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Abstract—A Majority-Inverter Graph (MIG) is a homogeneous ~ A. Applications

logic network, where each node represents the majority funioon. . .
Recently, a logic optimization package based on the MIG data Novel post-CMOS devices and systems, such as the

structure, with 3-input majority node ( M) has been proposed [2], Quantum-dot Cellular Automata (QCA) system, have reported
[30]. It is demonstrated to have efficient area-delay-poweresults ~ realization of a majority Boolean logic gate [12]. Majority
compared to state-of-the-art logic optimization packagesin this logic circuits with Quantum Flux Parametron (QFP) tech-
FaPeﬂ the Boolean a:é;eblraic tra}nsE)rma}tions (l;_azedlon Lnai?_y nology, which can achieve significantly higher clock speed
096 15, Tty Booean dgers s s n e 5 Compred to CHOS techmololes. have been experimentaly
majority Boolean algebra with their corresponding proofs. In  demonstrated at [14]. Let al. have demonstrated-input

the second part, we venture towards heterogeneous logic meark ~ majority logic gate using DNA strand displacement [16].

and provide reversible logic mapping of majority nodes. Interestingly, the study with devices capable of majoritgit
manipulation is not recent. As early as in 1960, Getal.
. INTRODUCTION demonstrated high-speed logical circuits with Esaki dsode

(a.k.a. Tunnel Diodes). There, the majority logic circaitéal-

In Boolean logic, the majority function is defined 10, first, and Boolean logic operations () are implemented
be true if at least half of the inputs are true. Formallyg special cases of Majority logic.

speaking, forn odd, M, (z1,z2,...,2,) = 1, if and only
if [x1 + 22 +--- 4+ 2,] > [5]. A Boolean algebra is
defined over a set of binary valu&= {0,1} and the basic
operations AND ), OR (v), and NOT (). Several Boolean ¢jrcits, with better or comparable results against stétthe-
algebra operations can be taken together to forooreplete logic optimization packages, e.g., AND-Inverter-Grap
set_ of laws, f_rom _vvhi_ch other laws can logically de_riv_ed(NGS, [7]) and Binary Decision Diagrams (BDDs, [24]).
This allows axiomatization of Boolean algebra. In [2], it is * rqr the circuit complexity theorists, majority functionsop
proved that Bi)qlean algebra, when defined over the set\gfiq an interesting problem in the efficient circuit constion.
{B, M, ~,0,1}" is complete and sound under the law3) ( \jiant showed the existence of polynomial-size, loganit
defined as following. depth monotone formula for Majority function [26]. A vari-
Associativity 2.4 ation of this construction also achieving logarithmic dept
M(z,u, M(y, u, 2)) using T'(2,3) gates, is proposed at [10]. The&k,m) is
= M(z,u, M(y,u, z)) threshold Boolean function, that evaluates true iff attidas
= M(y,u, M_(Z’ u, ) of its m inputs are true. The proposed construction is utilized
Commutativity Q.C for linear and scalable secret sharing schemes.
M(x3y7;)_: M(y,z,z) = M(z,y,x) Majority functions are also studied in relation to social
Distributivity .D choices and voting system. Corresponding theoreticalystud
M(_Iv?/vM(“’”vZ)) = M(M(z,y,u), M(z,y,v), 2) was done in [15], [18], where it was conjectured [15] and
Majority Q.M then proved [18] that for independent binary variables, niehe

M(z,y,y) =y; M(z,7,2) =2 each input has low influence, majority function is most stabl
Inverter Propagation €2.1 to noise, e.g., input bit-flips.
M((anwz) = M((E,ﬂ,é)

Independent of the majority-demonstrating non-CMOS de-
vices, it was shown in [2] that, majority Boolean logic tréors
mations can be helpful in optimization of CMOS-based logic

B. Previous Studies

Henceforth, we refer to the aforementioned axiomatized Despite the wide range of applications for majority funstio
Boolean algebra allajority Boolean algebra. due to lack of interest in logic circuit community, majority
Boolean algebra did not receive intensive study. In pag, th
L M35 is referred asM, unless mentioned otherwise was studied in the context of devices demonstrating mgjorit



operations, as it is being studied right now. To the best afso several axiomatic identities here. Several idestiiem

our knowledge, majority decision logic was introduced i][1 the expansion can be applied in reverse direction to achieve
and an axiom set is proposed in [8]. In these works, thexpansion effect, e.g., M2 and M10 do the same transformatio

notation of {a#y#z} is used to indicateM (z,y, z). Akers in opposite direction.

proposed a different notation style@y) and introduced a
range of Majority identities matching with Boolean ideietst
in [3]. For efficient manipulation of majority logic netwesk ~ M1z = M (v, v, x)

transformation rules have been proposed in [17], [2]. TheseM2: M (x,y, M (u, v, 2)) = M(M(z,y,u), M(z,y,v), 2)
works restricted the study in homogenedus logic networks. M3: M(z,y,2) = M(z,y, M(z,y,2))

Efficacy of M5 has been studied in [19], [1] in the context of

QCA. Expression of complex Boolean gates ¥ig and M;  Contraction

Expansion

is explored in [25]. M4: M (z,2,y) = =

In this paper, we adopt the axiomatic system proposed,;s. M(:cjjjy) —y
at [2]. We revisit the identities of Boolean algebra from the _ M(x7 1’M(a: (y 0) ==
previous works and provide proofs of identities, for theesak ;. M(x7 I’M(I’(y’ 1)) = M(z,y,1)
of completeness. We also study the properties of majorityq. ]\/[(l'7y’ﬁ($’ ‘y’ 2) =M(x7 y’ 3
Boole:?\n algepra for hete_rogeneous _Iogic networks. Fmﬁhﬂy o: ]V[(x:y: M(:E: g: 2)) = M(:v: y: 2)
revgrsnble logic synthesis from majority networks is bgiefl ;4. M(M(z,y,u), M(z, y, v, 2) = M(z,y, M(u, v, 2))
reviewed MLL: M (w, M (w, 2,), M (@, 2))) = M(w,,y)

Il. HOMOGENEOUSMAJORITY LOGIC NETWORK M12: M (z, M (u, v, 2), M(u, 0, %)) = @

In this section first, corresponding to the standard Boolean _
algebra, we define a set of monotone and non-monotone ldR@shaping

for Majority Boolean algebrg B, M, —,0,1}. We provide a ~ M13: M(z,y,2) = M(,y, 2, /5) = M(x,y, 2y /z)
list of identities to operate on majority Boolean logic netks. M14: M (z,u, M(y, @, 2)) = M(z,u, M(x,y, z))
For trivial results and for proofs reported earlier [2], pf®are M15: M (M (0, Z, 2),y, M(w, z, z))

skipped. Finally, we establish correspondence betweessicla =M(M(w,z,y),z, M(w,z,y))

cal Boolean logic operators and Majority Boolean operaion M16: M(x7M( z,u), M(Z,Z,u))

in the last two subsections. (M(z, z,u), M (z,u,Z),u)

A. Monotone and Non-monotone Laws In [8], a case-by-case analysis of the equality of the vari-

Among the monotone lawsassociativity, commutativity, ables is done to provide several proofs. We note that, such an
distributivity, andmajority are already stated in the axiofh analysis is difficult for large expressions. Instead, theade

From .M, the following laws follow immediately: substitution technique proposed in [2] (here M13) sufficas f
Identity Pair deriving the proof from the axioms. Few exemplary proofs are
M(z,0,1) ==z demonstrated. Identities M1 and M3, used for the proofs can
Annihilator Pair be easily derived fronf).

Ij\géé’&gn;eo’ Mz, 1,1) =1 Lemma 1. Identity M3 can be derived from €.
M(x,z,z) =x Proof: M (x,y, 2)
Absorption = M(z,y, M (z,Z,2)) (ML)
M(z,z,y) =2 = M(x,y, M(z,y,z)) (M13)
[ |
Among the non-monotone lawsnverter propagation is . .

already stated in the axiof. We further define, Lemma 2. Identity M15 can be derived from £2.
Involution Proof: M (M (w,z,z2),y, M(w,z, z))

-—M(x,y,z) = M(x,y, z) = M(M(w y, M(w,Z,z2)), M(x,y, M(w, T, 2)), z) (.D)
M(M(w,y, M(z.y, 2)), M(x,y, M(,y. 2)), 2) ((l\glf)
w,x,y)), M(y,z, M(w,z,y)), 2 .

B. Majority Boolean Algebra: Identities Eyé M( J(V[ w,gc,))y),JV([%w,%y()) (Qy.)l))) ) (@-4)
In this section, we list a comprehensive set of identities re- M(M(w z y) z, M(y,z, M (w,z,y))) (2.4)

ported in the literature as well as present several new ées. = M (M (w, Z,y), z, M (y, ~M (w, T, y), M (o, z,y))) (M13)

variable substitutionaf replaced byy) within an expression, = M (M (w,z,y),z, M(y, M (o, z,§), M (0, x,y))) (Q.I)

the notationz,,/, is used [2]. According to the effect achieved= M (M (w, z,y), z, M (w,z, M (y,y,7))) (©2.D)

by the identity, those are grouped éipansion, contraction, = M (M (w,Z,y),z, M(w,x,y)) (Q.M)

or reshaping types. Note that, for easy reference, we listed [ ]



C. Correspondence with Classical Boolean Algebra circuit. 2 Another decomposition, which does not require such

Besides the ability to manipulate in majority Boolean alge®" arrangement, is provided in [3] without proof. This is
bra, it is also important to establish transformations et Studied in the following subsection.
classical Boolean algebréB, Vv, A, —,0,1}. The following o »
equations allow such bi-directional transformations. D. Mgjority-based Decomposition

The majority-based decomposition rule is presented in the

xVy=M(z,y,1l) (1) following theorem.
Theorem 3. The decomposition of F(z,y,...,u) to
I/\y:M(I,y,O) (2) M(va(jvyaF(yayv7u))7M(j7gaF(g7yaau)))

follows classical and Majority Boolean algebra axioms.

3) Proof:
Mz, M(Z,y,F(y,y,...,u)), M(Z, 5, F(¥,y,...,u)))
Though, the reduction of a Disjunctive/Conjunctive Normar M (z, M (Z,y, F(z,y,...,u)), M(Z,y, F(z,y,...,u)))
Form (CNF/DNF) specification or an AND-Inverter Graph= M (z, M (z,y, F'), M(z,y, F')) (for clarity)
(AIG) to majority logic network can be accomplished with= M (z,y, F) + =M (z,y, F) + M(z,y, F)M(z,y, F)
the aforementioned equations, it introduces redundancy snz(zy +yF + zF) + (2 -y + yF + zF)
the circuit, which needs to be further optimized. This can be +(Zy + yF + ZF)(z -y + gF + ZF)

M(z,y,2) =2y Dyz®zx =2y + yz + 20

simply demonstrated with the following scenario. =ayF + a2y +xyF +7-yF +2F
M(x,y,z) =xy +yz + 2z =yl +2yF +zF
= M(z,y,0) + M(y,2,0) + M(z,z,0) =zF +zF
= M(x,y,0) + M(M(y,z,0), M(z,2,0),1) =F=F(z,y,...,u)
= M(M(z,y,0), M(M(y,z,0), M(z,2,0),1),1) [ ]

In [2], Majority Inverter Graph (MIG) is defined as a
Therefore, it is necessary to develop powerful theorerhomogeneous logic network, where the nodes represént a
connecting classical and majority Boolean algebra. Oné susput majority function (/;) and the edges can be com-
theorem is proposed in [17]. The theorem is presented ptfemented. The majority-based decomposition procedume ca
Equations 4 and 5. be repeatedly applied to derive MIG for the given Boolean
function, as shown in the following figure 1.

2n—2

n—1
x.Zfi_i_j.Hfi F(z,y,...,u)
i=1 i=n (4)

= mn[a:, (I.fl + J_j.fn)a T (I.fnfl + 1_7.][‘27172)]7

wheref; is a Boolean function without as one of the literals.
m, can be expressed as following.

mn(v17’027" ! ,Un) = M(’Ulvmnfl(vlv" ! ,Unfl),vn) (5)

and ms is M. In [17], a proof of above theorem based on
induction is provided. The utility of this theorem can bewho
by fixing n to a certain value. For = 3, equation 4 takes the
following form.

F(y,y,...,u) y y F(5,y,...,u)
Fig. 1. Majority Inverter Graph

o(fi+fo)+2(f3-f1) = M(z, (xfi+2f3), (xfo+Tf1)) (6) We illustrate the efficacy of the majority logic decomposi-
) ) - tion by developing the majority expression for the full adde
Here, the internal Boolean expressions, sucliag + Zf3), sum,S = a © b @ ¢;. Naive application of equations 1 and 2

cannot be further decomposed with the same technique. \qould result in a majority logic network of depth where the

(xf1 +2f3) primary inputs are considered to be at deptlBy Theorem 3,
= (z(fi +0)+2(f3-1)) S = M(a, M(a,b,(b®b® c;)), M(a,b,(b®bD ¢;)))

= M(z,(zf1 +2f3),7) = M(a, M(a,b,c;), M(a,b,é))

=(zf1+2f3) = M(a, M(a,b,c;),~M(a,b,c;))

Rather, one needs to use the basic equations (equations 1, Qote that this is a majority network with logical depth
to derive majority Boolean logic formulation. Nevertheles 5 9 |n this case,M(a,b,c;) is shared with the circuit for
the proposed theorem is useful if the original Boolean logic

expresglpn can be_ C!everly_arranged' .ThIS is shown in [17]2There is a typo in equation 15, last expression of [17]. Theesponding
by deriving a majority logic expression for a full adderig. 3 is correctly drawn.



generating carry bit. For a ripple-carry adder formatidre t M;5(v,z,y, 2,b), M5(v,z,y,2,¢),d, €)

following result can be obtained easily. Majority ®.M

Ms(x,x,x,u,v) = x; Ms(z,Z,y,u,v) = Ms(y,u,v)
Inverter Propagation ®.1

Lemma 4. An n-bit adder can be represented with 3n nodes
in MIG.

Further, from the decomposition procedure, the following
lemma can be stated. We omit the proofs since the proofs for the general case of

Lemma 5. The MIG representation of an n-variable Boolean n >3 are already presented in [30].

function can have at most 3(2"~! — 1) M3 nodes. B. Identities on M5 and M3

Proof: From the decomposition procedure outlined in Any majority function can be decomposed into an expres-

PR . : . _sion containing smaller majority functions. This is usefiod

Theorem 3, it require8 nodes per variable decomposition;, —. . . L . .
From these3 nodes,2 nodes are further decomposed. Fo‘%'e”"”.‘g .the identities as well as for comlputmg the comitiex
these nodes2 edges lead to primary inputs and one edgr%f majority-based repres_entatlon for_agwen Boolean fionct
leads to a reduced function. The decomposition continutis u or Ms, the expression is as following.
a majority function with only one variable is obtained, for
which a primary input can be deduced. This gives rise to thds(z, y, z,u,v) = (z®y) M3(z, u, v)+zy(z+u+v)+z-H(zuv)

following series forn-variable Boolean function. (7
1+2(1+14+2(14+1+2(1+---+2(1)))) By studying equation 7, following identities, apart froneth
=14+92249234...49n"1 4 9n-1 basic identities mentioned in the previous subsection,kEn
=321t -1) m derived. Some of these are listed in [1] (Table 1).

It can be immediately observed that this bound is tighfor  M17: Ms5(1,1, z, u,v) = M3(z,1, M3(v,u, 1))
variable Boolean functions. For a MIG representati@nd b) M18: M5(0,0, z, u,v) = M3(2,0, M3(v, u,0))
requires the most count of nodes, whicl3{g*~'—1) = 3. For ~ M19: M3(z, u, M3(z,v,7)) = M5(z, 2, u,v, )
large arithmetic circuits, it has been shown tht, n > 3can ~ M20: Ms(z,y,2,y, 2) = M3(x,y, 2)
be beneficial for compactness of the representation as well 3,4 6. Identity M19 follows ® and classical Boolean
the final implementation if a rich cell library is availabl&q], algebra axioms.
[1]. An improved bound for the MIG node count is presented
recently in [23], where minimum MIG representations are pre ~ Proof: Ms(z, u, M3(z,v,z))
computed for functions up to 4 variables. In the followings 2u + (2 + u)(2v + v + 27)

section, heterogeneity in majority Boolean algebrais@qu. = 2u + 20 + 20T + 2T + uz0 + uvT + uzr
=z(u+v+z)+ uvx
1. HETEROGENEOUSMAJORITY LOGIC NETWORK = (2 ® 2)M3(u,v,2) + zz(u + v + ) + 2Z(uvx)
In this section, we first look into the axioms frofd and = M5(z, 2, u, v, z) (following equation 7) u

report similar identities for thé-input majority gate M. For By identity M19, it is possible to simplify the surf of
a general case a¥/,,, wheren > 3, a full axiomatic system is & full-adder. To start with, we have th&/; expression as
recently developed and proposed in [30]. Our goal is shghtfollowing.

different in the sense that we want to explore a mix of diverse= Ms(a, M3(a, b, ¢;), ~Ms(a, b, c;))

majority nodes. Therefore, identities combining, and M; = Ms(a, M3(a, b, c;), Civ1)

are expressed. Using those identities, results presemfg®] = Ms(a, M3(Cit1,b,¢;), Civ1)

are derived. Finally, the rationale for heterogeneous ritgjo = M5(Ci+1,Cit1,a,b, ¢;) (M19)

Boolean network is investigated from the perspective oicialg

depth. In that context, capabilities of a configurable nigjor ~ This simplification is used in [19], [1] to derivezzelement

gate are studied. heterogeneous majority logic network for a full adder. Thus
. N it is possible to have am-bit adder represented withn
A. Basic Identities of M nodes in MIG, which is 50% smaller compared to th&-

Similar to the axioms defined ift (section 1), we define a only representation (Lemma 4). An interesting point to note
set of identities forM as following. We refer to those aBb. is that for a majority-based full-adder structure, the sogid

Associativity ®.A is deeper (deptR) compared to the carry logic (deptf).
Ms(z,y, 2, u, Ms(a, b, y, z,u)) In contrast to equation 7, the following equation 8 provides
= Ms(a,y, z,u, Ms(z,b,y, z,u)) an elaboration of\/5 only in terms ofMs3.

= Ms5(b,y, z,u, M5(a, x,y, z,u))

Commutativity &.C Ms (21,29, 73, T4, T5) =

M5(u7 v, Z,Y, Z) = M5(SC, Y, z,u, ’U) = M5(’LL, z,v,Y, Z)
Distributivity &.D Ms(Ms(z1, 22, 25), M (21,24, 5),

MS(vaxay727J\/[5(a’7baca d7 6)) = M5(M5(vaxay727a)a Mg(l’l,]\/[3(1'2,1'4,1’5),Mg((EQ,(Eg,(E;L))) (8)



Lemma 7. Equation 8 follows &. Ms network can expresz-input AND and2-input OR gates
Proof: If both the first two constituents of the top-levelreSpeCtNely' Formally, we define a notation \.NIM"(d’S)’
; o whered ands indicates depth and size respectively. Then, we
M3 operator in the RHS expression is true then, at I&ast :
have the following lemma, wherB; represent the set of all

members of the seftry, x2, 23, 24, x5} are true. This satisfies . : :
the equivalence. If only one of these first two constituenes a2-|nput Boolean functions. The most complx function for

true, we can have two cases. Caselis true. In this case, the Ms s a®b.

LHS expression is true if both members of either of the set®mma 8. M3(2,3) = Bs.
{z2, x5} and{xz4, x5} are true. That is evaluated in the final
constituent expression of the top-leviel; operator. Case Il:
x1 is false. In this case, the LHS expression is true if exaktly
members from the sdtrs, 23, 24,25} are true. 1f3 elements
from that4-member set is chosen in any combination, it wil
evaluate to be true. Thus, the final constituent expresditreo
top-level M3 operator holds true and validates the equivalen

Lemma 8 can be extended to show th&f;(4,9) =

Bz, where the 2-variable constituent functions are cre-
ated by Ms(2,3). The 2-variable functions are generated
from the 3-variable function using Shannon expansion. The
size of a majority network can be reduced N5 is
Cused. Assuming unrestricted fanout, one may implement
fhie most complexBy circuit for majority gates, using
M5 (—=Ms(a,b,0),-Mjs(a,b,0),a,b,0). Hence, the following
lemma can be easily established. Note that, for simpler-func
Ms(z1,22, T3, T4, T5) = tions one may use th&fs, which is a constituent o5, i.e.,

M3 (M3 (21, 22, 23), M3(21, 24, 75), Ms 2 Ms.
Mg(Il,M3($3,$4,£C5),Mg(IQ,Ig,I5))) (9) Lemma 9. M5(2,2) = Bs.

From the proof, it naturally follows that the equation 8 caforollary 10. M5(4,7) = Bs
be also expressed with a different combination of elements, Proof: For the Boolean function @ b, Ms (2, 2) suffices.

such as the one given in the equation 9. It can also pﬁ)wever, with Shannon expansiaBs requires the implemen-

noted that the identities M17, M18, M19 and M20 can b{e tion of afy + afs, for which no smalletM; expansion than
derived from the equation 8. A general approach for such ! 2 5 €Xp

decompositions is recently developed in [11]. Utilizing three 15 gates are known. "

. . . _ . IV. REVERSIBLELOGIC MAPPING OFMAJORITY NODES
C. Boolean function Complexity Analysis for Majority Logic - )
Network Due to the efficiency of the MIG structure and potential

Several complex Boolean gates have been derived frym realizqtion of majority r_10des in s_evgral emerg?ng techgia_zls,
and M, in [1] and [25] respectively, albeit in the contextrevers‘Ible logic mapping of ma;onty nodeg IS Interesting t
of QCA. In [25], it is proposed to use several inputs of gtudy. One such mapping fais is reported in [29].

majority gate as configuration inputs and to set thos@&' ato

derive different complex multi-input logic gates out of ttest a m ade
inputs. This can be considered as a generic field-prografemab b S, N bda
implementation with diverse majority gates and then, cenfig N ¢ M3(a, b, c)

uring some input bits to determine the functionality. From
the perspective of circuit complexity theory [21], [27],igh

a adec
technique raises several interesting questions as faitpwi b TN 1 b a
o For a givenn-input Boolean function, what are the
. ’ it M.
lower and upper bounds of the size of a homoge- c 3(a:b,c)
neous/heterogeneous MIG? 1 0 o ¢
o For a givenn-input Boolean function, what are the
lower and upper bounds of the depth of a homoge- Fig. 2. Mapping of Majority Nodes to Reversible Circuits (1)

neous/heterogeneous MIG?

We use the standard definitions of depth and size, i.e., thdn [29], a compact implementation of majority logic is
depth of a node is the length of the longest path from amyesented using onl§ two-qubit gates. This is shown in the
primary input to the node. The depth of an MIG is the largetdp of Fig. 2. A naive extension of that mapping to account fo
depth of a node. The size of an MIG is its number of nodes [Fharing of the inputs requiresancilla lines and gates. The
While a complete study of these questions is beyond the scagee for one shared input is shown in the bottom of Fig. 2.
of the current paper, we briefly look into these. However these implementations are not optimal. By applying

It can be observed that with a deptht/s network, it is not an exact synthesis method, we could prove that a realization
possible to express all-variable Boolean functions. Amongwith 3 Toffoli gates is the smallest in terms of gate count. This
the 3-variable Boolean functions onlyb & bc & ca can be is shown in the Fig. 3. Also shown is the realization which
expressed. However, by setting one variable &amd1, depthi  preserves all the inputs, requirifiggates and ancilla line.
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Fig. 3. Mapping of Majority Nodes to Reversible Circuits)(ll

Remark: It can be noted that the reversible circuit for an
M3 nodeis comparable in terms of gate count, QC and ancilla
of an equivalent reversible circuit for a BDD node.
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