
Hindawi Publishing Corporation
VLSI Design
Volume 2007, Article ID 37627, 11 pages
doi:10.1155/2007/37627

Research Article
A Method for Routing Packets Across Multiple Paths in NoCs
with In-Order Delivery and Fault-Tolerance Gaurantees

Srinivasan Murali,1 David Atienza,2, 3 Luca Benini,4 and Giovanni De Micheli3

1 Computer Systems Lab, Stanford University, Stanford, CA 94305-9040, USA
2 Departamento Arquitectura de Computadores y Automatica, Universidad Complutense de Madrid, 28040 Madrid, Spain
3 Laboratoire des Systèmes Intégrés, Ecole Polytechnique Federale de Laussanne, 1015 Lausanne, Switzerland
4 Dipartimento di Elettronica, Informatica e Sistemistica, Università di Bologna, 40126 Bologna, Italy

Received 16 October 2006; Revised 21 January 2007; Accepted 6 February 2007

Recommended by Maurizio Palesi

Networks on Chips (NoCs) are required to tackle the increasing delay and poor scalability issues of bus-based communication
architectures. Many of today’s NoC designs are based on single path routing. By utilizing multiple paths for routing, congestion
in the network is reduced significantly, which translates to improved network performance or reduced network bandwidth re-
quirements and power consumption. Multiple paths can also be utilized to achieve spatial redundancy, which helps in achieving
tolerance against faults or errors in the NoC. A major problem with multipath routing is that packets can reach the destination in
an out-of-order fashion, while many applications require in-order packet delivery. In this work, we present a multipath routing
strategy that guarantees in-order packet delivery for NoCs. It is based on the idea of routing packets on partially nonintersecting
paths and rebuilding packet order at path reconvergent nodes. We present a design methodology that uses the routing strategy
to optimally spread the traffic in the NoC to minimize the network bandwidth needs and power consumption. We also integrate
support for tolerance against transient and permanent failures in the NoC links in the methodology by utilizing spatial and tem-
poral redundancy for transporting packets. Our experimental studies show large reduction in network bandwidth requirements
(36.86% on average) and power consumption (30.51% on average) compared to single-path systems. The area overhead of the
proposed scheme is small (a modest 5% increase in network area). Hence, it is practical to be used in the on-chip domain.

Copyright © 2007 Srinivasan Murali et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Future Systems on Chips (SoCs) will have multiple process-
ing cores and memories with each core having high perfor-
mance and frequency of operation. There is a growing trend
towards integrating multiple applications onto the same SoC,
so that the user needs to carry only one device that per-
forms a host of operations. As the computational load of the
SoC increases, so does the load on the communication ar-
chitecture. Scalable micro networks (or Networks on Chips
(NoCs)) are needed to provide high bandwidth communica-
tion infrastructure for the SoCs [1–7]. With technology scal-
ing, on-chip wires are increasingly susceptible to various er-
ror sources such as crosstalk, coupling noise, ground bounce,
soft errors, process variations, and interconnect failures. The
use of NoCs facilitate the application of network error re-
siliency techniques to tolerate such transient and permanent
errors in the interconnects.

The routing scheme used in the NoC can be either static
or dynamic in nature. In static routing, one or more paths
are selected for the traffic flows in the NoC at design time.
In the case of dynamic routing, the paths are selected based
on the current traffic characteristics of the network. Due to
its simplicity and the fact that application traffic can be well
characterized for most SoC designs, static routing is widely
employed for NoCs [8]. When compared to static single-path
routing, the static multipath routing scheme improves path
diversity, thereby minimizing network congestion and traf-
fic bottlenecks. When the NoC is predesigned, with the NoC
having a fixed operating frequency, data width, and hence
bandwidth (bandwidth available on each network link is the
product of the link data width and the NoC operating fre-
quency), reducing congestion results in improved network
performance. For most SoC designs, the NoC operating fre-
quency can be set to match the application requirements.
In this case, reducing the traffic bottlenecks leads to lower

2 VLSI Design

Table 1: Reorder buffer overhead.

Design Area (sq mm) Power (mW)

(1) Base NoC 1.04 183.75

(2) 2 buffers/core 1.14 201

(3) 10 buffers/core 1.65 281.25

required NoC operating frequency, as traffic is spread evenly
in the network, thereby reducing the peak link bandwidth
needs. A reduced operating frequency translates to a lower
power consumption in the NoC. As an example, consider an
MPEG video application mapped onto a 4 × 3 mesh NoC.
Detailed analysis of the application and the performance
of traditional single path schemes and the proposed multi-
path scheme are presented later in this work (in Section 7.2).
When the NoC operating frequency for the schemes is set so
that both schemes provide the same performance level (same
average latency for traffic streams), the multipath scheme re-
sults in 35% reduction in network operating frequency, lead-
ing to 22.22% reduction in network power consumption (af-
ter accounting for the overhead involved in the multipath
scheme). Another important property of the multipath rout-
ing strategy is that there is spatial redundancy for transport-
ing a packet in the on-chip network. A packet can be sent
across multiple paths for achieving resiliency against tran-
sient or permanent failures in the network links.

Many of today’s NoC architectures are based on static
single path routing. This is because, with multipath routing,
packets can reach the destination in an out-of-order fashion
due to the difference in path lengths or due to difference in
congestion levels on the paths. For many applications, such
out-of-order packet delivery is not acceptable and packet re-
ordering is needed at the receivers. As an example, in chip
multiprocessor applications for maintaining coherency and
consistency, packets reaching the destination need to be in-
order. In video and other multimedia applications, packet or-
dering needs to be maintained for displays and for many of
the processing blocks in the application.

With multipath routing, packet reorder buffers can be
used at the receiver to reorder the arriving packets. How-
ever, the reorder buffers have large area and power over-
head and deterministically choosing the size of them is in-
feasible in practice. In Table 1, the area and power consump-
tion of a 4 × 3 mesh NoC (the area-power values include
the area power of the switches, links, Network Interfaces
(NIs)) with different numbers of packet buffers in the receiv-
ing NIs is presented. The network operating frequency is as-
sumed to be 500 MHz with 50% switching activity at the sub-
components. The flit size is assumed to be 16 bits with the
base switch/NI having 4 flit queuing buffers at each output.
The base NoC component area, power values are obtained
from synthesizing the component designs that are based on
the ×pipes architecture [9] (refer to Section 7 for a descrip-
tion of the architecture) using UMC 0.13 μm technology li-
brary. As seen from the table, a NoC design with 10 packet re-
order buffers/core has 59% higher NoC area and 43% higher
NoC power consumption when compared to the base NoC

without reorder buffers. Another important point is that at
design time it is not possible to size the reorder buffers to
prevent packets from being dropped at the receiver. As an
example, if a packet travels a congested route and takes an
arbitrarily long time to reach the destination, several subse-
quent packets that take a different route can reach the des-
tination before this packet. In this case, the reorder buffers,
unless they have infinite storage capacity, can be full for a
particular scenario and can no longer receive packets. This
leads to dropping of packets to recover from the situation and
requires end-to-end ACK/NACK protocols for resuming the
transaction.

End-to-end ACK/NACK protocols are used in most
macro networks for error recovery and in such networks,
these protocols are extended to handle this packet buffering
problem as well [10]. However, such protocols have signifi-
cant overhead in terms of network resource usage and con-
gestion. Thus, they are not commonly used in the NoC do-
main [10, 11]. Moreover, the performance penalty to recover
from such a situation can be very high and most applica-
tions cannot tolerate such variations in performance. This
motivates the need to find efficient solutions to the packet
reordering problem for the on-chip domain.

To the best of our knowledge, this is the first work that
presents a multipath routing strategy with guaranteed in-
order packet delivery (without packet dropping) for on-chip
networks. It is based on the idea of routing packets on non-
intersecting paths and rebuilding packet order at path re-
convergent nodes. By using an efficient flow control mech-
anism, the routing strategy avoids the packet dropping situa-
tion that arises in the traditional multipath routing schemes.
We present algorithms to find the set of paths in a NoC topol-
ogy to support the routing strategy and present a method to
split the application traffic across the paths to obtain a net-
work with minimum power consumption. We explore the
use of temporal and spatial redundancy during multipath
routing to provide resilience against temporary and perma-
nent errors in the NoC links. When sending multiple copies
of a packet, it is important to achieve the required relia-
bility level for packet delivery with minimum data replica-
tion. We integrate reliability constraints in our multipath de-
sign methods to provide a reliable NoC operation with least
increase in network traffic. Experiments on several bench-
marks show large power savings for the proposed scheme
when compared to traditional single-path schemes and mul-
tipath schemes with reorder buffers. The area overhead of the
proposed scheme is small (a modest 5% increase in network
area). Hence, it is practical to be used in the on-chip domain.

2. PREVIOUS WORK

Several researchers have been focusing on NoC design issues
and a variety of NoC architectures and platforms have been
proposed [1–7]. Many works on mapping of applications
onto NoC architectures have considered the routing prob-
lem during the NoC design phase [8, 12–15]. In [16], a low
latency router architecture for supporting dynamic routing
is presented. In [17], a routing scheme that switches between

Srinivasan Murali et al. 3

deterministic and adaptive modes, depending on the applica-
tion requirements, is presented. All these works assume that
the architectural support needed for such routing schemes
(such as packet reorder buffers) are available in the NoC.

Several works in the multiprocessor field have focused on
the design of efficient routing strategies [18]. In the Avici
router [19], packets that need to be in-order at the receiver
are grouped together into a flow. Packets of a single flow
follow a single path, while different flows can use different
paths. In the IBM SP2 network [20], source-based oblivious
routing is used for a multistage interconnection network. In
[21], the authors present a source-based dynamic routing al-
gorithm for multistage networks. In both works, a single path
is used for packets that require in-order delivery and mul-
tiple paths are used for packets that do not require order-
ing.

Several research works have focused on designing reli-
able NoC systems [11, 22–28]. In [24], fault-tolerant stochas-
tic communication for NoCs is presented. The use of non-
intersecting paths for achieving fault-tolerant routing has
been utilized in many designs, such as the IBM Vulcan
[18]. The use of temporal and spatial redundancy in NoCs
to achieve resilience from transient failures is presented in
[28].

Unlike earlier works, we assume that each packet can be
routed on different paths. We present algorithms and de-
sign methods to support the multipath routing strategy. We
explore the use of temporal and spatial redundancy during
multipath routing to provide resilience against temporary
as well as permanent errors in the NoC links. The routing
methods can either be applied after NoC topology mapping
and design or during the mapping process. In this work, we
only present the details of the design of the routing strategy.
We refer the interested readers to existing works [8, 12–15]
on mechanisms to integrate different static routing methods
with NoC topology mapping. The basic multipath-routing
strategy has been presented by us in [29]. In this work,
we integrate the routing mechanism into a design method-
ology which makes it effective for applying the scheme to
NoCs.

3. MULTIPATH ROUTING WITH IN-ORDER DELIVERY

In this section, we present the conceptual idea of the multi-
path routing strategy with in-order packet delivery. For anal-
ysis purposes, we define the NoC topology by the NoC topol-
ogy graph.

Definition 1. The topology graph is a directed graph G(V ,E)
with each vertex vk ∈ V representing a switch/NI in the
topology and the directed link (or edge) el ∈ E represent-
ing a direct communication between two switches/NIs. We
represent the traffic flow between a pair of cores in the NoC
as a commodity i with the source switch/NI of the commod-
ity being si and the destination of the commodity being di.
Let the total number of commodities be I . The rate of traffic
transferred by commodity i is represented by ri.

v0 v1 v2

v3 v4 v5

v6 v7 v8

Path 2

Path 1

Figure 1: Example mesh topology.

An example NoC topology graph for a 3×3 mesh NoC is
shown in Figure 1. Since in the mesh network each NI is con-
nected to only one switch, we represent the topology graph
by using only the switches. For topologies where each NI is
connected to multiple switches, the NIs are also taken as part
of the topology description.

The traffic rate for each commodity (ri) can either be the
average rate of communication between the source and des-
tination of the commodity or can be obtained in an efficient
manner that considers the Quality-of-Service (QoS) provi-
sions for the application. In this work, we assume that the
efficient numbers for the rates are obtained as presented in
[14]. The traffic rates are computed considering the peak and
average bandwidth needs for the commodity, burstiness in
traffic, deadlines and slacks associated with the bursts [14].
We define the paths for the traffic flow of a commodity as
follows.

Definition 2. Let the set SPi represent the set of all paths for

the commodity i, for all i ∈ 1 · · · I . Let P
j
i be an element of

SPi, for all j ∈ 1 · · · |SPi|. Thus P
j
i represents a single path

from the source to destination for commodity i. Each path

P
j
i consists of a set of links.

Example paths for the commodity (traffic flow) from
source vertex v6 to destination v2 are shown by the solid lines
in Figure 1. We define a set of paths to be nonintersecting if
the paths originate from the same source vertex but do not
intersect each other in the network, except at the destination
vertex. The two paths shown in Figure 1 are nonintersecting.
Consider packets that are routed on the two nonintersecting
paths. Note that with worm-hole flow control [18], packets
of a commodity on a particular path are in-order at all time
instances. However, packets on the two different paths can
be out-of-order. As an example, if packets 1, 2 are sent on
path 1 and packets 3, 4 are sent on path 2 and if path 2 is
faster (either because it is shorter or because of lower con-
gestion), then packets 3, 4 can reach the destination before
packets 1, 2. Therefore, we need a mechanism to reorder the
packets at the reconvergent nodes to maintain the packet or-
dering.

To implement the reordering mechanism at network re-
convergent nodes, the following architectural changes to the

4 VLSI Design

Out-of-order packets

Waiting for packet P1Look up
table

Arbiter

Crossbar

Input buffers

P2-P1

Packets

stalled

P4 P3

Output buffers

(a) Switch architecture

Source add.destination add.packet id counter

Source
add.

Dest.
add.

Packet
id

Counter
increment

Signals
from arbiter

To arbiterFrom other
look-up

table entries

Part of head
flit

. . .
. . .

Look-up table
.

...

(b) Look-up table: each reconverging commodity’s source address
and the identifier of the next packet to be received are stored in the
look-up table

Figure 2: Switch design to support multipath routing with in-order packet delivery.

switches/NIs of the NoC are required (shown in Figure 2).
We assume that the packet is divided into multiple flow con-
trol units called flits. The first flit of the packet (known as
the header flit) has the routing information for the packet.
To support multipath routing, individual packet identifiers
are used for packets belonging to a single commodity. At the
reconvergent switch, we use a look-up table to store the iden-
tifier of the next packet to be received for the commodity.
Initially (when the NoC is reset), the identifiers in the look-
up tables are set to 1 for all the commodities. When packets
arrive at the input of the reconvergent switch, the identifier
of the packet is compared with the corresponding look-up
table entry. If the identifiers match, the packet is granted ar-
bitration and the look-up table identifier value for this com-
modity is incremented by 1. If the identifiers do not match,
then this is an out-of-order packet and access to the output is
not granted by the arbiter circuit, and it remains at the input
buffer.

As the packets on a particular path are in-order, the
mechanism only stalls packets that would also be out-of-
order if they reach the switch. Due to the disjoint property
of the paths reaching the switch, the actual packet (match-
ing the identifier on the look-up table) that needs to be re-
ceived by the switch is on a different path. As a result, such
a stalling mechanism (integrated with credit-based or on-off
flow control mechanisms [18]) does not lead to packet drop-
ping, which is encountered in traditional schemes when the
reorder buffers at the receivers are full. Note that routing-
dependent deadlocks that can occur in the network can be
avoided using virtual channel flow control [18]. Other rout-
ing dependent deadlock free methods, such as presented in

[30], can also be used in conjunction with the methods pre-
sented in this work.

4. PATH SELECTION ALGORITHM

In this section, we describe the algorithms that can be used
to efficiently find nonintersecting paths for each commodity
of the NoC. As in general, the number of paths between a
source and destination vertex of a graph is exponential, we
present heuristic algorithms to compute the paths [31]. For
each commodity, we first find the set of all possible paths for
the commodity. Then, from the chosen paths, we find those
paths that are nonintersecting. We use such a two-phase ap-
proach to achieve fast heuristic solutions to tackle the expo-
nential problem complexity.

Consider a source vertex si (which corresponds to the
source core/NI that sends a packet) and destination vertex
di of a commodity i. Algorithm 1 is used to find the set of
possible paths between the two vertices. Example 1 presented
below illustrates how the working algorithm works. The ob-
jective of the algorithm is to find maximum number of paths
possible, so that large path diversity is available for the traffic
flow. In the algorithm, after finding a path, we remove one
of the edges of the path so that the same path is not consid-
ered in further iterations. As most NoC vertices have only a
small degree, we remove one of the middle edges (instead of
the edges at the source and destination), because it helps in
increasing the number of paths found. As in each iteration of
the algorithm we remove an edge, the number of iterations
(and hence the maximum number of paths found) is at most
|E| for one pair of source and destination vertices.

Srinivasan Murali et al. 5

(1) Choose a path from the source to destination of the
commodity using Depth First Search (DFS).
(2) Remove one of the middle edges of the chosen path.
(3) Repeat the above steps until there are no paths between
the vertices.

Algorithm 1: Path selection algorithm for a single commodity.

Example 1. Consider the NoC topology graph presented in
Figure 3(a). The vertices represent switches/NIs in the NoC.
Let v1 and v7 be the source and destination vertices of a traffic
flow. In the first iteration of the algorithm, one of the paths
(e.g., the path v1 → v2 → v3 → v7) is chosen and the middle
edge (edge from v2 → v3) is removed. In the next iteration of
the algorithm, another path (v1 → v4 → v3 → v7) is chosen
and the edge v4 → v3 is removed. In the last iteration v1 →
v5 → v6 → v7 is chosen and the edge v5 → v6 is removed,
after which no more paths exist from v1 to v7. Note that if
we had removed the edge v3 → v7 in the first iteration, we
would have obtained only two paths (instead of three paths).

The paths resulting from the algorithm may converge
at one or more vertices. In order to obtain nonintersecting
paths, we form a compatibility graph with each vertex of
the graph representing a path. An edge between two ver-
tices in the graph implies that the corresponding paths do
not intersect. An example compatibility graph for the paths
from Example 1 is shown in Figure 3(b). The objective is
to obtain the maximum number of nonintersecting paths
from the set of paths. This is equivalent to finding the maxi-
mum size clique1 in the compatibility graph, which is a well-
known NP-Hard problem [31]. We use a commonly used
heuristic algorithm for finding the maximum clique (see
Algorithm 2) [32]. The working of the algorithm is illus-
trated in Example 2. We repeat the two algorithms for all
the commodities in the NoC. When applying Algorithm 1
for each commodity, we start with the original topology
graph.

Example 2. The compatibility graph for the 3 paths from
Example 1 is shown in Figure 3(b). The vertex p1 repre-
sents the path v1 → v2 → v3 → v7, p2 represents the
path v1 → v4 → v3 → v7, and p3 represents the path
v1 → v5 → v6 → v7. As the paths v1 → v2 → v3 → v7 and
v1 → v5 → v6 → v7 do not intersect each other, there is an
edge between p1 and p3 in the compatibility graph. Similarly,
for the paths v1 → v4 → v3 → v7 and v1 → v5 → v6 → v7,
there is an edge between p2 and p3. There are two maxi-
mum size cliques in the graph (formed by p1, p3 and p2, p3)
and one of them is arbitrarily chosen (say, p1, p3). Thus, the
paths v1 → v2 → v3 → v7 and v1 → v5 → v6 → v7 are used
for the traffic flow between vertices v1 and v7.

1 Clique of a graph is a fully connected subgraph.

v1

v2

v4

v5 v6

v3

v7

(a) Example graph for path selection

p1 p2

p3

Clique 1 Clique 2

(b) Compatibility graph for the example

Figure 3: Path selection and compatibility graph generation.

The time complexity of each iteration in Algorithm 1 is
dominated by the Depth-First Search (DFS) procedure and
is O(|E| + |V |) [31]. The number of iterations is O(|E|).
The time complexity of the maximum clique calculation step
is O(|E|2). The algorithms are repeated once for each com-
modity. Therefore, the run time of the nonintersecting path
finding algorithms is O(|I||E|(|E| + |V |)). In practice, the
run time of the algorithms is less than few minutes for all
the experimental studies we have performed (presented in
Section 7).

In cases where we are interested in having as many min-
imum paths as possible, we can modify the call to DFS in
Algorithm 1 to a call to Dijkstra’s shortest path algorithm,
choosing shorter paths first. Then, Algorithm 2 can also be
modified to first choose the minimum paths that are non-
intersecting and then choosing nonminimum paths that are
nonintersecting with each other and with the chosen mini-
mum paths. Note that in situations where we only need few
paths for each commodity (to have small route look-up ta-
bles), we can select the needed number of paths from the
above algorithms. Similarly, for networks that require dead-
lock avoidance using restricted routing functions, we can use
turn models to select the paths [8, 18], with only a marginal
increase in the complexity of the presented algorithms.

5. MULTIPATH TRAFFIC SPLITTING

Once we have obtained the set of nonintersecting paths for
each commodity, we need to determine the amount of flow
of each commodity across the paths that minimizes conges-
tion. Then, we can assign probability values for each path of
every commodity, based on the traffic flow across that path
for the commodity. At run time, we can choose the path for
each packet from the set of paths based on the probability
values assigned to them. To achieve this traffic splitting, we

6 VLSI Design

(1) Build a compatibility graph for the paths and initialize
the set MAX CLIQUE to NULL.
(2) Add vertex with largest degree to MAX CLIQUE.
(3) From remaining vertices, choose vertex that is adjacent
to all vertices in set MAX CLIQUE and add it to
the set.
(4) Repeat the above step until no more vertex can be
added.

Algorithm 2: Determining non-intersecting paths for a single
commodity.

use a Linear-Programming (LP)-based method to solve the
corresponding multicommodity flow problem. The objective
of the LP is to minimize the maximum traffic on each link of
the NoC topology, satisfying the bandwidth constraints on
the links, and routing the traffic of all the commodities in the
NoC. Our LP is represented by the following set of equations:

min : t, (1)

s.t
∑

∀ j∈1···| SPi|
f
j
i = ri, ∀i, (2)

∑

∀i

∑

∀ j,el∈P j
i

f
j
i = flowel , ∀el,

flowel ≤ bandwidthel , ∀el,
(3)

flowel ≤ t ∀el ∈ P
j
i , ∀i, j, (4)

f
j
i ≥ 0. (5)

In the objective function we use the variable t to rep-
resent the maximum flow on any link in the NoC (equa-
tions (1), (4)). Equation (2) represents the constraint that
the NoC has to satisfy the traffic flow for each commodity

with the variable f
j
i representing the traffic flow on the path

P
j
i of commodity i. The flow on each link of the NoC and

the bandwidth constraints are represented by (3). Other ob-
jectives (such as minimizing the sum of traffic flow on the
links) and constraints (like latency constraints for each com-
modity) can also be used in the LP. As an example, the la-
tency constraints for each commodity can be represented by
the following equation:

∑
∀ j∈1···|SPi|

(
f
j
i × l j

)
∑
∀ j∈1···|SPi|

f
j
i ≤ di, (6)

where di is the hop delay constraint for commodity i and l j

is the hop delay of path j. Once the flows on each path of a
commodity are obtained, we can order or assign probability
values to the paths based on the corresponding flows.

6. FAULT-TOLERANCE SUPPORT WITH
MULTIPATH ROUTING

The errors that occur on the NoC links can be broadly classi-
fied into two categories: transient and permanent errors.

6.1. Resilience against transient errors

To recover from transient errors, error detection or correc-
tion schemes can be utilized in the on-chip network [11].
Forward error correcting codes such as Hamming codes can
be used to correct single-bit errors at the receiving NI. How-
ever, the area-power overhead of the encoders decoders, and
control wires for such error correcting schemes increases
rapidly with the number of bit errors to be corrected. In prac-
tice, it is infeasible to apply forward error correcting codes to
correct multi-bit errors [11]. To recover from such multi-bit
errors, switch-to-switch (link-level) or end-to-end error de-
tection and retransmission of data can be performed. This is
applicable to normal data packets. However, control pack-
ets such as interrupts carry critical information that need
to meet real-time requirements. Using retransmission mech-
anisms can have significant latency penalty that would be
unacceptable to meet the real-time requirements of criti-
cal packets. Error resiliency for such critical packets can be
achieved by sending multiple copies of the packets across one
or more paths. At the receiving switch/NI, the error detec-
tion circuitry can check the packets for errors and can ac-
cept an error free packet. When sending multiple copies of
a packet, it is important to achieve the required reliability
level for packet delivery with minimum data replication. We
formulate the mathematical models for the reliability con-
straints and consider them in the LP formulation presented
in previous section, as follows.

Definition 3. Let the transient Bit-Error Rate (BER) encoun-
tered in crossing a path with maximum number of hops in
the NoC be βt. Let the bit-width of the link (also equal to the
flit-width) be W .

The maximum probability of a single-bit error when a flit
reaches the destination is given by

P(Single-bit error in a flit) = CW
1 × β1

t ×
(
1− βt

)W−1
.

(7)

That is, any one of the W bits can have an error, while the
other bits should be error free.

We assume a single-bit error correcting Hamming code
is used to recover from single-bit errors in the critical pack-
ets and packet duplication is used to recover from multi-bit
errors. The probability of having two or more errors in a flit
received at the receiving NI is given by

P(≥ 2 errors) = γt =
W∑

k=2

CW
k × βkt ×

(
1− βt

)W−k
. (8)

We assume that the error rates on the multiple copies of
a flit are statistically independent in nature, which is true
for many transient noise sources such as soft errors (for
those transient errors for which such statistical independence
cannot be assumed, we can apply the method for recover-
ing from permanent failures presented later in this section).
When a flit is transmitted nt times, the probability of having

Srinivasan Murali et al. 7

two or more errors in all the flits is given by

θt = γntt . (9)

As in earlier works [11, 22, 23], we assume that an un-
detected or uncorrected error causes the entire system to
crash. The objective is to make sure that the packets re-
ceived at the destination have a very low probability of unde-
tected/uncorrected errors, ensuring the system operates for a
predetermined Mean Time To Failure (MTFF) of few years.
The acceptable residual flit error-rate, defined as the proba-
bility of one or more errors on a flit that can be undetected
by the receiver is given by the following equation:

Errres =
Tcycle(

MTTF×Nc × inj
) , (10)

where Tcycle is the cycle time of the NoC, Nc is the number
of cores in the system and inj is the average flit injection rate
per core. As an example, for 500 MHz system with 12 cores,
with an average injection rate of 0.1 flits/core and MTTF of
5 years, the Errres value is 1.07 × 10−17. Each critical packet
should be duplicated as many times as necessary to make the
θt value to be greater than the Errres value, that is,

θt = γntt ≥ Errres, i.e., nt ≥ ln
(
Errres

)

ln
(
γt
) . (11)

The minimum number of times the critical packets
should be replicated to satisfy the reliability constraints is
given by

nt =
⌈

ln
(
Errres

)

ln
(
γt
)
⌉
. (12)

To consider the replication mechanism in the LP, the traf-
fic rates of the critical commodities are multiplied by nt and
(2) is modified for such commodities as follows:

∑

∀ j∈1···|SPi|
f
j
i = nt × ri ∀i, critical. (13)

6.2. Resilience against permanent errors

To recover from permanent link failures, packets need to
be sent across multiple nonintersecting paths. The noninter-
secting nature of the paths makes sure that a link failure on
one path does not affect the packets that are transmitted on
the other paths. As in the transient error recovery case, the
critical packets can be sent across multiple paths. For non-
critical packets, we assume that hardware mechanisms such
as presented in [20] exist to detect and inform the sender of
a permanent link failure in a path. Then, the sender does not
consider the faulty path for further routing and retransmits
the lost flits across other nonintersecting paths. The proba-
bility of a path failure in the NoC is given by

P(path failure) = γp =
W∑

k=1

CW
k × βkp ×

(
1− βp

)W−k
,

(14)

where βp is the maximum permanent bit-error rate of any
path in the NoC.

The maximum number of permanent path failures for
each commodity (denoted by np) can be obtained similar to
the derivation of nt, and is given by

np =
⌈

ln
(
Errres

)

ln
(
γp
)
⌉
. (15)

Let the total number of paths for a commodity i be de-
noted by ntot,i. Once the number of possible path failures is
obtained, we have to model the system such that for each
commodity, any set of (ntot,i − np) paths should be able to
support the traffic demands of the commodity. Thus, even
when np paths fail, the set of other paths would be able to
handle the traffic demands of the commodity and proper sys-
tem operation would be ensured. We add a set of ntot,i!/(np!×
(ntot,i − np)!) linear constraints in place of (2) for each com-
modity in the LP with each constraint representing the fact
that the traffic on (ntot,i−np) paths can handle the traffic de-
mands of the commodity. As an example, when ntot,i is 3 and
np is 1 (which means that any 1 path can fail from the set of
3 paths) for a commodity i, we need to add the following 3
constraints:

f 1
i + f 2

i ≥ ri,

f 2
i + f 3

i ≥ ri,

f 1
i + f 3

i ≥ ri.

(16)

Thus, the paths of each commodity can support the fail-
ure of np paths for the commodity, provided more than np

paths exist. When we introduce these additional linear con-
straints, the impact on the run time of the LP is small (for our
experiments, we did not observe any noticeable delay in the
run time). This is due to the fact that the number of paths
available for each commodity is usually small (less than 4
or 5) and hence only few tens of additional constraints are
introduced for each commodity. Note that we can modify
the mapping procedures to ensure that each commodity has
more than np paths available for data transfer. In cases where
the mapping procedure cannot produce more than np paths
for some commodities, we can introduce additional links be-
tween switches to get such additional paths for the commod-
ity. Modifying the NoC mapping and topology design pro-
cesses to achieve these effects is beyond the scope of this pa-
per.

7. SIMULATION RESULTS

7.1. Area, power, and timing overhead

Even though the methodology presented in this paper is gen-
eral, for illustrative purposes we assume that the component
designs are based on the×pipes NoC architecture. The back-
bone of the NoC is composed of switches, whose main func-
tion is to route packets from sources to destinations. Switches
provide buffering resources to lower congestion and improve
performance; in ×pipes, output buffering is chosen, that is,
FIFOs are present on each output port. Switches also handle

8 VLSI Design

flow control issues and resolve conflicts among packets when
they overlap in requesting access to the same physical links.

An NI is needed to connect each IP core to the NoC. NIs
convert transaction requests/responses into packets and vice
versa. In ×pipes, two separate NIs are defined, an initiator
and a target one, respectively associated to system masters
and system slaves. A master/slave device will require an NI of
each type to be attached to it. The interface among IP cores
and NIs is point-to-point as defined by the OCP 2.0 [33]
specification, guaranteeing maximum reusability. NI Look-
Up Tables (LUTs) specify the path that packets will follow in
the network to reach their destination (source routing).

The estimated power overhead, based on gate count and
synthesis results for switches/NIs, to support the multipath
routing scheme for the 4 × 3 mesh network considered ear-
lier (in Table 1) is found to be 18.09 mW, which is around 5%
of the base NoC power consumption. For the power estima-
tion, without loss of generality, we assume that 8 bits are used
for representing the source and destination addresses and 8-
bit packet identifiers are utilized. The baseline architecture
already supports the use of source address in the header flit.
With the use of 4-flit packets, with 32-bit for each flit in the
baseline architecture, the multipath scheme results in a 13%
increase in packet size. The power overhead accounts for this
increase in packet size and for the look-up tables and combi-
national logic associated with the multipath routing scheme.
The numbers assume a 500 MHz operating frequency for the
network, using UMC 0.13 μm technology library. The esti-
mated area overhead (from gate and memory cell count) for
the multipath routing scheme is low (less than 5% of the
NoC component area). The maximum possible frequency es-
timate of the switch design with support for the multipath
routing tables is above 500 MHz.

7.2. Case study: MPEG decoder

We assume that the tasks of the MPEG application are as-
signed to processor/memory cores and the best mapping
(minimizing the average communication hop delay) onto a
mesh network is obtained using the tool presented in [15].
The communication between the various cores and the re-
sulting mapped NoC are presented in Figures 4, 5. The vari-
ous paths obtained using the algorithms presented earlier, for
some of the commodities, are presented in Table 2. Applying
the LP procedure to split the traffic across the obtained paths
results in 35% reduction in the bandwidth requirements for
the application when compared to single-path routing (both
dimension-ordered and minimum-path routing). The band-
width savings translate to 35% reduction in the required NoC
operating frequency. For 16-bit link data width, the mul-
tipath routing requires 300 MHz frequency for the NoC to
support the application traffic, while the single-path routing
schemes require a NoC frequency of 405 MHz. The NoC fre-
quency reduction leads to 22.22% reduction in power con-
sumption of the NoC for the multipath scheme compared
to single-path schemes, after accounting for the power over-
head of the multipath scheme. The average packet latencies
incurred for the MPEG NoC for dimension ordered (Dim),

mc
pu rast

sd
ram

60 600

670 173
500

40
250

40
0.5190

0.5
910

32

vu au

ad
sp

up
sp

sra
m1

sra
m2

id
ct

bab
risc

Figure 4: A MPEG decoder application.

adsp

sram1

mcpu

auvuidct

up
samp

sram2

risc bab

rast

sdram

18

19 28

17

27

26

7

15

5

13

3

11

1

9

22

21

20

31

30

29

16

8

14

12

10

6

4

2

25 34

24

23

33

32

Figure 5: Mapped onto a mesh NoC. The edges of the mesh are
numbered.

Table 2: Sample paths.

Comm. Source Dest.
Paths

(edges traversed)

1 au sdram 32-12, 10-29

2 mcpu sdram 12, 23-10-29, 33-14-21

3 upsamp sram2 27, 3-30-13

4 risc sram2 19, 7-22-13

minimum path (Min) and our proposed multipath (Multi)
strategy for the MPEG NoC is presented in Figure 6(a). The
simulations are performed on a flit-accurate NoC simulator
designed in C++. The multipath routing strategy results in
reduced frequency requirements to achieve the same latency
as the single-path schemes for a large part of the design space.

When compared to the multipath routing scheme with
reorder buffers (10 packet buffers/receiver), the current
scheme results in 28.25% reduction in network power con-
sumption.

7.3. Comparisons with single-path routing

The network power consumption for the various routing
schemes for different applications is presented in Figure 6(b).

Srinivasan Murali et al. 9

200

Network frequency (MHz)

0

A
ve

ra
ge

pa
ck

et
la

te
n

cy
(n

s)

300 400 500

100

200

300

Dim, Min

Multi

(a) Average latency for MPEG NoC

VOPD MPEG MWD PIP

Applications

0

0.5

1.5

1

N
or

m
al

iz
ed

p
ow

er
co

n
su

m
pt

io
n

Dim

Min

Multi

(b) Routing effects on applications

200 40 60 80 100

Percentage of critical traffic (%)

2

3

4

5

N
or

m
al

iz
ed

p
ow

er
co

n
su

m
pt

io
n

BER = le-5
BER ≤ le-6

(c) Effect of error resiliency

Figure 6: (a) Performance of routing schemes for MPEG NoC. (b),
(c) Effect of routing and fault-tolerance on NoC power consump-
tion.

The numbers are normalized with respect to the power
consumption of dimension-ordered routing. We use several
benchmark applications for comparison: Video Object Plane
Decoder (VOPD-mapped onto 12 cores), MPEG decoder
(MPEG-12 cores), Multi-Window Display application (MWD-
12 cores) and Picture-in-Picture (PIP-8 cores) application. De-
scription of the traffic characteristics of the applications is
presented in [15]. Without loss of generality, we assume that
the applications are mapped onto mesh topologies using the
tool from [15], although the multipath routing strategy can
be used for any topology. By using the proposed routing
scheme, on average we obtain 33.5% and 27.52% power sav-
ings compared to the dimension ordered and minimum path
routing, respectively. The total run time for applying our
methodology (includes the run time for path selection algo-
rithms for all commodities and for solving the resulting LP)
is less than few minutes for all the benchmarks, when run on
a 1 GHz Sun workstation.

7.4. Effect of fault-tolerance support

Adding support for resiliency against a single-path perma-
nent failure for each commodity of the MPEG NoC resulted
in a 2.33× increase in power consumption of the base NoC.
Please note that the power overhead reported is for the worst-
case scenario, where every communication flow experiences
a single path failure. The amount of power overhead in-
curred in achieving fault-tolerance against temporary errors
depends on the transient bit-error rate (βt) of each link and
the amount of data that is critical and needs replication. The
effect of both factors on power consumption for the MPEG
decoder NoC is presented in Figure 6(c). The power con-
sumption numbers are normalized with respect to the base
NoC power consumption (when no fault-tolerance support
is provided). As the amount of critical traffic increases, the
power overhead of packet replication is significant. Also, as
the bit-error rate of the NoC increases (higher BER value
in the figure, which imply a higher probability of bit-errors
happening in the NoC), the amount of power overhead in-
creases. We found that for all BER values lower than or equal
to 1e-6, having a single duplicate for each packet was suffi-
cient to provide the required MTTF of 5 years.

8. CONCLUSIONS

Routing packets across multiple paths can reduce network
congestion and bottlenecks, which translates to reduced
NoC frequency and power requirements or improved perfor-
mance. Traditional multipath schemes require large packet
reorder buffers at the receivers to provide in-order delivery.
The reorder buffers have large area, power overhead, and de-
terministically sizing them is infeasible in practice. In this
work, we have presented a multipath routing strategy that
guarantees in-order packet delivery at the receiver. We intro-
duced a methodology to find paths for the routing strategy
and to split the application traffic across the paths to ob-
tain a network operation with minimum power consump-
tion. With technology scaling, reliable operation of on-chip

10 VLSI Design

wires is also rapidly deteriorating and various transient and
permanent errors can affect them. With the proposed multi-
path routing strategy, we explored the use of spatial and tem-
poral redundancy to tolerate transient as well as permanent
errors occurring on the NoC links. Our method results in
large NoC power savings for several SoC designs when com-
pared to traditional single-path systems. In the future, we
plan to extend the methods to implement source-based dy-
namic routing strategies that do not require reorder buffers
at the receiver.

ACKNOWLEDGMENTS

This work is supported by the US National Science Founda-
tion (NSF, contract CCR-0305718), the Swiss National Sci-
ence Foundation (FNS, Grant 20021-109450/1), and Span-
ish Government Research Grant (TIN2005-5619). It is also
supported by a Grant by STMicroelectronics for University
of Bologna. The authors would also like to thank Alexandru
Susu of EPFL for his useful comments on the work.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: a new SoC
paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70–78, 2002.

[2] D. Wingard, “MicroNetwork-based integration for SOCs,”
in Proceedings of the 38th Design Automation Conference
(DAC ’01), pp. 673–677, Las Vegas, Nev, USA, June 2001.

[3] P. Guerrier and A. Greiner, “A generic architecture for on-
chip packet-switched interconnections,” in Proceedings of De-
sign, Automation and Test in Europe Conference and Exhibition
(DATE ’00), pp. 250–256, Paris, France, March 2000.

[4] K. Goossens, J. Dielissen, O. P. Gangwal, S. G. Pestana, A.
Rădulescu, and E. Rijpkema, “A design flow for application-
specific networks on chip with guaranteed performance to ac-
celerate SOC design and verification,” in Proceedings of De-
sign, Automation and Test in Europe Conference and Exhibition
(DATE ’05), vol. 2, pp. 1182–1187, Munich, Germany, March
2005.

[5] S. Kumar, A. Jantsch, J.-P. Soininen, et al., “A network on chip
architecture and design methodology,” in Proceedings of IEEE
Computer Society Annual Symposium on VLSI (ISVLSI ’02), pp.
105–112, Pittsburgh, Pa, USA, April 2002.

[6] F. Karim, A. Nguyen, S. Dey, and R. Rao, “On-chip commu-
nication architecture for OC-768 network processors,” in Pro-
ceedings of the 38th Design Automation Conference (DAC ’01),
pp. 678–683, Las Vegas, Nev, USA, June 2001.

[7] D. Bertozzi, A. Jalabert, S. Murali, et al., “NoC synthesis flow
for customized domain specific multi-processor systems-on-
chip,” IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 2, pp. 113–129, 2005.

[8] H. Jingcao and R. Marculescu, “Exploiting the routing flexi-
bility for energy/performance aware mapping of regular NoC
architectures,” in Proceedings of Design, Automation and Test
in Europe Conference and Exhibition (DATE ’03), pp. 688–693,
Munich, Germany, March 2003.

[9] F. Angiolini, P. Meloni, S. Carta, L. Benini, and L. Raffo, “Con-
trasting a NoC and a traditional interconnect fabric with lay-
out awareness,” in Proceedings of Design, Automation and Test
in Europe (DATE ’06), vol. 1, pp. 124–129, Munich, Germany,
March 2006.

[10] V. Karamcheti and A. A. Chien, “Do faster routers imply
faster communication?” in Proceedings of the 1st International
Workshop on Parallel Computer Routing and Communication
(PCRCW ’94), vol. 853 of Lecture Notes in Computer Science,
pp. 1–15, Springer, Seattle, Wash, USA, May 1994.

[11] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L.
Benini, and G. De Micheli, “Analysis of error recovery schemes
for networks on chips,” IEEE Design and Test of Computers,
vol. 22, no. 5, pp. 434–442, 2005.

[12] S. Murali and G. De Micheli, “Bandwidth-constrained map-
ping of cores onto NoC architectures,” in Proceedings of De-
sign, Automation and Test in Europe Conference and Exhibition
(DATE ’04), vol. 2, pp. 896–901, Paris, France, February 2004.

[13] A. Hansson, K. Goossens, and A. Rădulescu, “A unified ap-
proach to constrained mapping and routing on network-on-
chip architectures,” in Proceedings of the 3rd IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and
Systems Synthesis (CODES+ISSS ’05), pp. 75–80, Jersey City,
NJ, USA, September 2005.

[14] S. Murali, L. Benini, and G. De Micheli, “Mapping and physi-
cal planning of networks-on-chip architectures with quality-
of-service guarantees,” in Proceedings of the 12th Asia and
South Pacific Design Automation Conference (ASP-DAC ’05),
pp. 27–32, Shanghai, China, January 2005.

[15] S. Murali and G. De Micheli, “SUNMAP: a tool for automatic
topology selection and generation for NoCs,” in Proceedings
of Design Automation Conference (DAC ’04), pp. 914–919, San
Diego, Calif, USA, June 2004.

[16] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. R.
Das, “A low latency router supporting adaptivity for on-chip
interconnects,” in Proceedings of the 42nd Design Automation
Conference (DAC ’05), pp. 559–564, Anaheim, Calif, USA, June
2005.

[17] H. Jingcao and R. Marculescu, “DyAD - smart routing for
networks-on-chip,” in Proceedings of the 41st Design Automa-
tion Conference (DAC ’04), pp. 260–263, San Diego, Calif,
USA, June 2004.

[18] W. J. Dally and B. Towles, Principles and Practices of Inter-
connection Networks, Morgan Kaufmann, San Francisco, Calif,
USA, 2003.

[19] W. J. Dally, P. P. Carvey, and L. R. Dennison, “Architec-
ture of the avici terabit switch/router,” in Proceedings of Hot-
Interconnects VI, pp. 41–50, Stanford, Calif, USA, August 1998.

[20] C. B. Stunkel, D. G. Shea, B. Abali, et al., “The SP2 commu-
nication subsystem,” Tech. Rep., IBM, Yorktown Heights, NY,
USA, August 1994.

[21] Y. Aydogan, C. B. Stunkel, C. Aykanat, and B. Abali, “Adap-
tive source routing in multistage interconnection networks,”
in Proceedings of the 10th International Parallel Processing Sym-
posium (IPPS ’96), pp. 258–267, Honolulu, Hawaii, USA, April
1996.

[22] R. Hegde and N. R. Shanbhag, “Towards achieving energy-
efficiency in presence of deep submicron noise,” IEEE Trans-
actions on VLSI Systems, vol. 8, no. 4, pp. 379–391, 2000.

[23] D. Bertozzi, L. Benini, and G. De Micheli, “Error con-
trol schemes for on-chip communication links: the energy-
reliability tradeoff,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 24, no. 6, pp. 818–
831, 2005.

[24] R. Marculescu, “Networks-on-chip: the quest for on-chip
fault-tolerant communication,” in Proceedings of IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI ’03), pp. 8–
12, Tampa, Fla, USA, February 2003.

Srinivasan Murali et al. 11

[25] H. Zimmer and A. Jantsch, “A fault model notation and error-
control scheme for switch-to-switch buses in a network-on-
chip,” in Proceedings of the 1st IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS ’03), pp. 188–193, Newport Beach, Calif,
USA, October 2003.

[26] F. Worm, P. Thiran, P. Ienne, and G. De Micheli, “An adap-
tive low-power transmission scheme for on-chip networks,”
in Proceedings of the 15th International Symposium on System
Synthesis (ISSS ’02), pp. 92–100, Kyoto, Japan, October 2002.

[27] M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan, M.
Kandemir, and M. J. Irwin, “Fault tolerant algorithms for
network-on-chip interconnect,” in Proceedings of IEEE Com-
puter Society Annual Symposium on VLSI (ISVLSI ’04), pp. 46–
51, Lafayette, La, USA, February 2004.

[28] S. Manolache, P. Eles, and Z. Peng, “Fault and energy-aware
communication mapping with guaranteed latency for appli-
cations implemented on NoC,” in Proceedings of the 42nd De-
sign Automation Conference (DAC ’05), pp. 266–269, Anaheim,
Calif, USA, June 2005.

[29] S. Murali, D. Atienza, L. Benini, and G. De Micheli, “A multi-
path routing strategy with guaranteed in-order packet delivery
and fault-tolerance for networks on chip,” in Proceedings of the
43rd ACM/IEEE Design Automation Conference (DAC ’06), pp.
845–848, San Francisco, Calif, USA, July 2006.

[30] M. Palesi, R. Holsmark, S. Kumar, and V. Catania, “A method-
ology for design of application specific deadlock-free routing
algorithms for NoC systems,” in Proceedings of the 4th Interna-
tional Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS ’06), pp. 142–147, Seoul, Korea, Oc-
tober 2006.

[31] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms, The MIT Press, Cambridge, Mass, USA, 1990.

[32] G. De Micheli, Synthesis and Optimization of Digital Circuits,
McGraw-Hill, New York, NY, USA, 1994.

[33] http://www.ocpip.org/.

http://www.ocpip.org/

	Introduction
	Previous Work
	Multipath Routing with In-Order Delivery
	Path selection algorithm
	Multipath Traffic Splitting
	Fault-Tolerance Support with Multipath Routing
	Resilience against transient errors
	Resilience against permanent errors

	Simulation Results
	Area, power, and timing overhead
	Case study: MPEG decoder
	Comparisons with single-path routing
	Effect of fault-tolerance support

	Conclusions
	Acknowledgments
	REFERENCES

