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Abstract— Inexact Circuits are circuits in which the accuracy of the
output can be traded for cost savings (energy, area and/or delay). In
the context of advanced technology scaling and power density increase,
inexact circuits appear to be very promising as a solution. In this
paper, we present a novel pruning technique developed as a logic level
method to select and prune parts of a digital circuit. The error is
computed at each pruning step using probabilistic error propagation
and Hamming distance computation, making the evaluation possible
at runtime. The technique was validated on several parallel adder
architectures. Experimental results proved the efficiency of the technique
with Energy-Delay-Area product reduction of 1.8 for less than 10™*%
of relative error on the considered benchmarks at 45-nm technology node.

I. INTRODUCTION

In the context of advanced technology scaling and power density
increase, circuit design innovations are required to keep the power
budget under control. Inexact or approximate circuit design is a
computing solution that trades circuit precision for cost reduction.
Cost can be energy, area and/or delay. Approximate solutions are
already heavily used in the field of computer science, especially in
the multimedia domain where systems can tolerate varying amounts
of error and still realize useful computations. For example, the
need for exact results is not justified in applications that interact
with human perception, such as vision and audition [1]. Thereby,
exploiting approximate computing at the hardware level seems to be
a relevant solution that can be applied to a range of applications in
exchange for a higher energy efficiency.

Initial attempts of inexact circuit design focused on manual re-
design of common arithmetic building blocks [2] or the use of logic
synthesis to generate approximate circuits [3] by selecting portions
of a circuit and applying logic simplifications that do not impact
more than one circuit output at a time. Other synthesis techniques
achieving power reduction are based on selectively stopping the clock
in portions of the circuit where active and exact computation is
not required [4], or use precomputation based on sequential logic
optimization like in [5]. Lately, a concrete chip prototype [6] was
developed employing a pruning technique. The chip implements
an inexact 64-bit Kogge-Stone adder [6] and demonstrates a cost
saving quantified through the Energy-Delay-Area Product (EDAP)
of 1.2-1.6x with an acceptable error bound of less than 0.1% of
relative error. Thus, inexact circuit proved their operational efficiency
when result quality is not purely needed. Commonly used design
techniques for inexact circuits prune, i.e., delete components of an
exact logic circuit [7], [8]. At every pruning steps, critical components
are selected and pruned in order to minimize the output error while
maximizing the power reduction. This selection is typically based
on two parameters: the significance, which measures the components
impact on the output results and the activity, which is directly related
to the component power consumption. The limit of the actual pruning
techniques is the computation time required to prune a logic circuit.
Indeed, for every pruning step, the introduced error in the circuit
is evaluated through logic simulation using representative set of
input vectors. The simulation complexity grows quadratically with
the number of inputs and the number of input vectors making the
pruning process hardly tractable for large circuits.
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In this paper, we present a novel pruning technique that reduce
runtime complexity, exploiting a logic level method to select and
prune digital circuits. The error is computed at each pruning step
using a probabilistic error propagation [9], [10] and Hamming dis-
tance computation making the evaluation tractable at runtime. The
technique was validated on several parallel adder architectures im-
plemented using 45-nm and 180-nm technology nodes. Experimental
results proved the efficiency of the technique with an EDAP reduction
of 1.8x for less than 107*% of relative error at both technology
nodes and an average execution time of 1.5 seconds on the considered
benchmarks.

The remainder of this paper is organized as follows. Section II
provides the required background on logic network manipulation.
Section III introduces the novel pruning technique. Section IV val-
idates, through experimental results, the efficiency of the technique.
Section V concludes the paper.

II. BACKGROUND

All digital integrated circuits can be represented using Boolean
logic networks [11]. A Boolean network is a Direct Acyclic Graph
(DAG) whose nodes are components, such as gates, inputs, or outputs
and whose edges represent wires. The direction of the edges follows
the natural computation flow from inputs to outputs. The terms logic
network, Boolean network, and logic circuit are used interchangeably
in this paper. In this work, Boolean networks employ AND, OR,
INV and XOR operators as basic Boolean primitives. Every Boolean
primitive is represented by a Truth Table (TT) of size 2" (where n
is the number of inputs), allowing us for easy network manipulation,
simulation and computation.

In addition to its TT, a node in a logic network is associated with
three main functional parameters: the Significance (S), the Switching
Activity (o) and the Fanout. The significance S measures the value of
the information carried by a node through its impact onto the network
outputs. For example, we consider an adder. A node impacting the
Most Significant Bit (MSB) will have a higher S as compared to
a node impacting only the Less Significant Bit (LSB). The fanout
of a node corresponds to the number of nodes that it drives. The
power consumption of a logic gate can be estimated early on the logic
network by considering the o and the fanout of its corresponding
logic node. Indeed, according to [12], the dynamic power of a logic
gate can be expressed as :

1
Piyn = 5achv@?d 4))

where Vg4 the gate supply voltage, C'r, the load capacitance and f the
signal frequency (usually the clock frequency). The fanout is directly
linked to the load capacitance (also called fanout capacitance). The
computation of the switching activity at a circuit node n involves the
estimation of the signal probability pi(n), which is the probability
that the signal value at the considered node n is ’1’. Assuming
temporal independence of the inputs and a zero-delay model [12],
the switching activity of a node n is given by:

& = pi(n).(1 = pa(n)) @
A factor two appears in [12] but, for practical reasons, we deal
with the normalized formula in Eq. 2. In addition, we assume the
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Fig. 1. Illustration of a pruning step applied on a 2-output Boolean network (a) Considered network with X = (A.B).(AB® C) and Y = (A.B®
C) + A.B + C (b) Assignment of cost parameters and relevant node selection. (c) Modification strategy of the selected node. Modification is performed
according to the Hamming error introduced by the transformation. (d) Final Boolean network after one pruning step (X = (A.B).(A.B® C),Y =

(A.B @ C) + A.B, RelativeError = 0%).

estimation formulate to remain a good approximation when the inputs
are not statistically independent. The signal probability of the output
of a logic gate p1(out) can be estimated from the knowledge of the
signal probability of its inputs p1 (iny) and the Boolean function that
it computes.This can be expressed as:
2N
pilout) = 37 (TT(k).pi (iny))

k=1
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where T'T'(k) is the truth table value obtained for an input combina-
tion k and p1 (inx) the probability that the cube corresponding to the
input combination k evaluates to ’1°. In this paper, this method is only
used on nodes representing 2-input Boolean primitives. On a global
Boolean network, it is possible to inherit the probability to have "1’
from circuits input(s) till output(s) using a depth-first propagation of
Eq. (3) and Eq. (2). Note that we do not claim this approximation to
be a good estimation of the real power consumption (as many param-
eters have been neglected, e.g., glitching, signal correlations, impact
of technology mapping), but rather a good comparison estimator to
quickly identify the largest power contributors in a logic network.

III. PRUNING TECHNIQUE FOR ENERGY/ERROR TRADEOFF IN
INEXACT CIRCUIT

In this section, we introduce our novel fast pruning technique.

A. Pruning Algorithm

The pseudo-code of the pruning algorithm is given in Alg. 1. We
introduce it through the example given in Fig. 1. We considered
the logic network that describes X = (A.B).(A.B & C) and
Y = (A.B®C)+ A.B+ C (Fig. 1-a). In Fig. 1-b, a cost value
C, derived from S and « has been assigned to all the nodes in the
network (Alg. 1-A). The computation of .S, o and C is fully discussed
in III-B. The node with the highest cost is selected for pruning. In
our example, node 4 is selected (Fig. 1-c). The node is removed
and its initial output is re-routeed to either one of its inputs or to
the logic 0/1 (Alg. 1-B). The re-routing minimizes the introduced
local error by considering the Hamming distance H between the
truth table of the pruned node and the nodes driving its inputs. A
full discussion is given in III-C. The Hamming distance measures the
minimum number of substitutions required for changing bits between
two binary numbers. In Fig. 1-c, the output of node 4 is re-routeed

to the output of node 2. Hence, we obtain a new Inexact circuit
(Fig. 1-d) that minimizes the Boolean circuit error.

Before the next pruning step, we compute the circuit logic error
(Alg. 1-C) using probabilistic error propagation [9], [10] and Ham-
ming distance computation. Pruning steps are repeated until the Error
Threshold is reached. Finally, for every modification, i.e., at each
pruning step, a decision is made to keep the modified node or not
depending on the final circuit error. If the error threshold is reached,
the last modification is canceled to strictly stay below the set point.

B. Node Selection and Associated Cost Function

The presented pruning technique uses a cost function to identify
the most relevant node to be pruned. The function considers three
parameters: the Significance (S), the Switching Activity («) and the
Fanout. A relevant node candidate is identified by a low significance,
i.e., a low impact on the output results, but a high Switching Activity
- Fanout product, i.e., a high contribution to the dynamic power
consumption. Therefore, we introduce the following cost function:

Cost = (242) 5+ (;

Fanout.o) ;4
Algorithm 1 Pruning Algorithm Flow and Illustrative Example
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INPUT: Boolean network flattened on basic primitives
Circuit output significance
Circuit input probabilities pq
Ratio
Error threshold
Circuit input error distribution
while CircuitError < Error Threshold do
for (All circuit nodes) do

USER INPUT:

Significance
COMPUTE & ASSIGN — SwitchingActivity } A
COMPUTE — Cost
end for
SELECT node with highest cost — node
MODIFY (node) } B

COMPUTE CIRCUIT ERROR — ClircuitError
end while
Undo last modification

be

OUTPUT: Boolean network pruned flattened on basic primitives




where Syrax is the maximum significance value over the logic
circuit, (Fanout.c),, 45 is the maximum value over the circuit for
the product between fanout and switching activity and 3 is a ratio
between the two terms. The left term of the cost function characterizes
the impact on the output error while the right terms shows the
contribution to their power consumption. Both terms are normalized
and have a value between 0 and 1 included. The normalization allows
us to easily tune the technique towards either more energy efficiency
or lower error, depending on the application.

The significance S and the switching activity « are required to
compute the cost function. They are assigned to the node by the
following methodologies:

a) Significance S: First, we assume that the significance of the
primary outputs of a circuit is given as a design parameter. The
parameter is called Circuit output significance in Alg. 1. Then, we
define the significance of a node as the sum of the significance of the
children nodes connected to its output(s). Therefore, the significance
for every node in the logic circuit is computed by depth-first search
propagation, going from primary outputs to primary inputs. This
computation is illustrated in Fig. 1-b. For example, the gate 3 that is
connected to gates 5 (S(5) = 2) and 6 (S(6) = 1) has a significance
S(3) =3.

b) Switching Activity a: The switching activity in a logic circuit
is computed bottom-up, starting from the primary inputs. First, the
signal probabilities (of being ’1’) are computed for all nodes, in
a recursive manner, according to Eq. (3). As boundary conditions,
the probabilities for the primary inputs are defined by the designer
and denoted Circuit input probabilities p1 in Alg. 1. After that all
probabilities are computed, the switching activity for each node is
computed as p1.(1 — p1).

C. Node Modification Strategy for Error Minimization

When a node is pruned, its output has to be re-routed. We expect
the re-routing to minimize the introduced local error. We evaluate the
introduced local error by the Hamming distance between the initial
truth table of the pruned node and truth tables of the nodes driving
its inputs. Three possible re-routings can be identified: (i) re-routing
of the output(s) to one of the n gate inputs; (ii) re-routing of the
output(s) to Power supply Vo (logic 1); and (iii) re-routing of the
output(s) to the ground GND (logic 0). When different solutions
have the same Hamming distance, we arbitrary select one. In the
example in Fig. 1-c, we show the re-routing of the node 4. We can
either connect its output to the node 2, the input C' or logic 0/1.
We discard the re-routing to logic 0 because of its higher Hamming
distance. We then select the first solution as the re-routing strategy,
and connect the output to node 2.

D. Fast Error Evaluation of the Pruned Circuit

In order to quickly evaluate the error introduced during the pruning
operation, we present a fast error computation method. In previous
works, the circuit error is computed at each steps using time-
consuming logic simulations. Here, after every pruning steps, we
evaluate the circuit error using the following relation:

p8 czrcuzt

Z S.pe(outq) ®)

where M is the number of prunary outputs and p.(outy) the error
probability at the output g. Such a relation takes into account the
impact of the circuit output significance S to identify the outputs
that tolerate a low error probability.
The error probability pe(outq) of an output ¢ is computed using
the following relation:
on

pr £) 6)

out

where n is the number of inputs of the node and p.(f;) is the error
probability associated to each line of the truth table. The contribution
of each lines pe(f;) is evaluated under the following two cases:

CASE I - If the node is intact, i.e., has not been pruned, we consider
the impact of having a non-null error probability at the inputs that
can be propagated to the output‘

fi) 2N ZPF fiz) =

where the ¢-th truth table hne error probability is the sum of the error
probability that line i-th is transformed in the j-th line multiplied
by the Hamming distance between the line ¢-th and j-th of the truth
table (|77°(¢) — T'T(5)]). Intuitively, it corresponds to the probability
of jumping from one line of the truth table to another due to an input
error.

CASE 2 - If the node has been pruned, we consider its modified
truth table, i.e., accounting for the re-routings:

ITT (i) =TT ()| @)

pe(fi) = 55 Zpe fi3) | T T (i) = TT(j)] @®)

where the i-th truth table lme error probability is the sum of the error
probability that line i-th is transformed in the j-th line multiplied
by the Hamming distance between the correct truth table 77(5) and
the modified one 7T, (7).

The overall circuit error is therefore computed by a depth-first
propagation from primary inputs to primary outputs. The pseudo-
code of the error evaluation function is shown in Alg. 2. By default,
we assume the the error probability of the inputs is null, but a non-null
error can be given as parameter, called Circuit input error distribution
in Alg. 1. Such a method operates at the logic network level and is
much faster than a simulation-based approach.

Algorithm 2 Fast error estimation using Hamming distance

GRAPH ERROR PROPAGATION (CurrentN ode)
if (CurrentNode is a Primary Input OR CurrentNode was
already visited) then
RETURN CurrentNode — Error : pe(out)
else
if CurrentN o% — TruthTable in not modified then
pe(fi) = S22, pry [TT () — TT()
else
CurrentN o@\g — T'ruthTable is modified

pe(fi) = Zk 1Pfi;- AT T (i) — TT(j )‘
end if
pe(out) = sk 2 pe(f:)

RETURN CurrentNode — Error : pe(out)
end if

IV. EXPERIMENTAL RESULTS

In this section, we illustrate the interest of the proposed pruning
technique by applying it to various adder circuits.

A. Methodology

The proposed pruning technique is implemented using C language.
Synopsys Design Compiler is used to pre-synthesize an HDL de-
scription into Boolean networks of basic primitives. After pruning,
Design Compiler is used to map the circuit onto a standard cell
library and to evaluate the circuit-level performance. We consider
as evaluation metrics the final area, the delay and the energy of the
resulting circuit, as well as energy-delay product and Energy-Delay-
Area Product (EDAP) as meaningful figure-of-merits. We consider
two benchmarks, a 64-bit Brent-Kung and a 64-bit Han-Carlson
adder, both implemented into 45-nm and 180-nm CMOS technology.
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Fig. 2. Normalized gains vs. relative error percentage of various probabilistic pruned 64-bit adders

For the pruning setup, we set the input switching activities to
0.25 because of the equiprobability to have 0 or 1 at the inputs
(p1 (in) = 0.5). Likewise, the input error is considered null. The
output significance is assigned according to the bit position in the
output word, ie., S(i) = 2°. For our experimental results, we
observed better result for the adders by choosing a 3 parameter
benefiting the significance, i.e., 8 = 1. Other values can be used
to reach other optimization points. A detailed discussion about the 3
parameter is out of the scope of this paper.

B. Post-pruning Experimental Results

The normalized gains on the two 64-bit adder architectures and for
the two considered technologies are summarized in Fig. 2. The curves
show the gains for an increasing target error threshold, i.e., that we
increase the number of node that can be prune over the circuit. For
each pruned circuit, we evaluate the relative error computation.

Our pruning technique results in large energy and area saving
with an EDAP of 1.8x for less than 107%% of relative error for
the Brent-Kung adder and 1.7x for less than an average 10~2% for
the Han-Carlson adder for both technology nodes compared to their
conventional non-pruned counterparts. Those results are showing sim-
ilar performances than in current state-of-the-art pruning techniques
[8]. The pruning technique has an average time of execution of 1.5
seconds'.

V. CONCLUSIONS

We proposed a novel pruning technique developed to generate
approximate circuits. The introduced pruning error is computed at
each step using a probabilistic error propagation and Hamming
distance computation making the evaluation possible at runtime.

'No comparisons with previous work are presented due to the lack of data
available in literature.

The technique was validated on several parallel adder architectures
implemented using both 45-nm and 180-nm technology nodes. Ex-
perimental results proved the efficiency of the technique with Energy-
Delay-Area product reduction of 1.8x for less than 10™%% of relative
error on the considered benchmarks. This technique provides the
designers with a general purpose CAD tool capable to trade the
computation quality for large power consumption, area and delay
of a circuit.
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