BDS-MAJ: A BDD-based Logic Synthesis Tool
Exploiting Majority Logic Decomposition

Luca Amaru, Pierre-Emmanuel Gaillardon, Giovanni De Micheli
Integrated Systems Laboratory (LSI), EPFL, Switzerland.

Abstract—Despite the impressive advance of logic synthesis during the
past decades, a general methodology capable of efficiently synthesizing
both control and datapath logic is still missing. Indeed, while synthe-
sis techniques for random control logic (AND/OR-intensive) are well
established, no dominant method for automated synthesis of datapath
logic (XOR/MA J-intensive) has yet emerged. Recently, Binary Decision
Diagrams (BDDs) have been adopted to create an optimization system,
named BDS, that supports integrated synthesis of both AND/OR- and
XOR-intensive functions through functional logic decomposition on the
BDD structure. However, it does not support direct decomposition and
manipulation of majority logic which, instead, is widely used in datapath
circuits. In this paper, we present the first BDD-based majority logic
decomposition method and a logic decomposition system, BDS-MAJ, that
enables efficient logic synthesis for both random control and datapath
circuits. Experimental results show that logic synthesis based on BDS-
MAJ produces CMOS circuits having on average 28.8% and 26.4% less
area and, at the same time, 12.8% and 20.9% smaller delay with respect
to academic ABC and BDS synthesis tools. Compared to commercial
Synopsys Design Compiler synthesis tool, BDS-MAJ reduces on average
the circuit area by 6.0% and decreases the delay by 7.8%.

Categories and Subject Descriptors

B.6.3 [Design Aids]: Automatic Synthesis, Optimization

General Terms
Algorithms, Design, Performance, Theory.

Keywords
Majority Logic, Decomposition, BDD, Logic Synthesis.

I. INTRODUCTION

Virtually all digital integrated circuits are realized using logic
synthesis techniques [1]. Whereas most circuits contain datapath and
control functions, current logic synthesis tools are better at synthesiz-
ing control logic as compared to datapaths, especially when arithmetic
functions are involved. Indeed, original logic synthesis techniques
[2]-[5], which are the basis for current commercial tools, exploited
algorithms using AND/OR representations, while arithmetic/datapath
circuits are rich in XOR and MAJORITY functions. A major aim
for today’s synthesis tools is to handle properly both random control
and datapath logic to fully and efficiently automatize ASIC designs.

A step toward this direction is enabled by the use of Binary
Decision Diagrams (BDDs) [6]—[8] as logic representation structures,
because they are typically compact for a wide class of functions,
including AND/OR- and XOR/MAJ-intensive functions. To exploit
this opportunity, BDDs are considered in [9]-[14]. In these works,
BDDs support automated synthesis through efficient logic decompo-
sition. In particular, a BDD-based decomposition theory is proposed
in [10] to support various logic structures, e.g., AND, OR, XOR and
MUX. Based on this theory, a practical synthesis tool named BDS is
described in [10] and refined in [11]. BDS advantageously synthesizes
both AND/OR- and XOR-intensive functions thanks to an unified
methodology. However, BDS still does not manipulate majority logic
losing further optimization opportunities in datapath circuits.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

DAC 13, May 29 - June 07 2013, Austin, TX, USA.

Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00.

In this paper, we aim to extend the capability of current logic
synthesis methods by focusing on majority decomposition which
is useful for both for datapath (XOR/MAIJ-intensive) and control
(AND/OR-intensive) logic. To this end, we present the first ma-
jority logic decomposition method based on BDD. We integrate
the proposed majority decomposition technique in the current state-
of-art BDD-based decomposition tool, BDS-PGA [11], in order to
create a new complete decomposition tool, BDS-MAJ. Large MCNC
and custom datapath benchmarks are used to evaluate BDS-MAI.
Thanks to its runtime efficient algorithms, BDS-MAJ decomposes the
largest benchmarks in few seconds. BDS-MAJ produces decomposed
networks having on average 29.1% fewer nodes as compared to
BDS-PGA. To exploit the new decomposition feature, we employ
BDS-MA in a standard optimization-mapping synthesis flow. Exper-
imental results over MCNC and custom datapath benchmarks show
that BDS-MAJ outperforms academic ABC and BDS synthesis tools
by 28.8% and 26.4% in less area, respectively, and by 12.8% and
20.9% in smaller delay, respectively. When compared to commercial
Synopsys Design Compiler, BDS-MAJ produces, on average, circuit
with 6.0% less area and 7.8% smaller delay.

The remainder of this paper is organized as follows. Section II pro-
vides a background on BDD-based logic decomposition. In Section
II1, the new majority logic decomposition method is presented. Then,
in Section IV, the implementation of the BDS-MAJ decomposition
system is discussed. Experimental results for BDS-MAJ are presented
and compared with state-of-art commercial and academic synthesis
tools in Section V. We conclude the paper in Section VI.

II. BACKGROUND AND MOTIVATION

This section presents relevant background about Binary Decision
Diagrams (BDDs) and related logic decomposition. Notations and
definitions for BDDs are also introduced.

A. Binary Decision Diagrams

BDDs are logic representation structures that were first introduced
by Lee [6] and Akers [7]. The notions of ordering and reduction of
BDDs were introduced by Bryant in [8], where it was shown that,
with these restrictions, BDDs are a canonical logic representation
form. Canonical reduced and ordered BDDs are often compact and
easy to manipulate, and are therefore widely used in EDA and other
fields. We assume that the reader is familiar with basic concepts of
Boolean algebra and BDDs (for a review see [1], [10]). We review
hereafter only the basic notation used in the rest of the paper.

B. Notation

A BDD is a Direct Acyclic Graph (DAG) representing a Boolean
function. A BDD is uniquely identified by its root, the set of internal
nodes, the set of edges and the 1/0-sink nodes.

Each internal node in a BDD is labeled by a Boolean variable v
and has two out-edges labeled O and 1. Each internal node represents
the Shannon’s expansion with respect to its variable v and the 1-
and 0-edges connect to positive and negative Shannon’s cofactors,
respectively.

Edges are characterized by a regular/complemented attribute: com-
plemented edges indicate to invert the function pointed by that edge.

We refer hereafter to BDDs as to canonical reduced and ordered
BDDs [8], that are BDDs where (i) each input variable is encountered
at most once in each root to sink path and in the same order on all

such paths, (ii) each internal node represent a distinct logic function
and (iii) only 0O-edges can be complemented.

C. BDD-based Logic Decomposition

BDDs are exploited to achieve efficient logic function decom-
position [9]-[14] thanks to the notable characteristics of the BDD
structure. Special classes of nodes, defined as dominators, are used
in [10], [11], [14] to guide the decomposition process directly on
the BDD structure. Dominator nodes allow us to uniquely iden-
tify substructures in the BDD that are corresponding to specific
decomposition types. In [14], 0- and 1-dominators are introduced
to support disjoint AND/OR decompositions. Similarly, in [10], z-
dominators are defined to support disjoint XNOR decomposition.
Generalized 0-, 1- and x-dominators are also introduced in [10]
to achieve general non-disjoint decompositions. The decomposition
system BDS [10] is based on dominator nodes driven decomposition.
BDS exhibits better decomposition results for XOR/XNOR-intensive
circuits as compared to traditional AND/OR optimization techniques
while maintaining good results quality also for random control logic
[10]. A successive version of BDS has been proposed in [11],
named BDS- PGA, incorporating further decomposition schemes that
generate area-minimal logic networks. Despite BDS and its evolutions
are efficient to decompose a great variety of logic functions, they
are still missing the opportunity to identify majority decomposition
structures, that are widely used in datapath circuits as well as in
some random control applications. Note that early attempts to achieve
majority logic decomposition are already reported in the 60’s [15],
but, due to their intractable complexity, failed to gain momentum later
in automated logic synthesis. We address, in this paper, the unique
opportunity led by efficient majority logic decomposition employed
in a contemporary synthesis flow.

III. MAJORITY LOGIC DECOMPOSITION

In this section, we present our novel majority logic decomposition
theory. First, the existence of majority decompositions for general
logic functions is studied. Then, the search for majority dominator
nodes on BDDs is introduced, and, subsequently, the actual majority
decomposition construction, optimization and selection phases are
described. Finally, the computational complexity of the proposed
decomposition method is evaluated.

A. Majority Decomposition

The aim of majority logic decomposition is to express a Boolean
function F' in the form Maj(Fq, Fy, Fe).

Theorem 3.1: (Existence of majority decomposition) Given a
Boolean function F', there always exists a decomposition for F' in
the form F = Maj(Fa, Fp, Fe).

Proof: (By construction) We consider, in the context of the proof,
to operate at truth table level to build functions Fy, Fj and Ft. The
truth table for the original function F' has 215uPP(F)l rows. each one
indicating a distinct input combination and the corresponding logic
value assumed by F'. Now, we add in the truth table for F', other
additional three columns indicating the logic values assumed by F,
F, and F. for the same input combinations considered in F'. For
each of these input combinations (row of the truth table) we impose
that two functions over three (the choice of the couple is free for
each row) among F,, F} and F,. must assume the same value of F'
while the remaining one is free to be set to any logic value. In this
way, Maj(F,, Fy, F.) = F is respected for each row, and therefore
for all the possible input combinations. |

Thus, as a consequence of the symmetry in the majority operator,
there exist many possible majority decomposition structures for
a function F'. In order to reduce the search space for majority
decompositios, it is useful to first determine one of the three functions
and then apply majority construction methods for the remaining two.

The choice of the first function, F,, is a crucial point that determines
the quality of the resulting majority decomposition. BDDs offer the
opportunity to efficiently identify candidates for F, through the use
of a special class of nodes, majority dominators, defined in the next
subsection.

Our majority decomposition method is presented in Algorithm 1.
First, candidates for the function Fy, are searched on the BDD (cx)

Algorithm 1 Majority decomposition method
INPUT: Boolean function F'
OUTPUT: F = Maj(Fa, Fy, F¢)
FUNCTION: MajDecomp(F’)
Build a BDD for F'

m-dom-list «<—Search for non-trivial m-dominators (o)
for all nodes v in m-dom-list do
Fy, is the function rooted at node v (o)
F, = ITE(F, & F,F, Fg,) (8)
Fe=ITE(F, ®F, F, Fg,) (8)
while (improvement)&&(iterations<limit) do
for all couples (X,Y’) among Fy,F} and Fe. do
Fo,=XaY ()
XOR-decompose Fy in M and K (balance) (v)
Xopt = ITE(Fy, K, X) (v)
YOPt:ITE(vany) (’7)
end for
evaluate improvement
increase iteration count
end while
if isbest(current decomposition)==1 then
best decomposition <— current decomposition (w)
else
keep previous best decomposition (w)
end if
end for

using majority dominators. Then, an initial solution for the majority
decomposition F' = Maj(F,, Fy, Fe) is determined (3). Succes-
sively, the initial solution is optimized via an iterative procedure
(). Finally, the best decomposition over all the Fy candidates is
selected (w). The four major phases of Algorithm 1 are detailed in
the following subsections.

B. Majority Dominator on a BDD

BDDs allow us to identify advantageous logic decompositions.
Dominator nodes have been reported in [10] to support AND, OR,
XOR, XNOR and MUX decompositions. Similarly to this approach,
we search for nodes whose characteristics lead to an efficient majority
decomposition, (a)-phase in Algorithm 1. We call such nodes m-
dominators. A m-dominator node is the root for the candidate
function F,. Following Theorem 3.1, every node in the BDD can be
a valid m-dominator but some of them lead to a non-advantageous
decomposition. For this reason, we introduce some characteristics
to select non-trivial m-dominators leading to potential advantageous
majority decompositions. We refer to a non-trivial m-dominator as
to an internal BDD node that:

(i) it is not a simple z-, 0- or 1- dominator.
(ii) has more than one non complemented 0-incoming edges and
l-incoming edges,

Condition (i) avoids simple z-, 0- and 1- dominators [10] since
they uniquely indicate XNOR, OR and AND disjoint decomposi-
tions. The intuition behind condition (ii) is that the function Fj in
Maj(F,, Fy, F.) must be reached for all the input combinations
corresponding to Maj(Fa,0,1) and Maj(Fa,1,0) and therefore is
most likely a highly connected node (high fan-in) in the BDD. Fig. 1
depicts the BDD for a simple F' = ab + bc + ac and highlights its
non-trivial m-dominator.

0-edge, »**
complemented

Fig. 1: BDD for the function ab + bc + ac, non-trivial m-dominator
highlighted in red.

C. Majority Decomposition Construction

Once a candidate F, is identified, the majority decomposition
is constructed computing two F, and F. functions, ((3)-phase
in Algorithm 1. These two functions, F; and F., must respect
F = Maj(Fa, Fy, F.) for all the possible input combinations. In
particular, for the input combinations such that F' and F, have
different values, the functions F} and F. must assume the same logic
value as F' to guarantee Maj(Fy, Fy, Fe) = F. On the other hand,
for the remaining input combinations, F' and F7, have the same value
and only one function between F3 and F. must assume the same
value of F' to guarantee Maj(F,, Fy,, F.) = F, the remaining one
is free to assume any logic value. This concept is formalized in the
following theorem.

Theorem 3.2: (Majority logic construction given F,) Given a
function F' and a candidate function F,, a majority decomposition
F = Maj(F,, Fy, Fe) is valid if and only if:

F, = ITE(F, & F,F,H) o
F.=ITE(F, & F,F,W)

where I'TE is the if-then-else logic operator and H, W are logic
functions satisfying the equation:

(HBF)+ (WeF)=1)

Proof: Let S be the set of all the possible input combinations
for . Let S(pxr,) be the subset of S such that F,, # F (e,
F, = F). Let S(p—p,) be the subset of S such that F, = F. Note
that S(F:F‘a) ﬂS<F¢FQ) = () and S(F:Fa) US(F;éFa) = S. We need
to prove the theorem valid for all the input combinations (5). To this
end, we divide the rest of the proof in two parts, first for the input
combinations in S(rr,) and successively for S(r—r,).

(i) Input combinations from S(rxF,). For these inputs, the ITE
operators in Equation 1 always return the then part, since F' @ Fj,
is always true when F' # F,. Consequently, F, = F, = F and
Maj(F,, Fy, F.) = Maj(F,F,F) = F which is the only valid
majority decomposition for S(p.p,) input set. Indeed, note that
if F, or F. assume any other value than F', the decomposition
Maj(F,, Fy, F.) will be equal to F' and not anymore to F.

(ii) Input combinations from S(p—p,). For these inputs, the ITE
operators in Equation 1 always return the else part. Therefore,
Fy,=H,F. =W and Maj(F,, Fy, F.) = Maj(F,H,W). Since
Equation 2 imposes that, for every input combinations, at least one
function between H and W is equal to F', the majority decomposition
always have at least two terms equal to F', which is a sufficient
condition to say Maj(F, H,W) = F. To show that this is the only
valid decomposition, consider to use the complement of Equation 2.
In this case, both H and W are not equal to ' but to its complement
F, therefore the decomposition Maj(F, H,W) = Maj(F, F,F)
will be equal to F' and not anymore to F. |

Following Theorem 3.2, the choice of H and W functions re-
specting Equation 2 is the only freedom left to design a majority
decomposition for F', given Fj,.

Consequently, the choice of H and W is a key point to obtain
minimum-sized F} and F. functions. A trivial solution is H = F
and W = ”Don’t Care”. Obviously, this is an inefficient solution
since F} reduces to the original F itself.

Unfortunately, exact-methods to find the best H and W optimizing
a given metric and respecting Equation 2 are intractable. For this
reason, we propose to use as initial seed the two following functions:

H = Fg,
{ W= e 3)

where the expression Xy stands for the generalized cofactor
of function X w.rt. function Y. The generalized cofactor can be
efficiently computed using BDD algorithms such as restrict [17] and
constraint [18]. We prove that the proposed initial seed lead to a
valid majority decomposition in the following theorem.

Theorem 3.3: (H and W initial seed) The H and W functions of
Equation 3 respect the condition in Equation 2.

Proof: (H®F') + (W@F') condition from Equation 2 reduces
to (Fr,®F)+ (FF(;@F). Expanding F" into Fr, Fo + Fir/ F! inside
the formula, we get Fr, Frr + Fr, + F}é + Fp, F, + Fp: F, that
can be further simplified in Fr, Fr: + (Fr, Fp: Y +Fr, Fi+ Fp Fy
which is indeed a tautology. Equation 2 is therefore respected. W

Using the initial seeds for H and W functions, a non-trivial
majority decomposition can be constructed starting from the original
function F' and the candidate F,, function.

Example (Majority decomposition construction): F' = ab+bc+ac.
Fo is a as highlighted by Fig. 1. H = Fp, =b+c W = Fp, =
be. Applying the ITE operator we get F;, = b+ ¢ and F. = bc.
Maj(F,, Fy, F.) = Maj(a,b+ c,bc) = ab + bc + ac is valid.

As evidenced by the previous example, the H and W formula in
Equation 3 may not highlight the most convenient F3 and F. func-
tions. In order to further optimize the couple of functions (3, F¢),
but also (Fg, Fc) and (Fu, Fy), we propose a cyclic optimization
procedure.

D. Majority Decomposition Optimization

Given a majority decomposition F' = Maj(Fa, Fy, Fe), it is possi-
ble to minimize F,, F} and F., while maintaining the decomposition
validity. This is done during (+)-phase in Algorithm 1, exploiting the
majority operator functionality. Indeed, for each possible input com-
bination, if a pair of functions (X,Y) among (F,, F} and F.) assume
the same value, this is the output value of the majority operator,
while if the logic values of (X,Y) are opposite, the majority operator
is uniquely determined by the remaining function. In the latter case,
the actual values of (X,Y) are not important, it is only needed that
X=£Y. This opens up the possibility to restructure and balance the pair
of functions (X,Y) in order to reduce the complexity of the current
majority decomposition. The majority balancing concept is illustrated
by Fig. 2 and formalized in the following theorem.

Theorem 3.4: (Majority decomposition balancing) Given a major-
ity decomposition ' = Maj(F,, Fy, F..), any pair of functions from
(Fa, Fp and Ev), say for example (Fy, F¢), can be restructured as:

Fyres = ITE(F, ® F., K, Fy) 4)
Frolres = ITE(Fb @ Fe, M, FC)

where K and M are logic functions satisfying the equation:

(Mo K)=(FoTI) (&)

F=Fa
Input combinations such that:
) = =®

Fc Je—>{Fb
Fc and Fb

maintain Fc#Fb true

Strategy:

Maj(Fa,Fb,Fc)

Input combinations such that:
Fc=Fb

maintain Fc=Fb true

=(®)

Strategy: leave untouched Fa=Fb

Fig. 2: Majority decomposition balancing. For the input combinations such that F}, = F, the original function becomes F' = F, = F. and
the values of F}, F. cannot be touched, without involving Fj,. Instead, for the input combinations such that Fy, # F, the original function
becomes F' = F, and the actual values of F}, Fi. do not matter provided that F}, # F. remains valid. It is then possible to restructure Fp,F.

Proof: Similarly to the proof of Theorem 3.2, we define S as
the set of all the possible input combinations for F', S(p —r,) the
subset of S such that F, = F. and S(F,+F,) the subset of S such
that Fy # F.. We divide the proof in two parts, first for the input
combinations in S(r,—r,) and successively for S(p,+r,).

(i) Input combinations from S(g, —r,). For these inputs, the ITE
operators in Equation 4 always return the else part. Consequently,
Fy_res = Fp and F._res = F. and Maj(F,, Fy, F) remains valid.

(ii) Input combinations from S(r,r,). For these inputs, the
ITE operators in Equation 4 always return the then part. Conse-
quently, Fy—res = K and Fe—res = M and Maj(Fa, Fy, Fe) =
Maj(Fa, K, M). Note that for the considered inputs in S(p, +5,),
Maj(F,, Fy,F.) = F, since Fp, and F. assumes opposite
logic values. Indeed, Maj(F,, K, M) = Maj(F,, K,K) due to
Equation 5 evaluated for the same inputs in S(g,«r.). Finally,
Maj(F,, K,M) = Maj(F,, K, K) = F, remains a valid majority
decomposition. |

The effectiveness of the decomposition balancing operation de-
pends on the way K and M functions are chosen. BDD-based
XOR decomposition methods in [10] offer an efficient opportunity
to compute balanced M and K functions starting from (Fy @ F.),
and therefore respecting Equation 5. In Algorithm 1, we employ
such core techniques to obtain M and K functions. Then, the
decomposition balancing/optimization operation is iterated over all
the possible functions pairs and till there is a complexity reduction,
or the maximum number of iterations is reached.

We present the majority optimization method applied to the previ-
ous example.

Example (Majority decomposition balancing): F' = ab + bc + ac.
F, = a, Fv = b+ c and F. = bc from the previous example.
(Fy ® F.) = ((b+¢) ® (be)) = (b ® ¢). The XOR-decomposition
of (b@c) leads to K = b, M = c. The ITE operators of Equation 4
finally achieve F}, = b and F. = c. No more optimization is needed:
F,=a, F, =band F. = ¢, Maj(a,b,c) = ab+ bc+ ac.

E. Majority Decomposition Selection

Algorithm 1 produces a number of different majority decomposi-
tions F' = Maj(Fy, Fy, F¢) equal to the number of non-trivial m-
dominators, corresponding to Fi, candidates, in the BDD for F'. In
order to evaluate the best majority decomposition among the others,
(w)-phase in Algorithm 1, some metric is needed. We use as a
first metric the size (|F|) of the decomposed functions: a majority
decomposition 1 is superior to another majority decomposition 2
if (|Fat| + |Fo| + |Fual) < ([Faz| + |Fa| + |Fea|). However,
this condition alone does not permit to evaluate the specific balance
between each decomposed function. We employ as additional condi-
tion taking in account this property (k|Fo1| < |Faz|)&(k|Fp1| <
|Fyo|)&(k|Fe1| < |Fe2|), where & stands for the logical AND
operator and k is a sizing factor determined heuristically.

E. Majority Decomposition Computational Complexity

In order to estimate the computational complexity of the proposed
decomposition method, we denote by N the number of nodes in the
BDD for the original function F'. We consider in this paper a fully
BDD-based implementation of the majority decomposition method.
Thanks to the efficiency of BDDs manipulation algorithms and to
the BDDs representation canonicity [8], the IT'E and 2-operands
Boolean operators are always guaranteed to produce minimized
BDDs, for a given variable order, despite having redundancy in the
inputs. The most expensive operation in Algorithm 1 is the ITFE
operator that, as employed there, has a computational complexity
of O(N?) [19]. Instead, any Boolean operator of 2 arguments [8]
has here a computational complexity of O(N?). The cyclic majority
optimization loop is limited to take a prefixed maximum number
of iterations. The number of non-trivial m-dominators is in general
O(N) but can be adjusted on the fly specifying tighter selection
constraints about the fan-in of m-dominators. The overall majority
decomposition algorithm has O(N*) computational complexity. Note
that, in practice, the runtime is much less than O (N 4). Indeed, (1)
the ITE and 2-operand Boolean operators have a typical runtime
performance close to the size of the resulting function (|F'|) [19] and
(i1) the number of non-trivial m-dominators can be made remarkably
small with tight selection constraints.

IV. BDS-MAJ SYSTEM IMPLEMENTATION

This section introduces a complete logic optimization system,
BDS-MAJ. BDS-MAJ integrates the majority decomposition method
proposed in Section III with the BDD Decomposition System (BDS)
presented in [10], [11]. The synthesis flow for BDS-MAIJ is shown
in Fig. 3. The network partitioning and factoring trees optimization
phases are maintained the same as in BDS. We refer the reader
to [10] for a detailed description of these phases. The BDD-based
decomposition engine from [10] is here adapted to support M AJ
decomposition in addition to XOR, AND, OR and MU X decom-
positions that are currently supported in BDS [10], [11]. A concise
description of the network partitioning phase is provided in the
next subsection. Then, details for the BDD-decomposition engine are
given. Finally, factoring trees optimization is briefly reviewed.

A. Network Partitioning

Since the manipulation of a global BDD may be impractical for
large logic circuits [20], in BDS [10] a preprocessing of the input
Boolean network is proposed. It consists of a partial collapsing of
the input circuit into a set of supernodes. Each of these super nodes
is then efficiently represented as a local BDD. The actual partial
collapsing method is implemented in [10] using an evolution of the
eliminate procedure described in [21]. In BDS-MAJ, we maintain
untouched the network partitioning phase from BDS [10].

B. BDD Decomposition Engine

The BDD-decomposition engine in [10] takes in input each BDD
produced by the network partitioning phase. As a first step, it per-
forms variable reordering to compact the size of the input BDD. Then,

| Boolean Network |

BDS-MAJ

Network Partitioning
Global/Local BDDs

BDD Decomposition
AND, OR, XOR, MUX, MAJ

Factoring Trees Opt.
Logic Sharing
I

Technology Mapping
Fig. 3: BDS-MALI synthesis flow and its main phases.

it starts a search for efficient BDD decompositions. Dominator nodes
are used to guide the decomposition process. Simple dominator nodes
(0-, 1- and x- dominators) are first considered since they indicate
advantageous disjoint decompositions. If no simple dominator is
found, the search continues for general dominators that enable non-
disjoint decompositions. As a last resort, if no dominator nodes are
found, the BDD is decomposed by cofactoring with respect to the
top variable (MUX).

We embed our majority decomposition method on the top of the
dominator nodes search. Even though that the proposed method
obtains general non-disjoint decomposition, a complex radix-3 de-
composition (MAJ) is potentially much more advantageous than the
traditional radix-2 decompositions (XOR, AND, OR).

In BDS-MAJ, if no m-dominators are found or if the obtained
majority decomposition is considered not advantageous for the global
decomposition, the standard dominator nodes search in [10] is con-
tinued. In order to evaluate if the majority decomposition is useful,
we use a similar metric to the one defined in Section III-E where the
right hand of the equations is substituted with the size of the original
BDD to be decomposed. We distinguish this metric as global majority
selection while we refer to the one described in Section III-E as
local majority selection. For the global majority selection, the sizing
factor £ is set to 1.6 by extensive simulations. In a similar way, for
the local majority selection, the sizing factor k is set to 1.5. Note
that the number of iterations in the majority decomposition cyclic
optimization is set to 5.

C. Factoring Trees Optimization

In BDS [10], the result of the decomposition is stored in a factoring
tree. Logic sharing between factoring trees is applied in order to
further optimize the synthesis result. The bottom up construction
of factoring trees (corresponding to the top-down decomposition of
BDDs) enables efficient on-line logic sharing detection during the
decomposition process. Moreover, the canonicity of BDDs simplifies
the actual sharing detection task. In BDS-MAI, the factoring trees
optimization procedure of [10] is maintained.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the advantage of the proposed majority
logic decomposition method at both logic optimization and logic
synthesis levels. First, BDS-MAJ is employed to decompose large
logic functions, comprising random control and datapath logic, taken
both from the MCNC suite and ad hoc large HDL descriptions.
Then, the decomposed circuits are mapped onto a simple standard
cell library, characterized for CMOS 22nm technology node [22].
Logic optimization and synthesis based on BDS-MAJ are compared
to academic BDS-PGA [11], ABC [16], and commercial Synopsys
Design Compiler (DC) tools, fed with the same standard cell library.

A. Logic Optimization

We present here experimental methods and results for logic opti-
mization performed by BDS-MAJ.

1) Methods: BDS-MAIJ is compared to BDS-PGA [11] in terms
of node count in the decomposed network. The benchmarks are
taken both from the MCNC suite and custom HDL descriptions.
HDL descriptions are converted in blif format using a HDL-to-blif
translator. Default execution options are used for BDS-PGA and
maintained in BDS-MAJ. Local and global majority selection sizing
factors are kept the same as in Section IV.

2) Results: Table 1 summarizes experimental results for logic
circuit decomposition. The average node count of BDS-MAJ is 29.1%
smaller than BDS-PGA, highlighting the superior decomposition
power enabled by the use of majority logic. Majority logic nodes
account for 9.8% of the total node count in BDS-MAJ. This result
evidences that even a small fraction of majority nodes advantageously
restructures the logic function producing consistently more compact
logic circuits compared to ordinary techniques. The runtime of BDS-
MAJ is almost the same as the one of BDS-PGA, only a slight 4.6%
average runtime increase is reported.

B. Logic Synthesis

Experimental methods and results for BDS-MAJ based logic
synthesis are presented hereafter.

1) Methods: We evaluate the advantage of BDS-MAJ employed
in a traditional optimization-mapping synthesis flow. To this end,
a standard cell library consisting of MAIJ-3, XOR-2, XNOR-2,
NAND-2, NOR-2 and INV logic gates is characterized for CMOS
22nm technology [22]. Technology mapping after BDS-MAJ logic
optimization is performed in two steps. First, MAJ, XOR and XNOR
nodes are directly assigned to logic cells in order to preserve
such highlighted functions, otherwise potentially hidden by standard
technology mappers. Then, the rest of the logic circuit is mapped
using ABC [16] mapper. BDS-MAJ synthesis flow is compared to
academic ABC, BDS and commercial Synopsys Design Compiler
(DC) synthesis tools. Defaults and options for ABC, BDS and DC
flows are:

o ABC: ABC resyn2 optimization script and ABC mapper.

o BDS: BDS logic optimization and ABC mapper.

o DC: Synopsys Design Compiler compile -area effort high.

2) Results: Table II summarizes experimental results for logic
synthesis using BDS-MAJ. The average area of circuits synthesized
by BDS-MAJ is 26.4% and 28.8% smaller than BDS and ABC,
respectively. The average delay is 20.9% and 12.8% smaller than
BDS and ABC, respectively. Considering the commercial DC flow,
BDS-MAJ produces logic circuits that have on average 6.0% less
area and 7.8% smaller delay.

3) Discussion: BDS-MAIJ based logic synthesis exhibits promis-
ing results. The advantage enabled by the majority decomposition
method leads to faster and smaller circuits compared to state-of-
art synthesis tools. Indeed, the majority decomposition is a radix-3
decomposition that naturally leads to more compact circuits compared
to traditional radix-2 decomposition structures. The efficient runtime
of the decomposition techniques employed in BDS-MAJ highlight
the interest of its use in logic synthesis for real-life applications. On
a standard workstation (2.2 GHz Intel dual-core processors and 4 GB
of RAM), BDS-MAJ took, on average, only 1.4 ms per gate count
of the final circuit, to run the optimization procedure.

VI. CONCLUSIONS

We presented in this paper the first BDD-based majority logic
decomposition technique enabling unprecedented logic synthesis op-
portunities for both datapath and random control logic. We integrated
the proposed majority decomposition method with the state-of-art
BDD-based decomposition engine, BDS-PGA, to form a complete

TABLE I: Decomposition Results: BDS-MAJ vs. BDS-PGA

BDS-MAJ BDS-PGA
Node number Seconds Node number Seconds
Benchmarks AND J OR | XOR | XNOR | MAJ [Total | Runtime AND J OR | XOR | XNOR [MAJ | Total | Runtime
MCNC Benchmarks
alu2 45 99 4 10 13 171 0.9 71 129 7 13 0 220 0.4
C6288 369 378 66 320 139 1272 0.6 711 764 65 355 0 1895 0.6
CI1355 14 44 14 80 31 183 0.1 46 26 46 66 0 184 0.3
dalu 126 408 80 21 133 768 1.4 463 895 25 62 0 1445 2.3
apex6 253 289 9 10 16 577 0.4 243 437 7 7 0 694 0.3
vda 65 203 0 0 22 290 0.2 24 392 0 0 0 416 0.3
f5Im 18 24 1 10 4 57 0.1 26 41 1 7 0 75 0.1
misex3 337 704 0 1 21 1063 1.0 377 860 2 2 0 1241 0.9
seq 331 1175 0 0 55 1561 6.7 1159 1471 I 2 0 2633 5.6
bigkey 400 1494 64 87 194 2239 2.8 1058 1834 4 31 0 2927 4.0
HDL Benchmarks
SQRT 32 bit 162 289 60 158 142 811 0.5 254 471 74 132 0 931 0.4
Wallace 16 bit 208 189 178 302 158 1035 0.6 491 785 169 259 0 1704 0.4
CLA 64 bit 179 208 41 53 167 648 0.1 320 481 35 47 0 883 0.2
Rev (1/X) 19 bit 1223 | 2109 401 1265 599 5597 13.4 2263 | 4199 383 1121 0 7966 11.2
Div 18 bit 705 1598 255 422 188 3168 7.1 1290 | 2918 136 308 0 4652 6.4
MAC 16 bit 322 487 177 541 160 1687 0.5 532 891 187 365 0 1975 1.4
4-Op ADD 16 bit 30 32 10 86 52 210 0.1 87 89 9 85 0 270 0.1
[Average [281.6] 572.5] 80.0 [198.0 [123.0] 1255.1] 21] 553871 9813] 677 [1683 [0.0 [1771.2] 20]
TABLE II: Logic Synthesis, CMOS 22nm Technology Node
[| BDS-MA]J BDS-PGA | | Design Compiler
[Benchmark l A. (,um2) l G.C.] D. (ns)] A. (/_L’I7L2)] G.C. l D. (ns) l A. (,umz)] G.C. l D. (ns) l A. (,umZ) l G.C.] D. (ns)]
MCNC Benchmarks
alu2 34.16 238 0.34 40.81 295 0.40 66.50 503 0.41 50.54 373 0.57
C6288 348.78 1422 0.98 360.78 1441 1.11 355.18 1350 1.08 355.11 1453 1.26
C1355 55.23 188 0.30 56.42 200 0.33 60.69 213 0.29 55.44 190 0.31
dalu 111.30 825 0.40 244.09 1731 0.47 171.36 1292 0.44 103.74 743 0.41
apex6 94.85 811 0.25 106.40 813 0.30 100.73 733 0.26 96.04 745 0.31
vda 71.26 567 0.24 114.24 893 0.20 133.56 1035 0.20 70.98 564 0.25
f51m 13.23 78 0.15 13.86 88 0.19 26.18 199 0.17 17.85 135 0.22
misex3 186.90 1440 0.30 236.25 1825 0.28 225.12 1753 0.28 185.01 1424 0.36
seq 266.35 2086 0.33 541.17 4167 0.27 488.32 3678 0.26 304.15 2325 0.30
bigkey 428.29 3512 0.24 528.22 4121 0.30 713.79 5692 0.22 434.49 3526 0.22
HDL Benchmarks
SQRT 32 bit 205.22 920 322 236.81 1029 4.17 226.31 1058 3.66 211.40 990 3.44
Wallace 16 bit 291.89 1455 0.65 385.49 1995 0.88 413.56 2118 0.77 319.41 1541 0.69
CLA 64 bit 14532 1455 0.65 170.17 1160 1.08 181.44 1126 0.76 161.07 1114 0.67
Rev (1/X) 19 bit 1044.26 5339 3.09 1506.96 7425 4.56 1545.67 8175 4.26 1160.60 5432 3.14
Div 18 bit 702.03 4255 8.54 957.53 6403 10.24 931.35 6302 9.52 734.02 4948 9.22
MAC 16 bit 365.22 1492 0.67 449.33 2150 0.95 491.12 2560 0.72 383.67 1431 0.70
4-Op ADD 16 bit 59.93 171 0.40 65.17 221 0.51 86.18 391 0.50 63.63 201 0.44
[Average [260.25 [1510.41] 122 35375 [2115.12] 1.54 T [[[276.89 | 1596.18] 132]

logic decomposition tool, BDS-MAJ. BDS-MAJ produces decom-
posed circuits having 29.1% less nodes on average compared to BDS-
PGA. This advantage traduces to smaller and faster logic circuits
when BDS-MAJ is employed in a traditional optimization-mapping
synthesis flow. Experimental results show that BDS-MAJ produces
on average CMOS circuits having 28.8% and 26.4% smaller area
and, at the same time, 12.8% and 20.9% smaller delay with respect
to academic ABC and BDS synthesis tools. Compared to commercial
Synopsys Design Compiler, BDS-MAJ produces on average circuits
with 6.0% less area and 7.8% smaller delay.

ACKNOWLEDGEMENTS
This research was supported by ERC-2009-AdG-246810.

REFERENCES

[1] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-
Hill, New York, 1994.

[2] R.L.Rudell, A. Sangiovanni-Vincentelli, Multiple-valued minimization for
PLA optimization, IEEE Trans. CAD, Vol. 6, Iss. 5, pp. 727-750, 1987.

[3] R.K. Brayton, et al., MIS: A Multiple-Level Logic Optimization System,
IEEE Trans. CAD, vol. 6, pp. 1062-1081, Nov.1987.

[4] E. Sentovich, et al., SIS: A System for Sequential Circuit Synthesis, ERL,
Dept. EECS, Univ. California, Berkeley, UCB/ERL M92/41, 1992.

[5] R.K. Brayton, C. Mc Mullen, The Decomposition and Factorization of
boolean expressions, Proc. ISCAS 1982.

[6] C.Y. Lee, Representation of Switching Circuits by Binary-Decision Pro-
grams, Bell Systems Technical Journal, 1959.

[7]1 S.B. Akers, Binary Decision Diagrams, IEEE Trans. Comp., C-27(6):509-
516, June 1978.

[8] R.E. Bryant, Graph-based algorithms for Boolean function manipulation,
IEEE Trans. Comput., C-35: 677-691, 1986.

[9] V. Bertacco, M. Damiani, The Disjunctive Decomposition of Logic Func-
tions, Proc. ICCAD, 1997

[10] C. Yang and M. Ciesielski, BDS: A BDD-Based Logic Optimization
System, IEEE Trans. CAD, vol. 21, pp. 866-876, July 2002.

[11] N. Vemuri, P. Kalla and R. Tessier, BDD-based Logic Synthesis for LUT-
based FPGAs, ACM Trans. TODAES, Vol.7, pp. 501-525, Oct. 2002.
[12] T. Bengtsson, A. Martinelli, E. Dubrova A BDD-Based Fast Heuristic

Algorithm for Disjoint Decomposition, Proc. ASP-DAC 2003.

[13] S. Plaza, V. Bertacco, STACCATO: Disjoint Support Decompositions
from BDDs through Symbolic Kernels, Proc. ASP-DAC 2005.

[14] K. Karplus, Using if-then-else DAGs for multi-level logic minimization,
Univ. California, Santa Cruz, UCSC-CRL-88-29, 1988.

[15] Y. Tohma, Decompositions of Logical Functions Using Majority Deci-
sion Elements, IEEE Trans. Electronic Computers, pp. 698-705, 1964.

[16] ABC Logic Synthesis Tool [Online]. Available:
http://www.eecs.berkeley. edu/alanmi/abc/

[17] O. Coudert, J.C. Madre, A unified framework for the formal verification
of sequential circuits, Proc. ICCAD, 1990

[18] O. Coudert, C. Berthet, J.C. Madre, Verification of sequential machines
using boolean functional vectors, Proc. International Workshop on Ap-
plied Formal Methods for Correct VLSI Design, 1989.

[19] K.S. Brace, R.L. Rudell, R.E. Bryant, Efficient implementation of a BDD
package, Proc. DAC, 1990.

[20] R.E. Bryant, On the Complexity of VLSI Implementations and Graph
Representations of Boolean Functions with Application to Integer Multi-
plication, IEEE Trans. on Computers, vol. 40, no. 2, p. 205, Feb. 1991.

[21] R. Chaudry et al., Area-oriented synthesis for PTL, Proc. ICCD 1998.

[22] Predictive Technology Model (PTM), http://ptm.asu.edu/

