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Abstract— In this paper, we present an improved design flow
for nanoelectromechanical (NEM) relay-based combinational
logic circuits. Six-terminal NEM relays can be programmed to
act as 2-to-1 multiplexers. We can therefore use NEM relays
to implement arbitrary combinational logic circuits. Previously,
traditional logic synthesis techniques based on Binary Decision
Diagrams (BDDs) have been used to map arbitrary logic functions
to NEM relays. We improve this approach by showing how
six-terminal relays can also be viewed as 2-to-1 multiplexers
fed by comparators. This allows us to create a mapping from
Biconditional BDDs (BBDDs) to NEM relays. We then show
how it is possible to improve the BDD-based design flow,
by presenting a methodology based on BBDD logic synthesis
techniques. Experimental results show that our BBDD-based
design flow reduces the average number of relays by 24% and the
average critical path length by 12%. Considering an 8 x 8 array
multiplier with different mechanical delay implementations, we
show a 33% average relay count reduction.

I. INTRODUCTION

Nanoelectromechanical (NEM) relays are electrostatically
actuated mechanical switches [1]. NEM relays have a number
of desirable properties, such as a very low on-state intrinsic
resistance (0.52), and virtually infinitely large off-state re-
sistance. On the other hand, they have several drawbacks as
well. For example, they have a long switching time (hundreds
of nanoseconds), poor device lifetime (10® switching cycles),
and limited scalability of the minimum feature size [2], [3].
NEM relays can be fabricated by top-down approaches using
conventional lithography techniques or bottom-up approaches
using carbon nanotubes or nanowire beams [3].

Different NEM relay structures for logic have been proposed
[4], [5]. Most of them are based on electrostatic actuation
and implement different logic functions depending on the
number of terminals and the device geometry. Mechanical
contacts (connections) are enforced via electric fields between
the various terminals. Two-terminal and three-terminal NEM
relays are simple devices that can be used to solve pre-
liminary process challenges. Four-terminal and six-terminal
NEM relays are more complex devices that trade simplicity
for functionality. Despite this complexity, the use of multi-
terminal devices does not have much impact on area footprint.
Hence, they are desirable for compact logic implementations.

The ideal zero leakage current of NEM relays make them
a promising alternative to CMOS for ultra low-power systems
where low leakage current is a key feature to be harnessed
[21, [3], [6]-[8]. Furthermore, multi-terminal NEM relays have
increased logic expressivity as compared to traditional MOS

devices. Complete designs that demonstrate the advantages
of NEM relays have already been proposed and fully im-
plemented [9]. If some of the technological challenges are
overcome, NEM relays have the potential to be superior
devices for next-generation ultra low-power systems.

Lee et al. [5] realize a six-terminal NEM relay with two
body contacts and two source contacts. The two body contacts
are designed to be biased by opposite voltages. They show how
such a NEM relay can be viewed as a 2-to-1 multiplexer. This
is the basis for their design flow based on Binary Decision
Diagrams (BDDs). BDDs can be implemented in hardware
by mapping their nodes to 2-to-1 multiplexers. In [5], circuit
designs are broken up into blocks which can be represented by
BDDs. The BDDs are then mapped to 2-to-1 multiplexers that
are implemented by NEM relays. Since BDDs can represent
arbitrary logic functions, this BDD-based methodology can
be used to implement arbitrary combinational logic functions
using six-terminal NEM relays.

In this paper, we show that viewing six-terminal NEM relays
as 2-to-1 multiplexers does not take full advantage of their
expressivity. We propose a novel configuration, showing that
they can indeed be interpreted as 2-to-1 multiplexers fed by
comparators. We use this insight to show that Biconditional
BDDs (BBDDs) are a native model for six-terminal NEM
relays. BBDDs are a compact and canonical alternative to
BDDs that can be used to represent arbitrary Boolean functions
[10]. Analogous to the mapping in the BDD design flow,
BBDD nodes can be mapped to 2-to-1 multiplexers fed by
comparators. Our contribution is to show how we can leverage
a BBDD-based design flow to obtain more compact circuits
using NEM relays. For the MCNC benchmark suite our design
flow reduces the average device count and average number
of relays on the critical path by 24% and 12%, respectively.
Additionally, we reduce the average relay count for different
implementations of an 8 x 8 array multiplier by 33%.

The remainder of this paper is organized as follows. In
Section II we provide a background on NEM relays and their
logic abstraction. Section III gives an overview of the previous
work that has been done on BDD-based design flows for NEM
relays. In Section IV we show how BBDDs are related to NEM
relays and how to use them as the basis for a design flow.
Section V contains our experimental results, confirming that
BBDDs can be leveraged to design more compact circuits with
NEM relays. Finally, Section VI sums up our contributions and
reflects on the theoretical and experimental results.
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(a) A six-terminal relay configured as a 2-
to-1 multiplexer fed by a comparator. The
black region on the beam represents the
isolation from the gate G.

and SV.

Fig. 1.

II. BACKGROUND

We cover the background on six-terminal NEM relay de-
vices. Other types of NEM relays exist, but they are not as
relevant to our extension of logic synthesis for NEM relays.
Similarly, we will not cover the fabrication process. More
information on different types of relays and fabrication can
be found elsewhere [4], [5].

A. Six-terminal NEM Relays

Fig. 1(a) shows a top-down schematic of a six-terminal
relay. It consists of a gate (G), a drain (D), two bodies (B,
B5) and two sources (S7, S2). The movable part of the relay
is the Y-shaped cantilever beam which can move in-plane to
either side. By applying voltages to GG, By, and Bs, the beam
can be actuated bidirectionally to B; and Bs

The operation of the six-terminal relay can be understood as
follows [5]. Assume that the G and Bs terminals are grounded.
If the By voltage is zero, then the beam remains stationary
since it is not attracted to either side. As a result, in this case
S1 and S5 are isolated from the drain D. As the B; voltage
increases, the beam moves toward B; due to the increase in the
electrostatic field. If the B; voltage increases beyond a certain
point (the pull-in voltage), the electrostatic force overcomes
the elastic force that holds the beam into place. This causes
the beam to collapse into S; and D, thus connecting them.
Similarly, the beam can also be made to connect Sy and D.

Note that the beam only moves when the voltages applied to
B and B; have opposite polarity. If we allow the voltages to
be the equal, the beam may either remain stationary or swing
randomly. In the first case, D is disconnected from the other
terminals, providing a high-impedance (tristate) output.

B. Logic Abstraction

We derive the logic behavior corresponding to the operation
of a NEM relay. We will see that the output D is a bicondi-
tional function. That is, the output of a NEM relay depends on
two variables. In Section IV-B we show how this corresponds
to the biconditional expansion in Biconditional BDDs.

(b) A BBDD decision node can be viewed as a
2-to-1 multiplexer fed by the comparison of PV

(c) A BBDD decision node. Note that #-edges are
represented by dashed lines.

A six-terminal NEM relay can be configured as a 2-to-1 multiplexer fed by a comparator, enabling a mapping from BBDD nodes to NEM relays.

In our derivation, we consider only the voltages Vpp and
GND, since these are the only voltages required to actuate
the relay. Additionally, we only consider the case in which
B; # B, since we are interested NEM relays as devices that
implement combinational logic gates. The voltages Vpp and
GND correspond to Boolean logic value 1 and 0, respectively.
In the remainder of this section, we describe voltages in terms
of their corresponding Boolean values.

Suppose that we have logic values A and A. We can
apply these to body terminals B; and B, respectively. This
configuration is illustrated in Fig. 1(a).

Let us now consider what happens when a voltage is applied
to the gate G. If G # A, the cantilever beam is pulled towards
By, thus connecting D to S7. To see why, let us consider the
two possibilities. Suppose that A = 1. Then G = A = 0.
Therefore, since A is larger than the pull-in voltage the beam
will collapse into B;. This connects the output D to S;. In
the other case A = 0. Then, G = A = 1. Again, in this case
the beam will collapse into B; due to the electrostatic force
overcoming the elastic force. Hence, G # A implies D = 5.
Using an analogous argument we can show that G = A implies
D = Ss. The truth table for this configuration is illustrated in
Table I.

TABLE I .
TRUTH TABLE OF A SIX-TERMINAL RELAY WHERE B; = A AND By = A.
IT ACTS AS A 2-TO-1 MULTIPLEXER FED BY A COMPARATOR.

A| G| GoOA| D
0 0 1 So
0 1 0 S1
1 0 0 S1
1 1 1 So

The output D now depends on the equality (or inequality) of
A and G. By assigning B; = A and By = A to a six-terminal
relay, its output equation becomes:

D=(G®A)-S + (GO A)-5 (1)

where & and © represent the XOR and XNOR operations,
respectively. Thus, the output D is biconditional in A and G.
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Fig. 2. We use the the electrical drivers of the primary inputs to generate
the inverted signal required by the NEM relays.

Hence, when we set the two body terminals B; and Bs to
voltage A and A respectively, we create a comparator between
the gate voltage G and voltage A. In other words, we now
have a 2-to-1 multiplexer that is fed by the comparison of two
voltages. This is illustrated in Fig. 1(b). The behavior of such
a multiplexer is modeled by a BBDD decision node, pictured
in Fig. 1(c). This correspondence between six-terminal NEM
relays and BBDD nodes is the inspiration for our BBDD-based
design flow.

A caveat to this configuration of NEM relays is that we
require the inverted signal for A. With NEM relays, the
primary inputs are electrically buffered. We can therefore use
the inverter cascade feeding the buffers to generate A, as
shown in Fig 2.

Note that NEM relay logic does not require the insertion
of a signal buffers between due to the low on resistance of
NEM relays. This enables the realization of monolithic logic
functions with high performance.

III. BDD-BASED DESIGN FLOW

We present the previous work on a BDD-based design flow
[5]. We first give a brief overview of BDDs in Section III-A.
Then, in Section III-B, we show how NEM relays can be
configured as 2-to-1 multiplexers. This configuration enables
the mapping of BDD nodes to NEM relays, which is the basis
for the BDD-based design flow described in Section III-C.

A. Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are data structures that
can be used to represent Boolean functions. The concept of
BDDs was first introduced by Lee [11] and Akers [12]. They
were later extended by Bryant [13] who showed that, when the
ordering and reduction rules are applied, BDDs are a canonical
representation for Boolean functions. In other words, if two
Boolean functions are equivalent, then they will be represented
by exactly the same BDD.

A BDD is a rooted acyclic graph consisting of decision
nodes and terminal nodes. The terminal nodes represent the
Boolean values 0 and 1, respectively. Each decision node
N corresponds to a Boolean variable Vary of the Boolean
function represented by the BDD. Decision nodes have two
children called the I-child and the O-child. The edge from a
node N to its O-child represents the assignment of Vary to 0.

TABLE II
TRUTH TABLE OF A SIX-TERMINAL RELAY WHERE B1; = Vg AND By =
GND. IT ACTS AS A 2-TO-1 MULTIPLEXER.

G D
0 S1
1 Sa

Similarly, the edge to the 1-child represents the assignment of
Vary to 1.

In a BDD, each decision node represents an instance of
Shannon’s expansion:

fo,w,.,2) =z f(L,w,...,z) + 2" - f(0,w, .., 2)

BDDs can be implemented in hardware by mapping nodes
to 2-to-1 multiplexers. To see why, suppose that we have a
BDD representing some Boolean function f(v,w, .., z). The
decision node for variable v can be implemented by a 2-to-1
multiplexer with decision variable v. The multiplexer’s output
is connected to f(l,w,..,2) or to f(0,w,..,z), if v = 1
or v = 0, respectively. This is illustrated by Fig 3(c). In
practice, BDDs are often represented by graphs with 1 terminal
node and complemented edges, as this is a more compact
representation [14].

B. NEM Relays As 2-to-1 Multiplexers

Lee et al. [5] show how a six-terminal relay can be used to
build a 2-to-1 multiplexer. Suppose that body electrodes Bj
and By are connected to Vpp and GND, respectively, where
Vg is larger than the pull-in voltage. This is illustrated by the
schematic in Fig. 3(a). When voltage on gate GG is GND (logic
0), the beam is pulled towards Bj, because the voltage on B,
is larger than the pull-in voltage. This connects the output D
to S1. Similarly, when the voltage on G is Vg (logic 1), D
is connected to Ss. In other words, the gate G selects which
of the source inputs S7 and S5 is connected to output D. We
can therefore express the output D as the Boolean function:

D =G5S, + GS,. )

Note that Eq. 2 is the special case of Eq. 1 where A = 1. In
this configuration, the NEM relay no longer corresponds to a
biconditional function.

Hence, a six-terminal relay can be viewed as a multiplexer,
where G is the selector input. This is illustrated by Fig.3(b).
Table II shows the truth table for this configuration.

C. Design Flow

The configuration of NEM relays as 2-to-1 multiplexers
enables a mapping from BDD nodes to NEM relays. This
approach is used to demonstrate BDD based logic synthesis
using NEM relays [5]. Designs are broken up into blocks for
which the corresponding BDDs are then created. For each
BDD a one-to-one mapping strategy generates a netlist of
nanorelays implementing the target logic function.
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(a) Schematic of a six-terminal relay. The
voltages Vpp and GND are applied to

body terminals B; and Ba, respectively. ures a six-terminal relay

Fig. 3.

IV. BBDD-BASED DESIGN FLOW

We explain here how BBDD-based logic synthesis tech-
niques can be used to improve on existing design flows
for NEM nanorelays. Although the BDD mapping presented
above is valid, we know that NEM relays can implement more
expressive logic and thus lead to more compact combinatorial
circuits. In particular, we have seen that they act as 2-to-
1 multiplexers driven by comparators. This makes BBDDs
their native model. Therefore, in this section we propose an
alternative design flow based on BBDDs.

In Section IV-A we present a short introduction to BBDDs.
A more extensive introduction to BBDDs can be found in
[10]. Section IV-B then describes our design flow, based on
the mapping from BBDD nodes to NEM relays.

A. Biconditional BDDs

We have seen how decision nodes in BDDs correspond to
the Shannon expansion. In BBDDs, the Shannon expansion is
replaced by the biconditional expansion:

fv,w,,2)=wdw)- flw, ,w,.,2)+©ow): flw,w,.z)

Conceptually, BBDDs operate similarly to BDDs. The
difference is in the expansion. The branching condition for
decision nodes in a BBDD relates to the equality or inequality
of two variables. We call these variables the primary variable
(PV) and the secondary variable (SV). Fig. 1(c) shows an
example of a BBDD decision node. We refer to PV # SV
and PV = SV edges simply as #-edges and =-edges.

Recall from section III-A that BDD nodes can be viewed
as 2-to-1 multiplexers. In a similar way, BBDD nodes can be
viewed as 2-to-1 multiplexers that are fed by comparators.
BBDD nodes are indeed the native Boolean logic repre-
sentation for NEM relays. Conceptually, the output selected
by the multiplexer depends on equality of PV and SV. If
they are equal, the =-edge is selected by the multiplexer.
Otherwise, the multiplexer selects the #-edge. A schematic
of this interpretation is shown in Fig. 1(b).

Previous work has shown that BBDDs are often superior to
BDDs as data structures for logic synthesis [15]. They have

(b) Applying voltages Vpp and GND to
terminals B1 and Bsg respectively config-

(c) A BDD decision node behaves like a 2-to-1
MUX and implements corresponds to the Shannon

as a 2-to-1 MUX. expansion.

Six-terminal NEM relays can be configured as 2-to-1 multiplexers. This allows us to map BDD decision nodes to NEM relays.

been shown to improve synthesis of logic circuits, providing up
to 4.4x speed-ups in traditional decision diagram applications,
and decreasing the critical path to about 32% of to state-of-
the-art BDD based synthesis [10]. These results suggest that
a BBDD-based design flow presents opportunities to further
exploit the capabilities of NEM relays.

B. Design Flow

Our design flow is inspired by the design flow presented in
[5]. We break designs up into blocks and represent each block
by a BBDD. We can do this since arbitrary logic functions
can be represented by a BBDDs. As we have seen above,
NEM relays can be programmed to behave as BBDD nodes.
This enables us to implement any logic function with six-
terminal NEM relays, by mapping the corresponding BBDDs
to networks of NEM relays.

The difference in our mapping and the one described in
[5] is in how primary inputs are connected to the NEM relay
terminals. In [5], only gate inputs GG are connected to primary
inputs. In order to program the relays to behave as comparator-
fed multiplexers, we map B; and Bs to primary inputs as well.

Suppose we have a BBDD for the logic function
fv,w,...,z). We have seen that this function can alterna-
tively be written as:

(wdw)- flw, w,...,2) + (vOw)- flww,...,z2)

This expansion can be mapped to a NEM relay as follows.
Let PV v and SV = w, as in a BBDD node. We
connect the gate G to v. The body terminals By and Bs are
connected to w and w’, respectively. To the output terminals
S1 and S, we connect NEM relay outputs that represent
f(w',w,...,2) and f(w,w,...,z). This connection is made
by recursively representing biconditional expansions of the
function with different NEM relays. As we have seen above,
by connecting the six-terminal relay in this way, its output D
is now represented by the equation:

D=(GoA) -S1+(GOA)-S;
=@wow) flw,w,...,2)+wow): flww,...

,Z)



TABLE III
TOTAL NUMBER OF RELAYS, THE NUMBER OF RELAYS ON THE CRITICAL
PATH, AND RATIOS COMPARED TO [5] (MCNC BENCHMARK CIRCUITS).

Circuit Name Nr. of Re- | Nr. of | Ratio Ratio
lays Relays BBDD/BDD)| (Critical

on the | Nodes Path)

Critical

Path
alud 599 14 0.77 1.00
apex4 992 8 0.90 0.89
des 3130 18 0.78 1.00
ex1010 1047 10 0.94 0.91
ex5p 283 8 0.92 1.00
misex3 846 14 1.29 1.00
pdc 865 14 0.35 0.88
spla 691 16 0.82 1.00
8-b adder 28 9 0.19 0.53
16-b adder 56 17 0.31 0.52
8 x 8 multiplier | 14094 16 1.05 1.00

[ Average [ 205736 ] 13.09 [ 076 [ 0.88

Thus, we map the nodes in our BBDD representation to NEM
relays.

V. EXPERIMENTAL RESULTS

We demonstrate how BBDDs-based logic synthesis tech-
niques can be used to improve combinational circuits using
NEM relays.

A. Methodology

Our BBDD design flow is described above. We apply it
by synthesizing NEM relay circuits with an online BBDD
package [16]. We modified the software package to use 0/1
terminal nodes instead of complemented edges. This gives us a
similar construction procedure as [5]. The size of the BBDDs
then tells us how many NEM relays would be necessary to
implement the design. To evaluate the advantage of using
BBDD-based synthesis for NEM relays, we compare our
results with those obtained in [5].

B. Comparison: MCNC Benchmark Circuits

We test our design flow against the MCNC benchmark
suite. Table III shows the number of relays and the number of
relays on the critical path. It compares these numbers with the
corresponding numbers in [5] and shows the BBDD to BDD
ratio for the different benchmark circuits. We also provide the
ratios for the number of relays on the critical path.

Previous work has shown that BBDDs are generally more
compact representations than BDDs [10]. Since our BBDDs
representations are generally more compact, we expect that
they can be mapped to a smaller number of NEM relays. Table
IIT confirms that this is indeed the case.

Our design flow results in an average reduction in NEM
relays of 24%. This is due to the compactness of the BBDD
representation relative to the BDD representation. Since BB-
DDs require fewer nodes than BDDs, our circuits require fewer
NEM relays.

Furthermore, our design flow enables us to obtain circuits
with shorter critical paths. On average the critical path length

Sum  Carryout Sum Carryout
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Fig. 4. BBDD representations for a full-adder and a half-adder are illustrated
in (a) and (b), respectively. The primary inputs are x, y, and z.

is reduced by 12%. This decrease in the critical paths is due to
the BBDD reduction rules, which can be leveraged to decrease
the height of BBDDs more than the reduction rules for their
BDD counterparts.

Note that, in this experiment, all designs are represented
by monolithic decision diagrams. This implies that all designs
have just one mechanical delay. By obtaining a shorter critical
path, our design flow reduces the electrical delay, which is
in this case the only way of reducing the overall delay. In
general, we treat the mechanical delay of a design as part of
its specification. Given a design with a specific mechanical
delay, we are interested in minimizing the number of relays
and the critical path. Our BBDD representation achieves both.

There are some results that warrant discussion. The misex3
benchmark requires 29% more relays in our design flow than
its counterpart in [5]. Similarly, the 8 x 8 multiplier uses 5%
more relays. The size of decision diagrams is significantly
impacted by the input variable ordering. Therefore, we account
for the increase in the number of relays with an unfavorable
variable ordering in our experiments.

We do not give a comparison for all the run times for the
various benchmarks, as we did not have access to the same
hardware to run our experiments. We will just state our worst
case runtime, which occurs with the 8 x 8 multiplier. BBDD
generation for that benchmark takes 1.09 seconds to generate a
BBDD of 15447 nodes. Size optimization to 14094 nodes then
takes an additional 6.64 seconds. We are able to handle circuits
with more than 10k nodes in approximately the same time.
This demonstrates the scalability of BBDD-based synthesis.

C. Comparison: 8 x 8 Array Multiplier

We now compare our approach in the case of synthesizing
an 8 x 8 array multiplier. This multiplier, described in more
detail in [5], is implemented using a carry-save adder tree
followed by a ripple carry adder. We represent the same
multiplier, but using BBDDs instead of BDDs. We show
that this compact representation allows us to implement the
multiplier using a smaller number of NEM relays.



COMPARISON OF BDD-BASED VS. BBDD-BASED SYNTHESIS OF AN 8 X

TABLE IV

8 ARRAY MULTIPLIER

Number of Me- | Number of | Number of | Ratio
chanical Delays | Six-Terminal Six-Terminal BBDD/BDD
Relays in | Relays in
BBDD-Based BDD-Based
Implementation | Implementation
1 8890 16352 0.54
2 2491 4129 0.60
3 1367 2186 0.63
4 647 875 0.74
5 434 590 0.74
6 407 533 0.76
[ Average [ 2372.67 [ 4110.83 [ 0.67

The carry tree is implemented by a tree of full-adders and
half-adders represented by BDDs. Fig. 4 shows how we can
represent full- and half-adders using BBDDs. We implement
a BBDD full-adder using 5 BBDD nodes, and a half-adder
using 3 nodes. In [5] equivalent adders are implemented with
BDDs using 8 nodes and 4 nodes, respectively. This means
that using a BBDD representation we save 3 nodes for every
full-adder and 1 nodes for every half-adder. This results in
an area reduction of 37.5% for full-adders and 25% for half-
adders.

The various stages of the multiplier can be merged in order
to decrease the mechanical delay. We merge the stages in a
similar manner as in [5], but using BBDDs instead of BDDs.
The relay count for the multiplier at various numbers of
mechanical delay is shown in Table IV.

The results show that our compact BBDD representation
indeed requires a smaller number of relays. Over the different
mechanical delay targets, we achieve an average relay count
reduction of 33%. Furthermore, as the number of mechanical
delays decreases, so does the ratio of the number of relays
required by the BBDD representation versus the BDD repre-
sentation. This is due to the fact that the BBDD representation
is able to more efficiently share sub-functions, as can be seen
in the case of the full-adder implementation. It therefore grows
more slowly as more functions are merged in.

Four-terminal relays can be biased to act as n-type and p-
type switches. This is used in [5] to compare BDD-based
designs to their corresponding CMOS-style designs. In par-
ticular, this is done for the 8 x 8 multiplier, showing that a
BDD-based implementation requires fewer NEM relays than
a CMOS-style implementation. We use the same approach as
[5] to compare our BBDD-based designs to their CMOS-style
counterparts. On average, our BBDD implementations require
88% fewer devices than the CMOS-style implementations.

VI. CONCLUSION

In this paper, we have shown how BBDD-based logic
synthesis techniques can be used to create more compact
combinational circuits using six-terminal NEM relays. We
have done so by showing that BBDDs nodes are a native model
for NEM relays. This enables a mapping from BBDD nodes

to NEM relays. Generallyy, BBDDs can represent arbitrary
logic functions more compactly than BDDs can. By mapping
BBDDs to NEM relays we can use this compact representation
to synthesize combinational circuits. This results in circuits
that use smaller numbers of NEM relays as compared to
BDD-based synthesis. For the MCNC benchmarks our BBDD-
based design flow allows us to reduce the relay count by 24%
on average. Furthermore, we reduce the average critical path
length by 12%. Finally, for different mechanical delay targets,
we reduce the average relay count for an 8 x 8 array multiplier
by 33%.
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