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Abstract—A Majority-Inverter Graph (MIG) is a homogeneous
logic network, where each node represents the majority function.
Recently, a logic optimization package based on the MIG data-
structure, with 3-input majority node (M3) has been proposed [2],
[30]. It is demonstrated to have efficient area-delay-powerresults
compared to state-of-the-art logic optimization packages. In this
paper, the Boolean algebraic transformations based on majority
logic, i.e., majority Boolean algebra is studied. In the first
part of this paper, we summarize a range of identities for
majority Boolean algebra with their corresponding proofs. In
the second part, we venture towards heterogeneous logic network
and provide reversible logic mapping of majority nodes.

I. I NTRODUCTION

In Boolean logic, the majority function is defined to
be true if at least half of the inputs are true. Formally
speaking, forn odd, Mn(x1, x2, . . . , xn) = 1, if and only
if [x1 + x2 + · · · + xn] ≥ ⌈n

2
⌉. A Boolean algebra is

defined over a set of binary valuesB = {0, 1} and the basic
operations AND (∧), OR (∨), and NOT (¬). Several Boolean
algebra operations can be taken together to form acomplete
set of laws, from which other laws can logically derived.
This allows axiomatization of Boolean algebra. In [2], it is
proved that Boolean algebra, when defined over the set of
{B,M,¬, 0, 1}1 is complete and sound under the laws (Ω)
defined as following.

Associativity Ω.A
M(x, u,M(y, u, z))
= M(z, u,M(y, u, x))
= M(y, u,M(z, u, x))
Commutativity Ω.C
M(x, y, z) = M(y, x, z) = M(z, y, x)
Distributivity Ω.D
M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z)
Majority Ω.M
M(x, y, y) = y; M(x, x̄, z) = z

Inverter Propagation Ω.I
M(x, y, z) = M(x̄, ȳ, z̄)

Henceforth, we refer to the aforementioned axiomatized
Boolean algebra asMajority Boolean algebra.

1M3 is referred asM , unless mentioned otherwise

A. Applications

Novel post-CMOS devices and systems, such as the
Quantum-dot Cellular Automata (QCA) system, have reported
realization of a majority Boolean logic gate [12]. Majority
logic circuits with Quantum Flux Parametron (QFP) tech-
nology, which can achieve significantly higher clock speed
compared to CMOS technologies, have been experimentally
demonstrated at [14]. Liet al. have demonstrated3-input
majority logic gate using DNA strand displacement [16].
Interestingly, the study with devices capable of majority logic
manipulation is not recent. As early as in 1960, Gotoet al.
demonstrated high-speed logical circuits with Esaki diodes
(a.k.a. Tunnel Diodes). There, the majority logic circuit is real-
ized first, and Boolean logic operations (∧,∨) are implemented
as special cases of Majority logic.

Independent of the majority-demonstrating non-CMOS de-
vices, it was shown in [2] that, majority Boolean logic transfor-
mations can be helpful in optimization of CMOS-based logic
circuits, with better or comparable results against state-of-the-
art logic optimization packages, e.g., AND-Inverter-Graphs
(AIGs, [7]) and Binary Decision Diagrams (BDDs, [24]).

For the circuit complexity theorists, majority functions pro-
vide an interesting problem in the efficient circuit construction.
Valiant showed the existence of polynomial-size, logarithmic-
depth monotone formula for Majority function [26]. A vari-
ation of this construction also achieving logarithmic depth,
using T (2, 3) gates, is proposed at [10]. ThereT (k,m) is
threshold Boolean function, that evaluates true iff at least k

of its m inputs are true. The proposed construction is utilized
for linear and scalable secret sharing schemes.

Majority functions are also studied in relation to social
choices and voting system. Corresponding theoretical study
was done in [15], [18], where it was conjectured [15] and
then proved [18] that for independent binary variables, where
each input has low influence, majority function is most stable
to noise, e.g., input bit-flips.

B. Previous Studies

Despite the wide range of applications for majority function,
due to lack of interest in logic circuit community, majority
Boolean algebra did not receive intensive study. In past, this
was studied in the context of devices demonstrating majority



operations, as it is being studied right now. To the best of
our knowledge, majority decision logic was introduced in [17]
and an axiom set is proposed in [8]. In these works, the
notation of{x#y#z} is used to indicateM(x, y, z). Akers
proposed a different notation style (x z y) and introduced a
range of Majority identities matching with Boolean identities
in [3]. For efficient manipulation of majority logic networks,
transformation rules have been proposed in [17], [2]. These
works restricted the study in homogeneousM3 logic networks.
Efficacy ofM5 has been studied in [19], [1] in the context of
QCA. Expression of complex Boolean gates viaM5 andM7

is explored in [25].
In this paper, we adopt the axiomatic system proposed

at [2]. We revisit the identities of Boolean algebra from the
previous works and provide proofs of identities, for the sake
of completeness. We also study the properties of majority
Boolean algebra for heterogeneous logic networks. Finally, the
reversible logic synthesis from majority networks is briefly
reviewed.

II. H OMOGENEOUSMAJORITY LOGIC NETWORK

In this section first, corresponding to the standard Boolean
algebra, we define a set of monotone and non-monotone laws
for Majority Boolean algebra{B,M,¬, 0, 1}. We provide a
list of identities to operate on majority Boolean logic networks.
For trivial results and for proofs reported earlier [2], proofs are
skipped. Finally, we establish correspondence between classi-
cal Boolean logic operators and Majority Boolean operations
in the last two subsections.

A. Monotone and Non-monotone Laws

Among the monotone laws,associativity, commutativity,
distributivity, andmajority are already stated in the axiomΩ.
FromΩ.M , the following laws follow immediately:

Identity Pair
M(x, 0, 1) = x

Annihilator Pair
M(x, 0, 0) = 0; M(x, 1, 1) = 1
Idempotence
M(x, x, x) = x

Absorption
M(x, x, y) = x

Among the non-monotone laws,inverter propagation is
already stated in the axiomΩ. We further define,

Involution
¬¬M(x, y, z) = M(x, y, z)

B. Majority Boolean Algebra: Identities

In this section, we list a comprehensive set of identities re-
ported in the literature as well as present several new ones.For
variable substitution (x replaced byy) within an expressionz,
the notationzx/y is used [2]. According to the effect achieved
by the identity, those are grouped inexpansion, contraction,
or reshaping types. Note that, for easy reference, we listed

also several axiomatic identities here. Several identities from
the expansion can be applied in reverse direction to achieve
expansion effect, e.g., M2 and M10 do the same transformation
in opposite direction.

Expansion

M1: x = M(v, v̄, x)
M2: M(x, y,M(u, v, z)) = M(M(x, y, u),M(x, y, v), z)
M3: M(x, y, z) = M(x, y,M(x, y, z))

Contraction

M4: M(x, x, y) = x

M5: M(x, x̄, y) = y

M6: M(x, 1,M(x, y, 0)) = x

M7: M(x, 1,M(x, y, 1)) = M(x, y, 1)
M8: M(x, y,M(x, y, z)) = M(x, y, z̄)
M9: M(x, y,M(x̄, ȳ, z)) = M(x, y, z)
M10: M(M(x, y, u),M(x, y, v), z) = M(x, y,M(u, v, z))
M11: M(w,M(w, x, y),M(w̄, x, z))) = M(w, x, y)
M12: M(x,M(u, v, z),M(ū, v̄, z̄)) = x

Reshaping

M13: M(x, y, z) = M(x, y, zx/ȳ) = M(x, y, zy/x̄)
M14: M(x, u,M(y, ū, z)) = M(x, u,M(x, y, z))
M15: M(M(w̄, x̄, z), y,M(w, x, z))

= M(M(w, x̄, y), z,M(w̄, x, y))
M16: M(x,M(x̄, z, u),M(x̄, z̄, u))

= M(M(x̄, z, u),M(x, u, z̄), u)

In [8], a case-by-case analysis of the equality of the vari-
ables is done to provide several proofs. We note that, such an
analysis is difficult for large expressions. Instead, the variable
substitution technique proposed in [2] (here M13) suffices for
deriving the proof from the axioms. Few exemplary proofs are
demonstrated. Identities M1 and M3, used for the proofs can
be easily derived fromΩ.

Lemma 1. Identity M3 can be derived from Ω.

Proof: M(x, y, z)
= M(x, y,M(x, x̄, z)) (M1)
= M(x, y,M(x, y, z)) (M13)

Lemma 2. Identity M15 can be derived from Ω.

Proof: M(M(w̄, x̄, z), y,M(w, x, z))
= M(M(w, y,M(w̄, x̄, z)),M(x, y,M(w̄, x̄, z)), z) (Ω.D)
= M(M(w, y,M(x̄, y, z)),M(x, y,M(w̄, y, z)), z) (M13)
= M(M(y, z,M(w, x̄, y)),M(y, z,M(w̄, x, y)), z) (Ω.A)
= M(y, z,M(z,M(w, x̄, y),M(w̄, x, y))) (Ω.D)
= M(M(w, x̄, y), z,M(y, z,M(w̄, x, y))) (Ω.A)
= M(M(w, x̄, y), z,M(y,¬M(w, x̄, y),M(w̄, x, y))) (M13)
= M(M(w, x̄, y), z,M(y,M(w̄, x, ȳ),M(w̄, x, y))) (Ω.I)
= M(M(w, x̄, y), z,M(w̄, x,M(y, y, ȳ))) (Ω.D)
= M(M(w, x̄, y), z,M(w̄, x, y)) (Ω.M )
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C. Correspondence with Classical Boolean Algebra

Besides the ability to manipulate in majority Boolean alge-
bra, it is also important to establish transformations between
classical Boolean algebra{B,∨,∧,¬, 0, 1}. The following
equations allow such bi-directional transformations.

x ∨ y = M(x, y, 1) (1)

x ∧ y = M(x, y, 0) (2)

M(x, y, z) = xy ⊕ yz ⊕ zx = xy + yz + zx (3)

Though, the reduction of a Disjunctive/Conjunctive Normal
Form (CNF/DNF) specification or an AND-Inverter Graph
(AIG) to majority logic network can be accomplished with
the aforementioned equations, it introduces redundancy in
the circuit, which needs to be further optimized. This can be
simply demonstrated with the following scenario.
M(x, y, z) = xy + yz + zx

= M(x, y, 0) +M(y, z, 0) +M(z, x, 0)
= M(x, y, 0) +M(M(y, z, 0),M(z, x, 0), 1)
= M(M(x, y, 0),M(M(y, z, 0),M(z, x, 0), 1), 1)

Therefore, it is necessary to develop powerful theorems
connecting classical and majority Boolean algebra. One such
theorem is proposed in [17]. The theorem is presented in
Equations 4 and 5.

x ·

n−1∑

i=1

fi + x̄ ·

2n−2∏

i=n

fi

= mn[x, (xf1 + x̄fn), · · · , (xfn−1 + x̄f2n−2)],

(4)

wherefi is a Boolean function withoutx as one of the literals.
mn can be expressed as following.

mn(v1, v2, · · · , vn) = M(v1,mn−1(v1, · · · , vn−1), vn) (5)

and m3 is M . In [17], a proof of above theorem based on
induction is provided. The utility of this theorem can be shown
by fixing n to a certain value. Forn = 3, equation 4 takes the
following form.

x(f1+f2)+ x̄(f3 ·f4) = M(x, (xf1+ x̄f3), (xf2+ x̄f4)) (6)

Here, the internal Boolean expressions, such as(xf1 + x̄f3),
cannot be further decomposed with the same technique.
(xf1 + x̄f3)
= (x(f1 + 0) + x̄(f3 · 1))
= M(x, (xf1 + x̄f3), x̄)
= (xf1 + x̄f3)

Rather, one needs to use the basic equations (equations 1, 2)
to derive majority Boolean logic formulation. Nevertheless,
the proposed theorem is useful if the original Boolean logic
expression can be cleverly arranged. This is shown in [17]
by deriving a majority logic expression for a full adder

circuit. 2 Another decomposition, which does not require such
an arrangement, is provided in [3] without proof. This is
studied in the following subsection.

D. Majority-based Decomposition

The majority-based decomposition rule is presented in the
following theorem.

Theorem 3. The decomposition of F (x, y, . . . , u) to
M(x,M(x̄, y, F (y, y, . . . , u)),M(x̄, ȳ, F (ȳ, y, . . . , u)))
follows classical and Majority Boolean algebra axioms.

Proof:
M(x,M(x̄, y, F (y, y, . . . , u)),M(x̄, ȳ, F (ȳ, y, . . . , u)))
= M(x,M(x̄, y, F (x, y, . . . , u)),M(x̄, ȳ, F (x, y, . . . , u)))
= M(x,M(x̄, y, F ),M(x̄, ȳ, F )) (for clarity)
= xM(x̄, y, F ) + xM(x̄, ȳ, F ) +M(x̄, y, F )M(x̄, ȳ, F )
= x(x̄y + yF + x̄F ) + x(x̄ · ȳ + ȳF + x̄F )
+(x̄y + yF + x̄F )(x̄ · ȳ + ȳF + x̄F )

= xyF + xȳF + x̄yF + x̄ · ȳF + x̄F

= xyF + xȳF + x̄F

= xF + x̄F

= F = F (x, y, . . . , u)

In [2], Majority Inverter Graph (MIG) is defined as a
homogeneous logic network, where the nodes represent a3-
input majority function (M3) and the edges can be com-
plemented. The majority-based decomposition procedure can
be repeatedly applied to derive MIG for the given Boolean
function, as shown in the following figure 1.

M3

M3 M3

F (x, y, . . . , u)

F (y, y, . . . , u) y ȳ F (ȳ, y, . . . , u)

x

x̄ x̄

Fig. 1. Majority Inverter Graph

We illustrate the efficacy of the majority logic decomposi-
tion by developing the majority expression for the full adder
sum,S = a⊕ b ⊕ ci. Naı̈ve application of equations 1 and 2
would result in a majority logic network of depth4, where the
primary inputs are considered to be at depth0. By Theorem 3,
S = M(a,M(ā, b, (b⊕ b⊕ ci)),M(ā, b̄, (b̄⊕ b⊕ ci)))
= M(a,M(ā, b, ci),M(ā, b̄, c̄i))
= M(a,M(ā, b, ci),¬M(a, b, ci))

Note that this is a majority network with logical depth
of 2. In this case,M(a, b, ci) is shared with the circuit for

2There is a typo in equation 15, last expression of [17]. The corresponding
Fig. 3 is correctly drawn.
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generating carry bit. For a ripple-carry adder formation, the
following result can be obtained easily.

Lemma 4. An n-bit adder can be represented with 3n nodes
in MIG.

Further, from the decomposition procedure, the following
lemma can be stated.

Lemma 5. The MIG representation of an n-variable Boolean
function can have at most 3(2n−1 − 1) M3 nodes.

Proof: From the decomposition procedure outlined in
Theorem 3, it requires3 nodes per variable decomposition.
From these3 nodes,2 nodes are further decomposed. For
these nodes,2 edges lead to primary inputs and one edge
leads to a reduced function. The decomposition continues until
a majority function with only one variable is obtained, for
which a primary input can be deduced. This gives rise to the
following series forn-variable Boolean function.
1 + 2(1 + 1 + 2(1 + 1 + 2(1 + · · ·+ 2(1))))
= 1 + 22 + 23 + · · ·+ 2n−1 + 2n−1

= 3(2n−1 − 1)
It can be immediately observed that this bound is tight for2-

variable Boolean functions. For a MIG representation,(a⊕ b)
requires the most count of nodes, which is3(21−1−1) = 3. For
large arithmetic circuits, it has been shown thatMn, n > 3 can
be beneficial for compactness of the representation as well as
the final implementation if a rich cell library is available [19],
[1]. An improved bound for the MIG node count is presented
recently in [23], where minimum MIG representations are pre-
computed for functions up to 4 variables. In the following
section, heterogeneity in majority Boolean algebra is explored.

III. H ETEROGENEOUSMAJORITY LOGIC NETWORK

In this section, we first look into the axioms fromΩ and
report similar identities for the5-input majority gate,M5. For
a general case ofMn, wheren > 3, a full axiomatic system is
recently developed and proposed in [30]. Our goal is slightly
different in the sense that we want to explore a mix of diverse
majority nodes. Therefore, identities combiningM5 andM3

are expressed. Using those identities, results presented in [19]
are derived. Finally, the rationale for heterogeneous majority
Boolean network is investigated from the perspective of logical
depth. In that context, capabilities of a configurable majority
gate are studied.

A. Basic Identities of M5

Similar to the axioms defined inΩ (section I), we define a
set of identities forM5 as following. We refer to those asΦ.

Associativity Φ.A
M5(x, y, z, u,M5(a, b, y, z, u))
= M5(a, y, z, u,M5(x, b, y, z, u))
= M5(b, y, z, u,M5(a, x, y, z, u))
Commutativity Φ.C
M5(u, v, x, y, z) = M5(x, y, z, u, v) = M5(u, x, v, y, z)
Distributivity Φ.D
M5(v, x, y, z,M5(a, b, c, d, e)) = M5(M5(v, x, y, z, a),

M5(v, x, y, z, b),M5(v, x, y, z, c), d, e)
Majority Φ.M
M5(x, x, x, u, v) = x; M5(x, x̄, y, u, v) = M3(y, u, v)
Inverter Propagation Φ.I
¬M5(x, y, z, u, v) = M5(x̄, ȳ, z̄, ū, v̄)

We omit the proofs since the proofs for the general case of
n > 3 are already presented in [30].

B. Identities on M5 and M3

Any majority function can be decomposed into an expres-
sion containing smaller majority functions. This is usefulfor
deriving the identities as well as for computing the complexity
of majority-based representation for a given Boolean function.
For M5, the expression is as following.

M5(x, y, z, u, v) = (x⊕y)M3(z, u, v)+xy(z+u+v)+x̄·ȳ(zuv)
(7)

By studying equation 7, following identities, apart from the
basic identities mentioned in the previous subsection, canbe
derived. Some of these are listed in [1] (Table 1).

M17: M5(1, 1, z, u, v) = M3(z, 1,M3(v, u, 1))
M18: M5(0, 0, z, u, v) = M3(z, 0,M3(v, u, 0))
M19: M3(z, u,M3(z, v, x)) = M5(z, z, u, v, x)
M20: M5(x, y, x, y, z) = M3(x, y, z)

Lemma 6. Identity M19 follows Φ and classical Boolean
algebra axioms.

Proof: M3(z, u,M3(z, v, x))
= zu+ (z + u)(zv + vx+ zx)
= zu+ zv + zvx+ zx+ uzv + uvx+ uzx

= z(u+ v + x) + uvx

= (z ⊕ z)M3(u, v, x) + zz(u+ v + x) + z̄z̄(uvx)
= M5(z, z, u, v, x) (following equation 7)

By identity M19, it is possible to simplify the sumS of
a full-adder. To start with, we have theM3 expression as
following.
S = M3(a,M3(ā, b, ci),¬M3(a, b, ci))
= M3(a,M3(ā, b, ci), c̄i+1)
= M3(a,M3(c̄i+1, b, ci), c̄i+1)
= M5(c̄i+1, c̄i+1, a, b, ci) (M19)

This simplification is used in [19], [1] to derive a2-element
heterogeneous majority logic network for a full adder. Thus,
it is possible to have ann-bit adder represented with2n
nodes in MIG, which is 50% smaller compared to theM3-
only representation (Lemma 4). An interesting point to note
is that for a majority-based full-adder structure, the sum logic
is deeper (depth2) compared to the carry logic (depth1).

In contrast to equation 7, the following equation 8 provides
an elaboration ofM5 only in terms ofM3.

M5(x1,x2, x3, x4, x5) =

M3(M3(x1, x2, x3),M3(x1, x4, x5),

M3(x1,M3(x2, x4, x5),M3(x2, x3, x4))) (8)
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Lemma 7. Equation 8 follows Φ.

Proof: If both the first two constituents of the top-level
M3 operator in the RHS expression is true then, at least3
members of the set{x1, x2, x3, x4, x5} are true. This satisfies
the equivalence. If only one of these first two constituents are
true, we can have two cases. Case I:x1 is true. In this case, the
LHS expression is true if both members of either of the sets
{x2, x3} and{x4, x5} are true. That is evaluated in the final
constituent expression of the top-levelM3 operator. Case II:
x1 is false. In this case, the LHS expression is true if exactly3
members from the set{x2, x3, x4, x5} are true. If3 elements
from that4-member set is chosen in any combination, it will
evaluate to be true. Thus, the final constituent expression of the
top-levelM3 operator holds true and validates the equivalence.

M5(x1,x2, x3, x4, x5) =

M3(M3(x1, x2, x3),M3(x1, x4, x5),

M3(x1,M3(x3, x4, x5),M3(x2, x3, x5))) (9)

From the proof, it naturally follows that the equation 8 can
be also expressed with a different combination of elements,
such as the one given in the equation 9. It can also be
noted that the identities M17, M18, M19 and M20 can be
derived from the equation 8. A general approach for such
decompositions is recently developed in [11].

C. Boolean function Complexity Analysis for Majority Logic
Network

Several complex Boolean gates have been derived fromM5

and M7 in [1] and [25] respectively, albeit in the context
of QCA. In [25], it is proposed to use several inputs of a
majority gate as configuration inputs and to set those as0/1 to
derive different complex multi-input logic gates out of therest
inputs. This can be considered as a generic field-programmable
implementation with diverse majority gates and then, config-
uring some input bits to determine the functionality. From
the perspective of circuit complexity theory [21], [27], this
technique raises several interesting questions as following.

• For a given n-input Boolean function, what are the
lower and upper bounds of the size of a homoge-
neous/heterogeneous MIG?

• For a given n-input Boolean function, what are the
lower and upper bounds of the depth of a homoge-
neous/heterogeneous MIG?

We use the standard definitions of depth and size, i.e., the
depth of a node is the length of the longest path from any
primary input to the node. The depth of an MIG is the largest
depth of a node. The size of an MIG is its number of nodes [2].
While a complete study of these questions is beyond the scope
of the current paper, we briefly look into these.

It can be observed that with a depth-1 M3 network, it is not
possible to express all2-variable Boolean functions. Among
the 3-variable Boolean functions onlyab ⊕ bc ⊕ ca can be
expressed. However, by setting one variable to0 and1, depth-1

M3 network can express2-input AND and2-input OR gates
respectively. Formally, we define a notation withMn(d, s),
whered ands indicates depth and size respectively. Then, we
have the following lemma, whereB2 represent the set of all
2-input Boolean functions. The most complexB2 function for
M3 is a⊕ b.

Lemma 8. M3(2, 3) ≡ B2.

Lemma 8 can be extended to show thatM3(4, 9) ≡
B3, where the 2-variable constituent functions are cre-
ated by M3(2, 3). The 2-variable functions are generated
from the 3-variable function using Shannon expansion. The
size of a majority network can be reduced ifM5 is
used. Assuming unrestricted fanout, one may implement
the most complexB2 circuit for majority gates, using
M5(¬M3(a, b, 0),¬M3(a, b, 0), a, b, 0). Hence, the following
lemma can be easily established. Note that, for simpler func-
tions one may use theM3, which is a constituent ofM5, i.e.,
M5 ⊇ M3.

Lemma 9. M5(2, 2) ≡ B2.

Corollary 10. M5(4, 7) ≡ B3

Proof: For the Boolean functiona⊕ b, M5(2, 2) suffices.
However, with Shannon expansion,B3 requires the implemen-
tation of āf1 + af2, for which no smallerM5 expansion than
utilizing threeM3 gates are known.

IV. REVERSIBLE LOGIC MAPPING OFMAJORITY NODES

Due to the efficiency of the MIG structure and potential
realization of majority nodes in several emerging technologies,
reversible logic mapping of majority nodes is interesting to
study. One such mapping forM3 is reported in [29].

a a⊕ c

b b⊕ a

c M3(a, b, c)V V V
†

M3

a a⊕ c

b b⊕ a

c M3(a, b, c)

0 c

V V V
†M3

Fig. 2. Mapping of Majority Nodes to Reversible Circuits (I)

In [29], a compact implementation of majority logic is
presented using only6 two-qubit gates. This is shown in the
top of Fig. 2. A naı̈ve extension of that mapping to account for
sharing of the inputs requires3 ancilla lines and9 gates. The
case for one shared input is shown in the bottom of Fig. 2.
However these implementations are not optimal. By applying
an exact synthesis method, we could prove that a realization
with 3 Toffoli gates is the smallest in terms of gate count. This
is shown in the Fig. 3. Also shown is the realization which
preserves all the inputs, requiring9 gates and1 ancilla line.
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Fig. 3. Mapping of Majority Nodes to Reversible Circuits (II)

Remark: It can be noted that the reversible circuit for an
M3 node is comparable in terms of gate count, QC and ancilla
of an equivalent reversible circuit for a BDD node.

V. SUMMARY AND OUTLOOK

Due to the emergence of new computing devices as well
as the increasing complexity of logic circuits, majority-based
circuit design is receiving renewed research attention. Inthis
perspective, this paper made several contributions. Firstly,
by summarizing classic and contemporary works, a com-
prehensive set of techniques for majority Boolean algebra
operations is presented. The inter-relation between majority
Boolean algebra and classical (AND-OR) Boolean algebra
is investigated. Furthermore, heterogeneous majority Boolean
networks are discussed along with their efficient mapping for
reversible circuits.

Multiple, independent lines of research can be pursued
from here, such as, extending current MIG synthesis flows
to utilize the identities presented here; study of canonicity for
Majority Inverter Graph, if a strict variable order and fixed
decomposition procedure is adopted; and studying the effects
of heterogeneous majority logic, particularly for arithmetic
circuits.
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