
Multi-Processor Operating System Emulation Framework
with Thermal Feedback for Systems-on-Chip ∗

Salvatore Carta,
Michele Pittau

DMI-University Cagliari, Italy.

Andrea Acquaviva,
STI/University of Urbino, Italy.

Pablo G. Del Valle†,
David Atienza†, Giovanni

De Micheli
LSI/EPFL, Switzerland.

Fernando Rincon
UCLM, Ciudad Real, Spain.

Luca Benini
DEIS/Bologna University, Italy.

Jose M. Mendias
†DACYA/Complutense

University of Madrid, Spain.

ABSTRACT
Multi-Processor System-On-Chip (MPSoC) can provide the perfor-
mance levels required by high-end embedded applications. How-
ever, they do so at the price of an increasing power density, which
may lead to thermal runaway if coupled with low-cost packaging
and cooling. Hence, mechanisms to efficiently evaluate the effec-
tiveness of advanced thermal-aware operating-system (OS) strate-
gies (e.g. task migration) onto the available MPSoC hardware are
needed.

In this paper, we propose a new MPSoC OS emulation frame-
work that enables the study of thermal management strategies at
the architectural- and OS-levels with the help of a standard FPGA.
This framework includes the hardware and software components
needed to accurately model complex MPSoCs architectures, and
to test the effects of run-time thermal management strategies at
the OS/middleware level with real-life inputs. Our results show
that migration overhead is negligible w.r.t. temperature timings,
enabling the development of thermal-aware migration strategies.
Moreover, the effectiveness of the monitoring and feedback mech-
anism provides an emulation performance only ten times slower
than real time.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids

General Terms
Design, Measurement, Performance

∗This work is partially supported by the Spanish Government
Research Grants TIN2005-5619 and FPU AP2005-0073, and the
Swiss NSF Research Grant 20021-109450/1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’07, March 11–13, 2007, Stresa-Lago Maggiore, Italy.
Copyright 2007 ACM 978-1-59593-605-9/07/0003 ...$5.00.

Keywords
Operating system, MPSoC, Thermal studies, FPGA, Emulation

1. INTRODUCTION
The ever increasing complexity of consumer applications (e.g.

multimedia processing or 3D games) for portable devices such as
smart-phones and palmtop computers demands complex hardware
and software designs to meet tight performance requirements while
respecting power constraints. In this context, MULTI-PROCESSOR
SYSTEMS-ON-CHIPS (MPSOCS) have been proposed as a promis-
ing solution [9]. Multi-processor operating systems (MPOS) and
middleware are required to efficiently exploit the interaction of the
various components of the underlying hardware, while ensuring
flexibility and providing a standard hardware-abstraction layer for
heterogenous application development.

While this layered approach eases the programmer’s job, soft-
ware and hardware designers have the responsibility of efficiently
managing non-functional system constraints, such as power and
temperature. In fact, it has been recently shown [17] that MPSoCs
can experience hotspots and very high temperatures in forthcom-
ing technology nodes. It is evident that the high hardware and soft-
ware complexity provides high degree of freedom at the price of
increased design effort at operating system (OS) and middleware
level. For this reason, new methods that allow designers to test
thermal-aware MPOS strategies (e.g. voltage scaling and task mi-
gration) on MPSoCs architectures early in the system integration
flow need to be developed to match time-to-market requirements.

Presently, a few of cycle-accurate MPSoC simulators have been
developed that include MPOS support [4]. However, these simu-
lators are inappropriate to perform long thermal simulations due to
their limited performance (circa 10-100 Khz). Also, other higher
abstraction levels simulators (e.g. at the transaction level) provide
faster simulations, but the accuracy during the evaluation of ther-
mal effects is limited. An alternative to cycle-accurate simulators
for thermal evaluation is MPSoC hardware emulation [3, 5, 2, 6].
However, most emulation frameworks are only limited to emulation
of the behavior of pure hardware components of MPSoC architec-
tures. Moreover, FPGA vendors only include support for mono-
processor OSes, but no frameworks are available to perform ther-
mal exploration of MPOS behavior with the underlying MPSoC
architecture.

In this paper we present a new MPOS emulation framework for
MPSoC that enables the study of thermal management strategies at

311

the architectural- and OS-levels using a standard FPGA. We have
developed within this framework the necessary hardware and soft-
ware extensions to allow designers to test different thermal-aware
MPOS implementations running onto real-life MPSoC architec-
tures emulated on FPGAs. To the best of our knowledge, this is
the first multiprocessor platform that supports OS and middleware
emulation, and enables the exploration of closed-loop policies that
dynamically adjust system operation based on monitoring of die
temperature. Our results show the benefits of advanced temper-
ature management exploiting OS facilities like task migration in
MPSoCs.

The paper is organized as follows. In Section 2, we overview
related work on MPOS design and MPSoC validation. In Section 3
we present the architectural extensions to MPSoC designs to pro-
vide an efficient implementation of MPOSes. In Section 4 we de-
scribe the foundations of the ported MPOS to enable a complete
framework to explore thermal-aware OS-level strategies. In Sec-
tion 5, we detail the complete MPOS MPSoC emulation flow. In
Section 6, we present our experimental results. Finally, Section 7
summarizes the contributions of the paper and presents possible fu-
ture research directions.

2. RELATED WORK
In the last years research on suitable modeling and design tools

for MPSoCs platforms to run consumer applications have started to
be proposed [9, 14, 4]. This research effort includes both hardware
and software approaches that address the problem of providing ex-
ploration and validation methods for MPSoCs.

Hardware prototyping has already been used in industry for sev-
eral years as a good validation method for industrial MPSoCs. In
this regard, Palladium II [5], Zebu-XL [6] and System Explore [1]
have been proposed. Nevertheless, they typically have a high cost
(more than $300K-$400K) and operate in the order of few MHzs.
Then, Heron [7] and ASIC Integrator [2] are faster for MPSoCs
architectural exploration, but they are limited to using few propri-
etary cores (e.g. AMBA interconnects and few ARM-based cores
in ASIC Integrator).

Similarly, recent MPSoC emulation platforms have been recently
proposed in the academic context. In [14] it is presented a frame-
work that enables designers to explore different interconnection
mechanisms of MPSoC architectures including several proprietary
32-bit VLIW cores. Also, [13] describes a combined hardware-
software method that can speed up software simulators with FPGA
emulation, by synchronizing both sides in a cycle-by-cycle basis
using a shared register bank. This work shows a final speed for
the combined hardware-software framework of 1 MHz. However,
none of these works include a ported OS and thermal modelling
combined with the emulation of MPSoC architectures.

The RAMP (Research Accelerator for Multiprocessors) [11] project
exploits a hardware-software infrastructure close to the one used
in our work. Multiple operating systems run on a emulated mul-
tiprocessor hardware. There are two main points of distinction
compared to this work: i) we developed a middleware infrastruc-
ture supporting basic communication and synchronization but also
advanced services such as task migration between processing ele-
ments; ii) we implemented a statistics collection support that inter-
faces with a thermal model to develop and test strategies for closed-
loop thermal control.

Hot spots and thermal modeling in general is a very important
concern in latest multi-processors [19, 10], and temperature-aware
design and tools to support it are in great need. In [17] it is proposed
a thermal software model to predict the temperature rise effects in
the different components of super-scalar microarchitectures (e.g.

performance degradation, increase in leakage power, etc). Also,
in [18] it is studied temperature and voltage variations in embedded
cores, which shows variations of 13.6 degrees across the die. Fi-
nally, regarding thermal hardware emulation, in [12] it is explored
the use of ring-oscillators, which can dynamically be inserted or
eliminated, for thermal monitoring in FPGA-based embedded de-
signs. This empirical measurement method is interesting, but only
applicable to FPGAs as target devices, while the proposed general
emulation framework is able to model the temperature of MPSoC
designs implemented with ICs and running MPOSes.

With respect to the work presented in [3] we improved it in sev-
eral points. First, we added a more flexible clock management that
allow an independent runtime frequency scaling support for each
processor. Second, we implemented the hardware support needed
to support OS and middleware with interprocessor task communi-
cation and synchronization.

To summarize, with respect to the state of the art, thanks to our
emulation system it is possible for the first time to develop thermal
aware strategies at the middleware and OS level before the system
prototype is available, without compromising cycle-level accuracy.

3. MPOS MPSOC FPGA EMULATION AND
THERMAL MONITORING

The proposed MPSoC framework exploits FPGA emulation to
model the hardware components of the considered MPSoC plat-
form at multi-megahertz speeds. The hardware architecture is com-
posed of a variable number of soft-cores (currently up to four cores).
Each core runs from the private memory its own instance of a cus-
tomized version of uClinux operating system [15] that has been
ported and optimized for the underlying hardware. UClinux is an
operating system that includes a collection of Linux 2.x kernel re-
leases intended for single microcontrollers without Memory Man-
agement Units (MMUs), as well as a collection of user applications
and libraries. Next, a shared memory is used by a middleware layer
running on top of each OS for communication, synchronization and
task migration between the OSes. From the hardware viewpoint,
the OSes need special support for inter-processor communication,
that will be described later in Section 3.2. In Section 3.1 the basic
architecture and thermal monitoring features are described.

3.1 MPSoC Basic Architecture and Thermal
Monitoring

The proposed MPSoC MPOS framework is an evolution of the
HW/SW FPGA-based hardware emulation infrastructure presented
in [3]. An overview of the whole current framework is presented
in Figure 1. Using this framework, designers can extract statistics
concerning processing cores, memory subsystem and interconnec-
tion infrastructure.

In our current emulation system we can include up to four mi-
croblaze cores, due to the size of the underlying Virtex-II Pro v2vp30
FPGA. However, the system can be scaled to any number of cores
by using available larger FPGAs. A specialized thermal monitoring
subsystem is included. It is based on hardware sniffers, a virtual
clock management peripheral and a dedicated non-intrusive sub-
system (PPC subsystem in Figure1) that implements the extraction
of statistics through a UART port, which are then provided to a
software thermal library for bulk silicon chip systems.

The library resides in a host PC and calculates the temperature
of each cell according to the floorplan of the emulated MPSoC and
the frequency/voltage of each MB processor. Temperatures coming
out form the library provide a real-time thermal feedback visible by
the running uClinux in each processor.

312

Figure 1: Overview HW architecture of emulated MPOS MP-
SoC platforms

The library resides in a host PC and calculates the temperature of
each cell according to the floorplan of the emulated MPSoC and the
frequency/voltage of each MB processor to provide real-time ther-
mal feedback. The temperatures are then visible from the OSes and
middleware through emulated memory mapped temperature sen-
sors, which are updated by the thermal monitoring subsystem. The
frequency of the regular updates of the emulated temperature sen-
sors is configurable in the range of 10 ms to 1 s. In our experiments
we have fixed this interval to 10 ms to guarantee very accurate ther-
mal monitoring (see Section 6).

3.2 MPOS Architectural Extensions
To support MPOSes, dedicated hardware must be designed to

support OS execution and communication between process running
on different processors. This includes: i) interprocessor interrupt
controller; ii) semaphore memory; iii) address translator; iv) fre-
quency scaling support. Moreover, a customized shared communi-
cation link that exploits the platform serial port has to be developed
for synchronizing the console output of the OSes. Each OS runs
in a private memory that is physically mapped into the available
of-chip DDR memory on the board, for space reasons. In fact, the
included on-chip BRAM memories of the FPGA are too small for
containing the OS image. In addition, the global shared memory
for the communication of OSes is also mapped into the external
DDR memory.

Interprocessor interrupt controller. This component is needed
to enable interrupt based wake-up of tasks sleeping while waiting
for a shared resource to be released. Without interrupt support, a
task can only perform busy waiting on shared variables for access-
ing shared data, such as messages from tasks in other processors.
Interrupts can be sent to a selected processor by writing a word in
a memory mapped control register.

Semaphore memory. Mutual exclusive access to the shared
memory is provided through a hardware mutex implementing the
test-and-set-lock (TSL) atomic operation. When reading a ”zero”
value from a certain location, the value atomically becomes ”one”.
The behavior of write operations is as in a normal memory af-
terwards. TSL is used to implement atomic wait operations on
semaphores. The mutex is a memory-mapped peripheral where
its lock can be acquired by any of the processors included in the
emulated MPSoC. In addition, the mutex peripheral is used by ev-
ery processor as a shared memory area, where other processors
can deliver their messages. As such, a user-defined number of
semaphores can be defined as variables into this memory. Every
processor should then periodically check its shared area for new

incoming messages, which would result in extra bus traffic. There-
fore, to avoid this polling overhead, the mutex is able to monitor all
accesses to the shared memory, and fire an interrupt for the corre-
sponding processor only when new data is available.

Address translator. Since all the private memories are mapped
in the same SDRAM, they lie in non-overlapping address ranges.
Without MMU support, to avoid static linking of OS and program
code at different locations, it is needed to provide to each microb-
laze the same view of the private memory. This is obtained by
translating the addresses generated by the cores to the appropriate
memory range, so that all the processes can execute independently
from the processor where they run.

Frequency scaling support. Independent frequency scaling sup-
port is needed to emulate speed scaling policies. Hardware pro-
grammable dividers have been placed in the output of the platform
clock generators to obtain a configurable frequency setting support.
Each core can set its own frequency at run-time as well as the fre-
quency of other cores by accessing the memory locations where the
described dividers are mapped.

4. MPOS EXPLORATION FRAMEWORK
This section describes the software abstraction layer aimed to

support task migration for thermal management exploration. In the
programming model we adopted, each task is represented using the
process abstraction. This means that each task has its own private
address space. As a consequence, task communication has to be
explicitly carried on using a dedicated shared memory area. For
communication between tasks on the same processor, the shared
memory is a shared space made available by the residing OS.

The software abstraction layer is described in Figure 2. It is
based on three main components: (i) Stand alone OS for each
processor running in private memory; (ii) lightweight middleware
layer providing synchronization and communication services; (iii)
task migration support layer.

PROCESSOR N

COMMUNICATION & SYNCHRONIZ ATION

TASK 1 TASK MTASK 2

PROCESSOR 1

OP. SYST. NOP. SYST. 1

PRIVATE MEM 1 PRIVATE MEM N

SHARED
MEMHW

OS/
MWARE

APPL .

TASK MIGRATION

Figure 2: Scheme of the software abstraction layer

Since OSes run independently in each private memory, data can
be shared between tasks using explicit services given by the under-
lying middleware/OS.

4.1 Communication and Synchronization
Support

The communication library supports message passing through
mailboxes. They are located either in the shared memory space or
in smaller private scratch-pad memories, depending on their size.
We implemented a lightweight message passing scheme able to ex-
ploit scratch-pad memories or physical shared memory to imple-
ment ingoing mailboxes for each processor core. We defined a li-
brary of user-level functions and system calls that each process can
use to perform blocking write and read of messages on data buffers.

To use shared memory paradigm, two or more tasks are enabled
to access a memory segment through a shared malloc that returns

313

a pointer to the shared memory area. The implementation of this
additional system call is needed because by default the OS is not
aware of the external shared memory. When one task writes into
a shared memory location, all the other tasks update their internal
data structure to account for this modification. Allocation in shared
memory is implemented using a parallel version of the Kingsley
allocator, commonly used in linux kernels.

Task and OS synchronization is supported providing basic prim-
itives like binary and counting semaphores. Both spinlock and
blocking versions of semaphores are provided. Spinlock semaphores
are based on hardware test-and-set memory-mapped peripherals,
while non-blocking semaphores also exploit hardware inter-processor
interrupts to signal waiting tasks.

4.2 Task Migration Support
To enable task migration, we implemented a task replication

strategy enabled by the middleware support. A so called master
daemon runs in one of the cores and takes care of dispatching tasks
on the processors. By default, when the user launches a task, a
replica of it is generated in each OS by means of a fork system call.
However, only one processor at a time can run one replica of the
task. While here the task is executed normally, in the other proces-
sors it is in a queue of suspended tasks. As such, a memory area
is reserved for each replica in the local memory, while kernel-level
task-related information are allocates by each OS in the Process
Control Block (PCB) (i.e. an array of pointers to the resources of
the task). Even if this technique leads to a waste of memory, it has
the main advantage of being fast, since it cuts down on memory
allocation time.

The migration process is managed using two kinds of kernel dae-
mons (part of the middleware layer), a master daemon running in
a single processor, and slave daemons running in all the proces-
sors. The master daemon takes care of implementing the run-time
thermal-aware task allocation policy. Tasks can be migrated only
corresponding to user-defined checkpoints. The code of the check-
points is provided as a library to the programmer. When a task
reaches a checkpoint, it checks for migration requests performed
by the master daemon. If the migration is taken, they suspend their
execution waiting to be deallocated and restore to another proces-
sor from the migration middleware. The actions of the master and
slave daemons supporting the migration mechanism are described
below.

The master daemon performs four operations:
1. The master periodically reads a data structure in shared memory
where each slave daemon writes the statistics related to the proces-
sor where it runs (e.g. processor utilization and memory occupation
of each task). At run-time, the master daemon processes this data
and eventually issues a task migration request.
2. When a new task or an application (i.e. a set of tasks) is launched
by the user the master daemon sends a message to each slave com-
municating that the application should be initialized. The mas-
ter decides where the tasks have to be instantiated and commu-
nicates its decision to the slave daemons. The communication be-
tween master and slave daemons is implemented using dedicated,
interrupt-based messages in shared memory.
3. When the master daemon wants to migrate a task, it signals to
the slave daemons of the source processor that a task has to be mi-
grated.
4. The master daemon keeps also track of the completion of appli-
cations and tasks on the various processors.

The slave daemon performs four operations:
1. It generates a new task upon notification of the master daemon.
Each task is then stopped and placed in the suspended tasks queue.

2. It periodically writes in a dedicated data structure in shared
memory the statistics related to tasks execution that will be used
by task allocation and migration policies.
3. When the master signals that a task has to be migrated from its
own processor to a target processor, it performs the following ac-
tions: i) it waits until the task to be migrated reaches a checkpoint,
and puts it in the queue of the suspended tasks; ii) it copies all the
task-related information (user and kernel level data structures) to a
dedicated buffer in the shared memory; iii) it communicates to the
slave daemon of the processor where the task must be moved that
the data of the task is ready to be copied; iv) it puts the migrated
task PCB in the suspended tasks queue.
4. when the slave daemon of the processor source notifies a migra-
tion request to the target daemon, the latter copies the data from the
shared memory to its private memory. Finally it puts the PCB of
the incoming task in the ready queue.

5. MPOS MPSOC THERMAL EMULATION
FLOW

Thanks to the thermal monitoring support we implemented, it is
possible to assess the impact of task migration and scheduling on
system temperature as well as to design thermal aware policies. An
handshake mechanism between the thermal model and the middle-
ware had to be implemented to this purpose.

Figure 3 depicts the flow that needs to be used in order to build
a custom MPOS MPSoC design. It is similar to the baseline flow
described in [3] from the hardware, but it has been extended on
the hardware and software side to include the MPOS support. The
MB software binaries are generated using a uClinux toolchain that
enables to include OS support in the same image as the appli-
cation binaries to be executed. When the designer describes an
MPSoC architecture, all the information related to the hardware
resources present in the system (included processing cores, addi-
tional I/O blocks, memory addresses, custom parameters, interrupts
numbers...) is embedded into a configuration file that follows a
special syntax, such that it can be fed into the uClinux toolchain.
This toolchain subsequently allows the designer to build a custom
uClinux OS image that is tailored to his particular needs from the
hardware viewpoint, and where the designer can compile the appli-
cations to run in the final MPSoC. Then, using the generated config-
uration file, the user can easily choose the number of semaphores
to use, enable/disable debugging support and thermal monitoring
services, etc. Provided this information, together with the avail-
able drivers for the included hardware resources indicated in the
configuration file, a complete binary file is generated, containing
the compiled uClinux image to be downloaded into the MBs mem-
ories. The OS image comprehends also the file system, where the
middleware and user level applications are placed after being cross-
compiled, so that they are available to be started from the uClinux
consoles of the microblazes after the boot.

After the configuration of the MPOS MPSoC has been done and
the uClinux images have been downloaded, during the emulation
the thermal model indicated in Subsection 3.1 uses the statistics
collected by the sniffers included in our framework to compute
power density of various chip components. In case of processing
cores, their power density depends on the frequency. For this rea-
son, the frequencies currently used are also included among the
interchanged statistics.

The block diagram of the system is described in Figure1. The
emulation is triggered by a timer interfaced to the PLB bus, where
the PPC is connected. The timer generates and interrupt for the
PPC that triggers the statistics collection. The timer can be pro-

314

Figure 3: Complete HW-SW flows included in the FPGA-based
thermal emulation framework

grammed to control statistics download intervals and the period of
temperature updates by writing a control word in the status register
of the statistic collection peripheral.

Corresponding to each interrupt, the virtual clock manager freezes
the clock of all the MB buses and stops the statistics counters.
The PPC reads all the statistics data and uploads them through the
UART to a program in the host PC. The PPC remains idle wait-
ing for a special character from the UART. In the meantime, the
program in the host PC updates the frequencies and computes the
temperatures using the thermal model. The temperatures are then
sent back to the PPC through the UART. The PPC writes the tem-
perature values into a memory mapped register. This mechanism
emulates the presence of temperature sensors on the chip.

Once updated the emulated temperatures sensors, the PPC in-
structs the statistic peripheral to re-enable the clocks and the statis-
tics counters. It can be noted how the whole process is completely
transparent to the emulation, therefore no statistics data loss occurs
and the emulation accuracy is preserved. Exploiting the emulated
temperature sensors, the middleware can implement a thermal-aware
task migration strategy. An example policy is described in Sec-
tion 6.

6. EXPERIMENTAL RESULTS
In this section we show experiments concerning the evolution of

the temperature of an MPSoC architecture including 4 cores, when
frequency scaling and task migration are available at the OS level
to perform thermal management of the final chip. Each core has
a 64KB cacheable private memory and 32KB of shared memory
implemented both in the DDR memory. The considered floorplan
is shown in Figure 4 and in our experiments the frequencies of the
cores are the main monitored elements from the 128 thermal cells
that can be currently considered [3]. Cores considered in the floor-
plan are ARM11, with frequency range of 100-512MHz, while the
interconnection is an AMBA bus system. In the floorplan, proces-
sor 1 refers to MB0, processor 2 refers to MB1 and so on. In the
emulation system, cores are microblazes whose frequency range is
from 10-51.2MHz. As such, they are ten times slower. In the ther-
mal model, we compute the power consumption of the bus by con-
sidering the access patterns generated by the cores [16]. We have
obtained the dimensions of the AMBA circuits by synthesizing and
building a layout. The dimensions of the memories and processors
are based on numbers provided by an industrial partner. As soft-
ware driver for this MPSoC design, we have defined a benchmark
that stresses the processing power of the MPSoC design to observe

Figure 4: MPSoC floorplan with uneven distribution of cores
on the die and a shared bus interconnect

Figure 5: Temperature waveform with one task running on
MB1

effects in temperature. This benchmark implements a synthetic task
that imposes a load near 100%.

In the first experiment, shown in Figure 5, we run the synthetic
task on the MB1. We can observe that the temperature of MB1
increases from the ambient temperature (300 Kelvin degrees) and
stabilizes to a value that depends on the processor load. In fact,
the OS in each processor automatically adjusts the frequency of
the core depending on the load using a frequency setting policy
based on the observation of processor load over time intervals [8].
In the thermal model, the frequency information is used to feed
power models of the processor to compute its power consumption.
In this experiment, the other cores run at the minimum frequency
(100MHz). It must be noted how their temperatures are affected by
MB1, however, being all the processors unloaded, they stay below
340K.

In this second experiment we show the effect of a thermal-aware
task migration policy (Figure 6). In this case, a synthetic task is
running on the MB1 which can migrate among the available cores.
To this end, the middleware system periodically monitors proces-
sor temperatures and compares them with a threshold. We set this
threshold to be 365 Kelvin degrees in this experiment.

The curves in Figure 6 show temperature and frequency wave-
forms of each core over time. It can be observed that, as the tem-
perature of MB1 reaches the threshold, the middleware system trig-
gers the task migration to the colder processor MB2. Therefore,
the temperature of MB1 decreases while temperature of MB2 in-
creases and reaches the threshold triggering another task migration
to MB3. In this experiment we kept MB0 unloaded to observe its

315

Figure 6: Temperature effect of a simple temperature-aware
task migration policy.

load-free temperature behavior, that is not affected by the tempera-
ture of other processors in this design.

From this simple experiment we can observe several interesting
consequences of MPSoC temperature management: i) the temper-
ature of each core is affected by the others but strongly depends on
the load, which can be efficiently monitored by the OS since this
layer has full knowledge of task being executed and, even more im-
portantly, which are the following tasks that need to be executed.
Hence, the OS can define a proper task migration policy according
to possible prior (design) knowledge of the location of the cores
in the floorplan and the thermal conductivity between their cells;
ii) thermal time constants are larger with respect to task migration
delays; Thus, task migration can be effective in controlling cores’
temperatures. However, task migration imposes an overhead due to
data exchange between processors and to task shut-off and resume
delays. Therefore, in principle the number of migrations per time
unit is limited. Nevertheless, as our results indicate, since tempera-
ture variations are slow with respect to our implemented migration
overhead, moving tasks between processors is a viable technique to
keep chip temperature controlled.

Finally, regarding exploration efficiency, our results show the du-
ration of both experiments was approximately 90 seconds for 6 sec-
onds of real-time, which indicates more than 1000 times speed-up
w.r.t. cycle-accurate MPSoC simulators including OS [16]. Emula-
tion time depends on two contributions: i) the processing cores are
ten times slower than the emulated system; ii) there is an additional
time overhead to synchronize with the thermal simulation library at
run-time and to download statistics to the host PC. Overall, the per-
formance of the emulation is efficient enough for very fast system
prototyping and MPOS thermal validation.

7. CONCLUSIONS
In this paper we have presented a new emulation framework that

enables the rapid evaluation and exploration of MPOS implemen-
tations for MPSoC designs by using conventional FPGAs. More-
over, our framework enables long thermal emulations of MPOS im-
plementations running onto MPSoCs architectures, and our results
show the benefits of this framework to explore thermal-aware man-
agement at the OS level. In the future we would like to study more
in detail the relationship of complex OS-based thermal manage-
ment techniques with reliability of MPSoCs.

8. REFERENCES
[1] Aptix. System explore, 2003. http://www.aptix.com.
[2] ARM. Arm integrator ap, 2004. http://www.arm.com.
[3] D. Atienza, P. G. Del Valle, G. Paci, F. Poletti, L. Benini,

G. De Micheli, and Jose M. Mendias. A fast hw/sw
fpga-based thermal emulation framework for multi-processor
system-on-chip. In Proceedings of Design Automation
Conference (DAC), pages 618–623. ACM Press, 2006.

[4] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and
M. Olivieri. Mparm: Exploring the multi-processor SoC
design space with SystemC. The Journal of VLSI Signal
Processing, 41(2):169–182, September 2005.

[5] Cadence. Cadence palladium ii, 2005.
http://www.cadence.com.

[6] Emulation and Verification Engineering. Zebu xl and zv
models, 2005. http://www.eve-team.com.

[7] Heron Engineering. Heron mpsoc emulation, 2004.
http://www.hunteng.co.uk.

[8] Krisztian Flautner and Trevor Mudge. Vertigo: automatic
performance-setting for linux. volume 36, pages 105–116,
New York, NY, USA, 2002. ACM Press.

[9] Ahmed Jerraya and Wayne Wolf. Multiprocessor
Systems-on-Chips. Morgan Kaufmann, Elsevier, 2005.

[10] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A
32-way multithreaded sparc processor. IEEE Micro,
25(2):21–29, 2005.

[11] Berkeley University RAD Lab. Ramp project, 2006.
http://radlab.cs.berkeley.edu/wiki/
RAMP project idea.

[12] Sergio López-Buedo, Javier Garrido, and Eduardo I. Boemo.
Thermal testing on reconfigurable computers. IEEE Design
& Test of Computers, 17(1):84–91, 2000.

[13] Y. Nakamura, K. Hosokawa, I. Kuroda, K. Yoshikawa, and
T. Yoshimura. A fast hardware/software co-verification
method for system-on-a-chip by using a c/c++ simulator and
fpga emulator with shared register communication. In
Proceedings of Design Automation Conference (DAC), pages
299–304, 2004.

[14] M. Diaz Nava and et al. An open platform for developing
mpsocs. IEEE Computer, pages 60–67, 2005.

[15] uclinux: Embedded linux/microcontroller project, 2006.
http://www.uclinux.org/.

[16] G. Paci, P. Marchal, F. Poletti, and L. Benini. Exploring
”temperature-aware” design in low-power mpsocs. In
Proceedings of the conference on Design, automation and
test in Europe (DATE), pages 838–843. IEEE/ACM, 2006.

[17] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang,
S. Velusamy, and D. Tarjan. Temperature-aware
microarchitecture: Modeling and implementation.
Transaction on Architectures and Code Optimizations
(TACO), 1(1):94–125, 2004.

[18] H. Su, F. Liu, A. Devgan., E. Acar, and S. Nassif. Full chip
leakage estimation considering power supply and
temperature variations. In Proc. IEEE/ACM ISLPED, pages
78–83, Aug. 2003.

[19] O. Takahashi, S. R. Cottier, S. H. Dhong, B. K. Flachs, and
J. Silberman. Power-conscious design of the cell processor’s
synergistic processor element. IEEE Micro, 25(5):10–18,
2005.

316

