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Abstract—Variability analysis of nanoscale transistors and
circuits is emerging as a necessity at advanced technology nodes.
Technology Computer Aided Design (TCAD) tools are powerful
ways to get an accurate insight of Process Variations (PV).
However, obtaining both fast and accurate device simulations
is impractical with current TCAD solvers. In this paper, we
propose an automated output prediction method suited for fast
PV analysis. Coupled with TCAD simulations, our methodology
can substantially reduce the time complexity and cost of variation
analysis for emerging technologies. We overcome the simulation
obstacles and preserve accuracy, using a neural network based
regression to predict the output of individual process simula-
tions. Experiments indicate that, after the training process, the
proposed methodology effectively accelerate TCAD-based PV
simulations close to compact-model-based simulations. Therefore,
the methodology can be an excellent opportunity in enabling
extensive statistical simulations such as Monte-Carlo for emerging
nano-devices.

I. INTRODUCTION

The aggressive downscaling trend in CMOS technology
is expected to reach its fundamental physical limits in the
near future [1]. In order to discover free rooms for further
performance and functionality improvements, a number of
emerging nano-devices, e.g., Doped/Schottky Barrier Silicon
NanoWire FETs (SINWFETSs), various types of Fin-Shaped
FETs, and Carbon Nanotube FETs (CNTFETs) have been
proposed by research community [2]-[5]. Due to their novel
and complex geometries, they introduce new challenges such
as additional sources of variation which makes the statistical
variation analysis challenging [7].

Process Variations (PVs) and fabrication defects are largely
dominating the performance and reliability in advanced tech-
nology nodes. On the one hand, Technology Computer Aided
Design (TCAD) simulation can be exploited for accurate PV
analysis of emerging nano-devices because it virtually provides
an insight view into the physics of semiconductors. Numerical
simulations of TCAD are by far too slow to give timely
answers to many questions arising from variation of device
parameters or manufacturing fluctuations. On the other hand,
the use of compact models, in order to get fast prediction of
the device electrical behavior does not help anymore. Indeed,
developing and verifying a dependable compact model for
emerging nano-devices is a costly procedure, requiring mature
device fabrication, test, and measurement.

With the lack of mature devices and compact-models
availabilities, TCAD appears as the most appropriate candi-
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date for PV analysis of emerging technologies. However, the
simulation time requirements of potential TCAD-based PV
analysis of nano-devices critically depends on the complexity
of the physical models, the size of parameter space, and the
underlying optimization algorithms [8], [9]. In addition, con-
vergence of computations for small feature size also represents
a key limitation for commercial TCAD softwares. Current
TCAD simulators benefit by different types of optimization
techniques at the various level of simulation [10]. Nevertheless,
impractical TCAD simulation time for nano-devices remains
an important barrier, preventing their use for fast PV analysis.

In this paper, we propose a novel methodology intended to
effectively speed up the variation analysis for nano emerging
devices and circuits. A prediction technique is proposed to
estimate the output of TCAD simulation. The technique is
based on a “Feed Forward Neural Network” (FFNN) and
provides a multivariate non-linear regression method for faster
transistor I-V prediction as compared to TCAD simulations.
This technique learns the fundamental relations between a
device parameters and its functionality. In order to optimize
the I-V curves fitting, we modify the FFENN structure through
adding a number of extra nodes called Control Nodes. These
nodes modify the weights of the network in a way that the
predicted I-Vs have minimum error value corresponding On
Current (1,y,), Off Current (Io5y5), Threshold Voltage (Vry),
and Sub-threshold Slope (S). This methodology enables us to
produce a large enough data set of a target device in presence
of variations and handles the convergence issues related to
complex numerical models. To evaluate the capability of the
developed methodology, Double-Gate Silicon Nanowire FETs
(DG-SiNWFETs) were used as a target device. Simulation
results proved that the proposed methodology makes the time
complexity of device simulation comparable to compact-model
simulation. After training, the average runtime for I-V estima-
tion of a DG-SINWFET is 0.12 ms which is considerably
lower than TCAD simulation execution time.

The organization of this paper is as follows. Section II
describes the motivation and background. Section III presents
the proposed methodology for fast variation analysis. Section
IV provides the simulation results, and finally Section V
concludes the paper.

II. BACKGROUND AND MOTIVATION

This section focuses on the hurdles encountered during
PV analysis of emerging nano-devices. We discuss the time



complexity issues of TCAD for the purpose of PV analysis
and briefly review the related work for TCAD optimization.

A. Problem

Statistical information for transistors can be obtained by the
three following ways: device fabrication, TCAD simulation,
or compact-model based simulation. One important issue of
nano-devices fabrication, in addition to the lack of maturity,
resides in the increase of processing complexity. Moreover,
the contribution of each device parameter to the functionality
variation cannot be determined through cross-section analysis.
On the other side, reliance on device compact models is a
hardly feasible solution since the development of accurate
models mainly depends on tests and extensive measurements
on mature devices.

Thanks to their precise physical models, TCAD provides
comprehensive information about devices behavior and alle-
viates expensive fabrication and inspection process. Hence,
TCAD simulations are an invaluable solution for the evaluation
and minimization of PV impacts, thus enabling technologists
to early identify the main sources of parametric yield loss
in manufacturing. However, it suffers from several significant
challenges such as computational complexity of the DC/AC
device simulations, and convergence problem for complex
models. Thus, device level Monte Carlo analysis of nano-
structures using TCAD also will result in prohibitive time
complexity. Therefore, a fast methodology for PV analysis
is required, especially when new processes or devices are
introduced. In the following, a novel methodology which can
be integrated with TCAD to enhance simulation performance
of PV analysis is introduced.

B. Previous Work

TCAD simulation are extensively exploited for evaluating
the fabrication process and the electrical behavior of semicon-
ductors [12]. During the recent years, TCAD has been used
for the simulation of emerging nano-devices such as Multigate
FETs [14] and CMOS/Flash devices [13]. Moving towards
deep submicron technologies, the process simulation and phys-
ical model of devices becomes more complex. Hence, opti-
mization technique have been utilized for improving TCAD
performance.

Process simulation requires geometrical information and
mesh generation for the model under test. Moreover, it accu-
rately estimates structural layers and active dopant distributions
at the end of a procedure run. Techniques to enhance process
simulation precision and complexity have been investigated
in [16], [17].

Physical models are based on complex equations, describ-
ing the semiconductor conduction mechanisms. In order to
reach desirable accuracy at advanced technology nodes, the
complexity of model keeps increasing. Due to computational
complexity, several optimization techniques such as cluster
computation and gradient-based optimizations have been pro-
posed [15]. However, the downscaling of semiconductors are
correlated to increasingly complex models and therefore the
efficiency of the mentioned techniques are counteracted.

Most recently, [18] proposed a methodology in which
redundant physics computations are removed for common parts

of the model and accordingly repetitive 3-D simulations are
discarded for various parts of a circuits/layouts. This methodol-
ogy accelerates TCAD simulations and makes it reachable for
analysis of small circuits and logic blocks. However, it is still
very limited for large layouts or for the repetitive simulations in
the context of PV analysis. For example, one TCAD simulation
run of a 6T SRAM cell in FinFET technology takes more than
17 hours in this methodology.

III. LEARNING-BASED METHODOLOGY FOR FAST
PROCESS VARIATION ANALYSIS OF EMERGING DEVICES

In this section, we introduce the proposed methodology and
its key component: a prediction module. The prediction module
is used, after training, to predict the device variations instead
of using TCAD simulator, thereby improving significantly the
simulation process speed.

A. PV Analysis Using Neural Networks

To model the underlying relations of multivariate param-
eters in TCAD simulations, precise definition of the func-
tional relations among the variables is required. These func-
tional relations are based on solid-state physics and quantum-
mechanics equations. Thus, the TCAD simulation for only
a single device is very slow (O(hours)) [18], and also the
simulation does not converge for a non-negligible number of
data points.

To overcome this issue, our method uses a predictor which
learns how to approximate the simulator results. The predictor
is used for data generation and deal with the missing data
resulting from failed simulation runs. Without loss of gener-
ality, we will focus on single device simulation in this work.
Circuit-level modeling using this method is out of this paper’s
scope.

Fig. 1 represents the general flow of the mentioned method-
ology. First, our methodology considers the TCAD model
for the target device, using the nominal values of the device
parameters. This set of parameters is determined to precisely
reproduce the normal I-V characteristics of the target device.
In the next step, the profile of model parameter variations
such as gate length, channel length, and oxide thickness, is
applied to the TCAD model generator, and then a large data
set of various device models is created. Only a small subset of
these TCAD models is randomly selected and simulated. The
cardinality of this subset represents the minimum necessary
TCAD simulations for training the predictor. Predictor uses
the obtained I-V curves as a ground truth and learns the
underlying relations between the device parameters and its
functionality. In order to speed up the estimation of I-V curves,
the prediction module uses a regression technique to prevent
repetitive time-consuming TCAD simulations. After training,
the TCAD simulator can be replaced by the predictor, in order
to speed up the PV simulations. In the following subsections,
we explain the predictor structure and the training algorithm.

B. Neural Network Structure

Among nonlinear regression techniques, Feed-Forward
Neural Network (FFNN) [19] is mostly used in practice.
Compared to its competitors, such as Super Vector Regression
(SVR) [21], FFNN has smaller number of hyper parameters
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Fig. 1: Flowchart of the proposed methodology.

and smaller model-size. Moreover, FENN is fast while SVR
becomes very slow when many support vectors are created.
Although we utilize FFNN for prediction purpose here, it
should be noted that other non-linear regression methods can
also be applied to estimate the I — V' values. The performance
comparison for these methods is out of this paper’s scope.

Fig. 2 provides a graphical representation for the pro-
posed three layer FFNN. The set of device parameters
such as Channel Length, Oxide Thickness, and Gate Length
makes the FFNN input (x = {z1,x2,---,2s}). The set of
h=1,2,---, H also represents the hidden layer nodes. The
FENN output vector (i = {41,142, ,%y}) approximates the
observed values of the I-V curves (sampled Drain Current I,
set) for the given input. An estimated I; value (i,) for the
given input is calculated by:

J
=0, + thv S(bn+ Y ;- wn)
j=1

{V/,b} and {W’', W} are the network parameters and are called
bias set and weight set respectively. These parameters are
learned during the training step. W is a J x H matrix which
transforms the input data into the hidden space, and W’ is a
H x V matrix which transforms data from the hidden space to
the output space. The activation function ¢ is conventionally
chosen as Sigmoid logistic function (14=5) or hyperbolic
tangent (tanh(x)) in non-linear regression problems [23]. It
is known that FFNN is a universal approximator, which is
expressed in the following theorem reported from [25].

Theorem 1: If ¢(.) be a bounded, and monotonically-
increasing continuous function and I, denote the m-
dimensional unit hypercube [0, 1]™. The space of continuous
functions on I, is denoted by C(I,,). Then, given any
function f € C(I,,) and ¢ > 0, there exist an integer
N and real constants «;,b; € R and w; € R™, where

1 < i < N such that: F(z) = YN asp(wTz + b;) and

Output layer

Control nodes

Fig. 2: Graphical representation of the FENN for I-V curve regression

we have |F(z)

The hidden space dimension, H, determines the learning
capability of the network. An FFNN with a sufficiently large
single hidden layer can approximate the function showing the
relations among the parameters and their impacts on device
functionality. It should be noted that, the excessive number of
hidden nodes makes networks more prone to learn noise and
memorize the training data, therefore the prediction ability of
the network is reduced. In the next section, we discuss how to
determine the number of hidden units practically.

—fl@)] <e.

Control Nodes: Information obtained from I-V curves
are not equally valuable and a number of key statistical
information such as I, Ioff, Vrp, and S are more important.
Therefore, we introduce a set of control nodes within the
output layer in order to approximate specifically these valuable
information. Note that this information is already presented in
the output vector, but we distinctively add control nodes to
insist on the accuracy of I-V estimation and modify the degree
of fitting. By utilizing control nodes, the weights of the nodes
which contribute to estimate this information are modified in
a way that they have more impact on the regression. Control
nodes prevent model from overfitting and reduce the impact of
flat data on the I-V prediction. Our experimental results verify
that control nodes enhance the performance of regression.

C. Training of the Neural Network

In order to make our ground truth for training purpose,
the TCAD generated I-V curves are discretized. The Gate
Voltage (Vi) value is limited to [0,Vy] along a TCAD
simulation. This interval is divided to a number of equidistant
subintervals, and then current values are sampled at the end
point of these subintervals. Since the Vi values are alike for
the whole I-V curves, the correspondent I; values have to
be estimated through the prediction unit. Let the set 7'r =
(x1,11), (X2,i2) - - - (Xn,in) represents the training set which
N is the number of simulations used in the training set. The
set of the device input parameters is X; and i is the observed
values of the sampled I set for the given input. We minimize
the loss function which is defined as the least squares error
between the approximation values and the observed values,
over the training set:

Min L= (i(xe) —i(xx))* + (W' (e(xt) — &(xx)))
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where ¢(xy) represents the vector of control nodes in output
layer and w is a vector of size C' which shows the importance
of each control nodes. The backpropagation training algorithm
plus Levenberg-Marquardt algorithm [24] is used to find the
weights of the network.

Cross validation is a practical method to find the number
of hidden units and prevent overfitting. To perform cross
validation, a part of data set is randomly selected to test the
generalization of the network during learning process. The
error value of cross validation can be used a criterion for the
number of training cycles and the network size. As the network
size increases, the error value on the training set becomes
smaller. However, the error value on the test set reach to a
minimum value for the optimized network size and training
iterations. In the following section, we study the experimental
results of the cross validation.

IV. RESULT AND DISCUSSION

In this section, the experimental results are presented.
First, the setup of the experiments is explained and, then, the
simulation results are discussed.

A. Setup of Experiments

As a case study, Double-Gate Silicon Nanowire FETs (DG-
SiNWFETs) [5] is selected among various emerging devices
as a target model in our experiments. This device represents a
natural evolution of FinFET structure and can be dynamically
configured between n- and p-type through an additional termi-
nal, called Polarity Gate (PG). In-field reconfiguration can be
used for compact implementation of XOR based circuits [6].
Fig. 3 shows the structure of the DG-SiINWFET as used in
the TCAD model, while Table I presents the main geometrical
parameters of device and their nominal values.

Polysilicon Polysilicon Polysilicon

Oxide
D Channel S
Oxide
Polxsilicon Polxsilicon Polxsilicon

Fig. 3: 3-D TCAD structure of the DG-SiINWFET with all related geomet-
rical parameters.

For the sake of experiments, a 30% variation along normal
distribution is used for each geometrical parameters (o =
30%), in order to show the impact of PVs involved in the
device fabrication. In our experiments, Sentaurus [11] was
used as the TCAD simulator. As a case study, 2300 TCAD
simulations were performed to provide enough statistical in-
formation, and then analytical metrics such as the on-current
(Lon), the off-current (I,5y), the threshold voltage (Vrp,) and
the sub-threshold slope (S) were extracted through I-V curves
post processing. Fig. 5 illustrates the statistical distribution of
Ion, Io5f, and Vry for DG-SiNWFETS. In order to find the
minimum number of data points for training, we also trained

the predictor with the various size of train set. Fig. 8 depicts
the training performance when the size of train set is increases.
Our study revealed that almost 600 input data is enough for
training the predictor.

The proposed FENN is implemented in MATLAB. In our
experiments, all the input vectors are applied to the FFNN in
each iteration which is called epoch and then the estimation
error is computed. The new values of the weights are computed
by applying gradient descent on the error function. The learn-
ing method utilizes Mean Square Error (MSE) error function.
In order to validate the proposed prediction I-V module, we
divided the data set, i.e., the outputs of TCAD simulations into
three parts: 75% for FENN training, 15% for validation, and
15% for test.

20 20
-5 ‘- @ -Validation Set| | x 10 -
=B - Train Set

~

=]
=
(=)

Mean Square Error (Train)

Mean Square Error (Validation

0 20 40 50 60 80 100 120
Number of hidden nodes

Fig. 4: Mean square error of train and test sets for networks with various
number of hidden nodes

Before the learning process, we need to determine the
hyper parameters of the model such as error function, acti-
vation function and the number of neurons in hidden layer.
The selection of the first two hyper parameters was discussed
before. In order to find the optimum number of nodes in
the hidden layer, we performed the following procedure. The
number of hidden nodes is increased until the performance of
the FFNN on the test set starts to decrease. Fig. 4 depicts the
error value of the network on the test and train sets. As shown
in the figure, the minimum error on the test set is achieved
when hidden layer has 50 nodes. The figure clearly depict that
how the performance of the larger networks are degraded on
the validation set.

B. Experimental Results

In the following, the simulation results of the proposed
methodology are represented. Precision and time complexity
are the main aspects of our study.

1) Precision of Prediction: To show that the control nodes
can enhance the results of regression and prevent overfitting
over the training set, we built two separate FFNNs: one with
control nodes and the other one without control nodes. Fig. 6
illustrates the error distribution for the two FFNNs. The best
performance of the FFNN with control nodes is bounded to
the MSE of 4.3 x 10~4, while the ordinary FFNN reaches the
error bound of 6.0 x 10~%. Thus, the addition of control nodes,
controls the error bound of estimator.

Fig. 7 depicts a sample of I-V regression for the ordinary
and proposed FFNNs. The error value of V7, and [,,,, are much
smaller when control nodes are added to FENN. Therefore,
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TABLE I: DG-SiNWFET geometrical parameters

Parameters Lce Lcp Lpc Lxp Lxs Ryw Rpsi Tox
Control Gate Gate Spacer Polarity Drain/Pillar Source/Pillar Radius of Polysilicon Oxide Thickness
Length Length Gate Length Extension Length Extension Length NW Thickness >
Nominal value (nm) 22 18 22 25 25 7.5 2 12
600, 500 600
" 450
.§ 500 _é 00 § 500
400 > 350 >
§ § 300 R
© 300 © 250 S 300
2 2 200 2
€ 200 E 150 E 200
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Fig. 5: Distribution of Vipy,, I, 7 f> and Iy for DG-SiNWFET (0=30% for structural parameters). Only the variation of V7, follows a Gaussian distribution.
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Fig. 6: Error distribution for the networks with and without control nodes. The figures depict the cumulative error of the train set for the FNN with control

nodes and regular FFNN.

control nodes enable the FFN to learn the shape of the output
while, simultaneously, the error of the important outputs is
kept minimum. This approach of estimation can be useful for
the statistical analysis that use the information of post proceed
I-Vs such as I,,, I,rf, Vrn, and S for the purpose of PV
analysis.

Fig. 7: Two sample I-V regression through different FFNNs. Adding control
nodes to FFNNs results in more precise prediction.

In order to verify our methodology, we used it for PV study
of DG-SiNWFET by applying a 30% Gaussian random varia-
tions for each studied parameters. The same experiments were
performed with TCAD simulations for comparison purpose.
Table III represents the effect of Ryw ,7ox, and Lo varia-
tions on I,,,, I, and V7. Looking at the obtained values, our
methodology demonstrates a good correlation (average error of
less than 2% in mean values of I,,, I,;; and V7;) with the
results of TCAD simulation.
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Fig. 8: Necessary number of data points for training the predictor

2) Time Complexity: The runtime of the PV analysis for
DG-SiNWFET through the proposed methodology has been
shown in Table II. The prediction methodology is clearly faster
than TCAD simulation. The time complexity of the FFNN
predictor is related to the learning step which is done once.
This methodology is useful when a large data set is needed.
This is a common case for statistical PV analysis. For example,
consider a usual Monte Carlo method for variation analysis of
DG-SiNWFET in which 5000 data points is required. Only
a small part of the data points (nearly 12%) is necessary to
reveal the variation distribution on the device output. In this
case, only 600 TCAD simulations can be performed to set up
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the predictor instead of 5000 overkilling simulations. In the
next step, TCAD simulator is replaced by predictor which can
quickly produces the necessary data set in O(sec) for 4500
remaining simulation (with average execution time of 0.12 ms
per sample). Figure 9 compares the execution time of TCAD
and proposed methodology for PV analysis. After a number of
TCAD simulation which is necessary for the training, FFNN
considerably accelerates the simulations runtime.

1250

-©-TCAD
- B -Proposed predictor
1000

~
a
=)

Minmum number of
TCAD simulations for
training

Execution time (h)
o
o

[N}
@
=)

o 1 I . . .
0 600 1200 1800 2400 3000 3600

Number of simulations

Fig. 9: Runtime comparison of the TCAD simulation with proposed method-
ology

TABLE II: Execution time comparison

Average execution time for one simulation
Method s

(CPU: Dual-Xeon X5650, Memory: 24 GB )

TCAD 19 min

Proposed methodology

1.23 x 10 *sec (Learning time: 18 min)

TABLE III: DG-SiNWFET PV analysis using TCAD and proposed method-
ology

TCAD Proposed methodology
Rnw | Tox | Lecg | BRnw | Tow | Lca
I mean (pA) 1.28 1.45 1.44 1.29 1.43 1.43
en std (nA) 528.7 | 487 0.5 5362 | 577 0.7
B mean (fA) 090 | 073 | 072 088 | 076 | 0.72
off std (fA) 0.53 0.02 | 0.006 0.49 0.03 | 0.01
v mean (mV) 330 331 333 321 346 327
Th std (mV) 55 21 9 59 18 12

V. CONCLUSION

In this paper, we introduced an efficient methodology for
variation analysis of emerging nano-devices. This methodology
consists of a prediction module which can be added to TCAD
simulator to enhance the time complexity of the PV analysis.
The prediction module is based on feed-forward neural net-
work, which is capable of estimating the underlying relation
of device parameters and device functionality. Learning this
relation enables us to replace repetitive and time consuming
TCAD simulation by a fast estimation methodology. Our
simulation results revealed that the proposed methodology can
effectively be used for PV analysis, while reducing the time
complexity of TCAD simulations of device to O(ms) with the
maximum error bound of 4.3 x 10~%.
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