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ABSTRACT 

  Electronic-health or E-health is a broad area of 
engineering that leverages transducer, circuit and systems 
technologies for applications to health management and 
lifestyle. Scientific challenges relate to the acquisition of 
accurate medical information from various forms of sensing 
inside/outside the body and to the processing of this 
information to support or actuate medical decisions. E-
health systems must satisfy safety, security and 
dependability criteria and their deployment is critical 
because of the low-power and low-noise requirements of 
components interacting with human bodies. E-health is 
motivated by the social and economic goals of achieving 
better health care at lower costs and will revolutionize 
medical practice in the years to come. 
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INTRODUCTION 

Bettering health care and lowering its costs is a 
pressing economic and social issue, and it is part of the 
agenda of the governments of most countries in the world. 
The rapid expansion of distributed communication and 
computing systems, with low-cost terminals (such as smart 
telephones) suggests that electrical and information 
technology can address many health management issues. In 
parallel, recent discoveries in biology and medicine have 
made these sciences more quantitative, and thus the gap 
between medical and engineering sciences has narrowed.  

Electronic-health, or E-health, has raised many hopes 
to both bring better medical technologies to the patients as 
well as to rationalize and lower health costs. Still, the path 
to make recent discoveries into standard medical practice is 
long and requires efforts at various levels, from scientists to 
practitioners and to legislators. 

Health has to be understood within a broad 
perspective. The World Health Organization (WHO) 
defines health as “a state of complex physical, mental and 
social well-being and not merely the absence of disease and 
infirmity”. For this reason, E-health can address various 
social and market segments with different requirements, 
such as: i) devices and systems for monitoring and 
enhancing the well-being of active people, like 
sportspeople; ii) monitoring devices for the weak sectors of 
the population, such as the elderly, the handicapped and 
those affected by chronic but mild pathologies; iii) 
therapeutic means for diagnosing, monitoring and treating 
peoples with infirmities.  Within these three sectors, barriers 
to adopt new technologies vary widely, as risks, costs and 

projected success rates change. 
 E-health provides the instrument to address some of the 

recent trends in medicine. Predictive medicine exploits the 
wealth of data provided by omics technologies. This field 
has grown because of the dropping costs of human DNA 
sequencing. Personalized medicine addresses cures that are 
tuned to the patient, and thus requires detailed data 
acquisition from the patient. Preventive medicine focuses on 
the quality of aging through appropriate nutrition and 
lifestyle, thus requiring also quantitative monitoring. 
Participative medicine relates to sharing data and 
experiences through means like social media, thus requiring 
selecting and classifying medical information. All these 
trends in medicine benefit and require data acquisition, 
processing and networking technologies. 

 
HEALTH MANAGEMENT  

 Future health management systems will require an 
increasingly larger presence of automation, information 
extraction and elaboration, as well as control of the medical 
procedures. In essence, we can envision three major areas 
that require innovation: i) real-time sensing and data 
acquisition of bio-chemical compound concentrations; ii) 
information networking through a specialized physical 
layer; iii) data elaboration, retrieval and decision-making 
support and/or actuation. 

 Sensing is a discipline that traditionally has been 
developed by communities related to fundamental sciences 
(e.g., physics, chemistry and biology). Despite the large 
number of sensors available, their effective use is limited by 
size, power consumption and lack of effective integration 
with electronic and information systems. In other words, 
most medical data acquisition systems are still based on 
discrete components, much like transistor radios were 
assembled fifty years ago. The integration of sensing with 
electronics, and thus the merging of sensing and electronic 
design, is key to achieving miniaturized, low-power, low-
noise data acquisition chains with detection limits in regions 
of interest for clinical studies. To date, only glucose 
monitoring has reached some form of maturity and some 
FDA-approved devices are available for diabetic patient 
monitoring. 

 The challenges of biomedical electronic systems are 
related to both data acquisition and communication. Indeed, 
sensors in the body need to communicate to external 
devices. Power delivery means can obviate the need of 
implanted batteries, which always present some risk factor.  
Sensors on the body communicate through Body-Area 
Networks (BANs), a new technology with several 
challenges, including energy-efficiency, bandwidth and 
security.  Biocompatibility and the selection of materials 
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and related technologies are also important topics of 
research. 

Information systems for biomedical applications have 
been developed, but they are typically used off line. The 
need for fast responses and their safe and secure interaction 
with electronics on the body and/or in the body is still an 
area of study. Nevertheless, the combination of networked 
databases with on-line data acquisition chains opens the 
door to better therapy as well as to promoting the autonomy 
of the patient and convalescent. 
 
SENSING 

Sensing and bio-sensing technologies have evolved 
through the years, but still a large improvement is required 
for sensors to become effective components of E-health 
chains. Most sensing technologies are based on mechanical, 
optical and electrical technologies [12], each having 
advantages and disadvantages, because of different levels of 
maturity. Nevertheless, the dominant presence of silicon-
based processing circuits and systems suggests that 
electrical sensors compatible with semiconductor 
manufacturing technologies will eventually provide the 
front-end of integrated data-acquisition chains. Indeed, 
integration of sensing and elaboration on the same platform, 
possibly monolithic, is the key to reduce unit costs as well 
as manufacturing variability. Moreover, design 
methodologies that standardize sensing cells on (or over) 
silicon and reminiscent of microelectronic circuit 
semicustom approaches are key to reducing non-recurring 
engineering (NRE) costs in the development of electronic 
sensors.  Indeed it is possible to design sensing cells as units 
of a standard cell library, where each cell is parameterizable 
in terms of range and other attributes. Similarly, it is 
possible to envision arrays of sensing cells that can be 
programmed after manufacturing or even at the moment of 
use (e.g., at point of cares). The design and use of field 
programmable sensing arrays (FPSAs) will be the 
counterpart of field programmable gate arrays (FPGAs) and 
enable flexible and low-cost electronic sensing. 

To date only few wearable/implantable systems are 
available on the market. Most use non-invasive technologies 
to detect vital signs (by means of accelerometers, heartbeat 
monitoring, infrared reflectivity, etc.) and are designed for 
the well-being and lifestyle market.  Continuous (or 
frequent) monitoring of chronic patients, realized at a 
distance  (e.g., telemedicine) can reduce hospitalization time 
and costs as well as better the patient’s life. Some 
pathologies require monitoring molecules in human fluids 
and accurate measures can be achieved by invasive means 
only. In the case of diabetes, some telemetry systems exist 
that use a wearable station coupled with a needle [13]. 

A possible evolution of these systems is related to the 
miniaturization of sensing probes and related circuits, and 
thus to the realization of intelligent subcutaneous implants 
[6]. At the same time, monitoring some pathologies requires 
measuring simultaneously multiple substances. Thus, 
scientific challenges relate to designing means for 

monitoring accurately multiple substances with detection 
limits and ranges within the therapeutic window of interest. 

 An example and prototype of a future implantable 
sensing system for monitoring human metabolism [3] is 
shown in Figure 1. Examples of molecules that can be 
monitored include glucose, lactate, cholesterol, ATP, 
glutamate and others. The system consists of: i) an 
implantable integrated sensor array and data acquisition 
electronic unit; ii) a wearable station for remote powering 
and signal processing; iii) a remote station for data 
collection and storage. The implant is housed in a bio-
compatible cylinder of about 3mm of diameter and 20mm in 
length, to be placed in the interstitial tissue. The current 
prototype includes: a sensor array, a CMOS mixed-signal 
chip and a tridimensional integrated coil for receiving 
inductive power and transmitting data via backscattering. 
The sensor array is realized with an innovative technology, 
where Carbon NanoTube (CNT)-nanostructured electrodes 
enable us to measure metabolites with increased sensitivity 
and lower detection limits as compared to the state of the art 
[2]. The integrated electronic and sensor array requires 0.5 
mW to operate: the electronic power is harvested by the coil. 
An electronic patch on the body produces the inductive field 
to power the implant, receives the backscattered data, and 
transmits it to a base station using the Bluetooth standard.  

 

 
 

Figure 1: The I-Ironic implant as encapsulated for in-vivo tests in 
mice [3]. 
 
DRUG ADMINISTRATION 

 Clinical treatment is largely based on drug 
administration, mainly effected by the patient or practitioner 
and only partially personalized to the patient.  Sensors, 
actuators and control systems will eventually revolutionize 
clinical therapy, by providing means of tightly controlling 
the time and dose of drug administration as well as by 
automating the process. Such approaches will enhance the 
efficacy of drugs while limiting undesirable side effects. 
Today most variability in drug response (roughly 80%) 
resides in the pharmacokinetic (PK) phase, i.e. in dose-
concentration relationships. Drug doses are typically 
strongly quantized (for packaging and handling reasons) and 
drug dosing is based upon heuristics. 
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Figure 2: Implant to monitor infused drug concentration in 
laboratory animals [1]. 

 
      Indeed, in current clinical pharmacology, the initial drug 
dose is chosen on the basis of previous medical experiences. 
It can be consequently modified based on the presence of 
adverse events or non-responsiveness of a patient to the 
treatment. However, this experience-driven method is not 
suitable to many kinds of drugs. There is a class of 
medicines, e.g., drugs for treating HIV, cancer, etc., whose 
effective therapeutic concentration range is quite narrow and 
therefore there is a very high risk to under- or over-dose a 
patient. Under-dosing will lead to an ineffective treatment, 
while over-dosing will expose the patient to a risk of 
toxicity. Thus controlling the drug concentration to be 
within the therapeutic range is essential to properly carry out 
the clinical monitoring; in other words, it is necessary to 
know how the human body affects the drug assimilation. 
The use of sensors, to measure drug concentration in the 
bloodstream [1] and of actuators (such as infusion pumps) 
can address the personalization and automation of drug 
administration but only through a specific decision and/or 
control system. 

 

Figure 3: Examples of drug concentration curves for various doses 
intersecting the peak (a) and trough (b) therapeutic  ranges [15].  

      Medical decisions are critical to patients’ health and to 
the effective use of medical resources [4]. Several problem 
arise: i) the definition of a formal protocol for a given drug 
(e.g., Imatinib [11]) and its validation; ii) the decision of a 
therapy for a given patient; iii) the realization of a therapy 
by means of a drug administration system.  There is a 

plethora of approaches to address these important and 
multifaceted problems [11]. Clinical Decision Support 
Systems (CDSSs) are computer-based information systems 
that support clinical decision-making according to the 
characteristics of an individual patient [8]. CDSS are based 
on a computerized clinical knowledge and/or expertise and 
can generate recommendations for specific patients [7]. In 
particular, a specific class of health-care procedures within 
CDSS address the personalized computation of a suitable 
drug dose for a new patient based on the prediction of the 
blood drug concentration by taking into account patient’s 
features. There have been several models developed in 
support of PK studies that are able to predict the drug 
concentration in the blood. These models can be classified 
as analytical, statistical and based on machine learning. 
Analytical models are able to account only for the variables 
with real values, while binary-valued variables, such as 
gender, create strong discontinuities in the models and are in 
general not taken into account by the methods. Statistical 
approaches, including Bayesian approach [14], require the 
knowledge of the data distributions, such as mean and/or 
deviation values. For newly-developed drugs which do not 
have a sufficient study on the patients, it is difficult to assess 
a proper mean or deviation value to compute the 
concentrations for the patients. Systems based on machine 
learning, e.g., Support Vector Machine (SVM) based 
algorithms [15], can be very effective in predicting drug 
concentration in presence of parameters of various types. 
Within this framework, an advanced Drug Administration 
Decision Support System (DADSS) can assist medical 
doctors in decision-making regarding the drug dose 
adaptation during different phases of the treatment [11]. 
DADSS is able to recommend the dose and the intake time 
interval for a new patient in a personalized manner.  

SYSTEM-LEVEL ISSUES 
 The design of health management systems and their 

operation must satisfy requirements typical of life-critical 
systems. In particular, such systems must be safe, secure 
and dependable.  

 Safety means that the system must present no treat to 
patients and to operators. Safety relates to the use of specific 
bio-compatible materials as well as containing possibly 
harmful substances. The operation of the overall system 
must be safe for the patient. In the specific case of DADSS, 
drug dispensing must fit the safety margins under all 
environmental conditions. Thus two conditions must be 
satisfied. The therapeutic protocol must be safe, which can 
be guaranteed only in the case that a formal model [5] is 
available and that it is formally verified. Then the 
implementation of the DADSS must be verifiable against 
the protocol by means such as model checking [9].  

 Security relates to both observability and controllability 
measures. The system must not allow unauthorized parties 
to have access to private medical information. Nevertheless, 
it is conceivable that a medical doctor can have access to all 
information in an emergency situation. At the same time, the 
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(a) Example of Peak Concentration Range
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(b) Example of Trough Concentration Range

Fig. 1 An Example of the Drug Concentration Curves Intersecting with the Peak and Trough Therapeutic
Ranges. Curve (1)’s dose = 800 mg, Curve (2)’s dose = 600 mg, Curve (3)’s dose = 400 mg.

Ideally, two different therapeutic ranges are defined for a drug: one for the peak
and another one for the trough values of the drug concentration. Both Figures 1(a) and
1(b) depict three examples of the drug concentration curves each, that are defined
by PK studies. The therapeutic peak range (PkBDlow up to PkBDup) and the ideal
value (PkBDm) are defined in Figure 1(a) while the trough range (TrBDlow up to
TrBDup) and the ideal value (TrBDm) are presented in Figure 1(b). The ideal drug
concentration curve is the one whose peak and trough values are as close as possible
to the corresponding ideal peak and trough values.

3.2 Statistics of the drug imatinib

Imatinib [6] is a drug used to treat chronic myeloid leukemia and gastrointestinal
stromal tumors, that is considered in our study. Until now, only a trough therapeutic
range of this drug has been proposed and is presently being validated in a random-
ized clinical study in leukemia patients (I-COME; ISRCTN31181395). The trough
range has a lower bound at 750 mg/L, upper bound at 1500 mg/L and target value at
1000 mg/L [43]. The available training data in our research are 251 collected from
54 patients and 209 testing data from 65 patients, which distribute with respect to
different doses as shown in Table 1. The set of input features of patient profile data
includes: {Gender, Age, and Body Weight}, which, together with the “dose amount”,
the “measuring time” and the “measured drug concentrations”, consist of the data
library for [7], [8], [9], [10].

In [7] we have presented the Support Vector Machine (SVM) algorithm for drug
concentration predictions able to account for different feature parameters of a patient,
where we found that the feature “measuring time” is the most important feature to
calculate the Drug Concentration (DC) values in blood. However, the Mean Absolute
Difference (MAD) between the predicted and the measured concentrations were still
large. We concluded that this large difference was possibly caused by two factors: (i)
measured data samples are noisy; (ii) insufficient types of features are considered. In
[9], we applied the RANdom SAmple Consensus (RANSAC) algorithm to remove
the “outliers”, or noisy data, from all our data samples and analyzed the influence of
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system’s operation should be fully protected by intrusions or 
interferences that can modify the system operation. 

 
Figure 4: The dose adjustment formal protocol for Imatinib [11]. 
 

Dependability is a generic term that encompasses 
reliability and availability. It is important that the system 
has a very small and bounded probability of failure during 
its operation. The use of bio-sensors and biomaterials, that 
degrade with time and that interact with living cells and 
tissues, must be carefully analyzed to avoid unexpected 
failures. Moreover, it is expected that health management 
system have graceful degradation modes in case of local 
failures. 

We expect the design of such systems to be effected by 
means of a rigorous design methodology, starting from 
formal high-level specifications and providing 
implementation models that are formally verifiable. 
Whereas this approach has been applied to electrical and 
electromechanical systems (e.g., aircrafts), the presence of 
biological materials and processes provides a new challenge 
in abstracting and modeling them. 
 
CONCLUSIONS 

E-health is going to revolutionize health care as much 
as information technology as changed our way of 
interacting.  Thus it represents a broad area of research as 
well as a wide potential market for applications for well-
being and health management. This review has just 
scratched the surface of a wide body of activities that 
includes both invasive and non-invasive sensing 
technologies, imaging, telemedicine, support for surgery as 
well as the crosspollination of these fields. The Nano-
Tera.ch research initiative [10], funded by the Swiss 
government, is exploring some of these important themes. 
Similar research activities in the world are also contributing 
to giving a new meaning to the words ‘electronic’ and 
‘health’ combined together, as enablers for a better society. 
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Fig. 3. Imatinib dose adjustment protocol.

we present the modeling of the controlling observers of the response levels built
using the definition presented in Ref. 11.

4.1. Imatinib dose adjustment and delivery models

Imatinib, marketed by the drug manufacturer Novartis as Gleevec R� or Glivec R�, is
a drug used to treat chronic myelogenous leukemia (CML), gastrointestinal stromal
tumors (GISTs) and a number of other malignancies. The complete drug adminis-
tration protocol of imatinib can be found in Ref. 6.

According to the protocol in Ref. 6, the prescribed dose should be administered
orally once a day (p1 = 1 day), with a meal and a large glass of water while patients
should keep normal eating habits. However, for some drugs that can be delivered
intravenously the corresponding dose adjustment and drug administration could be
performed by an automatic device similar to the infusion pump in Ref. 21.

Figure 3 depicts the model of drug dose adjustment and delivery based on test
results. The model is represented by a network of three cooperating TAT models.
The upper left TAT model in this figure consists of two locations (init1 and action1)
and is responsible for the periodic drug delivery. It has location init1 set as the initial
location. Thus every period p1 (when clock t1 is equal to p1), this TAT model is
transiting to the action1 location. On this transition the clock t1 is set to 0 and
the GiveDose task is activated (added to the common task queue). The transition
from the action1 location to the init1 location is then taken. This model would
either give a periodic reminder to a nurse to give a dose to a patient, or directly
to a patient to take its drug, or send a command to a drug delivery device if this
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