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Abstract— Continuous transistor scaling due to improvements
in CMOS devices and manufacturing technologies is increasing
processor power densities and temperatures; thus, creating chal-
lenges to maintain manufacturing yield rates and reliable devices
in their expected lifetimes for latest nanometer-scale dimensions.
In fact, new system and processor microarchitectures require new
reliability-aware design methods and exploration tools that can
face these challenges without significantly increasing manufac-
turing cost, reducing system performance or imposing large area
overheads due to redundancy. In this paper we overview the latest
approaches in reliability modeling and variability-tolerant design
for latest technology nodes, and advocate the need of reliability-
aware design for forthcoming consumer electronics. Moreover, we
illustrate with a case study of an embedded processor that effec-
tive reliability-aware design can be achieved in nanometer-scale
devices through integral design approaches that covers modeling
and exploration of reliability effects, and hardware-software ar-
chitectural techniques to provide reliability-enhanced solutions at
both microarchitectural- and system-level.

I. INTRODUCTION

The relentless scaling of technology and increase in transis-
tor densities are primary reasons for Multi-Processor System-
on-Chips (MPSoCs) to have become possible [10]. How-
ever, power requirements have not scaled accordingly, causing
power densities to skyrocket and on-chip temperatures to in-
crease at alarming rates [16]. Thus, the International Technol-
ogy Roadmap for Semiconductors [1] has predicted that tra-
ditional design constraints centered around product cost and
performance requirements will soon be overtaken by system
wear-out failures and lifetime reliability issues [18].

The ability to model and evaluate thermal and reliability ef-
fects (e.g., electromigration, stress migration, time-dependent
dielectric breakdown or thermal cycling) in a very early stage
of the design flow of nanometer-scale devices has proven to be
critical to enhance system lifetime [4, 18]. However, acquiring
realistic reliability estimates in latest technology nodes is very
complex because the sources of failures and thermal degrada-
tion phenomena in nanometer-scale MPSoCs are poorly under-
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stood, and span different degradation dynamics. Thus, well-
tuned reliability models for the different windows of applica-
tion of each degradation factor are needed to characterize sys-
tems switching activity and reliability behavior of final MP-
SoC architectures. In addition, very long accurate simulations
(e.g., hundreds of millions of cycles [6]) are required to real-
istically model the variations and failures that manifest them-
selves in different phases of the lifetime of MPSoCs in the tar-
get working environments. As a result, novel (fast and accu-
rate) thermal-reliability analysis methods need to be developed
and incorporated in the early stages of the design of nanoscale
devices to explore the existing trade-offs between area and per-
formance in reliable and variability-tolerant design.

Indeed, reliability is an old concern that has been already
pursued in high-end military and aerospace markets with very
tight Mean Time To Failure (MTTF) requirements [4]. Three
major trends can be found to affect system reliability according
to different time-span intervals. The first trend is coming from
silicon manufacturing process variations that result in a large
percentage of produced devices to operate below the minimum
acceptable speed; thus, creating a large number of time-zero
yield loses, and requiring a number of prevention measures
at the device level (e.g., proximity correction, phase-shifting
masks, etc.) [5,13]. The second trend of unreliable behavior is
originated by single event upsets (SEUs) produced by transient
phenomena throughout the utilization of the final system, such
as, radiations, cross-talk, or ground bounce among others. In
this case, circuit- and system-level techniques can reduce these
transient errors (e.g., redundant execution with voting schemes,
double sampling flip-flops, etc.) [3,7]. The third trend refers to
non-reversible failures in advanced periods of system lifetime
due to thermal effects and aging of the devices [18, 19]. In
the latter case, both HW (e.g., duplication or triple modular
redundancy [3]) and software approaches (e.g., dynamic volt-
age and frequency scaling or static instruction-window selec-
tion [8, 18] have been proposed. Nevertheless, since the grow-
ing rise of random non-uniformity in microscale elementary
devices is creating significant reliability effects in large-scale
electronics systems, and thus instances of the same design be-
have differently in the same final conditions, the application of
each of the aforementioned techniques in new MPSoCs need to
be carefully evaluated.
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In this work we present an analysis of the techniques and
requirements needed to explore aging effects and provide
reliability-aware design in nanoscale MPSoCs. We illustrate
the application of novel HW-SW thermal and reliability analy-
sis frameworks to enhance the resilience to aging of processing
cores of MPSoCs at the microarchitectural level. In particular,
we provide for illustration purposes the consequences of differ-
ent compiler optimizations and registers assignment techniques
in the shared register file architecture of a Leon 3 processor [15]
while executing an extended set of real-life benchmarks. The
switching activity and temperature of the register file makes it a
critical thermal hotspot, and its failures are very difficult to de-
tect during testing. Thus, it is a key component to improve the
lifetime of microprocessors [11, 17]. Finally, we show how we
can exploit this exploration to propose a reliability-aware reg-
ister file assignment policy that consistently improves MTTF
(20% on average) for the various benchmarks.

This paper is organized as follows. In Section II, we
overview methods to study thermal and aging-related reliabil-
ity effects in nanoscale devices, and proposed techniques to
enhance system reliability. In Section III we present main re-
liability factors that need to be modeled in new MPSoCs. In
Section IV we discuss the application of novel techniques to
rapidly perform reliability explorations for MPSoCs. In Sec-
tion V we show the possible benefits of reliability-aware design
applied at the microarchitectural level of processing architec-
tures. Finally, in Section VI we summarize our conclusions in
the area of reliability-aware design.

II. RELIABILITY-AWARE DESIGN APPROACHES

Although the literature on aging-related reliability study and
design in CMOS is very broad to provide an exhaustive review
in this paper [4, 5, 18], it is feasible to classify the related work
on two main research lines. On the one hand, different works
tackle the problem of studying aging effects in new nanoscale
devices. On the other hand, approaches exist that deal with
reliability enhancement against aging and thermal effects.

Reliability modeling: A very important effort has been
done to create statistical models of aging effects in system com-
ponents, and defining possible approximations of upper bounds
for CMOS devices reliablity at different levels of abstraction.
Chip wide MTTF can be modelled as a function of the fail-
ure rates of individual structures on chip due to different fail-
ure mechanisms [8, 18]. Also, [20] models failures probabil-
ities in SRAM cells and proposes the use of statistical design
for nanoscale CMOS devices. Since thermal effects affect re-
liability and process variations, [16] presents thermal/power
models for super-scalar architectures. These models predict
upper-bound temperature variations in processor components
and need to be linked to aging models to suitably analyze re-
liability figures in architecture-level MPSoCs. Also, analyti-
cal approaches have shown how large temperature variations
cause increased leakage currents, which affect reliability in fu-
ture nanoscale devices [8, 13, 16]. In addition, using the pre-
vious models, different architecture-level MPSoC and microar-
chitecture simulators and emulators have appeared [2,6,17,22],
which provide bounds of temperature and reliability variations
in processor microarchitectures and MPSoC components, and
enable accurate explorations of overall thermal and reliability
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Fig. 1. Reliability-aware design flow for nanoscale MPSoCs

figures. Both simulation and emulation approaches outline the
importance of fast and accurate validation methods of reliabil-
ity enhancement techniques, according to final working condi-
tions of forthcoming nanoscale MPSoC designs.

Reliability enhancement: two major trend lines can be
identified in this area. On the one hand, pure HW-based ap-
proaches proposing redundancy at the architectural level and
the inclusion of spare components and self-diagnosis [3,7]. On
the other hand, as MPSoCs are highly programmable systems,
a second trend proposing SW-based reliability enhancement
or combined HW-SW approaches have appeared in the last
years. In [19], dynamic prediction fault-tolerant microarchitec-
tures have been proposed to improve reliability and hard fail-
ures. Also, Dynamic Reliability Management (DRM) [8, 18]
tackle performance degradation in nanoscale systems by keep-
ing wear-out profiles within a certain threshold relying on
Dynamic Frequency and Voltage Scaling (DVFS) or clock
throttling. Similarly, [21] maximizes electromigration lifetime
by preserving wire temperature within certain upper-bounds.
Then, [7] tries to improve system reliability at the register
file level by exploiting statistical analysis to limit architectural
overhead and application-level information. Finally, [12] ex-
plore reliability vs performance trade-offs by combining hard-
ware and software management techniques in the register file.
However, the previous methods imply performance or area
overheads to enhance reliability against aging and other fac-
tors, and should be included according to the particular relia-
bility requirements of each final system.

The previous approaches outline the foundations of effective
reliability-aware design in forthcoming nanometer-scale MP-
SoCs, which requires a seamless integration in an overall flow
of several modeling and architectural techniques at different
levels, as shown in Figure 1, namely:

- Combination of reliability models and fast thermal-
reliability exploration techniques.

- Inclusion of reliability monitoring mechanisms and tuning
knobs at the hardware level.

- Development of software-based reliability management
policies, which employ the available hardware support to en-
hance reliability both at microarchitectural- and system-level
with limited performance and area overhead.

In the following sections we illustrate the application of the
previous elements for reliability-aware design to analyze and
enhance the aging-related reliability of the register file of a typ-
ical embedded processing core (the Leon 3 [15]).
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III. AGING-RELATED RELIABILITY MODEL

The influence of temperature in aging-related reliability of
CMOS-based MPSoC components can be analyzed through
several mathematical models that define this dependency. Ef-
fects that have been observed to have a very strong im-
pact on the MTTF of systems and processor microarchi-
tectures [18] are: electromigration (EM), time-dependent-
dielectric-breakdown (TDDB), stress migration (SM), and ther-
mal cycling (TC).

EM appears due to the momenta exchange between the elec-
trons and the aluminum ions in long metal lines. The induced
mechanical stress may eventually cause fractures and shorts.
The model generally accepted to describe the MTTF due to
this effect takes the form:

MTTF = Ag - (J = Jerir) N - exp(Eq /kT)

where Ay is the scale factor, J.,.;; is the critical current den-
sity, and N is a technology constant assumed to be 2 in metal-
layered systems [18]. The presented reliability model considers
that the effects of EM are non-reversible and the actual value
depends on the instantaneous temperature.

TDDB is an important failure mechanism that models how
the dielectric fails when a conductive path forms in the dielec-
tric, shorting the anode and cathode. It is modeled as:

MTTF = Ag - exp(—vE,y) - exp(Eq/kT)

where  is a field acceleration parameter, which is temperature
dependent. In this case, the proposed reliability model con-
siders that this effect is a recovery process, non-dependent on
the instantaneous temperature, but with a simulation window
of few seconds.

SM describes the movement of metal atoms under the influ-
ence of mechanical-stress gradients. The resistance rise associ-
ated with the void formation may cause electrical failures. The
thermomechanical stress model can be written:

MTTF = Ao-(To—T)™" - exp(E, /kT)

where n ranges between 2 and 3 [18].

Finally, TC produces a permanent damage that accumulates
each time the device undergoes a normal power-up and power-
down cycle. It is modeled as:

1 q

MITE = log (T - Tambient)

where ¢ is 2.35 for the considered technology [18] and
Tumbient 18 the ambient temperature.

The input temperature considered by the previous equations
is provided by a thermal model for MPSoC components [2].
This model, based on HotSpot [16], divides the die and heat
spreader in cubic shape cells of several sizes. Each cell has
five thermal resistances and one thermal capacitance, four re-
sistances model horizontal thermal spreading and the fifth one
covers the vertical thermal behavior. The generated heat is
modeled by adding an equivalent current source to the cells
on the bottom surface. The heat injected by the current source
corresponds to the power density of the architectural compo-
nent covering the cell multiplied by the surface area of the cell.
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Finally, each cell interacts only with its neighbors, which re-
sults in a linear complexity with respect to the number of cells.
This approach can analyze 2 seconds of simulation (in a 660-
cell floorplan), in 1.65 seconds on a Pentium 4 at 3GHz, which
is fast enough to interact in real-time with current thermal-
reliability simulation/emulation frameworks.

IV. HW-SW RELIABILITY EXPLORATION FRAMEWORKS

To enable a meaningful exploration of reliability-aware man-
agement policies at system and microarchitectural level of MP-
SoCs, new and fast exploration approaches need to be pro-
posed, as aging effects demand large thermal and reliability
simulations (i.e., millions of cycles) of real-life applications in
final working conditions. Additionally, these exploration ap-
proaches must be able to investigate a large part of the design
and manufacturing spectrum of MPSoC implementations (e.g.,
various floorplan layouts or packaging technologies, multiple
frequencies and supply voltages, etc). Hence, we believe that a
promising solution to effectively provide reliability studies are
combined HW-SW exploration frameworks [2], which merge
flexible SW simulation to easily validate the effects on reli-
ability of a wide range of MPSoCs design alternatives (e.g.,
cheap or high-end packaging solutions), while acquiring cycle-
accurate thermal behavior and switching activity of internal
components at fast speed (i.e., 100-150 MHz) with respect to
pure MPSoC architectural simulators [22].

For the sake of illustration, we have implemented a HW-SW
thermal-reliability emulation system around the IEEE-1754
Leon 3 Sparc v8 Processor core [15]. The Leon 3 core is a
fully customizable microprocessor containing multiple features
common to those found commercially. The main features in-
clude separate instruction and data caches, a hardware multi-
plier and divider, a memory management unit (MMU), sepa-
rate (or combined) instruction and data translation lookaside
buffers (TLBs), and has the potential to be extended to a multi-
core configuration. The Leon 3 is designed primarily for em-
bedded systems applications and enables a large range of cus-
tomizations (e.g., size or replacement policy of the register file,
caches, and TLBs). Thus, components in our Leon 3-based
framework. Thus, the designer can configure the system archi-
tecture that would like to test from the reliability viewpoint.

The constructed Leon 3 reliability emulation framework
(Figure 2) is made of three primary components: the emu-
lated system, the statistics gathering engine, and the host PC.
The emulated system contains the Leon 3 system that is under
investigation. The statistics gathering engine monitors events
that occur in the Leon 3 register file. The host PC is running
a SW library that interacts in real-time with the emulation en-
gine to calculate the register file thermal behavior and reliabil-
ity while different benchmarks run in the Leon 3.

The emulated Leon 3 core architecture (left side of Figure 2)
contains a 3-port register file of 256 registers (with 8 register
windows), has a SDRAM memory controller, 16Kb 4-way set
associative instruction and data caches, and separate instruc-
tion and data TLB’s, each containing 32 entries. Furthermore,
the Leon 3 system includes 64KB of on-chip ROM and RAM
(not shown), 512MB DDR Memory, AMBA buses, a serial I/O
controller, timers, and interrupt controllers. Finally, the com-
munication interface to load applications is provided through a
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Fig. 2. Overview of reliability emulation framework of the Leon 3 register file

serial UART (RS232) port.

A. Register file modeling

The register file found in the Leon 3 is composed of two
read ports and one write port, where each port has separate ad-
dress and data buses. The register file is actually composed of
8 global registers and a configurable number of register win-
dows. The structure of the register windows is specified by the
Sparc v8 standards and contains 8 local registers, 8 in registers,
and 8 out registers.

To provide communication between the register windows the
in and out registers are shared between the previous and next
register windows respectively, with the local registers being ex-
clusive to the currently selected register window. The specific
layout of the register file considered in this case study is de-
picted in Figure 3. The layout of the register file is divided into
32 rows and 8 columns, configuring a device with 256 registers
(this number can be configured on user demand).

B. Statistics gathering engine

The statistics gathering engine (on the right side of Figure 2)
was modeled based on the framework described in [2]. In this
work, it was extended with the necessary components used to
control and monitor the emulated Leon 3 system. The first main
component was the HW sniffers used to snoop signals within
the Leon 3, with each sniffer capable of monitoring a single or
multiple system components. We have included separate mon-
itors for each register of the register file, as shown in Figure
2, which sample the monitored signals (e.g., register identifier,
R/W lines, etc.) every clock cycle and calculate the consumed
energy in each register every 10 ms (because the temperature
evolution is a rather slow process [16]). Then, in addition to
the shared buffer where the sniffers write the statistics of each
interval, a Microblaze was used to provide synchronization for
statistics extraction between the sniffers and the host PC. Fi-
nally, the communication between the statistics extraction en-
gine and the host PC executing the thermal and reliability mod-
els was done through a standard Ethernet connection available
on the FPGA where the emulation was performed.
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Fig. 3. Layout considered for the Leon 3 register file (m=32;n=8)

The proposed emulation platform not only implements a
higher complexity system than the one presented in [2];
thus, showing the scalability of HW-SW reliability exploration
frameworks, but also enables thermal analysis at a greater level
of granularity. Hence, the temperature for every register is ac-
quired and an accurate and exhaustive register file reliability
exploration can be performed.

The host PC contains software to provide thermal estima-
tion and reliability characterization of the register file based on
switching activity of its individual registers. The host PC uses
the gathered statistical data with the energy consumed in each
register, coming from the statistics extraction engine, and in-
corporates it into the thermal models. Then, the temperature,
power and energy results are included in the reliability models
to calculate MTTF for each register of the emulated Leon 3 mi-
croarchitecture. From these results, the MTTF estimate can be
given for the entire register file.

V. CASE STUDY: REGISTER FILE RELIABILITY
ENHANCEMENT DESIGN

The register file reliability emulation platform described in
the previous section has been used to perform a complete reli-
ability analysis for the register file of the Leon 3 core, imple-
mented in 90 nm process technology. In this analysis, we have
explored the effects of the application domain, as well as the
code transformations regulated by the compiler. Finally, as an
example of the potential benefits of reliability-aware design for
nanoscale MPSoCs, using the outcome from this analysis, we
have defined a reliability-aware register assignment policy to
enhance the MTTF of the register file.

A. Experimental setup

A set of embedded applications from MiBench [9] and
CommBech [14] suites has been selected to analyze the ef-
fects that the application domain has on the reliability. Among
these applications, data-processing (FFT, reed), mathematical
and graph theory (basicmath, dijkstra) and ordering/searching
(bitcount, gsort, stringsearch, etc.) algorithms can be found.

These applications have been compiled with a cross-
generated version of gcc 3.2.3 for the Sparc architecture. Also,
four versions of each benchmark have been generated using
the four optimization levels of gcc (-O0 to -O3). The results
are normalized with respect to a nominal reliability value of 3
years. Thus, the X-axis in all the figures represents the normal-
ized MTTF percentage within this nominal value.
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B. Reliability emulation

The first set of experiments studies the effect of the target ap-
plication on the MTTF of the register file. Figure 4 shows the
evolution of the MTTF with respect to the normalized nominal
value. As can be seen, independently from the application, the
key differentiator used to identify the worst benchmarks from
the reliability viewpoint is the analysis of which ones make in-
tensive use of a reduced number of registers, namely, FFT and
bitcount. Thus, they are the benchmarks that experience the
most severe MTTF reduction (i.e., 35% in 10 years following
the normalized pattern of Figure 4) due to the hotspots found
in the highly-accessed registers. On the other hand, those data-
processing benchmarks with an extended number of assigned
registers (i.e., gsort and reed) experience a lower impact on the
MTTF evolution (14% in 10 years).

The second set of experiments evaluates the effect of the dif-
ferent compiler optimizations (-O0 to -O3) and the modified
register assignment policy on the MTTF for the FFT bench-
mark. As Figure 5 shows, the less optimized policy (-O0 op-
tion) is the one that provides a lower impact on the MTTF re-
duction (1.5% on average), while the register reuse conducted
by the most extensive compiler optimization options impact the
MTTF negatively (2.5% and 3% for the -O2 and -O3 options,
respectively) in the sampled interval, and up to 24% and 35%
respectively in 10 years. Then, Figure 6 shows the evolution
of the four main reliability factors for the FFT benchmark un-
der the -O3 optimization. SM is the dominant factor in the
reduction of the MTTF due to the fast thermal dynamism of
the system in different execution phases (i.e., 12°C difference
can occur in few seconds), as predicted by the different thermal
models for sub-micron technologies [2,6, 16].

Finally, the number of damaged registers has also been esti-
mated to quantify the degree of device failure. A register is con-

6D-1

MTTF by model (FFT -O3)

100 —
99.5 \\
—~ 99
X
w 98.5
E
S g \
97.5
o TDDB ¢ EM v SM  a TC \.
97 T T T T T T )
0 15 30 45 60 75 90 100

nominal lifetime (%)
Fig. 6. MTTF model evolution for the FFT benchmark compiled with -O3.

Damaged registers by compilation (bitcount)

(@00 W+01" W“02" [W“-03" EMODIFIED]

number of registers
N

0 15 30 45 60 75
nominal value (%)

90

100

Fig. 7. Number of damaged registers under different compiler optimizations
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sidered to be damaged if its MTTF is below 2% of the nominal
value. This information is very useful for the microarchitec-
ture designer to understand the consequences of the optimiza-
tion policies applied by the compiler in the register file lifetime.
The number of damaged registers at the end of a sample inter-
val of 3 years is depicted in Figure 7. As it shows, the amount
of damaged registers on average for the bitcount benchmark,
one case study with high pressure in the register file, varies be-
tween 1 and 4 for the studied interval, and between 12 and 45 in
10 years, depending on the optimization level used by the com-
piler. The maximum optimization level (-O3) is the one with
worse reliability, showing in our results that the probability of
having at least 4 registers damaged in the first 2 years in the
worst case, reaches 99.5%, making critical the development of
reliability-aware register assignment policies.

C. Reliability enhancement policy

Using the information about the register file from our relia-
bility emulation framework , we have defined a new register as-
signment policy. It has been implemented in the gcc compiler,
which uses two phases to allocate registers: one allocating local
pseudos to registers, and one allocating the remaining pseudos
used over basic block borders. Both phases only allocate a hard
register to pseudos, but do not emit spill code.

The algorithms included in the current versions of gcc as-
sign registers from a pool of free registers. Our proposed regis-
ter allocation technique modifies the graph coloring algorithm
found in [23] by selecting the target register after checking that
the neighbors have not been previously assigned, if possible.
In this way, the pattern of assigned registers from the register
file resembles a chess board. Thus, a better diffusion of heat is
performed within the different register windows and a broader
selection of registers is expected to improve the register file re-
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(a) Traditional reg-
ister allocation.

(b) Modified regis-
ter allocation.

Fig. 8. Thermal distribution for the register file.

liability. Figure 8 shows the better spread of the heat and the
reduction of hotspots in the register file when the modified al-
location is employed.

As depicted in Figure 7, this new register assignment pol-
icy (MODIFIED) reduces the number of damaged registers.
In fact, the spread of the register assignment per window per-
formed by our policy eliminates any damaged register in the
sampled interval (3 years) for the bitcount benchmark. More-
over, Figure 5 indicates that our policy is very effective to min-
imize MTTF degradation, where MTTF is only reduced by
0.1% in the sampled interval, thus, around 1% in 10 years,
much smaller figures than any other policy. In fact, in com-
parison with -O3 (Figure 6), our results indicate that our pol-
icy reduces significantly (by 20% on average) the impact of all
factors related to MTTF degradation, especially SM that sig-
nificantly affects all the other policies.

Finally, we have evaluated the speed of the proposed HW-
SW emulation framework in comparison with SW simulators.
While the HW-SW emulation framework took 5 minutes ap-
proximately for the whole reliability exploration of each tested
application, a complete MPSoC architectural simulator [22] re-
quired 2 days for 0.18 sec of real execution. Thus, the proposed
emulation framework achieves more than three orders of mag-
nitude of speed-ups (1612 x) compared to SW-based thermal
simulation, making feasible to perform long thermal and relia-
bility studies in a limited time.

VI. CONCLUSIONS

Transistor scaling toward nanometer-scale devices is rapidly
exacerbating reliability problems in large-scale MPSoCs.
Thus, new reliability-aware design methods are required.
As a result, a new generation of software-based reliability-
enhancement techniques with limited area and performance
overhead, thanks to the underlying hardware support, need to
be proposed. Moreover, novel and fast exploration approaches
must be deployed to validate the provided resilience to aging by
the developed reliability-enhancement techniques for MPSoCs
at different levels of abstraction (e.g., system-level, processor
microarchitecture, etc.).

In this paper we have illustrated the feasibility and benefits
of reliability-aware design by performing a complete reliability
analysis of the register file architecture of a Leon 3 processor.
Since this type of analysis is very time-consuming for pure SW
simulators, we have presented the application of a HW-SW em-
ulation framework, which enables an exhaustive exploration of

the various reliability factors for a complete range of differ-
ent benchmarks. Our experiments have shown that reliability-
aware design is key to provide long-lasting nanoscale devices
with very low overheads in terms of area and performance.
In fact, the obtained results outline that the target application
domain can have a very negative impact on the reliability of
the register file, as well as the use of aggressive compiler op-
timizations and register assignment policies. However, effec-
tive reliability-aware register assignment algorithms can signif-
icantly enhance the MTTF of the register file (20% on average)
for different kinds of applications.
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