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Co-clustering: A Versatile Tool for Data Analysis in
Biomedical Informatics
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Abstract—Co-clustering has not been much exploited in biomedical in-
formatics, despite its success in other domains. Most of the previous ap-
plications were limited to analyzing gene expression data. We performed
co-clustering analysis on other types of data and obtained promising results,
as summarized in this paper.

Index Terms—Acute myeloid leukemia, biomedical informatics, co-
clustering, microRNA, single nucleotide polymorphism.

I. INTRODUCTION

Clustering may be the most popular technique for data analysis in
many disciplines. Unlike conventional clustering that groups similar
object from a single collection of objects, coclustering or bicluster-
ing [1] aims to group objects from two disjoint sets simultaneously,
thus, revealing interactions among the elements in the two sets. A well-
known example occurs in text mining, where documents are grouped
based on their word contents. Although coclustering can be a powerful
tool for analyzing various biomedical data, the applications of coclus-
tering in the community have been focused mostly on gene expression
analysis [2], [3]. In this paper, we report several applications of coclus-
tering to large-scale biomedical data sets other than gene expression
data.

The problem of coclustering can be formulated as that of finding
complete subgraphs (bicliques) in a bipartite graph. (For computational
efficiency or for robustness, the completeness of subgraphs can be
relaxed, and some methods search “approximate” bicliques instead).
Most of the coclustering techniques assume a weighted bipartite graph,
and find bicliques with some conditions imposed on the weights of
edges in bicliques. Alternatively, if the input is given as a matrix,
coclusters can be regarded as (possibly overlapping) submatrices in
which (some or all) elements satisfy some specific conditions (e.g., the
values on each row are similar).

It is known that the problem of coclustering is NP-hard [1], and
many techniques have been proposed to cope with this computational
challenge. A review of coclustering algorithms can be found in [1],
and a performance comparison among some coclustering algorithms is
presented in [2], [4].
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Fig. 1. Cocluster of microRNAs and target genes found in the human genome
[6]. Genes BTG2, WT1, PPMID, PAK7, and RAB9B are mostly regulators, and
their anomaly can be found in breast, renal, and prostate cancers. The miRNAs
miR-15a and miR-16 are clustered on chromosome 13q14, and this region has
been shown to be deleted altogether in several types of cancer.

II. APPLICATIONS OF COCLUSTERING
A. Predicting MicroRNA Regulatory Modules

One of the most important advances in biology in recent years may
be the discovery of RNAs that can regulate gene expression. As one
kind of such functional noncoding RNAs, microRNAs (miRNAs) form
a class of endogenous RNAs that can have important regulatory roles
by targeting transcripts for cleavage or translational repression [5].

Multiple miRNAs often regulate a common mRNA whereas one
miRNA may have several target genes. This multiplicity of targets and
cooperative signal integration on target genes are key features of the
control of translation by miRNAs [5], [6] but this also makes it chal-
lenging to detect important patterns appearing in the gene regulation
mechanism by miRNAs.

To address this issue, we developed a coclustering-based method
that can computationally predict miRNA regulatory modules (MRMs)
or coclusters of miRNAs and their targets that are believed to participate
cooperatively in post-transcriptional gene regulation [6]. This method
was tested with the human genome, and approximately 400 MRMs
were identified. Fig. 1 shows an MRM discovered from this study.

B. Linking Clinical Traits With Gene Expression

The invention of DNA microarray technologies has enabled re-
searchers to simultaneously monitor the expression level of a whole
genome. Thus, for the purpose of finding genes related to a certain
clinical trait of interest, it has become feasible to examine all the genes
available and then select only those whose expression is consistently
correlated with the trait over many samples. Although correlation does
not always imply causality, this approach has been successful in many
studies as an attempt to understand genetic mechanisms underlying
clinical observations [7]-[10].

Example 1: It is possible to calculate the correlation coefficient
between one row vector of the trait matrix in Fig. 2(a) and another row
vector of the expression matrix in Fig. 2(c). For example, the points on
the red curve in Fig. 2(d) represent the Pearson correlation coefficients
between trait 1 and the genes in the expression matrix. By inspection,
we can observe that genes 2, 3, and 4 are correlated with traits 1 and 2.

Obviously, this inspection method breaks down as the size of a
problem grows, and clearly there is a need for a computational method
that can automatically detect patterns appearing on correlation curves.
Using coclustering, we introduced a method that can automatically re-
veal complex relationships between multiple genes and traits [11]. This
technique finds coclusters of genes and clinical traits and was tested
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Fig. 2. Example of coclustering genes and clinical traits (courtesy of Dr.
Michael D. Kuo at UCSD; the presented numbers replaced with fictitious values
for confidentiality). (a) Matrix of clinical traits (e.g., tumor size) derived from
the image in (b). (b) Brain image. (c) Gene expression matrix. Columns are
arranged in the same order as in (a). (d) Plot showing the correlation coefficient
between two rows in the matrices in (a) and (b). (e) Matrix representation of the
plot in (c). Coclusters of genes and clinical traits can be found here.
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Fig. 3. (a) Heat-map representations of two coclusters found from a public
AML data set by the technique proposed in [11]. (b) Each representation consists
of three panels, and a cocluster corresponds to the panel in the right.

with a public acute myeloid leukemia (AML) data set [10], discovering
43 statistically significant coclusters. Two of these coclusters are shown
in Fig. 3.

C. Single Nucleotide Polymorphism Studies

Genome-wide association studies is to obtain information on the
association of single nucleotide polymorphism (SNP) to phenotypes
across the entire genome. SNPs are the most common form of genetic
variation in humans comprising almost 0.1% of the average human
genome. Predicting and understanding the downstream effects of ge-
netic variation using computational methods are becoming increasingly
important for SNP selection in genetic studies [12].

Most SNP data sets consists of a subject-by-genotype matrix in
which rows correspond to subjects under study and columns to SNP
genotypes for each subject, as well as a subject-by-phenotype matrix
that records phenotypes for each subject. By a correlation analysis sim-
ilar to that mentioned in Section II-B, it is possible to find a genotype-
by-phenotype matrix. Finding coclusters appearing in this matrix cor-
responds to associating genotypes with phenotypes, and evaluation of
these coclusters may provide valuable biological insight.

III. CONCLUSION

The task of examining objects in two disjoint sets and revealing
implied interactions occur frequently in biomedical informatics, and
coclustering can be a versatile and powerful data-mining tool to com-
plete this task.
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