
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007 1283

An Application-Specific Design Methodology for
On-Chip Crossbar Generation

Srinivasan Murali, Student Member, IEEE, Luca Benini, Fellow, IEEE, and Giovanni De Micheli, Fellow, IEEE

Abstract—Designing a power-efficient interconnection architec-
ture for MultiProcessor Systems-on-Chips (MPSoCs) satisfying
the application performance constraints is a nontrivial task. In
order to meet the tight time-to-market constraints and to effec-
tively handle the design complexity, it is essential to provide a
computer-aided design tool support for automating this task. In
this paper, we address the issue of “application-specific design
of optimal crossbar architecture” satisfying the performance re-
quirements of the application and optimal binding of the cores
onto the crossbar resources. We present a simulation-based design
approach that is based on the analysis of the actual traffic trace
of the application, considering local variations in traffic rates,
temporal overlap among traffic streams, and criticality of traffic
streams. Our approach is physical design aware, where the wiring
complexity of the crossbar architecture is also considered during
the design process. This leads to detecting timing violations on the
wires early in the design cycle and to having accurate estimates of
the power consumption on the wires. We apply our methodology
onto several MPSoC designs, and the synthesized crossbar plat-
forms are validated for performance by cycle-accurate SystemC
simulation of the designs. The crossbar matrix power consumption
values are based on the synthesis of the register transfer level
models of the designs, obtained using industry standard tools. The
experimental case studies show large reduction in communication
architecture power consumption (45.3% on average) and total
wirelength (38% on average) for the MPSoC designs when com-
pared with traditional design approaches. The synthesized cross-
bar designs also lead to large reduction in transaction latencies
(up to 7×) when compared with the existing design approaches.

Index Terms—Application specific, bus, crossbar, floorplan,
Networks-on-Chips (NoCs), SystemC, Systems-on-Chips (SoCs),
timing closure.

I. INTRODUCTION

W ITH technology scaling, the number of processor
and memory cores integrated on a single chip and

their speed of operation are increasing. Such MultiProcessor
Systems-on-Chips (MPSoCs) combine several different embed-
ded processors, memories, and specialized hardware units to

Manuscript received May 29, 2006. This work was supported in part by the
U.S. National Science Foundation under Contract CCR-0305718, by Fonds
National Suisse (FNS) under Grant 20021-109450/1, and by a grant from
STMicroelectronics for DEIS. This paper was recommended by Associate
Editor N. Chang.

S. Murali is with the Computer Systems Laboratory, Stanford University,
Stanford, CA 94305 USA (e-mail: smurali@stanford.edu).

L. Benini is with the Dipartimento di Elettronica, Informatica e Sistemistica,
University of Bologna, 40126 Bologna, Italy, and also with Ecole Polytecnique
Federale de Lausanne, 1015 Lausanne, Switzerland (e-mail: lbenini@deis.
unibo.it).

G. De Micheli is with the Laboratoire des Systèmes Intégrés, Ecole Poly-
tecnique Federale de Lausanne, 1015 Lausanne, Switzerland (e-mail: giovanni.
demicheli@epfl.ch).

Digital Object Identifier 10.1109/TCAD.2006.888284

provide a complete integrated system [1]. There are several
MPSoCs that are already available in the market, such as the
Philips Nexperia digital video platform [2], the TI OMAP
platform [4] for third-generation wireless applications, and the
ST Nomadik platform [3] for multimedia applications. In the
next few years, many more MPSoCs that support a variety
of application scenarios are expected to be available in the
market [1].

As technology advances, the ratio of wire delay to gate
delay increases as wire scaling is not at par with transistor
scaling. This, coupled with the fact that the number of com-
municating components in the chip and their speed of operation
are increasing, has led to the scenario where the communication
between cores is a major bottleneck for system performance
[6]–[9]. Traditional communication architectures such as a
single shared bus or bridged buses are inherently nonscalable
and will not be able to support the heavy communication
traffic [10]. A communication-centric design approach, i.e.,
Networks-on-Chips (NoCs), has recently emerged as the design
paradigm for designing a scalable communication infrastruc-
ture for MPSoCs [6]–[9]. The need for scalable communication
architectures is reflected in the recent trend that many of the
standard bus products such as the Advanced Microcontroller
Bus Architecture (AMBA)1 [from ARM] and the STbus2 (from
STMicroelectronics) have now introduced the capability of
designing a crossbar with multiple buses operating in parallel,
thus providing a low-latency and high-bandwidth communica-
tion infrastructure.

The MPSoC platforms target high-volume markets and
need to support aggressive performance under tight power
budgets. Many MPSoCs are used in mobile applications such
as cellular phones and wireless devices, where the peak power
consumption of the system is limited to reduce the amount of
heating of the system. Reducing the power consumption3 of the
system is also essential to have a reliable system operation [15].
Thus, it is important to achieve a power-efficient design of the
communication architecture. As the MPSoCs support multiple
different applications on the same chip, the communication
traffic characteristics vary over time, and it is important to
consider these variations during interconnect synthesis. Due
to the inherent complexity of the problem that has a large

1More information on AMBA AXI from ARM corporation is available at
http://www.arm.com/products/solutions/AMBAHomePage.html.

2More information on STBus from STMicrolectronics is available at
http://www.st.com/stonline/prodpres/dedicate/soc/cores/stbus.htm.

3In the rest of this paper, we use the term power consumption to signify the
peak power consumption of the system.

0278-0070/$25.00 © 2007 IEEE

1284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

TABLE I
CROSSBAR PERFORMANCE AND COST FOR AN EXAMPLE

IMAGE-PROCESSING MPSoC

solution space, designing an interconnection architecture for
MPSoCs that minimizes the power consumption of the design
while satisfying the performance constraints is a nontrivial
task. In order to meet the tight time-to-market constraints and
to effectively handle the design complexity, it is essential to
provide a computer-aided design tool support for automating
this task.

When designing the communication architecture, it is critical
to consider the effect of the physical design measures, such as
the wire delays in the communication architecture. In order to
achieve timing closure of the design, the wiring complexity of
the interconnect architecture should be considered during the
communication architecture synthesis phase. Considering the
wiring complexity in the early stages of the design will lead to a
faster design cycle, reduction in the number of design re-spins,
and faster time-to-market. Having accurate wirelength estimate
during the architecture synthesis phase is also important to be
able to obtain an accurate estimate of the interconnect power
consumption.

The communication architecture for the design should
closely match the application traffic characteristics and per-
formance requirements. As an example, let us consider an
image-processing MPSoC (detailed explanation of the MPSoC
and experimental setup is presented later in Section VII) with
three different communication architectures used to connect
the cores, namely: 1) a shared bus, 2) a full crossbar, and
3) a partial crossbar. In Table I, we present the average and
maximum latency incurred for a transaction (transfer of a single
data word), obtained from SystemC simulation of the design
using different communication architectures. The sizes of the
crossbars (in terms of number of components used) normalized
with respect to the size of the shared bus are also presented in
the table. As seen from the table, as expected, both the average
and the maximum transaction latencies are much higher for a
single shared bus than the partial or full crossbars. However,
it is interesting to note that an optimal partial crossbar gives
almost the same performance as a full crossbar, although it uses
fewer resources than a full crossbar.

In this paper, we target the automatic design of the “most
power efficient crossbar” configuration for an MPSoC, satis-
fying the performance characteristics of the applications. The
proposed design methodology is based on actual functional
traffic analysis of the application, and the generated crossbar
configuration is validated by cycle-accurate SystemC simula-
tion of the application using that crossbar. Most previous works
on bus generation and NoC topology generation (which are
some what similar to crossbar generation) are based on either
average communication traffic flow between various cores or

statistical traffic-generating functions. While the former ap-
proaches fail to capture local variations in traffic patterns
(as the average bandwidth of communication is a single metric
that is calculated based on the entire simulation time), the latter
approaches are only based on approximations to the functional
traffic. While methodologies that target the design of NoCs
are required in the long run, providing design support for the
state-of-the-art crossbar-based bus designs poses an immediate
and pressing problem. The crossbar-based architectures are
already widely deployed in several industrial platforms [3], and
a streamlined methodology to design them is still not yet fully
developed.

Our design methodology differs from existing approaches
(refer to Section II for a survey of existing works) in the fact
that it is based on the analysis of simulated traffic patterns in
windows. We divide the entire simulation period into a number
of fixed-sized windows. Within each window, we guarantee
that the application communication requirements (such as the
bandwidth requirements) are met. We minimize the overlap
among traffic streams mapped onto the same resource, thereby
reducing the latency for data transfer. We also consider the
criticality and real-time requirements of streams and map over-
lapping critical streams onto different crossbar resources.

Our methodology spans an entire design space spectrum
with the analysis based on the average communication traffic
(as done in many previous works [23]–[31]) and the peak band-
width (as done in [32]), being the two extreme design points.
Thus, our methodology also applies to cases where application
traces are not available, and only rough estimates of the traffic
flows between the various cores are known. The design point
in the spectrum is varied by controlling the window size used
for traffic analysis and design, which is explained further in
Section VII.

We also integrate the setting up of several communication
architecture parameters (such as the frequency of operation)
with the crossbar synthesis phase. Unlike earlier approaches to
crossbar generation (refer to Section II for details), we consider
the wiring complexity of the interconnect during the commu-
nication architecture synthesis procedure. During the synthesis
phase, the floorplan of the design is performed, where the accu-
rate physical locations of the cores and the crossbar matrix are
determined. From the resulting floorplan, the wirelengths in the
design are obtained. Based on the length of the wires and the op-
erating frequency of the crossbar (which is automatically tuned
by the synthesis procedure), any timing violations on the wires
are obtained early in the design cycle. Thus, the crossbar archi-
tecture generated by the procedure is also validated for timing
correctness, which is a key step to bridge the gap between
the higher-level architectural models and the actual physical
design models of the crossbar architecture. From the wirelength
estimates, we also obtain accurate estimates of the power con-
sumption of the interconnect wires. The crossbar matrix power
consumption values are based on the synthesis of the register
transfer level (RTL) models of the design, obtained using in-
dustry standard tools. From the wire and crossbar matrix power
consumption, the total communication architecture power con-
sumption is obtained, which is used to guide the synthesis pro-
cedure to obtain the most power efficient crossbar architecture.

MURALI et al.: APPLICATION-SPECIFIC DESIGN METHODOLOGY FOR ON-CHIP CROSSBAR GENERATION 1285

We present experiments on several different MPSoC designs
that show large reduction in power consumption of the commu-
nication architecture (45.3% on average) and total wirelength of
the crossbar buses (38.0% on average) when compared with the
traditional full crossbar-based design approaches. Compared
with the existing design methods, our proposed methodology
results in crossbar platforms that lead to a large reduction in
transaction latencies (up to 7×). Our experiments also show
that the proposed approach is highly scalable to a large number
of cores and to a large number of simulation windows in the
design.

II. PREVIOUS WORK

A component-based design methodology for SoC design is
presented in [5]. The synthesis and instantiation of single bus
and multiple bridged buses have been explored in many re-
search works [16]–[19]. An approach for mapping the system’s
communication requirements and optimizing the protocols for a
given communication architecture template is presented in [20].
In [21], the use of communication architecture tuners to adapt
to the runtime variability needs of a system is presented. A
floorplan-aware method for designing point-to-point links and
buses is presented in [34] and [35].

The need for a scalable communication architecture has been
presented in several research works [6]–[9]. A large body of
research focuses on developing design tools and architectures
for NoCs [11]–[14]. A detailed survey of many of the NoC
research works is presented in [10].

The mapping of the communication requirements of a system
onto a fixed set of NoC topologies is explored in [23]–[27].
Design methodologies are presented for application-specific
bus design in [28] and for application-specific NoC topology
design in [29]–[31]. These works are based on average com-
munication transferred between various cores. In [32], design-
ing application-specific topologies based on actual simulation
traces is presented. However, the methodology is based on elim-
inating contention and can lead to oversizing of network com-
ponents, as even a small amount of overlap between two traffic
streams would result in the need for separate communication
resources for them. In [22], the analysis is based on statistical
traffic generators and not functional application traffic.

In [36] and [37], a methodology to design an NoC archi-
tecture that satisfies the performance constraints of multiple
applications is presented. There are several differences between
the methods presented there and our proposed method. First,
our approach is fine tuned to target the specific problem of
crossbar generation, while these earlier works target the design
of general NoCs, which cannot be directly extended to address
the crossbar design problem. Second, the earlier methods do not
consider the wiring complexity and the physical level details,
which cannot be ignored when designing crossbar-based archi-
tectures. Third, the earlier approaches do not consider several
important metrics such as overlap among traffic streams, which
are considered here.

In [38], the authors present an exact approach to crossbar
synthesis, where they integrate the NoC architecture parameter
setting with the synthesis process. Their design approach is

again based on average traffic rates between different cores
and does not consider the variations in traffic rates and overlap
among streams. Also, the synthesis approach does not consider
the physical design information for estimating the wiring com-
plexity of the design.

In [33], we had presented a synthesis approach for designing
the most cost effective crossbar architecture for MPSoCs. The
objective of the design procedure was to minimize the total
number of buses used in the design, satisfying the performance
constraints of the application. The synthesis procedure was
based on the use of the exact integer linear program (ILP)
formulation of the problem, which was solved optimally.

In this paper, we significantly augment the synthesis
procedure from [33], leading to several important and new
contributions.

1) First, we integrate the floorplanning process with the
crossbar synthesis procedure. Thus, our new synthesis
approach considers the wiring complexity of the design
as well.

2) Second, we modify the objective function of the design
procedure so that we minimize the power consumption
of the design, satisfying the performance constraints of
the applications. The design objective of minimizing
power consumption is more pragmatic than minimizing
the total number of components as power efficiency
is becoming increasingly important for most MPSoC
platforms. We also integrate the setting up of commu-
nication architecture parameters in the synthesis phase.

3) Third, we present a scalable approach to crossbar matrix
synthesis. The exact ILP models presented in our earlier
work are applicable to small problem instances where
there are a few tens of cores in the design and where a
few hundred simulation windows are used for analysis.
For larger designs or when more simulation windows are
used for analysis, the exact formulation becomes infea-
sible to be applied as it does not provide a solution in
reasonable time. This is due to the fact that the problem
of optimal crossbar matrix synthesis is an instance of
the bin-packing problem [44], which is NP-hard, and the
ILP formulation has an exponential time complexity to
solve a problem instance. In this paper, we present a fast
and efficient heuristic approach for crossbar generation.
We validate the quality of the resulting solutions with
the optimal solutions from the exact ILP formulation for
small problem instances.

4) Finally, in the synthesis procedure presented here, we
consider the binding of cores that are masters (those
that initiate bus transactions) as well as cores that are
slaves (those that reply to the requests of the masters)
onto the crossbar buses. In most crossbar designs (such
as the AMBA AXI and STbus designs), the masters
and shared slaves are usually mapped onto different
crossbar resources in order to simplify the interfacing
requirements.1 We explicitly consider this information
in the synthesis procedure. Considering both the masters
and slaves will lead to smaller crossbar configurations
when compared with the scheme where only one of them
is considered.

1286 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

Fig. 1. STbus crossbars. (a) Partial crossbar. (b) Full crossbar.

Fig. 2. Power consumption of switch matrix and wires.

Our methodology is also applicable to the multiapplication
scenario presented in [36] and [37]. In this case, the simulation
characteristics of each application can be treated as a separate
simulation window, and the rest of the design process remains
the same. As different inputs and application scenarios can lead
to different communication characteristics, the entire traffic
trace collected from several simulation runs under different
scenarios can also be fed to the design procedure.

III. PROBLEM MOTIVATION AND APPLICATION

TRAFFIC ANALYSIS

A. Problem Motivation

There are three possible ways in which a crossbar can be
instantiated, namely: 1) as a shared bus; 2) as a partial crossbar;
or 3) as a full crossbar. The partial and full crossbars are actu-
ally composed of many buses to which the processor/memory
cores are connected. Examples of partial and full crossbars are
presented in Fig. 1. In the partial crossbar architecture, some
of the cores (such as the Master 0 and Master 1) share the
same bus, while in the full crossbar, each core is connected to a
separate bus. The objective of the crossbar synthesis procedure
is to obtain an efficient clustering of the master and slave cores
onto the crossbar buses such that a communication architecture
with low power consumption is obtained.

When choosing the most power efficient crossbar configu-
ration, it is also important to account for the wiring complex-
ity of the different configurations. As an example, the power
consumption of the crossbar components (switch matrix and
arbiters) for two different configurations and the power con-
sumption of the wires for two different total wirelengths (as-
suming a design with 30 cores and data width of 32 bits for
the crossbar buses) are presented in Fig. 2. For most MPSoC

designs, the total length of the wires of the crossbar buses is of
the order of a few tens of millimeters (refer to Section VII-B).
For the power consumption values presented in the figure, we
assume a 130-nm process technology, an operating frequency
of 500 MHz, and an operating voltage of 1.2 V. The methods
and assumptions used for estimating the power consumption
of the crossbar matrices and wires are presented in detail in
Section VII. From the figure, we can infer that the wire power
consumption is a significant fraction of the total communication
architecture power consumption for crossbar-based systems.
Thus, it is important to consider the length of wires during
the synthesis process, as the design point can be far from the
optimum design point if such information is not accounted for.
In order to have accurate wirelength estimates, we need to have
accurate floorplan information of the design.

Another point worth noting is that, in many crossbar architec-
tures, the underlying protocol may not support pipelining of the
buses (for example, the Type 1 protocol of STbus).2 In this case,
the frequency of operation of the communication architecture
is limited by the length of the longest bus in the design. For a
chosen frequency point, it is then important to evaluate whether
the length of the wires is lower than the threshold limit so that
they can be traversed in one clock cycle. We would also require
the accurate floorplan and wirelength estimates to apply such
feasibility checks.

B. Application Traffic Analysis

In this subsection, we explore the traffic characteristics of ap-
plications to model the performance constraints to be satisfied
by the crossbar designed for the system. As an example, we
consider the 21-core image-processing application, as shown in
Fig. 3(a). In this example, there are nine ARM cores, 11 on-chip
memories, with some of the memories used for interprocessor
communication, and an interrupt device. The ARM cores act
as masters, and the memory cores act as slaves. The ARM
cores run a set of image-processing benchmarks that involve
accesses to different memories. We performed a cycle-accurate
simulation of the system with a full crossbar design using the
STbus crossbar architecture. A small trace of the traffic to three
of the cores is shown in Fig. 3(b).

Although the aggregate traffic (measured over the entire
simulation period) to the three cores is lower than that can be
supported by a single bus, using a single bus to connect all
three cores will lead to high average and peak latency due to
overlap in traffic patterns during some regions of the simulation.

MURALI et al.: APPLICATION-SPECIFIC DESIGN METHODOLOGY FOR ON-CHIP CROSSBAR GENERATION 1287

Fig. 3. Application traffic analysis. (a) Application. (b) Traffic trace.

Fig. 4. Crossbar design methodology.

Another related point is that if overlaps are not considered,
connecting ARM 0 and ARM 1 on to the same bus is better than
connecting ARM 0 and ARM 2 onto the same bus, as the former
results in lower bandwidth needs. However, the latter solution
will result in better performance (reduced transaction latency)
while still satisfying the bandwidth needs. Note that using peak
bandwidth instead of the average bandwidth will solve this
problem but will lead to an overdesign of the crossbar (in terms
of number of buses needed or their frequency of operation). The
design methodology needs to consider overlap among various
traffic streams and should consider local variations in traffic
rates. Also, some of the traffic streams can be critical, and
to facilitate providing real-time guarantees, real-time traffic
streams that overlap in time should not be mapped onto the
same crossbar bus.

IV. DESIGN METHODOLOGY

The design flow for the crossbar design is shown in Fig. 4,
which consists of four distinct phases. In the first phase, the
application is initially designed using a full crossbar communi-
cation architecture, and a SystemC simulation of the design is
carried out. As the full crossbar architecture is nonblocking in
nature (no contention between the cores if they are accessing
different cores), it helps in modeling the application traffic
requirements under ideal operating conditions. For the simu-
lations, we use the MPARM simulation environment [40] that
allows interconnection of ARM cores to several interconnection
platforms (such as AMBA, STbus, . . .) and to perform cycle-
accurate simulations for a variety of benchmark applications.

To effectively capture local variations in traffic patterns and
to perform overlap calculations, we define a window-based
traffic analysis. The entire simulation period is divided into a

Fig. 5. Crossbar synthesis phase.

number of windows, and the traffic characteristics to the various
cores in each window are obtained. The traffic characteristics
recorded include the amount of data sent and received by each
core in every window, the amount of pair-wise overlap between
the traffic streams between different cores in every window,
the real-time requirements of traffic streams, etc. Without loss
of generality, in the rest of this paper, we assume that all the
windows are of equal size, although the methodology also ap-
plies to windows with varying sizes. The size of the window is
parameterizable and depends on the application characteristics
and performance requirements.

After the data collection phase, a preprocessing phase is
carried out in which cores that have traffic flows with large
overlaps in any window and need to be put on different buses
are identified. In this phase, the overlapping critical streams that
need to be on separate buses are also identified.

In the next phase, the optimal crossbar configuration for the
application, satisfying the performance constraints, is synthe-
sized. To generate the optimal crossbar configuration, we use
the traffic information collected in each window and check
whether the bandwidth, overlap, and criticality constraints are
satisfied in each window. In the final phase, the designed
crossbar matrix is instantiated in MPARM environment, and
SystemC simulations are carried out.

The details of the crossbar synthesis phase are presented
in Fig. 5. In the outer loop of the synthesis process, the
communication architectural parameters (such as the frequency
of operation and bus width) are varied in several user-defined
steps. The interesting range for the parameters is obtained from
the user. For each architectural parameter point, the most power
efficient crossbar configuration is synthesized. For synthesis,
we present two approaches: one approach is based on solving
the problem exactly using ILP formulation, which is applicable
for small problem instances, and the other is a more scalable ap-
proach based on fast and efficient heuristics. In the next step of
the synthesis phase, we perform a floorplan of the synthesized

1288 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

design. Floorplanning is the process of determining the exact
2-D positions of the different cores and the switch matrix in the
design. For obtaining the floorplan, we use Parquet [39], a fast
and accurate floorplanner that minimizes the design area as well
as the average wirelength. As the cores in MPSoC are usually
predesigned hardware blocks, we realistically assume that the
size of the cores (either the width and height or the aspect ratio
and area) is provided as an input to the synthesis process.

From the floorplan of the design, the length of the wires
(based on the Manhattan distance) and hence the power con-
sumption on the wires are obtained. In the next step, for the
chosen frequency point, the wirelengths are checked to see
whether the maximum wirelength exceeds the length that the
data can traverse in a single clock cycle. In the next step,
from the switch matrix power consumption and the wire power
consumption, the power consumption of the synthesized com-
munication architecture is obtained. From the set of generated
crossbar architectures for each architectural design point, the
most power efficient architecture that satisfies the performance
and timing constraints is chosen.

V. EXACT APPROACH TO CROSSBAR SYNTHESIS

In this section, we formulate the mathematical models of the
crossbar design problem and present the exact ILP formulation
to synthesize the most efficient architecture for a chosen archi-
tectural parameter design point.

A. Problem Formulation

Definition 1: The set of all cores in the design is represented
by the set T . The set of all windows used for traffic analysis is
represented by the set W , with the bandwidth available (product
of frequency of operation and bus width) in each window
represented by WS. The set of buses used in the crossbar is
represented by the set B.
Definition 2: The bandwidth requirement of each core

ti ∀i ∈ 1 · · · |T | in every window m ∀m ∈ 1 · · · |W | is rep-
resented by commi,m.4 The amount of data overlap between
every pair of cores (ti, tj) in each window m is represented by
woi,j,m.

The overlap between every pair of cores ti and tj over the
entire simulation period is obtained by summing the overlap
between them in all the windows and represented by the entries
of the overlap matrix OM as

omi,j =
∑

m

woi,j,m ∀i, j. (1)

In the preprocessing phase of the design flow (refer to Fig. 4),
those pairs of cores that have overlap exceeding the threshold
value (which is parameterizable) in any window are identified.
By mapping the traffic flows of such cores onto separate buses,
the maximum and average latency of data transmission can
be reduced and, in some cases, can also speed up the process
of finding the optimal crossbar configuration. Also in this

4In the rest of this paper, we follow the convention that variables i and j are
defined for 1 · · · |T |, variable k is defined for 1 · · · |B|, and m for 1 · · · |W |.

preprocessing step, the real-time traffic streams that overlap
with each other in any window are identified. Such cores with
overlapping real-time streams should not be placed on the same
bus as real-time communication guarantee to the streams cannot
be given in this case. Also, as noted earlier, most crossbar
architectures do not allow masters and shared slaves of the
design to be mapped onto the same bus. We define the set of
all cores that cannot be on the same bus by the conflict matrix

ci,j=
{

1, if ti and tj should be on different buses
0, otherwise

∀i, j. (2)

We model the performance constraints that need to be satis-
fied by the crossbar configuration in each window as constraints
of an ILP.
Definition 3: The set X represents the set of binding vari-

ables xi,k such that xi,k is 1 when core ti is connected to the
bus bk and 0 otherwise.

In the crossbar design, each core has to be connected to a
single bus (while a single bus can connect multiple cores). This
is implemented by the constraint

∑

k

xi,k = 1 ∀i. (3)

In every window used for traffic analysis, the individual
buses of the crossbar have to support the traffic through them
in that window. By evaluating the bandwidth constraints over a
smaller sample space of a window (which is typically a few
hundred or thousand cycles) instead of the entire simulation
sample space (which can be millions of cycles), we are better
able to track the local variations in the traffic characteristics.

This window-based bandwidth constraint is represented by
∑

i

commi,m × xi,k ≤ WS ∀k,m. (4)

Definition 4: The set SB represents the set of sharing vari-
ables sbi,j,k such that sbi,j,k is 1 when cores ti and tj share the
same bus bk and 0 otherwise. The set S represents the set of
sharing variables si,j such that si,j is 1 when cores ti and tj
share any of the buses of the crossbar and 0 otherwise.

sbi,j,k can be computed as the product of xi,k and xj,k. How-
ever, this results in nonlinear (quadratic) equality constraints.
To break the quadratic equalities into linear inequalities,
we use

sbi,j,k ∈ {0, 1}

xi,k + xj,k − 1 ≤ sbi,j,k

0.5xi,k + 0.5xj,k ≥ sbi,j,k ∀i, j, k (5)

and si,j is computed using

si,j =
∑

k

sbi,j,k ∀i, j. (6)

The condition that certain cores are forbidden to be on the
same bus, obtained from (2), is represented by

ci,j × si,j = 0 ∀i, j. (7)

MURALI et al.: APPLICATION-SPECIFIC DESIGN METHODOLOGY FOR ON-CHIP CROSSBAR GENERATION 1289

The fact that all the integer variables introduced above take
values of either 0 or 1 only is represented by

xi,k, si,j , ci,j ∈ {0, 1} ∀i, j, k. (8)

B. Exact Crossbar Synthesis Algorithm

The exact algorithm for the crossbar design has two major
steps. The first is to find the best crossbar configuration that
satisfies the performance constraints (which were presented in
the above subsection). The second step is to find the optimal
binding of the cores to the chosen crossbar configuration.

In order to find the best crossbar configuration, we vary the
number of buses in the design, from the maximum number
(equal to the number of cores in the design, modeling a full
crossbar) to one (modeling a single shared bus), in a binary
search manner. For each configuration of bus count, we check
whether a feasible solution that satisfies the constraints of the
ILP [formed by the set of inequalities from (3)–(8)] exists.
Once the minimum number of buses has been identified from
applying the ILP, possibly multiple times, we separate the buses
used by the masters and slaves of the design, thereby generating
the optimal crossbar configuration.

Once the best crossbar configuration is obtained, in the next
step, the optimal binding of the cores onto buses of the crossbar
is obtained. A binding of cores to the buses that minimizes the
amount of overlap of traffic on each bus will result in lower
average and peak latency for data transfer.

For this, the above ILP is solved with the objective of reduc-
ing the maximum overlap on each of the bus and satisfying the
performance constraints as

min : maxov

s.t.
∑

i

∑

j

omi,j × sbi,j,k ≤ maxov ∀k (9)

and subject to (3)–(8).
By splitting the problem into two ILPs, we speed up the

execution time of the algorithm as solving ILP 1 for feasibility
check is usually faster than solving ILP 2 with the objective
function and additional constraints. The ILPs are solved using
the CPLEX package [42].

VI. HEURISTIC APPROACH TO CROSSBAR SYNTHESIS

As the exact ILP approach is not scalable to large problem
instances, either when the number of cores in the design is
large or when the number of simulation windows used for the
analysis is large, in this section, we present a fast and efficient
heuristic approach for crossbar synthesis.

The problem of assigning cores to the minimum number
of buses, subject to the performance constraints, is a special
instance of the general problem of “constrained bin packing”
[43]. There are several efficient heuristics that have been de-
veloped for the bin-packing problem [43]. In this paper, we
use an approach that is based on the “first-fit” heuristic to bin
packing. We chose this heuristic for several reasons. When the

performance constraints are removed, the heuristic procedure is
theoretically guaranteed to provide solutions that are within two
times the optimum solution that would be obtained by an exact
algorithm [43]. Practically, we found that the solutions obtained
by the heuristic are close to the optimum solution possible
for experiments on several SoC benchmarks. Moreover, the
heuristics are relatively simple to implement and have a very
low run time complexity, making the approach scalable to large
designs and allowing the use of a large number of simulation
windows for analysis.

The heuristic algorithm for crossbar synthesis is presented in
Algorithm 1. In the first step of the algorithm, the bandwidth
available in each simulation window is calculated. In the next
step, all the cores are initialized as unmapped, as they are
yet to be mapped onto buses. Then, the number of buses in
the crossbar is initialized to zero (step 5). In steps 6 to 25,
the assignment of the cores onto the buses of the crossbar is
performed. The basic approach used is the following: We try
to map as many cores as possible onto a single bus. While
mapping the cores, from the set of all cores that satisfy the
bandwidth and conflict constraints, we choose the one that
minimizes the pair-wise traffic overlap with the cores that have
been already mapped onto the current bus. When no more cores
can be assigned to the current bus, either because the bandwidth
of the bus in any of the simulation window has been saturated
or because of conflicts with the cores already mapped onto the
bus, a new bus is instantiated. The process is repeated until all
the cores in the design have been mapped onto a bus.

Algorithm 1 Heuristic-synthesis(frequency, buswidth)
1: Bandwidth available in each window, WS =

frequency × buswidth
2: for i = 1 · · · |T | do
3: mapped(i) = false
4: end for
5: Initialize number of buses used, k to 0.
6: while ∃i ∈ 1 · · · |T |, such that mapped(i) = false do
7: Increment the bus count k by 1 and instantiate new

bus. Initialize bandwidth available on bus on all win-
dows: BW (k,m) = WS, ∀m ∈ 1 · · · |W |

8: Choose unmapped core i, ∀i ∈ 1 · · · |T |, with maxi-
mum bandwidth requirements on any window and
map it onto bus k.

9: Initialize the set chosen_set to φ
10: for i = 1 · · · |T | do
11: if mapped(i) = false and core i does not have con-

flicts with cores already mapped onto bus k then
12: bw_satisfied = true
13: for m = 1 · · · |W | do
14: if BW (k,m) < commi,m then
15: bw_satisfied = false
16: end if
17: end for
18: if bw_satisfied = true then
19: chosen_set = chosen_set

⋃

i
20: end if
21: end if
22: end for

1290 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

TABLE II
COMMUNICATION REQUIREMENTS OF EXAMPLE SYSTEM

TABLE III
AMOUNT OF TRAFFIC OVERLAP BETWEEN CORES (IN MEGABYTES PER

SECOND) OF EXAMPLE SYSTEM

23: Choose core i, ∀i ∈ 1 · · · |chosen_set|, with minimum
overlap with cores mapped onto bus k and map it to bus
k. Update available bus bandwidth as: BW (k,m) =
BW (k,m) − commi,m, ∀m ∈ 1 · · · |W |.

24: Repeat steps 9–23 until chosen_set is empty.
25: end while
26: Separate the buses onto which masters and slaves are

mapped and generate the crossbar configuration.

From the resulting number of buses, we separate those buses
onto which masters are attached and those onto which slaves
are attached. From this, the efficient crossbar configuration for
the design is obtained.
Example 1: Let us consider a small example with five cores,

with three of them being masters and the rest being slaves.
For illustrative purposes, let us assume that two simulation
windows are used for analysis (although in real systems usually
several thousand windows are used). The communication traffic
rates for each of the cores (in megabytes per second) for the
two simulation windows are presented in Table II, and the
amount of traffic overlap between the different cores over all
the windows is presented in Table III. Let us assume that the
current frequency design point is 100 MHz and the bus width is
32 bits, which are automatically tuned by the crossbar synthesis
procedure (as presented in Fig. 5). In the first step of the
heuristic algorithm, the bandwidth of the bus in each simulation
window is calculated to be 400 MB/s (frequency × data width).
Initially, a single bus is instantiated, and core_0 is chosen to
be mapped onto the bus, as it has the maximum bandwidth
requirements of the different cores, across all the simulation
windows (see Fig. 6).

Then, from the set of all cores, those cores that satisfy the
bandwidth and conflict constraints are chosen. As cores that
are masters and slaves are not allowed to be mapped onto the
same bus (specified as part of the conflict constraints), the sets
of assignable cores to the bus are core_1 and core_2. From
these two, core_2 is chosen as it has the minimum overlap
with the cores already mapped onto the bus (i.e., with core_0)
and assigned onto this bus (Fig. 7). When no more cores can

Fig. 6. Step 1. The core_0 is chosen and mapped onto the bus. The bandwidth
remaining in each of the simulation windows (in megabytes per second) after
mapping core_0 is also presented.

Fig. 7. Step 2. From the remaining cores, core_2 is chosen and mapped.

Fig. 8. Step 3. A new bus is instantiated, and core_1 is mapped.

Fig. 9. Step 4. Another bus is instantiated, and core_5 is mapped.

be assigned to the current bus, a new bus is instantiated. The
different steps of the procedure for the five-core example are
presented in Figs. 6–11. At the end of the procedure, those
buses that are used by the masters and those that are used
by the slaves are separated, which gives the best crossbar
configuration. In this example, we have two buses used by the
masters and one used by the slaves, resulting in a 2× 1 crossbar
design, as shown in Fig. 11.

MURALI et al.: APPLICATION-SPECIFIC DESIGN METHODOLOGY FOR ON-CHIP CROSSBAR GENERATION 1291

Fig. 10. Step 5. The remaining core core_4 is mapped.

Fig. 11. Step 6. The crossbar configuration (2× 1) is obtained from the
instantiated buses.

VII. EXPERIMENTS AND CASE STUDIES

In this section, we present the experimental case studies per-
formed to validate the proposed crossbar design methodology.

A. Experimental Platform and Power Models

For performing the SystemC simulations on MPSoC bench-
marks, we use the MPARM simulation platform [40]. The
platform is representative of a large class of multiprocessor
SoC platforms and consists of a configurable number of 32-bit
ARM processors, memory cores, hardware devices or traffic
generators, and a hardware interrupt unit. The platform allows
the use of different interconnect architectures such as AMBA
and STbus to interconnect various hardware cores. It also sup-
ports a variety of MPSoC benchmarks that have been efficiently
parallelized to run on ARM cores.

For power consumption estimations of the switch matrix, we
implemented several configurations of the AMBA multilayer
crossbar, varying the number of input and output ports of the
matrix. The different configurations were implemented using
the AMBA DesignWare libraries obtained from the Synopsys
CoreAssembler tool [45]. The tool generates RTL codes of
the different configurations, which were then synthesized using
Synopsys Design Compiler [45]. For synthesis, we utilize a
130-nm process technology, an operating voltage of 1.2 V, and
an operating frequency of 500 MHz. Based on the power con-
sumption values obtained from the synthesis process, we built

TABLE IV
TRAFFIC CHARACTERISTICS OF IMP2

Fig. 12. Power consumption for different crossbar frequencies.

analytical models for the switch matrix power consumption
using linear regression. During the crossbar design process,
the power numbers from the analytical models are linearly
scaled based on the crossbar operating frequency (which is
automatically tuned by the design process). We estimate the
wiring capacitance and wire power consumption based on the
models from [41]. The power consumption values of some of
the crossbar components were presented earlier in Fig. 2.

B. Application Benchmark Analysis

We apply our crossbar design methodology on several SoC
designs implemented using the MPARM platform: IMage
Processing design 1 (IMP1-25 cores), IMage Processing
design 2 (IMP2-21 cores), fast Fourier transform (FFT)-based
SoC (FFT-29 cores), Data Processing SoC (DP-15 cores), and
SoC implementing a DES encryption system (DES-19 cores).
The traffic characteristics of the applications were scaled to
project the traffic requirements of future MPSoCs, as presented
in [12]. For traffic analysis, we use 1000 simulation windows
for the different designs, with each simulation window account-
ing for a few hundred simulation cycles. The tuning of the
window size (and hence the number of windows) is further
explored in Section VII-D.

In our methodology, the interesting ranges of operating fre-
quencies and bus data widths are obtained as inputs from the
designer. Practically, the data width of the bus is set up based
on the data widths of the different processors in the design. In
our SoC designs, all the processors have the same data width
(of 32 bits), and hence we feed this value as input to the
synthesis engine. We define the interesting range of operating
frequencies to be between 100 and 500 MHz, with each fre-
quency point being a multiple of 100 MHz. With this set up,

1292 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

Fig. 13. Synthesized crossbar for the IMP2 SoC design.

we apply our heuristic synthesis engine to design the crossbar
architecture for the designs.

We first briefly analyze the quality of the crossbar design
obtained for the IMP2 SoC design. The communication be-
tween the cores of the IMP2 design was presented earlier in
Fig. 3(a). The communication requirements of some of the
cores for the first few simulation windows are presented in
Table IV. In this benchmark, there are nine ARM cores (ARM
0 to ARM 8), 11 memory cores (MEM 0 to MEM 10), and
an interrupt device (INT). The ARM cores act as masters,
and the others are slave cores that respond to the requests
of the masters. There is substantial temporal overlap between
traffic flows from the various ARM cores to the memories
as the ARM cores perform similar computations and thus
access their memories at almost the same time. The power con-
sumption of the synthesized crossbar designs for the different
frequency design points is plotted in Fig. 12. As the maxi-
mum bandwidth requirements of most of the cores were above
800 MB/s, the minimum frequency design point that gives
a feasible solution is 300 MHz (at 200 MHz, the avail-
able bus bandwidth of 800 MB/s cannot support the require-
ments of most cores). At lower operating frequencies (such as
300 MHz), a larger crossbar configuration is required to satisfy
the bandwidth constraints. A larger crossbar configuration usu-
ally also leads to an increased wiring complexity. These two
factors coupled together result in larger power consumption
for the communication architecture. At very high operating
frequencies, the power consumption of the communication
architecture is higher as the power consumption increases
linearly with the operating frequency of the system. For the
IMP2 design, the crossbar architecture with the lowest power
consumption is obtained at 400 MHz.

The synthesized crossbar architecture (a 5× 6 crossbar) for
the IMP2 design is presented in Fig. 13. In order to satisfy
the window bandwidth constraints, only few of the cores can
share a single bus, and thus each of the buses used in the

Fig. 14. Generated floorplan and buses for IMP2 SoC design.

crossbar has at most two cores attached to them. The bindings
are such that the cores with highly overlapping streams are
placed on different buses. As a result, the designed crossbar
has acceptable performance (in terms of average and maximum
latency constraints) with 1.9× reduction in the number of buses
used when compared to a full crossbar. The floorplan of the
IMP2 SoC with the designed crossbar, as obtained from the
Parquet floorplanner, is presented in Fig. 14.

The size and power consumption of the synthesized crossbar
architectures for the different SoC designs and for full crossbar
configurations are reported in Table V. The power consumption
of both the switch matrix and the crossbar bus wires is shown in
the table. Our methodology results in a large reduction in cross-
bar architecture power consumption (45.3% on average) when

MURALI et al.: APPLICATION-SPECIFIC DESIGN METHODOLOGY FOR ON-CHIP CROSSBAR GENERATION 1293

TABLE V
CROSSBAR SIZE AND POWER CONSUMPTION FOR SOC DESIGNS

Fig. 15. Average wirelength of the crossbar buses for the designs.

Fig. 16. Application relative latencies. (a) Average latency. (b) Maximum
latency.

compared with traditional full crossbar-based systems. The syn-
thesized crossbar configurations also lead to a large reduction
in the total length of the buses used in the design (38.0% on
average, refer to Fig. 15), as there are fewer buses in the design.
Reducing the wiring congestion is essential to having a faster
physical design process and to achieve faster design closure.

The normalized average and maximum read/write transac-
tion latencies (to read or write one data word) for the designs
obtained using the methodology based on average traffic flows
and using our proposed methodology (referred to as “slot” in
the figures, signifying the use of our proposed slot or window-
based methodology) are presented in Fig. 16(a) and (b). As
seen from the figures, the latencies incurred by crossbar de-
signs based on average traffic flows are 4× to 7× higher than
the crossbars designed using our scheme. Also, the latencies
incurred in the designs generated by our scheme are within ac-
ceptable bounds from the minimum possible latencies (of a full
crossbar). Moreover, depending on the design objective, cross-
bar size–performance tradeoffs can be explored in our approach
by tuning the analysis parameters (such as the window size,
overlap threshold, etc.), as explained in further subsections.

Fig. 17. Comparisons of heuristic engine versus exact engine. (a) Crossbar
size. (b) Crossbar power consumption.

TABLE VI
HEURISTIC PROCEDURE RUN TIME FOR FFT DESIGN

C. Comparisons of Heuristic Engine With the Exact Engine

In this subsection, we explore the quality of the solutions
produced by the heuristic engine with respect to the exact ILP
engine. As the exact engine takes several hours to compute
solutions for designs with more than a few hundred windows,
we reduced the number of windows to 100 for the designs and
applied the two engines for the SoC designs. The size (total
number of buses) of the crossbar synthesized by the heuristic
engine normalized with respect to the size of the crossbar
synthesized by the exact engine for the different designs is
presented in Fig. 17(a). The normalized power consumption of
the synthesized crossbar designs for the different SoC designs
is presented in Fig. 17(b). Compared with the exact solutions,
the solutions obtained by the heuristic engine incur only a
modest increase in crossbar size (1.21× on average) and power
consumption (1.26× on average).

The total run time of the heuristic engine (including the time
for performing floorplanning) for the biggest SoC design (the
FFT SoC) for different numbers of window sizes is presented
in Table VI. The experiments were performed on a Linux
workstation with 3.2-GHz processor and 4-GB RAM. The run
time also includes the time to perform the sweep over the
architectural parameters (frequency of operation and bus width)

1294 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

TABLE VII
RUN TIME FOR DIFFERENT NUMBER OF CORES

of the crossbar design. As seen from the table, the algorithms
have a very low run time complexity even for large designs and
when a large number of windows are used for analysis. On the
other hand, the exact ILP procedure did not produce results in
reasonable time for the design when more than a few hundred
windows were used for analysis. To show the scalability of the
heuristic procedure with the number of cores in the design, we
produced synthetic benchmarks based on scaled versions of the
FFT SoC. The execution times of the engine for the different
benchmarks (with the number of windows set to 500 000) are
presented in Table VII. From the table, we see that even for
a very large design (60 cores with 500 000 windows used for
analysis), the heuristic process completes in a few minutes,
thereby showing the scalability of the procedure.

D. Window Sizing

The size of the window used during the design process is
an important parameter that determines the efficiency of the
design methodology to capture the application performance
parameters. A small window size results in a much finer control
of the application performance parameters, and the resulting
crossbars have lower latencies. However, a very small window
size will lead to an overdesign of the network components. On
the other hand, a large window size results in lesser control over
the performance parameters of the application but results in a
more conservative design approach where higher transaction
latencies can be tolerated.

To illustrate these effects, we applied our design method-
ology with different window sizes for a synthetic benchmark
with 20 cores. Please note that we use a synthetic benchmark
for this experiment (instead of real SoC designs) so that we
can vary the burst sizes (we refer to a burst as a stream of
words generated by the same core) in the application to study
its impact on the crossbar synthesis process. The typical burst
sizes for the benchmark are initially set to 100 cycles. When the
window size is much smaller than the burst size, the size of the
crossbar generated is very close to that of a full crossbar (refer
Fig. 18). When the window size is around a few times that of
the burst size (from one to four times), the synthesized crossbar
has a much smaller size (typically around 25%) and acceptable
latencies (around 1.5×) of that of a full crossbar. For aggressive
designs, the window size can be set closer to the burst size,
and for conservative designs (where larger transaction latencies
can be tolerated), the window size can be set to a few times
the typical burst size. The acceptable window sizes for various
burst sizes is presented in Fig. 19. It can be seen from the
plot that window size varies almost linearly with burst size,
consolidating the above arguments.

Fig. 18. Effect of window size on crossbar size and power consumption.
(a) Crossbar size. (b) Crossbar power consumption.

Fig. 19. Burst versus window size.

E. Real-Time Streams and Effect of Binding

In each simulation window, the critical traffic streams that
require real-time guarantees are recorded. During the pre-
processing step of the design flow (refer to Fig. 4), the real-
time traffic streams that overlap with each other in any window
are identified. In order to provide real-time guarantees to such
streams, in our methodology, the cores with critical streams
that have temporal overlap are placed onto separate buses of
the crossbar. Experimental results on the benchmark applica-
tions show a very low transaction latency (almost equal to the
latency of perfect communication using a full crossbar) for
such streams. Please note that in order to provide hard real-
time guarantees, the underlying crossbar architecture should
also provide support for having priorities for the different traffic
streams so that real-time streams are given higher priorities
over other streams. In many crossbar architectures, such as the
STbus, such support is provided in the crossbar architecture by
utilizing priority-based arbitration mechanisms.

After finding the best crossbar configuration, we do an opti-
mal binding of the cores onto the buses of the crossbar, mini-
mizing the total overlap on each bus. By minimizing the overlap
on each bus, the transaction latencies reduce significantly. To
illustrate this effect, we compare the crossbars designed using
our approach with two binding schemes: random binding of
cores onto the buses, satisfying the design constraints [(3)–(8)],
and optimal binding that minimizes overlap on each bus, sat-
isfying the design constraints. The average latency incurred
by the random binding scheme for the benchmark applications
was on average 2.1× higher than that incurred by the optimal
binding scheme.

MURALI et al.: APPLICATION-SPECIFIC DESIGN METHODOLOGY FOR ON-CHIP CROSSBAR GENERATION 1295

Fig. 20. Effect of overlap threshold parameter. (a) Crossbar size. (b) Crossbar
power consumption.

F. Overlap Threshold Setting

By varying the two parameters, i.e., window size and overlap
threshold, the crossbar can be designed such that the average
and the maximum transaction latencies incurred in the design
are acceptable. The effects of the overlap threshold parameter
on the size and power consumption of the crossbar generated
for the synthetic benchmark are presented in Fig. 20(a) and (b).
The crossbar size and power numbers are normalized with
respect to the case when the overlap threshold is set to 0%,
which leads to a full crossbar configuration (as no two cores can
share a bus in this case). The plots end at 50% overlap between
cores because, if the pair-wise overlap between two cores
exceeds 50% of the window size (in any of the windows), then
the window bandwidth constraints cannot be satisfied. So, the
maximum value of the overlap parameter can be set at 50% of
the window size. This will also speed up the process of finding
the best crossbar configuration as such overlapping cores will
be identified in the preprocessing phase (refer to Fig. 4) and
will be forbidden to be on the same bus of the crossbar. From
experiments, we found that for aggressive designs (where there
are tight requirements on the maximum latencies), the threshold
can be set to around 10%, and for conservative designs, the
threshold can be set to 30%–40% of the window size.

VIII. CONCLUSION AND FUTURE WORK

To accommodate the growing communication demands of
MPSoCs, scalable communication architectures and related
design methodologies are needed. In this paper, we have pre-
sented a design methodology for designing the optimal crossbar
configuration for an application and for binding the cores onto
the crossbar resources. Our design approach is based on a
simulation window-based analysis of the application traces,
considering the local variations in traffic rates, temporal overlap
among traffic patterns, and criticality of traffic streams. The
methodology has several parameters that can be tuned to ex-
plore the design space of the crossbar design and to match the
application characteristics. The proposed method is physical
design aware, where the wiring complexity of the crossbar
architecture is also considered during the design process. Sev-
eral experimental studies show large reduction in latency and
crossbar power consumption when compared with traditional
design approaches. In the future, we plan to analyze the effect
of using variable simulation window sizes for the design for
guaranteeing quality-of-service to applications.

REFERENCES

[1] W. Wolf, “The future of multiprocessor systems-on-chips,” in Proc. DAC,
Jun. 2004, pp. 681–685.

[2] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor SOC for
advanced set-top box and digital TV systems,” IEEE Des. Test. Comput.,
vol. 18, no. 5, pp. 21–31, Sep./Oct. 2001.

[3] A. Artieri, V. D. Alto, R. Chesson, M. Hopkins, and M. C. Rossi.
(2003). “Nomadik open multimedia platform for next-generation mo-
bile devices,” STMicroelectronics Technical Article TA305. [Online].
Available: http://www.st.com

[4] J. Helmig, Developing Core Software Technologies for TI’s OMAPTM
Platform, 2002, Dallas, TX: Texas Instruments. [Online]. Available:
http://www.ti.com

[5] W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G. Nicolescu,
Y. Paviot, S. Yoo, A. A. Jerraya, and M. Diaz-Nava, “Component-
based design approach for multi-core SoCs,” in Proc. DAC, Jun. 2002,
pp. 789–794.

[6] L. Benini and G. De Micheli, “Networks on chips: A new SoC paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[7] D. Wingard, “MicroNetwork-based integration for SoCs,” in Proc. DAC,
Jun. 2001, pp. 673–677.

[8] W. Dally and B. Towles, “Route packets, not wires: On-chip interconnec-
tion networks,” in Proc. DAC, Jun. 2001, pp. 684–689.

[9] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and
A. Sangiovanni-Vencentelli, “Addressing the system-on-a-chip inter-
connect woes through communication-based design,” in Proc. DAC,
Jun. 2001, pp. 667–672.

[10] A. Jantsch and H. Tenhunen, Networks on Chip. Norwell, MA: Kluwer,
2003.

[11] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen,
P. Wielage, and E. Waterlander, “Trade-offs in the design of a router with
both guaranteed and best-effort services for networks on chip,” in Proc.
DATE, Mar. 2003, pp. 350–355.

[12] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet
switched interconnections,” in Proc. DATE, Mar. 2000, pp. 250–256.

[13] S. Kumar, A. Jantsch, M. Millberg, J. Oberg, J.-P. Soininen, M. Forsell,
K. Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology,” in Proc. ISVLSI, 2002, pp. 105–112.

[14] D. Bertozzi, A. Jalabert, S. Murali, R. Tamahankar, S. Stergiou, L. Benini,
and G. De Micheli, “NoC synthesis flow for customized domain spe-
cific multiprocessor systems-on-chip,” IEEE Trans. Parallel Distrib. Syst.,
vol. 16, no. 2, pp. 113–129, Feb. 2005.

[15] T. Simunic, K. Mihic, and G. De Micheli, “Optimization of reliability and
power consumption in systems on a chip,” in Proc. PATMOS, Sep. 2005,
pp. 237–246.

[16] T. Yen and W. Wolf, “Communication synthesis for distributed embedded
systems,” in Proc. ICCAD, Nov. 1995, pp. 288–294.

[17] J. Daveau, T. Ismail, and A. Jerraya, “Synthesis of system-level com-
munication by an allocation based approach,” in Proc. ISSS, Sep. 1995,
pp. 150–155.

[18] M. Gasteier and M. Glesner, “Bus-based communication synthesis on
system level,” ACM Trans. Des. Autom. Electron. Syst., vol. 4, no. 1,
pp. 1–11, 1999.

[19] K. Ryu and V. Mooney, “Automated bus generation for multiprocessor
SoC design,” in Proc. DATE, Mar. 2003, pp. 282–287.

[20] K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration for
optimizing on-chip communication architectures,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 23, no. 6, pp. 952–961, Jun. 2004.

[21] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and S. Dey, “Design
of high-performance system-on-chips using communication architecture
tuners,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23,
no. 5, pp. 620–636, May 2004.

[22] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS archi-
tecture and design process for network on chip,” J. Syst. Archit., vol. 50,
no. 2/3, pp. 105–128, Feb. 2004.

[23] J. Hu and R. Marculescu, “Energy-aware mapping for tile-based NOC ar-
chitectures under performance constraints,” in Proc. ASPDAC, Jan. 2003,
pp. 233–239.

[24] J. Hu and R. Marculescu, “Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures,” in Proc.
DATE, Mar. 2003, pp. 10 688–10 693.

[25] S. Murali and G. De Micheli, “Bandwidth constrained mapping of cores
onto NoC architectures,” in Proc. DATE, Feb. 2004, pp. 20 896–20 902.

[26] S. Murali and G. De Micheli, “SUNMAP: A tool for automatic topo-
logy selection and generation for NoCs,” in Proc. DAC, Jun. 2004,
pp. 914–919.

1296 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 7, JULY 2007

[27] A. Hansson, A. Radulescu, and K. Goossens, “A unified approach to
constrained mapping and routing on network-on-chip architectures,” in
Proc. ISSS, 2005, pp. 75–80.

[28] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli, “Constraint-driven
communication synthesis,” in Proc. DAC, Jun. 2002, pp. 783–788.

[29] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli, “Efficient synthesis
of networks on chip,” in Proc. ICCD, Oct. 2003, pp. 146–150.

[30] T. Ahonen, D. Sigüenza-Tortosa, H. Bin, and J. Nurmi, “Topology op-
timization for application specific networks on chip,” in Proc. SLIP,
Feb. 2004, pp. 53–60.

[31] K. Srinivasan, K. Chatha, and G. Konjevod, “An automated technique for
topology and route generation of application specific on-chip interconnec-
tion networks,” in Proc. ICCAD, Nov. 2005, pp. 231–237.

[32] W. H. Ho and T. M. Pinkston, “A methodology for designing efficient
on-chip interconnects on well-behaved communication patterns,” in Proc.
HPCA, Feb. 2003, pp. 377–388.

[33] S. Murali and G. De Micheli, “An application-specific design
methodology for STBus crossbar generation,” in Proc. DATE, Mar. 2005,
pp. 1176–1181.

[34] J. Hu, Y. Deng, and R. Marculescu, “System-level point-to-point commu-
nication synthesis using floorplanning information,” in Proc. ASPDAC,
Jan. 2002, pp. 573–578.

[35] S. Pasricha, N. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane, “Floorplan-
aware automated synthesis of bus-based communication architectures,” in
Proc. DAC, Jun. 2005, pp. 65–70.

[36] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli,
“Mapping and configuration methods for multi-use-case networks on
chips,” in Proc. ASPDAC, Jan. 2006, pp. 146–151.

[37] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli, “A
methodology for mapping multiple use-cases onto networks on chips,” in
Proc. DATE, Mar. 2006, pp. 118–123.

[38] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Constraint-driven bus ma-
trix synthesis for MPSoC,” in Proc. ASPDAC, Jan. 2006, pp. 30–35.

[39] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning: En-
abling hierarchical design,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 11, no. 6, pp. 1120–1135, Dec. 2003. Tool URL:
http://vlsicad.eecs.umich.edu/BK/parquet/

[40] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “Analyz-
ing on-chip communication in a MPSoC environment,” in Proc. DATE,
Feb. 2004, pp. 20 752–20 757.

[41] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proc. IEEE,
vol. 89, no. 4, pp. 490–504, Apr. 2001.

[42] [Online]. Available: http://www.ilog.com/products/cplex/
[43] V. Vaizirani, Approximation Algorithms. New York: Springer-Verlag,

Mar. 2004.
[44] M. Garey and D. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.
[45] [Online]. Available: http://www.synopsys.com

Srinivasan Murali (S’02) received the B.S. degree
(with a gold medal) in computer science and en-
gineering from the University of Madras, Chennai,
India, in 2002. He is currently working toward the
Ph.D. degree in electrical engineering at Stanford
University, Stanford, CA.

His research interests include reliable and efficient
design methods for networks-on-chips and systems-
on-chips.

Mr. Murali received the Best Paper Award in the
DATE conference in 2005.

Luca Benini (S’94–M’97–SM’04–F’06) received
the Ph.D. degree in electrical engineering from Stan-
ford University, Stanford, CA, in 1997.

He is currently a Professor with the University
of Bologna, Bologna, Italy. He also holds a visiting
faculty position with Ecole Polytecnique Federale de
Lausanne (EPFL), Lausanne, Switzerland. He has
published more than 250 papers in peer-reviewed
international journals and conferences, three books,
several book chapters, and two patents. His research
interests are in the design of systems for ambient

intelligence, from multiprocessor systems-on-chip/networks-on-chip to energy-
efficient smart sensors and sensor networks.

Dr. Benini is a member of the IST Embedded System Technology Platform
Initiative (ARTEMIS) working group on design methodologies, a member
of the Strategic Management Board of the ARTIST2 Network of Excellence
on embedded system, and a member of the Advisory Group on computing
systems of the IST Embedded Systems Unit. He has been a member of the
2003 MEDEA+ EDA Roadmap Committee. He has been Program Chair
and Vice-Chair of Design Automation and Test in Europe Conference. He
has been a member of the technical program committee and organizing
committee of several technical conferences, including the Design Automation
Conference, International Symposium on Low Power Design, and the Sym-
posium on Hardware–Software Codesign. He is an Associate Editor of the
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF CIRCUITS AND
SYSTEMS and of the ACM Journal on Emerging Technologies in Computing
Systems.

Giovanni De Micheli (S’79–M’79–SM’89–F’94) is
currently a Professor and the Director of the In-
tegrated Systems Centre with Ecole Polytecnique
Federale de Lausanne (EPFL), Lausanne, Switzer-
land, and President of the Scientific Committee of
CSEM, Neuchatel, Switzerland. He was a Professor
of electrical engineering with Stanford University,
Stanford, CA. He is, or has been, a member of the
technical advisory board of several companies, in-
cluding Magma Design Automation, Coware, Aplus
Design Technologies, Ambit Design Systems, and

STMicroelectronics. His research interests include several aspects of design
technologies for integrated circuits and systems, with particular emphasis on
synthesis, system-level design, hardware/software codesign, and low-power de-
sign. He is author of Synthesis and Optimization of Digital Circuits (McGraw-
Hill) and coauthor and/or coeditor of six other books and of over 300 technical
articles.

Dr. De Micheli is a Fellow of the Association for Computing Machinery.
He was the President of the IEEE CAS Society in 2003. He is currently the
President Elect of the IEEE Council on EDA and chairing the IEEE Product
Package Committee. He was the Editor-in-Chief of the IEEE TRANSACTIONS
ON CAD/ICAS from 1987 to 2001. He was the Program Chair and General
Chair of the Design Automation Conference (DAC) in 1996, 1997 and 2000,
respectively. He is the Program Chair of the pHealth and VLSI SOC confer-
ences in 2006. He received two Best Paper Awards at the Design Automation
Conference in 1983 and in 1993, the 1987 D. Pederson Award for the best
paper on the IEEE TRANSACTIONS ON CAD/ICAS, and a Best Paper Award
at the DATE Conference in 2005. He also received the Golden Jubilee Medal
for outstanding contributions to the IEEE CAS Society in 2000. He was the
recipient of the 2003 IEEE Emanuel Piore Award for contributions to computer-
aided synthesis of digital systems.

