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Abstract—Many portable systems deploy operating systems in workloads. These techniques are calldghamic power
(OS) to support versatile functionality and to manage resources, management(DPM) [3]; DPM changespower statesat

including power. This paper presents a new approach for using OS run time. When high performance is required, DPM allows
to reduce the power consumption of 10 devices in interactive sys- ’

tems. Low-power OS observes the relationship between hardware hardware to consume more power, otherW|sQ, the hardwa_re
devices and processes. The OS kernel estimates the utilization€nters a lower-power state. DPM techniques include dynamic
of a device from each process. If a device is not used by anyvoltage/frequency scaling (DVS/DFS) and clock gating. DVS

running process, the OS puts it into a low-power state. This paper and/or DFS have been implemented in commercial products

also explains how scheduling can facilitate power management. g ch as Transmeta’s Crusoe processors [4] and the StrongARM
When processes are properly scheduled, power reduction can

be achieved without degrading performance. We implemented a processors [5]. In addition to Processors, DPM can re_duce
prototype on Linux to control two devices; experimental results Power of input—output (IO) devices [6], such as hard disks,
showed nearly 70% power saving on a network card and a hard network cards, and displays. 10 devices are different from
disk drive. processors in two major ways. First, they often have fewer
Index Terms—interactive systems, operating systems, power POWer states; many devices have only two power states.
management, scheduling. Second, they take much longer time to change power states,
up to several seconds.When an 10 device is not used (also
calledidle [7]), it can enter a low-powesleeping statethis
is called “shut down.” When a device is being usedg)), it
UE TO rapid advance in hardware, electronic systems sugas to stay in a high-powevorking state Most existing power
port wide ranges of applications and often deploy opemanagement schemes consider whether a device is idle or busy,
ating systems, such as Windows, Palm OS and Linux in peegardless of the reason it is idle or busy. Hardware devices
sonal computers, personal digital assistants (PDAs) and thie busy to serve requests from software; software provides
clients. Operating systems (OS) have two major roles: providingluable information for power reduction. Such information is
an abstraction and managing resources. A file system is an alailable during compilation or at run time. Recently, power
straction of storage; programs create files without knowing theduction through compilers and OS has attracted great interest
number of cylinders on hard disks. Similarly, programs transfgf research community [8]. This paper concentrates on saving
files through networks without considering the bandwidth of thgae power of 10 devices using shutdown techniques through
network cards. An OS also manages resources, such as Gfpidrating systems.
time, memory allocation, and disk quota. Power is a precious re4n this paper, we present a new method in OS to reduce the
source; hence, it should be properly managed. Reducing powetver of IO devices. We target single-processor interactive sys-
consumption has become one major goal in designing electrogims such as laptop computers. Our approach is divided into
systems. Lower power consumption prolongs operation hours@b parts. First, the OS kernel observes the relationship between
battery-powered systems. High power raises temperatures gadices and processes to estimate the utilization of each de-
deteriorates reliability. Rising concern about the environmentgte. When the utilization is low, the OS puts this device into
impact of electronic systems further highlights the importangesleeping state. Second, the OS provides a system call that al-
of power reduction [1]. lows application programs to specify their future hardware re-
Power-reduction techniques can be classified into staticirements. Then, the OS schedules processes to reduce power
and dynamic [2]. Static techniques are applied at design tinvgithout degrading performance. We implemented a prototype in
such as compilation and synthesis for low power. Dynamidnux on a notebook computer; it saved nearly 70% power on
techniques are applied at run time based on the variatianginksys Ethernet card and on a Hitachi2t&rd disk drive.
This paper has three contributions. First, we point out the im-
portance to distinguish individual processes for power manage-
Manuscript received January 11, 2001; revised September 9, 2001. This wailent. Second, we propose power-aware scheduling for 10 re-
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Fig. 2. Process states.

Fig. 1. Layers of computers.

and the condition to shut down a device. Section V explai gaqdby) to reduce Fheir power consumption [3]. DPM provides
how to improve power management by scheduling. We propot illusion that devices are always ready to serve requests (ab-

a low-power scheduling algorithm for interactive systems ?traction) even though they occasionally sleep and save power
Section VI. Section VIl describes the implementation on Linu _management). DPM can be controlled by hardware, software,

Our experimental results are shown in Section VIII. Fina”)}?r:tlheccollabciralflgn of b'\jth' ADPM ch th
Section IX concludes the study and points out directions for ) Conceptof Power Manageme changes the power

future research. states of a device based on the variations of workloads. A work-
load consists of the requests generated from all processes. Work-
loads on a disk are read and write commands; these commands
Il. BACKGROUND may come from a text editor such asacs or a compiler such
asgcc. Workloads on a network card are packets; these packets
may come fronmetscape Of telnet.

Conceptually, computers are structured in layers as showrFig. 3 illustrates the concept of power management. When
in Fig. 1 [9]. At the bottom, there are hardware componenthere are requests to serve, the device is busy; otherwise, the de-
such as processors, memory, and 10 devices. OS communicaies is idle. In this figure, the device is idle betwegnandts.
with the hardware through privileged instructions and basic I®hen the device is idle, it can enter a low-power sleeping state.
system (BIOS) calls. OS provides services such as file syster@sianging power states takes timg; andt,,,, are the shutdown
process control, and memory management. User programs aatd wakeup delays. These delays can be substantial: waking up
cess hardware by issuisgstem callshrough OS. An OS man- a disk or a display takes several seconds, or hundreds of millions
ages resources, including CPU time, memory allocation, aofiprocessor cycles. Furthermore, waking up a sleeping device
disk space. may take extra energy. In other words, power management has

When a user starts a program,peocessis created. This overhead. If there were no overhead, power management would
process occupies memory and takes CPU time; it may also régdtrivial—shutting down a device whenever it is idle. Unfortu-
or write files to a hard disk. A process is an instantiation of @ately, there is overhead; a device should sleep only if the saved
program. Fig. 2 shows the life of a process [9]. It is creatednergy can justify the overhead. The rules to decide when to shut
runs, and finally terminates. Most operating systems suppagwn a device are called power-managenpaticies
multiprogramming many processes can execute concurrently 2) Break-Even TimeThe break-even time(t,.) is the
and share resources. Two processes @recurrentif one minimum length of an idle period to save power [6]; it depends
starts before the other terminates; namely, their execution the device and is independent of requests or policies (Table |
times overlap. When a processasve (between its creation summarizes the symbols and their meanings in this paper).
to termination), operating systems manage when it occupi@ensider a device whose state-transition delay,isnd the
a processor, how much memory it possesses, which filesriinsition energy ie,. Suppose its power in the working and
opens, and which IO devices it uses. Through the servicsleeping states ig,, and p, respectively. Fig. 4 shows two
from OS, each process has the illusion that the whole machigsses: keeping the device in the working state or shutting it
is dedicated to it. When multiple processes require the saai@vn. The break-even time makes energy in both cases equal;
resource, such as CPU or hard disks, the operating systemsidean be found byp,, - t,c = ¢, + ps - (te — t,). Also, the
termine their access order; this is calkmhedulingCommonly break-even time has to be larger than the transition delay;
adopted scheduling schemes include round-robin, priority, atkgrefore
first-in—first-out (FIFO) [9].

A. Resource Management by Operating Systems

.-t
the = Hl&X(M, t0>. )

B. Dynamic Power Management Pw — Ps

Most computers do not operate at their peak performanceFor simplicity of explanation, this article assumes that a de-
continuously. Some devices are idle even when other devicgse has one working and one sleeping states. It serves requests
are busy. Examples of IO devices on personal computers inclualdy in the working state.
hard disk drives, network interface cards, and displays. OccaExample 1: Fig. 5 shows the power consumed by a'25-
sional idleness provides opportunities for power reduction [#achi hard disk. It wakes up from the sleeping state, serves re-
DPM puts idle devices into sleeping states (sometimes callgdests, and then becomes idle. &
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request TABLE |
served SYMBOLS AND THEIR MEANINGS

( busy m lower cases for scalars

more request  Teguest tsd (tww) shutdown (wakeup) delay
arriving arrving esa (Eyu) shutdown (wakeup) energy
Pw (ps)  power in working (sleeping) state

workload I requests l ‘ requests I to transition delay (¢5¢ + toyy)

) time the break-even time
device busy “ busy el
L 3 €o transition energy (esq + €wy)
power state | working m sleepinm working | Duw k power in working state of device dj
, ,2 N pe; a process
. . . . ik a job of pc;
Fig. 3. Sleep during an idle period. d; a device
Ui j utilization of d; by processes pe;
C. Scheduling and Power Management U utilization of d; by all processes
) . . ¢ CPU utilization by process pc;
Running processes generate requests for a device; their exe- thr time between requests
cution orders .d|rectly_affect the arrival times of requests, hence, Upper cases for sets or sequences
the length of idle periods. J a set of jobs
1) Concept of Jobsin this paper, a job is defined as a unit S a schedule of jobs
to finish a specific task and it can be scheduled to start at a spe- RDS  required device set
cific time. Consider a user running a text editor; this editor for-
mats text, checks spelling, saves contents, and so on. Format-  power power
. . . .. . A
ting, spell checking, and saving are three distinct jobs. Another
example is an email reader that downloads email from a server. P~ o P €on
Downloading is a job because it can be scheduled to occur pe- 5 >
S po——C —>
riodically. t, time = t,, me

2) Precedence and Timing Constraint€onsider three in-
dependent processes;, pcz, andpcs. Suppose each processig. 4. Keeping the device in the working state (left) and shutting down the
has three jObSDci has jOij7‘,7 L ji72, andji,,g herei € [1’ 3]_ device (right). The energy is equal if the idle timet js.
There are nine jobs to schedule. Becajise andj; » belong waking up
to the same procesg, ; must execute beforg _». Similarly, | .
J2.1 must execute beforg, 5. These orders are callguece- ‘
dence constraintgl0]. Precedence constraints are expressed as
directed acyclic graphs (DAGY. = (7, £) whereJ is a subset
of jobs andf are directed edges connecting jobs. If two johs,
andj,, are connected by an edgg¢., j,) € £, thenj, (pre- o s o ' 2 2
decessormust execute beforg, (successgr The precedence P, time {sec)
graph of the nine jobs is shown in Fig. 6.

Another type of constraints iming constraintsa job has
to finish before itsdeadline Deadlines can be classified into

three categories: firm, soft, and on-time [10]. Fig. 7 illustrates pc; @-—»@-»@

the differences between them. Suppose there is a “value” if a

job finishes before the deadline. For a firm deadline, the value pe, @"’—’GZD ‘

drops sharply if the job finishes after the deadline. Examples of

firm deadlines are flight control systems; finishing a job after ;

the deadline can lead to severe damages or even loss of lives. P ®—’®_’®
For a soft deadline, the value decreases more smoothly after the

deadline. If a job has an on-time constraint, it should finish neig. 6. Precedence of three independent processes.
the deadline, neither too early nor too late.

3) Scheduling Jobs for Power Managemeuppose three  4) Scheduling in Inactive SystemB personal computers,
jobs,j1.1, 71,2, andja 3 need a specific device. For simplicity,some 10 requests are scheduled to occur in the future. For ex-
we assume that each job take® execute. Fig. 8 shows twoample, text editors often have “autosavers” that save the con-
schedules. A black rectangle indicates that this job needs thats periodically. An email reader retrieves emails from a mail
device. One difference between the two schedules is the lengiksver and stores them on a local hard disk. Both the editor and
of idle periods. In the first schedule, the device is idle thrabe reader generate periodic requests for a local hard disk. If
times, each of lengtht; in the second schedule, the device itheir requests are not arranged properly, the disk has more and
idle for6¢. The idle period in the second schedule is “continuowshorter idle periods. If the requests are arranged so they arrive at
and long.” If the break-even time of this device is betweand approximately the same time, the disk can remain idle and sleep
6t, power management saves power only in the second schedfdelonger durations.

power (W)

Fig. 5. State transitions of a Hitachi hard disk.
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value models [17], [18], time-indexed semi-Markov models [19], Petri
' — Nets [20], and nonstationary models [21]. A common problem

firm {1 "”""*-..,Asoft is that most policies require the characteristics of the work-

) /' \ loads for off-line optimization. There is no universally adopted

on-time / method to adjust at run time if the workload behavior changes.

deadline time 2) Low-Power Scheduling for Processormstead of pas-
sively predicting the lengths of idle periods, scheduling for low
Fig. 7. Three types of deadlines. power actively “controls” their lengths by rearranging job ex-
ecution. Scheduling for behavioral synthesis is investigated in
[22] and [23]. The former uses scheduling and guarded evalua-

o — - s tion to reduce useless computation; the latter schedules compu-
Pez J J22 tation to increase operand reuse. In [24], the authors propose
pe, { I3a Jaa | R scheduling for pipelined systems; they derive the conditions
, : _ : - when scheduling with buffer insertion reduces power. Several
idle t idle idle tme . . . . .
studies investigate the relationship between scheduling and dy-
pe; IR T i namic voltage scaling [25]-[27]. In [28], the authors discuss the
pc, Ja | Jza effect of voltage scaling and quality of service.
‘ ; ; ’ Ij 3) Reducing Memory Powertn addition to IO devices
pes = = = > and processors, memory also consumes significant amount of
idle time power. Reducing memory power can be achieved by selecting

different power-performance modes at compile time or run
time [29]. In [30], the authors study how page allocation affects
energy and performance.

Fig. 8. Two schedules of three independent processes.

I1l. RELATED WORK

Run-time power reduction using software techniques can Be Adaptive Programs for Low Power

achieved by operating systems or application programs. Opera recent approach brings the awareness of power consump-
ating systems can reduce the power of 10 de\_/ice_s, Process@eh to application programs, for example, by providing pro-
or memory systems. On the other hand, application progragi&mming interfaces between application programs and oper-
can adjust their quality of service for available power budgetsating systems [31], [32]. Application programs are modified to
. trade off between quality of service and available power budgets
A. OS-Based Power Reduction [33]. While this approach is promising, it requires further study
1) Power Management on IO Device3hese policies can to develop a set of application programming interfaces (API)
be divided into three categories: timeout, predictive, and st@rat can be widely accepted.
chastic. A detailed survey is available in [11]; another study
compares both power saving and performance impact of some IV. PROCESSBASED POWER MANAGEMENT
policies [12], [13]. . ) )
Timeout is widely used in commercial products. A timeout OS kernel has the information about process execution and re-

policy shuts down a device after it is idle longer than a timeoGt€St generation; thus, power management should be controlled
value,. For the example in Fig. 3, a timeout policy shuts dowHy OS kernel. This section presents a new approach to use kernel

the device at; + . These policies assume that if a device iinformation for estimating device utilization and shutting down

idle longer than then it will remain idle for at least,, [7]. dle devices.

When~ equals to the break-even time, the device consumes at )

most twice power compared to a perfect policy; this is calldy Redquest Generation Models

a 2-competitive policy [14]. An obvious drawback of timeout Existing DPM policies (see Section IlI-A-1) do not distin-

policies is the wasted energy during the timeout periodig guish request sources: requests are generated by an abstract en-

large. tity called arequestef17]. These policies implicitly assume that
Predictive policies explicitly predict the length of an idle pethe arrival of requests, regardless of their sources, is sufficient

riod before it starts. If the predicted length is larger thanthe for predicting the length of future idle periods.

device is shut down immediately after it becomes idle. Theseln reality, requests are generated by running processes.

policies compute the length of an idle period according to pr&tudies show that different processes consume different

vious idle and busy periods [1], [15], [16]. The major probleramounts of power [34], [35]. Process-based power manage-

is that some policies have low prediction accuracy. ment is first proposed in [36]. Processes provide valuable
Stochastic policies use stochastic models for request genafermation for predicting the lengths of idle periods. Processes

ation and device state changes. Under such formulation, powere states; Fig. 2 shows five process states, includiady

management is a stochastic optimization problem. These polinning, andwaiting states. A process generates new requests

cies can explicitly trade off between power saving and perfan the running state. Operating systems know the current state

mance while timeout and predictive policies cannot. Stochastit each process. Several factors affect the state of a process.

policies include discrete-time and continuous-time stationafyprocess enters the running state after being selected by the
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100% - e o

process scheduler; a process can wait for synchronization or

other events; a process can also stop running and terminate.
When a process is created, a new requester is born. We found

that parent processes do not provide enough information about

request generation of their child processes. This is because most

child processes execute different programs (in UNIX by calling T T e R e T e

execl) right after they are born (bfork). On the other hand, process lifetime (sac)

when a process terminates, it cannot generate new requests;

process termination is important for predicting future requeg- 9- Most processes have short lifetimes.

96% R— e

94% 1

92%

=70 A . B

cumulative percentage

generations. We discovered that most processes have short life- request
times. Fig. 9 is the cumulative distribution of process lifetimes. generation
While the percentages change in different workloads, the shape
of the curve is likely to remain the same. Consequently, it is im- fip
portant to detect process termination for power saving. gee | aEmess
We also observed that a program which generates many 10 - aeoread lifetime

requests within short time periods often have short lifetimes; ex-
amples arettp andgcc. Some other programs, sucheascs, Fig.10. Programs that generate intensive requests usually have short lifetimes.

generate requests less frequently and have longer lifetimes. Dae- requests

mons likesyslogd have long lifetimes, possibly as long as the pa

computer is on; they rarely generate 10 requests. Fig. 10 illus- s

trates our discovery. time when pe, is running
Based on these observations, we adopt a new model for re- N | tor l_)

quest generations. It differs from existing models in three ways: time when pe, is running

1) It separates request sources by processes; 2) it detects the ter- '
mination of a process; and 3) it considers how often a procedg 11 Time between requests of two processes.

executes. This model incorporates additional information to pre- . ) )
dict the idleness of a device. The former considers only ongr while the later consider

all tbrs; neither is appropriate. Using the latést may make
B. Device Utilization u;,; change quickly and possibly unstable; using the running
average causes; ; to update too slowly when the run-time

Because a process can generate requests when it is running, = .
. ) . : F vior of a process changes. We diseounted avage (also
the relationship between a process and a device can be estima

by two factors 1) how often the process generates requests wi %(?r{ed expoqentlal average [16]) as a balance petween these two
methods. Discounted average puts more weight on the latest

it is running and 2) how often the process runs. They are repre- . ;
: L A tbr but also considers previodsrs. Suppose: requests have
sented by the device utilization and processor utilization. V%e

usew. - to indicate how often process: uses devicel,. We Peen generated by this process ahdis latest time between
J P ¥, v equests [between tHe — 1)th and thenth requests]. Letbr,

uséc; o estimate hqw ofter_1 this PrOCESS runs. The range OLe the estimated time between requests after thesguests
is the number of devices; this is determined by the system Qe computex; ; by this formula
y (%)

figuration. The range of is the number of processes currentl
under consideration. All quantities are computed at run time. thr, =a - thr + (1 — a) - thr,_1
The following paragraphs explain our heuristics to estimate de- 1
vice utilization based on per-process information. i =
1) Device Utilization: Some processes are “CPU- thry
burst’—using CPU mostly; some processes are “lO- Hereaisaconstantbetween zero and one. The valueds-
burst’—using 10 devices mostly [9]. Some other processésrmines how much “weight” is put on the latégt. Whena is
change between CPU-burst and I0-burst. We explain how leoge, we consider the late’$t- as more important in estimating
estimate device utilization for either CPU-burst or 10-burghe overall utilization. For example, wheris one, we consider
processes; then we explain how to handle processes thaly the latestsr and completely ignore earligbrs. Whena
change between two kinds of bursts. The device utilization lisysmall, more emphasis in placed on eariters.
a processy;_;, is computed as the reciprocal trine between  Next, we explain how to estimate the device utilization if a
requests tbr. It is the duration when a device is idle whileprocess changes from 10-burst to CPU-burst. When a process
a process is running. It is the time between the completi@hanges from |O-burst to CPU-burst, its device utilization is
of the previous request and the arrival of the next requesizerestimated during the CPU-burst period. This can be illus-
Fig. 11 shows an example of two processes. The first procésted in the following example.
is |O-burst and generates many requests while it is running; itsExample 2: Consider running a spreadsheet program with
tbr is shorter and its device utilization is higher. In contrast, tHeur stages illustrated in Fig. 12. It reads data from a hard disk
second process rarely generates requests attd-its larger. (IO-burst duringt, to ¢1), gets user inputs, computes the results
There are various ways to usér for estimatingu;, ;, for (CPU-burst during. to ¢3), and writes the results back to the
example, using the latestr or using the running average.disk (10-burst durings to ¢4). Since updatingirs is triggered

)
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requests

disk 10| 2 computation |disk IO /

inputs 2 %
> time @ %

ty 9 £ t3 t4 [ PCy

Fig. 12. A process with four phases.

by requests, the device utilization is overestimated dutirtg

t3 becausebr is not updated. &
The above example suggests the need to adjust the estimation time

of device utilization when the process changes from 10-burst to S

CPU-burst. We definém» as the time since procegs; gen- Fig. 13. Three examples of device utilization.

erated the last request for devide The adjusted estimation i o A

should be the same as,; whenl; ; is small; the estimation 3) Aggregate Device UtilizationThe aggregate utilization

should be zero whei s Iarge7 This “small” and “large” for deviced; is u;; it can be computed as the summation of
27 :

are relative to the parameters of this device. We choose figvice utilization and processor utilization from all processes

break-even time of the device as the reference and use an ad- w = Z we X e ©)
justment function as g i, iR
all process pe;
fi; = e~ Wi /the,i) (3) Example 3: Fig. 13 shows three examples to compute the de-

vice utilization. In the first example, only process is running;
When a process changes from 10-burst to CPU-biystjs it generates requests everyin the second example, two pro-
large sof;; becomes small. In contrast, when a process chang@sses are running; each generates requestsievertpe third
from CPU-burst to 10-burst, ; is small to makef; ; almost example, onlyc; generates request. The time between requests
one. This is desirable because 10-burst requests are accurd@ilgach process in the three examples Is the first example,
estimated. After the adjustment, (2) is replaced by the new uti- iS one; in the second and third examptg, = c2 = 0.5.
lization estimation The aggregate utilization for each exampléligt) - 1 = (1/¢),
(1/t)-0.54 (1/t)- 0.5 = 1/¢,and(1/t) - 0.5 = 1/2t respec-
wi, =i X fi g (4) tively. This reflects accurately how often the device receives a
request. &

2) Processor Utilization: While w;_; considers the interac- iy
tion between a device and a process, it ignores other procesges.ShUtdOWn Condition
A process may generate many requests while it is running. How-A device is shut down when its aggregate utilization is small.
ever, this process may rarely execute because, for example, itB#get;., ; is the minimum length of an idle period to save power
a low priority or it is triggered by infrequent events. From thef deviced;, the shutdown condition is determined based on
device’s point of view, this process rarely generates requests, ;- The shutdown condition is
This effect is considered by including the processor utilization I
of the process. U <
Processor utilization of procegs; is represented by;. It
is the percentage of CPU time occupied by this process invaerek is the “aggressiveness factor.” Afis one, a device is
sliding window because discounted average does not reflsbutdown when the utilization is smaller thayt,. ;; namely,
processor utilization. Discounted average underestimates pite time between requests from all processes is longershan
cessor utilization for an I0-bounded process. When a procé§®ienk is smaller than one, the power manager is “conserva-
is 10-bounded, it uses CPU only momentarily each time iilve” because it shuts down the device when the utilization is
is selected by the process scheduler. Whilg; correctly lower; this may lose opportunities to save power. In contrast,
indicates that this process has shart and high utilization whenk is larger than one, the power manager is “aggressive”
on this device, the same method does not indicate how oftegcause it “takes chances” to save power by shutting down the
and how long this process executes. Consequently, we usedbeice even when the utilization is still high. Whénis too
percentage of CPU time on this process to compute large, however, the power manager shuts down the device too
often. State-transition delays can significantly degrade perfor-
o = CPUTime(pc;) . (5) Mmance; furthermore, state-transition energy may make actually
’ Z CPUTime(pc;) increase power. Hence, we suggektalue equal to or slightly
larger than one.

Emphasis should be stressed that our approach is fun-
This formula uses a sliding window; only processes runnirdpmentally different from existing policies described in
in this window are considered. The window size should be lar@ection 11I-Al. They observe requests directly at the hardware
enough to include most processes; on the other hand, it shoulabbeat device drivers but do not consider how requests are
sufficiently small to quickly reflect changes in process behaviggenerated. Our method uses high-level (software) information

()

tre,i

all process pc;
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by distinguishing individual processes. Our method requires no TABLE I

modification in application programs. The following sections DEVICES REQUIRED BY EACH JoB

explain hqw sghedulers can improve power management by i1 dis hs Jon Jas Tos doi oa s
collaborating with programs. d d d d d b6 do do ¢

V. OFF-LINE SCHEDULING

pc
We developed an on-line scheduling scheme to improve Cl EEEH ':l
power management. Before explaining our method, we start Pe2
with off-line scheduling as the backgrour@if-line scheduling PCs H:l

is performed before the execution of any job; it is possible if d, idle " djidie ;both idlé
the complete knowledge of all jobs is available in advance. In -

contrastpn-linescheduling is performed at run time. When the pc,
behavior of a process changes or new jobs are created according i EE

to run-time conditions, scheduling must be performed on-line. pe; =

In particular, interactive systems must use on-line scheduling > ) >
L . . . d,idle d, idle both idle

because it is impossible to perfectly predict user behavior. We 2

formulate off-line scheduling as the basis for understanding E need d, E need d, Eneed neither

on-line scheduling.

A. Scheduling for Multiple Devices Fig. 14. Three processes using two devices.

When there are multiple devices, even off-line scheduling is a ] . ) )
complex problem. Consider the three processes in Fig. 6 agdlH€ ¢busy, k,» We have to find the time whed is busy. It is
Each job may use devick, deviceds, both, or neither. The job- PUSY if s, executes and,, x = 1. Sincej,, executes during
device relationship is expressed feguired device sgRDS).  [tis ti+1), di is busy during4;, ¢;11)

Suppose th& DS of each job is expressed in Table 1l and each e o Z Do - (b1 — 1) ®)
job takest to execute. Fig. 14 shows two schedules of these busy, T w, ke AL T
jobs. In the first schedulei, is idle for 5¢ first, busy for2t, such that 7., =1

and idle again foet. In the second schedulé; is idle for 7¢ _ ) . . )
continuously. In contrasy; is idle continuously fodt in the Then_, we find t_h_e time whed, IS "?”e- An idle period oty i
first schedule. In the second schedule, this idle period is dividb‘;o"z‘,perIOd when itis not us_ed but 'F IS usgd befpre and after this
into two periods, each df. It is unclear which schedule saved€r0d- In other words, an idle period df is defined by three

more power. In fact, it depends on the hardware parameters. Egpditions
example, the first schedule is bette(ff. 1, t. 2) = (3t, 8t) 1) a sequence of jobg;,,,js,.,, - -, Js.» that do not use
becausel; can sleep and save power. On the other hand, the i namely,rs, x =75,k =, ..., =75, 1k =0;
second schedule is better(#. 1, t. 2) = (5t, 6t) becausel, 2) dy. is used before this sequenee;, , 1 = 1;
can sleep and save power. 3) dy is used after this sequenog; ., » = 1
wherew — 1, w, ..., x + 1, are between 1 andl.

B. Problem Formulation Let's now computeqicep, ». SUPposédley, is an idle period of

Considern jobs: 7 = {ji, jo, ..., ju} ON @ single-pro- dy; the.Iength_ of this period iidle, | andlidleg| = tz41 — te-
cessor system witm devices:D = {dy, ds, ..., dy,}. Jobs When |idley| is larger tharty,. . di Sleeps to save power. In

share devices but no two jobs can use the same device sinflifér 0 Computesicp, x, we find all idle periods that are longer

taneously. Each job may use some of these devices. We H@ne, k- LeLZS), be the setofidle periods that are longer than
74,5 for such relationship: if joly, uses device,, 7, is one; fbe. & 18y = {idley: [idlex| > tie, 1 }. The total energy during

otherwise, it is zero. A scheduls, = (js,, js,, - -- 5 js.)s IS these long idlg periods Beep, & - Becausels, changes power
a linear order of these jobg;,,, executes immediately after STAIESEsicep, & INCludes the state-transition energy, .

js, fori € [1, n — 1]. A schedule has to satisfy all timing and .

Js: ' [ " ] fy 9 Csleep, k = Z (ps,k . |'LS| + Co,k) (9)

precedence constraints. Low-energy scheduling is the problem
of finding a schedule to minimize energy through power man-
agement. We defing as the time whetj,, starts executionj;, wherelis| is the length of the corresponding idle period.
executes duringt;, ¢;+1). The total energy of one schedule is Finally, we considee;q., x for idle periods shorter than the
the sum of the energy of all devices. The energy of dedjcis  break-even time. The device stays in the working state even

tsCISy

divided into three parts though it is idle. LetZW), be the set of these idle periods:
1) epusy, » Whendy, is busy; Wy = {idley;: [idleg| < fo 1}
2) esleep, k Whend, is idle and sleeping; | ’ [.
3) eiale, » Whend,, is idle but remain in the working state. Cidle, k = Z Puo ke - |10 (10)

We usep,, » as the power of device; when it is in the eI Wi

working statep; i is the power wheml,, is sleeping. To com- whereliw]| is the length of the corresponding idle period.
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The energy of devicey iS epusy, & + Celeep, & + Cidle, & aNd check task queue

the energy of all devices is

m handle interrupt

c= Z Chusy, k + Csleep, k + Cidle, k - (11) ‘l,
Finding a schedule with the minimum power is an NP-com- 1
plete problem even without timing or precedence constraints; its
proof can be found in the Appendix.

[ find highest priority l

Fig. 15. Steps of a Linux scheduler.
VI. ON-LINE SCHEDULING
The appendix shows that even simplified off-line schedulin@
is NP-complete; hence, we do not intend to find optimal so-’
lutions. Furthermore, we target interactive systems on whichlf a requests requires a sleeping device, this request has to
on-line scheduling is necessary. This section presents heuri¥tgjt for the wakeup delay. Ideally, the device should wake up

Predictive Wakeup

rules for low-power scheduling on interactive systems. before the request arrives to eliminate waiting; this is called
“predictive wakeup” [38]. A device should wake up just before
A. Requests Created by Timers requests arrive. Waking up too early wastes energy; waking up

The arrival times of requests are not completely unprEQO late does not eliminate waiting. Our experiments show that

dictable; in particular, some requests are created by “timef9€ method in [16] actually increases energy because it mixes
so that they arrive at specific time in the future. The periodf€9uests from all processes and has low prediction accuracy.
jobs in Section 11-C4 are such examples. In UNIX, the jobs are T0 Perform predictive wakeup accurately, the scheduler has
created in four steps: 1) callingstitimer to create a timer; {0 know which devices are used by a job. This can be achieved
2) registering a callback function for tr&IGALRM signal; 3) N twoways. The firstis to predict using the history of a process.
OS issues thesIGALRM signal when the timer expires; and’he advantage is that no user program needs to be modified; the
4) executing the callback function when this signal is issuefiiSadvantage is that the accuracy can be low, especially when
The job performed by the callback function is scheduled [ Process changes from CPU-burst to IO-burst or vice versa.
the timer. If a power manager knows when a job executes anfl alternative is to provide an interface for processes to specify

which devices are used by this job, the additional informatidheir device requirements. The advantage is that only speci-

helps the manager save power more effectively. Existing timied devices wake up; no device is woken up if there is no re-

mechanism in UNIX does not allow programs to specify whicﬁues_t- The_disad_vantage_is that programs need to be modified to
devices will be used. The following paragraphs explain how &PeCify their device requirements.

add such information and improve power management. We take the second approach because it provides precise in-
formation about device requirements. A system call is added so
B. Scheduling in Linux that programmers can provide explicit information for predic-

at{'ve wakeup [32]. When a program creates a timer, it can also

On-line scheduling algorithms are often “priority-based”; %g?cify which device will be used when the timer expires

any moment, the scheduler selects a ready job with the high

priority. A readyjob can start execution immediately; a job is ~ RequireDevice (device, time, callback)

ready after all its predecessors have completed. Priorities can device: hardware device

be determined in different ways. In Linux, priorities are clas-  time: when to start

sified into different levels. Fig. 15 shows the flow of a Linux ~ ca@llback: a callback function.

scheduler [37]. When the scheduler is invoked, it first checks Example 4:In Section 1I-C4, an editor saves contents

whether there is a job in a task queueta&k queués a method onto a hard disk every five minutes. This can be specified by

to inform OS kernel that a job is ready to execute. For instandgquireDevice (HardDisk, fiveminutes, savefile).

a device driver can put a job into a task queue for data retrieval mail reader needs both the hard disk and the net-

after the device is ready to transfer data. Additionally, interruptgork card; thereforeNetscape issues two system calls:

are used to inform OS of new events. Because interrupts can ‘RequireDevice ( { HardDisk, NetworkCard }, five min—

terrupt” a running job, they are used for urgent events. Timetses, download). &

have the third-level priority; a timer is used to execute a job at alf the timer expires atm and this job uses deviek,, then our

specific time. After checking task queues, interrupts, and timesgheduler informs the power managetat — ¢..... to check

the scheduler chooses a user process with the highest priorithe power state of,. If d; is sleeping, it is woken up so that
We extend the Linux scheduler for power management. this job does not have to wait for the wakeup delay. If there

order to maintain interactivity and reduce the impact on eare multiple jobs, the scheduler finds the job with the earliest

isting programs, power reduction is considered after the stejpmer and wakes up devices needed by this job. Fig. 16 shows a

in Fig. 15. The extension is divided into two parts, 1) it wakegseudocode of predictive wakeup.

up a sleeping device before scheduling a job that requires thidf a program does not specify which device will be used in

device and 2) it arranges execution orders to facilitate powttie future, the device will wake up “on demand:” only when a

management. request actually arrives. This increases the response time of the



LU et al.: POWER-AWARE OPERATING SYSTEMS FOR INTERACTIVE SYSTEMS 127

PredictiveWakeup (7 := jobs to schedule) value
begin ST TR flexible
sort J by their timer values; ' timer
j := a job in J with the earliest timer; ' :
for each dj in RDS(j) toletance E
if (dy is sleeping) and start'time time

(timer(j) - now < twu k)
wake up dg; Fig. 17. Flexible timer.
end

Fig. 16. Predictive wakeup. l!: I; L

request. Predictive wakeup improves performance but does not m

save power. The real benefit will be clearer after we explain how
to schedule jobs later.

time

Fig. 18. Group jobs according to their device requirements.
D. Flexible Timers

Some jobs have the flexibility to start execution before or after | group jobs by their RDS |
their timer expires. For example, editors do not have to save the
contents precisely every five min; it is usually acceptable if the Lcalculme the lengths of grOUPSJ
period is close enough to five min. The concept of flexible timers 4
is illustrated in Fig. 17; this figure modifies Fig. 7. In Fig. 17, | find a schedule of minimum-energy |
the original (i.e., inflexible) timer is shown by the solid line; its 4y
value drops quickly before and after the specified start time. In execute jobs in a group
contrast, the flexible timer uses the dashed line. It is acceptable In their timer order

to execute the timer’s callback function earlier or later, as long as
the difference is less than the tolerance. We enhance the previ'(:iﬁslg'
system call so that a program can specify its flexibility
RequireDevice (device, tolerance, time,
callback)
device: hardware device
tolerance: acceptable variation

Low-power scheduling.

Fig. 19 outlines our heuristics of our low-power scheduler.
First, it groups jobs according to their device requirements and
calculates the length of each group; jobs in the same group ex-
ecute together. Suppose there argroups: 71, Jo, ..., Jy.

The devices used by jobs iF;(i € [1, q]) is represented as

time: when to start . RDS(T). Letex, be the execution time of joj,. The length
callback: a callback function. of a group is the sum of execution time of all jobs in this group
E. Scheduling Jobs for Power Reduction Tl = > exn (12)

i i . e : V. €T;
RequireDevice creates jobs and specifies devices to be !

used. It is further enhance to include an estimated executiod-€t £P%S (low-power group schedule) be a schedule

time of a job. Based on this information, we can schedule tQf these groups£PGs = (7., T, ..., Js,). Then, the
jobs for power management. scheduler computes the energy of this schedule by treating a

group of jobs as a single job and applying formulae (8)—(11).
For example|.7;| corresponds to the execution time of one job
(ti41 — ;) In (8); epusy, & IS calculated by

RequireDevice (device, execution, tolerance,
time, callback)
device: hardware device

execution: execution time Chusy, kb — Z Pw, k- |~72| (13)
tolerance: acceptable variation dLERDS(T:)
time: when to start Energy csieep, » and eiqie, . are computed in a similar way.
callback: a callback function. After computing the energy of each schedule, the scheduler
We use an example to convey the basic idea before explainfirgls one schedule with the minimum energy. Fig. 20 shows a
our method. pseudocode of the scheduler.

Example 5: Fig. 18 is an example of scheduling for power Example 6: Consider nine jobs waiting for execution. The
management on two devices. The meaning of each rectandgwices required by each job is shown in Table Ill. These nine
is explained earlier in Fig. 14. At the top of Fig. 18, the jobfbs belong to three groups. Firs&kDS; = {d;} has five
are arranged by the order of their timers. The idle periods gobs: {j1, j2, j3, ja, J5}. Second,RDS, = {d>} has two jobs:
short and scattered. At the bottom of the figure, the executigg;, js}. Third, RDS35 = ¢ has two jobs: {s, jo}. Suppose the
order is rearranged to make idle periods continuous and loegecution time of each job is The length of these groups are
The scheduler can rearrange the order because these jobssaret, and2t, respectively. Let's assume the break-even times
created by flexible timers. & aretye, 1 = 5t andtye, o = 6t.
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/* initialization */ scheduler has to guarantee the job executes within the interval
LPGS := empty; /* low-power group schedule */ specified by the flexible timeRequireDevice. Suppose a job
/* end of initialization */ is created bykequireDevice andt., t,, andt, are the execu-

tion time, tolerance, and starting time. The scheduler will start

...... /* the steps in Figure 15; extension starts below */ the job no later thawn, + ¢, — t..

if (new jobs are created)
group jobs by their RDS’s;

calculate the length of each group: H. Handling Requests From Other Programs

/* find one schedule first */ The low-power scheduler does not change a request ifitis not
S := one schedule of these groups; created byrequireDevice. This is necessary to run all legacy
eng := energy of 5; programs. Such requests come from two types of sources: from
LPGS = §; a program invoked by the user or from the original UNIX (in-
/* check whether there are better schedule */ flexible) timer. Sometimes, these requests wake up a sleeping

for each schedule of these groups
ethis := the energy of this schedule;
if (ethis < eng) /* a better schedule */
eng := ethis;
LPGS := this schedule;

device. When the power state of a device changes, the sched-
uler reevaluates the energy of different schedules.

Example 7: Fig. 21 is an example how the schedule changes.
Suppose four jobs are createdByquireDevice. At t0, both
devices are sleeping and a preferred schedule is shown at the top

Fig. 20. Scheduling jobs by theR DS groups. of the figure. At timet1, a request (enclosed by dotted circle)
arrives and it requires deviek. If this request is not created by
TABLE IlI RequireDevice, dz has to wake up immediately. A2, after
DEVICE REQUIREMENTS FOREXAMPLE 6 serving this requestf, is still in the working state. Because
i i i R N the power state af; has changed, the original schedule is now
JuoJxoJs 4 Js g6 U7 s Jo inferior. The scheduler changes the execution order as shown at
d dy di & d ¢ do dy ¢ -
the bottom of the figure. &
As this example demonstrates, our method can still improve
There are six ways to schedule these three groups power management even if there are requests from other pro-
1) {RDSl, RDSQ, RDSg}, grams.
2) {RDSl, RDSg, RDSQ},
3) {RDS2, RDS1, RDS3}; VII. | MPLEMENTATION IN LINUX

4) {RDSy, RDSs, RDS, We implemented power management in Redhat 6.2 Linux on

2; }gggg’ gggl’ gg?{ a Sony VAIO notebook. Recollect that systems are structured in
3 > L1y _ layers as shown in Fig. 1. Our implementation is divided into
Four schedules causk to be idle longer than its break-eveny,.oq narts. At the bottom, device drivers set hardware power
time and Save power. They are schedules 3 to 6. states. In the middle, the OS kernel estimates device utiliza-
All possibleRDS groups form a power set of the power-mango, from processes and shuts down a device of low utilization.
aged dev_lces;_ this is determlned_ bY the number of power-mafe g also schedules jobs to cluster idle periods. At the top,
_aged deV'_CeS in the system, and is independent of the numbeﬁﬁpf)lication programs generate requests for devices; these pro-
jobs. In this (_example, there_ are at mo_st four groups. N grams may actively inform OS about their device requirements
Although, it seems that Fig. 20 requires large amount of COry, ,sing a new system call we provide. Fig. 22 shows the inter-
putation to compare all possible schedules, this does not happgR,, petween different components in our implementation.
in practice due to two reasons 1) the number of groups is smally ,, o5 controls the power states of 10 devices using
for a system with only a few power-managed 10 devices and ngCIA interfaces. PCMCIA hasuspend andresune com-
The scheduler considers only jobs created by the flexible timefs., 145 to control devices. These commands can shut down and

F. Effects of Caching yvake up any PCMIQA .dev.ices. When a device is suspended,
its power consumption is virtually zero.

Caching is widely used to improve the performance of ac- we call the method presented in Section IV “process-based”
cessing IO devices. Itis difficult to predict whether an 10 requepkcause it distinguishes requesters as processes. This method
can be served by the cache or it actually reaches the deviceybiates the estimation of device and processor utilization when
some cases this can be predicted with certainty; for example, 1@rocess changes states (Fig. 2) or when the device receives
request from an autosaver should be flushed direCtly to the h%r(aequest_ A process Changes states by the process scheduler;
disk. Also, the network card has to wake up in order to chegkquest generation is detected by device drivers. This method
whether any new email has arrived at the server. In these cagR®s not require any modification in user programs.
caching does not avoid waking up the devices. A notebook computer has two factors that limits low-power
scheduling. First, it is an interactive system; fast response is ex-
pected by users. Second, wide varieties of programs are ported;

Because jobs are not executed strictly by their timer valugapst programs assume certain properties in scheduling. In par-
it is possible that a job is executed after its timer expires. Thieular, when they use timers, they expect these timers to expire

G. Meeting Timing Constraints
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TABLE IV
H DEVICE PARAMETERS

4%; -
10 ﬂ time parameter hard disk network card
vendor Hitachi Linksys
P > model DK23AA-60 NP 100
{ H ) H Pu 0.77 0.76
Ps 0.0 0.0
P ; to 10.61 2.75
t ﬂ time e 18.90 2.88
the 24.41 3.61

1

12 time

Fig. 21. Group jobs according to their device requirements.

process scheduler

manager power states Fig. 23. Setup for measuring disk power.
of devices
process RDS of next
power

states manager running job The range of the uniform distribution is zero to ten minutes.

= The third workload generates periodic requests with timers. We

consider both fixed timers (created byt itimer) and flexible

timers (created bRequireDevice). The period of each timer

is between one and five min; the tolerance is one min.

Fig. 22. Interaction between process manager, scheduler, and power manageT.here are up to six requesters at any time. A requester may
generate three types of requestsng for the network card,
fput for the hard disk, andtp for both devices. After a re-

at the specified time. If a request is not created by the flexibigester generates a request, it has 10% probability to terminate.

timer, it is served immediately, possibly after waiting for theynce a requester terminates, another requester is created two

PCMCIA-
IDE Cuonverer

lset power states

hardware
devices

wakeup delay of the device needed. min later. Each workload runs for two h.
VIII. EXPERIMENTS C. Policy Comparison
A. Measurement Setup Seven policies are compared. The last two policies are used

Two 10 devices are power managed: a Linksys Ethernet ca{_ﬂi the third workload in which requests are generated with
and a Hitachi 2.5hard disk. Table IV shows the parameters dfmers:
these devices. Both devices are connected through the PCMCIAL) no power management;
interface. The hard disk is a standard"2BE disk; it is con- 2) timeout of three minutes;
nected to the computer through a PCMCIA-IDE converter as a3) 2-competitive [14];
second disk. An Accurite PCMCIA Extender Card is inserted 4) exponential average (16);
between either device and the computer. We connect the ex5) process-based,;
tender to a National Instrument data acquisition card (DAQ). 6) predictive wakeup;
Fig. 23 illustrates the setup for measuring the power of the hard7) scheduling for flexible timers with predictive wakeup.

disk. We compare these policies by five criteria, including power
and performance. Power is determined by the time in the
B. Workloads working state and the number of state transitions. Performance

Three types of workloads are considered. The firstis a tra%seaffected by the time spent during state transitions.

of user activities by recording idle periods longer than two sec- 1) P’ average power (Watt). The measurements include the
onds. The trace is then replayed while a policy is running. The _ energy for serving requests;

second workload uses probability models for transitions from 2) t: average time in the sleeping state (s);

idleness to busyness (Fig. 3). In [19], the authors discover that3) t:: total time during state transitions (s);

Pareto distributions closely approximate interactive workloads 4) sd: number of shutdowns;

such astelnet. A Pareto distribution is expressed by its cu- 2) sdw: number of wrong shutdowns. They count the shut-
mulative function:1 — at=?, wheret is time anda and3 are c_iowns during idle periods shorter than the break-even
constants. We use 0.7/s farand 0.5 for3 because they reside time.

in the range presented in [19]. In addition to Pareto distribu- It is desirable to have low powep), low overhead# and
tions, we also consider uniform distributions for comparisond), low error rate §d,,), and long sleeping time ).
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TABLE V
POWER SAVING AND PERFORMANCE OFDIFFERENT POLICIES
workload  policy hard disk Ethernet card
Do ts t sd  sdy | Ppa ts t sd  sdy,
1 091 O - - - 1077 0 - - -
2 0.89 44 53 5 0 {058 352 14 5 0
1 trace 3 058 68 435 41 19 | 026 93 149 54 8
4 074 19 774 73 42 | 057 17 262 95 21
5 050 42 647 61 17 [ 027 136 94 34 1
1 09 0 - - - 1077 O - - -
2 088 16 74 7 4 1077 24 19 7 0
2 Pareto 3 057 43 721 68 25 | 043 40 283 103 12
4 051 28 1113 105 30 {042 14 605 220 46
5 045 41 954 90 11 | 041 66 157 57 7
1 084 O - - - |07 0 - - -
2 081 46 106 10 2 1073 8 11 4 0
2 uniform 3 042 80 551 52 5 1036 45 206 75 0
4 044 45 837 79 17 | 043 16 497 181 29
5 039 88 530 50 4 (035 46 190 69 6
1 088 0 - - - 107 0 - - -
2 087 0 0 0 0 076 O 0 0 0
3 045 105 392 37 13 | 031 33 302 110 9
3 timer 4 064 14 1198 113 65 | 039 41 225 82 22
5 037 72 583 55 9 [030 104 96 35 3
6 035 85 530 50 0 [029 80 140 51 1
7 0.25 220 265 25 0 [019 228 73 25 0
D. Experimental Results down opportunities to save power. It makes power consump-

1) Parameter SettingThree parameters affect the experiyon much higher compared to other policies. The 2-competitive

mental results: discount factarin (2), window size in (5), and method (policy 3) has compara}ble power saving with process-
aggressivenessin (7) based power management (policy 5) for the network card. How-
) i ever, 2-competitive generally has higher misprediction rates.
In general, if a power manager responds to requests an(g .
ome shutdowns actually waste energy because the device

changes of requesters more quickly, it saves more power. Megn

while, it causes more shutdowns and degrades performanc(:)éas not sleep long enough; these shutdowns are "wrong™ and

more seriously. Consequently, these parameters trade off pofer expressed asl,. The ratio ofsd,, andsd is the mispredic-
: Y- q Y, P b \?’on rate. Misprediction is reduced when requests are generated
with performance. A power manager responds more qwcl@{,

under the following conditions. timers (policies 6 and 7). Fig. 24 shows the misprediction

] S rates of policies 2 to 5; lower misprediction rates are preferred.
1) Largea. Whena is large, more weight is put on the latesgecause the break-even time of the hard disk is longer, it is more
tbr andu;,; changes more quickly. likely to have higher misprediction rates on the hard disk.
2) Sma_ll Wlnd_ow size. When the window is sm_aller, the de- gyen though power saving depends on workloads and de-
nominator is smaller and; changes more quickly. vices, policy 5 consistently achieves nearly 50% power saving
3) Largek. Whenk is large, the power manager shuts dowgyy hoth devices and all request generation methods. Other poli-
a device quickly when its utilization drops. cies have large variations in their power saving. For example,
Our experiments show that wherincreases from 0.1 to 0.9, policy 4 saves 20% to 48% power. Policy 6 does not change the
average power reduces by nearly 17%; however, the numbetinfe when requests are generated but it reduces misprediction
shutdowns increases by 20%. When the window size decreagek,). In contrast, policy 7 changes the time when requests are
from sixty seconds to ten seconds, power reduces by 18% agwherated and significantly reduces power, up to 72% on the net-
the number of shutdowns increases by 29%. Whéncreases work card for workload 3.
from 0.5 to 1, power reduces by 17% and the number of shut-Figs. 25-27 show the powep/) and transition time{) of
downs increases by 21%. Whérincreases from 0.5 to 2, thedifferent policies; shorter bars (less power and transition over-
percentage of wrong shutdowns increases by more than 25%ad) are preferred. Figs. 25 and 26 are normalized by policy 5;
All measurements are conducted on the hard disk for the sec@ig. 27 is normalized by policy 7. As we can see from these fig-
workload with Pareto distributions. We chose 0.5dpone min ures, policy 1 has the least transition time (zero) but the highest
for the window size, and 1 fdt in generating Table V. power consumption. Policy 4 has the largest numbers of shut-
2) Power Saving and Performance Impadiable V com- downs; it also has high misprediction rates as shown in Fig. 24.
pares power and performance of different policies; several im-3) Lengths of Idle PeriodsFig. 28 shows the distribution
portant facts can be observed. of idle periods with and without low-power scheduling. Circles
If a policy saves more power (smal}), it usually has more are the idle periods without low-power scheduling and squares
shutdowns (larged); the device spends more time on state tramre the idle periods with low-power scheduling. It is preferred
sition (larget;). Timeout with three minutes rarely has shutto have long idle periods. Without low-power scheduling, the
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lengths of idle periods is more widely spread. In particular, the
dotted oval shows some “medium-length” idle periods between
60 seconds to 180 s. In contrast, low-power scheduling makes
requests bursty and prevents these medium-length idle periods.
Idle periods are either very short (the far left outside this figure)
or very long (longer than 180 s); power managers use long idle
periods to save power.

4) Repetitive Wrong Shutdown$Ve discovered that the Fig. 28. Low-power scheduling reduces medium-length idle periods (60 to
method presented in [16] has low prediction accuracy (largeo s).
sdy,). This policy predicts the length of a future idle period
based the previous idle period and the previous prediction. LAgplying the same rule, the policy predi¢te,,, asa™ -n -ty..
lenactual andlenyedicr D€ the actual and predicted lengths oEven though these idle periodaile; , idles, ..., idley,) are
the latest idle period. This policy predicts that the length of thghort, this policy still shuts down the device until* - n < 1
next idle period isz - lenagtual + (1 — @) - lenpreqice Wherea  or m > —(logn/loga). In other words, this policy requires
is between zero and one. Consider a device whose break-eaéetearning period” to correct its prediction; the length of this
time ist,.. Let us call the latest idle periadico. The firstidle period is proportional to the logarithm of the length of a long
period in the future is calleddle; and the second idle periodidle period, idley in this example. Our method avoids this
in the future isidles. Suppose the length édllcg is nt,. where problem by including both device and processor utilizations.
n 3> 1 and future idle periods are very shost 0). This policy When a program generates bursty requests after a long idle
predictsidle; to bea - n - t,.. If a-n > 1, the device is shut period, its both utilizations increase promptly so our method
down. Sincedle; ~ 0, the policy predictsdie, asa® - n - t..  Will not shut down the device.

I P——
,D low-power scheduling

20 +- - e

occurrence

310

idle time {sec)
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5) Computation Overhead of Our Method¥he process- (11) and to answer whether the energy is lower thaihe
based policy presented in Section IV updates the estimationl@f--energy scheduling problem is in NP; therefore, it is an
device and processor utilization only when a process changé’-complete problem.
states. When a process changes states, the process scheduler is
invoked to determine the next process to execute. The compyta-simplification Assumptions
tion required for our policy is considerably less than the compu- ) o .
tation performed by the process scheduler (Fig. 15). The over.EVen without timing and precedence constraints, low-energy
head of the low-power scheduling method is affected by two fagcheduling is still an NP-complete problem. We simplify the
tors, 1) how many devices are power managed and 2) how maigPlem so that there always exist schedules.
jobs are created by the flexible timer. Our experiments considerl) There is no timing or precedence constraints. Jobs can
only two devices and at most six jobs. On a typical notebook,  execute in any order and any schedule is a valid schedule.
the number of power-managed IO devices is likely to be small 2) All devices have the same parameters, such as the power,
enough so the overhead is acceptable. and their break-even time. Devices have equal importance

in power reduction.
3) All jobs have the same execution time. Each job causes
IX. CONCLUSION the same duration of busyness of a device that is used by

_ this job.
This paper presents a new approach to reduce power con-

A . For a device, its total idle time is the same, regardless of the
sumption in interactive systems. Our method uses OS kernel t%edule However, the idle time may consist of many short idle
distinguish individual processes for estimating the utilization ¢ ' '

. . eriods or few long idle periods. Only idle periods longer than
IO devices. Unused devices are shut down to save power. THis : .
. o~ .__the break-even time can save power using power management.

is more accurate than traditional methods that do not distin-~ =" . i . ) . N
. ng idle periods are preferred; short idle periods are “wasted.
guish processes. We also propose a system call for programs 10 : S .
nder the three assumptions, low-energy scheduling is equiva-

specify their hardware requirements. Such information allo\’Yesnt to reducing the number of idle periods and to enlarging the

process sche.dulers to make. idle pe_nods continuous and Iona%;gth of each idle period. In order words, the scheduler intends
power reduction can be achieved without performance deg[a

dation. We implemented the utilization estimation and the new reduce the "switches” between idleness and busyness of de-

L . : yices.
system call in Linux; experimental results achieved up to 72%
power saving.

This study can be extended in several directions. First, sofie State Switches

systems, such as servers, have multiple identical devices. It i\ device switches from idleness to busyness if a job does
possible to trade off performance and power with power-awaigt need this device while the following job does. Specifically,
load balancing. Second, battery capacities reduce at high pgisiced;. switches from idleness to busyness f ;. = 0 and
power; low-power scheduling may reduce peak power ar»g%k = 1forany: € [1,n — 1]. Similarly, d; switches
increases battery capacities. Third, software techniques fR§m busyness to idlenessiif, ,, = 1 andr,,,, » = 0. When
power reduction, such as the interactions between compilegﬁk = 74, the device remains either idle or busy with no
and OS, require further investigation. Fourth, more investigawitch. Therefored,, switches if and only ifirs, & 7 Toirr ke

tion is needed to understand how OS can support the trade@é definesw;, as the number of switches @ in this schedule;
between power consumption and quality of service. Finally,jitcan be computed by

remains a research topic how to scale low-power scheduling to

manage the power of many devices. n-1
swy = Z Tsik ® Tayyy b (14)
=1
APPENDIX

here@ this is theexclusive-orfunction. The total number of

COMPLEXITY OF LOW-ENERGY SCHEDULING . . .
switches of all devicessw, is

Suppose there avejobs: 7 = {j1, j2, ..., jnr ONasingle- o
processor system withn devicesD = {dy, da, ..., d,, }. Let s — Z swi, (15)
S be a scheduleS = (js,, Jay, - -5 Js,. )i Js;y EXECULES IM- — ’

mediately afteyj,, for i € [1, n — 1]. The energy of a schedule

is computed using formula (11). The low-energy scheduling

problem can be transformed into a decision problgimen a < problem Statement

boundk, is there a schedule that makes energy lower than . o )

dence constraints, it is NP-complete to answer whetheriSsquivalent to finding a schedule such that the total number of
schedule exists [39]. Since low-energy scheduling considé&¥itches is the minimum.

energy in addition to the constraints, its complexity is at least m el

NP-hard. On the other hand, when a schedule is known, it takes min Z Z Foi ke @ Toppr ke (16)

polynomial time to find the energy consumption using formula s
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D. Distance Between Jobs

We define the “distance” between two jobs as the number of
switches when these jobs execute consecutively. Forjjoasd
Jy, their distance is

m

dta;7y = E T,k BTy k-
k=1

17)

Example 8: Consider an example of three jobs and two de-
vices. The required device s&DS) of j; is{d1 }, RDS(j2) =
{d2}, RDS(js) = {di, d2}. These relationships are expressed
in Table VI.

If jo executes aftey;, d; becomes idle whilel, becomes
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TABLE VI
JoB—DEVICE RELATIONSHIP

device J2
dy 1101
do 0 1 1

busy; two devices change between idleness and busyness. Aifie9. Graph of jobs and their distances.

distance between; andj, is two. If j3 executes aftey;, d;
remains busy whilg, becomes busy. Only one device changes
from idleness to busyness; the distance betweamnd;s is one.

1

We can construct a matrid;3 to encodes these distances; 5
my, 4 IS the distance between andj,. The distance matrix of

these three jobs is 2]

0 2 1 [3]

2 01 (18) [4]

1 1 0 [5]

M is a symmetric matrix. Since a job cannot execute after[®]
itself, the elements along the diagonal are not used. We assign

zeros to the diagonal for simplicity. $ (7]
(8]

E. Scheduling Jobs [9]
Without loss of generality, we assume there &arting job [10]

(jo) that must execute first and there iseaminating job(j,,+1)

that must execute last. It takes no time to execute these two jobd?]
A matrix M, 2y (n42) represents the distances between jobs;
my, y IS the distance betweefy andj,. Sincejo andj,1; are  [12]
notreal jobs, the distance between any job #&at j,,+1 is zero.

Zeros are assigned to the diagonal, the first and the last rows, apg;
the first and the last columitiz € [0, n+1], My, » = Mg » =
Mz, 0 = Mnyl,z = Mg ntl = 0.

The matrix M can be treated as ttdistance matrixfor a
graph,G = (7, £). In this graph, the vertices are jobs and they
are connected by edges. Each edge has a weight; the weight
edge (., jy) IS My, .

Example 9: Fig. 29 shows the distance graph of the jobst®!
the previous example. In this figure, dashed lines have zero
weights. & [17]

Finding a schedule to execute all jobs is to find a “tour” that
visits each vertex exactly once. The tour startgpadnd ends
at j,+1. Finding the minimum number of switches is to find a
tour with the minimum total weight starting frogg and ending
at j,.+1. We can merge, andj,+1 without changing the total
weight. The problem is transformed to find a tour starting from
Jo, visiting all jobs, and ending gi. This is equivalent to the
traveling salesperson problefTSP). It has been shown that
TSP is an NP-complete problem [39, ND22, p. 211]. Consel?!!
quently, the simplified scheduling problem is NP-complete.

[14]

for’

(18]
(19]

[20]
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