The Programmable Logic-in-Memory (PLIM)
Computer

Pierre-Emmanuel Gaillardon*', Luca Amard, Anne Siemon?, Eike Linn*, Rainer Waser,
Anupam Chattopadhyay®, Giovanni De Michelif

*Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
TIntegrated Systems Laboratory, EPFL, Lausanne, Switzerland
Institut fiir Werkstoffe der Elektrotechnik II (IWE II) & JARA-FIT, RWTH Aachen, Germany
§School of Computer Engineering, NTU, Singapore
pierre-emmanuel.gaillardon @utah.edu

Abstract—Realization of logic and storage operations in mem-
ristive circuits have opened up a promising research direction of
in-memory computing. Elementary digital circuits, e.g., Boolean
arithmetic circuits, can be economically realized within memris-
tive circuits with a limited performance overhead as compared to
the standard computation paradigms. This paper takes a major
step along this direction by proposing a fully-programmable in-
memory computing system. In particular, we address, for the first
time, the question of controlling the in-memory computation, by
proposing a lightweight unit managing the operations performed
on a memristive array. Assembly-level programming abstraction
is achieved by a natively-implemented majority and complement
operator. This platform enables diverse sets of applications
to be ported with little effort. As a case study, we present
a standardized symmetric-key cipher for lightweight security
applications. The detailed system design flow and simulation
results with accurate device models are reported validating the
approach.

I. INTRODUCTION

Multitude of emerging Non-Volatile Memories (NVM) are
receiving widespread research attention as candidates for high-
density and low-cost storage. NVMs store information as an
internal resistive state, which can be either a Low Resistance
State (LRS) or a High Resistance State (HRS) [1]. Among
the different types of NVMs, redox-based Resistive RAM
(RRAM) is considered a leading candidate due to its high
density, good scalability, low power and high performance.
Industrial demonstrations have recently been presented [2], [3],
showcasing the viability of fast, high-density memory arrays.

A different and arguably more tantalizing aspect of RRAMs
is their ability to perform primitive Boolean logic operations.
The possibility of in-memory computing significantly widens
the scope of the commercial applications. To undertake a
logic computation, RRAM-based switches are needed. Bipolar
Resistive Switches (BRS) [4] are easy-to-fabricate devices,
consisting of a switching layer sandwiched between two metal
electrodes. BRS have SET and RESET voltages of opposite
polarities. BRS can be used in ultra-dense passive crossbar
arrays. However, such passive crossbar arrays suffer from the
formation of parasitic currents [5], which create sneak paths
and strongly limit the size of the array. This problem can be
alleviated by either adding a bipolar rectifying element to the
BRS or constructing a Complementary Resistive Switch (CRS),
which connects two BRS anti-serially [6]. Both BRS and CRS
can natively perform logical implication [7]-[9] and can be

used to implement any Boolean operations. As we will show
later in this paper, the logical capabilities of RRAM devices
go beyond the logic implication with an expressive implemen-
tation of majority-oriented logic. Recognizing the potential
usage of in-memory computing, a few experimental as well
as simulation-based results on primitive computing blocks
have been reported in recent literature [10]-[13]. However,
the studies lack in two aspects. First, in-memory computing
often requires the generation of complex signal sequences and
the corresponding control logic overhead is not considered in
the practicality and performance analysis. Second, very few
studies have so far connected the immense potential of such
platforms to a practical end-user application.

In this paper, we address both of these problems by propos-
ing a fully-programmable in-memory computing system and
by evaluating its potential to map a standardized security
kernel. We envision the proposed architecture as a low-cost
add-on to standalone memory arrays that enables the imple-
mentation of computing tasks directly within the memory. Our
contributions are as following:

o We propose a novel computer architecture constructed
with resistive memories, called Programmable Logic-in-
Memory (PLiM) computer architecture. This new pro-
grammable platform allows us to compute information on
large resistive memory arrays. The PLiM computer archi-
tecture consists of a lightweight controller that comple-
ments a standard memory array. The controller executes
simple instructions from the memory array and operates
the memristive elements in logic mode.

o We validate the behavior of the system by implementing
PRESENT [14], a lightweight security ISO primitive
on the PLiM computer architecture. Using electrical
simulations, we show that a full-crypto operation can
be implemented in-memory with an energy of 5.88 pJ
per block encryption and a throughput of 120.7 kbps,
achieving a performance level compatible with standard
silicon implementations [14].

The presented architecture is particularly interesting in the
context of Internet of Things (IoT) [15], where low-cost
distributed memory systems capable of operating at low-power
on their own content may be the basis for new computing
paradigms. Though we are taking a specific example of

application and technology in this paper, it must be noted that
our proposed architecture is open to adaptation for diverse
application and technology scenarios.

The remainder of this paper is organized as follows. In Sec-
tion II, we discuss the realization of majority-based operations
using RRAM and introduce the PLiM controller and its sup-
ported instruction. We also validate its working principle using
electrical simulations fitted on experimental kinetic data. In
Section III, we focus on the implementation of the PRESENT
cipher on the presented architecture. We comment on the
design methodology used to realize its individual elements
and we evaluate the performance of a full cipher operation.
In Section IV, we draw some conclusions.

II. PROGRAMMABLE LOGIC-IN-MEMORY EXTENSION FOR
MEMRISTIVE ARRAYS

In this section, we first focus on the realization of majority-
based logic operations with a single memory cell. Then,
we introduce a memory architecture that is able to support
both standard memory behavior and computation within the
memory elements. Finally, we validate the basic principle
of the proposed system by showing memristive electrical
simulation of a single instruction.

A. Intrinsic Majority Operations

Bipolar Resistive Switches and Complementary Resistive
Switches are devices with two terminals, denoted P and Q.
Their internal resistance state, Z, can be modified by applying
a positive or a negative voltage Vpg. The functionality of
BRS/CRS can be summarized by a state machine, as shown
in Fig. 1. Further details can be found in [8]. Transition occurs
only for the conditions P = 0,Q = 1,i.e., Vpg <0s0Z =0
and P=1,Q =0, ie., Vpg >0s0Z = 1.

P lo |z]z
0

0 0 0
0 1 0 0
p 1 0 0 1
| 1 1 0 0
Z,=P.Q
V4

EEAEA
| 0 0 1 1

Q 1

Fig. 1. Majority operations with BRS/CRS devices
By denoting Z as the value stored in the switch and Z,, the
value stored after the application of signals on P and @), it is
possible to express Z,, as the following:
Zn=(PQ).Z+(P+Q).Z
=PZ+Q.Z+PQ.Z
=PZ+Q.Z+PQZ+PQ.Z
=PZ+Q.Z+PQ

where M3 is the majority Boolean function with 3 inputs. A
3-input majority Boolean function is evaluated to be true if at
least 2 of its inputs are frue. This basic operation will be used
in the rest of the paper as the elementary computing operation
achievable by the switches. We refer to this operation as 3-
input Resistive Majority (RM3), such as: RM3(P,Q,7Z) =
M. 3 (P ’ Qa Z)

B. PLiM Computer Architecture

Resistive memory elements can implement 3-input majority
operations. This gives the opportunity to perform basic compu-
tations directly within a standalone memory array. Considering
the large amount of memory cells available in standalone
memories, it is possible to exploit massive parallelism by
performing concurrent operations on a large set of memo-
ries. However, such in-memory computing requires complex
control as many concurrent data has to be read/write simul-
taneously on the memory array. Conversely, it is possible to
implement in-memory computation with a lightweight control
by considering only serial operations on the memory array.
Operating only a unique operation at a given time drastically
simplifies the control schemes and ensures limited additional
implementation costs. We choose this second approach in the
paper.

We introduce in Fig. 2 a novel memory array architecture
that can preform both standard memory and logic-in-memory
operations. The memory is based on traditional multi-bank
memory architecture. In addition to the standard RAM cir-
cuitries, we add a Programmable Logic-in-Memory (PLiM)
controller block. This block controls the different operations
on the array between either a standard memory mode or a
computation mode. The controller consists in a simple control
Finite State Machine (FSM) and few registers.

C. Operations of Programmable Logic-in-Memory Controller

The PLiM controller works as a simple processor core,
reading instructions from the memory array and performing
computing operations (majority) within the memory array. The
control FSM diagram is given in Fig. 3. When LiM=0, the
controller is off and the whole array works as a standard
RAM system. When LiM=1, the circuit starts performing
computation. The FSM initializes all the work registers and
starts fetching an instruction. Resistive memories implement
natively majority functions. Therefore, we focus on a unique
instruction performing a majority operation on a single bit.
The instruction format consists of the address of the first
operand, the address of the second operand and the destination
address of the results. Its format is @A, @B, @Z. Single-bit
operands A and B are then read from the memory array, and
logic operation is performed during the write operation to the
memory location Z. To do so, we apply to the top electrode (P)
the signal A and to the bottom electrode (Q) the signal B. The
new value stored in the node Z is then Z, = M3(A, B, Z).
When the write operation is completed, the program counter
is incremented, and a new cycle of operation is triggered.
Note that the PLiM controller uses the same addressing and
read/write peripheral circuitries than the standard RAM mode.
Therefore, the complexity of the controller is limited to the

]
R RrRAM —HHHHEE
i 3 arrays
Write o -+ttt -+t
circuit " § ImEEEm
O Ittt
14
\
N

Sense Amplifiers | |

Sense Amplifiers |

Y

Column decoder /:5\ Column decoder /

*

Block decoder

LiM Controller
Address, @A reg @B reg A
Areg B reg
—
LiIM D7 ey @
JL_Pc |
CLK

Fig. 2.

control FSM and few registers. With this architecture, the
program and data are loaded in the memory array and a
bit-level addressing is required. Program code generation is
discussed in the following sections.

Standard
memory
operations

Instruction

@°Pc

Read
operand A
@A

Read
operand B

@B

Fig. 3. Programmable Logic-in-Memory Controller FSM. All transitions are
synchronous. Instruction format @A, @B, @Z.

D. Elementary Logic Operations on the Memristive Array

Boolean AND and OR operations can be emulated using
the Resistive Majority operator. A majority operator reduces
to AND/OR logic when one operand is set to constant 0 and
1, respectively. We present the following exemplary machine
code for the PLiM controller module in order to perform C
= A.B and C = A+B. The operations are directly performed

/

Multi-bank Resistive Memory Architecture with Programmable Logic-in-Memory (PLiM) Controller module.

on the storage of C. C is pre-programmed to either 0 or 1 de-
pending on the Boolean operation. Note that direct addressing
is used for constants for which the @ sign is not used.
AND
1: 0, 1, @C; //IC=0 2: 0, 1, @Bjyy; //Bjpy=0
3: 1, @B, @Byy; //Bin=B 4: @A, @B;,,, @C; //C=A.B
OR
1: 1, 0, @C; //IC=1 2: 0, 1, @Biyy; //Biny=0
3: 1, @B, @B;y; /B;,,=B 4: @A, @B;,,, @C; //C=A+B
A bit-level addressing is required for operations that ma-
nipulate and rearrange bits within a word. For example, the
following machine code implements a 1-bit left rotate on a 4-
bit array Z = Z37Z5717Zy, with X and Y as auxiliary locations:
1-BIT LEFT ROTATE

01: 0, 1, @X; 02: 1, @73, @X; // X = Z3
03: 0, 1, @Y; 04: 1, @Zy, @Y; // Y = Zy
05: @ZQ, @Yv, @Zg; 'L = ZQZQleO

06: 0, 1, @Y:; 07: 1, @Z,, @Y; // Y = Z;
08: @Zl, @Y, @ZQ; Il'Z = ZQlele

09: 0, 1, @Y; 10: 1, @Zo, @Y: // Y = Z,
11: @Zo, @Yv, @Zl; II'Z1 = 22212020

12: 0, 1, @Y; 13: 1, @X, @Y;// Y =X =73
14: @Y, @X, @Zy; 'L = 79717073

E. RMSs Instruction Simulation

We validate the presented RM3 by running electrical sim-
ulations on a resistive memory array.

We consider a simple 4x4 bits memory array built using a
dynamic Valence Change Mechanism (VCM) model fitted on
experimental kinetics data and a bipolar rectifying selector.
Full details about the compact model are available in [17].
Each memory cell implements the basic RMj3 operator. Here,
the input Z corresponds to the resistive state, while P and)

are the input voltages applied to either bottom or top electrode
to perform the operation. The memory array is programmed
using a V/2 scheme. More precisely, a logic 1 is realized by
a voltage pulse of 2.3 V and a logic 0 is encoded by a voltage
pulse of -2.3 V. Therefore, the height of the programming
pulses is 4.6 V. Unselected lines are kept to ground. In a
readout phase, the presence of a 5 pA current is considered
as output 1, while its absence is considered as 0.

The first three words of the memory contain a RMj5
instruction that will operate on the data stored on the 4" word.
The memory array is initialized as follow, and our example
consists in applying RM3(A, B, Z) with A=bit 0 of word
0x03=1, B=bit 3 of word 0x03=0 and Z=bit 1 of word 0x03=0.

Initial state Final state

0x00: 1100 0x00:1100
0x01: 111 1} Instruction memory 0x01: 1111
0x02: 1101 0x02: 1101
0x03: 010 1} Data memory 0x03: 0111

The instruction is operated in 3 steps, as illustrated in Fig. 4.
Step 1: The RM;5(A, B, Z) instruction is dumped from mem-
ory by reading the operand addresses:@ A=1100, @ B=1111,
@Z=1101. These addresses follow a bit-level addressing as
follows: @ A=[Address of the word containing A (2bits),
Position of the bit A within the word].

Step 2: The operands A and B are read. As @ A=1100, A is
read from the LSB of the word 0x03 (A = 1). Similarly, @ B=
1111, i.e., MSB of word 0x03, and B = 0.

Step 3: The final destination Z is written by fixing A = 1 on
wl; and B = 0 on bls, leading to a write operation. The final
value of Z is then verified.

We therefore operated on Z the operation RM;5(1,0,0) =
M;(1,1,0)=1.

[
= ’_%:‘ | I |

01 03 0 01 02 03 0 01 02 03 0 01 02 03
Time ¢t [us] Time t [us] Time t [us] Time t [us]
bl bl bl bl

2
Read @Z W Read B
Read A Write Z

o N w
o S &

o

Current / [uA]

o

1 0
Read verify —— wordline signals

—— bitline signals

Read @A]
Read @B

Fig. 4. Simulation of 3-input Resistive-Majority (RM3) operation with Ap=1,
Bo=0, and Zo=0. Each operation is highlighted by a colored background.

III. CASE STUDY: IMPLEMENTING PRESENT ON PLIM
ARRAY

In this section, we discuss the implementation of the
PRESENT cipher on the proposed architecture. After introduc-
ing the necessary background about PRESENT, we comment
on the realization of the individual components along with the
PLiM code snippet. We finally evaluate the implementation of
a full cipher operation in terms of cycles and energy.

A. Background: PRESENT Block Cipher

As an ISO-standardized block cipher for lightweight cryp-
tography, PRESENT [14] is considered as a meaningful ap-
plication for the proposed architecture. The cipher encrypts a
64-bit plaintext with an 80 or 128-bit key provided by the user.
We restrict the following discussion to the 80-bit key and only
to the encryption module. A PRESENT encryption consists of
31 rounds, through which multiple operations are performed
on the 64-bit plaintext and finally produces a 64-bit ciphertext.
The rounds modify the plaintext, which is referred as STATE
internally. The operation of the cipher components is briefly
reviewed in the following. Readers may kindly refer to [14]
for further details.

plaintext (b) | | key register (R)
g
64 K, 80
addRoundKey /\< —
I % 80
A 4
sBoxLayer
KeyUpdate
) player
fori=1to31do ‘1’
addRoundKey(STATE, K;) ‘1'
sBoxLayer(STATE) : Ky, 5
plLayer(STATE) addRoundKey C <€ —<
end for v 64
addRoundKey(STATE, Ks,) sBoxLayer
KeyUpdate
player
) 4 K.
addRoundKey T\ 32
<€ 7
64>’J 64
v

ciphertext

Fig. 5. PRESENT Block Cipher: Encryption

The algorithmic flow for PRESENT is shown in the Fig. 5.
PRESENT consists of three different sub-blocks operating on
the text to cipher: addRoundKey, sBoxLayer, pLayer, and one
sub-block operating on the key: KeyUpdate. In the following,
we discuss the PLiM implementation of the different blocks.

B. Operations on STATE

For each round 7 (1 < ¢ < 32) of the cipher, the current
64-bit STATE (bgs - - - bp) is processed in 3 steps:

1) addRoundKey: First, the state is processed by the round-
specific key K; = kis---ki. The round-specific key K; is
extracted from the user-specified 80-bit key R, by simply
selecting the 64 leftmost bits. The addRoundKey operation is
defined by the bit-wise operation: b; = b; @ k?. Therefore, it
involves a 64-bit XOR operation between the STATE and the

leftmost bits of the key. We implement it by 64 1-bit XOR
instructions between the bit-addressed operands.

1-BIT XOR

1: 0, 1, @Z; // Z=0 2: @A, 0, @Z; /| Z=A

3:0, @B, @Z; // Z=A.B 4:0, 1, @C; // C=0

5: @B, 0, @C; // C=B 6: 0, @A, @C; // C=B.A

7: @Z, 0, @C; // C=A®B

2) sBoxLayer: Then, the state is processed by the 4-bit
to 4-bit S function. The S function operates F3 — F3 and
is defined in [14]. the input and output values of the S-
Box function respectively. To be processed, the 64-bit state is
divided in sixteen 4-bit words that are individually processed
by the S operator.

The S operator can be interpreted as a 4-input, 4-output
combinational Boolean function. The combinational network
is mapped to the proposed programmable memristive array
system using a two-step approach. Note that the proposed
approach is general enough for implementing any arbitrary
Boolean logic on the platform. The implementation is done
via the two following steps:

1) The Boolean function is converted and optimized into
an internal data-structure in form of majority-inverter
dataflow network.

2) The internal data-structure is mapped to the RM3 in-
structions.

The first step exploits a recently introduced majority-based
logic optimization package [16], while the second step cor-
responds to a one-to-one mapping of the nodes onto the
supported instruction.

To illustrate the proposed approach, we provide an example
for a part of the S operator. More precisely, assuming the
primary inputs to the S-box being pig, pi1, pie, pig and the
primary outputs being pog, poi, pos, pos, we focus on the
generation of the output pog.

Fig. 6. Portion of the S operator majority-inverter data flow graph
corresponding to pog generations.

The majority-inverter dataflow network corresponding to
pogy is depicted in Fig. 6. The generation of poy requires

11 majority operations. Each majority operation is mapped
to a set of RM3 instructions. For instance, the portion high-
lighted in grey on the network corresponds to the operation
M3 (piy, pio, 0). This is translated into 2 RM3 instructions that
respectively store an initial value 0 and perform the expected
majority operation on a given memory position.

The procedure is iterated for all the nodes in the dataflow
network. The corresponding code snippet for the generation
of pog is shown below:

S operator - pog

01: 0, 1, @X1; 02: @piy, @pig, @X1; // X1=N,
03: 1, 0, @X2; 04: @pi1, @piy, @X2; // X2=Np
05: 1, 0, @X3; 06: @piy, @pis, @X3; // X3=N¢
07: 0, 1, @X4; 08: 1, @pig, @X4; // X4 = pigy
09: 0, 1, @X5; 10: @X4, @pis, @X5; // X5=Np
11: 0, @X1, @X2; // X2=Ng

12: 1, 0, @X1; 13: @piy, @piz, @X1; // X1=N¢
14: 0, 1, @X4; 15: 1, @piy, @X4; // Xd=pin
16: 0, @X4, @X3; // X3=Np

17: 1, @piy, @X1; // X1=Ng

18: 0, @pis, @XS5; /1 X5=Ny

19: @X4, @X3, @X2; // X2=N;

20: @X4, @X1, @X5; // X5=N;

21: 1, @X2, @X5; /1 X5=Ng = pog

The total S operator requires a total of 38 cycles for its
operation.

3) pLayer: Finally, the 64-bit state is processed by the
permutation function P. The permutation P is described
in [14].

The permutation P moves every individual bits to a new
unique bit positions. This requires bitwise manipulation easily
implementable with the bit-level granularity of the instruction.

C. Operations on KEY

For each round ¢, the key register is updated using the
KeyUpdate procedure. The key update procedure is decom-
posed on three elementary operations.

1) Left Rotate Operation: First, the key register is ro-
tated by 61 bit positions to the left: [RyoR7s - - R1Rg] =
[RisR17 - - - Rag Rig).

The 61-bit rotation operation on the left is implemented
using a similar procedure than the 1-bit left rotate introduced
earlier.

2) S-box Operation: Then, the S function is applied to the
bits 76 to 79: [R7gR7s Ry7 Rrg) = S[R79R7s Ry7 Rrg).

The S operator is applied on the bits 76 to 79 using a similar
procedure than for the cipher text discussed above.

3) XOR Operation: : Finally, a bit-wise XOR operation is
performed between the bits 19 to 15 and the round counter :
[RigRigRi7Ri6R15] = [RigRig Ri7 Rig Rus| @ .

Between every round, the round counter ¢ is incremented.
The incrementer, which is invoked at every round, is im-
plemented using a simple toggle-cell adder procedure suited
for RRAM computation [17]. The following code snippet
illustrates the procedure for a 2-bit word length:

2-BIT ADDER

01: 0, 1, @C; // C=C;,=0

02: 0, 1, @X; 03: 1, @By, @X; // X=B,
04: @A, @X; @C; //C=C;

05: 0, 1, @Sg: 06: @Ay, @By, @Sy; // So=S’y
07: @B,, @C, @Sy; // Sp = So

08: 0, 1, @X; 09: 1, @By, @X; // X=B;
10: @A, @X; @C; // C=Cy

11: 0, 1, @X; 12: 1, @C,, @X; /| X=C;
13: @C, @X; @Sy; /'S =Cq

14: @Al, @Bl, @Sl; // 51:5’1

15: @By, @C, @S1; //S1=%

The XOR operations between the 5-bit counter value ¢ and
the bits 19 to 15 of the key R are performed individually using
the bit-level XOR procedure discussed earlier.

D. Performance of PRESENT Cipher on PLiM Computer

We estimate the performance of the PRESENT implemen-
tation on the memristive array. We consider a 8 Gb memory
array arranged in 16-bit words. Therefore, the whole memory
can be accessed by 32-bit addresses.

We also make the assumption of a mature RRAM technol-
ogy [18]. More precisely, we consider a write time of 1 ns and
a write energy of 0.1 fJ/bit. Table I summarizes the number of
RMs5 instructions and Read/Write (R/W) cycles required by
the different operations of the PRESENT cipher.

TABLE I
PRESENT IMPLEMENTATION PERFORMANCES

Operation Instructions Cycles Energy | Throughput
(#RM3) (#R/W) ®J) (kbps)
Key copy 80 720 - -
Cipher copy 64 576 - -
AddRoundKey 448 4032 - -
sBoxLayer 608 5472 - -
pLayer 64 576 - -
KeyUpdate 760 6840 - -
[PRESENT Block [58872 [455184 [588] 120.7 |

Each RMs3 instructions operates the following micro-
operations on the memory array: Read @A (32 bits), Read
@B (32 bits), Read @Z (32 bits), Read A (1 bit), Read B (1
bit), Write @Z (1 bit). This corresponds to 9 R/W cycles on the
considered machine, i.e., with 16-bit words. The total number
of RMj3 instructions for the encryption of a 64-bit cipher text
is 5b8872. The large amount of operations comes from the
fact that we merge both logic and memory operations and,
therefore, many memory accesses are required. Nevertheless,
considering that R/W access on the memory array are fast, the
total throughput reachable by the system is 120.7 kbps, making
it comparable to silicon implementations [14]. It is worth
pointing out that the large number of memory accesses to the
memory do not create a “bottleneck”, as all the operations stay
within the memory system. Finally, the total energy required
for one block encryption operation is 5.88 pJ. The presented
results are particularly promising in the context of IoT, where a
low-cost non-volatile memories could be used to perform low-
performance low-power consumption on their own content.

IV. CONCLUSION

In this paper, we introduced a fully-programmable in-
memory computing system, which exploits memristive devices
to perform both the storage and computing operations. For the
first time, this paper addresses the question of the computation
control unit, by proposing a novel Programmable Logic-in-
Memory (PLiM) computer architecture. The PLiM computer
architecture consists of a lightweight controller that comple-
ments a standard memory array. Assembly-level programming
abstraction is achieved with a natively implemented majority
and complement operator. This platform enables diverse sets
of applications to be ported with little effort and adds computa-
tion capabilities to a memory array at a very limited overhead.
The validity and performance of the proposed approach have
been evaluated with accurate device models by considering
the implementation of a standardized cryptographic system
on the array. A full-crypto operation can be implemented in-
memory with an energy of 5.88 pJ per block encryption and
a throughput of 120.7 kbps.

ACKNOWLEDGEMENT

This work has been supported by the European Research
Council grant ERC-2009-AdG-246810, the Swiss National
Science Foundation project number 200021_146600 and the
German Research Foundation (DFG) grant LI 2416/1-1.

REFERENCES

[1] G. W. Burr et al., “Overview of candidate device technologies for storage-
class-memory,” IBM J. R&D, 52(4/5), 2008.

[2] R. Fackenthal et al., “A 16Gb ReRAM with 200MB/s Write and 1GB/s
Read in 27nm Technology,” ISSCC Tech. Dig., 2014.

[3] S.-S. Sheu ez al., “A 4Mb Embedded SLC Resistive-RAM Macro with
7.2ns Read-Write Random-Access Time and 160ns MLC-Access Capa-
bility,” ISSCC Tech. Dig., 2011.

[4] H.-S. P. Wong et al., “Metal-Oxide RRAM,” Proc. of the IEEE, 100(6),
2012.

[5] C. Kiigeler, R. Rosezin, E. Linn, R. Bruchhaus, R. Waser, “Materi-
als, technologies, and circuit concepts for nanocrossbar-based bipolar
RRAM,” Appl. Phys. A - Mater. Sci. Process., 102(4), 2011.

[6] E. Linn, R. Rosezin, C. Kiigeler, R. Waser, “Complementary resistive
switches for passive nanocrossbar memories,” Nature Materials, 9, 2010.

[7] J. Borghetti et al., “Memristive switches enable stateful logic operations
via material implication,” Nature, 464, 2010.

[8] E.Linn, R. Rosezin, S. Tappertzhofen, U. Bottger, R. Waser, “Beyond von
Neumann-logic operations in passive crossbar arrays alongside memory
operations,” Nanotechnology, 23(305205), 2012.

[9] S. Kvatinsky, E. G. Friedman, A. Kolodny, U. C. Weiser, “Memristor-
Based Material Implication (IMPLY) Logic: Design Principles and
Methodologies,” IEEE TVLSI, 22(10), 2014.

[10] J. J. Yang, D. B. Strukov, D. R. Stewart, “Memristive devices for
computing,” Nat. Nanotechnol., 8, 2013.

[11] E. Lehtonen, M. Laiho, “Stateful Implication Logic with Memristors,”
Nanoarch Tech. Dig., 2009.

[12] T. You et al., “Exploiting Memristive BiFeO3; Bilayer Structures for
Compact Sequential Logics,” Adv. Func. Mat., 24(3357), 2014.

[13] T. Breuer et al., “Low-current and high-endurance logic operations
in 4F2-compatible TaOx-based complementary resistive switches,” SNW
Tech. Dig., 2014.

[14] A. Bogdanov et al., “PRESENT: An Ultra-Lightweight Block Cipher,”
CHES Tech. Dig., 2007.

[15] E. A Lee et al., “The Swarm at the Edge of the Cloud,” IEEE Design
& Test, 31(3):8-20, 2014.

[16] L. Amard, P-E. Gaillardon, G. De Micheli, “Majority-Inverter Graph: A
Novel Data-Structure and Algorithms for Efficient Logic Optimization,”
DAC Tech. Dig., 2014.

[17] A. Siemon, S. Menzel, A. Chattopadhyay, R. Waser, and E. Linn, “In-
Memory Adder Functionality in 1S1R Arrays, IEEE ISCAS, 2015.

[18] Emerging Research Devices (ERD) report, International Technology
Roadmap for Semiconductors (ITRS), 2013

