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We report on the top-down fabrication of vertically-stacked polysilicon nanowire (NW) gate-all-around
(GAA) field-effect-transistors (FET) by means of Inductively Coupled Plasma (ICP) etching and nanostencil
lithography. The nanostencil is used to form sub-ym GAA gates over polysilicon NW array channels with

Keywords: high aspect ratio, considerably simplifying the lithographic steps above regions with deep 3D topography
SChO_ttky b_arrier and non-planar surface features. This process lead to fabrication yields larger than 70% and authors envis-
Ambipolarity age even larger yields of > 85% with optimized mask design. Electrical measurements confirm the
;er;]acrillorivtlligraphy results obtained from similar devices fabricated with a standard lithography method while achieving
FET higher density, larger reproducibility and yield, maintaining the performance improvement related with
silicide scaling.
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1. Introduction

Future technological innovations enabling ever higher circuit
densities predicted by Moore’s law will most likely be concen-
trated on novel materials, innovative device structures, and signif-
icant modifications of the planar transistor design [1,2].
Considering novel device structures, multiple-gated transistors
have been proved of better electrostatic control and larger drive
current with respect to the traditional planar transistor design
[3]. These features are particularly attractive as enablers for further
device scaling. In fact, double-gate and finFET structures are the
first non-planar 3D gate constructions being successfully employed
into commercial products. Nowadays, growing research efforts are
spent with gate-all-around constructions with sub-10 nm diameter
nanowire (NW) channels. Nevertheless, as the dimensions reduce
and 3D structures are introduced, major difficulties arises due to
the need of scaling while keeping large fabrication yields.

We report on a fully CMOS-compatible top-downfabrication
flow of polysilicon channel finFETs and vertically-stacked polysil-
icon NW gate-all-around (GAA) FETs by means of an optimized
Bosch process [4] and nanostencil lithography [5]. In a previous
work, the authors envisaged stencil lithography [6] as a key ena-
bler for gate patterning on 3D structures, such as vertically-stacked
Si NW transistors [4]. In this work, nanostencil lithography is used
to deposit the Al mask used to pattern sub-pum GAA polysilicon
gates deposited with LPCVD as alternative solution for patterning
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nanoscaled features having high aspect ratio, which is a non trivial
issue in photo-resist lithography. Moreover, a simple method to
form vertically-stacked Si NWs on bulk-Si substrates [7] has been
adapted to form vertically-stacked NWs onto polycristalline Si sub-
strates. Preliminary electrical characterizations performed before
the metal contact formation demonstrate functional memristive
FET operation and confirming the behavior of previously reported
devices fabricated with standard processing technology and pm-
scale gate lengths [8]. The finFETs and the vertically-stacked poly-
silicon NW GAA devices are fabricated with yields larger than 70%,
demonstrating a promising new method for 3D transistor fabrica-
tion with sub-um nanostencil lithography.

In Section 2.1 we describe the structure of both finFETs and ver-
tically-stacked GAA SiNW FETs. Then in Section 2.2 the fabrication
flow for the devices is explained in detail, whereas the fabricated
structures and discussion on the nano-fabrication results are pro-
vided in Section 3. Hence, the electrical measurement results are
reported Section 4, with discussion among the difference in perfor-
mance achieved by finFETs and vertically-stacked polysilicon NW
GAA FETs. Finally, in Section 5 we draw the conclusions.

2. Device Fabrication
2.1. Device Description

The devices built can be grouped into two categories: finFETs
and vertically-stacked SiNW FETs. In the first case, FETs or invert-
ers having either 1 to 11 fins channels and tri-gate construction are
built (in Fig. 1(a), a finFET with 3 fins is depicted). In the second
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Fig. 1. Non-planar device topologies considered: (a) finFET with tri-gate construc-
tion.(b) Vertically-stacked SINW FET with GAA construction.

case, FETs or inverters with 1 to 11 parallel strands consisting of 3
vertically-stacked SiNWs and GAA construction are built (in
Fig. 1(b), a 3 times 3 SiNW matrix with GAA construction is
shown). Apart from the fabrication of non-planar channels in such
devices, the lithography definition of tri-gate or all-around gate
structures above 3D channel regions is considered to be a signifi-
cant challenge [1].

2.2. Process Flow

The fabrication starts with the substrate preparation for the two
separate wafer batches. Bulk-Si wafers are oxidized in wet atmo-
sphere to form 500 nm thermal oxide. Then either 50 nm or 350
nm thick LPCVD polysilicon is deposited as the device layer to build
finFETs or vertically-stacked SiNW FETs, respectively. Individual or
arrays of lines of widths of 50 nm and length of 8 um are patterned
with diluted hydrogen silsesquioxane (HSQ) using it e-beam lithog-
raphy (EBL) (see Fig. 2(a)). The HSQ is then used as hard mask for
the fins and the vertically-stacked SiNWs etching (Fig. 2(b)). For
the fin formation, a C12 based plasma etching is used to obtain ver-
tical sidewalls, whereas for the vertically-stacked SiNWs the etch-
ing consists of 3 cycles of passivation and etching steps, alternating
low frequency pulses of C4Fg and SFs plasmas. The etching tech-
nique used for the stacked SiNW formation has been calibrated
from the recipes previously described by the authors for the forma-
tion of vertically-stacked SiNWSs in crystalline Si substrates [7].
Next, a 10 nm dry oxidation followed by a 100 nm LPCVD polysil-
icon deposition form the gate stack (see Fig. 2(c)). At the same time
a low stress SiN nanostencil mask has been patterned with the gate
design. The fabrication details of the nanostencil are described by
the authors in a different publication [5]. In this work, the nano-
stencil is made of 100 nm thick LPCVD low stress SixNy. The gate
and contact pads are defined by EBL, followed by consecutive etch-
ing steps to open the apertures and back side windows. Then the
nanostencil mask is aligned with a dedicated optical alignment
tool and mechanically clamped with the device substrates. After
loading the substrates with the nanostencil into a commercial e-
beam evaporator, 40 nm Al are deposited, leaving an Al hard mask
reproducing the gate design on top of the polysilicon layer
(Fig. 2(d)). The Al mask gives better selectivity than SiO, hard maks
for dry Si etching, thus enabling the patterning of higher aspect ra-
tio structure. Hence, polysilicon gates are etched and SixN, spacers
are formed to provide good isolation barrier between the gate and
the source/drain regions (Fig. 2(e)). This step is thus used to form
pad areas for electrical characterization as well as polysilicon gates
with lengths between 100 nm and 500 nm. Finally, a 30 nm thick
Ni layer is deposited on the substrates, and a thermal annealing
process at 400°C is utilized to form a stoichiometric 1:1 NiSi phase
on top of the gates and to metallized source/drain regions. The
unreacted Ni that was lying either on top of SiO, BOX layer or onto
the spacers has been removed with a selective Piranha solution.

polysilicon
nanowires

HSQ lines

\Y

(b)

JAI mask

polysilicon
NANOSTENCIL

(c) (d)

spacer

(e) (f)

Fig. 2. Fabrication flow of the vertically-stacked GAA FETs. (a) HSQ lines are
patterned with EBL. (b) A DRIE etching process is tuned to form 3 levels of stacked
SiNWs. The nanowires are attached to polysilicon pillars at their extremes (not
shown). (¢) 10 nm dry oxide and 100 nm LPCVD polysilicon are deposited to form
the gate stack. (d) A nanostencil mask is aligned and mechanically clamped with the
substrate, serving as evaporation mask for Al deposition. The Al is then used as
mask to pattern the gate.(e) After gate patterning a SixN, spacer is formed on
vertical sidewalls. (f) After Ni blanket deposition and a thermal annealing at 400°C,
a Piranha wet etching is used to remove unreacted Ni from either BOX and spacer
regions, thus forming self-aligned NiSi source/drain and gate areas.

Thanks to the self-alignment of the SixN, spacers with the gates,
self-aligned source/drain regions are formed and the devices are
ready for electrical characterization.

3. Fabricated Devices

The fabricated devices included FETs or inverters designed with
different number of channels, having either 1 to 11 parallel SINWs
for the finFETs. For the vertically-stacked SiNWs the same design is
used, nevertheless, thanks to stacking 3 levels, the same devices
have 3 to 33 parallel SINW channels. Another difference among fin-
FETs and vertically-stacked FETs is notably the gate structure,
which are tri-gates and GAA, respectively. In Fig. 3, a finFET with
11 parallel SiNWs and tri-gate construction is shown. The SiNWs
are interconnected every 500nm in order to improve the mechan-
ical stiffness and so to avoid bending. In Fig. 4, a vertically-stacked
FET with 3 stacked SiNWs of 30 nm diameter and GAA construction
is shown. In the inset, conformal coverage of 10nm thick SiO,
dielectric and LPCVD polysilicon gate is shown.

In all substrates, the design included 150 FETs and 150 invert-
ers, for which the fabrication yield has been checked. In Table 1
fabrication yields larger than 70% are reported, showing excellent
reproducibility, considering the experimental nature of the
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Fig. 3. Si nanowire FET with 11 channels with 50 nm times 50 nm channel cross-
section, 350 nm long polysilicon gate. The nanowires are connected at regular
intervals of 500nm in order to improve the stiffness of the structure. In the inset a
magnified and tilted SEM view shows the nitride spacers and the SiNWs around the
gate structure.

SiNWs

100 nm

Fig. 4. Si nanowire FET with 3 vertically stacked single-stranded 30 nm diameter
channels. In the inset, a Focused lon Beam cross-section of the gate shows 3 SiNWs
surrounded by 10 nm SiO, dielectric and 100 nm LPCVD polysilicon. Gate length is
350 nm.

process. Moreover, the failing sites have been observed the same
for all the substrates, regardless of the process flow. This is the rea-
son for the very similar yield reported for finFETs and vertically-
stacked FETs. It is worth noticing that failing devices are mainly re-
lated with defects in the mask design, and that this aspect of the
work has not been optimized. Thus, the main limitation on the
fabrication yield is related with systematic errors in the design.

Table 1
Fabrication Yield measured for the 4 device types.

Yield finFETs vertically-stacked FETs
FETs 70% 70%
Inverters 85% 84%

For instance, one of the major fabrication issues is the mechanical
stability of the nanostencil, whose robusteness is crucial for the
correct patterning of the Al mask. If we consider the device subset
of finFET inverters, the the larger yield of 85% is mainly attributed
to the lower number of defective nanostencil patterns. Using a
smaller size for the nanostencil, which would be a natural conse-
quence when fabricating more scaled devices, improves stability
and, at the same time, reduces the frequency of defective patterns.
Hence, there is indication that fabrication yields larger than 85%
with this process flow is possible with relatively little effort in
the mask design.

4. Electrical Measurements

Electrical characterization is carried out with a manual probe
station connected to a Agilent B1500 semiconductor parameter

-8

10
V., from 1V to
ds
- 4V in 1V steps
10
10701
[2]
_'U
107"
10—12 |
107 )
-5 -2.5 0 2.5 5
\%
gs

Fig. 5. I4s — Vg curve for vertically-stacked SiNW GAA FET with 3 stacked channels.
Measured minimum inverse subthreshold slopes for electrons (n-branch) and holes
(p-branch) are 300mV /dec and 1300mV /dec at V4=4V.
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Fig. 6. I — Vg curve for vertically-stacked SiNW GAA FET with 3 times 11
channels. Measured minimum inverse subthreshold slope for electrons is
350mV/dec. Notice that the holes conduction is effectively suppressed due to the
3D nanowire mesh.
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Fig. 7. 14, — V4s memristive/hysteresis curve for vertically-stacked SINW GAA FET
with 3 stacked channels. The hysteresis lead to different saturation threshold due to
the dynamics of charges with interface states at either the Shottky junctions or at
the polysilicon grain boundaries.
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Fig. 8. Inverter operation obtained by biasing a FET with constant current. The
Vout — Vin characteristics switched from high to low Vo at Vi, ~1 V.

analyzer. Tungsten tips are put in contact with the polysilicon
source/drain pads and on the Al/polysilicon gate pad. Typical
las — Vgs curves are first measured for finFETs which show large in-
verse subthreshold slopes of about 1500mV/dec and average
Ion — lopr ratio of 3 orders of magnitude. These results are then
compared with the electrical performance measured for the verti-
cally-stacked GAA NW FETs. The I4s — Vs curves (Fig. 5) for the ver-
tically-stacked FETs with 3 stacked SiNWs show typical device
ambipolarity with inverse subthreshold slopes for n- and p-
branches up to 300mV/dec and up to 1300mV /dec, respectively.
Notice the strong dependence of the p-branch with applied V;.
This undesired behavior is largely compensated for, in the devices
with 3 times 11 parallel fingers, as shown in Fig. 6. The apparent
robustness with respect to short channel effects is attributed to
the different geometry of the 3D mesh with respect to the single
stranded stacked SiNWs.

Another interesting result is the hysteresis observed for Igs — Vs
curves (see Fig. 7). The hysteresis reflects the fact that the Igs — Vs

ViV] Va[V] Vout[V]

0 (logic 0) 0 (logic 0) ~ 4 (logic 1)
0 (logic 0) 2 (logic 1) ~ 3 (logic 1)
2 (logic 1) 0 (logic 0) ~ 5 (logic 1)
2 (logic 1) 2 (logic 1) ~ 0.5 (logic 0)

curve for forward V4 sweep is not identical to the same curve for
backward Vg5 sweep. This behavior can be attributed to the pres-
ence of interface states at the metal/semiconductor junctions as
reported in literature for Schottky diodes [9]. More detailed expla-
nation of the memristive electrical behavior can be found for sim-
ilar, previously reported devices [8].

Finally, inverter and logic NAND operation have been performed
using a current biasing scheme. In Fig. 8, a current bias from 5 pA to
15 pA in 5 pA steps has been utilized. As shown in the graph, the
inversion voltage saturates at Vj, ~ 1.2V with a gain AV, |
AV, ~ 14. Moreover, by using two vertically-stacked FETs in series
connection, NAND functionality can be achieved by measuring the
voltage drop across while sweeping the gate voltages of the two
devices. With this method, typical NAND functionality is obtained,
as shown in Table 1.

5. Conclusions

In conclusion, we demonstrated for the first time vertically-
stacked Si nanowire FETs with polysilicon GAA having gate lengths
down to 100 nm and yield larger than 70%. Moreover, the reported
ambipolar behavior for vertically-stacked FETs achieves Ion/logr ra-
tio up to 4 orders of magnitude and inverse subthreshold slopes
(SS) up to 300mV/dec, effectively improving the SS of
1500mV /dec obtained for finFETs. The method provide excellent
step coverage on either finFETs and vertically-stacked SiNW FETs
with strongly non-planar topography, thanks to the use of an Al
etch mask deposited with nanostencil. The electrical behavior con-
firms the results obtained from similar devices fabricated with a
standard lithography approach while achieving higher density, lar-
ger reproducibility and yield, maintaining the performance
improvement related with scaling. Finally, functional inverter
and logic NAND operations are obtained, confirming the discussed
fabrication flow as valuable tool to build logic circuits.
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