
Abstract�Clustering has been one of the most popular
techniques to analyze gene expression data. The biclustering
method is two-dimensional clustering of genes and experimen-
tal conditions to identify a group of genes that display a coher-
ent behavior in some conditions. Although this method may
provide additional insight overlooked by traditional clustering
techniques, it is often computationally expensive to perform
biclustering on practical gene expression data. In this work, we
propose a novel biclustering technique that exploits the zero-
suppressed binary decision diagrams (ZBDDs) to cope with such
a computational challenge. The ZBDDs are a variant of the
reduced ordered binary decision diagrams that have found a
widespread use in optimization and verification of VLSI digital
circuits. Our experimental results demonstrate that the ZBDDs
can indeed extend the scalability of our biclustering algorithm
substantially, thus enabling us to apply it to a wider spectrum
of gene expression data.

Keywords�Clustering, gene expression analysis, ZBDD

I. INTRODUCTION

 Clustering is an unsupervised learning technique that
has become a basic tool for researchers in the field of gene
expression analysis. Although there is mature statistical lit-
erature on clustering, DNA microarray data has sparked the
development of multiple new methods [1]. In particular, the
biclustering technique [2,3,4,5,6,7] is one of the most prom-
ising innovations in this area [1]. The term biclustering was
originally used to describe simultaneous clustering of both
row and column sets in a data matrix [2]. The δ-biclustering
[2] was the first application of this technique to gene expres-
sion data analysis. The δ-biclustering approach also included
the notion of subspace clustering [7] to define a bicluster,
which corresponds to a subset of genes displaying a coher-
ent behavior under a subset of conditions. The term biclus-
tering thus refers to the technique of two-dimensional sub-
space clustering.
 The biclustering method may give additional biological
insight that has been overlooked by conventional clustering
approaches. For example, biclusters are more compatible
with our understanding of cellular processes than other
�global� clustering methods. This is because we often ex-
pect subsets of genes to be co-regulated and co-expressed
under certain conditions, but to behave almost independ-
ently under other conditions [3]. Additionally, biclusters can
overlap with each other, unlike more traditional hierarchical
clusters. The biclustering method may thus be useful in rec-
ognizing reusable genetic �modules� that are mixed and

matched in order to create more complex genetic responses
[1].

An Application of Zero-suppressed Binary Decision Diagrams
to Clustering Analysis of DNA Microarray Data

Sungroh Yoon and Giovanni De Micheli

Computer Systems Laboratory, Stanford University, CA, USA

 Given the general notion of a bicluster, its formal defini-
tion varies depending on the clustering strategies applied.
Two definitions are particularly related to our work. The δ-
biclustering approach [2] defined a bicluster as a submatrix
(of the complete data matrix) having a mean squared resi-
due (MSR) score less than a given threshold. The pCluster-
ing technique [7] modeled a bicluster using the pScore that
can summarize similarity between every pair of genes and
experiments in the bicluster. These two definitions are in
fact closely related. The pClustering method models more
homogeneous clusters [7], and thus typically finds biclusters
with lower MSR scores, meaning more coherence [8].
 The cluster search problem is in general NP-hard [9],
and the biclustering problem is no exception [2]. Most bi-
clustering approaches including δ-biclustering therefore
employed a heuristic to find some biclusters. In contrast, the
pClustering approach employed a combinatorial approach to
discover all biclusters on a given data matrix. Consequently,
the δ-biclustering algorithm is more efficient, although the
biclusters found by the pClustering method are better in
terms of MSR scores, the measure of coherence [8].
 In this work, we propose a clustering technique to find
more coherent biclusters than the δ-biclustering method [2],
without compromising efficiency. Our technique can find all
biclusters existing on a given data set, too. The novelty of
our method lies in the use of the zero-suppressed decision
diagram (ZBDDs) [10], which can symbolically represent
massive data and implicitly manipulate them.

II. PRELIMINARIES

A. Definition of Bicluster and Biclustering Problem

We assume the reader is familiar with DNA microarray
technologies [1]. To model more coherent biclusters than δ-
biclustering, we use the concept of pScore [7]. Then our
definition of bicluster is equivalent to that of pCluster [7].
The pScore of 22× matrix X = 

 is defined as 


dc
ba

pScore (X) = |(a � b) � (c � d)| = |(a � c) � (b � d)|. (1)

Let UG be the set of genes (rows) and UE be the set of ex-
periments (columns) in a gene expression data matrix D ∈

 Suppose G and E are two sets such that G ⊆ U.EG UU ×R G
and E ⊆ UE. The pair B = (G, E) denotes a submatrix of D,
as shown in Fig. 1. The pair B = (G, E) is called bicluster if
we have pScore (X) δ≤ for any submatrix X in B and
some

22×
0≥δ .

This work was supported by a grant of Jerry Yang and Akiko Yamazaki.

 An important property is that a subcluster of a pCluster
is another pCluster for the same δ [7].

 E: a set of experiments (E ⊆ UE)

g0g1
g2g3g4g5

e0 e1 e2 e3 e4 e5

g6g7

g0
g1g3

e0 e2e4

 G: a set of genes
(G ⊆ UG)

Bicluster B = (G, E) Data matrix D = (UG,UE)

Fig. 1. The definition of bicluster.

 Given a parameter triplet (δ, MG, ME) representing a
cluster threshold and a minimal number of genes and ex-
periments, the objective is to find all pair B = (G, E) such
that (1) B is a bicluster with respect to δ; (2) B is not too
small, namely |G| M≥ G and |E| M≥ E; (3) B is maximal in
the sense that its is not contained by others.
 Unless otherwise stated, we use G and E to denote the
gene and experiment set in a bicluster B = (G, E), respec-
tively, as shown in Fig. 1.

← Gene expression pattern

Horizontal PMB =

({gi,gj},Em{gi,gj})

Vertical PMB =

(Gm{ea,eb},{ea,eb})

D

gj

gi

ea eb

gj

gi

ea eb

Gm{ea,eb}

Em{gi,gj}

Horizontal seed

Vertical seed

=
=

Fig. 2. Horizontal and vertical PMBs and seeds.

C. Pairwise Maximal Biclusters (PMBs)

 The biclustering problem is in general intractable [2],
but we can find all maximal biclusters in a or n×2 2×n
matrix in O(nlogn) time [7]. Thus, we first find such bi-
clusters, and then derive other biclusters from them. We call
these special biclusters pairwise maximal biclusters (PMBs).
The details on producing PMBs are beyond the scope of this
paper, and we refer the interested to [2, 7].
 As shown in Fig. 2, a horizontal PMB is a bicluster
composed of two genes {gi, gj} and a maximal (but not
unique) set of experiments in which the two genes show a
similar behavior. We refer to this maximal set as horizontal
seed for genes {gi, gj} or Em{gi, gj}. For given {gi, gj}, there
can be multiple Em{gi, gj} [7], and we denote by {Em{gi, gj}}
the set of all those Em{gi, gj}. By switching the roles of
genes and experiments, vertical PMB and vertical seed are
similarly defined.

D. Derivation of Biclusters from PMBs

g0
g1
g2
g3

e0 e2 e4

Gm{e0,e2}

g0
g1

g3

U U

=

g0
g1

g3

g0
g1

g3
g4

= =

E =

G=Gm{e2,e4} Gm{e0,e4}

Fig. 3. The procedure to calculate G from E.

 To find a bicluster (G, E), we first derive E from hori-
zontal PMBs and then calculate G from that E and vertical
PMBs. This is due to the following observations in previous
work:

1. E is a subset of a certain horizontal PMB [7, 8].
2. G is related to E and vertical PMBs through an ana-

lytical formula [8].
(It is typically less efficient to first get G and then calculate
E from it, since |UG| >> |UE| in typical gene expression data.)
 We can discover any E by removing redundant elements
from a certain horizontal seed. This is because for any E
there exists a horizontal seed Em{⋅} such that E ⊆ Em{⋅} [7,
8]. We can efficiently perform this removal by an algorithm
on the trie, a compact structure for strings [8].

For example, consider the bicluster in Fig 1. Assuming each
vertical seed Gm{·} is unique for simplicity, Fig. 3 depicts
the procedure to calculate G from E.
 The worst-case complexity of an algorithm to evaluate
(2) is exponential in the number of columns in a data matrix.
We therefore propose a new approach to better handle this
computational challenge in the next section.

 To calculate G from E and vertical PMBs, we use the
following formula [8]:

 }},{{} from derivable all{
,

jim
Eee

eeGEG
ji

⊗=
∈∀

, (2)
III. METHODOLOGY

 where ⊗ is a pairwise intersection operator on two sets of
subsets X and Y:� A. ZBDD-based Representation of PMBs

X ⊗ Y = {X ∩ Y | ∀X∈X and ∀Y∈Y}. (3)

 We represent the vertical and horizontal PMBs by the
zero-suppressed binary decision diagrams (ZBDDs) [10,11].
When ZBDDs are used, complexity of a problem no longer

� For example, {{0,1,2}, {2,3,4}} ⊗ {{0,2}, {4,5}} = {{0,2}, {2}, {4}}.

depends on the size of the problem itself, but on that of its
ZBDD representations, which often have mild growth with
the problem size. Thus, ZBDDs may be used to efficiently
solve many practical instances of intractable problems [11]. g2

g0

g3

g4

{e1,e3}

10

{e0,e3} {e1,e2}

g4

g2

g0

10
(a) (b)

Fig. 4. ZBDD-based representations of PMBs.
The solid and dotted lines mean the 1-edge and 0-edge, respectively.

TABLE I
VERTICAL PMBS SHOWN IN FIGURE 4

Figure Vertical PMBs (Gm{ei, ej}, {ei, ej})
4 (a) ({g0, g2, g4}, {e1, e3}), ({g3, g4}, {e1, e3})
4 (b) ({g0, g2, g4}, {e0, e3}), ({g2, g4}, {e1, e2})

 In many combinatorial problems, we need to manipulate
sets of combinations [12]. Let B = {0,1}. A combination of
n elements is an n-bit vector (x1,�,xn)∈Bn, where the i-th
bit reports whether or not the i-th element is contained in the
combination. Thus, a set of combinations can be represented
by a Boolean function f: Bn → B. A combination given by
the input vector (x1,�,xn) is contained in the set if and only
if f(x1,�,xn) = 1. In most combinatorial applications, the set
of combinations are sparse in the following aspects:

• The sets contain only a small fraction of the 2n pos-
sible bit vectors, and

• Each bit vector in the sets has many zeroes.
 By exploiting both aspects, the ZBDDs provide a repre-
sentation that is very efficient for representing and manipu-
lating large-scale sets of combinations [10]. The reader can
refer to [10, 11] for a more extensive treatment of ZBDDs.

process until encountering the terminal cases. The partial
results are returned from the bottom, and eventually the final
answer is available at the topmost vertex.

 Assuming the set of all genes is UG, each Gm{⋅} corre-
sponds to a combination of |UG| elements, and can be con-
verted to a |UG|-bit vector. For instance, Gm{e1,e3} =
{g0,g2,g4} becomes (10101) assuming UG = {g0,g1,g2,g3,g4}.
There can be multiple Gm{e1,e3}, and suppose we have an-
other Gm{e1,e3} = {g3,g4} which corresponds to (00011).
The set of combinations {(10101), (00011)} can then be
represented by the ZBDDs drawn in Fig. 4(a). The common
elements between two sets are shared in the ZBDDs, as
shown Fig. 4(b).

 We can similarly compute A ⊗ B by recursively solving
and merging four subproblems: (A0⊗B0), (A1⊗B0), (A0⊗B1)
and (A1⊗B1). Fig. 5(b) depicts the decomposition for the
topmost variable. The right subgraph includes A1⊗B1, and
the left subgraph contains the others, since only A1⊗B1 can
contain a subset with the topmost variable. For example, let
A={{g0,g2,g4},{g3,g4}} and B={{g0,g2,g4}} from the exam-
ples in Fig. 4. Then A⊗B={{g0,g2,g4},{g4}}, as in Fig. 6.

III. EXPERIMENTAL RESULTS

B. Efficient Implementation of ⊗ Operator through ZBDDs A. Experiment Setup

 We can implement the ⊗ operator with ZBDDs using
basic set operators such as ∩ or ∪. They are recursively
defined on ZBDDs with the trivial terminal cases such as X
∩ ∅ = ∅ or Y ∪ ∅ = Y [10, 11].

 The algorithms for the experiment are listed in TABLE II.
We implemented the algorithms Z, P, and P+ with ANSI
C++ on a 3.02 GHz Linux machine with 4 GB RAM. We
used the CUDD [13] and EXTRA [14] packages for ZBDD

 We first show how to decompose a set of subsets into
two smaller sets. Let A denote a set of subsets. We decom-
pose A into A1 and A0, such that A1 has only those subsets
containing a certain variable x, and A0 includes all the other
subsets. In the ZBDD context, we can do this decomposition
by recognizing two subgraphs of the topmost vertex: assum-
ing the vertex represents x, the subgraph connected by the
solid (dotted) line corresponds to A1 (A0). For example, in
Fig. 4(a), A1 = {{g0,g2,g4}} and A0 = {{g3,g4}}, assuming A
= {{g0,g2,g4}, {g3,g4}} and x = g0.

(a)

(b)

A0 A1

A0 A1 B0 B1

⊗
⊗

=

B0 B1

U =
A0 B0 A1 B1U U

x x x

x x x

⊗(A0 B0) U
⊗⊗(A1 B0) U (A0 B1)

A1 B1

Fig. 5. Implementation of ⊗ using ZBDDs.

Replacing ∪ with ∩ in (a) gives the ZBDD representations for ∩.
{{g0,g2,g4},{g3,g4}} {{g0,g2,g4}}

{{g0,g2,g4}}{{g3,g4}} {{g0,g2,g4}}{O}

x = g0

A0 A1 B0 B1

⊗ ={{g0,g2,g4}}A1 B1= {{g4}}⊗A0 B1
Fig. 6. An example of the ⊗ operation on ZBDDs.

 Based on this decomposition, we can recursively per-
form many operations on ZBDDs. For example, A ∪ B =
(A0∪A1) ∪ (B0∪B1) = (A0∪B0) ∪ (A1∪B1), as shown in
Fig. 5(a)�. The problem of A ∪ B becomes two smaller
problems, i.e., (A0 ∪ B0) and (A1 ∪ B1). We continue this

� For simplicity, we assume the topmost variables of two operands are the
same in Fig. 5 (a) and (b).

 libraries. We also downloaded an executable for the δ-
biclustering algorithm from the website [2]. We tested the
algorithms on the data sets shown in TABLE III. For creating
the synthetic data set, we followed the procedure in [7]. The
real expression data are from the yeast Saccharomyces cere-
visiae cell cycle [15] and the human B-cell lymphoma [16],
each of which was pre-processed by the method in [2].

 TABLE II
ALGORITHMS FOR EXPERIMENTS

ID Description Ref.
Z Our ZBDD-based pClustering algorithm -
P The original pClustering algorithm [7]
P+ The enhanced pClustering approach without ZBDDs [8]
D The δ-biclustering method [2]

B. Performance Evaluation via Synthetic Data Set TABLE III
DATA SETS FOR EXPERIMENTS

ID # rows # columns Origin Ref.
D-synth 9,000 120 Synthetic [7]
D-yeast 2,884 17 Yeast [15]
D-lymph 4,026 96 Human B cells [16]

0

1000

2000

3000

1 2 3 4 5 6 7 8 9
Row size (x 1000)

R
un

 ti
m

e
(s

)

P
Z

0

1000

2000

3000

20 40 60 80 100 120
Column size

R
un

 ti
m

e
(s

)

P
Z

 (a) (b)
Fig. 7. The execution time comparison for the synthetic data.

 We executed the algorithms P and Z on D-synth to show
the correctness and performance improvements of our algo-
rithm. Fig. 7 shows the execution time. In Fig. 7(a), we var-
ied the number of rows, fixing the number of columns to 30;
in Fig. 7 (b), we instead changed the number of columns
only, keeping the number of rows at 3,000. We observed
that the algorithm Z substantially outperformed the algo-
rithm P with respect to the execution time. We also verified
that the algorithm Z could find all the biclusters predeter-
mined and inserted into the data matrix.

C. Application to Real Gene Expression Data Sets

 We applied the algorithms to D-yeast and D-lymph. Fig.
8(a) shows the time to discover the first 100 biclusters from
D-yeast and D-lymph by the algorithm D and Z. Although
the algorithm D is a heuristic and the algorithm Z is an exact
method, their time efficiency was similar. The algorithm P
could not respond in reasonable time in this experiment.
 Fig. 8(b) is to show that the ZBDDs indeed extend the
scalability of our algorithm. A higher value of δ means more
number of PMBs and thus a larger problem size, since δ is a
clustering threshold indicating a degree of screening [8]. For
D-yeast used in this experiment, the appropriate value of δ
was approximately 40-60, with (MG,ME) ≈ (30,5). Fig. 8(b)
shows that our algorithm can handle the δ values in that
range more efficiently than the algorithms P and P+, which
were applicable only for smaller δ values.

0

500

1000

D Z

Ru
n

tim
e

(s
)

D-yeast D-lymph

0
1000
2000
3000
4000

5 20 40 60 80
delta

Ru
n

tim
e

(s
)

P P+ Z

 (a) (b)
Fig. 8. The execution time comparison for the real expression data.

[5] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein, �Spectral bic

 lustering of microarray data: Coclustering genes and conditions,�
Genome Research, vol. 13, no. 4, pp.703�16, April 2003.

 [6] A. Tanay, R. Sharan, and R. Shamir, �Discovering statistically
significant biclusters in gene expression data,� in Proc. ISMB�02. [7] H. Wang, W. Wang, J. Yang, and P. S. Yu, �Clustering by pat-
tern similarity in large data sets,� in Proc. ACM SIGMOD�02,
pp. 394�405.

IV. CONCLUSION

[8] S. Yoon, C. Nardini, L. Benini, and G. De Micheli, �Enhanced
pClustering and its applications to gene expression data,� in
Proc. 4th IEEE Symposium on Bioinformatics and Bioengineer-
ing, BIBE �04, in press.

 We proposed an efficient technique to find highly co-
herent biclusters on gene expression data. Our method was
leveraged by the zero-suppressed binary decision diagrams,
which can manage massive data efficiently. The experimen-
tal results established the effectiveness of our approach.

[9] M. Sultan et al., �Binary tree-structured vector quantization ap-
proach to clustering and visualizing microarray data,� Bioinfor-
matics, vol. 18, pp. S111�S119, 2002. [10] S. Minato, �Zero-suppressed BDDs for set manipulation in com-
binatorial problems,� in Proc. IEEE/ACM DAC�93, pp. 272�277. REFERENCES

[11] S. Minato, Binary decision diagrams and applications for VLSI
CAD. New York, NY: Kluwer Academic Publishers, 1995.

[1] R. B. Altman and S. Raychaudhuri, �Whole-genome expression

analysis: challenges beyond clustering,� Current Opinion in
Structural Biology, vol. 11, pp.340�347, 2001.

[12] C. Meinel and T. Theobald, Algorithms and Data Structures in
VLSI Design. Berlin, Germany: Springer, 1998.

 [2] Y. Cheng and G. M. Church, �Biclustering of expression data,�
in Proc. ISMB�00, pp. 93�103.

[13] Available: http://vlsi.colorado.edu/~fabio/CUDD/
[14] Available: http://www.ee.pdx.edu/~alanmi/research/extra.htm

 [3] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini, �Discovering
local structure in gene expression data: The order-preserving
submatrix problem,� in Proc. RECOMB�02.

[15] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M.
Church, �Systematic determination of genetic network architec-
ture,� Nature Genetics, vol. 22, 281�285, 1999.

 [4] G. Getz, E. Levine, and E. Domany, �Coupled two-way cluster-
ing analysis of gene microarray data,� Proc. Natl. Acad. Sci USA,
vol. 94, pp.12079�12084, 2000.

[16] A. Alizadeh et al., �Distinct types of diffuse large b-cell lym-
phoma identified by gene-expression profiling,� Nature, vol.
4051, pp. 503�511, 2000.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	code: 0-7803-8439-3/04/$20.00©2004 IEEE
	01: 2925
	header: Proceedings of the 26th Annual International Conference of the IEEE EMBS
San Francisco, CA, USA • September 1-5, 2004
	02: 2926
	03: 2927
	04: 2928

