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Abstract—Design reuse requires engineers to determine
whether or not an existing block implements desired function-
ality. If a common high-level circuit model is used to represent
components that are described at multiple levels of abstraction,
comparisons between circuit specifications and a library of
potential implementations can be performed accurately and
quickly. A mechanism is presented for compactly specifying
circuit functionality as polynomials at the word level. Polynomials
can be used to represent circuits that are described at the bit
level or arithmetically. Furthermore, in representing compo-
nents as polynomials, differences in precision between potential
implementations can be detected and quantified. We present a
mechanism for constructing polynomial models for combinational
and sequential circuits. Furthermore, we derive a means of
approximating the functionality of nonpolynomial functions and
determining a bound on the error of this approximation. These
methods have been implemented in the POLYSYS synthesis tool
and used to synthesize a JPEG encode block and infinite impulse
response filter from a library of complex elements.

Index Terms—Binary decision diagrams (BDDs), high-level syn-
thesis, polynomials.

I. INTRODUCTION

T HE increased complexity of integrated circuits has forced
designers to reuse existing circuitry when constructing

new systems. The proliferation of reusable blocks has promised
opportunities to complete new designs more quickly and
with fewer errors. Reuse of existing components requires
those components to have suitable characteristics, including
area, power consumption, performance, and testing features.
However, it is most important that the component implement
the functionality required by the system. Searching the space
of existing implementations for functional validity is time
consuming and fraught with pitfalls, as the suitability of
existing blocks is determined by manual methods or verbal
descriptions. This search promises to become more complex as
the number and need for reusable designs increases [1]. The
models and methods presented in this paper enable automation
of this search by generating circuit representations that are at a
higher level of abstraction than those used in traditional library
binding applications.

Component matching is the problem of allocating complex
blocks given a system specification. This problem reduces to
determining whether or not the functionality of a library ele-
ment is the same as the functionality of part of a specification.
For example, in designing the baseline JPEG encode block of

Manuscript received June 1, 1999; revised December 2, 2000.
The authors are with the Computer Systems Laboratory, Stanford University,

Stanford, CA 94305 USA (e-mail: jsmith@mdv.com).
Publisher Item Identifier S 1063-8210(01)07657-0.

Fig. 1. Mapping JPEG encode onto existing designs.

Fig. 1, subblocks are required to perform a discrete cosine trans-
form (DCT), quantization, dc (zero frequency) encoding, and
ac (nonzero frequency) encoding. Given a library of existing
blocks, a word level representation can be derived from the
Boolean equations that describe the functionality of library ele-
ments. The Boolean equations that specify an existing block can
be derived in a straightforward manner from commonly avail-
able component netlists. The JPEG system can then be synthe-
sized by matching the arithmetic specification of each of these
functions to the word-level representation of each library ele-
ment.

Component matching is closely related to verifying that a
specification and an implementation match exactly, but presents
important differences. In matching a component to a specifica-
tion, it is valuable to detect components that implement func-
tionality that is similar to, but not necessarily the same as, that of
the specification. For example, in performing DCT operations,
a specification may require computation of the . One pos-
sible implementation may be a function that does not implement

exactly, but instead implements an approximation of the
function to preserve area and increase performance. Further-
more, a specification may indicate that computation of
can take up to three cycles; however, existing implementations
may exist that require only two cycles. Thus, the specification
and implementation are similar, but do not match exactly, al-
lowing for tradeoffs in execution time, area, power consump-
tion, precision, and other qualities.

The examples discussed above can be specified very effi-
ciently with polynomial models. For example, can be
approximated by

This article presents methods for developing analogous word-
level polynomial models for existing implementations given a
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bit-level description of the implementation. These methods are
ideally suited for circuits that implement arithmetic functions
and can be applied to combinational and sequential circuits.

This comparison often must be performed between arith-
metic and bit-level abstractions of the functionality. Polynomial
methods provide a means for generating word-level polynomial
representations, given bit-level descriptions of an implementa-
tion. In generating a mathematical structure common to both
levels of abstraction, allocation of complex components can
be performed, closing the semantic gap between specifications
such as those generated in MATLAB and implementations,
such as those modeled with Boolean logic or hardware design
languages (HDLs). This technique is used by the POLYSYS

synthesis tool to map arithmetic specifications onto existing
designs that are described by Boolean equations.

The techniques presented here are most effective for allo-
cating blocks that are arithmetic intensive, but may contain sig-
nificant control logic. Common application domains that fit this
description include computer graphics and digital signal pro-
cessing. To illustrate the application of the polynomial methods
developed in this article, we map a JPEG encode specification to
complex elements and compare the specification of a filter suit-
able for controlling the velocity of a tape through a tape drive to
an existing filter. The arithmetic specification for the JPEG en-
code block and the IIR filter are derived from MATLAB, while
the existing implementation are described by Boolean equa-
tions.

II. RELATED WORK

Reusable blocks have traditionally been characterized by
verbal or object-oriented descriptions [2], [3] such as “ethernet
core” or “rasterizer,” combined with component-specific
attributes, such as “floating point” or “integer,” and waveforms.
Precise descriptions of functionality are usually restricted to
smaller blocks such as combinational logic gates or simple
arithmetic operations (e.g., addition or multiplication). For
example, in allocating a JPEG block, current techniques may
require that the specification and implementation both be de-
scribed by the keyword “JPEG.” This description is imprecise,
however, as potential JPEG implementations may implement
different compression schemes, different levels of accuracy, or
operations on data sets of different sizes.

Component matching has historically been restricted to
matching bit-level circuit specifications to logic gates. Many
structures, such as binary decision diagrams (BDDs) [4], are
ideal for mapping combinational logic onto a library of gates.
The canonicity and ease of composition that BDDs provide
make them ideal for matching small combinational circuits.
However, for more complex functions, like multiplication,
the potentially exponential size of BDD structures makes
comparison of BDDs time consuming and memory intensive.
When comparisons are sought between functions that are not
described at the bit level, BDD structures are not sufficient to
represent circuit functionality. Furthermore, BDDs can yield
information on whether or not a specification and implementa-
tion match exactly, but offer no path for quantifying the degree
to which the two differ. That is, two functions that have similar,

but not equal, BDD structures may implement drastically
different arithmetic functions, while two very different BDDs
may implement the same mathematical operation with different
degrees of precision.

Binary moment diagrams (BMDs) [5] have been developed
to ease the memory and time required to manipulate complex
structures by generating word level representations. BMDs have
been used to verify the functionality of linear circuits [6] and
could be adapted to perform component matching for those cir-
cuits. However, BMDs are unsuitable for use in non linear func-
tions because of the resulting exponential complexity. hybrid
decision diagrams [7] and multiterminal BDDs [8] suffer from
similar restrictions. power hybrid decision diagrams (PHDDs),
developed in [9] are well suited to handling the non linearities
associated with floating point arithmetic, but can still require, in
the worst case, an exponentially large data structure to represent
nonlinear functions.

In order to raise the complexity of blocks for which a func-
tional characterization can be generated, algorithms have been
developed to reduce the size of circuit representations. This
can be achieved by generating data structures that represent an
approximation of circuit functionality. For example, in [10], a
compact circuit approximation is derived that minimizes the
number of input assignments for which the approximation
and the actual circuit differ. In contrast, our work generates a
compact circuit approximation that minimizes the numerical
distance between the functionality of the representation and the
actual block. Similarly, the allocation mechanism presented in
this paper determines the accuracy of a match by the numerical
distance between a specification and a possible implementation.

Minato introduced a method for modeling and manipulating
circuits that implement polynomial functions using zero-sup-
pressed BDDs [11]. This structure provides an efficient repre-
sentation for those circuits for which a polynomial description
is specified, but becomes exponentially large if discontinuities
exist in the function. The methods we will present here develop
a mechanism for deriving the polynomial representation given a
Boolean circuit description. In addition, we will present a mech-
anism for detecting circuit discontinuities and generating com-
pact approximations for highly discontinuous circuits.

Efficient component matching requires data structures that
are canonical, constructible in polynomial time, and allow for
simple composition. This paper will demonstrate methods for
determining polynomial representations for circuits that are
described at the bit level. Furthermore, we will prove that a
unique minimum-order polynomial representation exists for
all circuitry without feedback. In representing hardware as
polynomials, blocks can be efficiently compared with one
another to determine if they implement the same functionality.
In addition, polynomials are easily composable, allowing
efficient determination of the functionality of hierarchical or
partitioned blocks.

III. POLYNOMIAL REPRESENTATIONS

To map an arithmetic specification to a complex element that
is described at the bit level by Boolean logic, a word-level poly-
nomial that encapsulates the element’s functionality is derived.
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We consider only completely-specified Boolean functions for
the sake of simplicity. Generating a word-level polynomial rep-
resentation for a Boolean function may appear to be an incon-
sistent problem because Boolean functions are inherently dis-
continuous. However, a Boolean function

are bit vectors of length and , respectively,
can be treated as a set of coordinates (), where

Encode Decode
Encode Decode

Thus, “encode” is an integer interpretation of a Boolean
vector, such as two’s complement or sign magnitude and “de-
code” is the inverse transformation. For the sake of simplicity,
this paper will focus on those components based on two’s
complement arithmetic. The following encoding examples will
be referred to in succeeding sections:

Encode Decode
Encode Decode
Encode Decode
Encode Decode

A minimum-order polynomial can be determined that fits the set
of coordinates ( ). If the order of this polynomial is known
to be , then coordinates can be extracted from the func-
tion and a set of equations and variables (the coefficients
of the polynomial) can be constructed and solved. Thus, the
problem of generating a word level polynomial representation
for a Boolean function reduces to determining the order of the
polynomial.

A. Existence and Uniqueness

The following theorem is the basis for determining the poly-
nomial representation of circuits described at the bit level. This
theorem, derived from the binomial distribution from traditional
calculus, is proven for integers and used to prove the existence
and uniqueness of polynomial representations of Boolean func-
tions.

Theorem 3.1:Given a polynomial function of order ,
where , the function is of order exactly

.
Proof: Let

Each term of order in contributes a polynomial of order
exactly to

Thus, when is computed, the polynomial term
of contributes a polynomial of order exactly

and is the only term to do so. Therefore, is of
order exactly .

Although this paper will focus on integer encodings of
Boolean vectors, note that Theorem 3.1 holds for any domain
of in which addition, subtraction, and multiplication are
defined and the associative, distributive, and identity properties
hold (e.g., ). Furthermore, the theorem is indepen-
dent of the details of the encoding of (e.g., two’s
complement, sign magnitude, fixed point, floating point). To
illustrate Theorem 3.1 for , note that if , then

.
From Theorem 3.1, a useful corollary can be derived.

Corollary 3.1.1: For all , , the following set of row
vectors is linearly independent:

Proof: The set of row vectors can be reduced by multi-
plying it by nonsingular matrices. The matrices shown in the
following computation are nonsingular (the determinant of each
is 1), as shown in the equation at the bottom of the next page.
The rows of matrix are linearly independent. Therefore, the
original set of vectors are linearly independent.

Example 3.1.1:To illustrate Corollary 3.1.1, notice that for
and

Thus, the initial set of vectors is linearly independent.
The following theorems establish the existence of polynomial

representations for combinational univariate functions and the
uniqueness of the minimum-order polynomial representation.

Theorem 3.2 (Existence):Let , , and
be the integers corresponding to . Given a Boolean func-

tion , there exists a polynomial
, where , that defines the

corresponding function .
Proof: If , then there are possible values that

can take on and corresponding values
that can take on . The solution
to the set of linear equations ( )
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exists if no row of the matrix

is a linear combination of the others. We know this is true from
Corollary 3.1.1. Note that the dimension ofy does not affect the
polynomial representation of.

Theorem 3.3 (Uniqueness):The minimum-order polynomial
representation of a Boolean function is
unique.

Proof: Assume there exist two minimum-order polyno-
mial representations for , where are the integers
corresponding to

there are two possible solutions to the set of linear equations

Encode
Encode

Encode Decode

there exists a row in the matrix

that is a linear combination of the others. But from Corollary
3.1.1 we know that this is not possible . Therefore, the min-
imum-order polynomial is unique.

Example 3.1.2:An example of the application of Theorems
3.2 and 3.3 is the following set of Boolean equations (input

width and output width ) that model an existing
circuit

is the unique minimum-order polynomial ( ) that
represents this circuit and would match a specification that re-
quires the computation of the third power of.

B. Polynomial Computation

In the previous section, we have proven that any combina-
tional circuit can be uniquely represented by a minimum-order
polynomial. Once the order of this polynomial is determined,
then the coefficients of the polynomial can be calculated by ex-
amining a finite number of circuit outputs. Thus, the problem of
determining a canonical polynomial representation for a circuit
can be reduced to finding the order of the polynomial that rep-
resents that circuit.

To begin deriving a method for determining the order of a
Boolean function, remember from Theorem 3.2 that a polyno-
mial representation , where , always exists for a
Boolean function . Furthermore, from
Theorem 3.1, we might deduce that the order of will be
reduced by exactly one by computing . There-
fore, the order of could be determined exactly by recur-
sively performing until this differ-
ence is identically zero for all values of. In the algorithm dis-
cussed here, two’s complement arithmetic is employed to com-
pute this difference. The number of iterations required to set

is the order of the unique, minimum-order
polynomial that represents the circuit.

In computing the order of a Boolean function, we assume that
each output bit ( , , , ) of the function
is represented as a Binary Decision Diagram. While this does
present an exponentially sized data structure for some func-
tions, we will show a heuristic in Section IX that reduces this
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data structure to linear complexity with respect to the number
of input bits. In Sections III-B1—B4, we derive in detail the
steps required to compute and determine if

. These sections provide the rationale for
the order computation algorithm shown in Fig. 3.

1) Determining : The first step in computing
is to determine . This can be performed in

polynomial time by replacing each bit
of with and by in the

BDD of .
2) Determining : The next step in computing

is determining . Using two’s complement
arithmetic, this could be performed by inverting each output bit

of and adding one [ , where
is the bitwise complement of and is the vector

00 01]. Computation of is simple as it only requires in-
verting each leaf of each BDD that represents the output .
However, if we make the assumptions that is an -bit
function, is an -bit word, and the BDD of has at
least nodes, computing is of complexity
due to the propagation of the carry [carry computation requires

logic operations each of which is of complexity
].

To reduce the complexity the negation, we transform the
problem of recursively computing
until to the problem of recursively computing

until . This is the
equivalent of computing in two’s com-
plement encoding. This computation reduces the order of
by one on each iteration, but avoids the complexity introduced
by incrementation. This is possible because, on successive
computations of , the subtraction of one
does not accumulate

1st iteration:

2nd iteration:

Thus, instead of computing to reduce the order
of by one, we compute , which is a
computationally simpler way to reduce the order of by
one.

3) Performing : Once and
have been determined, the two functions are summed to produce
the new reduced order . If this summation is performed in
ripple carry fashion, the number of logic operations required is
exponentially complex with respect to word length, due to the
propagation of the carry. This is a result of the fact that for the
th bit, the carry computation requireslogic operations (note

that complexity can be reduced by factoring the equation for
ripple carry addition). To eliminate the additional complexity

associated with ripple carry addition, a carry–save addition can
be performed. Let us define

where and are applied bitwise. Thus, is uniquely spec-
ified as

Note that there are now two terms that must be complemented
when recursively computing . These
terms are and . Complementing both
terms requires, according to two’s complement arithmetic, a
bit-wise inversion and an increment of each term. As in Sec-
tion III-B2, in order to avoid these increments and their asso-
ciated carry operations, order reduction can be performed by
recursively computing

until . The condition for terminating recursion has
changed to because the equivalent computation in
two’s complement arithmetic is

Since and are specified as the summation of
a sum and carry term, their summation can be performed in two
steps, as if two carry–save additions (Fig. 2) were executed.

With these transformations, the order of is successively
being reduced by one by recursively computing

. This computation is of polynomial complexity with
respect to the size of the BDD representation of .

4) Checking if : Using a two’s complement en-
coding, the following transformations can be used to determine
if the recursively computed , without performing a
ripple carry addition

To avoid performing the ripple carry addition, a two-stage
carry–save increment is performed at the end of each recursive
step

by performing the following logic operations (
)
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Fig. 2. Physical visualization of the two stage carry–save addition for computation ofF(x + 1) + F (x).

Each bit of the resulting sum ( ) is checked for tautology
and each bit of the resulting carry ( ) is checked whether
it is tautologically zero. We refer to this test as thetautology
checkand it is necessary and sufficient to guarantee

as proven in Theorem 3.4. As
a result, the ripple carry computation does not need to be per-
formed.

Theorem 3.4:Given three Boolean vectors
, where ,

then iff , and
for all .

Proof: Forward implication (by induction)

Base Case:

and

and

Assume:

and

for all

Inductive step:

and

for all

and

Reverse implication

for all

The following assignments allow Theorem 3.4 to be used to
perform the tautology check:

In summary, if and only if and
for all .

5) Bounding Function:A function has
a corresponding Boolean function ,
Decode , and Decode , defined only over the domain
[ ]. This is important to consider when performing order
computations because actually corresponds
to if (e.g., 11 11). In performing
order computations, this may result in appearing to be non
polynomial over the domain even if does have a
polynomial representation over the range of possible values for

(Fig. 3). Thus, in executing order computations, it is necessary
to determine a bounding function that specifies which values do
not need to be considered when performing tautology checks.

Definition 3.1: Given a function , where , the
bounding function on the th order iteration is

Decode

In words, this is the sum of the Boolean vectors whose corre-
sponding integer values are greater than . For example,
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Fig. 3. A Boolean function that is polynomial that appears to be nonpolynomial in the integer domain.

Fig. 4. Algorithm for computing the order of a Boolean functionF(x).

after one recursion of order reduction with respect to anbit
vector , the bounding function would be

. After two iterations, the bounding function would be
.

If the input is out of range when incremented, i.e.,
, then the resulting is im-

material, since the input pattern can not be applied. Thus,
requires that if is not a tau-

tology, the bounding function must be true. Similarly, if
is not tautologically zero, the bounding function must be true if

. The tautology check requires that

for all

Example 3.2.1:If, after two order computations,
and all other bits of

and are a tautology, then

and the bit satisfies the tautology check. Thus, within the
interval , the original Boolean function
is of order 2.

6) The Complete Algorithm:The complete algorithm for
computing the order of a Boolean function , given its
BDD representation, is shown in Fig. 4.

Step 1) Initialize the function to and the
function to , an operation of linear com-

plexity with respect to the size of the BDD represen-
tation of .

Step 2) Compute by complementing and
, an operation of constant complexity with

respect to BDD size.
Step 3) Compute the function by replacing with

in the functions and , an
operation of quadratic complexity with respect to
BDD size.

Step 4) Reduce the order of by exactly one by com-
puting the sum . This computa-
tion is performed by adding the results of Steps 2)
and 3) with a two-stage carry–save addition, pro-
ducing a new and . This step is
of quadratic complexity with respect to BDD size.

Step 5) Compute the bounding function that restricts
the domain over which the sum
is evaluated, an operation that is of constant com-
plexity relative to BDD size.

Step 6) Check the sum to see if each
output bit is a tautology within the bounds specified
by , an operation of constant complexity with
respect to BDD size. If the tautology check is unsuc-
cessful.

Step 7) Set and to the result of Step 5)
and initiates a new recursion, an operation of linear
complexity with respect to BDD size. Otherwise, the
order of the minimum-order polynomial representa-



790 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

tion is one less than the number of recursive compu-
tations that were performed.

Example 3.2.2:Consider the function , where
and , that implements . Initializing the

sum to and the carry to zero yields the following input
vectors:

The following steps are followed to determine the order of these
input vectors.

1) :

2) :

3) (1st iteration)

4) Tautology Check

fails

5) (2nd iteration)

6) Tautology Check

fails.

7) (3rd iteration)

8) Tautology Check

Three iterations reduce to zero for all . Thus, is
of order 2.

Each step within the order computation algorithm is of
polynomial complexity with respect to the number of nodes in
the BDD representation of . However, the minimum-order
polynomial representation may be of exponential order with
respect to the number of bits in the input word. Thus, the
number of recursions that are performed may be exponential.
Sections IV and VII detail partitioning and approximation al-
gorithms for efficiently generating polynomial representations
for those circuits whose representations would otherwise be of
exponential order.

Once the order of the function has been deter-
mined to be , is evaluated at ,

Decode . Solving the fol-
lowing set of linear equations for yields the
polynomial representation of the Boolean function

Encode
Encode

Encode Decode

C. Extension to Multivariable Functions

The techniques described above consider only univariable
functions. However, multivariable polynomials exhibit the same
features that allow order computation to be performed recur-
sively; that is, recursively
reduces the order of with respect to by one on each
iteration if is held constant. Thus, the order of can
be determined with respect toand with respect . However,
the unique, minimum-order polynomial computation requires
solving a set of simultaneous linear equations, where
is the order with respect toand is the order with respect to

.

IV. REPRESENTATION OFFUNCTIONSCONTAINING BRANCHES

To this point, the methods we have described allow com-
putation of a polynomial representation for combinational cir-
cuits. As proven in Theorem 3.2, polynomial representations
exist for all combinational circuits. For those circuits that imple-
ment arithmetic functions such as those generated by composing
addition and multiplication operations, this representation is of
very low order (e.g., one term to represent multiplication, two
terms to represent addition). Consider, however, models of com-
binational circuits that contain branches, i.e., discontinuities.
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For such circuits, polynomial representations, if computed using
only the techniques described above, are usually of exponential
order with respect to input word size. This is because a branch
in the Boolean domain usually describes a set of coordinates in
the integer domain that can only be fit to an exponentially-large
polynomial. However, a high-order polynomial representation is
an indicator that a branch exists within a circuit. This indicator
can be used to partition circuit inputs into domains in which
polynomial representations of low complexity exist. The bound-
aries of these domains are termeddiscontinuities.

Example 4.1:Consider the JPEG Coefficient Encodercoef-
ficient , with a 16-bit input and 4-bit output, which se-
lects an output based on the range of the quantized input values

if

else if

else if

else

The encoder is performing an operation within each branch that
is represented by polynomials of order zero. However, using the
order computation methods described above, the discontinuities
at the integer values cause the overall circuit to have a
polynomial representation of order .

To prevent an exponential number of order computation
recursions from being performed on functions that contain
branches, we use a heuristic based on adiscontinuity threshold.
Once the number of iterations has reached this threshold,
the function is assumed to contain branches. The threshold
is determined heuristically and enables efficient detection of
discontinuities. Discontinuity detection, in turn, allows order
computation to be performed on each branch of the circuit
model.

Given a function , with order greater
than the discontinuity threshold, discontinuities can be detected
by performing order computation on for the case

and the case . If the orders for each computation
are different, and below the discontinuity threshold, a disconti-
nuity has been detected and exists between and

. If the order of , for or ,
is still above the threshold, then a discontinuity exists within the
corresponding domain. Within that domain, an order computa-
tion is then performed on for the case and the
case . Domain partitioning continues until the dis-
continuity is detected.

Similar to performing a binary search, detection of a single
discontinuity is of linear complexity with respect to the number
of input bits, not considering the complexity of the order com-
putation.

Example 4.2:Consider the function , where
, that is implemented by the following Verilog code:

if

then

else

If we proceed blindly, computing the order of will generate
an order of because of the discontinuity at . How-
ever, if we start with an initial discontinuity threshold of four,
then after four order iterations, the uppermost bit ofwill be set
to zero, then one, and the order computations will be performed
for each case. The order computation for will result in
an order of two. The order computation for will again
reach the fourth iteration without passing the tautology check.
The second most significant bit is set to zero, then one, and the
order computation is performed again. Then order computation
for will result in an order of 3 and the computation
for will result in an order of two. Since both com-
putations converged, but converged to different values, there is
a discontinuity on the interval boundary. Thus, over the integer
interval [0, 11] an order of two is determined and over the in-
teger interval [12, 15] an order of three is determined.

Every discontinuity detected introduces a new polynomial
into the description of a component. If the number of discon-
tinuities is large, the polynomial representation of a component
will also become large. Such cases can be handled by imple-
menting a heuristic based on adomain threshold. If the number
of discontinuities is greater than this threshold, then the func-
tionality of the component may be approximated by the polyno-
mial representation. The approximation technique is described
in Section VII.

V. SYNCHRONOUSACYCLIC CIRCUITS

From Theorem 3.2, we have established that a polynomial
representation, , exists for all combinational circuits.
This is due to the fact that combinational circuits specify a
finite number of input/output pairs ( ) with corresponding
integer values ( ) that can be treated as coordinates to
which a polynomial can be fit. Synchronous circuits pose
an additional problem because circuit outputs are not only
a function of the current inputs but also previous inputs.
Thus, the polynomial representation of a synchronous circuit
contains terms that are dependent on previous input values:

. The symbol indicates
the value of that is delayed by cycles.

A. Determining Combinational Equivalents

A polynomial representation for synchronous acyclic circuits
can be computed by computing the polynomial representation
for the equivalent combinational circuit with delayed input
values. Consider a synchronous circuit represented by a syn-
chronous logic network, i.e., a directed acyclic graph whose
vertices represent combinational logic functions, whose edges
represent function dependencies, and whose edge weights
represent synchronous delays introduced by registers. The
sequential depth of the network,, is the weight of the longest
path. A synchronous logic network can be transformed, as
shown in Fig. 5, into a combinational function of delayed input
variables with delay less than or equal to.

Given a synchronous network with depth, the equivalent
combinational function is . Note
that is finite due to the restriction that the circuit does not
have feedback. A polynomial representation for can now



792 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

Fig. 5. Transformation of a sequential adder into a combinational circuit.

(a) (b) (c)

Fig. 6. Synchronous cyclic circuit models: (a) with only a transient feedback branch; (b) with a transient and an initialization branch; and (c) with atransient,
initialization, and steady state branch.

be determined from . The order
of is determined with respect to
each for as independent variables and the coef-
ficients of the polynomial representation are determined. In the
example of Fig. 5, this would result in the polynomial represen-
tation .

VI. SYNCHRONOUSCYCLIC CIRCUITS

The method for determining polynomial representations for
sequential acyclic circuits relied on the acyclic nature of the cir-
cuit to guarantee that a finite number of time-shifted inputs were
required. However, by breaking the feedback path of a cyclic
circuit , the previous techniques can be used to derive the
order of the cyclic circuit. This is achieved by introducing an
input , and determining the order of
with respect to and .

A synchronous cyclic circuit can be modeled as a
Mealy/Moore finite state machine (FSM) that may or
may not have an initial state. For example, a rasterizer is a
synchronous cyclic circuit with an initial state and an infinite
impulse response filter is a synchronous cyclic circuit with no
initial state. For the sake of this analysis, we consider three
different topologies of synchronous cyclic circuits: 1) an FSM
with no initial state; 2) an FSM with an initial state that does
not reach a steady state; and 3) an FSM with an initial state
that reaches a steady state after a finite number of cycles. As
shown in Fig. 6, we can represent each of these topologies
as a function that may have up to three branches: a
branch corresponding to an initialization state , a branch
corresponding to the transient states , and
a branch corresponding to a steady state (labeled). The
techniques described in Section IV enable automatic detection
of each of these branches. However, this is beyond the scope
of this article. The succeeding discussion assumes that the
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TABLE I
POLYNOMIAL REPRESENTATION FOR THEARBITER OFEXAMPLE 6.1

presence of each of these branches has been detected and the
polynomial representation has been determined.

Using the techniques described previously, we can compute
a polynomial representation for each branch. An initialization
branch has a polynomial representation that contains no terms
with the variable . A steady-state branch has the
polynomial representation . If the
function contains no initialization branch or no steady state
branch [topology 1) or 2)], then no polynomial representation

exists. However, the circuit is uniquely represented by
the polynomial . In the case of topology 1),

is simply . In the case of
topology 2), is comprised of two domains
(corresponding to and in Fig. 6),
and is within the first domain and within
the second domain. Example 6.1 illustrates computation of a
polynomial representation for FSM with topology 2).

Example 6.1:Consider the finite state machine
with a one bit input (initialize) and a three bit output

initialize enableA enableB enableC that provides
round-robin access to memory for three clients. Breaking the
feedback loops yields the function initialize .
Performing order computation results in the detection of
four branches, each of which is order zero (i.e., constant).
For example, in the branch that is executed under the con-
dition initialize , the output initialize
enableA enableB enableC . Thus, the polynomial

representation for this branch is .
Coefficient computation for each branch yields the
following order zero polynomial representations for

as shown in Table I. An initial-
ization branch exists, but no steady-state branch exists, thus

uniquely represents the finite state
machine (although other finite state machines exist that perform
the same operation with different state encodings).

The remainder of this analysis focuses on circuits for which
is not a unique representation, i.e., those cir-

cuits that contain both an initialization state and steady state
[topology 3)].

A. Order Computation With Feedback

Assume function implements three
branches, one initialization branch , one steady state
branch, and one transient feedback branch .
We assume that a signal controls the number of iterations
through the transient feedback path. We can then evaluate

the circuit based on the number of iterations of the transient
feedback branch.

The order of with respect to , referred to as , can
be determined using the techniques presented in earlier sections.
As a result, the polynomial representation of this branch, ,
can be determined. Furthermore, if is treated
as an input to , then the order of with respect
to , referred to as , and with respect to, referred to as ,
can also be determined. As a result, the polynomial represen-
tation of this branch can be determined. After initial-
ization, the order of is and after the first iteration of
the nonsteady-state feedback branch, the order of is less
than and greater than . In general, if the
order of is after iterations, then the order of ,
after one more iteration of the nonsteady-state feedback branch
is less than and greater than . Thus, the upper
bound on the order of after iterations is:

To determine the order of there are three cases that
follow, which need to be considered:

1) is known;
2) is not known, , and there is no term in

;
3) is not known, and [ or there is an term in

].

In case1), the order of can be bounded according to the
equation above. Incase2), since there is no term in ,
the order of does not increase on successive iterations and
is simply the greater of and . For both of these cases,
since the order of is bounded, a polynomial representation
exists for . If the upper bound on the order is , this rep-
resentation can be determined by extracting points from
the circuit to create the system of linear equations that deter-
mine the polynomial coefficients. Incase3), the order of
is dependent onand is therefore unbounded and has no poly-
nomial representation. However, like the cyclic circuits with no
initialization or steady state branch, the polynomial representa-
tion uniquely specifies the functionality of the
circuit, and can be used to perform matching as shown in Sec-
tion VIII-C.

Example 6.1.1:Consider a Boolean circuit with in-
puts , , output , that performs multiplication through iter-
ative addition by executing the following initialization branch
and feedback branches:

initial begin always or or begin
if
if

end end

Breaking the feedback loops introduces variables
and and results in computation of the set of poly-
nomials shown in Table II. Since the feedback polynomial

is of order one with respect to
and contains no term, case 2) is satisfied and the
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TABLE II
POLYNOMIAL REPRESENTATION FOR THELIBRARY ELEMENT F3 IN THE

JPEG ENCODE EXAMPLE

Fig. 7. Subdomains generated by the functionF (x) = x � 1.

order of with respect to is the greater of
and , both of which are one. Since the feedback poly-
nomial is of order one with respect to

and contains no term, case 2) is also
satisfied for this polynomial and the order of with
respect to is the greater of and , which are one
and zero respectively. Thus, is of order one with
respect to both inputs (i.e., and ), requiring

points to be extracted from the circuit. The
points
can be extracted, yielding the following system of equations:

The solution to the system of equations yields the polynomial
representation .

VII. A PPROXIMATIONS

Polynomial representations are an efficient way to encapsu-
late the functionality of arithmetic circuits. Furthermore, cir-
cuits that implement nonarithmetic operations can be modeled
efficiently by determining subdomains over which the circuit
implements functionality that has a low-order polynomial rep-
resentation, as shown in Section IV. However, this representa-
tion becomes very complex when the number of subdomains is
large. For example, circuits that approximate arithmetic func-
tions frequently generate many subdomains.

Example 7.1:Consider a circuit that implements
, where is an bit word, requires subdomains

(Fig. 7) in its polynomial representation. Rather than represent
as a list of subdomains of and corresponding polyno-

mials that describe exactly over those subdomains, it

is much more efficient to represent as the polynomial
and specify the maximum error between the continuous func-
tion and the exact polynomial representation .

Given a Boolean function , with cor-
responding integer values ( ), an approximate polynomial
representation can be determined. The
approximate polynomial representation is determined such that

for all , where is a given accuracy.
Approximation allows a low-order polynomial representation to
be generated for a Boolean function that would otherwise have
a polynomial representation of high order. Sections VII-A and
VII-B derive in detail the approximate polynomial representa-
tion and the tolerance within which the approxi-
mation is accurate.

A. Computing Approximations

As proven in Theorem 3.1, the order of a function is reduced
by one by computing the difference . The al-
gorithms to this point have relied on the resulting fact that if the
order of is , then recursively performing this difference

times will reduce the function to zero. Now we relax the
requirement that be exactly zero. If performing
this difference times results in a function that is not zero, but
is numerically close to zero, then the polynomial representation

of can be approximated well by a polynomial of de-
gree .

To translate this to approximating a Boolean function
with a polynomial, again consider the function

. If the most significant bits of
are one, then for the two’s complement integer encoding

of , Encode , the inequality holds.
Similarly, if the most significant bits of Decode
(performed using two complement arithmetic) are 1, then
the inequality holds. As, a result, if is de-
fined to be and is defined to be

Decode , then the following state-
ment holds: if the upper bits of the bit wise or of and
are one, then . The bound
on , allows us to derive an approximation of

Let

Given

If Encode is small [e.g., Encode
, for suitable ], the polynomial representation

of is well approximated by the line
Encode .

can then be approximated by

Encode

Encode
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Example 7.2.1:Consider the 8-bit function where
and

This circuit could be partitioned into 64 subdomains and
represented exactly with 64 order zero polynomials (similar
to Fig. 7). However, the first difference iteration reveals
that the upper seven bits of are one,
yielding the bound . Therefore,

can be approximated by the first-order polynomial
Encode .

B. Computing Approximation Error for the Linear
Approximation

In this section, we will compute a bound on the accuracyof
a linear approximation to the polynomial representation .
The difference between and , termed is

Encode Encode

Since Encode , it requires only
bits to represent . Assuming for a good approxima-
tion, computation ofEncode Encode

need only be performed only over a short word
length ( bits). Since the Encode operation is distributive
[i.e., Encode Encode Encode ], the fol-
lowing equivalence holds:

Encode Encode

Encode

Defining yields:

Encode

Replacing by the sum of its bits [i.e., Encode
] yields

An upper bound on can then be determined from each bit
of the positive values of

Similarly, a lower bound can be determined from each bit
of the negative values of

Following two’s complement arithmetic, if the most significant
bit of is zero, then is positive and, if the most significant
bit of is one, then is negative. Since the most signifi-
cant bit of is , the bits and can be
determined by computing the positive and negative cofactor of

with respect to .
Computing for all values of is prohibitively com-

plex due to the size of the domain and the fact that is a
summation of values. To circumvent this summation and de-
termine a bound on , the maximum values for the following
are determined:

where bit of is

where bits of are

where bits of are

The maximum value of the computation ,
where bits of are zero, yields the maximum
error contributed by bit of the input. Thus, the sum of the
maximum values of each of the above equations provides the
maximum error contributed by all bits, which is a bound on the
error of the approximation. Thus, a bound on the accuracy of
the linear approximation is

As shown in Example 7.2.2, values of can be reached by
summing a subset of the above equations.

Example 7.2.2:

Example 7.2.3:For the approximation computed in Example
7.2.1, the resulting is:

The error contributed by when is
Encode . This is always negative because the most sig-
nificant bit of is one when : Encode

units. The error contributed by
, when , is Encode . This

is always positive because the most significant bit of
is zero when : Encode

units. Similarly, other differences
contribute only positive error. Other differ-

ences contribute a total of 0.5 units of positive
error, resulting in the error bound: . Thus, the
circuit implements the polynomial within 0.5
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units. This approximate representation is far less complex than
the 64 polynomials that would be required to represent the cir-
cuit exactly.

C. Nonlinear Approximations

A function may implement a nonlinear operation [e.g.,
] that is well approximated by a nonlinear

polynomial representation [e.g., ]. In this case, the
first iteration of may not satisfy the condition

. If a suitable bound is found
for the th iteration of , termed , instead
of the first iteration, then a nonlinear approximation for
can be computed, using, from Newton’s forward difference
interpolating formula

Encode Encode

Encode

Encode

VIII. M ATCHING

Consider a circuit specification that defines the func-
tionality of a circuit. Given a library of existing components,
where each component is described by a Boolean function,
polynomial representations provide a means for quantifying the
difference between the specification and a potential imple-
mentation . This can be achieved by computing the poly-
nomial , where is the poly-
nomial representation of within an accuracy of , and
using traditional numerical methods to find the maximum value
of . In quantifying the maximum errorof an implementa-
tion and guaranteeing thatis within a given tolerance, system
traits such as performance, power and area can be optimized by
selecting faster or smaller designs that implement less accurate
arithmetic.

Example 8.1:Consider the specification for an 8-bit 3 3
sharpening filter used for processing grayscale images

Consider an implementation with the following approxi-
mate polynomial representation:

For , grayscale units. This implementa-
tion yields a sharpening filter that yields an image that is of sim-
ilar quality to that specified, but likely smaller and faster than
an exact implementation.

A. Transcendental Specifications

A means of approximating a specification for transcendental
functions can be derived from the results of Taylor series
approximation. Given a specification , with Taylor series

, the difference between
and is where

. Thus, if the error in a Taylor series approximation
to a function can be bounded, then the difference between
an implementation that matches that approximation and the
specification can be bounded.

Example 8.1.1:An implementation that is determined to be
of order four and yields the polynomial representation

matches the cosine function used in DCT with
an error over the interval [0, 1].

B. Composition

The ease with which polynomials can be composed, using tra-
ditional algebraic manipulations, can allow seemingly inappro-
priate implementations to be combined to fulfill a specification.

Example 8.2.1:The Boolean function with poly-
nomial representation may appear to be
a completely inappropriate match for the polynomial
specification of derived in Example 8.2. How-
ever, if an adder ,
negation element , and shifter

exist in the implemen-
tation library, can be allocated and composed with the
adder to approximate the

The polynomial representation that results from this composi-
tion is and matches the specification
derived in Example 8.2 within 1.3%.

C. Cyclic Circuits

As discussed in Section VI, when the order of a circuit
with feedback can be bounded, a polynomial representation
for that circuit can be determined exactly and the matching
techniques described above can be used. Given a specification
with bounded order and a cyclic component with
unbounded order, the inequality

can be solved for [where is the order of the initial-
ization branch , is the order of feedback branch

with respect to , is the order of the
feedback branch with respect to the feedback input, andis
the number of times the feedback branch is executed]. The
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solution to this inequality provides the bounds onwithin
which can have the same order as and, therefore,
possibly implement .

If has unbounded order, then is implemented by
if and only if the specification of the initialization branch

of , and the specification of the feedback
branch of , .
Thus, if a function does not have a bounded order and,
therefore, no polynomial representation, it can still be compared
to a specification by comparing the initialization and feed-
back polynomials of and . An example of this is
shown in Section X-B.

IX. COMPLEXITY ISSUES

The order computation techniques described above are of
quadratic complexity with respect to the size of the BDD
representation of and output word length. Solving the
set of linear equations for polynomial coefficients is of cubic
complexity with respect to the order of the polynomial and
we assume this order is small (less than the discontinuity
threshold). However, the underlying BDD data structure can
be of exponential complexity for common functions. Thus,
reducing the complexity of polynomial computation requires
reducing the complexity of the order computation, which, in
turn, requires reduction of the complexity of the BDD.

Assume a function has an BDD with inter-
mediate nodes, where is an bit word. If is parti-
tioned into two words ( ) and
( ), the BDDs that describe each
partition will require no more than two sets of interme-
diate nodes. Similarly, partitioning into words will result
in a worst-case total node count of . Minimizing
with respect to yields

Partitioning into words of length will min-
imize BDD complexity. This will result in overall BDD com-
plexity of . Furthermore, such a partitioning
will guarantee that the order of the polynomial representation
for a component is less 2. For those circuits implementing func-
tions of order greater than 2, a polynomial representation will
be determined through domain partitioning and approximation,
as explained in Sections IV and VII. In practice, very few cir-
cuits implement functions of order greater than 2.

X. APPLICATIONS

To illustrate the application of polynomial methods, two ap-
plications are synthesized. A JPEG Encode block is first synthe-
sized to demonstrate order computation and discontinuity detec-
tion. An IIR filter is then mapped to an existing filter to demon-
strate synthesis with synchronous library elements and approx-
imation.

Fig. 8. Arithmetic specification of the blocks for the dc path of JPEG encode
[inputs:x(i; j); output: dc].

Fig. 9. Verilog implementations synthesized to produce library elements F1,
F2, and F3.

A. JPEG Encode Application

Generating polynomial descriptions allows a specification
and implementation to be compared by computing the numer-
ical difference between the polynomials. Consider the dc path
for the JPEG encode system described in Fig. 1 and specified
in more detail in Fig. 8. The inputs describe grayscale
values for an pixel block and output dc represents the
encoded dc value for that pixel block. Specifications for four
system blocks are described: 1) DCT; 2) quantize; 3) coeffi-
cient coding; and 4) dc coding. Three library elements were
generated by synthesizing the Verilog code shown in Fig. 9.
Polynomial representations were computed from the resulting
netlists.
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TABLE III
POLYNOMIAL REPRESENTATION FOR THELIBRARY ELEMENT F3 IN THE

JPEG ENCODE EXAMPLE

The first component requires that an order computa-
tion be performed for each input. The order of element

with respect to each input is de-
termined to be one and, after coefficient computation, the
polynomial representation is

The order of element block is similarly determined
to be one with respect to and and the resulting polynomial
representation is

Order computation for element yields an order
greater than the discontinuity threshold of four. As a result,
the upper bits of the inputs to each block are successively set
to zero and one, as described in Section IV, and the following
partitions and corresponding polynomial representations are
determined as shown in Table III.

Performing a numerical comparison between the specifica-
tion for DCT and , the specification for
quantization and and the specification for coding
and reveals an exact match for each ( ). Thus, the
specification can be implemented by composing the complex
components that exist in the library.

B. IIR Filter Application

Many embedded applications require digital filters to control
mechanical operations. Common examples include altitude con-
trol systems for satellites, yaw dampers in airplanes, and fuel
injection controllers in automobiles. We will apply polynomial
methods to determine an existing filter from a library of filters
suitable for reuse in a tape drive controller (Fig. 10). The ve-
locity of the tape with the tape drive is controlled by a voltage
applied to the reel motor. This voltage is a function of past ve-
locities and, therefore, past voltages, as well as the displacement

Fig. 10. Digital filter used as a compensator for controlling the move of a tape
through a tape drive.

Fig. 11. Circuit description for library element to be compared to tape
controller specification.

required to position the tape properly. An existing circuit imple-
mentation within the library of filters is shown in Fig. 11, with
combinational blocks already described by polynomials. The
challenge is to determine if the circuit can be allocated to im-
plement the following specification, generated from MATLAB:

The first step in generating a polynomial representation for
the circuit described in Fig. 11 is to break the feedback paths.
This results in replacing in the list of equations
and being added to the list of inputs. The next step in generating
a polynomial representation requires generation of the
equivalent combinational circuit. Progressing down directed
acyclic graph that represents , the first rooted
subgraph represents the assignment . This
subgraph is duplicated, generating an additional circuit input

, and the original subgraph is removed. Subsequently, the
rooted subgraph ending with is duplicated, generating
an additional circuit input and the original subgraph
corresponding to the assignment to is removed.
Continuing this process, the equivalent combinational
circuit is generated, resulting in a circuit with the following
inputs: ,

. The nodes in the original
graph that represented assignments to each of
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were removed as they have been replaced by
. The

complete set of resulting equations is

At this point, the circuit description has no feedback paths and
no registers.

Order computation with respect to each of
results in

an order of one for each input. However, the order of the
circuit with respect to each of is very
large, indicating that a representation of an approximation
of this circuit will be more efficient. Computation of

reveals that
. A

similar result is determined for . Thus,
the term that each of contributes
to the polynomial representation of the circuit can be
represented by an approximation of order one, of the form

Encode . Following the error
quantification steps outlined in Section VII, the bound
on the error contributed by approximating each term of
the polynomial that contains one of
is . After performing coefficient
computation, the following polynomial representation for the
circuit is determined

After closing the loop by setting , the spec-
ification and implementation can be compared by
comparing their representative polynomials. The coefficients of

and do not match exactly due to the approximation
of , but are the same within 10. Thus, the existing com-
ponent can be allocated to implement the specification if the
circuit tolerance of 10 is acceptable.

XI. EXPERIMENTAL RESULTS

To quantify the performance of order computation, a com-
binational multiplier with input lengths ranging from 4 to 64
bits, was constructed out of combinational 4-bit multipliers,
and the polynomial representation determined. Multiplier
logic was synthesized from Verilog to construct the Boolean
equations that implement the Synopsys DesignWare multiplier.
These equations were then ported to the Cal-2.0 BDD package

(a)

(b)

(c)

(d) (e)

Fig. 12. (a) Execution time required to determineF (x; y) = xy is of linear
complexity with respect tox andy. (b) Graph of execution times in Fig. 10(a).
(c) Execution time required for register removal on 16 bit accumulators. (d)
Execution time for determining an approximation to the functionx=2. (e)
Accuracy of approximation for several 16-bit functions.

which was used to perform BDD operations. Experiments were
performed on a 200 MHz R4400 Indy Workstation with 256
MB of memory.

The time required to determine the order of this circuit is
shown in Fig. 12(a) and, for the 64-bit multiplier, the order was
computed in under 80 s. Note that by using the complexity re-
duction methods from Section IX, order computation was per-
formed on successive 4-bit chunks of each input word. This
yielded a maximum BDD size of 61 nodes which fit completely
in the 16 KB cache.

As expected, execution time varied with the square of the size
of the input word. This is due to the function being of
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order one with respect to each input and having two inputs. Note
that a similar computation for a function with polynomial repre-
sentation would have been of linear complexity
with respect to the size ofand a more complex function such as
that with polynomial representation would have
varied with the fourth power of the size of the input word.

To quantify the performance of polynomial methods for syn-
chronous circuits, experiments were conducted, to gauge the
relationship between the execution time required to generate
equivalent combinational circuits and the number of registers
[Fig. 12(c)]. The circuits on which this was performed were
16-bit accumulators with between one and five register stages
[i.e.,

]. Execution time varied quadratically
with the number of registers. Note that the register removal tool
is written in Perl and the execution times in Fig. 12(c) can be
reduced greatly using compiled code.

Further experiments were conducted to determine the execu-
tion time of circuit approximation relative to input bit width.
Polynomial approximations were computed for the circuit that
implements the function for input bit widths
ranging from 4 to 128 bits [Fig. 12(d)]. While of high order com-
plexity, approximations completed quickly, even for the widest
datapaths. The accuracy of circuit approximation was deter-
mined for several circuits of bit width 16 [Fig. 12(e)], all of
which resulted in an error of less than two units over the integer
range [0, ]. These experiments were performed with com-
piled code.

XII. SUMMARY

In performing high-level synthesis with complex compo-
nents, automating component matching requires a means for
quickly determining whether an existing block performs the
function outlined in the specification. Current methods for
completing this task become prohibitively memory intensive or
time consuming for circuits that implement complex functions.
We have demonstrated an algorithm for performing component
matching with complex library elements by constructing
word-level polynomial representations for combinational and
sequential circuits.

Circuit specifications can be efficiently matched to existing
implementations by generating the unique minimum-order
polynomial functions for the specification and the implementa-
tion and comparing those polynomials. These functions can be
generated with quadratic complexity with respect to the number
of input bits to each function. Discontinuities in the specifica-
tion or implementation can be detected, allowing polynomial
representations to be computed for intervals between discon-
tinuities. For sequential circuits, the equivalent combinational
circuit can be derived, from which a polynomial representation
can be computed. Furthermore, an approximate polynomial
representation can be derived for those circuits that contain
many discontinuities and the error of that approximation can be
quantified. Applications of these techniques were demonstrated
in mapping the specification of a JPEG Encode block and an
IIR filter to existing complex blocks.

Using polynomial representations, differences between a
specification and implementation can be quantified, allowing

tradeoffs between precision and speed. In addition, the ease
with which polynomials can be composed can allow such
differences to be compensated for by combining multiple
existing blocks or constructing logic around a single block.

The methods presented in this paper are well suited to
matching blocks that have compact arithmetic representations,
such as those found in DSP, computer graphics, and ALUs.
Furthermore, these methods provide a means for separating
control operations, such a branches, from arithmetic operations
and detecting blocks that contain many discontinuities such as
controllers, based on the order of the polynomial representation.
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