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Polynomial Circuit Models for Component Matching
In High-Level Synthesis
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Abstract—Design reuse requires engineers to determine Arithmetic Specification
whether or not an existing block implements desired function-
ality. If a common high-level circuit model is used to represent DC Encode|
components that are described at multiple levels of abstraction, DCT |—®Quantize AN
comparisons between circuit specifications and a library of , AC Encodel| .-
potential implementations can be performed accurately and . ‘ .

quickly. A mechanism is presented for compactly specifying J
circuit functionality as polynomials at the word level. Polynomials e - - L
can be used to represent circuits that are described at the bit Vo 4x4 DCT {ConstantQ \
level or arithmetically. Furthermore, in representing compo- @’
nents as polynomials, differences in precision between potential @ ’
implementations can be detected and quantified. We present a DC Code
mechanism for constructing polynomial models for combinational
and sequential circuits. Furthermore, we derive a means of
approximating the functionality of nonpolynomial functions and ) ) . )
determining a bound on the error of this approximation. These Fi9- 1. Mapping JPEG encode onto existing designs.

methods have been implemented in the POLYSYS synthesis tool

and used to synthesize a JPEG encode block and infinite impulse Fig. 1, subblocks are required to perform a discrete cosine trans-

Implementation Library

response filter from a library of complex elements. form (DCT), quantization, dc (zero frequency) encoding, and
Index Terms—Binary decision diagrams (BDDs), high-level syn- ac (nonzero frequency) encoding. Given a library of existing
thesis, polynomials. blocks, a word level representation can be derived from the

Boolean equations that describe the functionality of library ele-
ments. The Boolean equations that specify an existing block can
be derived in a straightforward manner from commonly avail-
HE increased complexity of integrated circuits has forceghle component netlists. The JPEG system can then be synthe-
designers to reuse existing circuitry when constructingzed by matching the arithmetic specification of each of these
new systems. The proliferation of reusable blocks has promisg@ctions to the word-level representation of each library ele-
opportunities to complete new designs more quickly angent.
with fewer errors. Reuse of existing components requiresComponent matching is closely related to verifying that a
those components to have suitable characteristics, includijgecification and an implementation match exactly, but presents
area, power consumption, performance, and testing featuiggportant differences. In matching a component to a specifica-
However, it is most important that the component implemefibn, it is valuable to detect components that implement func-
the functionality required by the system. Searching the spaggnality that is similar to, but not necessarily the same as, that of
of existing implementations for functional validity is timethe specification. For example, in performing DCT operations,
Consuming and fraught with pitfalls, as the suitability Oaspecification may require Computation Ofthﬂ(x)_()ne pos-
existing blocks is determined by manual methods or verbghle implementation may be a function that does notimplement
descriptions. This search promises to become more complexas(;) exactly, but instead implements an approximation of the
the number and need for reusable designs increases [1]. figction to preserve area and increase performance. Further-
models and methods presented in this paper enable automagifte, a specification may indicate that computatior®{ x)
of this search by generating circuit representations that are &gi take up to three cycles; however, existing implementations
higher level of abstraction than those used in traditional ”braﬁyiay exist that require 0n|y two Cyc|es_ Thus, the Specification
binding applications. and implementation are similar, but do not match exactly, al-
Component matching is the problem of allocating complg¥wing for tradeoffs in execution time, area, power consump-
blocks given a system specification. This problem reducest@n, precision, and other qualities.
determining whether or not the functionality of a library ele- The examr)]es discussed above can be Specified very effi-

ment is the same as the functionality of part of a specificatiogiently with polynomial models. For exampleps(z) can be
For example, in designing the baseline JPEG encode blockg@fproximated by
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bit-level description of the implementation. These methods dvat not equal, BDD structures may implement drastically
ideally suited for circuits that implement arithmetic functionslifferent arithmetic functions, while two very different BDDs
and can be applied to combinational and sequential circuits. may implement the same mathematical operation with different
This comparison often must be performed between aritdegrees of precision.
metic and bit-level abstractions of the functionality. Polynomial Binary moment diagrams (BMDs) [5] have been developed
methods provide a means for generating word-level polynomial ease the memory and time required to manipulate complex
representations, given bit-level descriptions of an implementgtructures by generating word level representations. BMDs have
tion. In generating a mathematical structure common to bdbleen used to verify the functionality of linear circuits [6] and
levels of abstraction, allocation of complex components caould be adapted to perform component matching for those cir-
be performed, closing the semantic gap between specificatiasts. However, BMDs are unsuitable for use in non linear func-
such as those generated in MATLAB and implementationsons because of the resulting exponential complexity. hybrid
such as those modeled with Boolean logic or hardware desiggcision diagrams [7] and multiterminal BDDs [8] suffer from
languages (HDLs). This technique is used by tlmYRYys similar restrictions. power hybrid decision diagrams (PHDDSs),
synthesis tool to map arithmetic specifications onto existirdpveloped in [9] are well suited to handling the non linearities
designs that are described by Boolean equations. associated with floating point arithmetic, but can still require, in
The techniques presented here are most effective for altbe worst case, an exponentially large data structure to represent
cating blocks that are arithmetic intensive, but may contain sigenlinear functions.
nificant control logic. Common application domains that fit this In order to raise the complexity of blocks for which a func-
description include computer graphics and digital signal prtienal characterization can be generated, algorithms have been
cessing. To illustrate the application of the polynomial methodteveloped to reduce the size of circuit representations. This
developed in this article, we map a JPEG encode specificatiorcen be achieved by generating data structures that represent an
complex elements and compare the specification of a filter suipproximation of circuit functionality. For example, in [10], a
able for controlling the velocity of a tape through a tape drive tmompact circuit approximation is derived that minimizes the
an existing filter. The arithmetic specification for the JPEG emumber of input assignments for which the approximation
code block and the IIR filter are derived from MATLAB, whileand the actual circuit differ. In contrast, our work generates a
the existing implementation are described by Boolean equ@mpact circuit approximation that minimizes the numerical
tions. distance between the functionality of the representation and the
actual block. Similarly, the allocation mechanism presented in
this paper determines the accuracy of a match by the numerical
distance between a specification and a possible implementation.
Reusable blocks have traditionally been characterized byMinato introduced a method for modeling and manipulating
verbal or object-oriented descriptions [2], [3] such as “etherneircuits that implement polynomial functions using zero-sup-
core” or ‘“rasterizer,” combined with component-specifigressed BDDs [11]. This structure provides an efficient repre-
attributes, such as “floating point” or “integer,” and waveformssentation for those circuits for which a polynomial description
Precise descriptions of functionality are usually restricted i® specified, but becomes exponentially large if discontinuities
smaller blocks such as combinational logic gates or simpgist in the function. The methods we will present here develop
arithmetic operations (e.g., addition or multiplication). Foa& mechanism for deriving the polynomial representation given a
example, in allocating a JPEG block, current techniques mBgolean circuit description. In addition, we will present a mech-
require that the specification and implementation both be danism for detecting circuit discontinuities and generating com-
scribed by the keyword “JPEG.” This description is imprecis@act approximations for highly discontinuous circuits.
however, as potential JPEG implementations may implementEfficient component matching requires data structures that
different compression schemes, different levels of accuracy,ae canonical, constructible in polynomial time, and allow for
operations on data sets of different sizes. simple composition. This paper will demonstrate methods for
Component matching has historically been restricted €égtermining polynomial representations for circuits that are
matching bit-level circuit specifications to logic gates. Manglescribed at the bit level. Furthermore, we will prove that a
structures, such as binary decision diagrams (BDDs) [4], a#gique minimum-order polynomial representation exists for
ideal for mapping combinational logic onto a library of gatell circuitry without feedback. In representing hardware as
The canonicity and ease of composition that BDDs provid#lynomials, blocks can be efficiently compared with one
make them ideal for matching small combinational circuit@nother to determine if they implement the same functionality.
However, for more complex functions, like multiplicationn addition, polynomials are easily composable, allowing
the potentially exponential size of BDD structures makegfficient determination of the functionality of hierarchical or
comparison of BDDs time consuming and memory intensiveartitioned blocks.
When comparisons are sought between functions that are not
described at the bit level, BDD structures are not sufficient to
represent circuit functionality. Furthermore, BDDs can Yyield
information on whether or not a specification and implementa- To map an arithmetic specification to a complex element that
tion match exactly, but offer no path for quantifying the degrds described at the bit level by Boolean logic, a word-level poly-
to which the two differ. That is, two functions that have similamomial that encapsulates the element’s functionality is derived.

Il. RELATED WORK

I1l. POLYNOMIAL REPRESENTATIONS
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We consider only completely-specified Boolean functions fdarhus, wher#'(x + 1) — F(x) is computed, the polynomial term
the sake of simplicity. Generating a word-level polynomial reps, 2™ of £'(«) contributes a polynomial of order exacty— 1
resentation for a Boolean function may appear to be an incamd is the only term to do so. Therefoféx + 1) — F(z) is of
sistent problem because Boolean functions are inherently diseder exactlyr — 1.
continuous. However, a Boolean functign= F(x): B™ — Although this paper will focus on integer encodings of
B* B = {0, 1} are bit vectors of length» andk, respectively, Boolean vectors, note that Theorem 3.1 holds for any domain
can be treated as a set of coordinatesy), wherex, y € Z of « in which addition, subtraction, and multiplication are
defined and the associative, distributive, and identity properties
x = Encodex), x = Decodéx), hold (e.g.,z € R). Furthermore, the theorem is indepen-
y = Encoddy), y = Decodgy). dent of the details of the encoding &f ¢ B™ (e.g., two’s

p "o ; ; ; complement, sign magnitude, fixed point, floating point). To
Thus, “encode” is an integer interpretation of a Boolea ustrate Theorem 3.1 far € Z, note that it (x) = 2 then

vector, such as two’s complement or sign magnitude and “d

code” is the inverse transfgrmation. Forgthe sagke of simplici (¢ +1) = F@) = 2° + 322 + 3¢ +1 —a® = 32 + 3z + 1.
this paper will focus on those components based on two’ om Theorem 3'_1’ a useful corollary can be Qer|ved.
complement arithmetic. The following encoding examples will CoroII.ary 3LL _For allz, m 6 Z, the following set of row
be referred to in succeeding sections: vectors is linearly independent:

0 = Encod€0), 0 = Decodé0) = 00---00 (z)™ ()™t e 29

1 = Encodé¢1l), 1 = Decodél) = 00---01 g | @™ (@t nm=t . (xz+1)°
—1=Encodé—1), —1=Decod¢—1)=11---11 -
—2 = Encodé-2), —2 = Decodé—2) = 11---10. (+m)™ (z+m)"™ "t - (x4+m)°

A minimum-order polynomial can be determined that fitsthe set  Proof: The set of row vectors can be reduced by multi-
of coordinates, ). If the order of this polynomial is known plying it by nonsingular matrices. The matrices shown in the
to ben, thenn + 1 coordinates can be extracted from the fundollowing computation are nonsingular (the determinant of each
tion and a set of. + 1 equations and variables (the coefficientg 1), as shown in the equation at the bottom of the next page.
of the polynomial) can be constructed and solved. Thus, tifie rows of matrixB are linearly independent. Therefore, the

problem of generating a word level polynomial representati@iginal set of vectorsi are linearly independent. O
for a Boolean function reduces to determining the order of the Example 3.1.1:To illustrate Corollary 3.1.1, notice that for
polynomial. z=0andm =3
A. Existence and Uniqueness 0 0 0 1 0 0 0 1 0 0 0 1
The following theorem is the basis for determining the poly-| 11 1 14 1 110y 1 1 10
nomial representation of circuits described at the bit level. This 8 4 2 1 73 10 6 2 00
theorem, derived from the binomial distribution from traditionalL27 9 3 1 L19 5 1 0 122 0 0
calculus, is proven for integers and used to prove the existence 0 0 0 1
and uniqueness of polynomial representations of Boolean func- N 1110
tions. 6 2 0 0
Theorem 3.1:Given a polynomial functiod'(x) of ordern, L6 0 0 O

wherex € Z, the functionf'(z + 1) — F'(x) is of order exactly o o )
n— 1. Thus, the initial set of vectors is linearly independent.

Proof: Let The following theorems establish the existence of polynomial
representations for combinational univariate functions and the
" ‘ unigueness of the minimum-order polynomial representation.
F(z) = Z G- a’ Theorem 3.2 (Existence)letx € B™,y € B*, andz, y €
=0 7 be the integers correspondingstpy. Given a Boolean func-
tiony = F(x): B™ — B*, there exists a polynomial =
enx™ + cp12™ L + - - 4 ¢o, Wheren < 2™, that defines the
corresponding functio™:  — .
Each term of ordei in F(x) contributes a polynomial of order Proof: If x € B™, then there ar@™ possible values that
exactlyi — 1to F(x + 1) — F(z) xzcantakeor0, 1, ..., 2" —1} and2™ corresponding values
thaty can take o F'(0), F(1), ..., F(2m—1)}. The solution
to the set of linear equationg = 2™ — 1)

F(x—i—l)—F(x):Zci-(x—l—l)i—ci-xi.
=0

cilz+1) —ca' =¢; - Z <L> L — g
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exists if no row of the matrix width m = 2 and output widtht = 5) that model an existing
O (OpF-t . 1 circuit
(DF (Pt (1) Fola) =0
e Fi(x) =1 - 0
WP (p)H ... m 0
(" () (1) Fae) 0
is a linear combination of the others. We know this is true from Fy(e) =1
Corollary 3.1.1. Note that the dimensionyofloes not affect the I B
polynomial representation d. O a(@) =21 zo

Theorem 3.3 (Uniqueness)the minimum-order polynomial y = 3 is the unique minimum-order polynomiat = 3) that

representation of a Boolean functign= F(x): B™ — B"iS  epresents this circuit and would match a specification that re-

unique. _ o quires the computation of the third power:af
Proof: Assume there exist two minimum-order polyno-

mial representations fdf(x), wherez, y € Z are the integers B. Polynomial Computation

corresponding tox, y In the previous section, we have proven that any combina-

tional circuit can be uniquely represented by a minimum-order
polynomial. Once the order of this polynomial is determined,
then the coefficients of the polynomial can be calculated by ex-
amining a finite number of circuit outputs. Thus, the problem of

= there are two possible solutions to the set of linear equatiofis 2 . . . L
determining a canonical polynomial representation for a circuit

Y =anz" +an 12" - +ag
Y =bpz" 4+ by -+ by

o (ot ... 1 en can be reduced to finding the order of the polynomial that rep-
(O™ ()t .. (1) Cr1 resents that circuit.
N R To begin deriving a method for determining the order of a
() ()1 . (n)° o Boolean function, remember from Theorem 3.2 that a polyno-
EncodéF(00 - - - 00)) mial represenFatiod?(x), wherez € Z, always exists for a
Encod¢F(00- - -01)) Boolean functiony = F(x): B™ — B*. Furthermore, from
= : Theorem 3.1, we might deduce that the ordeF¢k) will be
Encod¢F(Decodén))) reduced by exactly one by computiljx + 1) — F(x). There-
fore, the order offt’'(x) could be determined exactly by recur-
= there exists a row in the matrix sively performingF(x) = F(x + 1) — F(x) until this differ-
o (-t .1 ence is identically zero for all valugs &f In the algorithm dis-
@) ()t e (1) cussed here, two’s complement arithmetic is employed to com-
pute this difference. The number of iterations required to set
() ()t - (n)° F(x+1)—F(x) = 0isthe order of the unique, minimum-order

polynomial F'(x) that represents the circuit.
that is a linear combination of the others. But from Corollary In computing the order of a Boolean function, we assume that
3.1.1 we know that this is not possible<. Therefore, the min- each output bityo, v1, ..., yx—1) Of the functiony = F(x)
imum-order polynomial is unique. O is represented as a Binary Decision Diagram. While this does
Example 3.1.2:An example of the application of Theoremresent an exponentially sized data structure for some func-
3.2 and 3.3 is the following set of Boolean equations (inptibns, we will show a heuristic in Section IX that reduces this

1 0 0 0 0 1 0 0 0 0 1 0 O 0 O
-1 1 0 0 0 0 1 0 0 0 0 1 0 0 O
B = 0o -1 1 0 0 0o -1 1 0 0 0 0 1 0 O
0 o o0 .. -1 1 0 o o0 .. -1 1 o o0 o0 .. -1 1
(‘T)rn (‘T)rn—l B .’L’O
(z+1)™ (z+1)™ 1t L (x+1)°
(x+m)™ (z+m)™ 1 . (z+m)°
(x)nl (x)nl—l ... .’L'O

(o 4+ 1) = ()" (0 + 1" = (@)t 0

(a:—i—m)m—<<T>~(a¢+m—1)m)+~~~+(—1)m 0 0
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data structure to linear complexity with respect to the numbassociated with ripple carry addition, a carry—save addition can
of input bits. In Sections 11I-B1—B4, we derive in detail thebe performed. Let us define
steps required to compul&(x + 1) — F(x) and determine if
F(x + 1) — F(x) = 0. These sections provide the rationale for Foum(x) =F(x+1) & F'(x)
the order computation algorithm shown in Fig. 3. Fearry(x) =F(x+1) - F/(x)
1) DeterminingF(x+1): The first stepin computing(x+ S o
1) — F(x) is to determind’(x + 1). This can be performed in Where® and- are applied bitwise. Thu(x) is uniquely spec-

polynomial time by replacing each Hit;: i = 1, 2, ..., m — ified as
Dofxwith (x; ®z;_1 -2, --- - z9) andzg by z, in the
B)DD of F<x§_ ' ’ o) 0o F(x) = Foum (%) + (Fearry (x) < 1).

2) Determining—F(x): The next step in computinj(x + Note that there are now two terms that must be complemented
1) — F(x) is determining—F(x). Using two’s complement \yhen recursively computing(x) = F(x + 1) + F/(x). These
arithmetic, this could be performed by inverting each output Qit;ms areFym (x) andFeapry (x) < 1. Complementing both
Fi(x) of F(x) and adding one{F(x) = F'(x) + 1, where terms requires, according to two’s complement arithmetic, a
F'(x) is the bitwise complement df(x) and1 is the vector pjt.wise inversion and an increment of each term. As in Sec-
00- - -01]. Computation oF”(x) is simple as it only requires in- tjon 111-B2, in order to avoid these increments and their asso-

verting each leaf of each BDD that represents the outpl#t).  ciated carry operations, order reduction can be performed by
However, if we make the assumptions ti&tx) is anm-bit  recyrsively computing

function, x is anm-bit word, and the BDD ofF;(x) has at

leastm nodes, computing” (x) + 1 is of complexityO(m*) F(x) =Foum(x + 1) + (Fearmy(x+1) < 1)

due to the propagation of the carry [carry computation requires FF, (%) 4 (FL (%) < 1)

m(m + 1)/2 logic operations each of which is of complexity Y

m2]. until F(x) = —2. The condition for terminating recursion has
To reduce the complexity the negation, we transform thehanged td(x) = —2 because the equivalent computation in

problem of recursively computing(x) = F(x + 1) — F(x) two’s complement arithmetic is

until F(x) = 0 to the problem of recursively computing

F(x) = F(x + 1) + F/(x) until F(x) = —1. This is the Foum(z + 1) + (Fearry (v +1) < 1)

equivalent of computing’(z + 1) — F'(z) — 1 in two’'s com- — (Foum(z) + (Fearry(z) € 1)) — 2

plement encoding. This computation reduces the ord& =] =F(z+1)— F(z) -2

by one on each iteration, but avoids the complexity introduced
by incrementation. This is possible because, on successiv&inceF(x + 1) andF'(x) are specified as the summation of
computations of(x + 1) — F'(z) — 1, the subtraction of one a sum and carry term, their summation can be performed in two
does not accumulate steps, as if two carry—save additions (Fig. 2) were executed.
With these transformations, the order®(x) is successively
being reduced by one by recursively computiifx) = F(x +
1)+ F’(x). This computation is of polynomial complexity with
respect to the size of the BDD representatiod¢k).

1st iteration: 4) Checking iff'(x) = —2: Using a two’s complement en-
Fz)=F(z+1)— F(z) -1 coding, the following transformations can be used to determine
2nd iteration: if the recursively computeff(x) = —2, without performing a

ripple carry addition
Flo)=(Fz+2)—-F(z+1)—-1)
—(F(z41) - F(z)—1) -1 F(x) =-2
=(F(x+2)— Flz+ 1) — (F(z+ 1) — F(x)) — 1. & Foum(%) + (Fearry (x) < 1) = -2

<:>Fsum(x) + (Fcarry(x) < 1) +1=-1.
Thus, instead of computiB(x+1)—F(x) to reduce the order
of F(x) by one, we comput®(x + 1) + F'(x), which is a To avoid performing the ripple carry addition, a two-stage
computationally simpler way to reduce the orderRyfx) by carry—save increment is performed at the end of each recursive
one. step

3) PerformingF(x+1)+F(x): OnceF(x+1)andF'(x

have been determi(ned, t)he th) f)unctions a(re sur)nmed t(g p)roduce Foum(X) + (Fearry (%) < 1) +1 = Stest + Ctost
the new reduced ord@(x). If this summation is performed in
ripple carry fashion, the number of logic operations required
exponentially complex with respect to word length, due to thé
propagation of the carry. This is a result of the fact that for the Stesta(X) = Fgym, (%)
ith bit, the carry computation requir8slogic operations (note Cresty (%) = Faumg (X)
that complexity can be reduced by factoring the equation for o pumo
ripple carry addition). To eliminate the additional complexity Stet, (X) = (Fsmm (x) & Fém’ry;q (X))

bg/ performing the following logic operations: ( =
Ba . k-1
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carry,i(®) Fearry,
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Foum,i(x+1)
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Fearry,i-1®  Fearryi-1(x+1)

Fsum,i-1(x)

Fcarry,i(x) Foum,i(®)

Fig. 2.

D (Fsumi,l (%) + Fearry, » (x))
Ctesti (X) = (FSunlz ( ) @ ‘ch/a77y7 1 (X))
: (Fsurng,l (X) + ch‘?‘yifz (X)) :

Each bit of the resulting sunB(.s;) is checked for tautology
and each bit of the resulting carr(cs¢) is checked whether

Physical visualization of the two stage carry—save addition for computatB(xof- 1) + F’(x).

and
Gsurnj+1 . Gcarryj =0.

Reverse implication

Gsurng =1= GO =1.
GSumi D G(carryi_1 == 1,

it is tautologically zero. We refer to this test as tlaeitology Gsum: - Gearry,_, =0 foralli = G, = 1.

checkand it is necessary and sufficient to guararfgg,(x) + e G=_1

(Fearry(X) < 1) +1 = —1 as proven in Theorem 3.4. As '

a result, the ripple carry computation does not need to be per- O

formed. The following assignments allow Theorem 3.4 to be used to
Theorem 3.4:Given three Boolean vectorsperform the tautology check:

Gsum7 Gcarry7 G ¢ Bk; whereG = Gsum+(Gcarry < 1),
thenG = —1 iff Gsurng =1, Gsurni S Gca?‘?‘yi_l = 1and
Gsum, * Gearry, , =0foralle =1,2, ... k—1.

Proof: Forward implication (by induction)

Base Case:
G = Ggum + (Gearry € 1) = Go = Goum,
and
G1 =Gsumy B Gearrye
G=-1=Gy=1= Gsuym, =1
G=-1=G =1= Goum, ®CGearry, =1
and
Gsumy - Gearry, =0
Assume:
Gsum; © Gearry;_, =1
and
Gsum; - Gearry,_, =0 forall j <.
Inductive step:
Gijp1=1
and
Gsum; - Gearry,_, =0  forall j <

= Gsurnj+1 S Gcarryj =1

G oum, (X) ( sumy; ( ) D Fc/anyz I(X))
(’a11 Y (X) -Fweurn7 1( ) + Fca,rryi,z (X))
Stest (X) C;(surn7 ( ) @ Gcarryi_l (X)
Ctest (X) C;(surn7 (X) ’ Gcarryi,l (X)

In summaryF(x) = —2 if and only if S;.., (x) = 1 and
Ciesr,(x) =0foralli=0,1, ..., k—1.

5) Bounding Function:A functiony = F(x): Z — Z has
a corresponding Boolean functign= F(x): B™ — B* x =
Decodézx), andy = Decodéy), defined only over the domain
[0, 2™ —1]. Thisis important to consider when performing order
computations becaud®(x + 1) — F(x) actually corresponds
to F(0) — F(2™ - 1)if x = —1 (e.g., 11- -11). In performing
order computations, this may resultht{z) appearing to be non
polynomial over the domair-oo, oc] even ifF(x) does have a
polynomial representation over the range of possible values for
x (Fig. 3). Thus, in executing order computations, itis necessary
to determine a bounding function that specifies which values do
not need to be considered when performing tautology checks.

Definition 3.1: Given a functionF(x), wherex € B™, the
bounding functionB(x) on thenth order iteration is

2™ —1

>

1=2"—n

B(x) = (x = Decodé)).

In words, this is the sum of the Boolean vectors whose corre-
sponding integer values are greater tB&8h— n. For example,
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Boolean function F(x)
(polynomial over the
Boolean domain) P

789

Integer function F(x)
(non-polynomial over
the integer domain)

111

0 8

16 24

Fig. 3. A Boolean function that is polynomial that appears to be nonpolynomial in the integer domain.

(1) Initialize (2) Calculate (3) Calculate
Foum(®) = F(X)—p» Foum®) Foum(&x+1)
F carry(x) =0 F,carry(x) Fcarry(x+1)
(7) Set New (4) Calculate
Foum®) F(x+1) + F’(x)
Fearry() =

Order =
Number of
Interations

Fig. 4. Algorithm for computing the order of a Boolean functiB(x).

after one recursion of order reduction with respect taorahit
vectorx, the bounding function would bB = z,,, 1 - 2 -

Y

(5) Calculate
B(x)

plexity with respect to the size of the BDD represen-
tation of F(x).

--- - xg. After two iterations, the bounding function would be Step 2) Computd&”(x) by complementingFs,,(x) and

B = Tyl " L2 " """ " X0+ Tyre1 * Ty
If the input is out of range when incremented, i.e.,
x = 11-.-11, then the resultingf'(x + 1) — F(x) is im-
material, since the input pattern can not be applied. Thus,
F(x 4+ 1) + F/(x) = —1 requires that ifSs iS not a tau-
tology, the bounding function must be true. SimilarlyCf ¢

Foarry (X), an operation of constant complexity with
respect to BDD size.

Step 3) Compute the functidi(x + 1) by replacingk with

x + 1 in the functionsFsym(x) andF carry (x), @n
operation of quadratic complexity with respect to
BDD size.

is not tautologically zero, the bounding function must be true if Step 4) Reduce the order &f(x) by exactly one by com-

F(x+ 1)+ F'(x) = —1. The tautology check requires that

(Stestg (X) + B(X)) ) (Céestg (X) + B(X)) =1
foralli=0,1,..., k— 1.

puting the sun¥(x + 1) + F'(x). This computa-
tion is performed by adding the results of Steps 2)
and 3) with a two-stage carry—save addition, pro-
ducing a newF's,,m (x) andF c...y (x). This step is
of quadratic complexity with respect to BDD size.

Step 5) Compute the bounding functid{x) that restricts

Example 3.2.1:If, after two order computations,
Stesto(X) = (Tm-1 - Tm_2- " xo)" and all other bits 08¢t
andCi., are atautology, thef;.s:, (x)+ B = (21 T2

.. -TO)/ Tl T2 T+ Tl - T v " - 336 =1
and the bit satisfies the tautology check. Thus, within the
intervalz = [0, 2™ — 1], the original Boolean functiol'(x)
is of order 2.

6) The Complete AlgorithmThe complete algorithm for
computing the order of a Boolean functidf(x), given its
BDD representation, is shown in Fig. 4.

Step 1) Initialize the functiorFs,m(x) to F(x) and the
functionF carry (x) to 0, an operation of linear com-

the domain over which the sul(x + 1) + F/(x)
is evaluated, an operation that is of constant com-
plexity relative to BDD size.

Step 6) Check the su(x + 1) + F'(x) to see if each

output bit is a tautology within the bounds specified
by B(x), an operation of constant complexity with
respect to BDD size. If the tautology check is unsuc-
cessful.

Step 7) SeFaum(x) andFeaery (%) to the result of Step 5)

and initiates a new recursion, an operation of linear
complexity with respect to BDD size. Otherwise, the
order of the minimum-order polynomial representa-
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tion is one less than the number of recursive compu- 8) Tautology Check

tations that were performed.

Example 3.2.2:Consider the functioy = F(x), wherex €
B? andy € B?, that implementd'(z) = x2. Initializing the
sums to F(x) and the carry to zero yields the following input
vectors:

So = X0 COIO
81:0 61:0
se=xh-x1 c2=0
S3 =X0 " T1 6320
8420 6420.

8021 COIO
81:1 61:0
8221 CQIO
8321 CgIO
8421 0420.

Three iterations redud(x) to zero for allx. Thus,F(x) is
of order 2.

Each step within the order computation algorithm is of
polynomial complexity with respect to the number of nodes in
the BDD representation & (x). However, the minimum-order
polynomial representation may be of exponential order with

The following steps are followed to determine the order of theggspect to the number of bits in the input waxd Thus, the

input vectors.

1) F(x+1):
S0 = co=20
81:0 61:0
822370'(371@370) co =0
sg=x4 (x1®x9) ¢c3=0
8420 6420.
2) F'(x):
S0 = xg co=1
81:1 61:1
so=x0+2] =1
83=$6+$/1 6321
8421 6421.

3) F(x + 1) — F(x) (1st iteration)

So = 1 Cop = 0
s1 = x§ cg=1
Se=121Pxg ca=z]Pxo
s3=x0+x1 c3=1x)
sg=uxp 21  cg=1
4) Tautology Check
so =20 co = 0 fails.

5) F(x + 1) — F(x) (2nd iteration)

SOIO COI].
81:1 61:0
8221 CQIO
sg=xh+2] 3=

/ /
S4=x9Dx1 €4 =x5 L1

6) Tautology Check

Co = 0
c1 = 0 fails.

8021
81:0

7) F(x + 1) — F(x) (3rd iteration)

8020 COI].
81:0 61:0
8221 CQI].
83 =1 c3 =a

/
S4 =20 Ty C4 =0+ T1.

number of recursions that are performed may be exponential.
Sections IV and VII detail partitioning and approximation al-
gorithms for efficiently generating polynomial representations
for those circuits whose representations would otherwise be of
exponential order.

Once the order of the function has been deter-
mined to ben, F(x) is evaluated atx 00-- - 00,
X 00---01, ..., % Decodén). Solving the fol-
lowing set of linear equations fofy, ¢, ..., ¢, yields the
polynomial representation of the Boolean function

(O)n (O)n—l 1 Cn

O O I

()t e ()] L e
EncodéF(00- - - 00))

_ | EncodgF(00---01))
EncodéF(.[.).ecodén)))

C. Extension to Multivariable Functions

The techniques described above consider only univariable
functions. However, multivariable polynomials exhibit the same
features that allow order computation to be performed recur-
sively; thatisF(x, y) = F(x+1, y) + F/(x, y) recursively
reduces the order &' (x, y) with respect tax by one on each
iteration if y is held constant. Thus, the order Bfx, y) can
be determined with respect toand with respecy. However,
the unique, minimum-order polynomial computation requires
solving a set ok,n, Simultaneous linear equations, wherg
is the order with respect to andn,, is the order with respect to

y.

IV. REPRESENTATION OFFUNCTIONS CONTAINING BRANCHES

To this point, the methods we have described allow com-
putation of a polynomial representation for combinational cir-
cuits. As proven in Theorem 3.2, polynomial representations
exist for all combinational circuits. For those circuits thatimple-
ment arithmetic functions such as those generated by composing
addition and multiplication operations, this representation is of
very low order (e.g., one term to represent multiplication, two
terms to represent addition). Consider, however, models of com-
binational circuits that contain branches, i.e., discontinuities.
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For such circuits, polynomial representations, if computed usitfgve proceed blindly, computing the orderB{x) will generate
only the techniques described above, are usually of exponentinlorder oR2* because of the discontinuity &at= 1011. How-
order with respect to input word size. This is because a brarneer, if we start with an initial discontinuity threshold of four,
in the Boolean domain usually describes a set of coordinatedhen after four order iterations, the uppermost bit @fill be set
the integer domain that can only be fit to an exponentially-lardge zero, then one, and the order computations will be performed
polynomial. However, a high-order polynomial representationfer each case. The order computation fgr= 0 will result in
an indicator that a branch exists within a circuit. This indicat@n order of two. The order computation fes = 1 will again
can be used to partition circuit inputs into domains in whicteach the fourth iteration without passing the tautology check.
polynomial representations of low complexity exist. The bound-he second most significant bit is set to zero, then one, and the
aries of these domains are terngidcontinuities order computation is performed again. Then order computation
Example 4.1: Consider the JPEG Coefficient Encodeef- for x3zo = 11 will result in an order of 3 and the computation
ficient = F(q), with a 16-bit input and 4-bit output, which se-for z3z» = 10 will result in an order of two. Since both com-
lects an output based on the range of the quantized input valpegations converged, but converged to different values, there is
a discontinuity on the interval boundary. Thus, over the integer
if (q == 0000000000 000000) coefficient = 0000; it”ter""_’"t[o' 1|1%1a2” fg‘]jer of 3"’0 is]: t‘i‘etermigef and o the in-
. . eger interva , an order of three is determined.
else if(q < 00000000000 000 010) coefficient = 0001 gI]Every discontinuity detected introduces a new polynomial
else if(q < 00000000000 000 100) coefficient = 0010; into the description of a component. If the number of discon-
tinuities is large, the polynomial representation of a component
elsecoefficient — 1111. will also become large. Such cases can be handled by imple-
menting a heuristic based ordamain thresholdlf the number

The encoder is performing an operation within each branch mgtdiscontinuities is greater than this threshold, then the func-

is represented by polynomials of order zero. However, using tiignality of the component may be approximated by the polyno-

order computation methods described above, the discontinuitiel representation. The approximation technique is described
at the integer valueg = 2’ cause the overall circuit to have an Section VII.
polynomial representation of ordefS.

To prevent an exponential number of order computation V. SYNCHRONOUSAcYCLIC CIRCUITS
recursions from being performed on funqtions that contain £ Theorem 3.2, we have established that a polynomial
branches, we use a heu_”St'C_ based diseontinuity threshold representationy = F(x), exists for all combinational circuits.
Once the number of iterations has reached this threshojgq i que to the fact that combinational circuits specify a
the function is assumed to contain branches. The threshgle n mper of input/output pairs( y) with corresponding
is determined heuristically and enables efficient detection mteger values £, y) that can be treated as coordinates to
discontinuities. Discontinuity detection, in turn, allows ord lhich a polynor7nial can be fit. Synchronous circuits pose

comp:Jtatlon to be performed on each branch of the Circylf, »qgjtional problem because circuit outputs are not only
modg. . . . a function of the current inputs but also previous inputs.
Given a functiony = F(x): B™ — B", with order greater s the polynomial representation of a synchronous circuit

than the discontinuity threshold, discontinuities can be detecr@&qtains terms that are dependent on previous input values:
by performing order computation d&\(x) for the case:,,,_; = y = F(z, 2@1, z@2, ..., +@p). The symbolz@i indicates
0 and the case,,_; = 1. If the orders for each computationthe value ofz that is delayed by cycles

are different, and below the discontinuity threshold, a disconti-
nuity has been detected and exists between 01 ---11 and
x = 10---00. Ifthe order ofF(x), forz,,,_1 = 00rz,,—1 =1,
is still above the threshold, then a discontinuity exists within the A polynomial representation for synchronous acyclic circuits
corresponding domain. Within that domain, an order computéan be computed by computing the polynomial representation
tion is then performed of'(x) for the caser,,_, = 0 and the for the equivalent combinational circuit with delayed input
casez,,_» = 1. Domain partitioning continues until the dis-values. Consider a synchronous circuit represented by a syn-
continuity is detected. chronous logic network, i.e., a directed acyclic graph whose
Similar to performing a binary search, detection of a singkertices represent combinational logic functions, whose edges
discontinuity is of linear complexity with respect to the numbeiepresent function dependencies, and whose edge weights
of input bits, not considering the complexity of the order confepresent synchronous delays introduced by registers. The

A. Determining Combinational Equivalents

putation. sequential depth of the network, is the weight of the longest
Example 4.2: Consider the functioly = F(x), wherex ¢ Ppath. A synchronous logic network can be transformed, as
B*, that is implemented by the following Verilog code: shown in Fig. 5, into a combinational function of delayed input

variables with delay less than or equalto

Given a synchronous network with depththe equivalent
combinational function iF(x, x@1, x@2, ..., x@p). Note
theny = x*x"x; that p is finite due to the restriction that the circuit does not
elsey = x*x. have feedback. A polynomial representationFgx) can now

if (x > 4'b1011)



792 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 9, NO. 6, DECEMBER 2001

w—O w—O
w_O w=0
w=0 w= w=0
Fig. 5. Transformation of a sequential adder into a combinational circuit.
initialize

initialize

X o—

| X b £} 1 steady
fz Ry h
[ F(x) 0
0 F(x)
“ [

) E f2 1

Freedback R

Freedbac

Uniquely represented
bY (% Fieedbact) Uniquely represented Ffeedback

by fi(x) and fo(x, Froeqpack)

Uniquely represented by F(x)
(a) (b) ©

Fig. 6. Synchronous cyclic circuit models: (a) with only a transient feedback branch; (b) with a transient and an initialization branch; and {@nsiémg
initialization, and steady state branch.

be determined fron¥(x, x@1, x@2, ..., x@p). The order A synchronous cyclic circuit can be modeled as a
of F(x, x@1, x@2, ..., x@p) is determined with respect to Mealy/Moore finite state machine (FSM) that may or
eachx@j for 0 < 5 < p as independent variables and the coefnay not have an initial state. For example, a rasterizer is a
ficients of the polynomial representation are determined. In tegnchronous cyclic circuit with an initial state and an infinite
example of Fig. 5, this would result in the polynomial represetmpulse response filter is a synchronous cyclic circuit with no
tation £'(z) = z + 2x@1 + @2, initial state. For the sake of this analysis, we consider three
different topologies of synchronous cyclic circuits: 1) an FSM
with no initial state; 2) an FSM with an initial state that does
VI. SYNCHRONOUSCYCLIC CIRCUITS not reach a steady state; and 3) an FSM with an initial state
that reaches a steady state after a finite number of cycles. As
The method for determining polynomial representations fehown in Fig. 6, we can represent each of these topologies
sequential acyclic circuits relied on the acyclic nature of the cias a functionF(x) that may have up to three branches: a
cuit to guarantee that a finite number of time-shifted inputs webeanch corresponding to an initialization stéfg(x)), a branch
required. However, by breaking the feedback path of a cychorresponding to the transient stat€s(x, Fteedback)), and
circuit F(x), the previous techniques can be used to derive thebranch corresponding to a steady state (labelgdThe
order of the cyclic circuit. This is achieved by introducing atechniques described in Section IV enable automatic detection
INPUtF toedback , aNd determining the order 8 x, Freeaback) Of €ach of these branches. However, this is beyond the scope
with respect tax andFreeqback - of this article. The succeeding discussion assumes that the
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TABLE | the circuit based on the number of iterations of the transient
POLYNOMIAL REPRESENTATION FOR THEARBITER OF EXAMPLE 6.1 feedback branch
- - The order offy (x) with respect tax, referred to as,;, can
Domain Polynomial ) : _ . . .
R E— —— be determined using the techniques presented in earlier sections.
iiatize = Flinitialize, Fregpact) =4 ps 3 result, the polynomial representation of this brarfehy ),
initialize = 0 AND 3 < Fpapck Flinitialize, Fr,,qpqe¢) = 2 Can be determined. Furthermoreyit= Feedback(X) IS treated
initialize = 0 AND 1 < Froggpaet < # Flinitialize, Frogqpeer) = 1 @S @N INpUt tdz(x, y), then the order ofz(x, y) with respect
O AND F = il F By, tox, referred to a2, and with respect tg, referred to as,,
ruhanee = Jeedback RAnze Tfeedback) = © - can also be determined. As a result, the polynomial represen-

tation of this branchfs(z, y) can be determined. After initial-
ization, the order oF(x) is n,1 and after the first iteration of
presence of each of these branches has been detected anththaonsteady-state feedback branch, the ord&t(&f is less
polynomial representation has been determined. than(nyn.1 + ny2) and greater than,n,,. In general, if the
Using the techniques described previously, we can computeler of F(x) is n, aftert¢ iterations, then the order & (x),
a polynomial representation for each branch. An initializatioafter one more iteration of the nonsteady-state feedback branch
branch has a polynomial representation that contains no terigi$ess tham,n, + n, and greater than,n,. Thus, the upper
with the variable Freeanack. A steady-state branch has theébound on the order dff(x) aftert iterations is:
polynomial representatiof’ (z, Freedvack) = Fleedback- If the
function contains no initialization branch or no steady state . =
branch [topology 1) or 2)], then no polynomial representation My Nl + Z”Z N2
F(z) exists. However, the circuit is uniquely represented by =0
the polynomial F'(x, Fieeanack)- IN the case of topology 1),
F(z, Freeavack) 1S SIMply fa(z, Freeavack). INn the case of
topology 2), F'(x, Freeanack) IS comprised of two domains
(corresponding ténitialize = 1 andinitialize = 0in Fig. 6),
and isfy (z) within the first domain angiz(x, Fieedback) Within
the second domain. Example 6.1 illustrates computation of a f?(x’ u); . .
polynomial representation for FSM with topology 2). 3) t is not known, and, # 1 or there is anzy term in

To determine the order df(x) there are three cases that
follow, which need to be considered:

1) ¢t is known;

2) t is not known,n, = 1, and there is nacy term in

Example 6.1:Consider the finite state machine 2z, y)l- _
with a one bit input (initialize) and a three bit outpufn casel), the order off'(x) can be bounded according to the
F(initialize) = {enableA enableB enableG that provides €guationabove.loase2), since there is noy termin f(z, y),

round-robin access to memory for three clients. Breaking t#e order off'(x) does not increase on successive iterations and
feedback loops yields the functioR(initialize, Fgeeapack). 1S SIMPly the greater ok, andn.2. For both of these cases,
Performing order computation results in the detection &fnce the order dF(x) is bounded, a polynomial representation
four branches, each of which is order zero (i.e., constan@Xists forF'(x). If the upper bound on the orderss,, this rep-
For example, in the branch that is executed under the cdgsentation can be determined by extractingt 1 points from
dition initialize = 1, the outputF(initialize, Ffeedback) = the circuit to create the system of linear equations that deter-
{enableA enableB enableG = 100. Thus, the polynomial mine the polynomial coefficients. lcase3), the order off'(x)
representation for this branch i(initialize, Fieeanack) = 4. is dependent onand is therefore unbounded and has no poly-
Coefficient computation for each branch vyields th@omial representation. However, like the cyclic circuits with no
following order zero polynomial representations folnitialization or steady state branch, the polynomial representa-
F(initialize, Freavack) as shown in Table 1. An initial- 0N F(z, Fieeanack) Uniquely specifies the functionality of the
ization branch exists, but no steady-state branch exists, ti§if§uit, and can be used to perform matching as shown in Sec-
F(initialize, Freeapack) UNiquely represents the finite statefion VIII-C.
machine (although other finite state machines exist that performExample 6.1.1:Consider a Boolean circulf(x, y)with in-
the same operation with different state encodings). putsx, y, outputz, that performs multiplication through iter-
The remainder of this analysis focuses on circuits for whickive addition by executing the following initialization branch
F(2. Freedback) IS NOt @ Unique representation, i.e., those cind feedback branches:
cuits that contain both an initialization state and steady state

ltopology 3)]. initial begin alwaysQ(z or z or d) begin

zZ = X; if (d)z=2z+x
d=y; if (d)d=d-1
A. Order Computation With Feedback end end

Assume functiory = F(x): B™ — B* implements three Breaking the feedback loops introduces variald@s.aback
branches, one initialization brandffiy (x)), one steady state and d¢eedaback @nd results in computation of the set of poly-
branch, and one transient feedback braffelix, Ffeeaback)). nomials shown in Table Il. Since the feedback polynomial
We assume that a signal controls the number of iterations= zpeanack + = IS Of order one with respect t@ccanack
through the transient feedback path. We can then evaluat@ contains N zpeapacx t€rm, case 2) is satisfied and the
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TABLE I
POLYNOMIAL REPRESENTATION FOR THELIBRARY ELEMENT F3IN THE
JPEG ENCODE EXAMPLE

is much more efficient to represeR{x) as the polynomiat /2
and specify the maximum error between the continuous func-
tion 2/2 and the exact polynomial representatifx).

initialize = 1 initialize = O and d # 0 | initialize=0andd =0 Given a Boolean functioy = F(x): B™ — B*, with cor-
— — = — responding integer values: (), an approximate polynomial
“feedback ~ Heedback representatioNapprox = Fapprox() Can be determined. The
d=y d = dpeedpack - 1 d = dpeegback approximate polynomial representation is determined such that
|£'(2) — Fapprox(x)| < Aforall x, whereA is a given accuracy.
s Approximation allows a low-order polynomial representation to
be generated for a Boolean function that would otherwise have
a polynomial representation of high order. Sections VII-A and
F(x) VII-B derive in detail the approximate polynomial representa-
— tion F.pprex () and the tolerancé within which the approxi-
— mation is accurate.
0+ —+—t A
0 , . 12 A. Computing Approximations
Domain Polynomial ) o
[0, 1] F(x)=0 As proven in Theorem 3.1, the order of a function is reduced
(2, 3] F(=1 by one by computing the differend&x + 1) — F(x). The al-
(4, 5] F(x)=2 . P . X .
(6 7] F(x) = 3 gorithms to th]s point have rehgd on the resgltlng .fact. that if the
order of F(x) is n, then recursively performing this difference

[8,9]

F(x) =4

n + 1 times will reduce the function to zero. Now we relax the
requirement thaF(x+1) — F(x) be exactly zero. If performing
this differencen times results in a function that is not zero, but
is numerically close to zero, then the polynomial representation

order of F(x, y) with respect tox is the greater ofn,; ) ; i
and n.2, both of which are one. Since the feedback polyl-?(x) of F'(x) can be approximated well by a polynomial of de

nomial d = d 1 is of order one with respect to green.

J ! _d fee“‘t’a‘?k - Id . Wi 2 P | To translate this to approximating a Boolean function
feedback aNd CONtAINS NOYdrecdnack term, case 2) is also F(x) with a polynomial, again consider the function
satisfied for this polynomial and the order Bf{x, y) with

respect toy is the greater ofn,; andn,», which are one y = Feo: B — B If ,the most signifi_cantq bits of .
and zero respectively. ThuE(x, y) is of order one with y are one, then for the two’s complemenkt integer encoding
) . A . f Z,y=E he i lity—2%—1 holds.
respect to both inputs (i.ea, = 1andn, = 1), requiring ginﬁiliny\fythe r:cf;d;ﬁg%’iffczﬁgeb?;aéﬁyy _ De;g@’?—%?
(”?Tl)(”y—’_l) :_4 p(())m(t)st(;)beOexltre(l)ctedlfr(c)m:)the1c|r;:U|1t. The(performed using two complement arithmetic) are 1, then
pombs (a:,ty, Zt) d_ '{(Id7' ’trz’ (f ’” ’ .)’( ’ t’ )’§ P t')} the inequalityy < 2%~¢ holds. As, a result, iff~ is de-
can be extracted, yielding the following system of equations:, be F(x + 1) — F(x) and F* is defined to be

Fig. 7. Subdomains generated by the functofx) = = > 1.

0 0 01 c3 0 F(x + 1) — F(x) — Decodé2*~7), then the following state-
0 011 2| |0 ment holds: if the uppek bits of the bit wise or ofF ~ andF+
0101 e |o are one, then-2*~7 < F(z + 1) — F(x) < 2¥~9. The bound
111 1 Co 1 on F'(z + 1) — F(x), allows us to derive an approximation of
The solution to the system of equations yields the polynomlal(x)
representatiod’(z, y) = xy. LetF(x +1) — F(x) = G(x)
GivenF(0)

VII. A PPROXIMATIONS
Polynomial representations are an efficient way to encapsu- = F(1)=G(0) + F(0)
late the functionality of arithmetic circuits. Furthermore, cir- = F(2)=G1)+FQ1)
cuits that implement nonarithmetic operations can be modeled
efficiently by determining subdomains over which the circuit
implements functionality that has a low-order polynomial rep-
resentation, as shown in Section IV. However, this representa-
tion becomes very complex when the number of subdomaindfi€ncodd G (i)) is small [e.g.,—2¥"¢ < EncodéG(i)) <
large. For example, circuits that approximate arithmetic fung®—¢, for suitable ¢], the polynomial representation
tions frequently generate many subdomains. of (Zf;ol G(i)) is well approximated by the line

Example 7.1:Consider a circuit that implemenB8(x) = z - (EncodeF(11---11) — F(0)/2™).

(x > 1), wherex is anm bit word, require2™~! subdomains  F(z) can then be approximated by
(Fig. 7) in its polynomial representation. Rather than represent
F(x) as a list of subdomains of and corresponding polyno-

mials F'(x) that describ&(x) exactly over those subdomains, it

G(1) + G(0) + F(0)

= F(x) = <§_: G(i)) + F(0).

=0

Fopprox(®) =z - (EncodéF(11---11) — F(0))/2™)
+ Encodé¢F(0)).
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Example 7.2.1:Consider the 8-bit functiop = F(x) where Following two’s complement arithmetic, if the most significant

x € B% andy € B3 bit of §(i) is zero, ther (i) is positive and, if the most significant
o . bit of 6(i) is one, ther(i) is negative. Since the most signifi-
zo ~ ilf z‘* ~ i”f cant bit of§ (i) is &4 x—q—1(i), the bitssF (i) ands; (i) can be
1 — 42, 5 — 46,

determined by computing the posmve and negatlve cofactor of
6,(1) with respect ta5,,,x—q—1(i).

ComputingA(z) for all 2™ values ofz is prohibitively com-
This circuit could be partitioned into 64 subdomains anplex due to the size of the domain and the fact thét) is a
represented exactly with 64 order zero polynomials (similaummation ofz values. To circumvent this summation and de-
to Fig. 7). However, the first difference iteration revealtermine abound on(z), the maximum values for the following
that the upper seven bits &(x + 1) + F/(x) are one, are determined:
yielding the bound-1 < F(x + 1) — F(z) < 1. Therefore, , .

F(z) can be approximated by the first-order polynomia( + 1) — A(z) where bitz, of xis 0
Fypprox(x) = x(Encod€F(11---11) — F(0)))/2® = 0.498z. A(z +2) — A(x) where bitsro, z; of x are0

Y2 = 233 Y6 = T7;
Y3 = T4; y7 = 0.

B. Computing Approximation Error for the Linear

Approximation Az + 2™ — A(z) where bitszg, 1, ..., z,,—1 Of x are0.

In this section, we will compute a bound on the accuraayf The maximum value of the computatiax(z + 27) — A(x),
a linear approximation to the polynomial representafitiz). where bitszo, z1, ..., ; of x are zero, yields the maximum
The difference betweeR(x) and Fip,,rox(2), termedA(x) is  error contributed by biy of the input. Thus, the sum of the
1 maximum values of each of the above equations provides the
_ . my  maximum error contributed by all bits, which is a bound on the
Alr) = Z(EHCOdéG(I))_EnCOdéF(H ID=FO)/27) aror of the approximation. Thus, a bound on the accuracy of
=0 the linear approximation is
Since—2k~7 < EncodéG(i)) < 277, it requires onlyk — ¢
bits to represen€(i). Assumingk ~ ¢ for a good approxima- A<[A(z+1) = Az)] + [Alz +2) — Alx)] + -
tion, computation of EncodéG (i)) — Encod¢F(11---11) — + Az + 2" — A(z)]
F(0))/2™) need only be performed only over a short word
length ¢ — ¢ bits). Since the Encode operation is distributivéS Shown in Example 7.2.2, values &fx) can be reached by
li.e., EncodéA) + EncodéB) = EncodéA + B)], the fol- summing a subset of the above equations.

lowing equivalence holds: Example 7.2.2:
2™ (EncodéG(i)) — EncodgF(11---11) — F(0))/2™) A0) =0 A1) =[A0+1) - A(0)]
— Encodé(G(i) < m) — (F(11---11) — F(0))). A(2) =[A(0+2) - A(0)]
o . _ AB) =[A0+2) =AM+ [A0+1) — A0)]
Defining 6(i) = (G(1) <« m) — (F(11---11) — F(0)) yields: AT =[AG+1) — A6)] + [A(4 +2) — A(4)]
+[A(0+4) — A0)].

Alz)-2m = Z Encodés(i)).
Example 7.2.3:For the approximation computed in Example

Replacings (i ) by the sum of its bitd,(i) [i.e., Encodé(i) = 7.2.1, the resulting(i) is
Ern_—l(—)k q— 1 ( )] yleldS 60 — ]_7 65 — O7
(51 = 0; 66 = 0;

z—1 [m+tk—q—1 . . 62 = O7 67 = ]_7
AW = ¥ 20 o0 Se—il
i=0 j=0 8, =0; 89 = 1.

An upper bound o\ () can then be determined from each biThe error contributed byA(z + 1) — A(x) whenzy = 0 is

&F (i) of the positive values aof(i) Encodéé(x))/28. This is always negative because the most sig-
. nificant bit of §(x) is one whenzy = 0: Encodéé(x))/2% =
ool fmAbmeml —127/2% = —0.5 units. The error contributed b (z + 2) —
Az) < Z ( Z 27 (85 (1) # 0)> . A(z), whenzizo = 00, is Encodés(x + 1) + 6(x)). This
=0 J=0 is always positive because the most significant bis et +

1) + 6(x) is zero whenzy = 0: Encodéé(x + 1) + 6§(x)) =

(129 — 127)/2® = 0.008 units. Similarly, other differences

Az + 2') — A(z) contribute only positive error. Other differ-

z=1 [mtk—g-1 encesA(r+2%)— A(z) contribute a total of 0.5 units of positive
2 (67 (1) #0)

Similarly, a lower bound can be determined from eacld pifi)
of the negative values @f(i)

>y | > error, resulting in the error bound:0.5 < A < 0.5. Thus, the
i=0 5=0 circuit implements the polynomiaf(xz) = 0.498z within 0.5
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units. This approximate representation is far less complex thor 0 < = < 2%, e(x) < 29 grayscale units. This implementa-

the 64 polynomials that would be required to represent the ciion yields a sharpening filter that yields an image that is of sim-

cuit exactly. ilar quality to that specified, but likely smaller and faster than
an exact implementation.

C. Nonlinear Approximations o
i i ) , A. Transcendental Specifications
A function F(x) may implement a nonlinear operation [e.g.,

F(x) = (x? > 1)] that is well approximated by a nonlinear A means of approxir_nating a specification for transcender_ltal
polynomial representation [e.gi(x) = =2/2]. In this case, the funcuops can be. derived frpm t_he resu[ts of Taylor series
first iteration of F(x + 1) — F(x) may not satisfy the condition aPProximation. Given a speC|f|cat|oﬁ(a:)2, with Ta2yI0£ Series
—2k=1 < F(z+1)—F(x) < 2574, If a suitable bound is found Savprox(#) = 1+ (dS(0)/dw)a/1! + (d°S(0)/da”)a>/2! +

for thenth iteration ofF(x+1) — F(x), termedG, (x), instead ~~ (dns(o)/dﬂ)ﬂ/”l!v the d|ffere1nce bletweeﬁapprox(a:)

of the first iteration, then a nonlinear approximation fofz) andS(z) is e(x) = ("™ F(c)/dz" ")z /(n + 1)! where

can be computed, using, from Newton'’s forward difference 0 < ¢ < z. Thus, if the error in a Taylor series approximation
interpolating formula to a function can be bounded, then the difference between

an implementation that matches that approximation and the
7 specification can be bounded.
approx(2) Example 8.1.1:An implementation that is determined to be
= EncodéF(0)) + <$> - EncodéG(0)) of order four and yields the polyqomial re_presentgtldrx) =
1 1—2%/4+=*/24 matches the cosine function used in DCT with
n <a2c> - EncodéGr(0)) + - an errore < 0.0083 over the interval [0, 1].

B. Composition

X
+ <n> - EncodgGy(0)) + - The ease with which polynomials can be composed, using tra-
ditional algebraic manipulations, can allow seemingly inappro-
priate implementations to be combined to fulfill a specification.
VIII. M ATCHING Example 8.2.1:The Boolean functionF(x) with poly-
) o - _ nomial representationf(x) = x° may appear to be
Consider a circuit specificatiofi(x) that defines the func- 5 completely inappropriate match for the polynomial
tionality of a circuit. Given a library of existing componentsgpecification of cos(z) derived in Example 8.2. How-
where each componentis described by a Boolean funka), ever, if an adderFoum (X, ¥)(Foum(z) = 2 + ¥),
polynomial representations provide a means for quantifying thggation elementFyeg (x)(Freg(z) = —z), and shifter
difference between the specificatiSf) and a potential imple- Fonite (X, ¥)(Fanipe(x, y) = x/2¥) exist in the implemen-
mentationF'(x). This can be achieved by computing the polyation library, F(x) can be allocated and composed with the
nomiale(z) = S(z) — I'(x) + A, whereF'(z) is the poly-  aqder to approximate thes(z)
nomial representation df(x) within an accuracy ofA, and
using traditional numerical methods to find the maximum value Foum(1, Foum(Freg (Fsnire (F(x), 1))
of e(x). In quantifying the maximum errarof an implementa- Fonir (F(F(x)), 5))).
tion and guaranteeing thais within a given tolerance, system
traits such as performance, power and area can be optimizedbg polynomial representation that results from this composi-
selecting faster or smaller designs that implement less accuriae is F'(z) = 1 — z?/4+ x*/32 and matches the specification

arithmetic. derived in Example 8.2 within 1.3%.
Example 8.1: Consider the specification for an 8-bitx3 3
sharpening filter used for processing grayscale images C. Cyclic Circuits
As discussed in Section VI, when the order of a circuit
S(z[0, 0], z[0, 1], z[0, 2], z[1, O], =[1, 1] with feedback can be bounded, a polynomial representation
21, 2], z[2, 0], 2[2, 1], z[2, 2]) for that circuit can be determined exactly and the matching

techniques described above can be used. Given a specification

= (=2[0, 0] — [0, 1] = [0, 2] — 2[1, 0] + 8z[1, 1] with bounded ordem, and a cyclic componenF(x) with

— (L, 2] — 2[2, 0] — #[2, 1] — [2, 2])/9. unbounded order, the inequality
Consider an implementatidfi(x) with the following approxi- . < <t =1 ;
mate polynomial representation: Ty~ Mol S Mg S Ny~ Mgy + Z”y N2
=0
F(z, zQ1, zQ2, zQ3, z@4, z@5, z@6, zQ7, zQ8) can be solved for [where n,; is the order of the initial-

~ (=2 — 2@1 — 2@2 — @3 + 82@4 — 2@5 ization branchfy(x), n,» is the order of feedback branch
~ - - - - - f2(X, Freedback) With respect tox, n, is the order of the
— @6 — rQ7 — 2@8)/8 feedback branch with respect to the feedback input, faisd
A = 0.875. the number of times the feedback branch is executed]. The
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solution to this inequality provides the bounds brwithin
which F'(z) can have the same order 4éz) and, therefore,
possibly implemenss(z).

If S(z) has unbounded order, théf{z) is implemented by
F(x) if and only if the specification of the initialization branch
of S(z), s1(x) = fi(x) and the specification of the feedback
branch of S(z), s2(x, Steeanack(®)) = f2(Z, Freedback (2))-
Thus, if a functionF(x) does not have a bounded order and,
therefore, no polynomial representation, it can still be compared
to a specificatiort (x) by comparing the initialization and feed-
back polynomials ofS(x) and F(x). An example of this is
shown in Section X-B.

IX. COMPLEXITY ISSUES

The order computation techniques described above are of
quadratic complexity with respect to the size of the BDD
representation oF(x) and output word length. Solving the

797

7 7
(1) DCT DCT = 3 % x(i))
i=0j=0
(2) Quantize Q = DCT/128-DC

previous

(3) Coefficient Code C = log,Q

(4) DC Code
C BaseCode Length
9] Ul0 3
T [231 4
2 T00 S
3 00 5
4 101 7
5 110 8
6 110 10
7 11110 12
g TT1110 14
9 ITTITIO 16
10 TITITII0 18
11 TITITITIO 20

set of “n_ear ?quat'ons for polynomial coefficients is O_f Cubl[‘:’ig. 8. Arithmetic specification of the blocks for the dc path of JPEG encode
complexity with respect to the order of the polynomial anghputs:«(i, j); output: dc].

we assume this order is small (less than the discontinuity
threshold). However, the underlying BDD data structure can
be of exponential complexity for common functions. Thus,

reducing the complexity of polynomial computation requires

reducing the complexity of the order computation, which, in

turn, requires reduction of the complexity of the BDD.

Assume a functionF(x) has an BDD with2™ inter-
mediate nodes, wherg is an m bit word. If x is parti-
tioned into two words %, 1Zm 2 Tp/200---0) and
(00--- 02y, /21T 2—2 - -~ To), the BDDs that describe each
partition will require no more than two sets /2 interme-
diate nodes. Similarly, partitioning into C words will result
in a worst-case total node countBf= C2™/€. Minimizing T
with respect ton yields

dT/dC =2"C — (m/C)2™/C . log,, 2
= (2™ (1= (m/C) -log1y2))
=C =m-log,2.

Partitioningx into words of length1/log; 2) ~ 4 will min-
imize BDD complexity. This will result in overall BDD com-

will guarantee that the order of the polynomial representation
for acomponentis lesst2For those circuits implementing func-

Component |
assign F1 =x1 +x2 + x3 + ... + x64;

Component 2
assign F2 = x1 - x2;

Component 3
always @ (x1) begin
if (x1[11]) begin
F3={9°b11111110, x1[10:0]};
end elsif x1[10] begin
F3 ={8bl1111110, x1[9:0]};
end elsif x1[0] begin
F3 = {3’b011, x1[0]};

end else begin
F3 =3"b010;
end

. .. Fig. 9. Verilog implementations synthesized to produce library elements F1,
plexity of (m/4) - 2* = 4m. Furthermore, such a paru‘uomnngg, and F3. g1mp Y P Y

tions of order greater thart 2a polynomial representation will A- JPEG Encode Application

be determined through domain partitioning and approximation,Generating polynomial descriptions allows a specification
as explained in Sections IV and VII. In practice, very few cirand implementation to be compared by computing the numer-
cuits implement functions of order greater than 2 ical difference between the polynomials. Consider the dc path
for the JPEG encode system described in Fig. 1 and specified
in more detail in Fig. 8. The inputs(¢, j) describe grayscale
values for ar8 x 8 pixel block and output dc represents the

To illustrate the application of polynomial methods, two apencoded dc value for that pixel block. Specifications for four
plications are synthesized. A JPEG Encode block is first syntheystem blocks are described: 1) DCT; 2) quantize; 3) coeffi-
sized to demonstrate order computation and discontinuity deteint coding; and 4) dc coding. Three library elements were
tion. An IR filter is then mapped to an existing filter to demongenerated by synthesizing the Verilog code shown in Fig. 9.
strate synthesis with synchronous library elements and appr&®clynomial representations were computed from the resulting
imation. netlists.

X. APPLICATIONS
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TABLE 11l
POLYNOMIAL REPRESENTATION FOR THELIBRARY ELEMENT F3IN THE
JPEG ENCODE EXAMPLE Tape
" " "Drive
Domain DC Polynomial
xI=0 F3(x1)=2 +xl Compensator |- - -
O<x1<2 F3(xl) =6+ xI
I<xl<4 F3(x1) =16 + x]
Transfer Function:
3<xi<8 F3(x1) = xI N _ _ - -
X (x4) 094- 28271 + 19272 4 19273 - 28274 + 094 15
7<xl<i6 F3(x1) = 80+ x1 H(z) = s T 5 ) 3 i
- +1 - 10 S5z " -
15<x1<32 F3(x1) =192 + xl “ ? zoror -
3l<xi<64 F3(x1) =896 +xI Fig. 10. Digital fi_Iter used as a compensator for controlling the move of a tape
63<x1<128 F3(x1) = 3840 + xl through a tape drive.
127<x1<256 F3(x1) = 15872 + x1 )
512 F3(xl) = 64512 + xI tput: X output:
255<xl< (x1) = X x_q = REG(x) F_q = REG(F)
511<x1<1024 F3(xl) = 26e4 + x1 x_qq = REG(x_q) F_qq=REG(F_q)
_ = " F_ =REG(F_qq)
1023<x1<2048 F3(xl) = 1e6 + x1 x_qqq = REG(x_qq) qqq
x_qqqq = REG(x_qqq) F_qqqq = REG(F_qqq)

x_qqqqq = REG(x_qqqq)  F_qqqqq = REG(F_qqqq)
H1 = 160F_q - 320F _qq + 320F_qqq
The first component requires that an order computa-  H2=-160F_qqqq + 32F_gqqqq
tion be performed for each input. The order of element  H3=x-3x_q+2x_qq+2x_qqq
F1(x1, x2, ..., x64) with respect to each input is de- H4 = 3x_qqqq + x_499qq
. . . H=HI1+H2+H3+H4
termined to be one and, after coefficient computation, the  p_ . 5

polynomial representation is
Fig. 11. Circuit description for library element to be compared to tape

Fl(a:l, 2, ..., 3364) =zl 4+ 22+ -+ x64. controller specification.

The order of elemerif2(x1, x2) block is similarly determined required to position the tape properly. An existing circuit imple-
to be one with respect tol andx2 and the resulting polynomial mentation within the library of filters is shown in Fig. 11, with
representation is combinational blocks already described by polynomials. The
challenge is to determine if the circuit can be allocated to im-
F2(z1, 22) = 21 — z2. plement the following specification, generated from MATLAB:

Order computation for elemerif3(x1) yields an order S(z) =55(z@1)—105(x@2)+105(x@3)—55(xQ4)
greater than the discontinuity threshold of four. As a result, +5(2@5)+0.093 75z — 0.281 25(x@1)+0.1875(z@2)

the upper bits of the inputs to each block are successively set . . e
to zero and one, as described in Section IV, and the following +0.1875(x@3) —0.281 25(2@4) +0.093 75(2@5).

partitions and corresponding polynomial representations arerpq first step in generating a polynomial representation for

determined as shown in Table Ill. - __the circuit described in Fig. 11 is to break the feedback paths.
_ Performing a numerical comparison between_ _the_speuﬂcghis results iNFrecanack replacingF in the list of equations
tion for DCT andF'1(x1, x2, ..., 264), the specification for onq peing added to the list of inputs. The next step in generating

quantization and"2(x1, z2) and the specification for coding 5 polynomial representation requires generation of the
andF'3(x1) reveals an exact match for eaeh= 0). Thus, the oqivalent combinational circuit. Progressing down directed
specification can be implemented by composing the Complﬁﬁyclic graph that represerx, Frocaback), the first rooted

components that exist in the library. subgraph represents the assignmenj = REG(x). This
i o subgraph is duplicated, generating an additional circuit input
B. IR Filter Application x@1, and the original subgraph is removed. Subsequently, the

Many embedded applications require digital filters to contraboted subgraph ending witk_qq is duplicated, generating
mechanical operations. Common examples include altitude cam- additional circuit inputx@2 and the original subgraph
trol systems for satellites, yaw dampers in airplanes, and furresponding to the assignment to.qq is removed.
injection controllers in automobiles. We will apply polynomialContinuing this process, the equivalent combinational
methods to determine an existing filter from a library of filtergircuit is generated, resulting in a circuit with the following
suitable for reuse in a tape drive controller (Fig. 10). The véaputs: {x, x@1, ..., x@5, Freedback, Feedback@1, . ..,
locity of the tape with the tape drive is controlled by a voltag®tecaback @5. The nodes in the original
applied to the reel motor. This voltage is a function of past vgraph that represented assignments to each of
locities and, therefore, past voltages, as well as the displacemgxtq, ..., x qqqqq, F_q, ..., F.qqqqq}
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were removed as they have been replaced by Word Sizes Logic Ops Exec. Time
{X@l, ey X@5, Ffeedback@17 ey Ffeedback@5}- The 4 2003207 0.41s
complete set of resulting equations is P 012236 132
H1 =160F fecdback @1 — 320F eedback @2 16 32050480 4.76
+ 320F fuodback @3 32 128197824 19.31
64 12783104 3
H2 = _160Ffeedback@4 + 32Ffeedback@5 > 739
H3 =x — 3x@1 + 2x@2 + 2x@3 (@)
H4 =3x0@4 4+ x@5 80t
H=H1+H2+H3+H4 ET
F=H>»5. T
At this point, the circuit description has no feedback paths and 1 +
no registers. e 1
Order computation with respect to each of (s)1
{Ffeedback7 Ffeedback@17 IR Ffeedback@5} results in 14
an order of one for each input. However, the order of the N
circuit with respect to each ofx, x@1, ..., x@5} is very 4 Word Size (bits) 64

large, indicating that a representation of an approximation

of this circuit will be more efficient. Computation of (®)

Fx + 1,x@1,...) - F(x,x@1,...) reveals that Accumulator Number of Exec. Time

-1 < Flz 4+ 1,2@Q1,...) = F(z,2Q1,..) < 1. A Stages Registers

similar result is determined forx@1, ..., x@5. Thus, 1 16 7 76s

the term that each of{z, @1, ..., 2@5} contributes 5 3 3584

to the polynomial representation of the circuit can be 3 3 547

represented by an approximation of order one, of the form

z(EncodéF(11.11) — F(0)))/2". Following the error 4 64 177.50

quantification steps outlined in Section VII, the bound 5 80 326.19

on the error contributed by approximating each term of ©

the polynomial that contains one ofz, @1, ..., @5}

is —0.968 < A < 0.968. After performing coefficient Word Sizes | Exec. Time Circuit Approx.

computation, the following polynomial representation for the 4 0.01s Function Error

circuit is determined g 0.05 x/8 0.87

F(-T) = 5Ffeedback($@1) - 10Ffeedback($@2) 16 0.19 i;; 82(5)
+ 10 Ffeedback (2@3) — 5 Freedback (£@4) 32 L1 3x/4 1-75
+ Freedback(£@3) + 0.093 749z — 0.281 246(2@1) o 14 -

eedbac <+ . . = 128 76.80 7x/8 1.87

+0.187 49(2@2) + 0.187 49(zQ3) — 0.281 246(xQ4)

+0.093 749(z@5). @ ©

Fig. 12. (a) Execution time required to determifiéx, y) = zy is of linear

After closing the loop by settin®'seccanack = F, the spec- complexity with respect te andy. (b) Graph of execution times in Fig. 10(a).
(c) Execution time required for register removal on 16 bit accumulators. (d)

|f|cat|on_S(a:) a_md |mplementat|orf‘(x) C_an be Compare_d by Execution time for determining an approximation to the functigf2. (e)
comparing their representative polynomials. The coefficients afcuracy of approximation for several 16-bit functions.

S(x) and F'(z) do not match exactly due to the approximation

of F(x), but are the same within 10. Thus, the existing com- _ . . :
ponent can be allocated to implement the specification if tr‘{‘éh'Ch was used to perform BDD operations, Exp(_anme_nts were
S 4 pérformed on a 200 MHz R4400 Indy Workstation with 256
circuit tolerance of 10* is acceptable. MB of memor
y.
The time required to determine the order of this circuit is
XI. EXPERIMENTAL RESULTS shown in Fig. 12(a) and, for the 64-bit multiplier, the order was
To quantify the performance of order computation, a contcomputed in under 80 s. Note that by using the complexity re-
binational multiplier with input lengths ranging from 4 to 64duction methods from Section IX, order computation was per-
bits, was constructed out of combinational 4-bit multiplierdprmed on successive 4-bit chunks of each input word. This
and the polynomial representation determined. Multipligrielded a maximum BDD size of 61 nodes which fit completely
logic was synthesized from Verilog to construct the Booledn the 16 KB cache.
equations that implement the Synopsys DesignWare multiplier.As expected, execution time varied with the square of the size
These equations were then ported to the Cal-2.0 BDD packagjehe input word. This is due to the functid(x, y) being of
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order one with respect to each input and having two inputs. Ndtadeoffs between precision and speed. In addition, the ease

that a similar computation for a function with polynomial reprewith which polynomials can be composed can allow such

sentationF'(x) = x + K would have been of linear complexitydifferences to be compensated for by combining multiple

with respectto the size afand a more complex function such agxisting blocks or constructing logic around a single block.

that with polynomial representatiafi(z) = x?y? would have ~ The methods presented in this paper are well suited to

varied with the fourth power of the size of the input word. ~ matching blocks that have compact arithmetic representations,
To quantify the performance of polynomial methods for syrsuch as those found in DSP, computer graphics, and ALUs.

chronous circuits, experiments were conducted, to gauge thathermore, these methods provide a means for separating

relationship between the execution time required to generatntrol operations, such a branches, from arithmetic operations

equivalent combinational circuits and the number of registeasd detecting blocks that contain many discontinuities such as

[Fig. 12(c)]. The circuits on which this was performed wereontrollers, based on the order of the polynomial representation.

16-bit accumulators with between one and five register stages

e, F(z) =2+2Ql, F(z)=2+2@Ql4+2Q2, ..., F(z) = REFERENCES

z + 2@l + --- 4+ 2@5]. Execution time varied quadratically [1] G. Martin, “Design methodologies for system level IP,"Rnoc. Conf.

with the number of registers. Note that the register removal tool ~ Design Automation and Test EtRaris, France, Feb. 1998, pp. 286-289.
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ranging from 4 to 128 bits [Fig. 12(d)]. While of high order com- moment diagrams,” iRroc. 32nd ACM/IEEE Design Automation Conf.
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mined for several circuits of bit width 16 [Fig. 12(e)], all of 1996, pp. 361-365. o .
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