TX, USA, 2016, p. 149. [Online].
Available: http://doi.acm.org/10.1145/2897937.2898107

[10] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli, “Design automa-
tion and design space exploration for quantum computers,” in Proc.
Design Autom. Test Europe, Lausanne, Switzerland, 2017, pp. 470–475.

[11] D. Große, R. Wille, G. W. Dueck, and R. Drechsler, “Exact multiple-
control Toffoli network synthesis with SAT techniques,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 5, pp. 703–715,
May 2009, doi: 10.1109/TCAD.2009.2017215.

[12] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based
algorithm for reversible logic synthesis,” in Proc. Design Autom.
Conf., Anaheim, CA, USA, 2003, pp. 318–323. [Online]. Available:
http://doi.acm.org/10.1145/775832.775915

[13] M. Soeken, R. Wille, and R. Drechsler, “Hierarchical synthesis
of reversible circuits using positive and negative Davio decom-
position,” in Proc. Int. Design Test Symp., 2010, pp. 143–148,
doi: 10.1109/IDT.2010.5724427.

[14] C. H. Bennett, “Logical reversibility of computation,” IBM J. Res.
Develop., vol. 17, no. 6, pp. 525–532, 1973.

[15] J. J. Law and J. E. Rice, “Line reduction in reversible circuits
using KFDDs,” in Proc. Pac. Rim Conf. Commun. Comput.
Signal Process., Victoria, BC, Canada, 2015, pp. 113–118,
doi: 10.1109/PACRIM.2015.7334819.

[16] R. Wille, M. Soeken, and R. Drechsler, “Reducing the num-
ber of lines in reversible circuits,” in Proc. Design Autom.
Conf., Anaheim, CA, USA, 2010, pp. 647–652. [Online]. Available:
http://doi.acm.org/10.1145/1837274.1837439

[17] K. Fazel, M. A. Thornton, and J. E. Rice, “ESOP-based Toffoli gate
cascade generation,” in Proc. Pac. Rim Conf. Commun. Comput. Signal
Process., Victoria, BC, Canada, 2007, pp. 206–209.

[18] F. T. Chong, D. Franklin, and M. Martonosi, “Programming languages
and compiler design for realistic quantum hardware,” Nature, vol. 549,
no. 7671, pp. 180–187, 2017.

[19] D. Wecker and K. M. Svore, “LIQUi|〉: A software design architecture
and domain-specific language for quantum computing,” arXiv preprint
arXiv:1402.4467, 2014.

[20] D. S. Steiger, T. Haener, and M. Troyer, “ProjectQ: An open source
software framework for quantum computing,” Quantum, vol. 2, p. 49,
2018.

[21] R. K. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in Proc. Comput.-Aided Verification,
Edinburgh, U.K., 2010, pp. 24–40, doi: 10.1007/978-3-642-14295-6_5.

[22] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping algo-
rithm for delay optimization in lookup-table based FPGA designs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13, no. 1,
pp. 1–12, Jan. 1994, doi: 10.1109/43.273754.

[23] D. Chen and J. Cong, “DAOmap: A depth-optimal area optimization
mapping algorithm for FPGA designs,” in Proc. Int. Conf.
Comput.-Aided Design, San Jose, CA, USA, 2004, pp. 752–759,
doi: 10.1109/ICCAD.2004.1382677.

[24] A. Mishchenko, S. Cho, S. Chatterjee, and R. K. Brayton,
“Combinational and sequential mapping with priority cuts,” in Proc. Int.
Conf. Comput.-Aided Design, San Jose, CA, USA, 2007, pp. 354–361,
doi: 10.1109/ICCAD.2007.4397290.

[25] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements
to technology mapping for LUT-based FPGAs,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2, pp. 240–253,
Feb. 2007, doi: 10.1109/TCAD.2006.887925.

[26] S. Ray et al., “Mapping into LUT structures,” in Proc. Design
Autom. Test Europe, Dresden, Germany, 2012, pp. 1579–1584,
doi: 10.1109/DATE.2012.6176724.

[27] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 12,
pp. 1377–1394, Dec. 2002, doi: 10.1109/TCAD.2002.804386.

[28] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “Majority-
inverter graph: A new paradigm for logic optimization,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 5, pp. 806–819,
May 2016, doi: 10.1109/TCAD.2015.2488484.

[29] A. De Vos and Y. Van Rentergem, “Young subgroups for reversible
computers,” Adv. Math. Commun., vol. 2, no. 2, pp. 183–200, 2008,
doi: 10.3934/amc.2008.2.183.

[30] G. Bioul, M. Davio, and J.-P. Deschamps, “Minimization of ring-sum
expansions of Boolean functions,” Philips Res. Rep., vol. 28, pp. 17–36,
Jan. 1973.

[31] S. Stergiou, K. Daskalakis, and G. K. Papakonstantinou, “A fast and
efficient heuristic ESOP minimization algorithm,” in Proc. ACM Great
Lakes Symp. VLSI, Boston, MA, USA, 2004, pp. 78–81. [Online].
Available: http://doi.acm.org/10.1145/988952.988971

[32] A. Mishchenko and M. A. Perkowski, “Fast heuristic minimization of
exclusive-sums-of-products,” in Proc. Reed Muller Workshop, 2001.

[33] M. Saeedi and I. L. Markov, “Synthesis and optimization of reversible
circuits—A survey,” ACM Comput. Surveys, vol. 45, no. 2, p. 21, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2431211.2431220

[34] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information. Cambridge, U.K.: Cambridge Univ. Press, 2000.

[35] D. Gosset, V. Kliuchnikov, M. Mosca, and V. Russo, “An algorithm for
the T count,” Quant. Inf. Comput., vol. 14, nos. 15–16, pp. 1261–1276,
2014.

[36] P. Selinger, “Quantum circuits of T depth one,” Phys. Rev. A, vol. 87,
Apr. 2013, Art. no. 042302.

[37] N. Abdessaied, M. Amy, M. Soeken, and R. Drechsler, “Technology
mapping of reversible circuits to Clifford +T quantum circuits,”
in Proc. Int. Symp. Multiple Valued Logic, 2016, pp. 150–155,
doi: 10.1109/ISMVL.2016.33.

[38] A. Barenco et al., “Elementary gates for quantum computation,” Phys.
Rev. A, vol. 52, no. 5, p. 3457, 1995.

[39] C. Jones, “Low-overhead constructions for the fault-tolerant Toffoli
gate,” Phys. Rev. A, vol. 87, no. 2, 2013, Art. no. 022328.

[40] C. H. Bennett, “Time/space trade-offs for reversible computation,” SIAM
J. Comput., vol. 18, no. 4, pp. 766–776, 1989, doi: 10.1137/0218053.

http://dx.doi.org/10.1109/TCAD.2013.2244643
http://dx.doi.org/10.1007/978-3-319-20860-2_20
http://dx.doi.org/10.1109/TCAD.2009.2017215
http://dx.doi.org/10.1109/IDT.2010.5724427
http://dx.doi.org/10.1109/PACRIM.2015.7334819
http://dx.doi.org/10.1007/978-3-642-14295-6_5
http://dx.doi.org/10.1109/43.273754
http://dx.doi.org/10.1109/ICCAD.2004.1382677
http://dx.doi.org/10.1109/ICCAD.2007.4397290
http://dx.doi.org/10.1109/TCAD.2006.887925
http://dx.doi.org/10.1109/DATE.2012.6176724
http://dx.doi.org/10.1109/TCAD.2002.804386
http://dx.doi.org/10.1109/TCAD.2015.2488484
http://dx.doi.org/10.3934/amc.2008.2.183
http://dx.doi.org/10.1109/ISMVL.2016.33
http://dx.doi.org/10.1137/0218053

1688 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 38, NO. 9, SEPTEMBER 2019

[41] R. Královic, “Time and space complexity of reversible pebbling,” in
Proc. Conf. Current Trends Theory Pract. Informat., 2001, pp. 292–303,
doi: 10.1007/3-540-45627-9_26.

[42] S. M. Chan, “Just a pebble game,” in Proc. Conf. Comput. Complexity,
Stanford, CA, USA, 2013, pp. 133–143, doi: 10.1109/CCC.2013.22.

[43] B. Komarath, J. Sarma, and S. Sawlani, “Reversible pebble game
on trees,” in Proc. Int. Conf. Comput. Comb., 2015, pp. 83–94,
doi: 10.1007/978-3-319-21398-9_7.

[44] A. Parent, M. Roetteler, and K. M. Svore, “REVS: A tool for space-
optimized reversible circuit synthesis,” in Proc. Reversible Comput.,
Kolkata, India, 2017, pp. 90–101, doi: 10.1007/978-3-319-59936-6_7.

[45] B. D. O. Schmitt, A. Mishchenko, V. N. Kravets, R. K. Brayton, and
A. I. Reis, “Fast-extract with cube hashing,” in Proc. Asia South Pac.
Design Autom. Conf., 2017, pp. 145–150.

[46] M. Davio, J.-P. Deschamps, and A. Thayse, Discrete and Switching
Functions. New York, NY, USA: McGraw-Hill, 1978.

[47] T. Sasao, “AND-EXOR expressions and their optimization,” in Logic
Synthesis and Optimization, T. Sasao, Ed. Boston, MA, USA: Kluwer,
1993.

[48] R. Drechsler, “Preudo–Kronecker expressions for symmetric func-
tions,” IEEE Trans. Comput., vol. 48, no. 9, pp. 987–990, Sep. 1999,
doi: 10.1109/12.795226.

[49] N. Song, “Minimization of exclusive sum of product expressions
for mutliple-valued input incompletely specified functions,” M.S. the-
sis, Elect. Eng. Dept., Portland State Univ., Portland, OR, USA,
1992.

[50] M. Amy, D. Maslov, and M. Mosca, “Polynomial-time T-depth
optimization of Clifford +T circuits via matroid partitioning,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 33, no. 10,
pp. 1476–1489, Oct. 2014, doi: 10.1109/TCAD.2014.2341953.

[51] O. D. Matteo and M. Mosca, “Parallelizing quantum circuit synthesis,”
Quant. Sci. Technol., vol. 1, no. 1, 2016, Art. no. 015003.

[52] D. M. Miller, M. Soeken, and R. Drechsler, “Mapping NCV circuits to
optimized Clifford +T circuits,” in Proc. Int. Conf. Reversible Comput.,
2014, pp. 163–175, doi: 10.1007/978-3-319-08494-7_13.

[53] M. A. Harrison, “On the classification of Boolean functions
by the general linear and affine groups,” J. Soc. Ind. Appl.
Math., vol. 12, no. 2, pp. 285–299, 1964. [Online]. Available:
http://www.jstor.org/stable/2946369

[54] M. A. Harrison, “The number of equivalence classes of Boolean
functions under groups containing negation,” IEEE Trans.
Electron. Comput., vol. EC-12, no. 5, pp. 559–561, Oct. 1963,
doi: 10.1109/PGEC.1963.263656.

[55] Y. Zhang, G. Yang, W. N. N. Hung, and J. Zhang, “Computing affine
equivalence classes of Boolean functions by group isomorphism,” IEEE
Trans. Comput., vol. 65, no. 12, pp. 3606–3616, Dec. 2016.

[56] M. Soeken, N. Abdessaied, and G. De Micheli, “Enumeration
of reversible functions and its application to circuit complex-
ity,” in Proc. Int. Conf. Reversible Comput., 2016, pp. 255–270,
doi: 10.1007/978-3-319-40578-0_19.

[57] M. Soeken, I. Kodrasi, and G. De Micheli, “Boolean func-
tion classification with δ-swaps,” in Proc. Reed Muller Workshop,
2017.

[58] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 2, no. 2, pp. 137–148, Jun. 1994, doi: 10.1109/92.285741.

[59] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling
a general and efficient FPGA mapping solution,” in Proc. Int. Symp.
Field Program. Gate Arrays, 1999, pp. 29–35. [Online]. Available:
http://doi.acm.org/10.1145/296399.296425

[60] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping,” in Proc. Int.
Workshop Logic Synth., 2004, pp. 2331–2340.

[61] B. Schmitt, A. Mishchenko, and R. K. Brayton, “SAT-based area recov-
ery in technology mapping,” in Proc. Int. Workshop Logic Synth.,
2017.

[62] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “RevKit: A
toolkit for reversible circuit design,” Multiple Valued Logic Soft
Comput., vol. 18, no. 1, pp. 55–65, 2012. [Online]. Available:
http://www.oldcitypublishing.com/MVLSC/MVLSCabstracts/
MVLSC18.1abstracts/MVLSCv18n1p55-65Soeken.html

[63] R. Wille and R. Drechsler, “BDD-based synthesis of reversible logic
for large functions,” in Proc. Design Autom. Conf., 2009, pp. 270–275.
[Online]. Available: http://doi.acm.org/10.1145/1629911.1629984

[64] L. G. Amarù, P.-E. Gaillardon, and G. De Micheli, “The EPFL com-
binational benchmark suite,” in Proc. Int. Workshop Logic Synth.,
2015.

Mathias Soeken (S’09–M’13) received the Ph.D.
degree in computer science and engineering from the
University of Bremen, Bremen, Germany, in 2013.

He is a Scientist with the École Polytechnique
Fédéderale de Lausanne, Lausanne, Switzerland. His
current research interests include logic synthesis and
formal verification. He is investigating constraint-
based techniques in logic synthesis and industrial-
strength design automation for quantum computing.
He is actively maintaining the logic synthesis frame-
works CirKit and RevKit. He received a scholarship

from the German Academic Scholarship Foundation.
Dr. Soeken has been serving as a TPC member for several conferences,

including DAC, DATE, and ICCAD and is a Reviewer for Mathematical
Reviews as well as for several journals.

Martin Roetteler (M’03) received the Ph.D.
degree in computer science from the University of
Karlsruhe, Karlsruhe, Germany, in 2001.

He is a Principal Researcher with Microsoft
Research, Redmond, WA, USA, and a member
of Microsoft Quantum—Redmond, Redmond, WA,
USA. He was a Senior Research Staff Member
with NEC Labs America, Princeton, NJ, USA, from
2005 to 2013, and a Post-Doctoral Fellow with the
Institute for Quantum Computing, Waterloo, ON,
Canada, from 2003 to 2004. He researched on

projects funded by ARO, NSA, the European Union, and the German DFG.
From 2011 to 2013, he was the Main PI of the IARPA QCS project TORQUE,
a joint effort between Raytheon/BBN Technologies, Cambridge, MA, USA,
NEC Labs America, Princeton, NJ, USA, the University of Waterloo,
Waterloo, ON, Canada, and the University of Melbourne, Melbourne, VIC,
Australia. His current research interests include on quantum algorithms,
quantum programming languages, reversible computing, and quantum circuit
libraries.

Nathan Wiebe received the Ph.D. degree in
physics (quantum computing) from the University
of Calgary, Calgary, AB, Canada, in 2011.

He then received a Post-Doctoral fellowship from
the Institute for Quantum Computing, University
of Waterloo, Waterloo, ON, Canada. He was with
the Quantum Architecture and Computing Group,
Microsoft Research, Redmond, WA, USA, in 2013.
His current research interests include designing
quantum algorithms for simulating physical systems
and for machine learning as well as developing

machine learning methods for characterizing quantum systems. In quantum
machine learning, he has provided the first algorithms for deep learning on
quantum computers, developed faster quantum methods for training percep-
trons, clustering, gradient descent, least squares fitting and boosting as well
as inventing the field of quantum Hamiltonian learning.

Giovanni De Micheli (M’83–SM’89–F’94) received
the Nuclear Engineer degree from the Politecnico di
Milano, Milan, Italy, in 1979 and the M.S. and Ph.D.
degrees in electrical engineering and computer sci-
ence from the University of California at Berkeley,
Berkeley, CA, USA, in 1980 and 1983, respectively.

He was a Professor of electrical engineering with
Stanford University, Stanford, CA, USA. He is a
Professor and the Director with the Institute of
Electrical Engineering, EPF Lausanne, Lausanne,
Switzerland. His current research interests include

several aspects of design technologies for integrated circuits and systems,
such as synthesis for emerging technologies, networks on chips, and 3-D
integration.

Prof. De Micheli was a recipient of the 2016 IEEE/CS Harry Goode Award
for seminal contributions to design and design tools of Networks on Chips,
the 2016 EDAA Lifetime Achievement Award, the 2012 IEEE/CAS Mac Van
Valkenburg Award for contributions to theory, practice, and experimentation in
design methods and tools, and the 2003 IEEE Emanuel Piore Award for con-
tributions to computer-aided synthesis of digital systems, and the D. Pederson
Award for the Best Paper on the IEEE Transactions on CAD/ICAS in 1987
and 2018. He is a fellow of ACM, a member of the Academia Europaea, and
an International Honorary Member of the American Academy of Arts and
Sciences.

http://dx.doi.org/10.1007/3-540-45627-9_26
http://dx.doi.org/10.1109/CCC.2013.22
http://dx.doi.org/10.1007/978-3-319-21398-9_7
http://dx.doi.org/10.1007/978-3-319-59936-6_7
http://dx.doi.org/10.1109/12.795226
http://dx.doi.org/10.1109/TCAD.2014.2341953
http://dx.doi.org/10.1007/978-3-319-08494-7_13
http://dx.doi.org/10.1109/PGEC.1963.263656
http://dx.doi.org/10.1007/978-3-319-40578-0_19
http://dx.doi.org/10.1109/92.285741

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

