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Abstract—Exact synthesis is the problem of finding logic net-
works that represent given Boolean functions and respect given
constraints. With exact synthesis it is possible to find optimum
networks, e.g., in size or depth; consequently, it primarily finds
application in logic optimization. However, exact synthesis is
also very helpful in logic synthesis applications necessitating
complex constraints that are present in the hardware primitives
or the logic representations for which the synthesis has to be
performed. Conventional heuristic logic synthesis algorithms are
not considering such constraints. They still can be employed to
optimize networks, but they cannot guarantee that optimized
networks meets all requirements.

Being faced with a logic synthesis application that seeks for
low-depth majority-based networks with limited fan-out for small
functions, we demonstrate how state-of-the-art exact synthesis
algorithms can be adapted and used to find logic networks
that match these constraints. To emphasize the need for exact
synthesis, we also demonstrate how conventional logic synthesis
either fails to find constraint-satisfying logic networks or yields
networks of inferior quality.

I. INTRODUCTION

The aim of exact synthesis is to find logic networks that
represent given Boolean functions under a set of constraints.
Exact synthesis is of great relevance when considering logic
optimization, since it is able to find optimum networks.
Depending on the design and application, optimality is sought
with respect to different objectives, e.g., size or depth. Exact
synthesis is a special case of the Minimum Circuit Size
Problem [1], which asks whether a Boolean function g can be
realized by a network of size at most r; it is considered an
intractable problem [2]. Due to its complexity, exact synthesis
is tipically used to solve problems of limited size, i.e., functions
with about 8 variables.

Exact synthesis plays a key role in logic synthesis appli-
cations that need to take into account complex constraints.
Many beyond-CMOS technologies have been studied in the
last decade as replacement or enhancement for CMOS. Some
examples are Quantum-dot Cellular Automata (QCA, [3]) or
spin-based devices, such as Spin Wave Devices (SWD, [4]) and
Spin Torque Majority Gate (STMG, [5]). A broad variety of
technologies has resulted in many and diversified constraints
which need to be taken into account by novel logic synthesis
tools. As an example, several emerging nanotechnologies do
not have an efficient inversion implementation or have limited
fan-out capabilities. Some technologies have more than one

constraint that needs to be respected at the same time. These
constraints are often present due to restrictions in the hardware
primitives or the logic representations for which the synthesis
has to be performed. Classical heuristic logic synthesis tools
are not taking into account such constraints. They could be
used in the optimization process, but they may lead to solutions
which do not meet all the requested constraints. Moreover, no
solution may exist if constraints are too tight and heuristic
optimization algorithms cannot identify this.

In this paper, we illustrate the use of exact synthesis for
logic synthesis applications that deal with many and diversified
technological constraints. We consider small multi-outputs
functions (i) based on majority that necessitate (ii) limited-depth
and (iii) restricted fan-out for each node. These requirements
are motivated by an application in industrial project in which
these small functions are the result of a pre-partitioning process.
We demonstrate that state-of-the-art exact synthesis algorithms
can be adapted to solve complex constraint-problems. Exact
synthesis algorithms can be implemented in different ways [6],
[7], [8]. We use a Boolean Satisfiability (SAT) formulation
based on [9]. Majority Inverter Graphs (MIGs, [10], [11]) are
used as underlying logic representation to our exact synthesis. A
MIG is a data structure for Boolean function representation and
optimization based on 3-input majority 〈xyz〉 and inversion. To
highlight the importance of exact synthesis for these constraint
problems, we demonstrate that conventional synthesis tools are
not able to find optimum circuits that meet all the constraints
or produce circuits with lower quality. Furthermore, exact
synthesis is useful in understanding if a solution exists or if
the given constraints are too restrictive.

II. EXACT SYNTHESIS

In this section, we describe the SAT formulation proposed by
Knuth [9] to find the area-optimum normal Boolean network for
functions g1, . . . , gm which depend on n variables. This SAT
encoding has been inspired by the work of Kojevnikov et al. [7]
and Éen [12]. Recently, the formulation has been extended by
Soeken et al. [13] for combinational delay optimization.

Given a function g of n inputs x1, . . . , xn, a Boolean network
is defined as a sequence of 2-inputs gates (xn+1, . . . , xn+r),
where for each gate i:

xi = xj(i) ◦i xk(i) (1)
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Fig. 1. Example of Boolean network, x4 = x1 ∧ x2 and x5 = x3 ⊕ x4.

with n < i ≤ n + r. In other words, the two inputs of each
gate i are previous gates or inputs. The ◦i represents one of the
16 binary operations. A Boolean function g is called normal
if g(0, . . . , 0) = 0. If all the gates of a Boolean network are
normal, then the network represents a normal Boolean function.
For a normal Boolean network, each 2-input gate can represent
8 out of the 16 possible binary functions.

Knuth’s idea is to verify if it is possible to realize functions
g1, . . . , gm with a normal Boolean network of size r. In
the following, variables and clauses proposed by Knuth are
illustrated.

Variables: Let r be the number of gates, m be the number
of outputs, and n be the number of inputs. Then, the variables
used for the SAT formulation are:

xit : tthbit of xi’s truth table
ghi : [gh = xi]

sijk : [xi = xj ◦i xk] for 1 ≤ j < k < i

fipq : ◦i (p, q) for 0 ≤ p, q ≤ 1, p + q > 0

(2)

with 1 ≤ h ≤ m,n < i ≤ n + r, and 0 < t < 2n. For each
gate xi, the variable xit represents the value of tth bit in the
truth table. Each output variable ghi is true if the function
gh is represented by the gate xi. The select variable sijk
encodes the children of node xi. The variable is true if gates
xj and xk are the children of gate xi. In this scenario, ◦i is
one of the 8 normal 2-input Boolean functions. The variable
fipq encodes the operation of gate xi. This is true if for the
input assignment (p, q), the operation xi evaluates to true. It
is important to highlight that this method works for normal
Boolean functions. If a function is not normal, we find the
optimum network for the inverted function. At the end, we
invert the output node in order to obtain the original function.
The normal property allows Knuth to ignore xi0 and fi00 for
each i.

In the following, we illustrate an example taken from [13]
to explain this SAT formulation and, in particular, the variables
assignment. We consider the network shown in Fig. 1, with
inputs x1, x2 and x3, therefore n = 3. In this example, r = 2,
x4 = x1 ∧x2 and x5 = x3⊕x4. The gate index i ranges from
4 to 5. Variable xit encodes the truth table for each function
of the multi-outputs network. Since n = 3 and since we know
that g(0, . . . , 0) = 0 (g is normal), the truth table bit t ranges
from 1 to 2n − 1 = 7.

t = 7 6 5 4 3 2 1
x4t = 1 0 0 0 1 0 0
x5t = 0 1 1 1 1 0 0

Since we are considering a multi-output network, each gate
could be an output. Two out of the four output variables are
assigned to 1, since g1 = x4 and g2 = x5.

g14 = 1, g15 = 0, g24 = 0, g25 = 1

There are three select variables for i = 4 and six for i = 5.
For each gate, only one select variable is equal to 1. For
instance, variable s412 = 1, since x1 and x2 are children of
node x4.

k = 2 3 4
s41k = 1 0
s42k = 0
s51k = 0 0 0
s52k = 0 0
s53k = 1

Finally, the AND and XOR operations are encoded in the fipq
variables. For this example:

p, q = 0,1 1,0 1,1
f4pq = 0 0 1
f5pq = 1 1 0

Clauses: In order to have a working algorithm, some clauses
need to be added:

• a main clause that describes how truth tables are computed
for each gate, depending on children (sijk) and operation
(fipq):(

sijk ∧ (xit ⊕ ā) ∧ (xjt ⊕ b̄) ∧ (xkt ⊕ c̄)
)
→ (fibc ⊕ ā) =

(s̄ijk ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) ∨ (fibc ⊕ ā)) (3)

• a clause to constrain each output value to be the same as
the one of the gate it points to;

• a clause to state that each output is realized by one gate
in the network;

• and a clause to have two inputs for each gate.

In addition to the mandatory clauses listed above, some
auxiliary clauses can be added to reduce the solving time of
the SAT solver. More details about both clauses formalization
and additional clauses can be found in [9], [13].

III. CONSTRAINTS ENCODING

In this section, we illustrate how state-of-the-art exact
synthesis algorithms can be adjusted to solve constraint-
problems. Knuth’s algorithm is used to find the optimum
normal Boolean network for functions g1, . . . , gm. In our case,
we make use of MIGs as data structure for exact synthesis.
Some changes to the original algorithm are then necessary in
order to extend our analysis to 3-input majority gates. Further,
some additional constraints need to be considered both for the
maximum depth and for the maximum fan-out. We demonstrate
that Knuth’s algorithm can be adapted to work with 3-input
majority gates, and to limit depth and fan-out for multi-ouputs
networks.



A. 3-input Majority Gates Constraint

Here, the extension to 3-input gates and the restriction to
only majority gates is illustrated.

The xit and ghi variables are used in the same way as
proposed by Knuth. They encode the truth table and the output
gates, respectively. Since we are working with 3-input gates,
both the sijk and fipq need to be reexamined. Each select
variable should consider three different children, here called
xj , xk, and xl. The select variables sijkl is true if the operands
of gate xi are xj , xk, and xl. In a similar way, the function
variables should take into account the 3-input operations. The
variable fipqu is true if the operation of gate xi is true under
the input assignment (p, q, u).

In order to restrict the 3-input operations to only normal
majority functions, a list of all 3-input majority truth table has
been considered. Being p, q, and u the 3 inputs, each gate
may realize 〈pqu〉, 〈p̄qu〉, 〈pq̄u〉 or 〈pqū〉. Since the majority
operator can behave as AND or OR using constant inputs,
also all normal truth tables with constant 1 or 0 have to be
considered. In this scenario, also ab, āb, ab̄, and a+ b have to
be taken into account as possible normal majority operations.
The total number of allowed operations is then equal to 8.
However, the variables fipqu allow for a representation of all
128 normal 3-input functions. For each gate i, the operation
variable oiw is true if the operation of gate i is w, where w is
one of the 8 possible normal majority operations.

Two clauses need to be added. First, a given fipqu implies a
different operation w. For instance, if for gate i it holds that:

p, q, u = 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1
fipqu = 0 0 1 0 1 1 1

then the operation 〈pqu〉 is implemented. Being 〈pqu〉 the
operation with w = 1, then the following constraint is added:

(oi1 → (f̄001 ∧ f̄010 ∧ f011 ∧ f̄100 ∧ f101 ∧ f110 ∧ f111))

= (ōi1 ∨ (f̄001 ∧ f̄010 ∧ f011 ∧ f̄100 ∧ f101 ∧ f110 ∧ f111))
(4)

For each gate i, (4) is added for each operation w. Further,
clause

∨8
w=1 oiw ensures that each gate realizes at least one

of the 8 operations.
Both Knuth’s algorithm and the one presented in [13] work

with normal Boolean network with 2-inputs gates. Previous
work has considered 3-input gate [14]. A dedicated MIG
encoding could have been considered, as in [15]. Neverthless,
here the aim is to demonstrate that existing algorithms can be
adapted to solve complex constraints problem. In our case, we
easily adjust existing algorithms, without changing clauses and
with minor changes in the variables encoding.

B. Depth Constraint

We need to constrain the maximum depth of the network.
The SAT solver should check whether there exists a MIG with
r gates that can realize functions g1, . . . , gm with a depth less
or equal to ∆. All input arrival times are considered be 0. For
each gate i, a variable di takes into account the depth of gate xi

with n < i ≤ n + r. Each variable di has a value in the range
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Fig. 2. Example of MIG. Bubbles represent complementation of the edge

0 ≤ di ≤ (i− n). The idea is the same as the one proposed
in [13], and the depth variable is encoded using the order
encoding [9]. In this encoding, each value x in 0 ≤ x ≤ M
is represented by a bitstring of length M . In particular, it is
represented by x ones followed by (M − x) zeros. To make
use of order encoding, each depth variable is a bitstring and it
is encoded as d`i , where 1 ≤ ` ≤ (i− n).

The minimum delay of gate xi is the maximum delay of
its children raised by 1. All inputs have a delay of 0, then for
j, k, l ≤ n the d`i variable has value equal to 0. The added
clauses are:

j−n∧
`=1

(s̄ijkl ∨ d̄`j ∨ d`+1
i )∧

k−n∧
`=1

(s̄ijkl ∨ d̄`k ∨ d`+1
i )∧

l−n∧
`=1

(s̄ijkl ∨ d̄`l ∨ d`+1
i )

(5)

The clause ḡhi ∨ d̄∆
i ensures a depth ≤ ∆, by assigning 0 to

the ∆th bit in the order bitstring.

C. Fan-out Constraint

To constrain the maximum fan-out of each node, we make
use of cardinality constraints. The cardinality constraint over
a set of Boolean variables is a constraint on the number of
variables that can have values equal to 1. In particular, we
implement the cardinality constraint as proposed in [16].

In our case, the constraint is on the fan-out of each node
to be at maximum Φ. Select variable sijkl encodes that gates
xj , xk, and xl are the children of node xi. To consider the
fan-out of node i, we need then to take into account nodes
with index larger than i: si+1jkl, . . . , si+njkl. Among all these
select variables we need to force a constraint on the ones that
use i as children. In other words, all the select variables of
index larger than i, in which j or k or l is equal to i. Also
the output variables ghi need to be considered for this fan-out
count.

Fig. 2 shows an example of MIG exact synthesis. x1, x2 and
x3 are the inputs of the network, and n = 3. As in the previous
example, r = 2; x4 = 〈x1x2x3〉 and x5 = 〈x4x̄1x3〉. The gate
index i ranges from 4 to 5. Variable xit encodes the truth table
for each output of the multi-outputs function. Further,

g14 = 1, g15 = 0, g24 = 0, g25 = 1



There is only one select variables for i = 4, which is s4123.
There are three select variables for node 5. For this gate, only
one select variable is equal to 1: s5134 = 1, since x1, x3, and
x4 are children of node x5. Finally, the two different majority
operations are encoded in the fipqu variables. For this example:

p, q, u = 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1
f4pqu = 0 0 1 0 1 1 1
f5pqu = 1 0 0 1 1 0 1

Only one operation variable oiw is equal to 1 for each node.
For the depth, each variable d`i has 1 ≤ ` ≤ (i− 3). It follows
that for node 4, the depth variable consists of only 1 bit. d`5
is made of 2 bits, and it can have depth value of 0, 1, and
2. The fan-out constraint on node 4 consists of a cardinality
constraint of type:

s5124 + s5134 + g14 + g24 ≤ Φ (6)

where all nodes that use 4 as child are considered.

IV. EXACT ALGORITHMS

This section describes the implemented exact synthesis
algorithm. It also illustrates three alternatives to the main
algorithm.

The algorithm finds a MIG, if this exists, that satisfies all
the constraints discussed in Section III. The names of the
variables are the ones used in previous sections. The input of the
algorithm is the n-inputs m-outputs function g represented as
truth tables obtained from the MIG that needs to be optimized.
The algorithm starts by trying to find a solution using r = m
(assuming that each output represents a different function). If
a solution exists for r gates, the algorithm returns a MIG that
meets all the requirements, otherwise it looks for a solution
with larger size. The algorithm increases the number of gates
until the upper bound is reached. If no solution can be found
up to the upper bound, it can be concluded that no network
exists that meets all the constraints. Let m be the number of
outputs, an upper bound for the number of gate r is 13m.
This result is obtained considering that each output could be
represented as a tree, with no sharing edges between them.
Each tree has one gate on the first level, 3 gates on the second
level and 9 gates on the third one, thus 13 gates at most.

The algorithm is described as function FindMIG() in Alg. 1.
First, the SAT solver is instantiated (line 2 in Alg. 1). Then, the
algorithm adds all the variables discussed in Section II and III;
they include the variables from Knuth’s formulation, but also
variables d`i and oiw. All clauses are then added (lines 4–12).
The main clause is the one which encodes the truth table of
the circuit (3); this is added for each bit t of each truth table.
Other clauses consist of both necessary and additional clauses
proposed in [13]; depth, operations, and fan-out clauses are the
ones discussed in Section III. The fan-out clause constraints
the fan-out of each node i of the network.

Alternative implementations to Alg. 1 are possible. All
algorithms take into account the same constraints, however,
they may show different performances. We rewrite Alg. 1 by

1 Function FindMIG(g, ∆, Φ, r)
2 set S ← SATSolver();
3 AddVariables(S, g,∆,Φ, r, );
4 foreach 0 < t < 2n do
5 AddMainClause(S, g, t);
6 end
7 AddOtherClauses(S, r);
8 AddOperationClause(S, g, r);
9 AddDepthClause(S,∆);

10 foreach n < i ≤ n + r do
11 AddFanOutClause(S,Φ, i);
12 end
13 if Solve(S) then
14 return MIG;
15 else
16 return FindMIG(g,∆,Φ, r + 1);
17 end

Algorithm 1: Function ‘FindMIG()’

making use of Counter-Example-Guided Abstraction Refine-
ment (CEGAR). The idea is to overapproximate the solution
space by discarding several clauses, thereby decreasing solving
time of the SAT solver. Alg. 2 illustrates one CEGAR version
of Alg. 1. Alg. 2 does not add the main clause (3) which
encodes the multi-output function g. In this way, the SAT
solver may find a solution which does not coincide with g
for all inputs assignment t. If this is the case, a refinement of
the solution is pursued (lines 13–15). In order to ensure the
same functionality, the main clause (3) is added for the first
bit t of the truth table that does not agree with g. The updated
problem is solved again by keeping the state of the SAT solver
active (incremental SAT). This procedure is repeated until
the truth tables coincide. During this refinement process, two
possibilities emerge:

1) The SAT solver converges to a solution which respects
the functionality;

2) The SAT solver is not able to find a solution which
respects the new clauses. In this case, the size r is
increased and a new solution is searched.

CEGAR can also be applied to abstract the fan-out clauses.
First, a solution without fan-out constraints is found; then, the
algorithm checks whether a gate i exists that does not respect
the fan-out constraint. If it exists, the fan-out constraint is
added only for gate i, which has fan-out > Φ. The algorithm
is not reported here, since it is similar to Alg. 2.

Both CEGAR methods can also be applied at the same
time. We call this method DoubleCEGAR (DCEGAR) and it
is shown in Alg. 3. In this approach, both the truth table and
fan-out clauses are not added in the main function. If a solution
of size r exists, the functionality is checked (line 8). If the
functionality is respected, then the algorithm ensures that also
the fan-out constraint is met (line 9). If both are respected, the
MIG is returned (line 10). Otherwise, first the algorithm tries
to meet the truth table constraint (lines 15–18) and then the
fan-out one (lines 12–13). The algorithm works in a similar
way as Alg. 2; if at some point the SAT solver cannot find a



1 Function FindMIG CEGAR(g,∆, Φ, r)
2 set S ← SATSolver();
3 AddVariables(S,∆,Φ, r);
4 AddOtherClauses(S, r);
5 AddOperationClause(S, g, r);
6 AddDepthClause(S,∆, r);
7 foreach n < i ≤ n + r do
8 AddFanOutClause(S,Φ, i);
9 end

10 while Solve(S) do
11 if Functionality Respected(g) then
12 return MIG;
13 else
14 set t← first bit which does not respect

functionality;
15 AddMainClause(S, g, t);
16 end
17 end
18 return FindMIG CEGAR(g,∆,Φ, r + 1);

Algorithm 2: Function ‘FindMIG CEGAR()’

1 Function FindMIG DCEGAR(g,∆, Φ, r)
2 set S ← SATSolver();
3 AddVariables(S,∆,Φ, r);
4 AddOtherClauses(S, r);
5 AddOperationClause(S, g, r);
6 AddDepthClause(S,∆, r);
7 while Solve(S) do
8 if Functionality Respected(g) then
9 if All Fanouts() ≤ Φ then

10 return MIG;
11 else
12 set i← node with fan-out > Φ;
13 AddFanOutClause(S,Φ, i);
14 end
15 else
16 set t← first bit which does not respect

functionality;
17 AddMainClause(S, g, t);
18 end
19 end
20 return FindMIG DCEGAR(g,∆,Φ, r + 1);

Algorithm 3: Function ‘FindMIG DCEGAR()’

solution due to the new clause, then the algorithm searches for
a solution with size r + 1.

V. RESULTS

In this section, first, we demonstrate how conventional logic
synthesis tools are not suitable for complex constraints-problem;
then, we illustrate results obtained with the different algorithms
proposed in Section IV. Finally, we discuss the feasibility of
our method on larger functions.

We developed a C++ program1 to implement Alg. 1. The
implementation uses one of the SAT solvers implemented in
ABC [17]. Motivated by our industrial application, for these
experiments we used the maximum depth ∆ = 3 and the
maximum fan-out Φ = 3. We applied our approach to small

1The code is available online: github.com/eletesta/cirkit-addon-mign-sat

arithmetic benchmarks and to some small hwb [18] circuits.
The ‘HWB34’ benchmark is a multi-output function containing
both hwb3 and hwb4. To emphasize the key role of exact
synthesis for complex constraint-problems, we demonstrate
that classical logic synthesis tools may fail in finding a solution
that meets all the constraints. Results are shown in Table I. We
optimized circuits using ABC depth optimization (‘clp; sop;
fx; strash; resyn2’). The results are shown in the first part of
Table I; only two circuits out of six meet the depth constraint.
The ‘FO viol.’ column represents the number of nodes that
violate the fan-out constraint, thus with fan-out > Φ; for the
‘ADDER2x2’ benchmark, also the fan-out constraint is not
respected. The second block of Table I shows results obtained
by analyzing each output separately. Each function has been
depth-optimized using exact synthesis proposed in [15]. This
approach leads to results that meet our depth constraint, but it
is time consuming, since all outputs are analyzed separately.
Further, this does not optimize the network considering the
common nodes and it does not take into consideration the
fan-out constraint. Copies of nodes with fan-out > Φ have
been produced. For this case, the runtime is the sum of the
runtimes necessary for each output; the manual work needed
to separate and reunite the whole circuit are not taken into
account. The third block of Table I shows the results achieved
using our exact algorithm approach, disregarding the fan-out
constraint. Also in this case, copies of nodes with fan-out > Φ
are introduced. Table I shows that the better results are the
ones obtained with the exact method implemented in Alg. 1,
therefore considering all the constraints (both depth and fan-
out). In this case, there are no nodes with fan-out larger than
Φ. As an example, ADDER2x2 leads to a better result when
also fan-out constraint is added. For this benchmarks, both the
exact solutions (disregarding and considering fan-out) lead to
a depth equal to 3 and size equal to 6. But for the first case, a
copy of one node needs to be introduced since its fan-out is
larger than Φ; producing in this way a size of 7.

We applied the four alternatives of Alg. 1 to the same circuits;
results are listed in Table II. The first algorithm is the one
without CEGAR approach. The second one is Alg. 2, while the
third one is the one in which the CEGAR method is applied
not considering the fan-out clause. DOUBLE CEGAR is the
last method in Table II. The runtimes of the four methods are
similar. This is not surprising, since the number of inputs in
the considered benchmarks is small. It is important to highlight
that we are not optimizing the depth, but just constrain it to be
≤ ∆. For the BITCOUNTER3, exact solutions with different
depths are found. An extension that considers multi or all exact
solutions can be easily included in the algorithm.

The constraints used so far are motivated by an industrial
application in which each small function is part of a larger
function; and each function should meet the depth and fan-out
requirements. To validate the feasibility of this method, we
map networks using LUTs of different size; then we apply the
SAT-based method on each LUT. We are interested in finding



TABLE I
CLASSICAL HEURISTIC AND EXACT SYNTHESIS COMPARISON

Classical Heuristic ABC Exact [15] - separated outputs Exact - no fan-out Alg. 1
Benchmark I/O Depth Size FO viol. Time [s] Depth Size FO viol. Time [s] Depth Size FO viol. Time [s] Depth Size Time [s]

ADDER 2x2 4/3 4 11 1 0.14 3 7 1 0.42 3 6 1 1.15 3 6 0.56
MULT 2x2 4/4 3 8 — 0.14 3 12 — 0.75 3 8 — 76.84 3 8 68.92
BITCOUNT3 3/2 4 8 — 0.14 2 3 — 0.09 3 3 — 0.00 2 3 0.05
HWB3 3/1 2 3 — 0.13 2 3 — 0.00 2 3 — 0.00 2 3 0.05
HWB4 4/1 4 8 — 0.14 3 5 — 0.25 3 5 — 0.25 3 5 0.23
HWB34 4/2 4 11 — 0.14 3 7 — 0.84 3 6 — 2.16 3 6 1.97

TABLE II
COMPARISON OF DIFFERENT EXACT ALGORITHMS

Alg. 1 - All clauses Truth Table CEGAR Fan-out CEGAR DCEGAR
Benchmark I/O Depth Size Time [s] Depth Size Time [s] Depth Size Time [s] Depth Size Time [s]

ADDER 2x2 4/3 3 6 0.56 3 6 0.73 3 6 1.33 3 6 0.93
MULT 2x2 4/4 3 8 68.92 3 8 77.58 3 8 76.01 3 8 94.26
BITCOUNT3 3/2 2 3 0.05 3 3 0.05 3 3 0.05 3 3 0.05
HWB3 3/1 2 3 0.05 2 3 0.05 2 3 0.05 2 3 0.05
HWB4 4/1 3 5 0.23 3 5 0.30 3 5 0.24 3 5 0.41
HWB34 4/2 3 6 1.97 3 6 4.93 3 6 2.22 3 6 2.24

TABLE III
SAT-BASED ALGORITHM ON LUTS FROM EPFL BENCHMARKS

3-LUTs 4-LUTs 5-LUTs 6-LUTs
Benchmark #LUTs # SAT % # TO #LUTs # SAT % # TO #LUTs # SAT % # TO #LUTs # SAT % # TO

adder 41 41 100 0 185 185 100.0 0 343 342 99.7 1 399 379 95.0 20
arbiter 64 64 100 0 285 285 100.0 0 395 395 100.0 0 419 419 100.0 0
bar 8 8 100 0 8 8 100.0 0 14 14 100.0 0 13 8 61.5 5
cavlc 65 65 100 0 216 216 100.0 0 190 185 97.4 5 139 115 82.7 24
ctrl 24 24 100 0 34 34 100.0 0 26 23 88.5 3 24 19 79.2 5
dec 8 8 100 0 24 24 100.0 0 32 32 100.0 0 40 40 100.0 0
i2c 76 76 100 0 159 159 100.0 0 151 149 98.7 2 145 124 85.5 21
int2float 45 45 100 0 68 68 100.0 0 55 54 98.2 1 40 30 75.0 10
log2 166 166 100 0 986 984 99.8 2 1620 1485 91.7 135 1932 1428 73.9 504
max 47 47 100 0 115 115 100.0 0 142 142 100.0 0 155 154 99.4 1
mem ctrl 132 132 100 0 723 721 99.7 2 927 921 99.4 6 948 857 90.4 91
mult 132 132 100 0 784 782 99.7 2 1190 1115 93.7 75 1303 1099 84.3 204
priority 30 30 100 0 53 53 100.0 0 61 61 100.0 0 61 61 100.0 0
router 21 21 100 0 25 25 100.0 0 27 27 100.0 0 25 25 100.0 0
sin 142 142 100 0 700 699 99.9 1 958 910 95.0 48 915 751 82.1 164
sqrt 192 192 100 0 1754 1752 99.9 2 4574 4394 96.1 180 5505 4654 84.5 851
square 112 112 100 0 493 491 99.6 2 615 565 91.9 50 692 571 82.5 121
voter 79 79 100 0 194 192 99.0 2 206 192 93.2 14 215 177 82.3 38

Average 100.0% 99.9% 96.8% 86.6%
#LUTs is the total number of unique LUTs; # SAT is the number of LUTs which are satisfiable; % is the precentage of SAT over the total

number of LUTs; #TO is the number of LUTs that are not finished before the timeout.

how many LUTs can be realized as MIGs that meet all the
given constraints for depth and fan-out.

We applied this method on circuits from the EPFL bench-
marks,2, using LUT size k = 3, 4, 5, 6, respectively. The LUTs
and the functions they represent are obtained from CirKit3 using
the command ’xmglut’. The SAT-based method is applied on all
the unique LUT functions, using a maximum depth ∆ = 3 and
a maximum fan-out Φ = 3. The experiments were performed

2lsi.epfl.ch/benchmarks
3github.com/msoeken/cirkit

on a computer with Intel Xeon Processor E5-2680 v3, @
2.5 GHz, 64 Gb RAM, using a timeout of 1 minute for each
LUT function. Table III shows the results; in particular it lists
the total number of unique LUTs, the satisfiable LUTs and the
total timeouts for each LUT size k. Results show that when
3-LUTs are used to map the circuit, all the functions can be
realized with circuits of ∆ ≤ 3 and Φ ≤ 3, and with a runtime
≤ 1 minute. For LUTs of larger size, some timeouts are present
and not all the LUTs can be finished in less than 1 minute. No
conclusions can be drawn on the satisfiability of functions that



were not concluded in 1 minute: they could be both satisfiable
or unsatisfiable. In the worst case scenario (i.e. all timeouts are
UNSAT), results for 6-LUTs show that on average 86.6% of
LUTs can be realized with the given constraints. In general, a
high number of LUTs from EPFL benchmarks can be realized
with circuits that meet all the constraints; we are then confident
that our method could produce good results when considering
partitioned functions.

VI. CONCLUSION AND FUTURE WORK

We demonstrated that existing exact synthesis algorithms
can be easily adjusted to solve complex constraints problems.
We implemented an algorithm that takes into account all
the different constraints and we demonstrated that classical
heuristic logic synthesis tools may lead to a solution which
does not meet all the requirements. Further, we implemented
different versions of the same algorithm.

In this work, we mainly took into consideration small circuits.
It is important to highlight that in our target technology, the
idea is to partition the functionality into smaller blocks. Each
small block should match our constraints on depth and fan-
out. Future work will investigate more the results on larger
functions and it will consist of a mapping algorithm able to
build circuits based on smaller blocks that have limited depth
and limited fan-out for each node.
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