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Abstract—Many portable systems deploy operating systems
(OS) to support versatile functionality and to manage resources,
including power. This paper presents a new approach for using OS
to reduce the power consumption of IO devices in interactive sys-
tems. Low-power OS observes the relationship between hardware
devices and processes. The OS kernel estimates the utilization
of a device from each process. If a device is not used by any
running process, the OS puts it into a low-power state. This paper
also explains how scheduling can facilitate power management.
When processes are properly scheduled, power reduction can
be achieved without degrading performance. We implemented a
prototype on Linux to control two devices; experimental results
showed nearly 70% power saving on a network card and a hard
disk drive.

Index Terms—Interactive systems, operating systems, power
management, scheduling.

I. INTRODUCTION

DUE TO rapid advance in hardware, electronic systems sup-
port wide ranges of applications and often deploy oper-

ating systems, such as Windows, Palm OS and Linux in per-
sonal computers, personal digital assistants (PDAs) and thin
clients. Operating systems (OS) have two major roles: providing
an abstraction and managing resources. A file system is an ab-
straction of storage; programs create files without knowing the
number of cylinders on hard disks. Similarly, programs transfer
files through networks without considering the bandwidth of the
network cards. An OS also manages resources, such as CPU
time, memory allocation, and disk quota. Power is a precious re-
source; hence, it should be properly managed. Reducing power
consumption has become one major goal in designing electronic
systems. Lower power consumption prolongs operation hours of
battery-powered systems. High power raises temperatures and
deteriorates reliability. Rising concern about the environmental
impact of electronic systems further highlights the importance
of power reduction [1].

Power-reduction techniques can be classified into static
and dynamic [2]. Static techniques are applied at design time,
such as compilation and synthesis for low power. Dynamic
techniques are applied at run time based on the variations
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in workloads. These techniques are calleddynamic power
management(DPM) [3]; DPM changespower statesat
run time. When high performance is required, DPM allows
hardware to consume more power; otherwise, the hardware
enters a lower-power state. DPM techniques include dynamic
voltage/frequency scaling (DVS/DFS) and clock gating. DVS
and/or DFS have been implemented in commercial products
such as Transmeta’s Crusoe processors [4] and the StrongARM
processors [5]. In addition to processors, DPM can reduce
power of input–output (IO) devices [6], such as hard disks,
network cards, and displays. IO devices are different from
processors in two major ways. First, they often have fewer
power states; many devices have only two power states.
Second, they take much longer time to change power states,
up to several seconds.When an IO device is not used (also
called idle [7]), it can enter a low-powersleeping state; this
is called “shut down.” When a device is being used (busy), it
has to stay in a high-powerworking state. Most existing power
management schemes consider whether a device is idle or busy,
regardless of the reason it is idle or busy. Hardware devices
are busy to serve requests from software; software provides
valuable information for power reduction. Such information is
available during compilation or at run time. Recently, power
reduction through compilers and OS has attracted great interest
in research community [8]. This paper concentrates on saving
the power of IO devices using shutdown techniques through
operating systems.

In this paper, we present a new method in OS to reduce the
power of IO devices. We target single-processor interactive sys-
tems such as laptop computers. Our approach is divided into
two parts. First, the OS kernel observes the relationship between
devices and processes to estimate the utilization of each de-
vice. When the utilization is low, the OS puts this device into
a sleeping state. Second, the OS provides a system call that al-
lows application programs to specify their future hardware re-
quirements. Then, the OS schedules processes to reduce power
without degrading performance. We implemented a prototype in
Linux on a notebook computer; it saved nearly 70% power on
a Linksys Ethernet card and on a Hitachi 2.5″ hard disk drive.
This paper has three contributions. First, we point out the im-
portance to distinguish individual processes for power manage-
ment. Second, we propose power-aware scheduling for IO re-
quests. Finally, we implement our approach in Linux and obtain
significant power saving of two IO devices.

This paper is organized as follows. Section II provides the
background of OS resource management and power manage-
ment. Section III describes related work. In Section IV, we
present a new method to estimate device utilization in OS kernel

1063-8210/02$17.00 © 2002 IEEE
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Fig. 1. Layers of computers.

and the condition to shut down a device. Section V explains
how to improve power management by scheduling. We propose
a low-power scheduling algorithm for interactive systems in
Section VI. Section VII describes the implementation on Linux.
Our experimental results are shown in Section VIII. Finally,
Section IX concludes the study and points out directions for
future research.

II. BACKGROUND

A. Resource Management by Operating Systems

Conceptually, computers are structured in layers as shown
in Fig. 1 [9]. At the bottom, there are hardware components,
such as processors, memory, and IO devices. OS communicates
with the hardware through privileged instructions and basic IO
system (BIOS) calls. OS provides services such as file systems,
process control, and memory management. User programs ac-
cess hardware by issuingsystem callsthrough OS. An OS man-
ages resources, including CPU time, memory allocation, and
disk space.

When a user starts a program, aprocessis created. This
process occupies memory and takes CPU time; it may also read
or write files to a hard disk. A process is an instantiation of a
program. Fig. 2 shows the life of a process [9]. It is created,
runs, and finally terminates. Most operating systems support
multiprogramming: many processes can execute concurrently
and share resources. Two processes areconcurrent if one
starts before the other terminates; namely, their execution
times overlap. When a process isalive (between its creation
to termination), operating systems manage when it occupies
a processor, how much memory it possesses, which files it
opens, and which IO devices it uses. Through the services
from OS, each process has the illusion that the whole machine
is dedicated to it. When multiple processes require the same
resource, such as CPU or hard disks, the operating systems de-
termine their access order; this is calledscheduling. Commonly
adopted scheduling schemes include round-robin, priority, and
first-in–first-out (FIFO) [9].

B. Dynamic Power Management

Most computers do not operate at their peak performance
continuously. Some devices are idle even when other devices
are busy. Examples of IO devices on personal computers include
hard disk drives, network interface cards, and displays. Occa-
sional idleness provides opportunities for power reduction [7].
DPM puts idle devices into sleeping states (sometimes called

Fig. 2. Process states.

standby) to reduce their power consumption [3]. DPM provides
the illusion that devices are always ready to serve requests (ab-
straction) even though they occasionally sleep and save power
(management). DPM can be controlled by hardware, software,
or the collaboration of both.

1) Concept of Power Management:DPM changes the power
states of a device based on the variations of workloads. A work-
load consists of the requests generated from all processes. Work-
loads on a disk are read and write commands; these commands
may come from a text editor such as or a compiler such
as . Workloads on a network card are packets; these packets
may come from or .

Fig. 3 illustrates the concept of power management. When
there are requests to serve, the device is busy; otherwise, the de-
vice is idle. In this figure, the device is idle betweenand .
When the device is idle, it can enter a low-power sleeping state.
Changing power states takes time;and are the shutdown
and wakeup delays. These delays can be substantial: waking up
a disk or a display takes several seconds, or hundreds of millions
of processor cycles. Furthermore, waking up a sleeping device
may take extra energy. In other words, power management has
overhead. If there were no overhead, power management would
be trivial—shutting down a device whenever it is idle. Unfortu-
nately, there is overhead; a device should sleep only if the saved
energy can justify the overhead. The rules to decide when to shut
down a device are called power-managementpolicies.

2) Break-Even Time:The break-even time( ) is the
minimum length of an idle period to save power [6]; it depends
on the device and is independent of requests or policies (Table I
summarizes the symbols and their meanings in this paper).
Consider a device whose state-transition delay isand the
transition energy is . Suppose its power in the working and
sleeping states is and respectively. Fig. 4 shows two
cases: keeping the device in the working state or shutting it
down. The break-even time makes energy in both cases equal;
it can be found by . Also, the
break-even time has to be larger than the transition delay;
therefore

(1)

For simplicity of explanation, this article assumes that a de-
vice has one working and one sleeping states. It serves requests
only in the working state.

Example 1: Fig. 5 shows the power consumed by a 2.5″ Hi-
tachi hard disk. It wakes up from the sleeping state, serves re-
quests, and then becomes idle.
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Fig. 3. Sleep during an idle period.

C. Scheduling and Power Management

Running processes generate requests for a device; their exe-
cution orders directly affect the arrival times of requests, hence,
the length of idle periods.

1) Concept of Jobs:In this paper, a job is defined as a unit
to finish a specific task and it can be scheduled to start at a spe-
cific time. Consider a user running a text editor; this editor for-
mats text, checks spelling, saves contents, and so on. Format-
ting, spell checking, and saving are three distinct jobs. Another
example is an email reader that downloads email from a server.
Downloading is a job because it can be scheduled to occur pe-
riodically.

2) Precedence and Timing Constraints:Consider three in-
dependent processes , , and . Suppose each process
has three jobs: has jobs , , and here .
There are nine jobs to schedule. Because and belong
to the same process, must execute before . Similarly,

must execute before . These orders are calledprece-
dence constraints[10]. Precedence constraints are expressed as
directed acyclic graphs (DAG): where is a subset
of jobs and are directed edges connecting jobs. If two jobs,
and , are connected by an edge , then (pre-
decessor) must execute before (successor). The precedence
graph of the nine jobs is shown in Fig. 6.

Another type of constraints istiming constraints: a job has
to finish before itsdeadline. Deadlines can be classified into
three categories: firm, soft, and on-time [10]. Fig. 7 illustrates
the differences between them. Suppose there is a “value” if a
job finishes before the deadline. For a firm deadline, the value
drops sharply if the job finishes after the deadline. Examples of
firm deadlines are flight control systems; finishing a job after
the deadline can lead to severe damages or even loss of lives.
For a soft deadline, the value decreases more smoothly after the
deadline. If a job has an on-time constraint, it should finish near
the deadline, neither too early nor too late.

3) Scheduling Jobs for Power Management:Suppose three
jobs, , , and need a specific device. For simplicity,
we assume that each job takesto execute. Fig. 8 shows two
schedules. A black rectangle indicates that this job needs the
device. One difference between the two schedules is the lengths
of idle periods. In the first schedule, the device is idle three
times, each of length ; in the second schedule, the device is
idle for . The idle period in the second schedule is “continuous
and long.” If the break-even time of this device is betweenand

, power management saves power only in the second schedule.

TABLE I
SYMBOLS AND THEIR MEANINGS

Fig. 4. Keeping the device in the working state (left) and shutting down the
device (right). The energy is equal if the idle time ist .

Fig. 5. State transitions of a Hitachi hard disk.

Fig. 6. Precedence of three independent processes.

4) Scheduling in Inactive Systems:In personal computers,
some IO requests are scheduled to occur in the future. For ex-
ample, text editors often have “autosavers” that save the con-
tents periodically. An email reader retrieves emails from a mail
server and stores them on a local hard disk. Both the editor and
the reader generate periodic requests for a local hard disk. If
their requests are not arranged properly, the disk has more and
shorter idle periods. If the requests are arranged so they arrive at
approximately the same time, the disk can remain idle and sleep
for longer durations.
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Fig. 7. Three types of deadlines.

Fig. 8. Two schedules of three independent processes.

III. RELATED WORK

Run-time power reduction using software techniques can be
achieved by operating systems or application programs. Oper-
ating systems can reduce the power of IO devices, processors,
or memory systems. On the other hand, application programs
can adjust their quality of service for available power budgets.

A. OS-Based Power Reduction

1) Power Management on IO Devices:These policies can
be divided into three categories: timeout, predictive, and sto-
chastic. A detailed survey is available in [11]; another study
compares both power saving and performance impact of some
policies [12], [13].

Timeout is widely used in commercial products. A timeout
policy shuts down a device after it is idle longer than a timeout
value, . For the example in Fig. 3, a timeout policy shuts down
the device at . These policies assume that if a device is
idle longer than then it will remain idle for at least [7].
When equals to the break-even time, the device consumes at
most twice power compared to a perfect policy; this is called
a 2-competitive policy [14]. An obvious drawback of timeout
policies is the wasted energy during the timeout period ifis
large.

Predictive policies explicitly predict the length of an idle pe-
riod before it starts. If the predicted length is larger than, the
device is shut down immediately after it becomes idle. These
policies compute the length of an idle period according to pre-
vious idle and busy periods [1], [15], [16]. The major problem
is that some policies have low prediction accuracy.

Stochastic policies use stochastic models for request gener-
ation and device state changes. Under such formulation, power
management is a stochastic optimization problem. These poli-
cies can explicitly trade off between power saving and perfor-
mance while timeout and predictive policies cannot. Stochastic
policies include discrete-time and continuous-time stationary

models [17], [18], time-indexed semi-Markov models [19], Petri
Nets [20], and nonstationary models [21]. A common problem
is that most policies require the characteristics of the work-
loads for off-line optimization. There is no universally adopted
method to adjust at run time if the workload behavior changes.

2) Low-Power Scheduling for Processors:Instead of pas-
sively predicting the lengths of idle periods, scheduling for low
power actively “controls” their lengths by rearranging job ex-
ecution. Scheduling for behavioral synthesis is investigated in
[22] and [23]. The former uses scheduling and guarded evalua-
tion to reduce useless computation; the latter schedules compu-
tation to increase operand reuse. In [24], the authors propose
scheduling for pipelined systems; they derive the conditions
when scheduling with buffer insertion reduces power. Several
studies investigate the relationship between scheduling and dy-
namic voltage scaling [25]–[27]. In [28], the authors discuss the
effect of voltage scaling and quality of service.

3) Reducing Memory Power:In addition to IO devices
and processors, memory also consumes significant amount of
power. Reducing memory power can be achieved by selecting
different power-performance modes at compile time or run
time [29]. In [30], the authors study how page allocation affects
energy and performance.

B. Adaptive Programs for Low Power

A recent approach brings the awareness of power consump-
tion to application programs, for example, by providing pro-
gramming interfaces between application programs and oper-
ating systems [31], [32]. Application programs are modified to
trade off between quality of service and available power budgets
[33]. While this approach is promising, it requires further study
to develop a set of application programming interfaces (API)
that can be widely accepted.

IV. PROCESS-BASED POWER MANAGEMENT

OS kernel has the information about process execution and re-
quest generation; thus, power management should be controlled
by OS kernel. This section presents a new approach to use kernel
information for estimating device utilization and shutting down
idle devices.

A. Request Generation Models

Existing DPM policies (see Section III-A-1) do not distin-
guish request sources: requests are generated by an abstract en-
tity called arequester[17]. These policies implicitly assume that
the arrival of requests, regardless of their sources, is sufficient
for predicting the length of future idle periods.

In reality, requests are generated by running processes.
Studies show that different processes consume different
amounts of power [34], [35]. Process-based power manage-
ment is first proposed in [36]. Processes provide valuable
information for predicting the lengths of idle periods. Processes
have states; Fig. 2 shows five process states, includingready,
running, andwaiting states. A process generates new requests
in the running state. Operating systems know the current state
of each process. Several factors affect the state of a process.
A process enters the running state after being selected by the
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process scheduler; a process can wait for synchronization or
other events; a process can also stop running and terminate.

When a process is created, a new requester is born. We found
that parent processes do not provide enough information about
request generation of their child processes. This is because most
child processes execute different programs (in UNIX by calling

) right after they are born (by ). On the other hand,
when a process terminates, it cannot generate new requests;
process termination is important for predicting future request
generations. We discovered that most processes have short life-
times. Fig. 9 is the cumulative distribution of process lifetimes.
While the percentages change in different workloads, the shape
of the curve is likely to remain the same. Consequently, it is im-
portant to detect process termination for power saving.

We also observed that a program which generates many IO
requests within short time periods often have short lifetimes; ex-
amples are and . Some other programs, such as ,
generate requests less frequently and have longer lifetimes. Dae-
mons like have long lifetimes, possibly as long as the
computer is on; they rarely generate IO requests. Fig. 10 illus-
trates our discovery.

Based on these observations, we adopt a new model for re-
quest generations. It differs from existing models in three ways:
1) It separates request sources by processes; 2) it detects the ter-
mination of a process; and 3) it considers how often a process
executes. This model incorporates additional information to pre-
dict the idleness of a device.

B. Device Utilization

Because a process can generate requests when it is running,
the relationship between a process and a device can be estimated
by two factors 1) how often the process generates requests when
it is running and 2) how often the process runs. They are repre-
sented by the device utilization and processor utilization. We
use to indicate how often process uses device . We
use to estimate how often this process runs. The range of
is the number of devices; this is determined by the system con-
figuration. The range of is the number of processes currently
under consideration. All quantities are computed at run time.
The following paragraphs explain our heuristics to estimate de-
vice utilization based on per-process information.

1) Device Utilization: Some processes are “CPU-
burst”—using CPU mostly; some processes are “IO-
burst”—using IO devices mostly [9]. Some other processes
change between CPU-burst and IO-burst. We explain how to
estimate device utilization for either CPU-burst or IO-burst
processes; then we explain how to handle processes that
change between two kinds of bursts. The device utilization by
a process, , is computed as the reciprocal oftime between
requests, . It is the duration when a device is idle while
a process is running. It is the time between the completion
of the previous request and the arrival of the next request.
Fig. 11 shows an example of two processes. The first process
is IO-burst and generates many requests while it is running; its

is shorter and its device utilization is higher. In contrast, the
second process rarely generates requests and itsis larger.

There are various ways to use for estimating , for
example, using the latest or using the running average.

Fig. 9. Most processes have short lifetimes.

Fig. 10. Programs that generate intensive requests usually have short lifetimes.

Fig. 11. Time between requests of two processes.

The former considers only one while the later consider
all s; neither is appropriate. Using the latest may make

change quickly and possibly unstable; using the running
average causes to update too slowly when the run-time
behavior of a process changes. We usediscounted average(also
called exponential average [16]) as a balance between these two
methods. Discounted average puts more weight on the latest

but also considers previous s. Suppose requests have
been generated by this process andis latest time between
requests [between the th and the th requests]. Let
be the estimated time between requests after theserequests
We compute by this formula

(2)

Here is a constant between zero and one. The value ofde-
termines how much “weight” is put on the latest . When is
large, we consider the latest as more important in estimating
the overall utilization. For example, whenis one, we consider
only the latest and completely ignore earlier s. When
is small, more emphasis in placed on earliers.

Next, we explain how to estimate the device utilization if a
process changes from IO-burst to CPU-burst. When a process
changes from IO-burst to CPU-burst, its device utilization is
overestimated during the CPU-burst period. This can be illus-
trated in the following example.

Example 2: Consider running a spreadsheet program with
four stages illustrated in Fig. 12. It reads data from a hard disk
(IO-burst during to ), gets user inputs, computes the results
(CPU-burst during to ), and writes the results back to the
disk (IO-burst during to ). Since updating s is triggered
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Fig. 12. A process with four phases.

by requests, the device utilization is overestimated duringto
because is not updated.
The above example suggests the need to adjust the estimation

of device utilization when the process changes from IO-burst to
CPU-burst. We define as the time since process gen-
erated the last request for device. The adjusted estimation
should be the same as when is small; the estimation
should be zero when is large. This “small” and “large”
are relative to the parameters of this device. We choose the
break-even time of the device as the reference and use an ad-
justment function as

(3)

When a process changes from IO-burst to CPU-burst,is
large so becomes small. In contrast, when a process changes
from CPU-burst to IO-burst, is small to make almost
one. This is desirable because IO-burst requests are accurately
estimated. After the adjustment, (2) is replaced by the new uti-
lization estimation

(4)

2) Processor Utilization:While considers the interac-
tion between a device and a process, it ignores other processes.
A process may generate many requests while it is running. How-
ever, this process may rarely execute because, for example, it has
a low priority or it is triggered by infrequent events. From the
device’s point of view, this process rarely generates requests.
This effect is considered by including the processor utilization
of the process.

Processor utilization of process is represented by . It
is the percentage of CPU time occupied by this process in a
sliding window because discounted average does not reflect
processor utilization. Discounted average underestimates pro-
cessor utilization for an IO-bounded process. When a process
is IO-bounded, it uses CPU only momentarily each time it
is selected by the process scheduler. While correctly
indicates that this process has short and high utilization
on this device, the same method does not indicate how often
and how long this process executes. Consequently, we use the
percentage of CPU time on this process to compute

(5)

This formula uses a sliding window; only processes running
in this window are considered. The window size should be large
enough to include most processes; on the other hand, it should be
sufficiently small to quickly reflect changes in process behavior.

Fig. 13. Three examples of device utilization.

3) Aggregate Device Utilization:The aggregate utilization
for device is ; it can be computed as the summation of
device utilization and processor utilization from all processes

(6)

Example 3: Fig. 13 shows three examples to compute the de-
vice utilization. In the first example, only process is running;
it generates requests every. In the second example, two pro-
cesses are running; each generates requests every. In the third
example, only generates request. The time between requests
for each process in the three examples is. In the first example,

is one; in the second and third example, .
The aggregate utilization for each example is ,

, and respec-
tively. This reflects accurately how often the device receives a
request.

C. Shutdown Condition

A device is shut down when its aggregate utilization is small.
Since is the minimum length of an idle period to save power
of device , the shutdown condition is determined based on

. The shutdown condition is

(7)

where is the “aggressiveness factor.” If is one, a device is
shutdown when the utilization is smaller than ; namely,
the time between requests from all processes is longer than.
When is smaller than one, the power manager is “conserva-
tive” because it shuts down the device when the utilization is
lower; this may lose opportunities to save power. In contrast,
when is larger than one, the power manager is “aggressive”
because it “takes chances” to save power by shutting down the
device even when the utilization is still high. Whenis too
large, however, the power manager shuts down the device too
often. State-transition delays can significantly degrade perfor-
mance; furthermore, state-transition energy may make actually
increase power. Hence, we suggest avalue equal to or slightly
larger than one.

Emphasis should be stressed that our approach is fun-
damentally different from existing policies described in
Section III-A1. They observe requests directly at the hardware
or at device drivers but do not consider how requests are
generated. Our method uses high-level (software) information
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by distinguishing individual processes. Our method requires no
modification in application programs. The following sections
explain how schedulers can improve power management by
collaborating with programs.

V. OFF-LINE SCHEDULING

We developed an on-line scheduling scheme to improve
power management. Before explaining our method, we start
with off-line scheduling as the background.Off-linescheduling
is performed before the execution of any job; it is possible if
the complete knowledge of all jobs is available in advance. In
contrast,on-linescheduling is performed at run time. When the
behavior of a process changes or new jobs are created according
to run-time conditions, scheduling must be performed on-line.
In particular, interactive systems must use on-line scheduling
because it is impossible to perfectly predict user behavior. We
formulate off-line scheduling as the basis for understanding
on-line scheduling.

A. Scheduling for Multiple Devices

When there are multiple devices, even off-line scheduling is a
complex problem. Consider the three processes in Fig. 6 again.
Each job may use device, device , both, or neither. The job-
device relationship is expressed byrequired device set( ).
Suppose the of each job is expressed in Table II and each
job takes to execute. Fig. 14 shows two schedules of these
jobs. In the first schedule, is idle for first, busy for ,
and idle again for . In the second schedule, is idle for
continuously. In contrast, is idle continuously for in the
first schedule. In the second schedule, this idle period is divided
into two periods, each of . It is unclear which schedule saves
more power. In fact, it depends on the hardware parameters. For
example, the first schedule is better if
because can sleep and save power. On the other hand, the
second schedule is better if because
can sleep and save power.

B. Problem Formulation

Consider jobs: on a single-pro-
cessor system with devices: . Jobs
share devices but no two jobs can use the same device simul-
taneously. Each job may use some of these devices. We use

for such relationship: if job uses device , is one;
otherwise, it is zero. A schedule, , is
a linear order of these jobs; executes immediately after

for . A schedule has to satisfy all timing and
precedence constraints. Low-energy scheduling is the problem
of finding a schedule to minimize energy through power man-
agement. We define as the time when starts execution;
executes during . The total energy of one schedule is
the sum of the energy of all devices. The energy of deviceis
divided into three parts

1) when is busy;
2) when is idle and sleeping;
3) when is idle but remain in the working state.
We use as the power of device when it is in the

working state; is the power when is sleeping. To com-

TABLE II
DEVICES REQUIRED BY EACH JOB

Fig. 14. Three processes using two devices.

pute , we have to find the time when is busy. It is
busy if executes and . Since executes during
[ , ), is busy during [ , )

(8)

Then, we find the time when is idle. An idle period of
is a period when it is not used but it is used before and after this
period. In other words, an idle period of is defined by three
conditions

1) a sequence of jobs, , that do not use
; namely, ;

2) is used before this sequence: ;
3) is used after this sequence:

where , are between 1 and.
Let’s now compute . Suppose is an idle period of
; the length of this period is and .

When is larger than , sleeps to save power. In
order to compute , we find all idle periods that are longer
than . Let be the set of idle periods that are longer than

: . The total energy during
these long idle periods is . Because changes power
states, includes the state-transition energy,

(9)

where is the length of the corresponding idle period.
Finally, we consider for idle periods shorter than the

break-even time. The device stays in the working state even
though it is idle. Let be the set of these idle periods:

(10)

where is the length of the corresponding idle period.
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The energy of device is and
the energy of all devices is

(11)

Finding a schedule with the minimum power is an NP-com-
plete problem even without timing or precedence constraints; its
proof can be found in the Appendix.

VI. ON-LINE SCHEDULING

The appendix shows that even simplified off-line scheduling
is NP-complete; hence, we do not intend to find optimal so-
lutions. Furthermore, we target interactive systems on which
on-line scheduling is necessary. This section presents heuristic
rules for low-power scheduling on interactive systems.

A. Requests Created by Timers

The arrival times of requests are not completely unpre-
dictable; in particular, some requests are created by “timers”
so that they arrive at specific time in the future. The periodic
jobs in Section II-C4 are such examples. In UNIX, the jobs are
created in four steps: 1) calling to create a timer;
2) registering a callback function for the signal; 3)
OS issues the signal when the timer expires; and
4) executing the callback function when this signal is issued.
The job performed by the callback function is scheduled by
the timer. If a power manager knows when a job executes and
which devices are used by this job, the additional information
helps the manager save power more effectively. Existing timer
mechanism in UNIX does not allow programs to specify which
devices will be used. The following paragraphs explain how to
add such information and improve power management.

B. Scheduling in Linux

On-line scheduling algorithms are often “priority-based”; at
any moment, the scheduler selects a ready job with the highest
priority. A ready job can start execution immediately; a job is
ready after all its predecessors have completed. Priorities can
be determined in different ways. In Linux, priorities are clas-
sified into different levels. Fig. 15 shows the flow of a Linux
scheduler [37]. When the scheduler is invoked, it first checks
whether there is a job in a task queue. Atask queueis a method
to inform OS kernel that a job is ready to execute. For instance,
a device driver can put a job into a task queue for data retrieval
after the device is ready to transfer data. Additionally, interrupts
are used to inform OS of new events. Because interrupts can “in-
terrupt” a running job, they are used for urgent events. Timers
have the third-level priority; a timer is used to execute a job at a
specific time. After checking task queues, interrupts, and timers,
the scheduler chooses a user process with the highest priority.

We extend the Linux scheduler for power management. In
order to maintain interactivity and reduce the impact on ex-
isting programs, power reduction is considered after the steps
in Fig. 15. The extension is divided into two parts, 1) it wakes
up a sleeping device before scheduling a job that requires this
device and 2) it arranges execution orders to facilitate power
management.

Fig. 15. Steps of a Linux scheduler.

C. Predictive Wakeup

If a requests requires a sleeping device, this request has to
wait for the wakeup delay. Ideally, the device should wake up
before the request arrives to eliminate waiting; this is called
“predictive wakeup” [38]. A device should wake up just before
requests arrive. Waking up too early wastes energy; waking up
too late does not eliminate waiting. Our experiments show that
the method in [16] actually increases energy because it mixes
requests from all processes and has low prediction accuracy.

To perform predictive wakeup accurately, the scheduler has
to know which devices are used by a job. This can be achieved
in two ways. The first is to predict using the history of a process.
The advantage is that no user program needs to be modified; the
disadvantage is that the accuracy can be low, especially when
a process changes from CPU-burst to IO-burst or vice versa.
An alternative is to provide an interface for processes to specify
their device requirements. The advantage is that only speci-
fied devices wake up; no device is woken up if there is no re-
quest. The disadvantage is that programs need to be modified to
specify their device requirements.

We take the second approach because it provides precise in-
formation about device requirements. A system call is added so
that programmers can provide explicit information for predic-
tive wakeup [32]. When a program creates a timer, it can also
specify which device will be used when the timer expires

.

Example 4: In Section II-C4, an editor saves contents
onto a hard disk every five minutes. This can be specified by

.
A mail reader needs both the hard disk and the net-
work card; therefore, issues two system calls:

.
If the timer expires at and this job uses device , then our

scheduler informs the power manager at to check
the power state of . If is sleeping, it is woken up so that
this job does not have to wait for the wakeup delay. If there
are multiple jobs, the scheduler finds the job with the earliest
timer and wakes up devices needed by this job. Fig. 16 shows a
pseudocode of predictive wakeup.

If a program does not specify which device will be used in
the future, the device will wake up “on demand:” only when a
request actually arrives. This increases the response time of the
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Fig. 16. Predictive wakeup.

request. Predictive wakeup improves performance but does not
save power. The real benefit will be clearer after we explain how
to schedule jobs later.

D. Flexible Timers

Some jobs have the flexibility to start execution before or after
their timer expires. For example, editors do not have to save the
contents precisely every five min; it is usually acceptable if the
period is close enough to five min. The concept of flexible timers
is illustrated in Fig. 17; this figure modifies Fig. 7. In Fig. 17,
the original (i.e., inflexible) timer is shown by the solid line; its
value drops quickly before and after the specified start time. In
contrast, the flexible timer uses the dashed line. It is acceptable
to execute the timer’s callback function earlier or later, as long as
the difference is less than the tolerance. We enhance the previous
system call so that a program can specify its flexibility

.

E. Scheduling Jobs for Power Reduction

creates jobs and specifies devices to be
used. It is further enhance to include an estimated execution
time of a job. Based on this information, we can schedule the
jobs for power management.

.
We use an example to convey the basic idea before explaining

our method.
Example 5: Fig. 18 is an example of scheduling for power

management on two devices. The meaning of each rectangle
is explained earlier in Fig. 14. At the top of Fig. 18, the jobs
are arranged by the order of their timers. The idle periods are
short and scattered. At the bottom of the figure, the execution
order is rearranged to make idle periods continuous and long.
The scheduler can rearrange the order because these jobs are
created by flexible timers.

Fig. 17. Flexible timer.

Fig. 18. Group jobs according to their device requirements.

Fig. 19. Low-power scheduling.

Fig. 19 outlines our heuristics of our low-power scheduler.
First, it groups jobs according to their device requirements and
calculates the length of each group; jobs in the same group ex-
ecute together. Suppose there aregroups: .
The devices used by jobs in is represented as

. Let be the execution time of job . The length
of a group is the sum of execution time of all jobs in this group

(12)

Let (low-power group schedule) be a schedule
of these groups: . Then, the
scheduler computes the energy of this schedule by treating a
group of jobs as a single job and applying formulae (8)–(11).
For example, corresponds to the execution time of one job
( ) in (8); is calculated by

(13)

Energy and are computed in a similar way.
After computing the energy of each schedule, the scheduler
finds one schedule with the minimum energy. Fig. 20 shows a
pseudocode of the scheduler.

Example 6: Consider nine jobs waiting for execution. The
devices required by each job is shown in Table III. These nine
jobs belong to three groups. First, has five
jobs: { }. Second, has two jobs:

. Third, has two jobs: { }. Suppose the
execution time of each job is. The length of these groups are

, , and , respectively. Let’s assume the break-even times
are and .
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Fig. 20. Scheduling jobs by theirRDS groups.

TABLE III
DEVICE REQUIREMENTS FOREXAMPLE 6

There are six ways to schedule these three groups

1) ;
2) ;
3) ;
4) ;
5) ;
6) .

Four schedules cause to be idle longer than its break-even
time and save power. They are schedules 3 to 6.

All possible groups form a power set of the power-man-
aged devices; this is determined by the number of power-man-
aged devices in the system, and is independent of the number of
jobs. In this example, there are at most four groups.

Although, it seems that Fig. 20 requires large amount of com-
putation to compare all possible schedules, this does not happen
in practice due to two reasons 1) the number of groups is small
for a system with only a few power-managed IO devices and 2)
The scheduler considers only jobs created by the flexible timers.

F. Effects of Caching

Caching is widely used to improve the performance of ac-
cessing IO devices. It is difficult to predict whether an IO request
can be served by the cache or it actually reaches the device. In
some cases this can be predicted with certainty; for example, the
request from an autosaver should be flushed directly to the hard
disk. Also, the network card has to wake up in order to check
whether any new email has arrived at the server. In these cases,
caching does not avoid waking up the devices.

G. Meeting Timing Constraints

Because jobs are not executed strictly by their timer values,
it is possible that a job is executed after its timer expires. The

scheduler has to guarantee the job executes within the interval
specified by the flexible timer . Suppose a job
is created by and , , and are the execu-
tion time, tolerance, and starting time. The scheduler will start
the job no later than .

H. Handling Requests From Other Programs

The low-power scheduler does not change a request if it is not
created by . This is necessary to run all legacy
programs. Such requests come from two types of sources: from
a program invoked by the user or from the original UNIX (in-
flexible) timer. Sometimes, these requests wake up a sleeping
device. When the power state of a device changes, the sched-
uler reevaluates the energy of different schedules.

Example 7: Fig. 21 is an example how the schedule changes.
Suppose four jobs are created by . At , both
devices are sleeping and a preferred schedule is shown at the top
of the figure. At time , a request (enclosed by dotted circle)
arrives and it requires device. If this request is not created by

, has to wake up immediately. At , after
serving this request, is still in the working state. Because
the power state of has changed, the original schedule is now
inferior. The scheduler changes the execution order as shown at
the bottom of the figure.

As this example demonstrates, our method can still improve
power management even if there are requests from other pro-
grams.

VII. I MPLEMENTATION IN LINUX

We implemented power management in Redhat 6.2 Linux on
a Sony VAIO notebook. Recollect that systems are structured in
layers as shown in Fig. 1. Our implementation is divided into
three parts. At the bottom, device drivers set hardware power
states. In the middle, the OS kernel estimates device utiliza-
tion from processes and shuts down a device of low utilization.
The OS also schedules jobs to cluster idle periods. At the top,
application programs generate requests for devices; these pro-
grams may actively inform OS about their device requirements
by using a new system call we provide. Fig. 22 shows the inter-
action between different components in our implementation.

Our OS controls the power states of IO devices using
PCMCIA interfaces. PCMCIA has and com-
mands to control devices. These commands can shut down and
wake up any PCMICA devices. When a device is suspended,
its power consumption is virtually zero.

We call the method presented in Section IV “process-based”
because it distinguishes requesters as processes. This method
updates the estimation of device and processor utilization when
a process changes states (Fig. 2) or when the device receives
a request. A process changes states by the process scheduler;
request generation is detected by device drivers. This method
does not require any modification in user programs.

A notebook computer has two factors that limits low-power
scheduling. First, it is an interactive system; fast response is ex-
pected by users. Second, wide varieties of programs are ported;
most programs assume certain properties in scheduling. In par-
ticular, when they use timers, they expect these timers to expire
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Fig. 21. Group jobs according to their device requirements.

Fig. 22. Interaction between process manager, scheduler, and power manager.

at the specified time. If a request is not created by the flexible
timer, it is served immediately, possibly after waiting for the
wakeup delay of the device needed.

VIII. E XPERIMENTS

A. Measurement Setup

Two IO devices are power managed: a Linksys Ethernet card
and a Hitachi 2.5″ hard disk. Table IV shows the parameters of
these devices. Both devices are connected through the PCMCIA
interface. The hard disk is a standard 2.5″ IDE disk; it is con-
nected to the computer through a PCMCIA-IDE converter as a
second disk. An Accurite PCMCIA Extender Card is inserted
between either device and the computer. We connect the ex-
tender to a National Instrument data acquisition card (DAQ).
Fig. 23 illustrates the setup for measuring the power of the hard
disk.

B. Workloads

Three types of workloads are considered. The first is a trace
of user activities by recording idle periods longer than two sec-
onds. The trace is then replayed while a policy is running. The
second workload uses probability models for transitions from
idleness to busyness (Fig. 3). In [19], the authors discover that
Pareto distributions closely approximate interactive workloads
such as . A Pareto distribution is expressed by its cu-
mulative function: , where is time and and are
constants. We use 0.7/s forand 0.5 for because they reside
in the range presented in [19]. In addition to Pareto distribu-
tions, we also consider uniform distributions for comparison.

TABLE IV
DEVICE PARAMETERS

Fig. 23. Setup for measuring disk power.

The range of the uniform distribution is zero to ten minutes.
The third workload generates periodic requests with timers. We
consider both fixed timers (created by ) and flexible
timers (created by ). The period of each timer
is between one and five min; the tolerance is one min.

There are up to six requesters at any time. A requester may
generate three types of requests: for the network card,

for the hard disk, and for both devices. After a re-
quester generates a request, it has 10% probability to terminate.
Once a requester terminates, another requester is created two
min later. Each workload runs for two h.

C. Policy Comparison

Seven policies are compared. The last two policies are used
for the third workload in which requests are generated with
timers:

1) no power management;
2) timeout of three minutes;
3) 2-competitive [14];
4) exponential average (16);
5) process-based;
6) predictive wakeup;
7) scheduling for flexible timers with predictive wakeup.
We compare these policies by five criteria, including power

and performance. Power is determined by the time in the
working state and the number of state transitions. Performance
is affected by the time spent during state transitions.

1) : average power (Watt). The measurements include the
energy for serving requests;

2) : average time in the sleeping state (s);
3) : total time during state transitions (s);
4) : number of shutdowns;
5) : number of wrong shutdowns. They count the shut-

downs during idle periods shorter than the break-even
time.

It is desirable to have low power (), low overhead ( and
), low error rate ( ), and long sleeping time ().
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TABLE V
POWER SAVING AND PERFORMANCE OFDIFFERENTPOLICIES

D. Experimental Results

1) Parameter Setting:Three parameters affect the experi-
mental results: discount factorin (2), window size in (5), and
aggressiveness in (7).

In general, if a power manager responds to requests and
changes of requesters more quickly, it saves more power. Mean-
while, it causes more shutdowns and degrades performance
more seriously. Consequently, these parameters trade off power
with performance. A power manager responds more quickly
under the following conditions.

1) Large . When is large, more weight is put on the latest
and changes more quickly.

2) Small window size. When the window is smaller, the de-
nominator is smaller and changes more quickly.

3) Large . When is large, the power manager shuts down
a device quickly when its utilization drops.

Our experiments show that whenincreases from 0.1 to 0.9,
average power reduces by nearly 17%; however, the number of
shutdowns increases by 20%. When the window size decreases
from sixty seconds to ten seconds, power reduces by 18% and
the number of shutdowns increases by 29%. Whenincreases
from 0.5 to 1, power reduces by 17% and the number of shut-
downs increases by 21%. Whenincreases from 0.5 to 2, the
percentage of wrong shutdowns increases by more than 25%.
All measurements are conducted on the hard disk for the second
workload with Pareto distributions. We chose 0.5 for, one min
for the window size, and 1 for in generating Table V.

2) Power Saving and Performance Impact:Table V com-
pares power and performance of different policies; several im-
portant facts can be observed.

If a policy saves more power (small ), it usually has more
shutdowns (large ); the device spends more time on state tran-
sition (large ). Timeout with three minutes rarely has shut-

down opportunities to save power. It makes power consump-
tion much higher compared to other policies. The 2-competitive
method (policy 3) has comparable power saving with process-
based power management (policy 5) for the network card. How-
ever, 2-competitive generally has higher misprediction rates.

Some shutdowns actually waste energy because the device
does not sleep long enough; these shutdowns are “wrong” and
are expressed as . The ratio of and is the mispredic-
tion rate. Misprediction is reduced when requests are generated
by timers (policies 6 and 7). Fig. 24 shows the misprediction
rates of policies 2 to 5; lower misprediction rates are preferred.
Because the break-even time of the hard disk is longer, it is more
likely to have higher misprediction rates on the hard disk.

Even though power saving depends on workloads and de-
vices, policy 5 consistently achieves nearly 50% power saving
for both devices and all request generation methods. Other poli-
cies have large variations in their power saving. For example,
policy 4 saves 20% to 48% power. Policy 6 does not change the
time when requests are generated but it reduces misprediction
( ). In contrast, policy 7 changes the time when requests are
generated and significantly reduces power, up to 72% on the net-
work card for workload 3.

Figs. 25–27 show the power () and transition time () of
different policies; shorter bars (less power and transition over-
head) are preferred. Figs. 25 and 26 are normalized by policy 5;
Fig. 27 is normalized by policy 7. As we can see from these fig-
ures, policy 1 has the least transition time (zero) but the highest
power consumption. Policy 4 has the largest numbers of shut-
downs; it also has high misprediction rates as shown in Fig. 24.

3) Lengths of Idle Periods:Fig. 28 shows the distribution
of idle periods with and without low-power scheduling. Circles
are the idle periods without low-power scheduling and squares
are the idle periods with low-power scheduling. It is preferred
to have long idle periods. Without low-power scheduling, the
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Fig. 24. Misprediction rates of policies 2 to 5, hard disk (top) and network
card (bottom).

Fig. 25. Power and overhead for workload 1, hard disk (top) and network card
(bottom).

lengths of idle periods is more widely spread. In particular, the
dotted oval shows some “medium-length” idle periods between
60 seconds to 180 s. In contrast, low-power scheduling makes
requests bursty and prevents these medium-length idle periods.
Idle periods are either very short (the far left outside this figure)
or very long (longer than 180 s); power managers use long idle
periods to save power.

4) Repetitive Wrong Shutdowns:We discovered that the
method presented in [16] has low prediction accuracy (large

). This policy predicts the length of a future idle period
based the previous idle period and the previous prediction. Let

and be the actual and predicted lengths of
the latest idle period. This policy predicts that the length of the
next idle period is where
is between zero and one. Consider a device whose break-even
time is . Let us call the latest idle period . The first idle
period in the future is called and the second idle period
in the future is . Suppose the length of is where

and future idle periods are very short ( ). This policy
predicts to be . If , the device is shut
down. Since , the policy predicts as .

Fig. 26. Power and overhead for workload 2, hard disk (top) and network card
(bottom).

Fig. 27. Power and overhead for workload 3, hard disk (top) and network card
(bottom).

Fig. 28. Low-power scheduling reduces medium-length idle periods (60 to
180 s).

Applying the same rule, the policy predicts as .
Even though these idle periods ( ) are
short, this policy still shuts down the device until
or . In other words, this policy requires
a “learning period” to correct its prediction; the length of this
period is proportional to the logarithm of the length of a long
idle period, in this example. Our method avoids this
problem by including both device and processor utilizations.
When a program generates bursty requests after a long idle
period, its both utilizations increase promptly so our method
will not shut down the device.
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5) Computation Overhead of Our Methods:The process-
based policy presented in Section IV updates the estimation of
device and processor utilization only when a process changes
states. When a process changes states, the process scheduler is
invoked to determine the next process to execute. The computa-
tion required for our policy is considerably less than the compu-
tation performed by the process scheduler (Fig. 15). The over-
head of the low-power scheduling method is affected by two fac-
tors, 1) how many devices are power managed and 2) how many
jobs are created by the flexible timer. Our experiments consider
only two devices and at most six jobs. On a typical notebook,
the number of power-managed IO devices is likely to be small
enough so the overhead is acceptable.

IX. CONCLUSION

This paper presents a new approach to reduce power con-
sumption in interactive systems. Our method uses OS kernel to
distinguish individual processes for estimating the utilization of
IO devices. Unused devices are shut down to save power. This
is more accurate than traditional methods that do not distin-
guish processes. We also propose a system call for programs to
specify their hardware requirements. Such information allows
process schedulers to make idle periods continuous and long;
power reduction can be achieved without performance degra-
dation. We implemented the utilization estimation and the new
system call in Linux; experimental results achieved up to 72%
power saving.

This study can be extended in several directions. First, some
systems, such as servers, have multiple identical devices. It is
possible to trade off performance and power with power-aware
load balancing. Second, battery capacities reduce at high peak
power; low-power scheduling may reduce peak power and
increases battery capacities. Third, software techniques for
power reduction, such as the interactions between compilers
and OS, require further investigation. Fourth, more investiga-
tion is needed to understand how OS can support the tradeoff
between power consumption and quality of service. Finally, it
remains a research topic how to scale low-power scheduling to
manage the power of many devices.

APPENDIX

COMPLEXITY OF LOW-ENERGY SCHEDULING

Suppose there arejobs: on a single-
processor system with devices: . Let

be a schedule: ; executes im-
mediately after for . The energy of a schedule
is computed using formula (11). The low-energy scheduling
problem can be transformed into a decision problem:given a
bound , is there a schedule that makes energy lower than?

For an off-line scheduling problem with timing and prece-
dence constraints, it is NP-complete to answer whether a
schedule exists [39]. Since low-energy scheduling considers
energy in addition to the constraints, its complexity is at least
NP-hard. On the other hand, when a schedule is known, it takes
polynomial time to find the energy consumption using formula

(11) and to answer whether the energy is lower than. The
low-energy scheduling problem is in NP; therefore, it is an
NP-complete problem.

A. Simplification Assumptions

Even without timing and precedence constraints, low-energy
scheduling is still an NP-complete problem. We simplify the
problem so that there always exist schedules.

1) There is no timing or precedence constraints. Jobs can
execute in any order and any schedule is a valid schedule.

2) All devices have the same parameters, such as the power,
and their break-even time. Devices have equal importance
in power reduction.

3) All jobs have the same execution time. Each job causes
the same duration of busyness of a device that is used by
this job.

For a device, its total idle time is the same, regardless of the
schedule. However, the idle time may consist of many short idle
periods or few long idle periods. Only idle periods longer than
the break-even time can save power using power management.
Long idle periods are preferred; short idle periods are “wasted.”
Under the three assumptions, low-energy scheduling is equiva-
lent to reducing the number of idle periods and to enlarging the
length of each idle period. In order words, the scheduler intends
to reduce the “switches” between idleness and busyness of de-
vices.

B. State Switches

A device switches from idleness to busyness if a job does
not need this device while the following job does. Specifically,
device switches from idleness to busyness if and

for any . Similarly, switches
from busyness to idleness if and . When

, the device remains either idle or busy with no
switch. Therefore, switches if and only if .
We define as the number of switches of in this schedule;
it can be computed by

(14)

here this is theexclusive-orfunction. The total number of
switches of all devices, , is

(15)

C. Problem Statement

With the simplification, the low-energy scheduling problem
is equivalent to finding a schedule such that the total number of
switches is the minimum.

(16)
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D. Distance Between Jobs

We define the “distance” between two jobs as the number of
switches when these jobs execute consecutively. For jobsand

, their distance is

(17)

Example 8: Consider an example of three jobs and two de-
vices. The required device set ( ) of is ,

. These relationships are expressed
in Table VI.

If executes after , becomes idle while becomes
busy; two devices change between idleness and busyness. The
distance between and is two. If executes after ,
remains busy while becomes busy. Only one device changes
from idleness to busyness; the distance betweenand is one.
We can construct a matrix to encodes these distances;

is the distance between and . The distance matrix of
these three jobs is

(18)

is a symmetric matrix. Since a job cannot execute after
itself, the elements along the diagonal are not used. We assign
zeros to the diagonal for simplicity.

E. Scheduling Jobs

Without loss of generality, we assume there is astarting job
( ) that must execute first and there is aterminating job( )
that must execute last. It takes no time to execute these two jobs.
A matrix represents the distances between jobs;

is the distance between and . Since and are
not real jobs, the distance between any job andor is zero.
Zeros are assigned to the diagonal, the first and the last rows, and
the first and the last column:

.
The matrix can be treated as thedistance matrixfor a

graph, . In this graph, the vertices are jobs and they
are connected by edges. Each edge has a weight; the weight for
edge ( , ) is .

Example 9: Fig. 29 shows the distance graph of the jobs
the previous example. In this figure, dashed lines have zero
weights.

Finding a schedule to execute all jobs is to find a “tour” that
visits each vertex exactly once. The tour starts atand ends
at . Finding the minimum number of switches is to find a
tour with the minimum total weight starting from and ending
at . We can merge and without changing the total
weight. The problem is transformed to find a tour starting from

, visiting all jobs, and ending at . This is equivalent to the
traveling salesperson problem(TSP). It has been shown that
TSP is an NP-complete problem [39, ND22, p. 211]. Conse-
quently, the simplified scheduling problem is NP-complete.

TABLE VI
JOB–DEVICE RELATIONSHIP

Fig. 29. Graph of jobs and their distances.
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