36.2

A Fast HW/SW FPGA-Based Thermal Emulation Framework
for Multi-Processor System-on-Chip

David Atienza*f, Pablo G. Del Valle*, Giacomo Paci*, Francesco Poletti,
Luca Benini*, Giovanni De Michelit, and Jose M. Mendias*
*DACYA/UCM, Avda. Complutense s/n, 28040 Madrid, Spain.

t LSI/EPFL, EPFL-IC-ISIM-LSI Station 14, 1015 Lausanne, Switzerland.
tDEIS/UNIBO, Viale Risorgimento 2, 40134 Bologna, ltaly.

{datienza, mendias}@dacya.ucm.es, pgarciav@fdi.ucm.es,
{gpaci,fpoletti,lbeniniy@deis.unibo.it, giovanni.demicheli@epfl.ch *

ABSTRACT

With the growing complexity in consumer embedded products and
the improvements in process technology, Multi-Processor System-
On-Chip (MPSoC) architectures have become widespread. These
new systems are complex to design as they must execute multi-
ple complex applications (e.g. video processing, 3D games), while
meeting additional design constraints (e.g. energy consumption or
time-to-market). Moreover, the rise of temperature in the die for
MPSoC components can seriously affect their final performance
and reliability. Therefore, mechanisms to efficiently evaluate com-
plete HW/SW MPSoC designs in terms of energy consumption,
temperature, performance and other key metrics are needed. In this
paper, we present a new HW/SW FPGA-based emulation frame-
work that allows designers to rapidly extract a number of critical
statistics from processing cores, memories and interconnection sys-
tems being emulated on a FPGA. This information is then used to
interact in real-time with a SW thermal model running on a host
computer via an Ethernet port. The results show speed-ups of three
orders of magnitude compared to cycle-accurate MPSoC simula-
tors, which enable a very fast exploration of a large range of MP-
SoC design alternatives at the cycle-accurate level. Finally, our
HW/SW framework allows designers to test run-time thermal man-
agement strategies with real-life inputs without any loss in the per-
formance of the emulated system.

Categories and Subject Descriptors

B.8 [Performance and Reliability]: Performance Analysis and
Design Aids; C.3 [Special-purpose and Application-based Sys-
tems]: Real-time and embedded systems

General Terms:Design, Measurement, Performance.

Keywords: FPGA, Emulation, MPSoC, Thermal Studies.

*This work is partially supported by the Spanish Government Re-
search Grants TIC 2002/0750 and TIN2005-5619, the Swiss FNS
Research Grant 20021-109450/1, and a Mobility Post-Doc Grant
from UCM for David Atienza.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2006, July 24-28, 2006, San Francisco, California, USA.

Copyright 2006 ACM 1-59593-381-6/06/0007 ...$5.00.

618

1. INTRODUCTION

New embedded systems applications (e.g. scalable video ren-
dering or wireless protocols) demand complex single-chip designs
to meet their real-time requirements while respecting other design
constraints, such as low-power or short time-to-market [1]. Thus,
complete redesigns of such multi-core systems from scratch are not
possible any longer. MULTI-PROCESSOR SYSTEMS-ON-CHIPS
(MPSo0Cs) have been proposed as a promising solution [1]. Nev-
ertheless, one major challenge is the fast exploration of HW/SW
implementation alternatives with accurate estimations (e.g. per-
formance) to tune the final MPSoC architecture in an early design
stage. Furthermore, MPSoCs can experience an alarming temper-
ature rise in future technologies [2], which increases further their
complex design.

In order to explore the HW/SW interaction, cycle-accurate MP-
SoC simulators have been developed [3, 4], lately even including
SW thermal modelling based on run-time power consumption and
floorplanning information [2]. However, these complex SW envi-
ronments are very limited in performance (circa 10-100 Khz) due
to signal management overhead. Thus, they are not suitable for
MPSoC architectural exploration solutions running complex real-
life applications. Moreover, higher abstraction levels simulators
attain faster simulation speeds, but lose significantly the accuracy
for fine-grained architectural tuning or thermal modelling.

One alternative to cycle-accurate simulators is HW emulation.
Various MPSoC emulation frameworks have been proposed [5, 6,
7]. Nevertheless, they are usually expensive for embedded design
(between $100K and $1M) and not flexible enough for MPSoC ar-
chitecture exploration since their baseline architectures (e.g. pro-
cessing cores or interconnections) are proprietary, not permitting
internal changes. Furthermore, no flexible interconnection inter-
faces between HW emulation and the existing SW thermal libraries
exist today. Thus, thermal effects can only be verified in the last
phases of the design process, when the final components are avail-
able, which can result in expensive MPSoCs redesigns.

In this paper we present a new HW/SW FPGA-based emulation
framework that enables realistic thermal studies as well as power,
energy and performance constraints validation in real-time in an
early stage of the MPSoC integration process. First, MPSoC HW
components are mapped on an FPGA and statistics are extracted
from three key MPSoC architectural levels (processors, memory
subsystem and interconnections), while real-life applications are
executed. Second, this run-time information is sent using a stan-
dard Ethernet connection to a configurable SW thermal modelling
tool running on a host PC. Third, this tool evaluates in real-time
the thermal behaviour of the final MPSoC design, and returns this

information to the FPGA emulating the MPSoC design. This fi-
nal step enables testing run-time temperature management strate-
gies. Our experiments show that this HW/SW framework provides
detailed cycle-accurate reports with speed-ups of three orders of
magnitude compared to cycle-accurate MPSoC simulators.

This paper is organized as follows. In Section 2, we overview
related work on MPSoC analysis and testing. In Section 3 and Sec-
tion 4, we present the HW architecture of the emulated MPSoCs
and the HW statistics extraction system included. In Section 5 we
describe our SW thermal tool. In Section 6, we detail the HW/SW
MPSoC emulation flow. In Section 7, we illustrate the speed and
flexibility of our emulation framework for MPSoC design. Finally,
in Section 8, we draw our conclusions.

2. RELATED WORK

Itis widely accepted that MPSoCs represent a promising solution
for complex embedded systems [1]. This has spurred research on
modelling and prototyping of MPSoCs using HW and SW.

From a SW perspective, different solutions have been suggested
at different abstraction levels. Fast analytical C/C++ models have
been proposed to prune very distinct design options [4]. Then,
transaction-level simulators in SystemC [8] have enabled more ac-
curacy in system-level simulation at slower simulation speed (100-
200 KHz). Finally, companies have developed HDL-based cycle-
accurate frameworks using post-synthesis libraries from HW ven-
dors [9, 10]. However, their simulation speeds (10 to 50 KHz)
are unsuitable for MPSoC exploration with real-life size inputs. In
the academic context, the MPARM SystemC framework [3] is a
complete system-level simulator. It includes cycle-accurate cores,
complex memory hierarchies (e.g. caches, main memories) and in-
terconnection mechanisms (e.g. AMBA or STBus). It can extract
reliable energy and performance figures, but its major shortcoming
is again its simulation speed (120 Khz in a Pentium IV at 2.8 Ghz).

HW emulation is a very important alternative to overcome the
SW speed problems. In industry, Palladium II [5] can accomo-
date very complex systems (i.e. up to 256 Mgates) and provides
a complete set of statistics. However, its main disadvantages are
its operation frequency (circa 1.6 MHz) and cost (around $1 mil-
lion). ASIC Integrator [6] is much faster for MPSoC architectural
exploration, but it is limited to up to five ARM-based cores and
AMBA interconnections. [7] proposes an interesting multi-FPGA
emulation framework that works in the order of MHz, but mainly
aims at IPs validation and is not suited for MPSoC design explo-
ration. In the academic world, the TC4SOC [11] emulation frame-
work includes proprietary 32-bit VLIW cores and enables testing
several Network Interfaces (NIs) protocols mapped on an FPGA.
Finally, [12] uses FPGA prototyping to speed up co-verification of
C/C++ SW simulators, achieving 1 MHz. However, these works do
not enable extraction of statistics of the three architectural levels
we propose (interconnections, memory hierarchy and processing
cores), and use them to perform MPSoC run-time thermal analysis.

Regarding thermal modelling, [2] presents a thermal/power
model for super-scalar architectures. It predicts temperature varia-
tions in processor components and shows effects in leakage power
and performance. [13] outlines variations of 13.6 degrees across the
die in embedded cores. Both works clearly prove the importance
of hot spots in future high-performance systems. Based on these
and similar models, system-level solutions have been proposed to
reduce MPSoCs temperatures [14, 15]. Therefore, flexible cycle-
accurate thermal frameworks are needed to evaluate and explore
the effects of run-time temperature-management policies.

3. MPSOC HW FPGA EMULATION
The proposed MPSoC framework uses FPGA emulation as the

619

« Shared memory accesses

Non-
«» Cacheable
Private
Memory

Proc.
Core

'y
v

LOCAL BUS
A

> MEMORY

CONTROLLER

<> D - Cache «» Cacheable
Private <«
<» |-Cache «» Memory

v

SHARED INTERCONNECTION (system bus or NoC)

External
<> Memory «»
Bridge

SHARED
MEMORY

_ Sub-system 1

(J’
()’

Figure 1: Overview HW architecture of emulated MPSoCs

J

Sub-system 2

Sub-system n

key element to model the HW components of the considered MP-
SoC platform at multi-megahertz speeds, and extract detailed sys-
tem statistics that can be used in our SW thermal library running in
a host PC. Figure 1 shows an overview of the baseline MPSoC HW
architecture, it consists of three main elements:

1. Different MPSoC processing cores, such as, Power PC, Mi-
croblaze, ARM or VLIW cores.

2. The definition of configurable I-cache, D-cache and main
memories (i.e. private and shared memories between processors).

3. Various interconnects, buses and Network-on-Chip (NoCs)
between the first level of the memory hierarchy and main memory.

These elements are designed in standard and parameterizable
VHDL and mapped onto a Xilinx Virtex 2 Pro vp30 board (or
V2VP30) with 3M gates, which includes two embedded Power
PCs, various types of memories (e.g. BRAM, DDR) and an Eth-
ernet port. However, any other FPGA could be used instead. The
only requirements are the availability of an Ethernet core to interact
with the SW thermal tool, a compiler for the included cores and a
method to upload both the FPGA synthesis of our framework and
the compiled code of the application under study. In our case, Xil-
inx provides all these basic tools in its Embedded Development Kit
(EDK) framework for FPGAs.

3.1 Processing Elements

In our framework, various types of proprietary and public pro-
cessing cores can be used. The accepted input forms are netlist
mapping onto the underlying FPGA and HDL languages (i.e. Ver-
ilog, VHDL or Synthesizable SystemC). The addition of cores is
possible since the memory controller (Subsection 3.2) includes an
external pinout interface and protocol that can be modified to match
the respective ones of the considered processor. Moreover, only the
instruction set processing part of the core is required because its
L1 memory hierarchy (e.g. caches, scratchpad) is replaced by our
framework to explore different memory configurations.

In our current framework we have ported a hard-core (PowerPC
405) and a RISC-32 soft-core (Microblaze) provided by Xilinx.
They only include netlist mapping and the inclusion process (pinout
and protocols used) took one week. As scalability example, a com-
plete Microblaze requires only 4% of the resources of the V2VP30
FPGA (574 out of 13.696 slices).

3.2 Memory Hierarchy

As Figure 1 indicates, in the emulated architecture two mem-
ory levels presently exist: L1 cache memories and main memories.
However, additional cache levels or private memories can be added

in few minutes to each processing element, or by processor groups.
This easy integration of new memory devices and protocols is pos-
sible thanks to the memory controller. One memory controller is
connected to each processing core to capture all memory requests
of the respective processors. Then, it forwards them to the neces-
sary memory according to the demanded memory address. Cur-
rently, each memory controller takes 2% of the V2VP30 FPGA,
and includes interfaces/protocols for four memory components and
three memory address ranges:

1. Private main memory, cacheable or non-cacheable, address-
able in a configurable memory range of each processor. Its size and
latency are configurable, and its synthesis takes 1% of the V2VP30,
apart from RAM resources that depend on the desired size.

2. Shared main memory, cacheable or non-cacheable, where its
total size and latency are configurable. It uses real memories (e.g.
DDR) available on the board.

3. Private HW-controlled data and instruction caches, transpar-
ent to the processors, and embedded before the cacheable address
range of the two types of available main memories. It is possi-
ble to define independently for each of them their total sizes, line
sizes and latencies. Currently, we support direct-mapped and set-
associative caches.

Finally, each memory controller can observe different clock do-
mains coming from multiple external interfaces. It keeps internal
counters for each of the types of connected memories to keep track
of the elapsed time and compare it with the user-defined latencies.
The counters are reseted each time the respective memory has com-
pleted one transaction. If a memory cannot respond in the defined
time, a signal is activated and sent to the VIRTUAL PLATFORM
CLOCK MANAGER (VPCM) module to temporarily freeze the vir-
tual clock of the MPSoC emulation (see Section 4).

3.3 Interconnection Mechanisms

The third configurable element in our framework is the inter-
connection between the memory controller and main memory. We
have included both buses and NoCs, which are enabled by using a
configurable main memory bridge in the device side. It includes
two different public pinout interfaces: one relates to the mem-
ory and the other one to the instantiated interconnection. This
enables us to extend the current list of available interconnection
mechanisms by modifying the required pinout and protocol. The
two Xilinx buses currently included are the On-Chip Peripheral
Bus (OPB) for general-purpose devices and Processor Local Bus
(PLB) for fast memories and processors. Also, we have created
our own configurable (i.e. bandwidth and arbitration policies) 32-
bit data/address bus for exploration purposes. Its synthesis takes
1% of the V2VP30. In addition, custom-made NoCs (e.g. num-
ber of switches and links) for our framework can be generated
using XpipesCompiler [16]. We have modified the memory con-
troller and main memory bridges to generate Open Core Protocol
(OCP) transactions as Xpipes NIs require [16]. Regarding FPGA
utilization, a complex NoC-based system with 6 switches of 4 in-
put/output channels and 3 output buffers uses 70% of the V2VP30.
Furthermore, as with processing cores, other proprietary bus (e.g.
AMBA, STBus) can be added to the framework as blackbox, we
only need to know the used protocol and external pinout.

4. STATISTICS EXTRACTION SYSTEM

The main feature pursued in the statistics extraction system is its
transparent inclusion in the tested MPSoC architecture, and with
minimum penalty in performance in the emulation process. Its
global structure is depicted in Figure 2. We have implemented
HW sniffers (Subsection 4.1) that monitor certain signals of the

620

AN

A »{ BRAM (Ethernet buffer) ‘
Own To/From host PC Thermal
Ethernet { Library
@ Dispatcher Sofware
=}
[}
[Virtual Virtual Clk n
18} SENSOR 1
= - Platform .
B [92) Virtual Clk 1
Processing = . Clock
Core LS . Manager Virtual Clk Suppression n
; i
= Virtual Clk
: Suppression 1
o
o
w
a
SNIFFER 1 Sub-system 1
- Sub-system n

Figure 2: Overview of the statistics extraction subsystem

memory controller and external pinout of emulated MPSoC com-
ponents, and stores the obtained statistics in a buffer created in
FPGA BRAM memory. This buffer is concurrently processed by
our Ethernet dispatcher to send MAC packets in our own format
to the SW thermal modelling tool running in the connected host
PC. One key additional element in this extraction mechanism is
the VPCM module, which enables stopping/resuming the statistics
extraction mechanism in case of congestion of the Ethernet connec-
tion with the host PC (Subsection 4.2).

4.1 HW Sniffers

The HW sniffers transparently extract the statistics from each
of the MPSoC components defined in the floorplan. All sniffers
have a dedicated interface to capture internal signals from the mod-
ule they are monitoring and a connection to our custom statistics
bus. For temperature monitoring, HW sniffers measure the time
that each processor spends in active/stalled/idle mode at run-time,
the number and type of accesses to each memory in the system, and
the signal transitions in the buses or NoC interconnects. Also, HW
sniffers are memory-mapped in the address range of the processors
of the emulated subsystems. Thus, they can be de/activated at run-
time through SW calls by the processors of the emulated system.

To ease the creation of new HW sniffers, there is a basic skele-
ton. We provide two types of sniffers. The first one, called event-
logging, exhaustively logs all events that occur in the platform. The
second type of sniffers, called count-logging, are designed only
to count switching activity for power figures and high-level events
(e.g. cache misses, bus transactions, memory accesses); Thus, gen-
erating more concise results, and what typically designers demand
from cycle-accurate simulators to test their system. Our results in-
dicate that practically an unlimited number of event-counting snif-
fers (i.e. floorplan cells) can be added to MPSoC designs without
deteriorating the emulation speed due to signal management. This
is one of the main differences with SW cycle-accurate simulation
systems and enables significant speed-ups compared to them (Sec-
tion 7). Finally, the overhead in the FPGA for one event-logging
sniffer is 0.2% while for an event-counting sniffer is 0.3%.

4.2 Virtual Platform Clock Manager (VPCM)

The VPCM is the HW element used in our framework to provide
multiple virtual clock domains. This module generates as output
the clock signals used in the emulated MPSoC subsystems (VIR-
TUAL CLK signals in Figure 2). It receives three differente types
of input signals. First, the physical clock generated in the oscilator
of the FPGA (not shown in Figure 2 for simplification purposes),

Table 1: Power for most important components of an MPSoC
design (130nm bulk CMOS technology)
[[Max. Power@100 MHz [Max. Power density |

RISC 32-ARM7 5.5mW 0.03W/mm?
RISC 32-ARMI 1.5W (Max) 0.5W/mm?

DCache 8kB/2way 43mW 0.012W/mm?
ICache 8kB/DM 11mW 0.03W/mm?
Memory 32kB 15mW 0.02W/mm?

which in the current implementation is set to 100 MHz. Second,
one signal from each memory controller of the emulated MPSoC
subsystems (VIRTUAL CLK SUPRESSION 1..N in Figure 2) used
to request a virtual clock inhibition period if any attached mem-
ory device of the emulated hierarchy is not able to return the re-
quested value at this moment respecting its set user-defined latency
(see Section 3.2). Third, signals coming from the different tem-
perature sensors (SENSOR 1..N in Figure 2) that monitor if any
component has increased its temperature beyond/below a certain
threshold, which enables the use of run-time thermal management
policies (see Section 7 for examples). The use of virtual clock do-
mains generated by the VPCM is two-fold:

- First, the emulation of MPSoCs can be done for different phys-
ical features than those of available HW components. Once the re-
spective (VIRTUAL CLK SUPRESSION 1..N signal is risen, the cor-
responding (VIRTUAL CLK signal of that sub-system (or the set of
sub-systems) is activated. Hence, the stopped processor preserves
its current internal state until it is resumed by the VPCM when the
memory controller informs that the information requested is avail-
able in the accessed memory. This abstraction layer in the platform
allows us to implement the corresponding memory resources either
in internal FPGA memory (optimal performance) or with external
memories (bigger size), balancing emulation performance and use
of resources. For instance, if the desired latency of main memo-
ries are 10 cycles, but the available type of memory modules in the
FPGA are slower (e.g. use of DDR instead of SRAMs), the VPCM
will stop the clock of the processors involved at run-time, thus hid-
ing the additional clock cycles required by the memory. Our VPCM
includes two clock domains: (1) microprocessor, memories and in-
terconnections; (2) memory controllers.

- Second, the VPCM virtual clock of all or part of the
components in the emulated MPSoC can be transparently
stopped/resumed at run-time in case of saturation of the Ethernet
connection while downloading the extracted statistics.

The combination of these two mechanisms enables the execu-
tion and thermal modeling of HW configurations of the emulated
MPSoC at a different speed than the allowed clocked speed of the
available HW components. In fact, it is similar to the mechanism
used in SW simulations, but at a much higher frequency (see Sec-
tion 7). For instance, it is possible to explore the effects in thermal
modeling of a final system clocked at 500 MHz, even if the present
cores of the FPGA can only work at 100 MHz. To this end, in case
of using a 10 ms statistics sampling frequency with a desired virtual
clock emulation of 500 MHz, divided by a real working frequency
of 100 MHz on the FPGA, our framework will sample every 50 ms
of real execution, but analyzed by the SW thermal library as repre-
senting 10 ms of actual emulated execution. The configurable SW
thermal modelling is summarized next.

S. MPSOC SW THERMAL MODELLING

Our SW thermal tool is a C++ library that enables thermal ex-
ploration in silicon bulk chip systems. It can evaluate the thermal
behaviour in devices modelled at different levels of abstraction (i.e.

621

gate level, RTL level and architectural level) and its space reso-
lution for thermal accuracy is configurable (i.e. number of tem-
perature cells defined in a fixed area). In our case, we have set
the speed to investigate the run-time thermal behavior of multiple
cores and embedded memories on a single die and we look at pack-
age solutions for low-power MPSoCs, which have a much higher
thermal resistance. The switching activities of the wires and the
components in the die for this thermal analysis are obtained from
our FPGA-based MPSoC emulation (see Section 3).

5.1 Power estimation

In Table 1, we summarize the values used for the components of
our emulated MPSoC. These values have been derived from indus-
trial power models for a 0.13 um technology. We ignore leakage
energy because in this technology the impact of leakage is very
limited, particularly for low-power system design.

5.2 Thermal estimation

Usually MPSoCs HW are made of silicon die wrapped into a
cheap package placed on a PCB. In this case the heat flow starts
from the bottom surface of the die and goes up to the silicon,
passes through the heat spreader and ends at the environment inter-
face, where the heat is spread by natural convection [2]. Therefore,
for modeling the heat flow, we rely on an equivalent electrical RC
model similar to [2] (Figure 3(b)). However, in our case we have
adopted non-linear resistances inside the silicon, in order to match
the behaviour of thermal conductivity. Then, we consider the heat
spreader made of copper and use linear resistances (see Table II).

Table 2: Thermal properties

silicon thermal conductivity | 150 - (%) 4/3 W/mK
silicon specific heat 1.628¢ — 12J/um3K
silicon thickness 350um

copper thermal conductivity 400W/mK
copper specific heat 3.55¢ — 12J/um>K
copper thickness 1000um
package-to-air conductivity 20K /W in low power

The die and heat spreader are divided in cubic shape cells of sev-
eral sizes (see Figure 3(a)). This way we can place the smallest
cells in the crucial points of the studied MPSoC to obtain high res-
olution and insert larger ones where the conditions are not critical.
Each cell has five thermal resistances and one thermal capacitance,
four resistances model horizontal thermal spreading and the fifth
one covers the vertical thermal behaviour. The generated heat is
modelled by adding an equivalent current source to the cells on the
bottom surface. The heat injected by the current source corresponds
to the power density of the architectural component covering the
cell (e.g. memory, processor) multiplied by the surface area of the
cell. No heat is transferred down into the package from the bottom
cells. Then, the heat from the top surface cells is removed through
natural convection, which is modelled by connecting an extra resis-
tance in series with their resistance. This resistance value is equal
to the package-to-air resistance weighted with the area of the cell to
the area of the spreader. We use 20K/W package-to-air resistance,
higher than those published by package vendors, because of the
uncertainty of final MPSoC working conditions. Finally, each cell
interacts only with its neighbours, which results in a linear com-
plexity problem with respect to the number of used cells. Currently,
we can analyse 2 seconds of simulation (in a 660-cell floorplan), in
1.65 seconds on a Pentium 4 at 3Ghz, which is fast enough to in-
teract in real-time with our FPGA-based MPSoC emulation.

The thermal model was calibrated against a 3D-finite element

c
Y cucu
Cu

@
@

Si| Si Si

Si

Si Si Si

Botiom

(@) (b)
Figure 3: (a) Chip divided in cells; (b) Equivalent RC circuit

analysis given by an industrial partner. In our experiments we have
used two floorplans: (a) 4 ARM?7 core at 100 MHz; (b) 4 ARM11
at 500 Mhz, both in 130nm technology (Figure 4).

1200um

dCache|iCache |dCache|iCache Eria 1200um
8KB 8KB 8KB 8KB 30KB
1 1 2 2 dCache Private
‘ g P1 F; prz me};gow s;a vcoe 32KB
rocessor rocesso memory
|] | icacne| Processor! | %" Tpi
NoC 6x8| NoC 6x6 NoC 6x6 8KB
1 switch switch switch —— [l jlecie "3"2‘/}2‘;

Pt P2 ‘ p3 acscne | KB
-~ Processor3 b2)

rivate Private icache| Processor2 vces Pprivate
32KB 32KB iCache dCache BKE) S 32KB
msmwory merréory 8KB 8KB P2 P merréory

iCach P

P P: p3 p3 dsijse -

. NoC 6x6 E s
Private p Shared Processor3 285,
32KB S 32KB D 557 memory
memory b memory p3 B P

p4 ‘ Processor4 ‘ j doache o | NoC interface

i N\ o Shared
\
(CeneldCactel “nog cacne| Processor4 e
p4 p4 interface 5:45 memory
(@) (b)

Figure 4: MPSoC floorplan with (a) 4 arm7 cores and (b) 4
arml1 cores

6. HW/SW MPSOC EMULATION FLOW

Our fast system exploration flow of MPSoC designs with ther-
mal management, depicted in Figure 5, combines the statistics ex-
traction from HW emulation and SW thermal simulation of MP-
SoCs. First, the HW and SW MPSoC components are defined. The
user specifies one concrete HW architecture and the respective HW
sniffers to extract statistics for three architectural levels (processing
cores, memory subsystem and on-chip interconnections) using pre-
defined HDL modules and sniffers from our repository (Section 3).
No effort is required for the designer to use the memory hierarchy
and interconnection mechanisms (e.g. generation of OCP trans-
actions) since they are generated by the underlying emulated HW
architecture. Also, in this phase it is compiled the application/s
that will be executed in the emulated MPSoC. Currently, we use
the GNU C (gcc) and C++ (g++) compilers/linkers from Xilinx
EDK tool for Power PC and Microblaze cores. EDK can load dif-
ferent binaries on each processor. This complete HW synthesis/SW
compilation phase requires 10-12 hours for a complex MPSoC ar-
chitecture with 8 processors and 20 additional HW modules. More-
over, resynthesis after modifications in core configurations takes
less than 1 hour, and compiling extra applications only few min-
utes.

In the next phase the floorplanning to be evaluated is defined ac-
cording to the emulated MPSoC. At this moment the different en-
ergy and frequency values for each HW MPSoC component is set
for the technology to be explored. Also, the granularity of temper-
ature updates and communication between the FPGA and the SW
thermal model is fixed (in our experiments it was 10ms, Section 7).

Later, the whole HW emulated MPSoC is uploaded onto the
Xilinx FPGA using a JTAG device and our SW thermal model is

622

Define HW architecture
Cache size & line length, latencies,

Define HW architectural parameters — Memory ranges, etc...

Define analysis targets &
write/connect suitable sniffers

¥

Synthesize HW platform

Write application code

Compile SW

Generate platform binaries

| Run & extract statistics 4———=—

| "

| * FPGA | Run-time
|——=> Power estimation | Thermal

| Behavior
o __ 4 __ Feedback
Communication via Ethernet

TTTT T T T Y T T T,

| A PC
— SW thermal analysis —_—

L _______

Figure 5: Complete HW/SW flows included in the FPGA-Based
emulation framework

launched in a host PC, and both communicate via an standard Eth-
ernet connection. Then, our whole framework runs autonomously.
While the emulated system is running, the statistics about the power
values for each layout cell are concurrently extracted, and sent to
the thermal simulator running onto the host PC. This simulator cal-
culates in real-time the new temperatures for each cell and feeds
them back using MAC packets to the FPGA-based emulation. Fi-
nally, according to this new received information, the implemented
temperature manager in our FPGA updates can apply concrete run-
time thermal management policies (see Section 7 for an example).

7. EXPERIMENTAL RESULTS

We have compared the performance and flexibility of the
HW/SW emulation framework with the MPARM framework [3]
and its SW thermal library by running intensive MPSoCs process-
ing kernels. MPARM is executed on a Pentium IV at 3.0 Ghz with
1 GB SDRAM.

First we have evaluated the speed-ups of the HW/SW emulation
framework for MPSoC architecture exploration, without thermal
modelling, in comparison to cycle-accurate SW simulators. We
tested various configurations of interconnections and processors (1
to 8) using a complex L1 hierarchy for each core with 4 KB D-
cache/I-cache, 16 KB of private memory, and a global 1-MB main
shared memory. All processors use OPB and OCP buses. As ex-
ample, the MPSoC design with HW sniffers and 4 processors (1
hard-core PowerPC and 3 soft-core Microblazes) consumes 66%
of the V2VP30 and runs at 100 MHz. Next, we have explored the
use of NoCs [16] instead of buses. The tested NoC had 2 32-bit
switches with 4 inputs/outputs and 3-package buffers. This NoC-
based MPSoC required 80% of our FPGA. As SW drivers, first, we
have used a kernel application (MATRIX in Table III) that performs
independent matrix multiplications at each processor private mem-
ory and combined in memory at the end. Second, we have used a
dithering filtering (DITHERING in Table III) using the Floyd algo-
rithm [17] in two 128x128 grey images, divided in 4 segments and
stored in shared memories. This application is highly parallel and
imposes almost the same workload in each processor. The obtained
timing results are depicted in Table III.

These results show that the HW/SW emulation framework scales
better than SW simulation. In fact, the exploration of MPSoC so-
Iutions with 8 cores for the Matrix driver took 0.18 seconds per run
in our case, but 155 seconds in MPARM (at 125 KHz), resulting in

Table 3: Timing Comparisons between our MPSoC emulation
framework and MPARM

[MPARM [HW Emulator ‘
Matrix (one core) 106 sec 1.2 sec (88 %)
Matrix (4 cores) 5’ 23 sec 1.2 sec (269x)
Matrix (8 cores) 13’ 17 sec 1.2 sec (664 x)
Dithering (4 cores-bus) 2’ 35 sec 0.18 sec (861 x)
Dithering (4 cores-NoC) 3’ 15sec | 0.17 sec (1147x)
Matrix-TM (4 cores-NoC) 2 days | 5’ 02 sec (1612x)

Average temperature of emulated 4core MPSoC

Temperature (Kelvin)
&

20 30 40

Time (seconds)

50 80 7.0

‘eawmmaunn in MPARM = - = -Emulation =====Emulation with DF 8 ‘

Figure 6: Temperature evolution of Matrix-TM at 500 MHz

a speed-up of 664 x. Moreover, the exploration of NoCs with com-
plex SW drivers (Dithering with 4 cores, 30 HW MPSoC compo-
nents), shows larger speed-ups (860x) due to signal management
overhead in cycle-accurate simulators (Table III).

Next, we have tested the real-time interaction between the FPGA
emulation and the SW thermal library. We have defined a system
with 4 RISC-32 processors including 8KB direct-mapped instruc-
tion/data caches and a 32KB cacheable private memory. One 32KB
shared memory exists in the system and the interconnection utilized
is a NoC of 4 6x6-switches 6. The floorplan includes 28 thermal
cells (Figure 4) and the dimensions of NoC components were ob-
tained after building a layout. The dimensions and energy figures of
memories and processors are shown in Table 1 and were provided
by an industrial partner. As SW driver, we have defined a workload
of 100K matrices in the Matrix benchmark (MATRIX-TM in Table
IIT and Figure 6) to stress the MPSoC processing power and observe
thermal effects. The obtained timing results (Table III) show that
our HW/SW emulation framework takes 5 minutes approximately
for the whole execution of the driver, including thermal monitor-
ing, versus 2 days in MPARM for just 0.18 sec of real execution
(left corner on Figure 6); Thus, the framework achieves more than
three orders of magnitude of speed-ups (1612x) compared SW-
based thermal simulation, making feasible to study in a reasonable
time long thermal effects.

Finally, we performed a long thermal emulation in our frame-
work to observe thermal effects on the MPSoC with real-life pro-
cessing inputs of embedded applications. We ran the Matrix-TM
workload for 100K iterations and the results for a 500 MHz em-
ulation are shown in Figure 6. They indicate the need to perform
long emulations to estimate thermal effects (note in Figure 6 that
the previous simulation in MPARM only represents a very limited
part of the overall MPSoC thermal behavior). Due to the high rise
in temperature observed in the MPSoC design, we explore the pos-
sible benefits of run-time thermal management within our HW/SW
emulation framework. To this end, we have implemented a simple
threshold monitoring policy using the available HW temperature
sensors. The policy consists in a simple dual-state machine that

623

monitors at run-time if the temperature of each MPSoC compo-
nent increases/decreases above/below two certain thresholds that
we have defined (350 or 340 degrees Kelvin). Then, the temper-
ature sensors inform the VPCM, which performs DYNAMIC FRE-
QUENCY SCALING (DFS) choosing 500 or 100 MHz accordingly.
The results are shown in Figure 6 and indicate that this simple
thermal management policy is highly beneficial in this concrete
MPSoC design. Furthermore, it outlines the potential benefits of
HW/SW emulation to explore the design space of complex thermal
management policies in MPSoCs, compared to SW cycle-accurate
simulators that suffer from important speed limits.

8. CONCLUSIONS

MPSoC architectures have been proposed as a possible solution
for forthcoming embedded systems. In this paper we have pre-
sented a new HW/SW FPGA-based emulation framework that en-
ables the rapid extraction of a large range of statistics, including
thermal modelling, at three different architectural levels of MPSoC
designs, i.e. processors, memory subsystem and interconnection
mechanisms. The experimental results have shown that our pro-
posed framework including thermal modelling obtains detailed re-
ports with an speed-up of three orders of magnitude compared to
cycle-accurate MPSoC simulators. Also, almost no loss in emu-
lation speed occurs when more processors and complex memory
architectures are added, conversely to cycle-accurate simulators.
This enables long simulations of MPSoCs as thermal modelling
requires. Finally, real-time interaction between HW emulation and
SW thermal modelling is possible using a standard Ethernet con-
nection. Therefore, the returned temperature feedback enables test-
ing run-time thermal management policies in emulated MPSoCs.

9. REFERENCES

(1]
(2]

A. Jerraya, et al. Multiprocessor SoCs. Morgan Kaufmann, 2005.
Kevin Skadron, et al. Temperature-aware microarchitecture:
Modeling and implementation. TACO, pp. 94—125, 2004.

L. Benini, et al. Mparm: Exploring the MPSoC design space with

SystemC. Journal of VLSI, pp. 169-182, 2005.

G. Braun, et al. Processor/memory co-exploration on multiple

abstraction levels. In Proc. of DATE, 2003.

Cadence Palladium II, 2005. http://www.cadence.com.

ARM integrator AP, 2004. http://www.arm.com.

Emulation and Verification Engineering. Zebu X1 and ZV models,

2005. http://www.eve-team.com.

ARM. PrimeXSys platform architecture and methodologies, white

paper. Technical report, 2004.

M. Graphics. Platform express and primecell, 2003.

http://www.mentor.com/.

[10] Synopsys. Realview Maxsim ESL environment, 2003.
http://www.synopsys.com/.

[11] M. Diaz Nava, et al. An open platform for developing MPSoCs.
IEEE Computer, pp. 60-67, 2005.

[12] Y. Nakamura, et al. A fast HW/SW co-verification method for SoC
by using a c/c++ simulator and FPGA emulator with shared register
communication. Proc. DAC, 2004.

[13] H. Su, et al. Full chip leakage estimation considering power supply
and temperature variations. Proc. ISLPED, 2003.

[14] J. Srinivasan, et al. Predictive Dynamic Thermal Management for
Multimedia Applications. Proc. HPCA, 2001.

[15] M. Huang, et al. A framework for dynamic energy efficiency and
temperature management. Proc. MICRO, 2003.

[16] A. Jalabert, et al. xpipescompiler: A tool for instantiating application
specific NoCs. Proc. DATE, 2004.

[17] R. W. Floyd, et al. Adaptive algorithm for spatial gray scale. Proc.

ISDT, 1985.

(3]
(4]
(5]
(6]
(7]
(8]

(9]

