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Abstract

For better understanding the genetic mechanisms underlying clinical observations, and better defining a group of potential
candidates for protein-family-inhibiting therapy, it is interesting to determine the correlations between genomic, clinical data and
data coming from high resolution and fluorescent microscopy. We introduce a computational method, called joint co-clustering,
that can find co-clusters or groups of genes, bioimaging parameters and clinical traits that are believed to be closely related to each
other based on the given empirical information. As bioimaging parameters, we quantify the expression of growth factor receptor
EGFR/erb-B family in non-small cell lung carcinoma (NSCLC) through a fully-automated computer-aided analysis approach.
This immunohistochemical analysis is usually performed by pathologists via visual inspection of tissue samples images. Our
fully-automated techniques streamlines this error-prone and time-consuming process, thereby facilitating analysis and diagnosis.
Experimental results for several real-life datasets demonstrate the high quantitative precision of our approach. The joint co-
clustering method was tested with the receptor EGFR/erb-B family data on non-small cell lung carcinoma (NSCLC) tissue and
identified statistically significant co-clusters of genes, receptor protein expression and clinical traits. The validation of our results
with the literature suggest that the proposed method can provide biologically meaningful co-clusters of genes and traits and that it
is a very promising approach to analyse large-scale biological data and to study multi-factorial genetic pathologies through their
genetic alterations.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

For better understanding the genetic mechanisms underlying clinical observations, it is interesting to determine
which genes and clinical traits are interrelated. In the last few years a considerable amount of research in genomics
has been done concerning correlation of gene expression to multi-factorial genetic pathologies. Microarray data
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analysis, as well as real-time PCR, are useful techniques exploited so far to this purpose [1,2]. Despite this effort,
results obtained are strongly limited by the poor informative content provided by clustering techniques applied to
gene expression data [3].

At the same time, in the field of biomedical and molecular imaging, new techniques have been shown to be effective
in extracting clinical and functional biological information from images of molecules and tissues [4,5]. By observing
processes as they happen within the cell, these techniques add an important extra dimension to the understanding
of cell behavior and functioning for early disease detection and drug response. In clinics, new applications of
conventional imaging technologies are likely to play increasingly important roles, particularly in oncology.

These two independent sources of information, namely gene expression mining techniques and fully-automated
bioimaging, can be correlated to enhance gene expression analysis and to increase the amount of confidence in the
hypothesized gene expression paths. For this purpose, we developed a joint co-clustering technique able to extract
clinical bioimaging parameters through a fully-automated computer-aided approach and to perform co-clustering
technique between clinical bioimaging parameters and gene expression data.

Our proposed method consists of two steps. As a first step, we had earlier developed a computational method
that can deterministically find all the co-clusters, between clinical traits and gene expression data, satisfying specific
input parameters in an efficient manner [6]. To measure the correlation between a gene and a clinical trait, existing
approaches obtain a vector of the expression level of the gene over a number of samples and another vector of the
value of the clinical trait over the same samples and then calculate the statistical correlation between the two vectors.
By applying this procedure to many genes, we can identify some genes correlated to the clinical trait of interest.
Proceeding one step further from prior methods that can reveal one-to-many relationships between a single trait and
multiple genes (or vice versa), we developed a method that can find many-to-many relationships between genes and
traits using a clustering technique called co-clustering. This method possesses clear advantages over heuristic methods
that can provide only partial solutions and other exact algorithms that are not scalable to large-scale problems [7,8].

As a second step, we developed a fully-automated tissue image processing method, namely computer-aided protein
quantification tool, able to extract a set of clinical parameters that give a characterization of the pathology dynamics.
This tool was successfully tested on non-small cell lung carcinoma (NSCLC) tissue images in order to characterize
and quantify, in a standardized way, the activation of the EGFR/erb-B protein receptor family that plays an important
role in non-small cell lung carcinoma growing [9]. This type of analysis aims at characterizing each pathological cell,
and on an average the whole tissue, by performing a standardized quantitative and qualitative measurement of protein
activations.

This information can be treated as a clinical parameter, and can be finally correlated with the genetic expression data
on same lung carcinoma tissue in order to better define a group of potential candidates for protein-family-inhibiting
therapy. For this purpose, we developed the proposed fully-automated joint co-clustering approach to find correlations
between genetic data and clinical and bioimaging parameters.

The tool was tested with the epidermal growth factor receptor EGFR/erb-B family dataset in the non-small cell lung
carcinoma (NSCLC) tissue. The EGFR/erb-B family of receptors plays an important role for NSCLC development.
Quantifying and classifying the EGFR expression and activity in NSCLC with special regard to the assessment of
the prevalence of somatic EGFR mutations, as well as to ligand–receptor interactions, could lead to new insights into
the modulation of EGFR/erb-B in individual lung carcinomas. Thus, it is important to extract these information by
using methodologies that give quantifiable, standardized and precise measurements [9]. We quantified the activity of
the EGFR/erb-B receptors in NSCLC immunohistochemical images of 70 patients. Subsequently, we correlated these
bioimaging parameters with the expression of genes that regulate the transcription of the EGFR/erb-B protein family,
measured on same tissues and on the same datasets of 70 patients and other clinical traits (e.g. tumor classification,
survival, follow-up etc.). Results show that there is a strong correlation between bioimaging parameters quantifying
EGFR/erb-B protein family activations and their gene regulative expression. To justify our analyses, we present some
supporting evidence for our results in the literature. Our experimental studies suggest that joint co-clustering is a very
promising approach to analyse large-scale biological data and to study multi-factorial genetic pathologies through their
genetic alterations. Moreover, this approach enables new opportunities for early diagnosis and provides information
in future strategies for therapy.

Section 2 explains the computer-aided protein quantification tool. Section 3 explains our method to find co-clusters.
Experimental results and discussions are presented in Section 4, followed by concluding remarks in Section 5.
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Fig. 1. (a) Example for lung cancer tissue immunohistochemical image; (b) example for membranes detection, see big cell in the bottom-right part
of the image.

2. Computer-aided protein quantification tool: Membrane detection and parameter extraction

Direct monitoring of the activity of proteins involved in the genesis and development multi-factorial genetic
pathologies is a very useful diagnostic tool. It leads to the classification of the pathology in a more accurate way,
through its particular genetic alterations, and to create new opportunities for early diagnosis as well as to provide
information in future strategies for therapy.

An approach for monitoring and quantifying the activity of proteins is to analyse their localization and the intensity
of their activity in pathological tissues by using, for example, images of the tissue where the localization of proteins,
as well as their ligands, is highlighted by fluorescent-marked antibodies that can detect and link the target proteins.
The antibodies are marked with a particular stain. The protein activity intensity is related to the intensity of the stains.
This procedure is called immunohistochemistry (IHC). Fig. 1(a) shows an example for immunohistochemical image
of lung cancer tissue.

What is interesting to extract from these images is not a specific coloured area, that is almost the standard procedure
with this kind of images [10,11]. Rather, the focus is cell-by-cell localization of the coloured areas in particular the
cellular regions (i.e. membranes or cytoplasm or nuclei). Similarly, the quantification of the percentages of coloured
areas at the location of interest is important because it relates to the activity of specific receptors. In other words, it is
important to quantify if the proteins have a membrane activity or not (or cytoplasm or nucleus one), how much of that
membrane is positive for the specific protein activity and, vice versa, if it is not active.

This type of analysis aims at characterizing each pathological cell, and on an average the whole tissue, by
performing a standardized quantitative and qualitative measurement of protein activations.

In this section we describe a fully-automated procedure that provides standardized measures of protein activities,
and related ligands, involved in the development of a pathology. This goal is reached (i) by identifying different
cellular regions, (ii) quantifying the percentage of active areas with respect to each whole region, and (iii) quantifying
the intensity of the protein activity. These analyses have traditionally been performed directly by pathologists in a
very subjective and time-consuming way. The major contribution of this research is to provide an automated, fast and
precise means for performing this kind of immunohistochemical image analysis. To the best of our knowledge the
methodology presented in this paper is the first completely automated approach to this purpose.

Much previous work in biomedical image processing focused on automated methods for segmentation of nuclei
and cells [12–15]. Classical approaches, such as active contours or watersheds, are not effective when the objects to
be identified lack specific geometrical features or gradient variations. Unfortunately, these critical conditions are very
common in the images targeted by our work. Cancer tissue cells are characterized by non-predictable variations in
shape that lead to a non-trivial determination of an effective approach based on shape-based segmentation. Moreover,
in immunohistochemical cancer tissue images cells are not well separated and, in addition, they are usually not
characterized by variations gradient magnitude.

To address these issues, we developed a novel deterministic fully-automated approach for the quantification of
protein activities and localization of molecular activities in tissue images.
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Immunohistochemical lung cancer tissue images are characterized by a blue stain as background colour and a
brown stain where a receptor of the EGFR family is detected. We focus here on quantification of membrane receptor
activity. Cell membrane segmentation is a hard problem because those membranes that are negative to the EGFR
family of receptors, are generally not visible. In other words, they are not characterized by gradient magnitude
variation. It is also possible that a cell has only some parts of its membrane positive to receptor activity.

The automated procedure is composed of several sequential steps, as outlined in the following subsections. In this
work, our description concentrates on the steps we customized.

2.1. Virtual cell membrane detection

To reconstruct the cell membrane locations we first detected nucleus membranes using standard morphological
segmentation approaches. For each nucleus, we detected seeds, applying noise filtering, colour filtering to detect
nucleus regions, artifacts removal, filling of connected components and boundaries detection. These first steps lead
to an approximate detection of nucleus boundaries. We used these nucleus boundaries as initial curves for the final
detection of nucleus membranes. We completed the detection of nucleus membranes by applying the active contour
algorithm presented in [16]. This algorithm was found very useful for nucleus membranes detection. Further details
on seed detection and active contours are beyond the scope of this paper because they are obtained and implemented
using standard approaches. The interested readers are directed to [16,14].

After detecting nucleus membranes, we implemented a procedure for virtual cell membrane detection. This is
an important step in our approach. In fact, to perform membrane cell segmentation, we use virtual membranes as
part of the final-detected cell membranes in those regions that are negative to the EGFR family of receptors and
that are as a consequence not characterized by gradient magnitude variation. Virtual cell membranes are computed
as set of connected points equidistant from closest nucleus membranes. Since our analysis concerns cells in tissues,
the assumption that cellular membranes are equidistant from closest nucleus boundaries is reasonable as first-order
approximation. Note that, we implemented a customized procedure for virtual cell membranes design because
alternative traditional methods, such as Voronoi tessellation [17], build curves equidistant from points. Since these
alternative methods fix as center of tessellation a point instead of complex shape membranes (i.e. nucleus membranes),
they obtain virtual curves that have few edges and sharp angles between edges. These curves are thus a poor
approximation of real cell membranes.

2.2. Colour filtering

To select the region that are positive to receptor activations, we filtered the image on Hue–Saturation–Intensity
(HSI) colour space. We chose the HSI space because the stains we used are well defined in (HSI) space. In particular,
looking at several Hue histograms of the tissue images, we noticed well-separated bi-modal value distributions. To
separate the two distributions there are several standard thresholding algorithms that can be successfully employed,
such as [18–20]. As expression of receptor activity we chose brown pixels with hue components minor than a threshold
automatically computed by using Ridler thresholding as detailed in [21].

2.3. Cellular membrane detection

The detection of cellular membranes is done in two steps. Beforehand, we perform membrane segmentation in
the brown areas one cell at a time and we connect them with the virtual cell membrane in those regions that are
not characterized by receptor reaction. To this purpose, we developed an ad hoc procedure, as described later in this
section. The second step consists of a customized fitting procedure of the detected membrane points to complete the
cellular membrane segmentation.

The first step of cellular membrane detection is the Scanning procedure: to connect brown areas with the virtual
membrane in those regions where there was no receptor reaction, the area across the virtual membrane is dilated in
order to be able to reach, if they exist, brown regions of the cell. The level of dilation is an input parameter and it
depends on image resolution. We set this value to 18 (pixels) for images with a resolution of about 3 nm. Then, we
scan the dilated area with a scan line having one end on the center of the nucleus and the other one on the external
border of dilated area.
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At each step, the points of the membrane are computed as weighted barycentre B of brown pixels among the scan
line, as shown in Eq. (1)

B =

∑
j

c j I j j∑
j

c j I j
, (1)

where j is the coordinate on the scan line. This coordinate is 0 on the virtual membrane, negative in the inner part
of the dilated area and positive in the outer part. I j is the value of the j th pixel and c j is a coefficient for barycentre
computation. The coefficient c j is 1 for pixels on scan line negative coordinate while for positive coordinates the
coefficient has a negative parabolic trend as function of coordinate j . In this way, when a brown region branches
off, the scanning procedure is forced to choose as points belonging to the membrane those pixels that lie on the path
closest to the nucleus.

Moreover, we assigned to pixels of the scan line the value of 1 if they belong or precede to the virtual membrane
pixels. This has been done when there are no brown pixels in the scan line, to choose as points belonging to membrane
those pixels that are close to the virtual membrane. Finally, we set to 0 the pixels that are neither brown nor virtual
membrane ones.

The second step in the detection of cellular membranes is the Fitting and complete membranes detection: to
complete the detection of cellular membranes, we implemented an iterative fitting procedure in which outlier pixels
are deleted at each step. We defined outlier pixels as the pixels located far away from the fitting line more than three
times the standard deviation. An example for membrane detection is shown in Fig. 1(b).

2.4. Clinical parameter computation

We quantify the activity of membrane EGFR/erb-B receptors through the computation of percentage of active
areas with respect to each whole membrane region. Then, the final parameter is the average value of all single-cell
parameters on the image.

3. Co-clustering method

The co-clustering approach finds groups of genes and clinical parameters that are believed to be closely related
to each other based on the given empirical information. In particular, it can find many-to-many relationships
between genes and traits using a clustering technique called co-clustering. Here the term co-clustering refers to
an unsupervised learning technique that performs simultaneous clustering of rows and columns in a matrix to find
(possibly) overlapping submatrices covering the matrix.

More specifically, given gene expression data and clinical parameter values, we first create a matrix called
correlation matrix that can collectively represent the degree of correlation between genes and clinical traits. Each
row and column of this matrix corresponds to a gene and a clinical trait, respectively. Then, our method searches
co-clusters or submatrices (with some semantics to be defined) covering the correlation matrix.

3.1. Definitions

Let S represent a set of clinical samples. For each sample in S, gene expression levels are measured by the DNA
microarray technology of choice. Let G be the set of genes in the measurement. Clinical traits are recorded for each
sample. Let T be the set of the recorded traits.

The input of the proposed approach is composed of two data matrices. One is a gene expression data matrix denoted
by pair A = (G, S), where, A ∈ R|G|×|S|, and the element aik of the matrix A represents the expression level of gene
i for sample k. The other matrix is denoted by pair B = (T, S), and the element b jk of the matrix B is the value of
trait j for sample k. The columns of A and B are arranged in the same order. Depending upon the type of trait j , b jk
may be quantitative, categorical, or others.

The output is a set of co-clusters. A co-cluster is composed of a gene set I ⊆ G and a trait set J ⊆ T and represents
a group of genes and traits closely related to each other, given the input matrices A and B. A co-cluster can formally
be defined by the following series of definitions.
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Fig. 2. Construction of the correlation matrix. A co-cluster appears as a submatrix of the correlation matrix C .

Definition 1. For V , a vector on R, the range of V , denoted by RANGE(V ), is the absolute difference between the
largest and the smallest elements of V .

Definition 2. Given V and W , two real vectors of the same dimension, the linear deviation of V and W , denoted by
LIN-DEV(V, W ), is defined as

min{RANGE(V − W ), RANGE(V + W )}. (2)

Definition 3. Given the input matrices A and B, a correlation matrix, denoted by C , is a matrix where the row set and
the column set of C are G and T , respectively, and the element ci j is the statistic indicating the degree of correlation
between gene i and trait j and is defined in significance analysis of microarrays (SAM) [8], namely,

ci j =
ri j

si j + s0
, (3)

where ri j is a score to measure the degree of correlation between the expression level of gene i and the value of
clinical trait j , si j is the “gene-specific scatter” or the standard deviation of repeated expression measurements, and
s0 is a “fudge” factor to prevent the computed statistic from becoming too large when si j is close to zero [23].

Fig. 2 shows the correlation matrix construction scheme.

Definition 4. Given the correlation matrix C = (G, T ) and thresholds τ ≥ 0 and π > 0, a co-cluster is a matrix,
denoted by D = (I, J ), satisfying the following conditions: (1) I ⊆ G and J ⊆ T ; (2) for any two column vectors V
and W of size |I | in D, LIN-DEV(V, W ) ≤ τ .

Condition (1) indicates that D is a submatrix of the correlation matrix C . Condition (2) is to require that every pair
of |I |-dimensional column vectors from D exhibit correlation with respect to the metric LIN-DEV.

3.2. Algorithm overview

As detailed in [6], the proposed co-clustering algorithm consists of three steps: First, an intermediate data matrix
called correlation matrix is constructed from the input matrices. Then, special co-clusters called pairwise co-clusters
are found in the correlation matrix. Finally, co-clusters are derived from the pairwise co-clusters. An overview of the
algorithm is presented below, and more details can be found in [6].

In the first step, each element ci j of the correlation matrix is calculated using the SAM procedure. When calculating
ci j , we must follow a procedure for multiple comparisons, thus ensuring that too many falsely significant ones are not
declared [22,23]. To this end, the false discovery rate (FDR) is estimated for each ci j by random permutation of the
data for gene expression among the different experimental arms. The SAM procedure can be outlined as follows [8]:

(1) For given j , compute statistic ci j for i = 1, 2, . . . , |G|, where |G| is the number of genes in the gene expression
matrix.

(2) Compute order statistics c(1) ≤ c(2) · · · ≤ c(|G|).



944 E. Ficarra et al. / Computers and Mathematics with Applications 55 (2008) 938–949

(3) Take M sets of permutations of the vector associated with trait j . For each permutation m, compute statistics c∗m
i j

and corresponding order statistics.
(4) From the set of M permutations, estimate the expected order statistics by c(i) = (1/M)

∑
m c∗m

(i) for i = 1,

2, . . . , |G|.
(5) Plot the values of c(i) versus the values of c(i).
(6) For ∆, a fixed threshold, find the first i = i1 such that c(i) − c(i) > ∆, starting at the origin and moving up to

the right. All genes past i1 are called significant positive. Similarly, find significant negative genes. For each ∆,
define the upper cut-point cutup(∆) as the smallest ci j among the significant positive genes, and similarly define
the lower cut-point cutlow(∆).

(7) For a grid of ∆ values, compute the total number of significant genes (from the previous step), and the median
number of falsely called genes, by computing the median number of values among each of the M sets of c∗m

(i) (for
i = 1, 2, . . . , |G|) that fall above cutup(∆) or below cutlow(∆).

(8) Estimate P0, the proportion of true null (unaffected) genes in the dataset (see [8] for details).
(9) The median of the number of falsely called genes from Step 6 is scaled appropriately, according to the value of

P0 (see [8] for details).
(10) A value of ∆ can be specified by the user and the significant genes are listed.
(11) The FDR is computed as the median of the number of falsely called genes divided by the number of genes called

significant.

After having computed the correlation matrix, the next step is to find a special type of co-cluster called pairwise co-
cluster. A pairwise co-cluster is a co-cluster with only two traits and can therefore be represented by a submatrix (of the
correlation matrix) with two columns. Pairwise co-clusters are used later as seeds to find (non-pairwise) co-clusters.
To find a pairwise co-cluster in the correlation matrix C = (G, T ), we first select two distinct columns v, w ∈ T and
construct from them two |G|-dimensional column vectors V = (c1v, c2v, . . . , c|G|v) and W = (c1w, c2w, . . . , c|G|w).
Then, we compare V and W to identify I , a set of dimensions over which V and W are correlated (I ⊆ G). Finally, we
remove all i ∈ I such that the p-value of civ or ciw is greater than a given threshold. By definition, the matrix denoted
by pair (I, {v, w}) represents a co-cluster, and this co-cluster with only a pair of traits is called pairwise co-cluster.

In the last step of our method, co-clusters are derived from pairwise co-clusters. Recall that T is the set of clinical
traits or the set of column indices in the correlation matrix C = (G, T ). Our co-clustering method examines elements
J ∈ 2T in such an order that efficient enumeration is possible to find a co-cluster (I, J ). To this end, a data structure
called prefix tree or trie [24] is employed to systematically represent the elements of the power set 2T . Each node in
the trie represents candidates for co-clusters, and using an efficient traversal method nodes are gradually merged and
pruned, resulting in co-clusters in their final form.

3.3. Remarks

To assess the degree of correlation, in Definition 2 we introduced a metric called linear deviation. This is not to
deny the effectiveness of a conventional statistic such as the Pearson correlation coefficient [22] but to transform it
to a computation-efficient form, minimizing loss in the detection power. It is possible to see the relationship between
LIN-DEV and the Pearson correlation coefficient, as shown in [6]: a lower value of LIN-DEV typically corresponds to
a higher level of either positive or negative correlation.

The specific definition of ri j in Definition 3 varies depending upon the type of clinical trait j . For example, if
clinical trait j has quantitative values then ri j is defined in terms of the Pearson correlation coefficient [22] between
the i th row vector of the matrix A and the j th row vector of the matrix B.

3.4. Joint co-clustering method

The joint co-clustering approach is a fully-automated framework that aims to extract receptor and protein
expressions from tissue images and correlate these bioimaging parameters with other clinical traits and the gene
regulative expression of same receptors and proteins evaluated on same tissues. Thus, the joint co-clustering
framework consists on the co-clustering algorithm where clinical traits are obtained through the fully-automated
protein quantification tool.



E. Ficarra et al. / Computers and Mathematics with Applications 55 (2008) 938–949 945

Fig. 3. Results for the first dataset: the plot shows the automated procedure measurements versus the manual-trace ones and the regression line.

4. Experimental results and discussion

Experimental results were separately obtained for the computer-aided protein quantification tool and the
co-clustering to demonstrate their accuracy and robustness. Afterwards, we present experimental results for joint
co-clustering method.

4.1. Computer-aided protein quantification results

We tested the algorithm on four datasets. All of them are composed by real lung cancer tissue immunohistochemical
images. For each dataset, the images show different portions of the same IHC tissue. The four datasets present positive
reactions at the EGFR/erb-B receptor activation. These reactions are localized in the cellular membranes. The four
datasets differ because of different levels of positivity intensity.

For each dataset, we first localized each cellular membrane in the images, as described in Section 2. Afterwards,
we computed for each cell the percentage of area characterized by positive activation of receptor EGFR/erb-B with
respect to the whole cellular membrane surface. At the end, we computed the final parameter as an average value of all
single-cell parameters on each image. This final parameter is the clinical parameter that characterizes the percentage
of receptors that is active in the lung cancer tissue.

In order to evaluate the performance of our approach, positive protein reaction parameters have also been computed
on membranes drawn manually by pathologists for taking advantage of the knowledge and skills of experts in that
field. Manual analysis has been performed on all the datasets. These manual measurements were thus compared with
the positive protein reaction parameters computed through our fully-automated approach.

We show in this paper the results for two datasets in order to demonstrate the accuracy and robustness of our
approach. On the other datasets, we obtained similar results and performance. Details can be found in [25].

Results are reported as follow. For each dataset, we compute the average error and the root mean square error
(RMSE) incurred by our automated approach with respect to manual-trace measurements. We then computed the
coefficient of correlation between each set of automated results and the corresponding manual-trace measurements.
Finally, we performed a linear regression between automated manual-trace results to evaluate the level of confidence
of the regression coefficient through the Student t-test.

We first evaluate the correlation between the automated and the manual-trace measurements on the first
immunohistochemical lung cancer tissue image set. Our analysis shows that these two sets of measurements are
highly correlated, with a coefficient of correlation 0.98. We then computed a linear regression of automated measures
on manual-trace ones. We performed the Student t-test under the null hypothesis on the regression coefficients in order
to estimate the confidence level of this regression. As a result, we rejected this hypothesis at significance level less
than 1% obtaining a coefficient of the regression line of 0.96 with a region of acceptance of the hypothesis of the range
−0.109–0.109. Thus, the two sets of measures are highly correlated with a confidence level greater than 99%. Fig. 3
shows the results obtained for EGF-R protein activation measurements on the first immunohistochemical lung cancer
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Table 1
Results for percentage computation of receptor EGFR family activation on the three tissue image experimental datasets: first column shows the
clinical parameter while the other ones indicate the average error and the root mean square error incurred by the automated procedure

Positive membrane reaction (%) Average error (%) RMSE (%)

58.65 −0.77 3.3
95.89 −0.25 1.58

Fig. 4. Results for the second dataset: the plot shows the automated procedure measurements versus the manual-trace ones and the regression line.

tissue image set. The figure shows the automated measurements versus the manual-trace ones as well as the regression
line.

Moreover, we computed the difference between automated and manual-trace measurements and we performed the
same Student t-test. We found that the difference between the two typologies of measurements is not significant and
the average of the differences between automatic and manual measurements is 0.773%. Finally, the RMSE of our
automated measurements is 3.3% (with a confidence of 99%), as shown in the first row of Table 1. Table 1 shows,
in the first column, the computed percentage of receptor activation in the lung cancer tissue. In this first dataset that
percentage is 58.65%.

We also performed the same analysis on the second dataset and dataset of immunohistochemical lung cancer
tissue images. On the second dataset, our analysis showed that automated and manual-trace measurements were
highly correlated with a coefficient of correlation 0.97. Performing the Student t-test under the null hypothesis on the
regression coefficients we finally rejected this hypothesis at significance level less than 1%. We obtained a coefficient
of the regression line of 0.85 with a region of acceptance of the hypothesis of the range −0.11–0.11. Fig. 4 shows these
results for EGF-R protein activation measurements on the second immunohistochemical lung cancer tissue image set.
By performing the Student t-test on the difference between automated and manual-trace measurements we found that
the difference between these two typologies of measurement is not significant. Moreover, the average of difference
between automatic and manual measurements is 0.25% and the RMSE of our automated measurements is about 1.6%,
as shown in the second row of Table 1.

The percentage of receptors active in this second lung cancer tissue set is 95.89%. In this dataset the EGF-R receptor
is highly active in most of the cells on the tissue. Looking at Fig. 4, we notice that almost all the measurements are
clustered around a very high value while only a few measures are slightly smaller. This leads to a very little dispersion
of the measures. At the same time, since the significance is computed with respect to the dispersion, lower values
on the dataset slightly affect the slope of the regression line thus increasing the level of the significance of the test.
Nevertheless, in this case also, the automated and manual-trace measurements are correlated with a confidence level
greater than 99%.
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4.2. Co-clustering and joint co-clustering results

The co-clustering was first tested with the Acute Myelogenous Leukemia (AML) dataset [7]. The AML dataset
used included two matrices. One was a gene expression data matrix with 6283 genes and 119 samples. The other
was a matrix of 15 clinical parameters measured from the identical samples. We used the procedure described in
Section 3 to produce the correlation matrix. We identified 43 co-clusters. To justify the grouping of certain genes
and clinical traits by the co-clusters found from the AML data, we present some supporting evidence for co-clustered
genes and traits from the literature. In addition, we show that certain Gene Ontology terms annotating genes in some
co-clusters are significantly over-represented. Taken together, these experimental studies suggest that our method can
find biologically meaningful co-clusters. Details on these results can be found in [6].

The joint co-clustering was tested with the epidermal growth factor receptor EGFR/erb-B family dataset in the non-
small cell lung carcinoma (NSCLC) tissue. The EGFR/erb-B family of receptors plays an important role for NSCLC
development. Quantifying and classifying the EGFR/erb-B expression and activity in NSCLC with special regard
to the assessment of the prevalence of somatic EGFR/erb-B mutations, as well as to ligand–receptor interactions,
could lead to new insights into the modulation of EGFR/erb-B in individual lung carcinomas. Thus, it is important
to extract these information by using methodologies that give quantifiable, standardized and precise measurements.
We quantified the activity of the EGFR/erb-B receptors in NSCLC immunohistochemical images of 70 patients.
Subsequently, we correlated these bioimaging parameters with the expression of genes that regulate the transcription
of the EGFR/erb-B protein family, measured on the same tissues and on the same datasets of 70 patients and other
clinical traits (such as tumor type classifications, namely diagnosis, T, N, stage, size, survival, etc). Furthermore, we
found supporting evidence for our results in the literature.

Note that results for EGFR/erb-B protein expression (i.e. quantification) have been already given in this section (see
Section 4.1). As a result of joint co-clustering between EGFR/erb-B protein expression and the regulative expression
of the EGFR/erb-B protein transcripts, we found out significant correlations in about 83% of the studied cases.
Among this percentage, we found co-clusters characterized by up-regulation of the transcripts and over-expression
of the proteins. Among tumors that did not exhibit over-expression, i.e., the tumors that showed low protein positivity
or negative staining, no gene up-regulation was observed. Moreover, high-level regulation was significantly more
frequent in tumors with highest staining than in tumors with medium staining. Similar results were reported in recent
studies [26,27].

The remaining 17% of the studied cases presents activation of EGFR protein family (visible through image
analysis) but no up-regulation of the expression of the protein transcripts. In these particular cases 70% of the tumor
was squamous cell carcinoma (SqCa), while 30% was adenocarcinoma (AdCa). Similar findings have been reported
not only in lung carcinomas but also in other tumors, such as renal, pancreatic, breast, and colon carcinomas. Although
protein over-expression in these tumors probably is caused by transcriptional or post-transcriptional activation, various
theories have been proposed to explain the underlying mechanisms [28,26]. Post-translational changes as well as
changes in genetic enhancer elements [29,30] were shown to be associated with an increased EGFR expression.
Recently, a polymorphic CA-repeat in intron 1 of EGFR has been shown to have an important impact on EGFR
transcription and expression, and seems to be a major target of EGFR mutations [31,27]. In the literature it has been
found that this mechanism can explain protein over-expression in about 18.7% of the cases [27], that is in accordance
with our results.

We also found out that trait “diagnosis” (e.g., SqCA, AdCa, LCa) is correlated with genes erb-1, erb-2 and TGF-
alpha with an FDR of 1%. Similarly, “size” trait is correlated with erb-1 gene and “survival” trait is correlated with
the erb-2 gene, as confirmed in [32,33].

Finally, we identified co-clusters of erb-1 and erb-2 proteins. These co-clusters consisted of 54% of the studied
cases and were characterized, in particular, by erb-1 and erb-2 protein expression, their genetic regulation and
SqCA/AdCA type classification of tumor. As a result, it can be seen that the over-expression of erb-1 (EGFR) impacts
the SqCa tumors more than AdCa ones (56% of cases vs. 32%) and vice versa for the expression of erb-2 protein
and the AdCa tumors (63% vs. 26%). Evidence for our results was found in literature [34,35]. We also found out co-
clusters that presented over-expression and gene up-regulation for erb-1 protein and did not exhibit gene up-regulation
nor over-expression for erb-2. These co-clusters were characterized by a percentage of SqCa tumors higher than those
of AdCa ones (67% vs. 0%). The reverse was found for co-clusters that presented over-expression and gene up-
regulation for erb-2 protein and which did not exhibit gene up-regulation or over-expression for erb-1 (100% of AdCa
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tumors). SqCA and AdCA tumors were found also in co-clusters characterized by either gene up-regulation or over-
expression for both erb-1 and erb-2 (67% of AdCa and 27% SqCa). We also found supporting evidence for these last
analyses in the literature [27].

5. Conclusions

We presented a fully-automated framework for finding co-clusters of genes and clinical traits using microarray data
and bioimaging and clinical parameter information.

We first quantified the expression of receptors in carcinoma tissue images by using our fully-automated protein
quantification tool. This immunohistochemical analysis (IHC) is usually performed by pathologists via visual
inspection of tissue samples images. Our techniques streamlines this error-prone and time-consuming process,
thereby facilitating analysis and diagnosis. In particular, our method leads to classify protein reactions according to
a specific cell region and to quantify the percentage and the intensity of this protein activity. The effectiveness of the
proposed method has been tested using immunohistochemical non-small cell lung carcinoma tissue images. Results
of comparison with manual-trace method on several real-life datasets demonstrate the high quantitative precision of
our approach.

Data coming from IHC images can be treated as a clinical parameter, and can be finally correlated with the genetic
expression data of same lung carcinoma tissue (and same set of patients) in order to better define a group of potential
candidates for protein-family-inhibiting therapy. For this purpose, we developed the proposed fully-automated joint
co-clustering approach. An intermediate data matrix called correlation matrix was computed from microarray data
and bioimaging and clinical parameter information by means of a statistical method. We then modeled a co-cluster by
a submatrix of the correlation matrix with some semantics and aimed at finding statistically significant co-clusters.

In order to validate our approach, we found supporting evidence for our analysis in the literature. Results show that
there is a strong correlation between bioimaging parameters quantifying EGFR/erb-B protein family activations and
their gene regulative expression measured on same tissues. These preliminary results show that the joint co-clustering
is a very promising approach to analyse large-scale biological data and to study multi-factorial genetic pathologies
through their genetic alterations. Moreover, this approach enables new opportunities for early diagnosis and provides
information in future strategies for therapy.
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