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Abstract

This paper presents a physical synthesis methodology for ASIC
datapath modules. It exploits the regularity information of datap-
ath circuits and integrates the synthesis and placement processes
together. This work is distinctive in the following aspects: (1)
It works very well with datapath designs implemented in ASIC,
where the datapath circuits are mostly semi-regular, therefore can-
not be placed in a strict bit-sliced fashion. (2) it integrates phys-
ical planning with the synthesis process, so relative locations of
the cells follow the bit order and the dataflow order. Experiments
performed within a commercial framework show that this method-
ology improves the quality of datapath placements, and produces
better post-route layouts for the datapath modules. This method-
ology narrows the performance gap between automatically gen-
erated ASIC datapath modules and manually constructed high-
performance datapath circuits.

1. INTRODUCTION

As more complicated data processing operations are implemented
on silicon, datapath is becoming the critical component of today’s
ASIC designs. However, manually constructed datapath circuits in
custom ICs usually outperform the automatically constructed dat-
apath circuits in ASICs. Bridging this performance gap is crucial
for high-performance datapath designs.

In custom IC designs, the datapath circuits are normally parti-
tioned into dedicated blocks on the floorplan. The designers man-
ually construct each datapath circuit and place it in a bit-sliced
style. This design approach reduces the timing skews between dif-
ferent bits, and accurately predicts the loading of individual nets
[1][2]{3]. Compared with the custom datapath design approach,
ASIC datapath design flow has the following two limitations:

1) Datapath synthesis and placement are isolated. The data-
path synthesis tool has no knowledge of how the circuit might be
placed, so the load and timing of the interconnect cannot be esti-
mated accurately. The placement process has no knowledge on the
regularity information from the datapath circuit, so the layouts of
datapath modules are often sub-optimal.

2) Datapath is not fully regular. Datapath design implemented
in ASIC often contains circuits that are not fully regular. This
will make the datapath physical synthesis problem even more com-
plicated because such datapath circuits do not have a strictly bit-
sliced structure, and cannot be placed into a regular array of rows
and columns.

Previous work on datapath synthesis and generation focus ei-
ther on the datapath synthesis process (pre netlist generation), or
on the placement process (post netlist generation), namely in the
following areas:

1) Datapath layout generation [4][5][6]: Datapath is opti-
mized at transistor level, and cannot be linked directly to standard-
cell based ASIC design processes.

2) Datapath placement optimization: Research has been done
on reduction of track density [7][8][9], or minimization of con-
gestion and total wire length [10][11] of datapath circuits. All of
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them are stand-alone procedures which operate on a post-synthesis
netlist where regularity information has been partially lost.

3) Datapath placement with regularity awareness [12]: This
methodology works best on a fully regular datapath circuit, which
can be abstracted into one-bit abstraction model and further op-
timized for wire length and congestion minimization. However,
as analyzed later in this paper, most ASIC datapath circuits are not
strictly regular, where bit-sliced structures are often hard to extract.

This paper addresses the issues of ASIC datapath physical de-
sign, and presents a novel physical synthesis methodology where
datapath synthesis and placement are tightly coupled. This method-
ology uses higher-level dataflow information that is present only at
the register-transfer level (RTL) but not present in post-synthesis
netlists. Furthermore, this technique is robust and can handle semi-
regular datapaths that more commonly occur in ASIC designs.

The paper is organized as follows: Section 2 discusses the
sources of irregularities in a semi-regular datapath. A broader no-
tion of regularity, called semi-regularity, is introduced in Section
3. Section 4 introduces the idea of clusters, and section 5 describes
how clusters generation and placement can be coupled with data-
path synthesis process. Experimental results are presented in Sec-
tion 6, and the summary in Section 7.

2. SEMI-REGULARITY OF DATAPATH CIRCUITS

In ASIC design flows, datapath circuits are seldom fully regular.
Most often, they are semi-regular and contain some irregularities
caused by the following sources:

1) Operational Irregularities When input operands are not of
the same width, or datapath width varies as operations proceed, the
bit sliced structure can no longer be preserved for every bit and the
layout becomes non-rectangular.

2) Architectural Irregularities Some datapath architectures
are not regular, such as Wallace trees, or certain carry look-ahead
trees. These architectures do not have a bit-sliced structure, and
cannot be placed regularly.

3) In/Out Interface Irregularities

When input bits have skewed arrival time, or output bits have
different loads, cells performing the same operation on different
bits may get sized and optimized differently. This also destroys
the uniformity of the bit-sliced structure.

3. DEALING WITH SEMI-REGULARITY

Above examples show why fully regular datapaths are so rare in
ASIC designs. ASIC datapaths are only semi-regular and cannot
be placed in a strictly bit-sliced fashion. As a matter of fact, de-
signers have observed that strictly bit-sliced layouts are not neces-
sarily the goal of datapath placement:

o Cells are not required to be placed in a straight row or col-
umn to reduce the routing congestion or timing skews be-
tween different bits.

o Local cell movements do not hurt the timing if the moving
distance is small.

o Local cell movements often increase utilization and pro-
duce more compact layouts.
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The above observations indicate that datapath layouts do not have
to be the strictly regular arrangement of bit slices. Since fully reg-
ular datapaths are so rare, ASIC datapath placement approaches
should adopt a broader notion of regularity:

o The bit ordering of each word is consistent throughout the
entire dataflow (Fig. 1). This minimizes the wire intersec-
tion between different bits, as well as routing congestion
and interconnect delays.

o The cells operating on the same bit are placed relative to
each other according to the dataflow order across the entire
datapath (Fig. 1). This minimizes the timing skews be-
tween different bits.

o The datapath placement needs not specify a fixed location
for each cell. Rather it specifies relative placement con-
straints that can be used by the incremental and detailed
placers to locally adjust the cell positions.

Fig. 1. (2) Datapath placement that violates dataflow order and bit
order, (b) Improved placement that preserves dataflow order and
bit order

We now summarize the characteristics of fully regular and
semi-regular datapaths as follows:

1) Fully Regular Datapaths:

o Cells are placed in bit-sliced fashion

¢ Bit-slices are replicated for all bits

o Datapath circuits are modularized

2) Semi-Regular Datapaths:

o Cells are placed in bit-ordered fashion that is consistent

throughout the dataflow

o Bitslices are not replicated, but dataflow order is preserved

¢ Datapath circuits are localized

Fig. 2 illustrates the difference between fully regular and semi-
regular datapaths.

This broader notion of semi regularity in datapaths fits bet-
ter with the automated ASIC design flows. Although it does not
necessarily produce bit-sliced layouts, it minimizes wire-length,
congestion, and timing skews among different bits, and produces
more predictable timing.

4. CLUSTER-BASED PLACEMENT OF SEMI-REGULAR
DATAPATHS

We have developed algorithms and methodology for placing semi-
regular datapaths. This approach uses clusters to capture the no-
tion of semi-regularity. A cluster is a set of cells, that are usually
placed close to each other in a certain pattern. For example, the
full-adder cells of a ripple-carry adder can be grouped in a cluster
that is placed as a column in the datapath (Fig. 3).

Clusters can be hierarchical. A hierarchical cluster contains
cells and subclusters while a leaf cluster contains only cells (Fig.
3). The topmost cluster in the hierarchy corresponds to the entire
datapath module.

A cluster only defines the relative locations of its cells and
its subclusters, and uses this information as placement constraints
rather than fixed positions. With clusters, the datapath physical
synthesis problem becomes a hierarchical cluster placement prob-
lem that is formulated and solved in the following order:

1. Create cluster hierarchy

2. Place cluster hierarchy

3. Release cluster boundaries

4. Perform incremental/detailed placement of the leaf cells.
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Fig. 2 Layouts of fully regular and Fig. 3. Clusters and
semi-regular datapaths cluster hierarchy

Cluster creation and placement need to be tightly coupled with
the datapath synthesis process, therefore the regularity information
can be preserved in the cluster hierarchy while the datapath com-
pilation proceeds. The cluster creation and placement steps are
described in detail in the following sections. The remaining two
steps can be performed with any physical design tools.

S. DATAPATH PHYSICAL SYNTHESIS

5.1. Cluster Hierarchy Generation

The cluster hierarchy is created during datapath synthesis, and not
by post-processing the synthesized netlist. Datapath synthesis fol-
lows the dataflow order and bit order, and places a cell or cluster
inside its parent cluster as soon as it creates them. The physical
placement process that follows will preserve this information. This
is a bottom-up procedure, and is shown in the following pseudo
code:

create a cluster CLO;
for each operation; // follow dataflow order
create a cluster CL1 and insert it into CLO;
for each bit; // follow bit order
implement bit operation with cell Ci;
insert C1 into CL1;
done;
done;

5.2. Cluster Placement Problem

Datapath cluster placement is different from general macro place-
ment, or macro floor-planning. While placement and orientation
of macros are driven by connectivity, placement and orientation of
clusters can exploit higher-level information to prune out inferior
solutions:

1. The relative locations of the clusters should follow the dataflow
order.

2. Therelative orientations of the clusters should follow the bit
order, and the same bit order should be preserved through-
out the dataflow.

These observations indicate that for a horizontal dataflow, the
horizontal order and orientation of the clusters are constrained by
the dataflow order, and the vertical orientation of the clusters are
constrained by the bit order (Fig. 4). A methodology that can
utilize this information does not need to formulate a general 2-
dimensional problem to orient and place the clusters. Instead it
should formulate and solve a smaller scale problem. We refer to
this smaller problem as a 1.5-dimensional problem. In contrast,
macro placement or floor-planning is a full-blown 2-dimensional

problem.

Homogeneous Cluster Heterngrieous Climter

Flg. 4. Cluster placement prob- Fig. 5. Homogeneous
lem is a 1.5 dimensional prob- and Heterogeneous
lem Clusters
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5.3. Homogeneous and Heterogeneous Clusters

The 1.5 dimensional placement problem is still intractable. To fur-
ther simplify this problem, we classify the clusters into two types,
homogeneous clusters and heterogeneous clusters. A homoge-
neous cluster places all its cells and subclusters either in a single
column or in a single row. Any other cluster is a heterogeneous
cluster and has multiple rows and columns (Fig. 5).

In datapath cluster structure, heterogeneous cluster can ac-
tually be partitioned into a hierarchy of homogeneous clusters.
Therefore, we can simplify any datapath cluster structure into a
hierarchy consists of homogeneous clusters only.

The cluster generation procedure of Section S produces ho-
mogeneous clusters only. Since a homogeneous cluster is placed
in a single row or column, at each level of the hierarchy the cluster
placement problem is a linear (1-dimensional) placement problem.
Thus the placement of a hierarchy of homogeneous clusters can be
performed by a hierarchical linear placement procedure that solves
a sequence of linear (1-dimensional) placement problems in a top-
down fashion.

5.4. Top-down Procedure
The top-down procedure places the entire cluster hierarchy. It
starts at the topmost cluster, uses the top-level pin locations as
placement constraints, and works recursively down the hierarchy.
At each level of the hierarchy, it uses the current pin constraints
and solves a linear placement problem to place its cells and sub-
clusters, and determines the pin constraints for its subclusters. These
pin constraints can then be used to place the subclusters in later it-
erations. This procedure works down the hierarchy until it reaches
the leaf cells. Fig. 6 illustrates this top-down procedure. The linear
placement problem that is solved in the inner loop of the top-down
procedure is formulated in the next section.

B

ear placement procedure

5.5. Linear Placement
Problem Formation

A cluster contains a set of cells and subclusters, V = {v1, vz,
..,Um}, and a set of interconnects N = {n;, ns, ..., n.}. Each
cell or subcluster v; € V' connects to a subset of interconnects
Ny; C N, and each interconnect n; € N connects to a subset
of cells and subclusters V,,; C V. The relative locations of some
cells and subclusters V; C V are fixed by external constraints.
The external constraints are either relative-placement constraints
or pin-order constraints. The problem is to find a linear placement
of V, that satisfies all the constraints and minimizes the total in-
terconnect length.

Several existing heuristic algorithms address this problem ([13]
[14] [10]). We solve the linear placement problem by minimizing
a quadratic objective function. The quadratic objective function is
constructed from the connectivity information as discussed below:
Quadratic Objective Function

Given n blocks i € V,1 < i < n, with locations on
1, %2, Tn, the objective function represents the total weighted
square wire length as

n
B(a)= Y wij(zi —x;)° =x"Qx )]
i,j=1
where blocks v; and v; are located at z; and x;, and have
a weight factor w;; representing the strength of their connection.
The objective function can be more concisely described using a
vector x of all cell locations, and a matrix Q of the weight factors.

The weight factor w;; between blocks v; and v; is 0 when
the blocks are not connected; otherwise it is equal to the strength
force(i, j) of the connectivity between the blocks. The strength
force(i, j) is a function of the number of connections between
two blocks. The more connections between a pair of blocks, the
bigger value force(z, j) will be, and the closer the two blocks will
be placed in the linear placement. When 7 and j are identical, the
diagonal elements w11, w22, ...Wnn of the matrix Q are equal to
the negative sums of all the elements on the respective rows. This
is summarized in the following equation:

0 1 # 7 and no interconnect between
v; and vj
Jorce(i,j) i # j and v;, v; are connected

Wy =
i = j (The sum of wix
in the row i)

The objective function can be modified to capture placement
constraints. When some blocks are fixed by the placement con-
straints, the location vector is split into two parts: one represents
the fixed locations Xy C X, and the other represents the movable
locations x. C x. The objective function is then re-written as:

&(z) = (X x¢) ( 8;2 8;’; )(xc xf)T 2)

We can compute the zeroes of the derivative of this objective
function with a technique similar to [15], and get:

Qccxc = _chxf (3)

The quadratic objective function is very flexible, because the
relative locations of the blocks can easily be adjusted by selecting
different connectivity strengths between them. The objective func-
tion is also sensitive to long wires, and can reduce long-interconnect
problems.

n
- Zk-:.l,k;&i Wik

6. EXPERIMENTS

This paper focuses on generating optimal cell placement during
automated synthesis of ASIC datapath modules. It creates a com-
pact layout of the datapath module which can be integrated as a
macro for whole chip design planning. This macro can be placed
and routed with other parts of the design using macro placement or
regional placement techniques. The integration of datapath mod-
ules with non-datapath logic circuits is still a challenging issue, as
addressed in the next section.

Our methodology has been implemented with tightly-coupled
synthesis and placement engines. Datapath is described at Register
Transfer Level (RTL), and is synthesized into a netlist. Simultane-
ously, datapath cells are grouped into a cluster hierarchy and are
relatively placed according to the dataflow order and the bit order.
The datapath module is then routed and physically verified.

Experiments have been performed on 3 datapath modules us-
ing 0.18um technology libraries. The results are compared with
a standard design flow where the synthesized netlist is placed us-
ing a commercial physical design tool, which contains a quadratic
placement engine. The design constraints are timing critical. The
comparison is based on 5 metrics: total wire length, average wire
length per net, total cell count, cell area, and timing slack. All of
these metrics are measured after final routing which is also per-
formed with the same physical design tool. Total wire length rep-
resents the summation of all routing wires. The following three
paragraphs summarize the results of the three experiments.

Table 1 shows the results for a 56-bit array multiplier design
that contains approximately 10K cells (40K gates). Cluster-based
placement reduces total wire length by 8.0% and average wire
length per net by 5.5%. The reduced wirelength also reduces the
amount of buffering of the wires, which consequently reduces the
number of cells by 10.7% and total cell area by 11.6%, and causes
less congestion and fewer routing violations. Cluster-based place-
ment also improves the final timing slack.
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Table 1. Results for a 56-bit Array Multiplier
total wirelaverage wireftotal celllcell area] timing
length(m){ length(ym) [ count (mmzalslack(

with clusters][ 0.973 86 9622 [ 0.926 [ 2012

w/o clusters || 1.058 91 10777 1 1.047 | 552
improvement|| 8.0% 5.5% 10.7% [ 11.6% | 1460

Table 2 shows the results for a 32-bit multiplier-accumulator
(MAC) design commonly used in DSP applications. It contains
about 2600 cells (11K gates). Cluster-based placement produces
9% improvement of total wire length and average wire length per
net. It also reduces the cell count by 150, and improves timing
slack by 177ps.

Table 2. Results for a 32-bit MAC
total wirelaverage WIrqtoml cellfcell area] timing
llength(m)| length(zm)| count {(rmm?)lslack(ps)

with clusters]] 0.245 68 | 2474 | 0.217 24
w/o clusters || 0.270 75 2624 25T -153

improvement[ 9.3% 9.3% 5.7% [13.5% ] 177

Table 3 shows the results for a fast 56-bit floating point mul-
tiplier with Booth encoding and Wallace Tree architecture. It con-
sists of 7.2K cells (30K gates). This experiment also produces
similar improvements in wire length, cell count, and timing slack.

Table 3. Results of a Fast Floating Point Multiplier

total wirefaverage wireftotal celllcell area] timing
length(m)] length(um) | count |(mm?)[slack(ps)
with clusters][ 0.440 33 96 | 0.420 [ 1616

w/o clusters || 0.507 60 727 424 [ 722
improvement| 13.2% | 11.6% T% | 1.0% | 894 ||

The effect of cluster-based placement is illustrated in the fol-
lowing layout snapshots of the 56-bit fast multiplier. Fig. 7 shows
the layout produced by quadratic based standard-cell placement
where cells are packed in rows. Fig. 8 shows the layout produced
by cluster-based placement where the cells are aligned in columns
on the left hand side, and as the operations proceed, the columns
gradually merge into the irregular carry-lookahead adder on the
right hand side (in this experiment, we did not perform regular
placement on the carry-lookahead adder, so it looks irregular).

7. SUMMARY AND FUTURE WORK

This paper has described a new methodology for physical synthe-
sis of ASIC datapath modules. It introduced a broader notion of
regularity that is more appropriate for semi-regular datapaths com-
mon in ASIC designs. Using clusters, placement of semi-regular
datapath is simplified into a hierarchical linear placement problem.
Clusters are generated in the dataflow order during synthesis, and
are placed by recursively minimizing a quadratic objective func-
tion. This methodology fits very well inside an automated design
flow, and improves the placement quality of the experimental dat-
apath modules.

Although we now have a methodology for producing compact
layouts for semi-regular datapath modules, there are future chal-
lenges. In particular, a full design contains a varying mix of dat-
apath and irreguiar random logic. To improve the placement of
the whole design, we need a methodology that smoothly combines
the strengths of datapath placement and standard-cell placement
algorithms. Future research needs to address this problem before
automated design flows can produce designs that are comparable
in quality with manual designs.
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