
Image Thresholding Techniques for

Localization of Sub-Resolution Fluorescent

Biomarkers

Julien Ghaye,1* Madhura Avinash Kamat,1 Linda Corbino-Giunta,2 Paolo Silacci,2

Guy Vergères,2 Giovanni De Micheli,1 Sandro Carrara1

� Abstracts
In this article, we explore adaptive global and local segmentation techniques for a lab-
on-chip nutrition monitoring system (NutriChip). The experimental setup consists of
Caco-2 intestinal cells that can be artificially stimulated to trigger an immune response.
The eventual response is optically monitored using immunofluoresence techniques tar-
geting toll-like receptor 2 (TLR2). Two problems of interest need to be addressed by
means of image processing. First, a new cell sample must be properly classified as
stimulated or not. Second, the location of the stained TLR2 must be recovered in case
the sample has been stimulated. The algorithmic approach to solving these problems is
based on the ability of a segmentation technique to properly segment fluorescent spots.
The sample classification is based on the amount and intensity of the segmented pixels,
while the various segmenting blobs provide an approximate localization of TLR2. A
novel local thresholding algorithm and three well-known spot segmentation techniques
are compared in this study. Quantitative assessment of these techniques based on real
and synthesized data demonstrates the improved segmentation capabilities of the pro-
posed algorithm. VC 2013 International Society for Advancement of Cytometry

� Key terms
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toll-like receptor 2; nutrition

A significant part of our knowledge about biological processes, cell structures, func-

tions, and mechanisms is acquired through direct optical observations. In the area of

bioimaging, one of the common and principal tools used to make observations is flu-

orescence microscopy. This microscopy technique, combined with state-of-the-art

signal processing methods (1–7), forms a powerful tool for cell analysis. Fluorescence

bioimaging is extensively used because of two main characteristics. First, specific bio-

logical details can be targeted and highlighted through the use of molecule labeling

by using specific fluorescent probes or dyes (8). Second, light microscopy has the

advantage of being nonintrusive. Thus, it allows us to observe live samples in vitro

and study intracellular structures in situ. However, fluorescence microscopy has an

inherent limitation. The spatial resolution of the imaging system is physically limited

by the diffraction of light (1,2).

The NutriChip project is an example of a biological application that uses fluores-

cence microscopy (9–11). This project proposes a lab-on-chip (LoC) platform to

investigate the effects of dairy food ingestion by feeding an artificial and miniaturized

gastrointestinal track (lGIT). Fluorescence microscopy is used to observe various sub-

resolution biomarkers within the immune cell layer of the lGIT. Finally, conclusions

are drawn based on measurements made using dedicated image processing techniques.

For this study, an emulation of the lGIT has been created to develop the image

processing sub-system of NutriChip. Cell samples have been cultured and separated
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into two groups, a negative control group (NCG) and a stimu-

lated group (SG). Unlike NCG cell samples, SG cell samples

are stimulated to trigger a response from the innate immune

system. This response is in turn monitored through fluores-

cence microscopy. Practically, the Caco-2 cell line is used and

the stimulation is done using bacterial lipopolysaccharide

(LPS) to set off the immune response, inducing the expression

of toll-like receptor 2 (TLR2) (12). Fluorescent spots appear

on SG images after dying the TRL2 with fluorophores, which

are the resulting patterns created by many isolated sub-

diffraction-sized fluorescent groups. Examples of SG and

NCG images are presented in Figure 1.

In this study, we are addressing the two following prob-

lems. First, we need to identify if an observed sample has been

stimulated or not. This biologically indicates whether the

sample has had its immune system activated (i.e., the Caco-2

cells have been exposed to LPS). Second, if the sample is rec-

ognized as stimulated, recovering the spatial location of the

TLR2 within the images is of general interest and can be used

for instance in quantitative colocalization analysis (13). We

are, thus, investigating the use of image thresholding and spot

extraction techniques for answering these problems. Such

techniques provide a mask of segmented pixels for any given

image. From this mask, we are addressing the two problems

that are at hand. The resulting amount of segmented pixels

and their intensity are classification features used for sample

identification, while segmentation blobs provide an approxi-

mate TLR2 localization.

Recent studies comparing segmentation algorithms (4),

and more specifically spot detection methods (5,6), give us a

good overview of the state-of-the-art and common practices

in quantitative fluorescence microscopy. Global thresholding

is a common and basic technique in which a threshold value

must be computed for each image. Histogram-based algo-

rithms such as Otsu’s method (14), Ridler’s method or isodata

(15), maximum entropy (16), and the T-point algorithm (17)

are often used to extract this threshold value (18–21). When

applied to fluorescent spot extraction, these algorithms often

work on images preprocessed by signal enhancement methods

(5,6). These signal enhancement techniques are often based

on wavelets (22) and mathematical morphology (MM) (23–

26). In particular, the MM-based top-hat (TH) filter is widely

used for removing low-frequency contributions such as back-

ground fluorescence, out-of-focus fluorescence, and cyto-

plasm auto-fluorescence (18,19,27,28). Aside from global

thresholding, local thresholding techniques are also used for

extraction of spots (29) by computing a specific threshold for

each pixel based on its surroundings. Niblack’s method (30)

and its enhanced version by Sauvola and Pietikainen (31) fall

in this category. Another popular method in cell segmentation

is the watershed algorithm mainly used for separating over-

lapped objects of interest (28,32–34).

In this study, we have selected a subset of these methods

to segment TLR2 in our images. The Otsu and T-point algo-

rithms have been selected for their ability to separate bimodal

and unimodal gray-level image histograms, respectively. Local

Figure 1. Example of stained Caco-2 cells expressing TLR2. Images on the top row belong to the negative control group (NCG) set. Their

intensity has been quadrupled for display purposes. Images on the bottom row belong to the stimulated group (SG) set.
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thresholding approaches are represented by Sauvola’s tech-

nique. We also study the use of the TH filter as a preprocessing

step to leverage the segmentation results in our application.

On top of these methods, we propose a novel local threshold-

ing technique using the TH filter as a way to identify local

signal-to-noise ratios (LSNRs) and extract objects below a

user-defined size. In total, we test and quantitatively compare

nine different segmentation schemes, resulting from the com-

bination of a TH preprocessing step and a global or local

thresholding algorithm. On one hand, we compare their influ-

ence on the classification performances of the na€ıve Bayes clas-

sifier trained for separating NCG from SG images using

experimental data. On the other hand, we compare the quality

of the produced segmentation masks from synthetic images,

using the various segmentation blobs as approximations of

TLR2 locations. Note that in the course of the study, we also

tested Ridler’s algorithm as an alternative to Otsu’s method. As

the obtained results between these two methods were not sig-

nificantly different, we have decided to leave out the results

obtained using Ridler’s algorithm. Thus, Otsu’s method is used

as the representative algorithm to improve and avoid redun-

dant results and analysis in the article.

MATERIALS AND METHODS

Sample Preparation

Caco-2 cells were seeded in Lab-Tek chamber slides

(Thermo Scientific Nunc, Waltham, MA) at a cell density of

1.2 3 1025 cells/cm2 in DMEM/F12 medium supplemented

with 10% fetal bovine serum. After 21 days, differentiated cells

were stimulated over a 24-h treatment period with lipopoly-

saccharide (LPS) from Escherichia coli bacteria (L4391, Sigma-

Aldrich, St-Louis, MO) at a final concentration of 1 mg/ml.

After treatment, the cells were rinsed with phosphate-buffered

saline (PBS), pH 7.4, and fixed with 4% paraformaldehyde in

PBS for 10 min at room temperature (RT). After rinsing, the

cells were permeabilized with 0.1% Triton X-100 in PBS for 3

min, then rinsed twice with PBS, and treated with 10% goat

serum albumin in PBS for 20 min at RT. The cells were then

labeled with an anti-TLR2 antibody (dilution 1:200, H175,

Santa Cruz Biotechnologies, Dallas, TX) for 1 h at RT in 10%

goat serum in PBS. A negative control where the LPS stimula-

tion was omitted has also been performed. The cells were then

washed thrice with 0.1% Tween in PBS. After additional incu-

bation with a FITC-conjugated goat anti-rabbit IgG (dilution

1:100, F2911, Santa Cruz Biotechnologies) for 30 min at RT,

the cells were mounted with Vectamount mounting medium

for fluorescence (Vector Laboratories, Burlingame, CA).

Immunostaining was visualized and confirmed with Olympus

Bx41 microscope equipped with a Color view III camera (Soft

Imaging System, M€unster, Germany).

Fluorescence Imaging System

An Eclipse Ti-S inverted microscope combined with a

Plan Fluor objective (40X, NA50.6; Nikon, Tokyo, Japan) was

used to image the samples. A 465–495 nm band pass excitation

filter, a 505 nm dichroic mirror, and 515–555 nm emission fil-

ter were used in the epi-fluorescence setup. The images were

taken using a noncooled black and white charged coupled

device image sensor (ICX274AL, Sony, Tokyo, Japan) with a

dynamic range of 12 bits. The imager photosites, or pixels, are

4.4 mm by 4.4 mm in size and form an array of 1,628 by 1,236

active pixels. Taking into consideration the 0.73 magnification

of the relay lens in front of the imager, a distance of 4.4 mm in

the image plane corresponds to �157 nm in the object plane.

The NIS-Elements software (Nikon, Tokyo, Japan) was

used to gather images and the image processing was per-

formed using Matlab (R2009b, MathWorks, Natick, MA).

Segmentation Schemes

In image processing, thresholding is a basic tool used to

segment objects from the background in a raster image. It

provides as an output a map of the same size as the input

image. This map indicates which pixels are considered part of

foreground or part of the background. In our application, the

pixels classified as foreground, or segmented pixels, are also

referred to as fluorescent pixels as they are assumed to carry

the fluorescent signal of the image.

In this study, we are considering nine different segmenta-

tion schemes; eight taken from the state-of-the-art and the

proposed method. The group of eight state-of-the-art schemes

consists of a set of four algorithms, working either on raw

images or on TH prefiltered images. Algorithms embodying

this set can either be:

� a global thresholding technique for which the threshold

value is computed from the image histogram using the T-

point algorithm (17), Otsu’s algorithm (14), or Otsu’s algo-

rithm applied recursively twice (Otsu’s algorithm is being

run on the histogram of the pixel intensities extracted by a

first run of the algorithm).

� a local thresholding algorithm, namely Sauvola’s threshold-

ing technique (31).

The proposed novel local thresholding algorithm is to be

compared against these schemes. It processes raw images,

sweeping the threshold value from low to high to extract rele-

vant blobs of fluorescent pixels. Such blobs are characterized

by a suitable pixel count and a high enough LSNR.

Top-Hat Transformation

It is generally admitted that segmentation algorithms

designed for bright fluorescent spot extraction have to deal

with the problem of uneven background (18,19,27,28). When

objects of interest have similar shapes and sizes within an

image, such as fluorescent spots, the TH filter (23–26) can be

applied to enhance the signal.

The TH filter is based on the theory of MM. Two of the

fundamental grayscale transformations of MM are the dilation

and the erosion, whose definitions are reproduced hereunder

g5I � B; (1)

g5I �B; (2)

where � denotes the dilation operator, � the erosion opera-

tor, I is a gray-scale image, and B a binary structuring element.
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The dilation operator replaces the value of each pixel in an

image by the maximum value of its neighboring pixels. The

structuring element B is responsible for defining where the

neighbor pixels are located with respect to the processed pixel.

Similarly, the erosion operator replaces the processed pixel

value by the minimum value of the neighboring pixels. The

resulting image after applying the TH filter is obtained by

removing from the original image its lower envelope (26)

g5I2I � B; (3)

where the lower envelope I � B is computed using the MM

opening operator �. The opening operator is defined by suc-

cessively performing the erosion and then the dilation opera-

tions using a common structuring element B:

I � B5 I �Bð Þ� B: (4)

The structuring element B used by the TH filter is usually

a square window or a disk. The size of the structuring element,

either defined by the width of the window or the disk radius,

is related to the largest feature we are interested in. Practically,

the TH filter acts as a background removal tool. Features in

the original image that are typically smaller than the structur-

ing element are kept. In the case of fluorescent spot extraction,

we need to make sure that this size is greater than the typical

spot size. As our application uses fluorophores bound to

TLR2 observed through wide-field microscopy, a typical spot

size is defined by the diffraction pattern observed on the

imager generated by a sub-diffraction-sized point source.

T-Point Algorithm

The T-point algorithm (17) proposes an approach to set-

ting thresholds for images with unimodal histograms. The

proper operation of this automated method is based on two

assumptions about the histogram. The background noise is

the main pixel population that contributes to the single, major

histogram peak in the low intensities. The remaining pixels of

interest form the tail of the histogram. Such histograms can

be decomposed into three parts: a steep rising slope, a steep

descending slope, and a slow descending slope or tail.

The goal of the T-point binarization method is to model

the descending slopes using two lines, one for the steep part

and one for the tail. Consider a unimodal histogram featuring

L bins indexed by [0;…; L21] where the peak has been iden-

tified at the bin index m. The steep and slow descending

slopes can be located on the bin indexes [m;…; k] and

[k;…; L21], respectively, where k2 m11; L22½ �. Two lines

are fitted on the histogram using a least mean square

approach, Lsteep and Lslow for the steep and the slow descend-

ing slope, respectively. The T-point algorithm is searching for

the threshold T matching the bin index k such that the total

error of the fittings is minimized

T5arg min e kð Þð Þ; (5)

where the total error e kð Þ is the sum of the fitting errors of the

lines Lsteep and Lslow

e kð Þ5esteep kð Þ1eslow kð Þ (6)

with

esteep kð Þ5
Xk

i5m

ðhi2ĥ iÞ2 (7)

eslow kð Þ5
XL21

i5k

ðhi2ĥ iÞ2 (8)

where hi is histogram value at index i and ĥ i is the estimated

value of the histogram by either of the fitted lines.

Otsu’s Algorithm

This method is a histogram-based, nonparametric

method to automatically select a threshold level for a grayscale

image. It aims at selecting a threshold by maximizing a crite-

rion measure that evaluates the goodness of that threshold.

The original mathematical formulation and discussion

can be found in Ref. (14); the following presents the equations

and concepts behind the algorithm used for software imple-

mentation. The only input of the method is the normalized

gray-level histogram, or probability distribution, generated

from the image to be segmented. It has L bins that are dicho-

tomized in two classes: C0 gathering the bins indexed by

0; k21½ � and C1 gathering the bins indexed by k; L21½ �. The

gray level corresponding to the bin k indicates the selected

threshold that must have its goodness evaluated.

The input histogram is regarded as a probability distribu-

tion of the pixels within the image. Pi is the probability that a

pixel from the image falls into the bin number i, where

i5 0; L21½ �. Let us also give the definition of the probabilities

of class occurrence and the class mean level

x05Pr C0ð Þ5
Xk21

i50

pi (9)

x15Pr C1ð Þ5
XL21

i5k

pi (10)

l05
Xk21

i50

ipi

x0

(11)

l15
XL21

i5k

ipi

x1

(12)

We also define the total mean level of the original image

by

lT 5
XL21

i50

ipi (13)

Following a discriminant analysis (14), the following cri-

terion measure is used to evaluate the goodness or separability

of both classes at bin k
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g5
r2

B

r2
T

(14)

where r2
B and r2

T are the between-class variance and the total

variance of levels, respectively, which are computed using

rB5x0x1 l12l0ð Þ2 (15)

rT 5
XL21

i50

i2lTð Þ2pi (16)

Finding the optimal threshold k� that maximizes g, or

equivalently maximizes r2
B , is reduced to a simple optimiza-

tion problem
max s� r2

B kð Þ
� �

(17)

where S� is the range of k over which the maximum is sought

S�5 k; x0x1 > 0; or ; 0 < x0 < 1f g (18)

Sauvola’s Thresholding Technique

Sauvola’s algorithm (31) acts an edge-detection method

based on a sliding window. It is targeting objects with a size simi-

lar to that of the window. Practically, the algorithm provides a

threshold value for each pixel based on the mean and standard

deviation of the neighboring pixel intensities. Consider an image

I as an array of W by H pixels and a given pixel p x; yð Þ within

the image (i.e., x 2 0;W 21½ � and y 2 0;H21½ �). The threshold

t x; yð Þ is a function of the mean m x; yð Þ and standard deviation

s x; yð Þ of the pixel intensities within a square window of size w

by w around p x; yð Þ and is computed using

t x; yð Þ5m x; yð Þ1 m x; yð Þ21ð Þk s x; yð Þ
R

21

� �
; (19)

where k is a positive parameter, usually within the range

0:2; 0:5½ �, and R is the dynamic range of s x; yð Þ (e.g., R50:5

on normalized pixel intensities and R5128 on 8-bit images).

In Eq. (19), the standard deviation has a direct effect on

the computed threshold value. Consider a high standard devi-

ation among the pixels in the window, approaching R. The

computed threshold value will then tend to the mean inten-

sity. On the contrary, the threshold of the central pixel will

tend to m x; yð Þ1 12m x; yð Þð Þk for a window with pixel inten-

sities having a low variance. In this case, the threshold is raised

above the local mean of the pixel intensities, and the central

pixel will more likely be classified as background.

Note that Sauvola’s original binarization equation was

designed for images featuring dark objects on a light back-

ground, while Eq. (19) is modified to account for light objects

on a dark background, as fluorescence microscopy images

require.

Novel Local Thresholding Technique

We propose a novel thresholding method for the extrac-

tion and localization of fluorescent spots that deal with the

limitations observed while working with other thresholding

methods from the literature. Global thresholding methods

using Otsu’s algorithm or the T-point algorithm have a lim-

ited efficiency in extracting bright spots. First, fluorescent

images principally feature unimodal histograms; this implies a

trade off when selecting a threshold value as the signal and the

background histogram contributions are merged. Second, the

fluorescent signal is corrupted by auto-fluorescence of the

cytoplasm and out-of-focus contributions of some fluorescent

probes. This results in a random and uneven background in

the fluorescent images.

As a consequence, we have developed the following

thresholding method by taking advantage of the background

removal effect of the TH filter, drawing inspiration from the

watershed segmentation approach (32).

The purpose of this new method is to extract a certain

amount of pixels around local maxima (i.e., identify blobs of

fluorescent pixels). Ideally, the number of extracted blobs

would equal the amount of TLR2 as each blob would only

enclose the location of a receptor. Practically, these values can-

not be achieved because of diffraction limits present in

microscopy. Moreover, the possible proximity between two or

more TLR2 indicates that more than one fluorophore can

contribute to a single spot on an image (1,2).

The core concept of this method lies in sweeping thresh-

old values starting from the lowest value in the image I and

searches for blobs (four-connectivity connected components)

of a suitable size containing local maxima of the image. The

fluorescent pixels composing a given blob are characterized by

an intensity value greater than a particular threshold, specific

to this blob and the local maxima it is enclosing. The user

specifies a maximum size for the blobs. This indicates if a

blob needs to be broken down. Details of the algorithm flow

can be found in Figure 2 and are explained hereunder.

1. Input and initialization: This method takes as input the

original image I and sets a starting threshold value T equal

to the lowest pixel intensity. The original image is thresh-

olded with T and a fluorescent-background pixel map is

generated, labeling the pixels either as fluorescent (white)

or background (black). A maximal size Smax in pixels for

the blob size is also input.

2. Pixel categorization: The pixel categorization is the core of

the algorithm. It is an iterative process. Each iteration is

detecting the blobs, or connected components, within the

fluorescent-background pixel map. Each detected blob is

analyzed and categorized depending on its size. If the

amount of pixels forming the blob is lower than Smax, it is

considered as having a suitable size and assumed to con-

tain a local maximum. It is then removed from the pixel

map and will be part of the output mask. Otherwise, it is

kept in the pixel map for the next iteration. Before iterat-

ing, the threshold value T is increased. The iteration pro-

cess stops once the amount of fluorescent pixels in the

pixel map reaches 0.

3. Output: The output mask is a binary image. It contains

only blobs of fluorescent pixels with a pixel count inferior
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to Smax each containing at least one local maximum. The

output map locates the bright fluorescent spots within the

image and provides an approximation of their location.

Our method leverages the capabilities of the MM opera-

tors by using them to compute an estimation of the LSNR

LSNR 5
Isig

Ibg

; (20)

where lbg is an estimation of the background approximated by

the lower envelope of an original image I, and lsig is an estima-

tion of the useful signal of I using the TH filter.

Ibg 5I � B (21)

Isig 5I2I � B5I2Ibg (22)

This estimation of the LSNR is used to filter the extracted

output mask. Fluorescent pixels corresponding to a LSNR

inferior to a given value LSNR min are trimmed out.

Thresholding Schemes Comparison Approach for

Classification

To determine what segmentation schemes are the best for

providing selected classification features used for distinguish-

ing NCG from SG samples, we need two image datasets. An

SG dataset featuring images of Caco-2 cells with induced

TLR2 and a NCG dataset featuring images of unstimulated

cells.

Provided with a sample image, a thresholding technique

produces a segmentation mask and an observation tl5 xl ; clð Þ
is made, where cl is the class of the sample (i.e., SG or NCG)

and xl is a measurement made on the image via the mask. We

are considering two classification features for making the

measurements:

� Amount of fluorescent pixels per cell: This value is the aver-

age number of fluorescent pixels per cell. In this work, the

amount of cells in each image is assumed to be known. It

can be measured in a preprocessing step, for example,

through DNA staining. The amount of fluorescent pixels

per cell is expected to be higher for SG images than for

NCG images. Ideally, a segmentation scheme processing a

NCG image should not segment any pixels and discard

them all as background.

� Mean pixel intensity: This value is the normalized average

pixel intensity of all the fluorescent pixels.

For a given feature, we obtain a set of observations

t5 tl ; l51;…;Nf g, which is the union t5t SG [ t NCG

between the set of observations made on the SG dataset

t SG 5 ti : ti5 xi; SGÞ;i51;…;N SGð gf and the set of observa-

tions made on the NCG dataset t NCG 5 tj : tj5ðxj ;NCGÞ;
�

j51;…;N NCGg.
The first point of comparison between the segmentation

schemes is an evaluation of the effect size between the NCG

and SG group using the d statistic (Hedge’s g) (35). Practically,

the effect size is evaluated using

d5
xSG 2xNCG

Spooled

(23)

s2
pooled 5

NSG 21ð Þs2
SG 1 NNCG 21ð Þs2

NCG

NSG 1NNCG 22
; (24)

where xSG and xNCG are the sample means made on the

observation sets tSG and tNCG, respectively, and s2
SG and s2

NCG

are their associated variance. The standard error on this d sta-

tistic is computed using

sed5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NSG 1NNCG

NSG NNCG

1
d2

2 NSG 1NNCG 22ð Þ

s
(25)

Such an effect size can be computed for each segmenta-

tion scheme based on the observations sets. As a high effect

size indicates a good separation of the two classes (SG and

NCG), we can identify for each feature the best performing

segmentation schemes for classifying the Caco-2 cell samples

by putting the effect sizes side by side.

Figure 2. Flowchart of the proposed local thresholding

technique.
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We are also considering receiver operating characteristic

(ROC) analysis as a comparison tool. Consider the naive

Bayes classifier trained with the observation sets tSG and tNCG.

A common performance metric of the resulting trained classi-

fier is the area under the ROC curve (AUC). It is used in this

study to compare the performances of the various Bayes clas-

sifiers trained using the observation sets generated from the

segmentation results of the algorithms.

The method used to estimate the various AUC is that

described in Ref. 36). It provides a nonparametric estimator

for the AUC and an estimate for its variance based on leave-

pair-out bootstrap scheme, which makes it ideal for datasets

with few samples. Practically, B bootstrap replications

T5 t�b; b51;…;B
� �

are obtained by resampling the set of

observations t using a balanced bootstrap mechanism (37).

Each replication t�b is then used to train a naive Bayes classi-

fier, effectively producing B scoring functions ht�
b

xð Þ. The pro-

cedure selects a pair of observations ti; tj

� �
—one from each

class SG and NCG—and averages its contribution to the Wil-

coxon–Mann–Whiney statistics over all the possible bootstrap

replications. Formally, we have

dAUC5
1

NSG NNCG

XNSG

i51

XNNCG

j51

XB

b51

Ib
i Ib

j H ht�
b

xið Þ2ht�
b

xj

� �	 

XB

b051
Ib0

i I b0

j

(26)

where H is the Heaviside step function and Ib
i I b

j equals 1

unless either of the observations forming the pair ti; tj

� �
is

contained in t�b , in which case it equals 0 and voids the contri-

bution. On the other hand, a standard error on dAUC can be

computed using

secAUC
5

1

N 2
SG

XNSG

i51

Û
2

1i
1

1

N 2
NCG

XNNCG

j51

Û
2

2j
; (27)

where Û
2

1i
and Û

2

2j
can be obtained from the bootstrap repli-

cations t�b, similar to dAUC. Details of their calculation are left

out of this article for clarity and we refer the reader to Ref. 36)

for more details.

Similar to the effect size, an estimation of the AUC can

be computed for each segmentation scheme. The closer the

area is to 1, the better the trained naive Bayes classifier is. In

turn, for each classification feature (amount of fluorescent

pixels per cell or mean pixel intensity), we can evaluate the

performances of the segmentation schemes by directly com-

paring the effect sizes and classifier performances.

Thresholding Schemes Comparison Approach for

Localization

After a sample image has been classified as SG, we are

interested in using the blobs of fluorescent pixels as an

approximation of the stained TLR2 locations. Comparing

algorithms on this ground based on our SG datasets is not fea-

sible as we do not precisely know the location of every fluores-

cent probes bound to the TLR2. To overcome this, we are

using an image simulator (38). It generates synthetic fluores-

cently stained cell populations and simulates the imaging pro-

cess. This simulator has been configured so that it matches the

experimental setup and imaging conditions.

Consider a synthetic SG dataset I syn 5 In; n 5 1;…;Nf g
built from N synthetic images. Such dataset contains images

each featuring a random number of stained cells within a

given range for which the precise location (i.e., pixel location

within the image) of each fluorescent probe is known. Overall

the dataset features Ncells, each stained by Np probes over N

images. A segmentation scheme processing Isyn generates a set

of segmentation masks Ms5 Mn;n 5 1;…;N
� �

that can be

partitioned in Nblobs segmentation blobs using four-

connectivity component labeling. These segmentation results

are analyzed and compared using the following metrics:

� Recovered probes: Consider the number of probes Nrec that

are recovered by Ms over the synthetic dataset, knowing

that a probe is deemed recovered if its pixel location within

the image belongs to a blob of fluorescent pixels. The recov-

ered probes value corresponds to the relative amount of

recovered probes over the synthetic dataset Nrec/Np.

� Blobs per cell: This value is a direct measure of the average

amount of segmentation blobs per cell over the synthetic

dataset Nblobs/Ncells.

� Blobs without probes: This value indicates the fraction of

blobs that do not recover any probes over the synthetic

database.

� Blob size: This is the average size in pixels of the segmenta-

tion blobs over the synthetic dataset.

� Probes per blob: Knowing the location of the probes, we

can determine the average amount of probes that are recov-

ered by a single segmentation blob.

� v2: This value is the chi-squared (v2) histogram distance

metric (39) used to quantify whether an image segmenta-

tion of a sample featuring fluorescent probes is relevant and

contains useful information.

Consider the Np probes and their location within each

image of the set Isyn. One can define a set of masks

Mp5 Ln; n 5 1;…;Nf g, where Ln is a mask identifying the

location of the probes within In using

LN x; yð Þ5
1; if p x; yð Þ encloses at least one probe

0; otherwise
;

(
(28)

where p x; yð Þis a pixel of In. In other words, Mp is an ideal set

of segmentation masks featuring the minimum number of

segmentation pixels such that the amount of recovered probes

equals 100% with 0 blobs without probes. From Mp, one can

compute the following set of images

DP5 In � Ln; n51;…;Nf g; (29)

where * is a pixel-wise multiplication between the image In

and the location mask Ln. Finally, we obtain the intensity dis-

tribution of the pixels where the probes are located by taking

the histogram P of the non-null pixel values of DP. That is, the

histogram P represents the distribution of pixels selected by

the ideal set of segmentation masks Mp.
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Similarly, provided with a set of segmentation masks Ms

generated by an algorithm, one can extract the intensity histo-

gram S of the segmented pixels using

DS5 In �Mn; n51;…;Nf g (30)

For our purpose, the v2 histogram distance value is

defined as the bin-to-bin distance between the ideal histogram

P and the histogram S. It is computed using

v2 S;Pð Þ5
X

i

Si2Pið Þ2

Si1Pi

; (31)

where Pi and Si are the frequencies reported in the ith bin of P

and S, respectively.

This v2 histogram distance gives us a single figure of

merit to evaluate the quality of a set of segmentation masks.

The less a set of segmentation masks Ms is recovering basic

information carried by the fluorescent probes, the greater the

value of v2.

Practically, we are interested in recovering as many

probes as possible. Thus, we favor any algorithm that gener-

ates the greatest recovered probe values, other things being

equal. However, we consider segmentations with small, spa-

tially contained blobs better in localizing fluorescent spots

compared to segmentations featuring big, spread blobs. So,

having a small average blob size, characterized by few probes

per blobs is favored compared to having a great number of

recovered probes. Also, the amount of blobs without probes

and v2 distances are monitored to ensure that the segmenta-

tion masks are not extracting irrelevant pixels.

RESULTS

Algorithms Comparison on Real Samples for

Classification

Following the segmentation schemes comparison

approach for classification presented in the Material and

Methods section, we have created a SG dataset of 22 images

and a NCG dataset of 15 images. Each image features a vari-

able amount of imaged Caco-2 cells ranging from 1 to 20, and

they all have been taken in the same experimental and imaging

conditions. The first row of Figure 3 depicts representative

sample images from both datasets.

The various algorithms used in the considered segmenta-

tion schemes are parameterized as follows:

� Top-hat transformation: The structuring element used for

this operator is a disk of 21 pixels in diameter.

� T-point algorithm: The histograms used to set thresholds

are computed using a bin width of 32, as smaller bins pro-

duce big discontinuities in the histograms frequencies,

which in turn prevent proper lines fitting on the descending

slopes. As our images have a 12-bit resolution, this divides

the histograms into 128 bins.

� Otsu’s algorithm: The histogram bin width used is 16,

resulting in histograms divided into 256 bins. The purpose

of this selection is that it has no significant impact on the

results compared to a bin size of 1 while enabling the

method to be less computationally intensive.

� Sauvola’s local thresholding technique: The algorithm

parameters are set as follows: dynamic range R 5 0:5 (our

images have normalized pixel values), window width

w 5 41 radius 5 20Þð , and k 5 0:34 (as suggested in Ref. 31)).

� Proposed local thresholding technique: The maximum size

for any fluorescent blob is Smax 5 15 and only fluorescent

pixels with a LSNR greater than 1.7 are kept.

Each row in Figure 3 displays the resulting segmenta-

tion masks of one of the nine considered segmentation

schemes, except for the first row, which depicts the origi-

nal, unprocessed images. Note that the Otsu-based schemes

are only represented by the second row for space consider-

ation. When dealing with SG images, the masks produced

by Otsu (not recursively)-based schemes resemble the ones

produced by T-point-based schemes. As for the one using

Otsu recursively, the masks are similar to the one pre-

sented on the second row, only the blobs of fluorescent

pixels appear slightly “fatter.” The most important results

on the second row are the masks of the NCG images. They

are typical of all the Otsu-based schemes and give an idea

of how these schemes are handling image with low fluores-

cence and few spots.

Table 1 presents the average amount of fluorescent pixel

recovered by each segmentation scheme over both datasets.

The resulting effect sizes and performance of trained naive

Bayes classifiers (AUC) are reported in Table 1 with a 95%

confidence interval.

Similarly, Table 2 deals with the mean pixel intensity and

related effect sizes and AUC. In this case, we also consider an

extra method called mean, which considers all the pixels of an

image as segmented. That is, the resulting mean pixel intensity

(first row in Table 2) using this method is the average image

intensity divided by the number of cells.

Finally, Figures 4 and 5 report graphically the various

computed effect sizes along with the various estimated AUC

from Tables 1 and 2 for an easy comparison.

Algorithms Comparison on Synthetic Images for

Localization

We apply the comparison approach for localization pre-

sented in the Material and Methods section on a synthetic SG

dataset built from 100 images. For each considered scheme,

we perform a parameter space exploration and analyze how

the six comparison metrics are influenced. A segmented sam-

ple of a synthetic cell is depicted in Figure 6, featuring ran-

domly distributed TLR2 stained with fluorescent probes,

uneven background fluorescence, and cytoplasm auto-

fluorescence. Similar to the real datasets, each image from the

synthetic dataset features a varying amount of cells, between 1

and 10 in this case.

We are interested in comparing the segmentation quality

on SG images of the best-performing segmentation schemes

for classification. Thus, the three schemes we are considering

here are (a) global thresholding on TH filtered images, (b)

Sauvola’s thresholding technique, and (c) the proposed local
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Figure 3. The first row depicts unprocessed sample images of stained Caco-2 cells. Two representative images from the SG dataset and

the NCG dataset (their intensity has been quadrupled in the figure for display purposes) are shown. Subsequent rows depict segmenta-

tion masks computed by different segmentation schemes.
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thresholding technique. The results are presented in Figures 7–

9, respectively. Figure 7 details the behavior of the global

thresholding method applied on TH filtered images by plot-

ting the various comparison metrics with respect to the

thresholding value. The average normalized threshold values

computed using the T-point algorithm, Otsu’s algorithm, and

Otsu’s algorithm applied recursively are 0.02, 0.14, and 0.33,

respectively. Similarly, Figure 8 presents the response of the

metrics using Sauvola’s thresholding techniques by varying

the k parameter and the window radius. Finally, Figure 9

presents the response of the metrics using the proposed tech-

nique by varying the Smax and LSNRmin parameters.

DISCUSSION

Classification Performances on Real Images

In this section, we discuss the usage of the amount of

pixel per cell and mean pixel intensity measurements as classi-

fication features to distinguish between SG and NCG. The

results of each segmentation scheme are analyzed and a

Table 2. Mean pixel intensity on each dataset, effect size, and AUC of trained naive Bayes classifiers for different segmentation schemes.

METHOD SG PIXEL INTENSITY (SD) NCG PIXEL INTENSITY (SD) EFFECT SIZE (1.96*SE) AUC (1.96*SE)

Mean 0.114 (0.048) 0.059 (0.012) 1.48 (0.25) 0.938 (0.037)

T-point 0.216 (0.058) 0.096 (0.027) 2.55 (0.31) 0.970 (0.033)

Otsu 0.271 (0.087) 0.073 (0.018) 2.96 (0.35) 1.000 (0.036)

Otsu(2X) 0.422 (0.128) 0.105 (0.085) 2.87 (0.34) 0.964 (0.034)

Sauvola 0.554 (0.054) 0.806 (0.167) 22.27 (0.29) 0.863 (0.034)

TH 1 T-point 0.242 (0.074) 0.091 (0.021) 2.62 (0.32) 0.989 (0.033)

TH 1 Otsu 0.316 (0.089) 0.092 (0.104) 2.40 (0.30) 0.955 (0.032)

TH 1 Otsu(2X) 0.490 (0.117) 0.236 (0.339) 1.12 (0.24) 0.972 (0.038)

TH 1 Sauvola 0.444 (0.036) 0.769 (0.159) 23.18 (0.24) 0.843 (0.032)

Ghaye 0.316 (0.094) 0.111 (0.029) 2.79 (0.33) 1.000 (0.036)

Table 1. Amount of fluorescent pixels per cell on each dataset, related effect size, and AUC of trained naive Bayes classifiers for different

segmentation schemes.

METHOD SG PIXEL PER CELL (SD) NCG PIXEL PER CELL (SD) EFFECT SIZE (1.96*SE) AUC (1.96*SE)

Mean – – – –

T-point 28,332 (19,752) 2,626 (4,354) 1.69 (0.26) 0.925 (0.026)

Otsu 15,914 (9,291) 33,004 (26,254) 20.97 (0.23) 0.753 (0.028)

Otsu(2X) 3,178 (1,826) 10,758 (8,939) 21.33 (0.25) 0.839 (0.030)

Sauvola 819 (689) 2 (5) 1.56 (0.25) 0.987 (0.030)

TH 1 T-point 17,471 (8,556) 973 (732) 2.54 (0.31) 0.993 (0.030)

TH 1 Otsu 7,618 (3,188) 43,676 (44,449) 21.31 (0.24) 0.925 (0.026)

TH 1 Otsu(2X) 1,244 (566) 14,260 (17,579) 21.20 (0.24) 0.998 (0.030)

TH 1 Sauvola 327 (260) 2 (4) 1.65 (0.27) 0.985 (0.028)

Ghaye 2,593 (1,504) 75 (118) 2.20 (0.29) 0.981 (0.028)

Figure 4. Effect size and AUC computed from the amount of fluorescent pixels per cell measurements made by each segmentation

scheme on both SG and NCG datasets. The effect size is a measure of the distance between both datasets and the AUC estimates are

measures of the performance of naive Bayes classifiers trained on the measurements.
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conclusion on the best-performing approaches for our appli-

cation is drawn. The following discussion is supported by the

various masks presented in Figure 3 and by the numerical

results presented in Tables 1 and 2.

� Mean: Using only the average pixel intensity per cell, with-

out segmentation, as a classification feature is not reliable.

Table 2 shows that the average pixel intensity is 0.114,

which is the smallest value compared with the other

Figure 6. Close-up on segmentation maps of an imaged synthetic cell (a) with global thresholding (th 5 0.09) on the top-hap prefiltered

image (b), with Sauvola’s thresholding technique (k 5 0.34, radius 5 20) (c), and with the proposed local thresholding technique

(Smax 5 15, LSNRmin 5 1.7) (d).

Figure 5. Effect size and AUC computed from the mean pixel intensity measurements made by each segmentation scheme on both SG

and NCG datasets. The effect size is a measure of the distance between both datasets and the AUC estimates are measures of the perform-

ance of naive Bayes classifiers trained on the measurements.
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methods. Fluorescent images from our SG dataset feature

few bright pixels and a lot of background, low-intensity

pixels. This effectively decreases the mean pixel intensity

when all the pixels are segmented, and reduces the effect

size between the two datasets.

� T-point algorithm: On the SG dataset without TH prefilter-

ing, using the threshold value computed by the T-point

algorithm results in segmenting most of the cell cytoplasm.

Similarly, on the NCG dataset images, clouds of segmented

pixels appear where the cells are located. This can be

Figure 7. Parameter exploration for the global thresholding technique with top-hat prefiltering. This technique has only one parameter,

the threshold value, represented on the x-axis in a normalized manner.

Figure 8. Parameters exploration for Sauvola’s thresholding technique without top-hat prefiltering. The x-axis represents the k parameter

ranging from 0 to 3. The solid (radius 5 4), dashed (radius 5 12), and dotted (radius 5 20) curves show the influence of the window radius.
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observed in the third row of Figure 3. Looking at the

amount of fluorescent pixels in Table 1, we can observe a

huge variability in the results, which limits the effect size

(1.69) and the classifier performance (AUC 5 0.925) with

respect to the best methods. Table 2, referring to the mean

pixel intensity classification feature, offers the same conclu-

sion. Only this time the relatively low mean pixel intensity

(0.216) of the SG dataset is the cause, as the segmented

areas include a lot of background pixel. Prefiltering the

images with TH before computing the threshold value is

beneficial. As the fourth row of Figure 3 shows, this seg-

mentation scheme prevents the background pixels from the

cell cytoplasm from being segmented in SG images. Fur-

thermore, few pixels are segmented in NCG images com-

pared with other schemes, which is expected behavior. In

Table 1, we can notice the reduced variability in the amount

of fluorescent pixels per cell classification feature intro-

duced by the TH filter, by comparing both the T-point and

TH followed by T-point segmentation schemes. This results

in a higher classification performance as indicated by the

increased effect size (1.69< 2.54) and AUC (0.925< 0.993).

From Table 2, we can see that using the TH filter helps seg-

menting the fluorescent spots. The mean pixel intensity

increases for the SG dataset, whereas it remains almost

unchanged for the NCG dataset. This results in slightly

improved classification performances. Practically, the T-

point algorithm is particularly well suited as most fluores-

cent images feature a unimodal histogram, characteristic of

a lot of background pixels and few pixels of interest. The

TH filter further enhances the unimodality by removing

slow variations of background. Considering the amount of

fluorescent pixels per cell or the mean pixel intensity classi-

fication features independently, the segmentation scheme

using the T-point algorithm on TH filtered images is

among the best.

� Otsu’s algorithm: Unlike the T-point algorithm, Otsu’s

method is designed to separate the image histogram into

two classes using a threshold having the highest separability.

This makes it ideal for bimodal histograms. Fluorescent

images rarely feature this behavior unless the amount of

fluorescently stained cells is high enough to balance the

background contribution to the histogram. As predicted,

Otsu’s method is ill-suited for our application, even when

applied recursively twice. While the extracted information

on the SG dataset appears to be good (i.e., low amount of

fluorescent pixel per cell and high mean pixel intensity),

every segmentation scheme using Otsu behaves poorly

when facing the NCG dataset. Table 1 presents negative

effect sizes for these schemes as the average amount of fluo-

rescent pixels per cell is higher for the NCG dataset than for

the SG dataset. Furthermore, the variability of the amount

of fluorescent pixels per cell for the NCG dataset is consid-

erable. The masks, example of NCG images provided in the

second row of Figure 3, show the two typical outcomes

from our NCG dataset. Either a lot of noise is segmented,

or only bright macro-objects (e.g., particles) are segmented.

The former comes from Otsu selecting a threshold some-

where in the middle of the single mode of the histogram

that represents unstained cell samples and the background.

Figure 9. Parameters exploration for the proposed local thresholding technique. The x-axis represents the Smax parameter ranging from 0

to 100. The solid (LSNRmin 5 0.6), dashed (LSNRmin 5 1.2), and dotted (LSNRmin 5 1.8) curves show the influence of the filtering based on

the local SNR.
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The latter comes from the proper separation between the

unstained cells/background mode in the low intensities and

the mode added by the high-intensity unwanted objects. To

sum up, Otsu-based segmentation schemes cannot be rec-

ommended for our application. Despite the relative good

classification performances obtained when using the mean

pixel intensity classification feature on our datasets, these

schemes provided unwanted segmentation results for NCG

images where a low (ideally null) amount of fluorescent

pixel per cell is expected.

� Sauvola’s thresholding technique: Unlike the previously

discussed methods, Sauvola’s approach provides a specific

threshold value for each pixel in an image based on its

immediate surroundings. This practically removes the

influence of slow varying background intensity by extract-

ing regions with a local high contrast. Compared with

other methods, Sauvola’s thresholding technique is extract-

ing fewer pixels of higher intensities with a limited stand-

ard deviation when processing the SG dataset. Notably, the

extracted amount of fluorescent pixels per cell on the

NCG dataset is statistically null, showing that this tech-

nique can be set to exclude most of the background noise.

As a result, the effect size and AUC figures presented in

Table 1 confirm that the amount of fluorescent pixels per

cell can be used to obtain a reliable classification. Con-

versely, a classification based on the mean pixel intensity is

not reliable owing to the very low amount of extracted

pixels in the NCG dataset. When the TH filter preprocess-

ing step is used, the results and observations practically

remain unchanged, which is no surprise considering that

the TH filter filters out low frequencies that are already

ignored in Sauvola’s thresholding technique by design.

This is confirmed by the effect sizes and AUC (Table 1),

which show that TH prefiltering does not enhance the

classification results. The observed drop in the amount of

fluorescent pixels per cell can be reduced by increasing the

size of the structuring element used in TH filtering com-

pared with the size of the sliding window used in Sauvola’s

thresholding technique.

� Proposed local thresholding technique: This method was spe-

cifically designed to extract fluorescent spots by searching for

blobs of fluorescent pixels of limited size having intensity

higher than that of their surroundings. With Sauvola’s thresh-

olding technique, this method is one of the two methods that

extract the fewer pixels when no fluorescence is present in an

image. Looking at the effect sizes and AUC obtained in Tables

1 and 2, this method is comparable to the global thresholding

scheme using T-point and TH prefiltering.

After having analyzed the real images, we can already

sum up a few important points for classifying fluorescent

sample images. First, the simple average image intensity and

Otsu’s segmentation method are not reliable. The best seg-

mentation schemes for this task are the global thresholding of

TH filtered images using the T-point algorithm, Sauvola’s

approach, and the proposed local thresholding method.

Fluorescent Probes Localization on Synthetic Images

In this section, we analyze the various curves plotted in

Figures 7–9 to determine what method is best suited for prop-

erly segmenting fluorescent spots using synthetic images.

� Global thresholding on TH filtered images: Starting at a

threshold value of 0, the whole filtered image is segmented.

In this case, we have a single blob having the same size as

the image enclosing all the fluorescent probes. As the

threshold value increases, the average amount of blobs per

cell decreases drastically (Fig. 7b) and their average size

drops just above 5 pixels (Fig. 7d). In this case, many blobs

just represent noise from the background. Thus, the relative

amount of blobs failing to recover fluorescent probes is

high (Fig. 7c). Proper fluorescent dot segmentation hap-

pens for a normalized threshold value high enough so that

background noise is not segmented. In our test case, this

happens for a normalized threshold value of 0.09, where

the amount of blobs not recovering fluorescent probes is

minimum (Fig. 7c). Further increase of the threshold will

eventually trigger some blobs to be broken down into many

blobs (local maximum in Fig. 7b) alongside with the

amount of blobs not enclosing any probes (local maximum

in Fig. 7c). This indicates that global thresholding applied

on TH filtered images has an optimal threshold value which

maximizes the segmentation and spot extraction efficiency.

Below this optimal threshold, the segmentation masks

include background noise. This situation occurs when using

the T-point algorithm to determine the threshold value

(0.02) of the TH filtered synthetic dataset. Above the opti-

mal threshold, some information is lost. With an average

normalized threshold value of 0.14 and 0.33 for Otsu’s

method and recursive Otsu’s method, respectively, the latter

appears less optimal.

� Sauvola’s thresholding technique: A very low value of the

parameter k comes down to thresholding a given pixel with

the average pixel intensity within its surrounding window.

This results in many blobs segmenting noise. The amount of

blobs is very high (Fig. 8b), just like the amount of blobs not

enclosing any fluorescent probes (Fig. 8c). By design, Sauvo-

la’s method removes segmentation noise for a high enough

value of k. In our test case, this happens for a value of k

greater than 0.2, independently from the radius. From this

value of k and higher, which corresponds to peaks found in

the average blob size (Fig. 8d), all the metrics from Figure 8

are decreasing except for the blobs without probes and v2

histogram distance. This means blobs are getting fewer and

smaller, effectively locating fluorescent dots but leaving

behind some useful information contained in the images.

Looking at the influence of the window radius, we observed

that the various curves seem to converge as the radius

increases. Increase of the window radius seems to favor a big-

ger average size of the blobs, which inherently favors the

amount of fluorescent probes enclosed per blob.

� Proposed local thresholding technique: We are analyzing

the effect of the maximum allowed size for a blob Smax (x-

Original Article

1014 Image Thresholding Techniques for Localization of Fluorescent Biomarkers



axis on Fig. 9) and of the LSNR min parameter. As we can

see on Figure 9, a value of Smax smaller than the average

size of a fluorescent spot cannot be considered. If Smax is

smaller than 5 pixels, the results are meaningless. However,

as we sweep Smax up until 100 pixels, we can observe that

more fluorescent spots are segmented, while the amount of

blobs not segmenting probes is decreasing and the v2 histo-

gram distance is increasing. This indicates that our blobs

are becoming bigger and collecting more and more probes

per blob. The LSNR min parameter practically reduces the

average size of the blobs as it increases. This has the exact

opposite effect as the Smax parameter on the metrics in Fig-

ure 9. Note that in our test case, a LSNR min value smaller

than 0.6 allowed background noise to be segmented.

Knowing that the segmentation goal is to locate the fluo-

rescent probes, we are interested in segmenting an image so

that we have as many small blobs as possible, each enclosing a

minimum amount of fluorescent probes. The proposed local

thresholding method performs best in that aspect. Looking at

Figure 9 and within the parameter range described just above

for the proposed method, we are able to provide 225–300

blobs per cell between 4 and 13 pixels in size enclosing from

two to four fluorescent probes. In other words, we are recover-

ing 27–47% of the probes while keeping the v2 histogram dis-

tance between 400 and 1,000. Sauvola’s method is able to

provide similar blob sizes but the blobs are fewer per cell,

between 75 and 85, extracting up to 15% of the probes only

for a v2 distance ranging from 3,600 to 4,600. A smaller v2 dis-

tance could be achieved at the expense of the blob size and the

amount of probes per blob. In contrast, the global threshold-

ing of TH filtered images is not able to provide a v2 distance

smaller than 3,350, which results in blobs of 16 pixels seg-

menting 35% of the probes only. A lower threshold value

increases drastically the blob sizes and a smaller threshold

value further reduces the accuracy. As a result, the proposed

method is preferred as it is able to recover relevant fluorescent

pixels in a greater number of smaller blobs compared with

other methods, while keeping the amount of failed blob seg-

mentations contained.

CONCLUSION

In this work, we have applied commonly used global

threshold computation algorithms (T-point and Otsu) and

segmentation techniques (Sauvola) combined with the TH

MM filter for localizing sub-resolution fluorescent biomarkers

and classifying fluorescence microscopy images. We then

introduced a novel local thresholding technique and used the

previously cited methods as points of comparison.

The proposed local thresholding method was proven to

be the best for classifying the fluorescent images from our real

sample image datasets, followed by Sauvola’s method and the

T-point algorithm applied to TH filtered images. Considering

the amount of segmented pixels and their intensity as classifi-

cation features, these three methods were separating the SG

and NCG dataset better than any of the other segmentation

approaches. These results provide leads for our lGIT system

called NutriChip, as well as LoC systems in general, because a

combination of these three methods used in parallel can pro-

vide a robust image processing system for detecting and moni-

toring fluorescent signals.

In a second part, we also quantitatively analyzed the

capacity of these three methods for extracting useful fluores-

cent signal and hopefully localize the various stained TLR2.

This analysis was done on computer-generated images as real

images lack the metadata of biomarker locations in order to

evaluate the algorithms efficiency. The global thresholding

applied on images filtered by the TH filter was able to recover

the most information by recovering up to 94% of the stained

TLR in the best case. However, it performs poorly at localizing

them because the segmenting blobs are big compared with

typical fluorescent spots. The proposed local thresholding

method, which forces segmenting blobs below a given size,

recovers fewer biomarkers but provides better localization

results.
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