23.2

Complex Library Mapping for Embedded Software
Using Symbolic Algebra

Armita Peymandoust
Computer Systems Laboratory
Stanford University
Stanford, CA 94305

Tajana Simunic
HP Labs & Stanford University
1501 Page Mill Rd., MS 3U-4
Palo Alto, CA 94304

Giovanni De Micheli
Computer Systems Laboratory
Stanford University
Stanford, CA 94305

{armita, tajana, nanni} @ stanford.edu

ABSTRACT

Embedded software designers often use libraries that have been
pre-optimized for a given processor to achieve higher code

quality. However, using such libraries in legacy code
optimization is nontrivial and typically requires manual
intervention. This paper presents a methodology that maps

algorithmic constructs of the software specification to a library of
complex software elements. This library-mapping step is
automated by using symbolic algebra techniques. We illustrate
the advantages of our methodology by optimizing an algorithmic
level description of MPEG Layer III (MP3) audio decoder for the
Badge4 [2] portable embedded system. During the optimization
process we use commercially available libraries with complex
elements ranging from simple mathematical functions such as
exp to the IDCT routine. We implemented and measured the
performance and energy consumption of the MP3 decoder
software on Badge4 running embedded Linux operating system.
The optimized MP3 audio decoder runs 300 times faster than the
original code obtained from the standards body while consuming
400 times less energy. Since our optimized MP3 decoder runs 3.5
times faster than real-time, additional energy can be saved by
using processor frequency and voltage scaling.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]:
Microprocessor/microcomputer applications, Real-time and
embedded systems, Signal processing systems.

General Terms
Algorithms, Performance, Design, Experimentation, Theory.

Keywords

Embedded software optimization, Automated library mapping,
Symbolic algebra, Polynomial representation, Computation
intensive software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2002, June 10-14, 2002, New Orleans, Louisiana, USA.

Copyright 2002 ACM 1-58113-461-4/02/0006...$5.00.

325

1. INTRODUCTION

The market demand for portable multimedia applications has
exploded in the recent years. Software optimization is critical for
such systems due to time-to-market pressures. The software
design process consists of translating a high-level specification
into the optimized machine code for the target processor, often
using compilers. There has been several research projects on
optimizing compilers in last few years [5]. Prototype research
compilers have shown impressive results [6]. Most optimizing
compilers target high-performance and/or general-purpose
computers. Relatively little effort has been dedicated to create
powerful optimizing compilers for embedded processors. Even
though several rescarchers are studying automatic code
optimization techniques for embedded processors [7,8], currently,
most embedded processors (or DSPs) are programmed directly by
expert programmers and code optimization is mostly based on
human intuition and skill.

Software engineers typically start with algorithmic level C
code, sometimes developed by the standards groups such as
MPEG, and manually optimize it to execute on the given
hardware platform. Pre-optimized libraries for embedded system
design are often available. For example, Intel recently released a
library targeted at multimedia developers for SA-1110 embedded
processor [10], and TI has a similar library for TI’54x DSP [11].
Embedded operating systems typically provide a choice from a
number of mathematical and other libraries [12,13}. In addition, a
library of more complex instructions, such as those developed by
Tensilica tools {4], could be used. When a set of pre-optimized
libraries is available, the designer has to choose the elements that
perform best for a given section of code. Such manual
optimization is error-prone and introduces undesired delay in the
overall development process.

For example, consider a section of code that calls the log
function. The library used in mapping consists of four different
log implementations: double, float, fixed point using simple bit
manipulation algorithm [14}, and fixed point using polynomial
expansion. Each implementation has a different accuracy,
performance and energy trade-off. A designer would need to
estimate which of the four functions would work best, test the
hypothesis, and iterate until the best result is found. Designers are
faced with an even more complex problem when attempting to
map a software implementation of IDCT already present in MP3
standards code into an embedded software library. There are
many ways to implement IDCT on a given processor, and it may
be difficult for a designer to determine which library element is
most appropriate. Clearly, the high-level arithmetic optimizations

targeted at the use of complex library elements are currently left to
the designers’ ingenuity.

Our methodology automates the process of identifying the
code sections that benefit from complex library mapping, and then
performs the mapping using symbolic techniques. Similar
symbolic techniques have been used for algorithmic level
synthesis of data intensive circuits [20], and for software
optimization of arithmetic functions by efficient mapping into
processor’s instructions set [15]. To illustrate the difference, let
us go back to the examples discussed above. The work presented
in [20] is concerned with mapping log to its hardware
implementation, while in [15] the focus is on representing 1og
and portions of IDCT with polynomials and then decomposing
those into complex processor instructions, such as MAC. In
contrast, the methodology presented in this work attempts to map
log and IDCT into as complex software library element as
possible, without resorting to decomposition into processor
instructions when not necessary. In addition, while previous work
reported only simulation results, in this work we present the
measurement results by running the code on a hardware platform
(Badge4 [2]).

The paper is organized as follows: Section 2 describes the
target software and hardware platforms used in reported
measurements. Section 3 describes our methodology, and gives
an overview of each of its steps. The results of MP3 decoder
optimization for Badge4 are presented in Section 4. We measured
a significant performance increase and energy consumption
decrease over the original executable specification from the
standard body. Finally, Section S summarizes our contributions.

2. BACKGROUND

The main motivation for this work is the author’s experience
in porting MP3 audio decoder software available from the
standards body [3] first to SmartBadge [2] with Angel operating
system (OS), then to SmartBadge with eCos OS, and finally to the
new version of SmartBadge, Badge4, running Linux OS. The
manual optimization for MP3 decode on the SmartBadge [16]
required the designer first to implement a fixed-point library and
replace all floating-point operations with fixed point. Then, the
designer needs to fully understand the details of the SmartBadge’s
design, so that the critical arithmetic operations could be manually
optimized with inline assembly code. Each manual optimization
process lasted several days.

While hand-optimizing code may be interesting the first time,
it becomes increasingly tedious in the subsequent tries. This
experience is common in typical industrial settings, where the
software needs to be ported and optimized to the newer versions
of hardware. Thus, the goal of this work is to automate mapping
of complex arithmetic functions commonly occurring in portable
system designs, into a set of pre-optimized library routines.

Badge4, as shown in Figure 1, is an embedded system
powered by batteries through a DC-DC converter. It consists of
StrongARM-1110 processor with SA-1111 companion chip that
controls peripherals, audio CODEC with microphone and
speakers, Lucent’s WLAN card, sensors and three types of
memory: SRAM, SDRAM and FLASH. Badge4 is the

326

SmartBadge with a new processor and the addition of SDRAM
and a companion chip.

Badge4 currently runs eCos [12] and an embedded version of
Linux operating system [13]. In this work we use Linux OS since
the libraries available to us are implemented only for Linux.
Badge4’s Linux has the main parts of the OS, including a small
file system, residing in SRAM. The larger file system is remotely
mounted from the server via the WLAN card. In our experiments,
the MP?3 files reside in the directory structure on the server and
are streamed via wireless link to the Badge4 for decoding. The
output can either be played back on the speekers, or streamed
back and saved in a file for accuracy comparison purposes.

Analog &
Digital

Figure 1. SmartBadge Architecture

We obtained the original MP3 audio deccder software from
the International Organization for Standardization [3]. The first
step in decoding MP3 stream is synchronizing the incorming
bitstream and the decoder. Huffman decoding of the subband
coefficients is performed before requantization. Stereo
processing, if applicable, occurs before the inverse mapping
which consists of an inverse modified cosine transform (IMDCT)
followed by a polyphase synthesis filterbank. Compliance test
provided by MPEG standard [17] is used to evaluate the accuracy
of the optimizations. The range of RMS error between the original
code’s output and the samples produced by the code under test
defines the level of compliance.

The outcome of our mapping algorithm is faster than real-time
MP3 decoder software for Badge4. For an MP3 player, faster
than real-time execution implies that lower voltage and frequency
can still meet the real-time constraint. This in turn translates into
longer battery life or lighter battery requirement for the embedded
system. The next section gives an overview cof our methodology
for mapping source code into complex software library elements.

3. COMPLEX SOFTWARE LIERARY
MAPPING METHODOLOGY

Ideally, the software designer would write an algorithmic-
level description of the software and have a compiler-like tool
optimize it using software libraries available for the given
platform. However, optimum implementation of calculation heavy
routines for the particular hardware is not possible with traditional
compiler optimizations. Commonly, the designer does most of
such optimizations by hand. Automating even a portion of the
optimization process can save much design time.

Our methodology automates most of the library mapping
process. The mapping methodology consists of three main steps.
The first step is to characterize the library elements. The
characterization needs to include not only performance and energy
consumption for a given architecture, but also the expected input
and output format, accuracy and a polynomial representation. The
next step identifies the target code for optimization. In this step,
the critical functions are chosen via profiling. Traditional
compiler techniques are used in representing the arithmetic
section of the critical functions as polynomials. Finally, the target
code represented by polynomials is mapped into the library
elements. The mapping process uses symbolic techniques to
decompose the target code into a set of library elements. The
mapping process selects the solution that offers best performance
with sufficient accuracy.

Our key contribution is a new method for mapping code into a
library of complex software elements using symbolic polynomial
manipulation. Since our methodology is compliant with other
software optimization techniques, additional benefits are gained
by combining it with traditional complier optimization algorithms.
The next sections describe each part of our methodology in detail.

3.1 Library Characterization

The target library may consist of traditional embedded system
library, such as IEEE floating-point mathematical library for
Linux operating system [13], a commercial library available for
the particular processor, such as Intel’s integrated performance
primitives library [10], and a set of in-house pre-optimized
routines. Library characterization is done on element-by-element
basis. Each element is labeled with the type of inputs and outputs,
performance, accuracy, energy consumption, and finally the
polynomial representation.

The format of library element inputs and outputs is determined
from the library include files. Techniques discussed in the next
section can be used to extract the polynomial from the source
code if the code is available. Otherwise either the distributor
needs to provide the equivalent polynomial representation or it
might be obtained from the documentation.

Important part of library characterization is the determination
of accuracy, performance and energy consumption. This
information is used to guide the selection process when more than
one library element has same functionality. Most embedded
systems have OS timers that can be used for fine-granularity
performance measurements on hardware. But often there is not an
easy way to measure processor and memory power consumption.
Alternatively, a cycle-accurate energy consumption simulator [16]

Table 1. Sample Complex Library Elements

Library Element | Execution time |Execution time ratio
float SubBandSyn 0.95 1
fixed SubBandSyn 0.01 92
IPP SubBandSyn 0.002 479
float IMDCT 0.39 1
fixed IMDCT 0.014 27
E’P IMDCT 0.0002 1898

easily provides energy and performance estimates of library
elements.

Examples of two complex library elements, SubBand
Synthesis and IMDCT, are shown in Table 1. The library has three
different versions of each library element: the open-source
floating point version from the MP3 standards library [3], fixed-
point in-house pre-optimized routine, and a version from Intel’s
integrated performance primitive (IPP) library for SA-1110
processor [10]. For each library element we have measured its
performance on the Badge4 hardware. All entries in Table 1 are
represented using polynomials. Since polynomials for complex
library elements can be quite large, we show only a critical
portion of IMDCT polynomial in Equation 1. Note that this is just
a first order polynomial, since cos (i, k,n) can be calculated in
advance for all i, k and n. Total of n/2 windowed samples, vy,
are transformed into n x; samples.

2q
xi= 3 yy cos(Z- (20 + 1+ D)2k + 1)))
=0 2n 2

3.2 Target Code Identification

The first step in target code identification is to identify the
energy and performance critical procedures. This step can be
done with either the energy profiler simulator [16], or by profiling
directly on the hardware. Once the power and performance critical
procedures are identified, they are formulated as polynomials
suitable for mapping into library elements.

Critical procedures calculating an arithmetic or Boolean
function can be easily represented as polynomials. The
polynomial representation of a procedure can be directly extracted
from the C code if it calculates a linear arithmetic function. If the
procedure performs a series of bit manipulations or Boolean
functions, previously developed algorithms based on interpolation
[22] can be used to formulate its equivalent polynomial
representation. When a section of the procedure implements a
nonlinear function, we use an approximation, such as the Taylor
or Chebyshev series expansion, as its polynomial representation.

The goal of this step is to formulate as large polynomials as
possible, so the likelihood of finding a more complex library
element that matches at least a portion of the formulated
polynomial is increased. This can be accomplished by using code
transformation techniques such as loop unrolling, constant and
variable propagation, code motion, conditional expansion and
model expansion.

3.3 Library Mapping Algorithm

This step decomposes the polynomial representations of the
code blocks into available complex library elements while
minimizing cost. Inputs to the library-mapping algorithm are a set
of polynomial representations for critical code blocks, a
characterized library of complex elements, and a routine that
provides accuracy and cost (e.g. performance, energy) feedback.
Note that a similar algorithm was used for algorithmic level
synthesis of data intensive circuits [20}, and for mapping basic
blocks of arithmetic functions into complex processor instructions
[15] (e.g. mapping of 1og into a series of MACs). The core of the

algorithm is a symbolic manipulation technique, known as
simplification modulo set of polynomials (simplify), based on
Grobner basis fundamentals [20]. The polynomial representations
of critical code blocks are simplified modulo a subset of
polynomial representations of library elements.

Symbolic computer algebra is a set of algorithms capable of
algebraic manipulation of expression containing undetermined
values (symbols), such as variable x in (x+1) * (x-1). Several
commercial symbolic computer algebra systems are available on
the market; Maple [18] and Mathematica [19)] are most widely
used. Most interesting symbolic polynomial manipulations are
based on Grdbner bases [21]. Grdbner bases also solve variable
elimination in a set of polynomials and ideal membership
problems, which is the core of simplification modulo set of
polynomials. We use the following set of symbolic techniques:
factorization, expansion, Horner transform, multivariate
polynomial substitution, and variable elimination.

Factor and expand are inverse operations. Consider using
Maple to factor and expand the following polynomial:

> S :=

> P =

X 2% (x*14+X"15+1) ;
expand(S) ;

P 1= x"16+x"17+x"2
> factor (P);
X 2% (x"14+xX"15+1)

[

Homner form of a polynomial is a nested normal form with
minimal number of multiplications and additions. Any
polynomial can be rewritten in Hormner, or nested, form. An
example of Horner form polynomial for multiple variables is
shown below:

> Si= Y2¥XHAYRX"2HAFXFIY+X2+2%X;
> convert (S, 'horner’, [x,y]):
(2+ (4+y) *y+ (y+1) *x) *x
Elimination theory based on the Grébner basis formalizes
substitution and variable elimination for multivariate polynomials.
> S:= X + X"3*y"2 -2*x*y"3
> simplify (S, {p:= x"2-2*y},
X+y 2% X*p

[x,y.pl):

Since evaluating all subsets of the library is exponentially
expensive, the library-mapping algorithm uses the branch-and-
bound method with performance and energy consumption as
bounding functions to prune the search space. All previously
described symbolic manipulation except simplify are used as
guidelines in formulating different side relation sets to speed up
the mapping algorithm. The symbolic manipulations result in
various equivalent polynomials and thus provide more options to
the mapping algorithm. Therefore, the speed and likelihood of
finding the right match will increase. As with all branch-and-
bound algorithms, in spite of using heuristics to speed up the
mapping process, this algorithms worst-case complexity still
remains exponential.

Table 2 shows the pseudo-code of the library-mapping
algorithm. The target code to be mapped into a library L is
represented with S. Mapping S into L is equivalent to simplifying
S modulo elements of the library L as side relations (sr). Decision
tree (solution_tree) implements the branch-and-bound algorithm.

328

The results of each simplify step are also saved in the tree data
structure. When a simplification result is within an acceptable
tolerance of the polynomial representation of a library element, a
possible solution is found and the corresponding tree node is
marked accordingly. The algorithm also applies tree-height
reduction, factorization, substitution, expansion, and Horrer-
based transform on §. As a result, there are several polynomials
representing the target code (exp_tree), which can used to guide
the initial side relation selection process. When all initial side
relations are used and the result of simplify is not a library
element, we decompose the result without further guidance from
the expression tree. The algorithm is implemented in C with calis
to Maple V for the symbolic manipulations. Typically, the
algorithm takes only a few minutes to execute since we use
heuristics to speed up the mapping process. However, its worst-
case complexity is still exponential.

Table 2. Library Mapping Algorithm

function Decompose (exp_tree, boundVal) |
#initialize a solution tree
solution_tree «— tree (exp_tree)
Depth — 0
Bound + boundVal
for all n € tree with Depth {
if Depth ==
choose sr € L to preserve the exp_tree structure
else for all sr € L {
result = simplify (n,sr);
Add_child (n,result) #make result a child of node n
Depth «— Depth + 1

if result € L
{ # solution is found
Bound = cost of node result; }}}

return the best solution with sufficient accuracy
end Decompose

procedure main (S,L)
exp_tree [1 .. NoManipulations] = AllManipulations (S);

for I = 1 to NoManipulations {
boundValli]=Performance(exp_treeli]);
solution(i) = Decompose(exp_treelil,boundValli}) }

return the best solution in solutions[i}
end main

4. RESULTS

We illustrate the advantages of our methodology by
performing library mapping on an algorithmic level description of
the MPEG Layer III (MP3) audio decoder we obtained from the
standards body [3]. The optimization target is the Badge4
portable embedded system shown in Figure 1. Badge4 currently
runs an embedded version of Linux operating system [13].
During the optimization process we used a mathematical library
available with Linux OS [13], Intel’s integrated performance
primitives (IPP) library for SA-1110 processor [10}, and a library
populated with in-house pre-optimized routines. The library

elements ranged from simple mathematical functions such as exp
to as complex elements as IMDCT routine.

Our library mapping methodology, as described in Section 3,
consists of library characterization, target code identification and
the final library mapping step. The library characterization step
uses hardware measurements for performance and simulations for
energy consumption {16]. The polynomial representation is
obtained either from the source code (Linux mathematical and in-
house libraries), or from documentation (IPP library).

The target code identification consists of two important steps:
profiling the code and formulating polynomials to be mapped. All
profiling is done using hardware measurements. Table 3 shows
the results of profiling original MP3 decoder software we
obtained from the standards body. The results are shown for one
frame and represent only the most significant functions in terms of
their performance impact.

Table 3. Original MP3 Profile

Function name Execution time (s) { %
ITI_dequantize_sample 1.1754 45.33
SubBandSynthesis 0.9481 36.56
inv_mdctL 0.3872 14.93
III_hybrid 0.0670 2.58
III_antialias 0.0131 0.51
II1_stereo 0.0010 0.04
III_hufman_decode 0.0007 0.03
II1_reorder 0.0005 0.02
Total for one frame 2.5931 100.00

The next step is to represent portions of these functions as
polynomials and then map them into available libraries. For the
first mapping step we selected Linux mathematical (LM) and in-
house libraries (IH). The resulting performance profile is shown
in Table 4. Although the performance per frame is drastically
reduced (by two orders of magnitude), we can see that still almost
85% of the execution time is spent in the IMDCT and subband
synthesis functions.

Table 4. MP3 Profile after LM & IH mapping

Function name Execution time (s) %
inv_mdctL 0.0144 49.54
SubBandSynthesis 0.0103 35.30
III_dequantize_sample 0.0013 4.33
III_stereo 0.0008 2.83
III_reorder 0.0007 2.28
IIT_antialias 0.0006 2.15
III_hufman_decode 0.0007 2.48
III_hybrid 0.0003 1.10

| Total for one frame 0.0291 100.00

329

The next step is to map to Intel’s IPP library to further
optimize the code. Here we find two primitives that match the
two critical procedures shown in Table 4. The new performance
profile is shown in Table 5. As shown, our method automatically
uses two of the IPP routines. These two routines correspond to
the two most time consuming sections of the code as shown in
Table 4. While the new profile shows that subband synthesis still
takes roughly 35% of the execution time for each frame, we see
that MDCT is no longer a critical portion of the code. Notice that
the execution of the IPP subband synthesis routine is one order of
magnitude faster than the previous version and the total time for
decoding one frame is reduced by a factor of 50.

Table S. MP3 Profile after LM & IH & IPP mapping

Function name Execution time (s)| %
ippsSynthPQMF_MP3_32s16s 0.00176 35.242
II1_dequantize_sample 0.00124 24.79
1II_stereo 0.00082 16.46
IIT_hufman_decode 0.00067 13416
IppsMDCTInv_MP3_32s 0.00047 9.4113
HI_get_scale_factors 3.4E-05 0.6808
Total time for one frame 0.00499 100.00

Table 6 summarizes the performance and the energy results of
the overall mapping process. Both measurements were performed
on the Badge4 while running at maximum processing speed and
voltage. We started from the original source code that runs
roughly two orders of magnitude slower than real time. The next
two entries show the results of mapping only into Intel’s IPP
library; more specifically, we were able to automatically use IPP’s
SubBand Synthesis and IMDCT in the original code. However,
the rest of the code remains intact and still operates on floating-
point data. StrongARM-1110 cannot perform floating-point
operations natively; therefore the code is still far from real-time
execution. IH library entry represents the mapping from the
original code, into Linux mathematical library and our in-house
pre-optimized library. We save two orders of magnitude in both
performance and energy for this mapping. This is due to changing
most floating-point operations to fixed point. Fixed-point
accuracy is verified through simulation. Additional saving of a
factor of four is obtained by further optimizing the code and
mapping to all three libraries: Linux mathematical, in-house and
Intel’s IPP library. The factor of four improvement is achieved

Table 6. Performance and Energy for MP3 library mapping

Code version Perf (s) |FactorfiEnergy (J)| Factor
Original 50392} 1.0 509.6 1.0
IPP SubBand 301.43| 1.7 292.5 1.7
IPP SubBand & IMDCT 211.27| 2.4 199.1 2.6
TH Library 547 1 92.1 447 (1142
IH + IPP SubBand 333 |1514| 2.78 |182.3
IH + IPP SubBand & IMDCT)} 1.43 [352.4 1.17 435.2
IPP MP3 041 {1240.8] 0.31 1626.

solely based on automatic use of complex library elements that
have been pre-optimized for the given processor. Such
optimization was not possible in previous work [15], since
mapping was limited to the complex instructions available on the
target processor (MAC). Full compliance to the standard of each
version of MP3 code is ensured by checking the accuracy at each
mapping step with MP3 compliance test [17].

The last table entry, IPP MP3, represents fully hand-optimized
code available for MP3 from Intel. Our most optimized version
(IH+IPP SubBand & IMDCT) is a factor of five worse than hand-
optimized IPP MP3. Our approach only automates the process of
mapping code that can be represented with polynomials into
complex library elements. Since large portions of MP3 decoder
software can be represented with polynomials, we were able to
measure savings of a factor of 350 in performance and 435 in
energy over the original source code obtained from the standards
organization. Even larger energy savings are possible by using
processor frequency and voltage scaling, because our most
optimized MP3 code runs almost four times faster than real time.
One should note that the improvement factors reported are
algorithmic floating-point measurements divided by optimized
code measurements. Improvements of this order are realistic
when skilled designers hand optimize code for a given embedded
system, as shown in the last column of Table 6. Our contribution
is to automate most of this optimization process.

5. CONCLUSION

The contribution of this paper is a methodology for automatic
mapping of critical code sections into complex library elements.
Since our mapping methodology uses symbolic algebra methods,
we focus only on code sections that can be represented with
polynomials. There are three main steps in our methodology:
library characterization, target code identification, and library
mapping.

We have tested our methodology by mapping critical code
sections of MP3 audio decoder into libraries we had available for
the Badge4 portable embedded system. We have measured
savings of a factor of 350 in performance and 435 in energy over
the original specification while still keeping in full compliance
with the MPEG standard. Currently, skilled software designers
hand optimize code to achieve such improvement gains. Our
proposed methodology automates this tedious process.
Additional energy savings are possible by using frequency and
voltage scaling since the final MP3 code runs a factor of four
faster than real-time.

6. ACKNOWLEDGMENTS

This research is supported by ARPA/MARCO Gigascale
Research Center, HP Labs, and Synopsys Inc. We would like to
thank all preceding organizations for their support. We would
also like to thank Dr. Yung-Hsiang Lu for his help with the data
acquisition.

7. REFERENCES

[1} P. G. Paulin, C. Liem, M. Cornero, F. Nacabal, and G.
Goossens, “Embedded software in real-time signal processing
systems: application and architecture trends,” Proc. IEEE, vol.
85, no. 3, pp. 419-435, Mar. 1997.

330

[2]1 G. Q. Maguire, M. Smith, H. W. Peter Beadle, “SmartBadges: a
wearable computer and communication system”, 6%
International Workshop on Hardware/Software Codesign,
Invited talk, 1998.

[3] “Coded representation of audio, picture, multimedia and
hypermedia information”, ISO/IEC JTC/SC 29/WG 11, Part 3.,
May 1993.

[4] Albert Wang, Earl Killian, Dror Maydan, Chris Rowen,
“Hardware/Software Instruction Set Configurability for System-
on-Chip Processors”, Proceedings of the Design Automation
Conference, pp. 184-190, June 2001.

[S] S. Muchnick, Advanced Compiler Desigin and Implementation,
Morgan Kaufmann, 1997.

{61 M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao, E.
Bugnion, M. Lam, “Maximizing multiprocessor performance
with the SUIF compiler”, IEEE Computer, vol. 29, no. 12, pp.
84-89, Dec. 1996.

[7] P. Marwedel and G. Goossens. Code Generation for Embedded
Processors. Kluwer Academic Publishers, 1995.

[8] R. Leupers, Retargetable Code Generarion for Digital Signal
Processors, Kluwer Academic Publishers, 1997

[91 F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L.
Nachtergaele, A. Vanduoppelle, Custom Memory Management
Methodology: Exploration of Memory Organisation for
Embedded Multimedia System Design, 1998, Kluwer Academic
Pub.

{10] Intel, “Integrated Performance Primitives for the Intel
StrongARM SA-1110 Microprocessor”, 2000.

[11] Texas Instruments, “TI’54x DSP Library”, 2000.

[12] Cygnus Solutions, “eCos™ Reference Manual”, 1999.
[13] RedHat, “Linux-arm math library refererce manual”.

{14] J. Crenshaw, Math Toolkit for Real-Time Programming, CMP
Books, Kansas, 2000.

[15] A. Peymandoust, T. Simunic, and G. D Micheli, “Low Power
Embedded Software Optimization using Symbolic Algebra”,
Proceedings of the Design Automation and Test in Europe
Conference, pp. 1052-1058, March 200Z..

[16] T. Simunic, L. Benini, G. De Micheli, “IZnergy-Efficient Design
of Battery-Powered Embedded Systems”, Special Issue of IEEE
Transactions on VLS, pp. 18-28, May 2001.

[17] ISO/IEC JTC 1/SC 29/WG 11 13818-4, “Information
Technology, Generic Coding of Moving Pictures and
Associated Audio: Conformance”, International Organization
for Standardization, 1996.

[18] Maple, Waterloo Maple Inc., www.maplesoft.com, 1988.

[19] Mathematica, Wolfram Research Inc., www.wri.com, 1987.

[20] A. Peymandoust and G. De Micheli, “Symbolic Algebra and
Timing Driven Data-flow Synthesis”, Proceedings of the
International Conference on Computer Aided Design, pp. 300-
305, November 2001.

f21] T. Becker and V. Weispfenning, Grobner Bases, Springer-
Verlag, New York, NY, 1993,

[22] J. Smith and G. De Micheli, “High-Level Synthesis and Design
Reuse using Polynomial Circuit Models”, IEEE Transactions
on VLSI, Vol. 9, No. 6, pp. 783-800, December 2001.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

