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Abstract—Homogeneous and heterogeneous NoC-based many-
core MPSoCs are becoming widespread in many application
areas. The diversity and spare network traffic characteristics
generated by the IPs makes mandatory to provide certain Quality
of Service (QoS) support for critical traffic streams on the system
at application level even from the parallel programming model.

In this paper, we present a hardware-software approach
to enable QoS from the parallel programming model on the
emerging NoC-based many-core MPSoCs. We designed NoC
hardware QoS support, and the associated middleware API
which enables runtime QoS on parallel programs. Additionally,
a QoS-aware on-chip Message Passing Interface (ocMPI) stack is
presented where QoS streams can be handled automatically on
the system by means of task annotation on the ocMPI library,
in order to distribute and balance workload under congestion,
guaranteed throughput and latency bounds of critical processes
and, in general to boost and meet QoS application requirements.

Our experimental results during the execution of message
passing parallel programs using prioritized and guaranteed
services extensions on the QoS-aware ocMPI library show an
average speedup of ~15% and ~~35%, respectivelly.

I. INTRODUCTION

Nowadays, the current trends in homogeneous or heteroge-
neous many-core systems [1] require easy programming and
SoC design to deliver and improve the system performance
under very constrained power budgets. At architecture level,
NoCs (Networks-on-Chips) [2][3][4] have been proposed as
the fabric to interconnect the IP blocks to create highly parallel
scalable systems at reasonable hardware cost. These systems
can be either homogeneous (e.g. many-cores) [5][6][7] or
heterogeneous (e.g. embedded SoCs for mobile applications),
featuring a mix of general purpose processors, memories,
DSPs, multimedia accelerators, etc.

In both cases, different levels of Quality-of-Service (QoS),
such as Best-Effort (BE) and Guaranteed-Throughput (GT)
or low latency traffic classes, should be available to applica-
tions, allowing designers to carefully allocate communication
resources in a prioritized manner according to the application
requirements.

In addition, these facilities must be controllable by the soft-
ware stacks (i.e. firmware and middleware) to tolerate software
updates over the lifetime of the chip and to make incremental
optimizations. Additionally, these chips can potentially be used
in various application scenarios, also called use cases, even
after tape-out, and therefore the various IP blocks may operate

at different performance points as the use cases alternate at
runtime. Each of these effects implies additional unpredictabil-
ity of the on-chip traffic patterns, possibly rendering their static
characterization impractical or overly conservative.

Thus, applications and/or the programming environment
chosen for their development/execution should have some de-
gree of control over the available NoC services. Furthermore,
the access to the available NoC services should be mediated
by an easily usable API, which must offer low-overhead and
full compatibility with mainstream multi-core programming
approaches.

In this way, the application programmer or the software
execution layer (be it an OS, a custom support middleware or
runtime environment) by means of a simple annotation upon
critical flows can exploit the hardware resources and meet the
performance requirements of the application.

In traditional multiprocessor architectures different paral-
lel programming models API libraries have been proposed
according how the memory hierarchy is organized. Most
widespread are OpenMP [8] for shared-memory architectures
and Message Passing Interface (MPI) [9][10] for distributed
memory systems. MPI emerged as a widely used standard for
writing message-passing programs in many-core systems.

In this work, we propose a QoS-aware lightweight on-chip
MPI (ocMPI) software stack targeted to enhance performance
of the emerging NoC-based many-core MPSoC application
by provisioning runtime QoS on critical application tasks.
With this customized stack, we enhance the programmability
of these systems providing a well-known message passing
programming model to enable parallel programming, and
potentially we can deal with QoS requirement imposed at task
level.

Because of its complexity, we adopt a layered approach that
incrementally abstracts away hardware-specific details from
QoS hardware support present at NoC level, and vertically
exposes at higher levels on the ocMPI library. By means
of annotation we can create create privileged streams during
ocMPI program execution, where critical tasks are mapped
with different priorities or using guaranteed services during
synchronization and message passing, which leverage to im-
portant application-level benefits.

Thus, this work has two folds: (i) we describe the hardware
modules (i.e. memory buffer and synchronization modules),



and the QoS support necessary to set up QoS-aware message
passing, and (ii) we expose the QoS through low-level and
middleware API by extending our ocMPI library.

Under this framework, we explore multiple options to
effectively utilize the QoS concepts to enhance the cluster
on chip performance. Experimental results on a set of rep-
resentative ocMPI parallel parallel programs show that under
different traffic patterns according to ocMPI calls, the use of
prioritized transactions boosts the overall execution time of
each prioritized task up to ~215%. On the other hand, the use of
guaranteed services on critical threads ensure latency bounds,
and speedup the critical tasks by ~~35%.

This paper is organized as follows. Section Il presents
related work on parallel programming models and QoS support
management on NoC-based MPSoCs. Section I11 describes the
hardware support to enable runtime QoS at the NoC level.
Section IV describes a comprehensive layered view of our
hardware and software platform. Section V describe briefly
the developed NoC-based many-core platform. Section VI
explains the QoS middleware APl to enable runtime QoS
on the NoC-based system. Section VII show in detail the
ocMPI library and the extensions implemented to support
runtime QoS on parallel applications. Section VIII describes
our experimental framework, the selected benchmarks and the
results obtained. Finally, Section IX concludes the paper.

Il. RELATED WORK

In traditional networks [11][12] many techniques can be
applied to provide QoS, but this scenario changes radically
when designing NoC-based MPSoCs due to largely different
objectives (e.g. nanosecond-level latencies), opportunities (e.g.
more control on the software stack) and constraints (e.g.
minimum buffering to minimize area and power costs). QoS
for NoCs is impractically implemented in hardware only, due
to the large and hard-to-determine number of possible use
cases at runtime; a proper mix of hardware facilities and
software-controlled management policies is vital to achieving
efficient results.

In QoS, the target as proposed in [13][14][15] is to combine
BE with GT streams by handling them for instance with a
time-slot allocation mechanism in the NoC switches. A more
generic approach following the idea presented in QNoC in [16]
to split the NoC traffic in different QoS classes is reported in
[17][18] by shwowing a methodology to map multiple use-
cases or traffic patterns onto a NoC architecture, satisfying
the constraints of each use-case. However, none of these works
tackles the problem on how to expose QoS features across the
software stack.

On the other hand, due to the necessity to max-
imize performance/power figures on the new emerging
NoC-based MPSoCs, recently a wide number of specific
OpenMP [19][20][21][22] and MPI libraries [23][24][25][26]
have been customized to enable application level parallelism.

In addition, The Multicore Associations offers MCAPI [27]
a powerful alternative API for multicore architectures that is

optimized for low-latency inter-core networks, and boasts a
small memory footprint that can fit into in-core memory

Through our research the main contribution is to explore
and shed some light by extending previous works by means
of providing BE-GT QoS features on the NoC backbone but
exposing them through the software stack all the way up until
the parallel programming model (i.e our ocMPI library).

Even if this work is inspired in [28][29][30] where the
authors present QoS at task level and on parallel programming
models, to the best of our knowledge, the approach detailed
in this paper represents the first attempt to have a complete
QoS-aware software stack on the new emerging NoC-based
many-core MPSoCs. This work leads to the strong challenge to
program and exploit efficiently at higher levels of abstraction
all the potential present on the execution platform, as well as
to deal with the inherent application dynamism.

I1l. QO0S SupPPORT AT NOC LEVEL

To enable runtime QoS at the task or application level,
we extend the Network Interfaces (NIs) to include a set of
configuration registers, memory-mapped in the address space
of the system, to program QoS features on the fly. These
registers can be programmed in different ways to provide
different types of QoS. When the application demands a given
QoS level, the NI correspondingly tags the packet with 4-bit
QoS field. The possible QoS tags are shown in Listing 1.
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// Priority levels

#define ENC_QOS_HIGH_ PRIORITY_ PACKET 0
#define ENC_QOS_HIGH_ PRIORITY PACKET 1
#define ENC_QOS_HIGH_ PRIORITY PACKET_2 "b0010
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#define ENC_QOS_HIGH PRIORITY PACKET 5 ‘b0101
"b0110

#define ENC_QOS_HIGH PRIORITY_PACKET 6
‘b0111

#define ENC_QOS_HIGH_PRIORITY_ PACKET_ 7
// Open/close circuits

#define ENC_QOS_OPEN_CHANNEL 4'11000
#define ENC_QOS_CLOSE_CHANNEL 4’1001

As shown in Figure 1, at switch level, we design a con-
figurable (up to 8-levels) priority scheme to support QoS
which relies on Fixed Priority and Round Robin BE priority
mechanisms based on [11] already implemented in the xpipes
library [31][32].
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Fig. 1. QoS support extension on allocator/arbiter

On the other hand, the QoS support to establish/release
circuits in order to guaranteed throughput is based on applying



circuit switching over the wormhole NoC. We extend the
arbitration and grant generation in the switch adding hardware
support to store whether an end-to-end connection (circuit) is
established or not.

IV. LAYERED VIEW OF OUR QOS-AWARE SOFTWARE
STACK

Usually HW-SW networked systems are organized along
different abstraction layers in order to hide the complexity
of the whole system, and expose the transparent interactions
between components. In particular, in [3][33][34][35][36] the
use of the micro-network stack is proposed for NoC-based
systems based on the well-know ISO/OSI model [37]. Figure 2
shows our HW-SW components and the layered view our
NoC-based MPSoCs platform.

o Application layer: At the topmost level of the software
stack there is the parallel application, i.e. the ocMPI pro-
gram. Parallel execution is supported by the underlying
architecture and hardware support as well as the ocMPI
library. QoS features are integrated within the library, and
are implemented as a wrapper around the middleware
API.

« Transport layer: is in charge of injecting/receiving packets
using NIs initiator and target over the on-chip network
between two end-points (i.e. processors and memories),
respectively.

o Network layer: is responsible for the transmission/recep-
tion of packets using BE or the QoS features.

—_—
Application —
ocMPI program
QoS-aware Application
ocMPI Library Layer
Middleware API for
QoS support
Buffer Memory ARM RISC CPU
- Transport
QoS-NI Target QoS-NI Initiator Layer
I I I I 1 I Network
‘ QoS NoC interconnection ‘ Layer

Fig. 2. HW-SW layered view of our NoC-based MPSoC architecture

V. OVERVIEW OF NOC-BASED MPSOC ARCHITECTURE

Our architecture shown in Figure 3, is an instance 4x4 2D
Mesh many-core MPSoC platform. The NoC is developed
using xpipes library [31][32]. Later, the hardware components
in conjunction with the QoS-aware software stack have been
integrated in MPARM [38], a full-featured SystemC full
system simulator based on ARM processor.

As shown in Figure 3, each tile of our NoC-based MPSoC
architecture includes an ARM (with L1 I/D cache). On the
whole system there is only one master ARM tile (usually
ARM_0), and it is in charge of supervision the execution,
whereas the remaining nodes act as ARM slaves. Each ARM-
based tile also includes on the same switch the hardware

support to support message passing: (i) a buffer memory that
is used as an internal buffer for the ocMPI library and (ii) a
synchronization module, which is in charge to notify (as a fast
interrupt-like device) whether is an ongoing packet, they are
packets to be received, etc.

Fig. 3.

NoC-based MPSoC platform

In order to get an efficient message-passing, we choose
a distributed synchronization scheme including on each tile
a synchronization module. Thus, the poll from the ARM
processors on the synchronization module can be performed
locally on each tile, and as a consequence, no additional
traffic is injected across the NoC, unless a remote lock/unlock
notification is performed.

VI. Low-LEVEL QOS SUPPORT AND MIDDLEWARE APIS -
INTERFACING NIS WITH APPLICATION LEVEL

In order to exploit QoS features in an efficient way, a
set of low-level GT QoS API have been implemented in
order to establish/release channels using the programmable
NI. In Listing 2, we describe the functions of which the QoS
middleware API is made from.

// Set up an end-to-end circuit
// unidirectional or full duplex (i.e. write or R/W)
int ni_open_channel (uint32_t address, bool full duplex) ;

// Tear down a circuit
// unidirectional or full duplex (i.e. write or R/W)
int ni_close_channel (uint32_t address, bool full duplex) ;

In order to make a synergy with the programming model
layer with functions that closely resemble the ocMPI seman-
tics, we provide three middleware API primitives to set/release
priority transactions, and two more to send/receive streams
of data with GT channels, respectively. These functions are
described in Listing 3.

The activation overhead of the QoS support above men-
tioned in Section Il is null since the QoS field is directly
embedded in the packet header as a 4-bit field. On the other
side, the QoS middleware API software to program the NI and
the system is based on the memory-mapped store transactions,
i.e. few clock cycles depending on the NoC fabric.



// Set high-priority in all W/R packets between an
// arbitrary CPU and a Shared Memory on the system

int setPriority(int PROC_ID, int MEM_ID, int level);

// Reset priorities in all W/R packets between an
// arbitrary CPU and a Shared Memory on the system
int resetPriority(int PROC_ID, int MEM_ID) ;

// Reset all priorities W/R packet on system
int resetPriorities(void) ;

// Functions to send/receive stream of data with QoS
int sendStreamQoS (byte sbuffer, int length, int MEM_ID) ;
int recvStreamQoS (byte xbuffer, int length, int MEM_ID) ;

VII. QOS-AWARE OCMPI SOFTWARE LIBRARY

In this section, we explain in detail the ocMPI software
library targeted for next generation NoC-based systems. The
ocMPI library have been implemented starting from scratch
taking as starting point the source code of Open MPI initia-
tive [10] and doing a bottom-up approach as proposed in [39]
with several refinement phases to get a lightweight stack.

Thus, we selected a minimal working and subset of standard
MPI functions. This task is needed because MPI contains
more than one hundred functions, most of them not useful
in NoC-based MPSoC scenarios (e.g. the generation of virtual
topologies is useless we can design real application-specific
topologies [40][41][42]). As shown in Figure 4, the the lower
layers of the selected MPI standard functions have been mod-
ified in order to send/receive packets by creating transactions
through the NI to the NoC, and vice versa.

Standard Message
Passing Interface

Message Passing Interface
on-a-chip environment

Standard MPI ocMPI Library
" Transport Layer
Operating System (Network Interface)
porting to on-chip
TCPIP environments NoC Network Layer
(switch)
MAC layer
e (Arbitration + Flow Control)
PHY
LY (NoC wiring)

Fig. 4. MPI adaptation for NoC-based many-core systems

The ocMPI implementations is completely layered and
advanced communication routines (such as ocMPI_Gather,
ocMPI Scatter (), ocMPI Bcast (), etc.) are im-
plemented using simple point-to-point routines, such as
ocMPI_Send () and ocMPI_Receive ().

Furthermore, our ocMPI implementation does not depend
of an OS. We define the number of processors involved in
the NoC-based MPSoC using a configuration file, and at
compilation time the master is defined by means of a pre-
compiler directive -DMASTER. The assignment of the rank
to each processor is performed at runtime when we call
ocMPI_Init () function.

As shown in Figure 5, we defined a slim and extensible
ocMPI packet format which is divided in two parts: (i) an
ocMPI header of 20 bytes with contains the message passing

protocol information, and (ii) a variable length payload which
essentially includes the payload of the data to be sent.

Furthermore, to identify a packet in the NoC-based system,
each ocMPI message has the following envelope: (i) Source
rank (4 bytes), (ii) Destination rank (4 bytes), (iii) Message
tag (4 bytes), (iv) Packet datatype (4 bytes), (v) Payload length
(4 bytes), and finally (vi) The payload data (a variable number
of bytes).

(g2 < <
28| 28|58 (-5|62
D3 /0%¢ | s (0|20 Payload data
2§(25 (358 (%8 |48
o 2|8% ® ®

ocMPI Header ocMPI Payload

Fig. 5.  ocMPI message layout

Later, this ocMPI message will be split in transactions or
stream of flits according to the width of the NoC channel.
A. Implemented Functions and Software Stack Configurations

Table | shows the 20 standard MPI functions! ported to our
NoC-based MPSoC platform.

Ported MPI functions
ocMPI_Init (), ocMPI_Finalize(),
ocMPI_Initialized(), ocMPI_Finalized(),

Types of MPI functions

Management OcMPI_Comm_size (), ocMPI_Comm_rank (),
ocMPI_Get_processor_name (),
ocMPI_Get_ version()

Profiling ocMPI_Wtick(), ocMPI_Wtime ()

Point-to-point
Communication
Advanced &
Collective
Communication

ocMPI_Send (), ocMPI_Recv (),
ocMPI_SendRecv ()

ocMPI_Broadcast (), ocMPI_Barrier ()
ocMPI_Gather (), ocMPI_Scatter(),
ocMPI_Reduce (), ocMPI_Scan(),
ocMPI_Exscan ()

TABLE |
SUPPORTED FUNCTIONS IN OUR OCMPI LIBRARY
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O ocMPI Profiling O Adv. Communication
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Fig. 6. Different ocMPI software stack configurations

Depending on the application requirements, we can select
different software configuration stacks. Figure 6 lists four
typical configurations of the ocMPI library and its stripped
code memory footprint size in bytes.

1To keep reuse and portability of MPI code our ocMPI library follow the
standardized definition and prototypes of MPI-2 functions.



B. Exposing QoS Support on the ocMPI Library

There are several ways in which the QoS features mentioned
above in the NoC backbone can be exploited on top our ocMPI
library. The first possibility is to allow the programmer by
adding new parameters on the ocMPI API functions in order
to trigger prioritized or GT channels during the execution of a
particular tasks (or group of tasks). Even if this possibility
can be useful to give the knowledgeable programmer the
possibility of specifying appropriate prioritization patterns at
different program points as needed, we discarded since can
compromise the ease of programming since it requires insights
on both program behavior and architectural details, and it
breaks the standardized prototype of each MPI functions.

In this work, we focus on express QoS in very lightweight
manner, rather than invoking manually the QoS middleware
API, the idea is to simply annotate the critical tasks at high
level by means of using an extended functionality of the ocMPI
library. The extension consists on reuse part of the information
on the ocMPI packet header (i.e. ocMPI Tag) in order to
trigger the specific QoS features present at NoC level.

In the above mentioned approach, the ocMPI library is
in charge of automatically invoking either low-level QoS or
directly middleware AMPI calls without further program-
mer involvement. Thus, we extended our ocMPI library
to embedded appropriate calls to the setPriority ()
and resetPriority() and sendStreamQoS () and
recvStreamQos () middleware functions. This has the
effect of establishing prioritized or GT streams between two
end-points on the NoC-based system. More specifically, based
on the annotation, priorities or GT channels are automatically
set/re-set when necessary.

The outcome is a lightweight QoS-aware ocMPI library tai-
lored to many-core on-chip systems since the minimal working
subset library (i.e. ocMPI_Init (), ocMPI Finalize (),
ocMPI_Comm_size (), OcMPI_Comm_ rank (),
ocMPI Send (), ocMPI Recv () only takes 4.942
bytes of memory footprint.

VIIIl. EVALUATION OF QOS-AWARE OCMPI LIBRARY

In this section we describe the experimental setup that
we considered to evaluate the proposed message passing
framework with and without runtime QoS on 4, 9, 16 ARM
NoC-based MPSoCs.

A. ocMPI Library Profiling

To test the effectiveness of ocMPI library, this sec-
tion presents the scalability of ocMPI synchronization
(i.e. ocMPI_Init () and ocMPI_Barrier () and the pro-
filing of the management functions. The results have been
obtained using either ocMPI_Wtime () or an external perfor-
mance monitoring during the execution of parallel programs
in different NoC-based MPSoC systems.

Within ocMPI library an initialization phase is required to
assign dynamically the rank of each CPU involved in the sys-
tem. In Figure 7, we report the evolution of the synchronization
time in different 2D-Mesh NoC-based MPSoCs.

Clock Cycles

4 CPUs 9 CPUs 16 CPUs
B ocMP!_Init/sec B8 ocMP| _Barrier/sec _~ ocMPI Init =~ ocMPI Barr@

Fig. 7. Profiling of ocMPI_Init () and ocMPI Barrier () function

The plot shows the number of ocMPI_Init () per second
to give and idea which is the reconfiguration time of the
system. In our 4 core system, we can perform =75.000
reconfigurations in a second, whereas on a large network
it decreases until ~20.000 at 200 MHz. On absolute clock
cycles, to setup our 4-core system are necessary 2.613 cycles,
since in the 16-core NoC-based MPSoC, ocMPI_Init ()
time raises until 10.331 cycles.

Quite often, MPI programs requires barriers to synchro-
nize all CPUs involved in a parallel workload. As before,
in Figure 7 we show the scalability of the synchronization
time but now during the execution of barriers. Thus, for
instance, in our 9 ARM system, we can perform less than
~30.000 ocMPI Barrier () per second. However, the time
to execute a barrier is of 2.993, 6.935 and 12.527 cycles in
our 4, 9 and 16 core systems, which is acceptable since in our
measurements we include both, the software overhead and the
end-to-end NoC latency?.

Figure 8 presents the results acquired by performing a
monitoring on different management functions demonstrating
its minimum execution time.
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Fig. 8. Profiling of the management ocMPI functions

The results shown that our ocMPI management functions
execute really fast, taking ~75 cycles, with the exception of

2Each NoC component, i.e. NIs and switches have been configured to use
one cycle of delay.



ocMPI Get processor name () function spends ~210
clock cycles.

Additionally, unidirectional and ping-pong benchmarks have
been evaluated in terms of end-to-end latency using the point-
to-point ocMPI library functions. Between adjacent pairs from
transferring 1 word from a memory buffer from the source
to the destination core, the ocMPI library takes 930 cycles,
whereas a ping-pong using pairs of ocMPI_SendRecv ()
the execution time raise until 2.595 clock cycles. This demon-
strates that for short messages, the ocMPI library is not
really effective. However, the same benchmark sending 256
words the results are much better in terms of efficiency.
Thus, the benchmark takes 8.425 and 15.945 clock cycles,
for unidirectional and ping-pong traffic respectively, which
represents ~4x and ~7x times more time from the previous
one, but injecting 256 times more data.

B. Guaranteeing QoS Services on ocMPI Parallel Programs

Typically, MPI and as well ocMPI parallel programs under
master-slave distribution does not achieve the desired balance
during their execution even by allocating or dividing similar
workload on each process on a homogeneous system. Thus,
when we map the application onto the hardware resources,
many issues could potentially arise.

High contention on the buffer memories and/or on the NoC
during message passing specially during narrowcast traffic
patterns may cause one (or more) processes to be delayed
during its execution. As a consequence, late-sender, early-
receiver performance issues can easily arise. Furthermore,
critical tasks often requires hard-QoS in order to meet its
deadlines.

Our aim is to explore the effectiveness of (i) different levels
of priorities priority packets and (ii) GT channels in solving
and mitigating this issue whenever it is required.

One of the techniques considered in our benchmarks is to
change the balance of traffic during narrowcasts when typically
ocMPI_Gather () function is executed in order to avoid
late-senders.

Normalized execution time

ARM_O ARM_1 ARM_2 ARM_3 ARM 4 ARM 5 ARM_6 ARM_7 ARM_S ARM.9 ARM_10 ARM_11 ARM_12 ARM_ 13 ARM_14 ARM_15

‘l No priorities B Low Priority in First Row‘

Fig. 9. Effect of priorities during ocMPI gather-narrowcast programs
In Figure 9 we show the normalized execution time to run

this benchmark on the 16-core NoC-based MPSoC with and

without QoS prioritized traffic. In this experiment, we evaluate

the effect to prioritize ocMPI tasks hosted in all the rows far
from ARM 0 which is the root to gather the data. In other
words, the processes executed from processors on the first
row (i.e. ARM 4, ARM 8, ARM 12) will be executed with
less priority since they have less critical nature on the system.

Figure 9 shows the parallel program in absence of QoS (only
fixed priorities acts on the switch if multiple requests), and
same parallel program with a priority assignation according
to the annotated tasks. It is easy to notice that the overall
execution time on each prioritized process improve by ~15%,
whereas as expected, the processors on the first row due to
their low-priority are delayed between =65-70%.

Another representative experiment due to its massive traffic
generation is to evaluate the system under broadcasting and
data gathering. Besides, in this benchmark we also perform
computation on each data set before gathering the data. As
shown in Figure 10 in absence of priorities, the results are
quite similar from previous plot, but increasing the overall
normalized execution time of each task because of it is
computational part.

Normalized execution time

ARM_O ARM_1 ARM 2 ARM.3 ARM_4 ARM_S ARM_5 ARM_7 ARM_S ARM_9 ARM_10 ARM_11 ARM_12 ARM_13 ARM_14 ARM_15

\l No priorites B Priorities on Last Two Rows‘

Fig. 10. Effect of priorities on ocMPI_Bcast () and ocMPI_Gather ()
with an additional computation on data sets

In this kernel/benchmark, we explore the prioritiza-
tion of half of the system, concretely, the last two bot-
tom rows of the system (i.e. tasks hosted on proces-
sors ARM 2, ARM 6, ARM 10, ARM 14 and ARM 3,
ARM 7, ARM 11, ARM 15). In figure 10, we can notice
different improvement in all processors under prioritization,
ranging from =3-20%, and the consequent speed-down of
the non-prioritized task between ~10-34% depending on the
processor.

Due to the unpredictability of data cache, and due to the
reduced computation to communication ratio the improvement
results are quite broad and dispare. However, even in this ad-
verse experiment with very unbalanced and non-deterministic
traffic, we still demonstrate that using our QoS extension
on top of the ocMPI library, we can speedup the prioritized
annotated tasks.

Finally, we experiment a completely different approach
of leveraging on GT by means of allocate/release channels
on ocMPI processes, with really critical requirements (for
instance video encoding/decoding). To model this system



behavior, we use an ocMPI parallel program which performs
this functionality.

We define two scenarios according to the proposed ap-
proach: (i) none of the ocMPI process has been annotated
as GT, and (ii) the application annotates a required GT
channel from ARM 14 to ARM 0 (where video management
is performed).

Other processors (i.e. ARM_1-ARM 13 and ARM 15) exe-
cute generic workload with the only purpose of generating
potentially interfering traffic with the critical transactions
issued by ARM 14 to the ARM 0.

Normalized execution time
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Fig. 11. Effect of GT traffic on ocMPI parallel programs

Looking at Figure 11, it is clear to observe that ARM 14
is quite delayed when it requires to exchange data by pass-
ing a message with ARM 0, and therefore, the task has no
guarantees to meet its deadlines which potentially can lead to
some frames-dropping. As mentioned above, we establish a
GT channel to mitigate this potential problem. The results are
shown in Figure 11 (see GT on ARM_14 case study). The
outcome is a speedup improvement of ~35% with respect to
the previous scenario with no guarantees, even when other
processes were potentially generating interfering traffic.

However, it is important to remark that the guarantees are
given once the GT channel is open. Thus, looking the plot in
Figure 11, it is easy to observe that ARM 4, ARM 8, ARM 12
really interferes the execution of ARM 14, even finishing their
assigned workload. Nevertheless, once the GT channel is open,
the end-to-end average latency of the packets is fixed and the
throughput is ensured.

Furthermore, under this GT scenario, it is easy to realize
that ARM_0 also go to completion ~37% before with respect
to the non-GT scenario. Thanks to the guarantees imposed on
ARM 14 makes a mitigation of late sender or blocking early
receiver performed by ARM 14 on the ocMPI program.

IX. CONCLUSION

Handling QoS support on parallel programming has not
been tackled properly on the new emerging NoC-based many-
core MPSoCs since it is a difficult tasks because of the
complex interaction of hardware and software components
during the execution of parallel applications. In this work
we have proposed a QoS-aware message-passing software

stack (i.e. the low-level functions, the middleware and our
extended ocMPI library) and we explore performance issues
on homogeneous NoC-based MPSoCs.

Our QoS-aware ocMPI was designed as an improved and
extended MPI alternative to enable parallel programming
through message passing on the novel many-core MPSoCs
providing by means of a lightweight middleware API direct ac-
cess to QoS hardware resources present on the NoC-backbone.

Thus, mixing novel architectures as the emerging NoC-
based many-core MPSoCs, together with an adapted well-
known message-passing programming model (i.e. ocMPI) pro-
duces a reusable and robust way to program highly parallel
many-core on-chip systems. In addition, thanks to the layered
micro-network stack where NoC-based systems are sustained,
we can give some degree to control the available QoS-related
NoC services on the parallel programming model in order
to boost, balance, and optimize the performance of parallel
applications.

A set of representative benchmarks which can potentially
lead to unbalancing and memory contention have been sim-
ulated on a 16-core NoC-based MPSoC. Our experimental
results in this platform using prioritized and GT extensions
on the ocMPI library show an average improvement of ~15%
and ~35% of speedup during the execution of message passing
parallel programms, respectivelly.

We believe that our lightweight QoS-aware software stack
(i.e. our middleware API and our extended ocMPI library) is a
viable solution to program efficiently high-performance highly
parallel NoC-based many-core in a similar way a traditional
cluster of supercomputers, giving more freedom on the parallel
program in order to speedup applications, balance workload
and guaranteed services in critical processes.
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