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ABSTRACT

We describe an important memory optimization that arises in the
presence of aggregate data structures such as arrays and structs
in a C/C++ based system design methodology. We present an al-
gorithm for determining an optimized memory layout of such data.
Our implementation consists of a pointer analysis and resolution
phase, followed by memory layout optimization. Experiments on
typical applications from the DSP domain result in up to 44% im-
provement in memory performance.
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sors~—Compilers,Optimizations
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Algorithms, Design, Experimentation, Performance
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1. INTRODUCTION

Since complex embedded applications are typically composed
of both synthesized hardware blocks as well as application soft-
ware executing on an embedded processor, the supporting design
methodology has evolved to embrace several aspects of both hard-
ware synthesis and software compilation of embedded code [6,
5, 4). While Hardware Description Languages (HDLs) such as
VHDL and Verilog were adequate to describe behavioral-level cir-
cuitry in the past, the push towards System-on-a-Chip level inte-
gration found them wanting in sufficiently high abstract modeling
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constructs. To alleviate the problem, the industry has been experi-
menting with replacing HDLs by C/C++ (e.g., [1]). In this design
methodology, new optimization and exploration opportunities arise
not only in the hardware synthesis side of the equation, but also on
the compilation side. Many optimizations that are deemed com-
putationally expensive for traditional compilers can now be per-
formed in the embedded domain because a designer can afford to
spend extra time to improve performance and power characteristics
since there is only a single application.

Design of the memory subsystem needs careful attention be-
cause the same functionality can be implemented in several dif-
ferent ways, each with varying impact with respect to performance,
area, and power consumption. In recent years, researchers have
analyzed several different memory architectures and the impact
of storage policies on these architectures in embedded systems.
Among the earliest research efforts to study the memory allocation
problem in the context of video data streams was the PHIDEO sys-
tem [7]. Exploration environments for determining an optimized
application specific on-chip memory architectures are studied in
[9, 3]. More recently, in the context of C/C++ based synthesis, re-
searchers have addressed the issue of finding reasonable hardware
interpretations for dynamic memory allocation-related features [12,
10].

The work presented in this paper complements the data layout
optimizations reported in works such as [8], where the focus is on
the relative placement of user-declared data structures in memory
so as to improve cache performance. We demonstrate that a sig-
nificant amount of additional benefit can be obtained by either co-
alescing/merging different arrays or splitting an array of structs
into separate arrays depending on the circumstances. The work
also complements the memory synthesis techniques such as [11] by
way of extending the analysis of aggregate data structures into the
embedded processor-cache environment, thereby forming a more
complete framework for hardware/software co-design.

2. OVERALL DESIGN FLOW

In typical programming languages such as C/C++, the relative
placement of individual elements of an aggregate data structure
is mandated by the language itself, and a compiler has no option
but to obey the storage requirements, even if better alternatives ate
available from the performance point of view. This is because a C
compiler typically sees only a part of the whole program at a time,
and modifying the storage of data in non-trivial ways is unsafe in
general. However, in embedded systems, where the entire applica-
tion is usually visible to the compiler, an aggressive compiler can
perform such structural transformations to the data after verifying



the safety of the operation. Works such as {13] have investigated
a general pointer analysis framework, which has been incorporated
into techniques for hardware synthesis of pointers [10]. The same
analysis information can be used to determine whether it is safe to
transform the memory representation of data structures.

C/C++ Specification

Pointer Analysis

HV_ w

Pointer Synthesis

High-level Other Compiler
Synthesis Optimizations
Netlist CoLe

Figure 1: Where data layout transformation fits into the overall
design flow

The overall framework is shown in Figure 1. The C/C++ speci-
fication is first analyzed for pointer arithmetic and the pointers are
resolved. The pointer synthesis phase uses the result of the analy-
sis to convert the original code into code with no pointers, which
is then taken through a traditional hardware synthesis flow. In the
software path, we perform the data layout transformation followed
by the regular compiler optimizations and code generation phases.
The hardware path may also have its own data layout transforma-
tions.

3. LAYOUT OF STRUCTS: AN EXAMPLE

The data restructuring optimization and its implications can be
illustrated with the example shown in Figure 2(a). p is an array of
structs with two fields (a and b) in each element, and ¢ is an
array of integers. The obvious way to store the data in memory is
shown in Figure 3(a). Consider an example data cache with 4 lines;
2 words per line. When p[0].a is accessed in the first iteration of
Loop L1, the cache fills the entire line, thus fetching p[0].b also.
However, p[0].b is never used in the loop, thus the cache subsystem
is under-utilized. Similarly, in Loop 2, p[0].a and p[1].a are also
unnecessarily fetched into the data cache (Figure 3(c)), thereby de-
grading performance.

The under-utilization problem can be solved by reorganizing the
data based on an analysis of the memory accesses in the applica-
tion. The transformed code is shown in Figure 2(b). The origi-
nal z.a has now become a, and the original z.b and g have been
merged into a new struct y. This ensures that spatial locality is
maximized by storing consecutively accessed data in nearby loca-
tions. The storage strategy for the transformed code is shown in
Figure 4(a). As shown in Figure 4(b) and (c), no useless data is
fetched into the cache in any iteration of the two loops.

The data layout transformation results in the cache miss ratio
decreasing from 62.5% to 37.5%. For a typical processor-memory
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struct x {

int a;
int b;
} plioo0];
int g[1000];
avg = 0;
Ll: for (i = 0; 1 < 1000; i++)
avg = avg + plil.a;
avg = avg / 1000;
L2: for (i = 0; i < 1000; i++)
plil.b = p[i]l.b + avg;
qlil = plil.b + 1;
(@)

int al1000]; // originally x.a
struct y {

int q; // originally g
int b; // originally x.b

} rl1000];

avg = 0;

Ll: for (1 = 0; 1 < 1000; i++)
avg = avg + ali]l;

avg = avg / 1000;

L2: for (i = 0; i < 1000; i++)

r(i]l.b = r[i]l.b + avg;
r(il.g = r[i] .b + 1;

}

(®)

Figure 2: (a) Example code fragment (b) Transformed code

p [0l.a
p[01b : useless data : useless data
plila Lin Line
p[1lb ‘ ‘
p[2la 0 0 [01.b
p[2]b 1 1 plilb
. 2 2 {qlo} | qrn
- 3 3
q [0]
q[1]
Data Cache after Data Cache after
Storage of 4 iterations of 2 iterations of
p, g in memory Loop 1 Loop 2
(a) (b) (c)

Figure 3: Cache behavior of original code
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Figure 4: Cache behavior of transformed code.

system interface where a cache miss incurs a penalty of, say 15 pro-
cessor cycles, and a cache hit results in a single cycle data access,
this amounts to a cycle-count reduction of 34%.

The data restructuring transformation is not subsumed by other
known optimizations in compiler/architecture and CAD literature.
Data fetched into cache during Loop L1 is, in general, not present
when L2 begins because of capacity misses. In the example of
Figure 2(a), the loop fusion transformation does not apply because
of data dependencies - avg needs to be computed before L2 be-
gins. Finally, just splitting the arrays into individual components
(without regrouping) is generally not sufficient because of the pos-
sibility of cache conflicts. Although the illustrative transformation
of the code from Figure 2(a) to Figure 2(b) was simple, the general
problem of deriving the most efficient data layout is non-trivial. In
Section 4, we provide an algorithm for this transformation.

4. DATA LAYOUT TRANSFORMATION

The data layout problem is formulated as follows: given a set of
arrays of either simple data types such as integer, or aggregate data
types such as structs; and a set of innermost loops in a program
accessing different arrays with different array index expressions,
determine an efficient layout of the arrays in memory that maxi-
mizes the data cache utilization.

As a first step, we dismantle the user-specified grouping of data.
For example, an array of st ructs may be split into separate arrays
of its constituent fields.

4.1 Splitting into individual arrays

In the example code of Section 3, the splitting of the array of
structs into two different arrays was trivial. However, in gen-
eral, the task of splitting the address space while preserving the
integrity of the code is rendered more complex by the presence
of constructs such as the dereferencing, arithmetic, and type cast-
ing of pointers. The underlying memory representation in C (as in
many other programming languages) is a continuous address space.
Pointers represent addresses in this address space. However, to per-
form our optimizations, we need to map this address space into dis-
tinct sets of locations. For our memory representation, we use the
notion of location sets introduced in [13). Location sets support all
C data structures including arrays, st ructs, arrays of structs
and structs containing arrays. In order to handle large C pro-

struct {

int a;
int b;
} tsl10];
int tif[20];
int *p;
if(...)
p = (int *)ts;
else
p = (int *)ti;
for(i=0; i<10; i++) {
= *p;
p += 2;
}

(a) Original Code

int ts.al10];
int tsDb([10];

int tif[10];
struct spc.pointer {

short tag; short index;
} pi
if(...)

p.tag = 0; p-index=0;
else

p.tag = 1; p-index=0;

for(i=0; i<10; i++) {
if(p.tag==0) // p—{ts(il.a}
... = ts.alp.index/2];
else // p—{tilil}
. = ti[p.index];
p.index += 2;

}

(b) Transformed Code

Figure 5: Resolution of pointers

grams efficiently, some memory data, such as the different elements
of an array, are combined into a single location set. The representa-
tion of the memory into a set of distinct location sets is created by
accurately analyzing how the different locations are being accessed
in the code.

Pointer analysis [13] is a compiler pass to identify at compile-
time the potential values of the pointers in the program. This infor-
mation is used to determine the set of locations each pointer may
point to at any point in a program. All memory data for a program
can be arranged into a set of distinct location sets which can be
mapped to separate arrays (or scalar variables).

After partitioning the memory into a set of arrays, we still need to
resolve pointers. Since the underlying memory layout is changed,
the behavior of pointers and more specifically of type casting and
pointer arithmetic may be altered. The resolution of pointers con-
sists of two passes. The first pass, where pointers are dereferenced,

. consists of replacing loads and stores by case statements in which
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the locations the pointer may access are explicitly read or written.



The value of the pointers are then encoded as they do not represent
addresses in the original address space anymore.

Consider the code segment in Figure 5(a). After analyzing the
code, the two fields of the struct are represented by two distinct
location sets which can be mapped to two separate arrays ts.a
and ts_b. In this example, the mapping of the array of structs
ts onto ts_a and ts_b is not straightforward. Resolving point-
ers makes this mapping easier. The resulting code after removing

pointers and mapping the two fields of the structure to separate ar-

rays is the shown in Figure 5(b). We omit the details for brevity.

4.2 The clustering algorithm

Our objective is to regroup the split arrays based on their memory
accesses. We represent the input specification as a bipartite graph
with a set of a-nodes representing arrays in the specification and
a set of [-nodes representing loops (Figure 6). Since most of the
memory accesses and computations occur in the innermost loops,
we consider only innermost loops out of nested loop structures. An
a-node and an l-node are connected if the corresponding array is
accessed in the loop. I-nodes have a weight equal to the number of
times the loop is executed. If the loop bound cannot be established
at compile-time, we assume that a profiler can supply that informa-
tion. At this level of abstraction, we do not differentiate between
memory read and write accesses. However, we do assume that reg-
ister allocation has already been performed. For example, in Loop
2 of Figure 2, we assume that the statement “q[1] = p[i].b +
1” does not involve a memory read because p [i] . b, which was
written in the previous statement, could be stored in a register.

fori=1t0100 // Loop L1
Read A [i]

‘Read B [i]
Read C [i]

fori=11to 2000 // Loop L2
Read B [i]
Read C [i]

fori=1to 500 //Loop L3
Read A [i]
Read D [i]

(a)

a-nodes

(®)

I-nodes

</

L1 (100) = L e
L2 (2000) 4\ _
L3 (500) e

®
(b)

Figure 6: Sample memory access pattern in loops and the asso-
ciated graph
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Algorithm Cluster

Input: Specification represented as a series of loops and
array accesses

Output: Group of clusters CS

for all arrays j
ASSIGNED [j] = FALSE
Set of clusters CS = ¢
Sort all loops in decreasing order of total number of
array accesses
for all loops L
for all arrays ¢ in loop L with ASSIGNED [i] = FALSE
min_cost = 00
for all existing clusters C (including ¢)
cost = find_cost (¢, C);
if (cost < min_cost)
min_cost = cost
best_cluster = C'
if best_cluster = ¢
Create new cluster C' = {7}
CS = CSUC’ //add C’ to the set of clusters
else
best_cluster = best_cluster U{i}
ASSIGNED [i] = TRUE
end Algorithm

Figure 7: Algorithm Cluster

Figure 6 shows a sample memory access pattern and the asso-
ciated bipartite graph. For example, the 1-node corresponding to
Loop L1 is connected to a-nodes A, B, and C. Algorithm Clus-
ter in Figure 7 shows the overall strategy involved in clustering the
individual arrays of the graph into structs.

The vector ASSIGNED keeps track of whether each array is as-
signed to a cluster yet or not. CS is the set of generated clusters,
each consisting of one or more arrays. CS is initialized to the empty-
set. Since the number of possible clusters is exponentially large,
we devise a heuristic strategy where we first select the arrays in the
most frequently executed loops for assignment to clusters. Further,
the assignment decision, once made, is never altered in the interest
of reducing computational complexity. ’

We begin with the loop with the maximum access count, and
consider for assignment to clusters all the arrays accessed in the
loop. For every array ¢ that is unassigned, we compute the cost of
assigning the array to each of the clusters in CS, including the null
cluster ¢ (which corresponds to the creation of a new cluster). We
discuss the actual cost computation in Section 4.3. In the overall
strategy, we select for assignment the cluster C that minimizes the
cost. If C is the null cluster ¢, then we create a new cluster C’ with
1 as the sole element. Otherwise, we add  to the cluster C. Finally,
we mark array ¢ assigned and continue our cluster assignment pro-
cess.

4.3 Cost computation

The most important step in Algorithm Cluster is find_cost (C, 1),
the computation of the cost associated with assignment of array ¢
to cluster C. In our model, the cost comprises two components:

e the penalty associated with assigning two correlated arrays
into separate clusters

o the penalty associated with assigning two uncorrelated arrays
into the same cluster



Algorithm find_cost
Input: cluster C, array
Output: integer representing cost of assignment

cost =0
// Part I: cost due to separating i from correlated arrays
for all edges e connected to array ¢ (i.e., for all loops accessing @)
penalty = TRUE
for all arrays a accessed in loop e

ifa#1

and ASSIGNED [a] = TRUE

and CLUSTER [a] = C

and are_correlated (i, a, e)

penalty = FALSE

if penalty = TRUE

cost = cost + EDGE_WEIGHT (e)

N

// Part II: cost due to clustering 7 with uncorrelated arrays
for all edges e such that 35, j € Cand j # ¢
if are_correlated (i, j, e) = FALSE
cost = cost + EDGE_WEIGHT (e)
end Algorithm

Figure 8: Algorithm find_cost

The components above are distinct; one does not subsume the
other. Whether two arrays = and y are correlated or not is deter-
mined by a function are_correlated (x,y, 1) which returns TRUE if
z and y are different arrays with the same number of elements, and
the index expressions of their accesses in loop [ are affine (linear)
and differ by a constant. This condition is essential to maintain
spatial locality in the data cache, and is inherent to the definition
of correlation for data layout. For example, if the respective in-
dex expressions are a [2i] and b[21+1], then upon clustering
a and b, a fetch to b[21i+1] possibly brings a [2i+1] into the
cache (assuming cache line size > 2 and a [21+1] lies on the line
boundary), which is used in the next iteration. However, if the ex-
pressions are a [1] and b [21], then there is no spatial correlation
as the distance between the two accesses increases with increasing
iteration count. Function are_correlated detects a correlation when
the expressions are affine.

The cost computation for assigning array ¢ to cluster C' is de-
scribed in algorithm find_cost (C, i) in Figure 8. The first part
computes the cost due to separating array ¢ from other compatible
arrays. This is done by checking all the loops accessing ¢ to detect
the existence of at least one other array a belonging to the same
cluster C which is correlated to 7. The penalty variable keeps track
of this existence. If penalty is still TRUE at the end of the search,
then we penalize the assignment, else, the incremental cost is zero.
The amount of assigned cost is simply the loop count, since that is
a measure of the extent to which the assignment proves costly.

In the second part, we compute the cost due to clustering ¢ with
uncorrelated arrays. For all other arrays j already assigned to clus-
ter C, we check to see if 7 and j are uncorrelated in any loop; in
such instances, we add the loop count as a penalty - the cost for
clustering uncorrelated arrays together. Note that two arrays, while
being correlated in one loop, may be uncorrelated in a different
loop. This is how we handle conflicting array accesses in different
loops. This completes the cost computation. The overall running
time of the clustering algorithm, with n arrays and k array refer-
ences in the program is O(n*k?). We omit the details for brevity.
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5. EXPERIMENTS

We implemented the clustering algorithm in the SUIF compiler
framework [2]. After the pointer analysis phase, we split the aggre-
gate data structures (e.g., arrays of structs) into individual ar-
rays. We then executed the clustering algorithm and generated the
transformed program with the revised data structures. Finally, we
ran cache simulations using the SHADE simulator of the SPARC
processor, with varying data cache parameters. We report the re-
sults in this section. : .

Figure 9 shows the applications on which we performed our
experiments, on the x-axis. FFT (Fast Fourier Transformation),
FIR (Finite Impulse Response), Kai-win (Kaiser Window-based
coefficient computation), and RTPSE (Real-time power spectral es-
timation) are important signal processing applications. PIC-1-D
(one dimensional particle-in-cell) and Disc-Ord (Discrete Ordinate
Transport) are common in scientific computation.
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Figure 10: Comparison of cycle counts

Figure 9 shows the data cache miss ratio and after our data lay-
out optimization. We observe a significant improvement in the
cache performance. Figure 10 shows a comparison of the num-
ber of memory cycles computed assuming a cache miss penalty of
16 processor cycles. We observe an improvement of up to 44% on
the original code. The measurements are taken on an architecture
with a data cache size of 2 KB with a cache line size of 16 bytes.
The run times of our algorithm are negligible (less than a second).
In particular, since we rely on a static analysis of the application,
the run time for data layout is not dependent on the array sizes, loop
counts, and other dynamic run-time parameters.
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In Figure 11, we present the variation of the performance with
increasing cache size keeping the line size constant for the FFT
application. Note that beyond a cache size of 8 KB, there is no sig-
nificant improvement in performance. This is expected, since, as
mentioned in Section 3, if the cache is large enough to accommo-
date all the application data, then there is no useless data fetched
into the cache; there are no capacity misses and the cache can be
replaced by a simple on-chip RAM that stores the data. Our data
restructuring optimization shows significant performance improve-
ment when the cache sizes are relatively small compared to the to-
tal data size, which is the more realistic case, and especially useful
in embedded applications, where chip area can be saved by using
a smaller cache combined with aggressive compiler optimizations
such as the one presented here.

6. CONCLUSION AND FUTURE WORK

We presented an algorithm for transforming the memory layout
of aggregate data structures so as to improve the cache performance
of embedded applications. The aggressive transformations are es-
pecially suited for embedded system design because we can assume
that the entire application is visible to the compiler, thus making it
possible to verify the safety of the data transformation operation.
We presented an algorithm for automatically inferring the best clus-
tering of individual fields of aggregate data structures such as arrays
of structs based on the memory access patterns of the given ap-
plication. Our experiments verify the soundness of the approach.

One area of refinement/improvement of the algorithm is the sit-
uation where an array is accessed with different index expressions
in the same loop (e.g, a[1] and a [21]). Currently, we consider
array accesses to be correlated if there is at least one correlated ac-
cess. We consider it beneficial to merge arrays a and b if accesses
alil, afl2i], b[il, andb[31i] existin a loop. However,
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this ignores the possible conflicts among the remaining accesses.
The cost function could be refined to handle such cases. In addi-
tion, the greedy clustering algorithm could be improved by using
better partitioning algorithms reported in CAD literature in various
contexts.
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