
Abstract�Clustering has been one of the most popular 
techniques to analyze gene expression data. The biclustering 
method is two-dimensional clustering of genes and experimen-
tal conditions to identify a group of genes that display a coher-
ent behavior in some conditions. Although this method may 
provide additional insight overlooked by traditional clustering 
techniques, it is often computationally expensive to perform 
biclustering on practical gene expression data. In this work, we 
propose a novel biclustering technique that exploits the zero-
suppressed binary decision diagrams (ZBDDs) to cope with such 
a computational challenge. The ZBDDs are a variant of the 
reduced ordered binary decision diagrams that have found a 
widespread use in optimization and verification of VLSI digital 
circuits. Our experimental results demonstrate that the ZBDDs 
can indeed extend the scalability of our biclustering algorithm 
substantially, thus enabling us to apply it to a wider spectrum 
of gene expression data. 
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I.  INTRODUCTION 

 
 Clustering is an unsupervised learning technique that 
has become a basic tool for researchers in the field of gene 
expression analysis. Although there is mature statistical lit-
erature on clustering, DNA microarray data has sparked the 
development of multiple new methods [1]. In particular, the 
biclustering technique [2,3,4,5,6,7] is one of the most prom-
ising innovations in this area [1]. The term biclustering was 
originally used to describe simultaneous clustering of both 
row and column sets in a data matrix [2]. The δ-biclustering 
[2] was the first application of this technique to gene expres-
sion data analysis. The δ-biclustering approach also included 
the notion of subspace clustering [7] to define a bicluster, 
which corresponds to a subset of genes displaying a coher-
ent behavior under a subset of conditions. The term biclus-
tering thus refers to the technique of two-dimensional sub-
space clustering.  
 The biclustering method may give additional biological 
insight that has been overlooked by conventional clustering 
approaches. For example, biclusters are more compatible 
with our understanding of cellular processes than other 
�global� clustering methods. This is because we often ex-
pect subsets of genes to be co-regulated and co-expressed 
under certain conditions, but to behave almost independ-
ently under other conditions [3]. Additionally, biclusters can 
overlap with each other, unlike more traditional hierarchical 
clusters. The biclustering method may thus be useful in rec-
ognizing reusable genetic �modules� that are mixed and 

matched in order to create more complex genetic responses 
[1]. 
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 Given the general notion of a bicluster, its formal defini-
tion varies depending on the clustering strategies applied. 
Two definitions are particularly related to our work. The δ-
biclustering approach [2] defined a bicluster as a submatrix 
(of the complete data matrix) having a mean squared resi-
due (MSR) score less than a given threshold. The pCluster-
ing technique [7] modeled a bicluster using the pScore that 
can summarize similarity between every pair of genes and 
experiments in the bicluster. These two definitions are in 
fact closely related. The pClustering method models more 
homogeneous clusters [7], and thus typically finds biclusters 
with lower MSR scores, meaning more coherence [8]. 
 The cluster search problem is in general NP-hard [9], 
and the biclustering problem is no exception [2]. Most bi-
clustering approaches including δ-biclustering therefore 
employed a heuristic to find some biclusters. In contrast, the 
pClustering approach employed a combinatorial approach to 
discover all biclusters on a given data matrix. Consequently, 
the δ-biclustering algorithm is more efficient, although the 
biclusters found by the pClustering method are better in 
terms of MSR scores, the measure of coherence [8]. 
 In this work, we propose a clustering technique to find 
more coherent biclusters than the δ-biclustering method [2], 
without compromising efficiency. Our technique can find all 
biclusters existing on a given data set, too. The novelty of 
our method lies in the use of the zero-suppressed decision 
diagram (ZBDDs) [10], which can symbolically represent 
massive data and implicitly manipulate them.  
 

II. PRELIMINARIES 
 
A. Definition of Bicluster and Biclustering Problem 
 

We assume the reader is familiar with DNA microarray 
technologies [1]. To model more coherent biclusters than δ-
biclustering, we use the concept of pScore [7]. Then our 
definition of bicluster is equivalent to that of pCluster [7]. 
The pScore of 22× matrix X = 

  is defined as  


dc
ba

pScore (X) = |(a � b) � (c � d)| = |(a � c) � (b � d)|.     (1) 
 

Let UG be the set of genes (rows) and UE be the set of ex-
periments (columns) in a gene expression data matrix D ∈ 

 Suppose G and E are two sets such that G ⊆ U.EG UU ×R G 
and E ⊆ UE. The pair B = (G, E) denotes a submatrix of D, 
as shown in Fig. 1. The pair B = (G, E) is called bicluster if 
we have pScore (X) δ≤  for any  submatrix X in B and 
some

22×
0≥δ .                                                             
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 An important property is that a subcluster of a pCluster 
is another pCluster for the same δ [7].  

                               E: a set of experiments (E ⊆ UE) 
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      G: a set of genes 
(G ⊆ UG) 

Bicluster B = (G, E) Data matrix D = (UG,UE) 

Fig. 1. The definition of bicluster. 

 Given a parameter triplet (δ, MG, ME) representing a 
cluster threshold and a minimal number of genes and ex-
periments, the objective is to find all pair B = (G, E) such 
that (1) B is a bicluster with respect to δ; (2) B is not too 
small, namely |G|  M≥ G and |E|  M≥ E; (3) B is maximal in 
the sense that its is not contained by others. 
 Unless otherwise stated, we use G and E to denote the 
gene and experiment set in a bicluster B = (G, E), respec-
tively, as shown in Fig. 1.  
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Fig. 2. Horizontal and vertical PMBs and seeds. 

 
C. Pairwise Maximal Biclusters (PMBs) 
 

 The biclustering problem is in general intractable [2], 
but we can find all maximal biclusters in a  or n×2 2×n  
matrix in O(nlogn) time [7]. Thus, we first find such bi-
clusters, and then derive other biclusters from them. We call 
these special biclusters pairwise maximal biclusters (PMBs). 
The details on producing PMBs are beyond the scope of this 
paper, and we refer the interested to [2, 7]. 
 As shown in Fig. 2, a horizontal PMB is a bicluster 
composed of two genes {gi, gj} and a maximal (but not 
unique) set of experiments in which the two genes show a 
similar behavior. We refer to this maximal set as horizontal 
seed for genes {gi, gj} or Em{gi, gj}. For given {gi, gj}, there 
can be multiple Em{gi, gj} [7], and we denote by {Em{gi, gj}} 
the set of all those Em{gi, gj}. By switching the roles of 
genes and experiments, vertical PMB and vertical seed are 
similarly defined. 
 

 
D. Derivation of Biclusters from PMBs 
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Fig. 3. The procedure to calculate G from E. 

 

 To find a bicluster (G, E), we first derive E from hori-
zontal PMBs and then calculate G from that E and vertical 
PMBs. This is due to the following observations in previous 
work: 

1. E is a subset of a certain horizontal PMB [7, 8]. 
2. G is related to E and vertical PMBs through an ana-

lytical formula [8]. 
(It is typically less efficient to first get G and then calculate 
E from it, since |UG| >> |UE| in typical gene expression data.)   
 We can discover any E by removing redundant elements 
from a certain horizontal seed. This is because for any E 
there exists a horizontal seed Em{⋅} such that E ⊆ Em{⋅} [7, 
8]. We can efficiently perform this removal by an algorithm 
on the trie, a compact structure for strings [8]. 

For example, consider the bicluster in Fig 1. Assuming each 
vertical seed Gm{·} is unique for simplicity, Fig. 3 depicts 
the procedure to calculate G from E. 
 The worst-case complexity of an algorithm to evaluate 
(2) is exponential in the number of columns in a data matrix. 
We therefore propose a new approach to better handle this 
computational challenge in the next section. 

 To calculate G from E and vertical PMBs, we use the 
following formula [8]: 
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III. METHODOLOGY 

 where ⊗ is a pairwise intersection operator on two sets of 
subsets X and Y:� A. ZBDD-based Representation of PMBs 

 

X ⊗ Y = {X ∩ Y | ∀X∈X and ∀Y∈Y}.           (3)  

 We represent the vertical and horizontal PMBs by the 
zero-suppressed binary decision diagrams (ZBDDs) [10,11]. 
When ZBDDs are used, complexity of a problem no longer 

 

                                                           
� For example, {{0,1,2}, {2,3,4}} ⊗ {{0,2}, {4,5}} = {{0,2}, {2}, {4}}. 



depends on the size of the problem itself, but on that of its 
ZBDD representations, which often have mild growth with 
the problem size. Thus, ZBDDs may be used to efficiently 
solve many practical instances of intractable problems [11]. g2
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Fig. 4. ZBDD-based representations of PMBs.  
The solid and dotted lines mean the 1-edge and 0-edge, respectively. 

TABLE I 
VERTICAL PMBS SHOWN IN FIGURE 4 

 

Figure Vertical PMBs (Gm{ei, ej}, {ei, ej}) 
4 (a) ({g0, g2, g4}, {e1, e3}), ({g3, g4}, {e1, e3}) 
4 (b) ({g0, g2, g4}, {e0, e3}), ({g2, g4}, {e1, e2}) 

 In many combinatorial problems, we need to manipulate 
sets of combinations [12]. Let B = {0,1}. A combination of 
n elements is an n-bit vector (x1,�,xn)∈Bn, where the i-th 
bit reports whether or not the i-th element is contained in the 
combination. Thus, a set of combinations can be represented 
by a Boolean function f: Bn → B. A combination given by 
the input vector (x1,�,xn) is contained in the set if and only 
if f(x1,�,xn) = 1. In most combinatorial applications, the set 
of combinations are sparse in the following aspects: 

• The sets contain only a small fraction of the 2n pos-
sible bit vectors, and 

• Each bit vector in the sets has many zeroes. 
 By exploiting both aspects, the ZBDDs provide a repre-
sentation that is very efficient for representing and manipu-
lating large-scale sets of combinations [10]. The reader can 
refer to [10, 11] for a more extensive treatment of ZBDDs. 

 

process until encountering the terminal cases. The partial 
results are returned from the bottom, and eventually the final 
answer is available at the topmost vertex.  

  Assuming the set of all genes is UG, each Gm{⋅} corre-
sponds to a combination of |UG| elements, and can be con-
verted to a |UG|-bit vector. For instance, Gm{e1,e3} = 
{g0,g2,g4} becomes (10101) assuming UG = {g0,g1,g2,g3,g4}. 
There can be multiple Gm{e1,e3}, and suppose we have an-
other Gm{e1,e3} = {g3,g4} which corresponds to (00011). 
The set of combinations {(10101), (00011)} can then be 
represented by the ZBDDs drawn in Fig. 4(a). The common 
elements between two sets are shared in the ZBDDs, as 
shown Fig. 4(b).   

 We can similarly compute A ⊗ B by recursively solving 
and merging four subproblems: (A0⊗B0), (A1⊗B0), (A0⊗B1) 
and (A1⊗B1). Fig. 5(b) depicts the decomposition for the 
topmost variable. The right subgraph includes A1⊗B1, and 
the left subgraph contains the others, since only A1⊗B1 can 
contain a subset with the topmost variable. For example, let 
A={{g0,g2,g4},{g3,g4}} and B={{g0,g2,g4}} from the exam-
ples in Fig. 4. Then A⊗B={{g0,g2,g4},{g4}}, as in Fig. 6. 

 
III. EXPERIMENTAL RESULTS   

B. Efficient Implementation of ⊗ Operator through ZBDDs A. Experiment Setup 
  

 We can implement the ⊗ operator with ZBDDs using 
basic set operators such as ∩ or ∪. They are recursively 
defined on ZBDDs with the trivial terminal cases such as X 
∩ ∅ = ∅ or Y ∪ ∅ = Y [10, 11]. 

 The algorithms for the experiment are listed in TABLE II. 
We implemented the algorithms Z, P, and P+ with ANSI 
C++ on a 3.02 GHz Linux machine with 4 GB RAM. We 
used the CUDD [13] and EXTRA [14] packages  for  ZBDD 
 

 We first show how to decompose a set of subsets into 
two smaller sets. Let A denote a set of subsets. We decom-
pose A into A1 and A0, such that A1 has only those subsets 
containing a certain variable x, and A0 includes all the other 
subsets. In the ZBDD context, we can do this decomposition 
by recognizing two subgraphs of the topmost vertex: assum-
ing the vertex represents x, the subgraph connected by the 
solid (dotted) line corresponds to A1 (A0). For example, in 
Fig. 4(a), A1 = {{g0,g2,g4}} and A0 = {{g3,g4}}, assuming A 
= {{g0,g2,g4}, {g3,g4}} and x = g0. 
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Fig. 5. Implementation of ⊗ using ZBDDs.  

Replacing ∪ with ∩ in (a) gives the ZBDD representations for ∩. 
{{g0,g2,g4},{g3,g4}} {{g0,g2,g4}}

{{g0,g2,g4}}{{g3,g4}} {{g0,g2,g4}}{O}

x = g0

A0 A1 B0 B1

⊗ ={{g0,g2,g4}}A1   B1= {{g4}}⊗A0   B1  
Fig. 6.  An example of the ⊗ operation on ZBDDs. 

 Based on this decomposition, we can recursively per-
form many operations on ZBDDs. For example, A ∪ B = 
(A0∪A1) ∪ (B0∪B1) = (A0∪B0) ∪ (A1∪B1), as shown in 
Fig. 5(a)�. The problem of A ∪ B becomes two smaller 
problems, i.e., (A0 ∪ B0)  and  (A1 ∪ B1).  We  continue  this  

                                                           
� For simplicity, we assume the topmost variables of two operands are the 
same in Fig. 5 (a) and (b).  

  



 libraries. We also downloaded an executable for the δ-
biclustering algorithm from the website [2]. We tested the 
algorithms on the data sets shown in TABLE III. For creating 
the synthetic data set, we followed the procedure in [7]. The 
real expression data are from the yeast Saccharomyces cere-
visiae cell cycle [15] and the human B-cell lymphoma [16], 
each of which was pre-processed by the method in [2]. 

 TABLE II 
ALGORITHMS FOR EXPERIMENTS 

 

ID Description Ref. 
Z Our ZBDD-based pClustering algorithm - 
P The original pClustering algorithm [7] 
P+ The enhanced pClustering approach without ZBDDs [8] 
D The  δ-biclustering method [2]   

B.  Performance Evaluation via Synthetic Data Set TABLE III  
DATA SETS FOR EXPERIMENTS 

 

ID # rows # columns Origin Ref. 
D-synth 9,000 120 Synthetic [7] 
D-yeast 2,884 17 Yeast [15] 
D-lymph 4,026 96 Human B cells [16] 
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Fig. 7. The execution time comparison for the synthetic data. 

 

 We executed the algorithms P and Z on D-synth to show 
the correctness and performance improvements of our algo-
rithm. Fig. 7 shows the execution time. In Fig. 7(a), we var-
ied the number of rows, fixing the number of columns to 30; 
in Fig. 7 (b), we instead changed the number of columns 
only, keeping the number of rows at 3,000. We observed 
that the algorithm Z substantially outperformed the algo-
rithm P with respect to the execution time. We also verified 
that the algorithm Z could find all the biclusters predeter-
mined and inserted into the data matrix. 
 
C. Application to Real Gene Expression Data Sets 
 

 We applied the algorithms to D-yeast and D-lymph. Fig. 
8(a) shows the time to discover the first 100 biclusters from 
D-yeast and D-lymph by the algorithm D and Z. Although 
the algorithm D is a heuristic and the algorithm Z is an exact 
method, their time efficiency was similar. The algorithm P 
could not respond in reasonable time in this experiment. 
 Fig. 8(b) is to show that the ZBDDs indeed extend the 
scalability of our algorithm. A higher value of δ means more 
number of PMBs and thus a larger problem size, since δ is a 
clustering threshold indicating a degree of screening [8]. For 
D-yeast used in this experiment, the appropriate value of δ 
was approximately 40-60, with (MG,ME) ≈ (30,5). Fig. 8(b) 
shows that our algorithm can handle the δ values in that 
range more efficiently than the algorithms P and P+, which 
were applicable only for smaller δ values. 
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Fig. 8. The execution time comparison for the real expression data. 
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