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Abstract—This paper introduces a power optimization

through the most probable states, only a few distinct output pat-

paradigm for sequential components based on the concept of terns are generated.

computational kernel, a highly simplified logic block whose
behavior mimics the steady-state behavior of the original specifi-
cation. We present a flexible framework that supports a number
of algorithmic options for carrying out kernel extraction. We

first describe an exact symbolic procedure that is applicable to
components for which only a functional specification (i.e., the
state transition graph) is available. Due to its computational
complexity, this procedure is mainly of theoretical interest and it
is not usable for large circuits. We then propose two approximate
algorithms that can be adopted in practical situations. The first

The idea of optimizing complex digital systems based on im-
proving their typical behaviors has been extensively exploited
by computer architects: cache memories, branch prediction
schemes, and variable-latency data paths are just a few notable
examples. The main challenge in the implementation of these
techniques is to effectively partition a design in such a way
that commonly executed computations can follow a highly
optimized path without being slowed down by the circuitry

one is simulation-based and it is suitable to cases where input needed for dealing with all corner cases.

data streams representing typical operation of the component are
available. The second approach performs kernel extraction by
iteratively refining a structural representation of the component
obtained through synthesis. The impact of the power optimization
paradigm based on kernel extraction is demonstrated by the
results of extensive experimentation carried out on a number of
benchmarks of different characteristics and nature.

Index Terms—Logic synthesis, low-power design, sequential cir-
cuitsl.

I. INTRODUCTION

The main contribution of our work is the introduction of
techniques for identifying the most probable behaviors in a se-
guential component and for automatically building a dedicated
logic block that correctly implements such behaviors. The
block, which we callcomputational kernelis usually much
smaller, faster, and less power-consuming than the module
it is extracted from. Nevertheless, it can replace the original
component for a large fraction of the operation time.

After kernel extraction, we still need to guarantee correct op-
eration under any input condition. Hence, the kernel is con-
nected in parallel to the original circuit and a selection logic

HEN specifying and designing a complex sequentidd added, which, depending on the input patterns, selects either

component, engineers must consider not only the basiige original circuit or the kernel in a mutually exclusive fashion.
typical behaviors, but also a large number of unusual operatiBg definition of computational kernel, its likelihood of being
conditions. In many cases, the number and the nature of theeected is very high. Therefore, the average computational cost

conditions (sometimes callezbrner caseksis such that they

decreases with respect to the original design.

require considerable attention and design effort. As a resultKernel extraction is key for successful optimization. It should
final specifications are often much larger and more complée accurate (i.e., identify the set of most common cases with
than what would be needed to just ensure correct functionaliigh precision), efficient (i.e., capable of manipulating large

in the average case.

components), and it should produce high-quality implementa-

A key consequence of this fact is that sequential componefitshs through tight integration with a logic synthesis engine.

may have an extremely large number of reachable states,

bujve first introduce a kernel extraction procedure that is

during normal operation, the circuits tend to visit only a relapplicable to small sequential components for which the
atively small subset of them. This intuitive statement is suptate-transition graph can be fully explored (either explicitly or
ported by the evidence provided by the probabilistic analysis ifiplicitly). This procedure features binary decision diagram
finite-state machines (FSMs) associated to large networks: o3DD)-based algorithms that exactly determine the compu-
a few states have sizable occupation probabilities [1]. A similastional kernel through symbolic calculations similar to those
situation occurs at the primary outputs; while the circuit walksmployed in reachability analysis of FSMs. Exact symbolic

kernel extraction is mainly of theoretical interest and normally
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the domain of applicability of the method, it is still of limitedBackground material on this subject can be found in [2]. We
usefulness for handling large components. We, thus, propaseiew here two Boolean operators essential for our purposes:
two extensions to the symbolic procedure. The first one is basgafactor and existential abstraction.

on zero-delay functional simulation of typical input streams. In Given a single-output Boolean functigf(zy,...,,), the
this case, complete, symbolic state occupation probability copssitiveand thenegative cofactor®f f with respect to vari-
putation is bypassed and the set of states belonging to the keat#é »; are defined ag,, = f(z1,...,2z; = 1,...,2,) and

is determined directly from the simulation traces. This approa¢gh: = f(x1,...,z; =0, ..., z,), respectively. Thexistential
does not suffer from potential computational blowups as faﬁstractior(orquantification of f with respect ta; is defined
the symbolic solution and enables kernel extraction for mues3,, f = fu, + far.

larger components. In principle, even random pattern simula-

tion can be used for kernel computation; however, the effeg- FSMs

tiveness of the simulation-based approach clearly depends o[&n FSM M is defined as the 5-tupl&! = (X, Z, 5, 5%, R)

the availability of a meaningful stream to be simulated, i.e., on . . o
that well represents the typical operational context of the co enereX andZ are the input and output alphabefss the finite

! ¢ . "
ponent. As for the two variants of the symbolic method, the sir%e tof {Sgaﬁsiz tésetr}?)ﬁ;l?;;ﬁ;e;state ’:'Rc—_: ‘)1‘ i:aér; ; g n>l<
ulation-based algorithm also does not require a structural rep e—_>dr o ?X N ‘ (2, 5, ’Z?[ it St 3{{
sentation (i.e., a gate-level netlist) of the sequential compone'rf‘ltPm erinpute € A, AL MOves Irom present Stases > o nex

It can be applied directly at the register-transfer level (RTL ,;ateise S(;)Eitpug'ngzt %Z' Thej\;uzeof é\/[ Is the cartdlgabhty
starting from a cycle-accurate functional specification. sets and it is denoted aM|. M can be represented by an

In contrast, the second approximate approach we introdu% G, whose states are elements & 5 and edges are labeled

requires a structural representation of the target module. THE h pairs(z, z) € X x Z.

algorithm incrementally constructs the computational kemrelIg':i\ginjthn%lottr)m?alorlilsltjlfrr};latl)t];oinOFngj\J/\[/[ ’atrzeér;innsétéogs
of the component by iteratively modifying the next-state an
P y y fying (z,s,t) = 3. R(xz,s,t,z) andO(z, s,z) = JR(z,s,t,2),

output circuitry through logic implication analysis and redun- ivel
dancy removal. The extraction algorithm is driven by a cog??r%eclz'vsehz/'_ ften the f i f choice f iwving th
function that monitors the quality of the kernel with respect € Is often the formalism of choice for specifying the

to a given optimization target (e.g., performance, power) an ,ha\(ior of gequentigl comppnents._ We use it in Section lll as
thus, provides a criterion for stopping the iterations. A si yehmleformtroducmg and illustrating the concept of compu-
advantage of this solution is that once the kernel is availabletéﬁi‘gIonal kernel.
a gate-level netlist, it may be exploited for further optimizin ) _
the original logic as well, since the input conditions for whicﬁ:- FSM Markovian Analysis
the kernel is active actually represeontrollability don’t cares The probabilistic behavior of an FSM can be studied by re-
for the original component. garding its transition structure as a Markov chain. It is sufficient
We show the practical significance of the optimization pato label each outgoing edge of each state with the probability
adigm based on computational kernel extraction by applyingfér the FSM to make that particular transition to obtain a dis-
to the problem of reducing the power dissipation in sequentiglete-parameter Markov chain. On the other hand, studying the
components. This implies a customization of the various extrasehavior of the Markov chain, i.e., computing the state occupa-
tion procedures to account for power dissipation as primary ofon probabilities, is related to performing the reachability anal-
timization constraint. Experimental results, obtained on sevetgiis of an FSM.
benchmarks, demonstrate the viability and effectiveness of theGiven the transition relation of an FSM, it is possible to com-
proposed optimization paradigm. pute the vectop whose elements are the steady-state probabili-
The remainder of the manuscript is organized as followgies of the FSM to be in each stateFor small FSMs, the calcu-
Section Il presents the notation that will be used throughout thgion can be carried out in an exact fashion using the algebraic
paper. In Section I, we provide the basic theory of computaecision diagram (ADD)-based procedures of [1]; for larger ma-
tional kernels and in Section IV we introduce the kernel-basedlines, the approximate techniques of [3] may be employed. In
power optimization paradigm. Section V puts our solution ipoth cases, complex input probability distributions can be spec-
perspective with related approaches available in the literatuifsd in order to have more detailed hardware modeling options.
Sections VI and VIl are devoted to symbolic and approximate
kernel extraction algorithms, respectively, and Section VIII
reports the experimental results. Finally, Section IX provides
closing remarks.

I1l. COMPUTATIONAL KERNELS—DEFINITION AND BASIC
THEORY

The functional specification of sequential components is
II. BACKGROUND commonly given in a cycle-accurate fashion, using hardware
description languages (HDLs) with syntactic restrictions
(calledsynthesizable subsgt€onsistent with the terminology
We assume the reader to be familiar with the basic conceptsalopted by commercial synthesis tools, we call such speci-
Boolean functions and with the data structures commonly usichtion style RTL to contrast it with structural or gate-level
for the symbolic manipulation of such functions, i.e., BDDsspecifications.

A. Boolean Operators
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(@ (b)
Fig. 1. (a) Moore-type FSM and (b) its 0.25-order computational kernel.

Each HDL has its own syntax, but most share the same FSMp = 0.8, all states with steady-state probability 80% of
semantic. In other words, all sequential RTL specifications dite most probable state are selected. This is necessary for large
scribe a (possibly large) finite-state sequential behavior. To rigircuits, where absolute steady-state probability values are
orously define the concept of computational kernel, we refer telatively low because the “kernel” behavior is spread over a
the FSM semantic of any RTL specification. relatively large number of states. In this case, fixing an absolute

Givenan FSMM = (X, Z, S, S°, R), modeling the behavior value of p will not select any state. In other terms, absolute
of a sequential component and given a probability threshpldthreshold probability may have conceptual validity, but cannot
we define thep-ordercomputational kernebf A7, denoted as be used in practice because it is a circuit-dependent quantity.

K, as the following FSM: For all the experiments we present in Section VI, a fixed value
of p = 0.8 was used. This choice was made after performing
K=(X,Z5,, 5197 R,) sensitivity analysis on a number of benchmark examples. We

decided to take a conservative approach in the sense that the
whereS,, = {s € S : Prob(s) > p} represents the subset ofthreshold is biased toward the selection of kernels with high
the states of/ whose steady-state occupation probabilities astate probability even at the price of losing some optimization
larger tharp. SJ equalsS® in cases® € S, otherwiseS; is  opportunities.
chosen randomly withi,,. Finally, the global relation oK is Kernel extraction algorithms require two types of inputs,
defined as namely, the specification af/ and the information on typical
input pattern distribution. The latter is needed for determining
R (x,s,t,2) = Sp(s) - R(x, s,t,2). the state probability distribution, which is a prerequisite for
kernel computation.
The global relation of the kernel is incompletely specified: next It is intuitively clear that the complexity of kernel extraction
state and output are uniquely defined only if the present statepends on the number of states and inputs of the specifica-
belongs taS,. If this is not the case, the relation does not cortion. Kernel extraction is a relatively straightforward process for
strain the next-state and output values. In other wafglss)’ is  small state machines, where exhaustive state and input pattern
thedon't careset for the next-state and output functions that canumeration is possible. Most sequential components have large
be extracted fron#,,. An important characteristics of computa-sstate and input spaces that cannot be enumerated in a reasonable
tional kernels is their probability Pr@B,,), which is defined as amount of time.
the cumulative occupation probability of the state$jn For RTL specifications with associated medium-size FSMs (a

As an example, consider the simple FSM shown in Fig. 1(&w millions of states), computational kernels can be determined
in which the input and output values are omitted for the saksg handling simultaneously sets of states represented as charac-
of simplicity and the states are annotated with the steady-sttagstics functions [4]. This is possible thanks to the BDD/ADD
occupation probabilities calculated through Markovian analygigta structures that enable efficient manipulation of large and
of the STG [1]. If we specify a probability threshgtd= 0.25, complex Boolean and pseudo-Boolean functions. More specif-
the computational kernel of the FSM is depicted in Fig. 1(bically, the symbolic kernel extraction algorithm we present in
States in black represent s, while states in grey representSection VI exploits well-established technology developed in
valid values fort in R,(x, s,t, 2), but they do not belong t6,,.  the context of FSM reachability analysis [5]-[8] to extract ker-
The kernel probability is ProfS;,) = 0.29 4+ 0.25 + 0.32 = nels for FSMs that are too large to be handled by explicitly enu-
0.86. merative algorithms.

We note that in the implementation of the kernel extraction Unfortunately, large sequential components, which are the
procedures we propose in Sections VI and VII, threshold proimost common ones in the design practice, are often beyond the
ability p is used as aelative threshold. More precisely, kernelcapabilities of the most powerful algorithms based on symbolic
states have steady-state probability greater thdaimes the manipulations (in particular, those for state occupation proba-
probability of the most frequently occurring state. For examplbility calculation). For this reason, in Section VII, we formulate
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n + 1 can be computed by the kerri€l thenSel takes on the
value 1. Otherwise, ittakes on the value 0. The valugebis fed
CL = to a flip-flop, whose output is connected to the multiplexors that
select which block produces the correct outputs and next-state.

s by Obviously, the kernel-based power-optimized implementation
of the component is functionally equivalent to the original one.

— . The scheme of Fig. 2 is just one among several possible archi-

s tectures. The peculiar feature of the proposed solution concerns

the topology of the selection logic. In particular, choosing a se-
lection function that only depends on the next-state outputs is
—-F_F-Iﬁ motivated by the need of obtaining a small implementation. Re-
ducing the support afel by not including the primary inputs
el helps in this respect.
i The sequential elements indicated as DSFFs replace the ordi-
®) nary flip-flops present in the original design. A DSFF is func-
_ _ __tionally equivalent to the schematic of Fig. 3 and it operates as
Z'rghiéau(r?_ Sequential component and (b) the kemel-based optimizgd; s \WhenSel = 1, flip-flop F» is loaded with a new value
coming from the external data input, while flip-flafg, holds
approximate kernel extraction algorithms that scale well WitI S state. The opposite happens Wm = 0.In this way, the
the size of the component. State of elt.her the kerr_1e| or the original network can be !<ept un-
changed (i.e., frozen in the DSFFs) while the other logic block
is being used to produce the output and the next state. Clearly,
Fig. 3 only describes the functional behavior of a DSFF. Its ac-
In this section, we illustrate how the concept of computdual implementation can be properly optimized to reduce the
tional kernel can be exploited for power optimization. For theverhead with respect to the standard flip-flops used in the orig-
sake of generality, we will refer to the FSM semantic which uriral sequential network, as discussed in the Appendix.
derlies any RTL specification. A generic FSM can be always It can be observed in the first place that besides the automatic
represented as a combinational logic block coupled with sgeneration of the kernel, the logic for the selector funcieh
quential elements, as shown in Fig. 2(a). The optimized logieeds to be synthesized as well. Fortunately, such logic can be
block after kernel extraction can be abstractly represented a®btained as a byproduct of the kernel extraction process. In Sec-
Fig. 2(b). The essential elements of the optimized FSM archiens VI and VII, we will show how kernel extraction can be
tecture are the combinational logic of the original block (blocknodified to obtairSel.
CL), the computational kernel (blodk), the selector function  The power efficiency of the architecture of Fig. 2(b) stems
(blockSel), the dual-state flip-flops (DSFF), and the output mulfrom the fact that it enforces mutual exclusion: the large block
tiplexors (MUX). The computational kernel can be viewed as@L. is “frozen” when the kernel logic is enabled. In fact, the in-
“dense” implementation of the component it has been extractedts of CL remain fixed wherK is active, thereby nullifying
from. In other termsK implements the core functions of theswitching activity. In normal operatiork is active most of the
original component and because of its reduced complexitytiine and average switching activity withdiil. is much reduced.
usually implements such functions in a faster and more efficieBince the logic inK is simpler thanCL, the kernel dissipates
way. much less power than blogKL.. On the other hand, the modi-
The purpose of the selector functiSel is that of deciding fied architecture has some overhead with respect to the standard
what logic block betweer’L. and K will provide the output implementation: DSFFs consume more power than the standard
value and the next-state in the following clock cycle. To takenes, the selector function is always active and dissipates power,
a decisionSel examines the values of the next-state outputs ahd so do the output multiplexors. In general, we can expect sig-
clock cyclen. If the output and next-state values in clock cyclaificant power savings only if:

N §§

N

IV. KERNEL-BASED POWER OPTIMIZATION PARADIGM
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1) the kernel is significantly smaller than the original circuit procedure Symbolic Kernel Extraction (D(z), R(s,z,z,1), p) {
2) the selector function is very small and power efficient; P(s) = Markov(D(z), R(z,3,1,2));

3) the kernel is active most of the time. ;‘Zi’)j)'r:rf;z:d,(ﬁ(:))p )

The kernel extraction algorithms of Sections VI and VI strivi  O(z, s,2z) = 3:R(z, 3, t, z);

for satisfying all the above requirements. T%(z,3,t) = S5p(s) - T(z, 3, 1);
OP(z,8,z) = Sp(8) - O(z, s, 2);
A%(z,8) = ((Fexe, TP (2,8,2))e; - -y ezt TP (2,8, ))s);
AP(z,8) = ((3z¢2, OF(z, 3, z)),;, cver (Fz#2m OF (24 8, 2)).1 )i
return (AP(z, 8), AP(z, s), Sp(s));

}

The development of computer-aided design techniques f%. 4. Symbolic kernel extraction algorithm.
power minimization has been a very active area of research in

the last few years (refer to the surveys by Pedram [9] and b . . . .
Macii et al. [10] for further reading). Our paper is related tox:)}étentlally provide more prominent opportunities for power re-

a number of sequential power optimization techniques that alljrlécuon and it can be applied to sequential blocks for which

- : clock-gating is ineffective.
brllgg)'/ws;mmrznzeiins?t.rl W power [111-1141 can b N Precomputation-based power optimization [23], [24] pushes
ecompasition for low powe [ .]_[ ] can be see a5fe clock-gating concept even further. The simple idleness de-
top—down computational kernel extraction procedure that st Stion logic is replaced by more complex precomputation func-
from explicit STG specifications (i.e., state tables or equivalep

formats). Although decomposition techniques reported siza en that can either detepartial idle conditions (i.e., conditions
' 'oug P ) q P which only part of the original circuit needs to be active to
power reductions, they can be applied only to small sequenté%l

. o e mpute correct output and next-state values) or compute the
cpmponer?ts for which th? explicit STG description can be.mé}' lues of the outputs one cycle in advance and deactivate the
nipulated in reasonable time and memory space. The main a

7 or . iginal circuit. Precomputation can be seen as a kernel extrac-
vantage of our approach to kernel extraction is that it can be Bn procedure, where the selector function is merged with the

plieq to .m.uch larger seguential components for which not SVRErnel logic, and both are evaluated one cycle in advance. This
the ||]:npllc# rﬁplmresclarétatmn of thg STG Ea_n be C(:]nstruclted.b choice is suboptimal because it implies that the computational
A few igh-level decomposition techniques have also bega,q| logic cannot be disabled [while the kerikebf Fig. 2(b)
presented in the literature [15]-{17]. They exploit informatiofl v e\ajuated wheiLL is active]. Thus, it always contributes
av:;llglble dur;]ng h|gh—lev¢! synthe3|shto f'?]d a golc_)d co;‘:trolrl]% the overall power consumption. The algorithms for extracting
and data-path decomposition. Even though we believe thatt ?@computation logic are not effective for kernel extraction be-

solutions have very good poteptlgl qnd may scale well for lar Quse they tend to produce very small kernels with limited prob-
components, they have some limitations. In fact, the approacg%ﬁ-t

described in [15] and [16] can be applied only to design flows -
that are based on behavioral synthesis. Furthermore, the method
presented in [17] operates directly on the HDL specification
using algorithmic transformations such as loop unrolling, con- A symbolic algorithm for computational kernel extraction is
stant propagation and partial evaluation, which can be appli@d almost direct implementation of the definition given in Sec-
only to a restricted subset of the available HDL constructs. Otien Ill. It leverages state-of-the-art implicit BDD-based algo-
approach to computational kernel extraction is not subject to &ithms for the manipulation of sets of states and Boolean func-
these restrictions: it can be applied to any sequential specifiti@ns and its pseudocode is shown in Fig. 4.
tion. A consequence of its wider scope of usability, however, The inputs to the procedure are the following.
is that computational kernel extraction may be less scalable tol) A multiterminal BDD (or ADD [25]) whose support is the
very large sequential components. set of input variables. The leaves of the ADD represent
Automated extraction of clock-gating logic [18]-[22] is based occurrence probabilities of the input patterns. The ADD
on the observation that a sequential component can, under some is a compact representation of functibi{z) : X — R
input conditions, be unobservable or it may not react to input  that associates to each input pattern its probability.
changes. Inthese cases, the circuillisand power canbe saved 2) A BDD representing the global relatioR(z, s, ¢, z) of
by stopping its clock. This is done by creatinglack-gating the component being optimized.
functionthat stops the clock when idleness is detected. Clearly, 3) A probability thresholgh. According to the definition of
the larger the number of idle conditions, the higher the oppor-  Section lll, all states with steady-state occupation proba-
tunities for power savings. Interestingly enough, we can view  bility greater tharp belong to the state set of kerril
idle conditions as a very special computational kernel, i.e., theThe first step is to compute steady-state probabilities for all
null kernel In other words, when the circuit is idle, it can be restatess € S. This is accomplished by exact symbolic Markov
placed by an empty kernel and kernel extraction simply reducasalysis [1]. Procedutéarkov computes state probabilities and
to the construction of the selection function. From this vieweturns an ADD with suppori (i.e., the state variables). The
point, computational kernel extraction can be seen as a gerleaves of the ADD are state probabilities. The stateSseftthe
alization of clock-gating function generation. Therefore, sinaegriginal circuit is then pruned using tlthreshold operator.
it exploits other kinds of behaviors than just idleness, it mayuch operator takes, as inputs, the ADD of the state probabilities

V. RELATED WORK

VI. SymBoLIC KERNEL EXTRACTION
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is the one that calculates state occupation probabilities. One
simple, yet effective way of getting around the complexity
problem consists of replacing théarkov routine with the
implementation of the algorithm for approximate FSM proba-
bilistic analysis of [3].

This solution definitely helps in extending the applicability of
the extraction procedure to circuits whose state space is large, at
a quite limited cost in terms of achievable power savings. Never-
theless, the bottleneck introduced by the overall symbolic com-
putation engine cannot be eliminated. Consequently, radically
different algorithms are needed to make kernel-based power op-
timization applicable in realistic design environments. We pro-
pose two options in Section VII.

VII. A PPROXIMATE KERNEL EXTRACTION

The results of Section VIII-A show that the kernel-based par-
adigm can provide sizable power reductions. On the other hand,
(b) they also prove that the applicability of the symbolic method for
Fig. 5. Example of kemel extraction. (a) Light grey area: Occupaﬂolﬁernel extraction Qescribe(_j in Section VI is Iir_nited to instances
probability greater than or equal to (b) Light grey (innermost) ared, (s). Of components with associated small-to-medium FSMs. In fact,
Dark grey (outermost) area: states not belongin§is). these are the only cases where state occupation probabilities can
be calculated using the symbolic methods summarized in Sec-

and the probability threshojgand returns the BDIS,,(s) of the tion 1I-C. Another limitation of the algorithm is that it assumes
kernel state set. r the knowledge of the probability of every possible input pattern

To obtain the next-state and output functions of the kern&f, the circuit (t_his 15 requi_red to obtain ADD@))' In thi; sec-
we first extract the transition relatidfi(x, s, ¢) and the output tion, we desqube approxma?e kernel extraction technl_ques that
relationO(z, s, z) from the global relation of the original cir- scale well with the complexity of the components being han-

cuit; then, we compute their conjunction with(s). This can be dled. In particular, we fi_rst focus ona solution that Consid_e_rs
done because the behavior of the computational kernel is spgcr—l_‘ co_mpon_ents for which only the mput—output (0) spem_ﬂ-
ified only when the current state belongsdg(s). cation is avg_llable. Then, we move to an algorithm that requires
. L A the availability of gate-level netlists of the components under
The result of the conjunction is illustrated in Fig. 5. In timization
Fig. 5(a), the light grey area identifies the states for which’ '
the occupation probability is greater than or equalptoln ) ) )
Fig. 5(b), on the other hand, the innermost (light grey) shadéd Simulation-Based Extraction
area represents),(s), while the outer shaded region (dark We target large RTL components for which symbolic Mar-
grey) represents states not belongingSigs) that are valid kovian analysis (either exact or approximate) is infeasible. Fur-
next states for the next-state function of keriebecause they thermore, we assume that knowledge of input pattern distribu-
are associated with present states that do belort§},te). In  tion is limited to the specification of a set of patterns that repre-
other words, there is a “corolla” consisting of all the states thagnt typical operating conditions under which the circuit is ex-
are 1-step reachable froff),(s) for which the behavior of the pected to run. Finally, we consider components with black box
kernel must be specified and consistent with the original onespecifications whose internal structure does not yet exist or it is
GivenT? andO?, itis relatively easy to extract the next-stateot available.
and output functions of the computational kernel by existential The solution we have identified is simulation-based and as-
quantification followed by cofactoring (in the pseudocode, wsumes the existence of a set of patterns representing typical op-
assume that there arestate variables anek output variables). eration conditions. Alternatively, patterns can be automatically
Finally, the procedure returns functiods’ and A? that com- generated with a user-specified probability distribution. In the
pletely specify the functionality of block in Fig. 2(b) and first step, the component is simulated withinput patterns.
function S,,(s) that will be used for synthesizing the selectioDuring simulation, the number of occurrences of each visited
logic [blockSel in Fig. 2(b)]. ObviouslySel is a function of the state is monitored. At the end of simulation, the probability dis-
next-state; therefore, a formal step of variable substitution (fromibution of thevisited statess computed by simply dividing the
stot) is done before synthesis. Notice tl$&(s)’ represents the number of occurrences of each statelby
don’t careset that can be used to optimize the implementation To compute a-order kernel, all states with probability larger
of K in case the synthesis of such block of logic still needs thanp are selected. Notice that during simulation, at mbst
be done. states are visited. State probability computation and state se-
As mentioned in the introduction, the most computationallgction simply involve linear processing of the visited state list.
intensive phase of the symbolic kernel extraction algorithidence, they are even faster than simulation. The set of selected
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procedure Structural Kernel Extraction(A4, F, Uy, T) {
— i=0; K' = 4
1 do {
w w = SelectNode(A4, Uy);
val = ChooseBestValue( A, w);
] — K**!' = PropagateValues(K*, A, w, val);

+ 1 —
S; = ;.';l"(p;“ = wj);
BuildSelectionLogic(S;, T');
i+

Fig. 6. Elementary transformation for constructing a computational kernel. } while (!$topTest(K‘, Si, F))
return{K*, 5;);
states is taken as state $&{(s) that is used after formal vari-
able substitution (frons to ¢) as specification of blockKel in  Fig. 7. Structural kernel extraction algorithm.
Fig. 2(b).
The next-state and output functions of the kernel can be deteryy the sequel, we discuss in detail the key steps of the algo-
mined by using the procedure of Fig. 4 in which the ADDs)  rithm: kernel generation by simplification of the initial netlist,
constructed from simulation replaces the one built by procedWgntnesis of the selection logic, and stopping criterion.

Markov. 1) Node and Value SelectiorPerforming the selection of
the candidate node on which the elementary transformation
B. Structural Extraction of Fig. 6 is applied (procedurg=lectNode) requires a utility

. . . : functionU,, that estimates the savings that can be achieved if
In this section, we present an iterative procedure for deter-. ) . ;
o i . w is replaced by either O or 1. THé, we adopt is approximate
mining the computational kernel of a sequential component that . . .
L since we are interested in fast, yet reasonably accurate estimates
works on the structural description of the network. Hence, th : . .
- ! Of the power savings. Itis the sum of the expected power savings
method can be employed to optimize components for which”a : .
L ’ : nw (x.) and the expected power savings on the fan-in and
gate-level netlistis available. However, the technique can also be
A ; o an-out(&,,)
employed to optimize circuits for which an existing implemen-
tation is not available. In this case, a preliminary (possibly fast)

synthesis step is carried out to generate a gate-level representa-
tion on which the procedure described below can be applied, » can be efficiently computed, given the transition probability

The algo.rithm ig he_uristic by nature and it exploits concep plw] and the load capacitand@™ of nodew as y. —
such aslogic implication and redundancy removaihat have [w] - C1d. On the other handt,, can be determined by

been in use for quite a long time in applications like test geﬂhding how many gates will be eliminated frorhby the trans-
eration and logic optimization. More specifically, it takes th?ormation and summing the total power

netlist of the original circuitd and it iteratively computes the
kernelK by removing gates and connections from the combina- . oa,
tional Iogi)c/CL of A.g ’ Powsave = Z ol o @
The elementary step of the iterative transformation is shown
in Fig. 6. A connectionv is selected inside network. Signakw  The number of gates eliminated can be easily determined by
is replaced with either the constant value 0 (shown in Fig. 6) evaluating how many gates in the fan-in and fan-out cones have
1 and the circuit is simplified by propagating the constant valuleir outputs fixed to some constant value.
in the fan-out cone ofv and by removing all the fan-out-free  Even though the approximaté,, discussed above usually
logic gates in the transitive fan-in @f. Notice thatw can be a provides estimates that are accurate enough, for critical cases
primary input or a primary output of the logic network. (e.g., portions of logic that are always under stress, controllers),
The computational kernek is obtained from the original it may be required resorting to exact calculations at the price
netlist A by iteratively applying the elementary transformatiof an increased runtime of the kernel extraction procedure. The
until a stopping criterion is met. The pseudocode of the procexact solution consists of evaluating the actual power savings
dure is shown in Fig. 7K’ denotes kerneK after: applications resulting by the substitution in the network by running accurate
of the transformation (initiallyK® = A). power estimation. This is clearly much more time and memory
The procedure takes, as inputs, the original circuit synthdemanding, since estimation must be invoked for every new sub-
sized to gatesi, the cost functior¥’, which controls the stop- stitution; thus, it may be infeasible for large netlists.
ping criterion, the utility functionl/,,, which drives the node Once a candidate node has been selected, there are two
selection process and the timing constréintio be used in the options for the selection of what value is the best to force on
synthesis of the selection logl. This is because the speedw (procedur&€hooseBestValue). For small- to medium-sized
of block Sel must always be kept under consideration since itsrcuits, it may be feasible to force first zero and then one on the
delay adds up to the critical delay of the original sequential cinetwork A and then evaluat¥,, using (1) for each of the two
cuit. The output of the algorithm is the computational kei&iel choices. The selected valual will be the one with the highest
obtained aftef iterations of thedo while loop. value ofU,,.

Uuw = Xw + &u- @

Yw;eliminated



BENINI et al.: SYNTHESIS OF POWER-MANAGED SEQUENTIAL COMPONENTS BASED ON COMPUTATIONAL KERNEL EXTRACTION 1125

For larger circuits in which the propagation of a value can re- An estimate of the powdPow; dissipated by théth version
quire a certain amount of time, it is betterdstimatethe best of the architecture can be computed as
value to assign taw. This can be done as follows. The node
w will usually have a transition probability?’p[w] that will be  Pow; =Pow(K") - Prob(Sel;) + Pow(A) - (1 — Prob(Sel;))

close to 0.5; this is because under the assumption of temporally + Pow(Sel,). (5)
uncorrelated circuit inputs, the transition probability can be ob-
tained as Equation (5) can be interpreted as follows: wieh = 1, the

kernelK is operating; thus, it dissipat®w(K?*) for a fraction
Tplw] = pu(l = po) + (1 = pu)pe = 2pe(1 = Pu) () of time equal toProb(Sel;). Conversely, wheiSel; = 0, the
. . . . . original circuit A is operating; thus, it dissipaté®w(A) for a
whe:regw s the signal prgbabﬂﬂy of node. Th? first term.m fraction of time equal td — Prob(Sel;). Then, the(co)ndition
(3) indicates j[he probability of & — 0 transition OCCUMTING 4 he checked for terminating the iterations occurs whew;
on nodeuw Wh"? _the second term represents the pro_bab|llty %%t)ops decreasing from one iteration to the next one.
the other transitiorf0 — 1). This function has a maximum at In practice, however, the first iterations of the loop of Fig. 7 do

Puw = O.o;lthereforg_, values of t.he S'gnal probability close to 0'ﬁot always resultin areduction Bbw;. Therefore, a greedy test
imply a high transition probability. This means that oncéas n the monotonic decreasel®dw,; would prevent the search of
been selected, the valwal being assigned should be Obtaine‘getter solutions ¢

by the logic expressiop,, > 0.5. In other terms; should be In order to avoid such cases, in the actual implementation of

. : . o
\?vsr?i::%niesdnt]%rzeelri(l)(g; tf) gcocj(r) one otherwise, i.e., to the Valueprocedur(é‘fcopTest, the stopping condition is not tested for the

2 Svnthesis of the Selection LogiEheo tof th | first few iterations (this is to ensure that th& is sufficiently
. ) ynthesis o . € Selection Logitheon-set ot the setec- simpler thanA). It is then tested again thereafter to make sure
tion function at thath iteration of the extraction loop is defined

i o thatProb(Sel;) does not become too small.
as the set of next-state conditions for which, in the next clocﬁ Concluding the discussion on the approximate simulation-

cycle, output and next-state valuesiGfare equal to output and based and structural approaches, we point out that both tech-

next-state values oflL. (i.e., K* can be used in place 6fL nigues require the availability of next-state and output function
to computg the output and_next—state valugs). TEeﬂs,(‘:an. be BDDs for the sequential component. Hence, approximate ex-
computed in an exact fashion by the following equation: traction cannot be carried out when BDDs cannot be constructed
mn because of memory blowup.
Sel; (t) = H (0} = w;) 4
i=1 VIII. EXPERIMENTAL RESULTS

where the product stands for logic conjunctig#,is the jth A. Symbolic Extraction

output of networkK” [i.e., an element of se&t, v) in Fig. 2], We have implemented the symbolic extraction algorithm as
w, is thejth output of networlCL [i.e., an element of sép, ) an extension of SIS [27] using CUDD [28] as the underlying
in Fig. 2], = are the primary inputsy is the number of primary BDD package. Experiments were run on a DEC AXP 1000/400
outputs, and is the number of next-state outputs. workstation with 256 MB of memory.

Since BDDs are used to represent both the kernel and the séA/e have first applied the algorithm of Fig. 4 to the examples
lection functionSel; can be computed as long as it is possible ttaken from the ISCAS’'89 sequential suite [29] (addendum in-
construct its BDD. There may exist circuits for which the BDluded) for which the exact state occupation probabilities can
of Sel; can not be constructed. In these cases, since the logic ine-computed using the ADD-based method of [1].
plementing the selection function must be synthesized for powerThe STGs of the circuits have been initially synthesized as
under timing constraints, we ussabsettinglgorithm [26] that networks of multiplexors directly from the BDD representation
provides an implementation of the selection logic whoseset of the output and transition relation, optimized for area using
is smaller than that ofel; [and whose implementation is fastscript.rugged (whenever possible) and mapped for area
(or small) enough], but with maximum probability. With subwith map -m0 -AFG onto a 3.3-V 0.5sm complementary
setting, we sacrifice probability for performance and/or area.metal-oxide—semiconductor (CMOS) library containing two—

Finally, one additional optimization can be obtained by olie four-inputNAND and NOR gates, inverters and buffers with
serving that the original circuiti can be optimized usin§el; three different drive strengths, and a flip-flop.
as controllabilitydon’t careset to reduce the area overhead and Table | reports the data for the examples for which some
to save additional power. This is because wBehh = 1, the power savings have been obtained. In particular, columns
functionality implemented by is already computed hi{. Out, FF, Gates andDelayreport the characteristics of the ref-

3) Stopping Criterion: The iterative construction dk and erence circuits. Colum®ower shows the power ipW of the
Sel tends to yield increasingly small selection functions. Intueference circuit (columiRe)) and that of the kernel-based ar-
itively, this corresponds to lowering the probability of usig chitecture (columi®pt) as well as the obtained savings (column
instead ofA to compute the outputs and the next states. Aft&ay. Column Prob(Sel) tells the probability of the selector
some iterations within thdo while loop, this probability might function Sel to be one, i.e., the probability of kern&l to be
become too small, reducing the fraction of time in whi€hs active. ColumrArea Overheaghows the area cost of the mod-
selected. The process should then be stopped. ified architecture, expressed as a percentage of the reference
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TABLE |
RESULTS—SYMBOLIC EXTRACTION USING EXACT MARKOVIAN ANALYSIS

Circuit | In | Out | FF | Gates | Delay Power Prob(Sel) Area Delay CPU

Ref | Opt | Sav Overhead | Overhead | Time
$298 3 6 | 14 131 20.7 361 | 178 | 51% 0.74 39% 9% 53
s349 9 11 | 15 | 146 21.4 378 | 279 | 27% 0.77 61% 18% 81
s382 3 6| 21 178 22.5 453 | 226 | 50% 0.75 35% 15% 170
s386 7 7 6 | 136 22.0 237 | 126 | 47% 0.89 51% 14% 29
s400 3 6| 21| 174 26.5 446 | 224 | 50% 0.75 35% 11% 288
s444 3 6| 21| 175 25.0 460 | 223 | 52% 0.75 31% 12% 276
s510 19 7 6 | 262 32.5 641 | 586 | 10% 0.45 60% 16% 153
s526 3 6] 21| 1904 16.0 509 | 252 | 51% 0.75 33% 15% 304
s641 35 23 | 17| 188 34.0 448 | 340 | 24% 0.63 47% 11% 511
s713 35 23 | 17 | 202 27.1 470 | 334 | 29% 0.63 62% 15% 506
$820 18 19 5 | 316 17.3 658 | 97 | 85% 0.96 19% 12% 49
s832 18 19 5 | 276 21.8 605 93 | 85% 0.96 18% 7% 46
967 16 23 [ 29 470 17.9 777 | 602 | 22% 0.35 25% 15% 853
s991 65 17 | 19 450 43.6 | 1055 | 830 | 21% 0.25 14% 12% 670
s1488 6 19 6| 685 21.9 | 1414 | 212 | 85% 0.91 % 16% 73
51494 6 19 6 | 680 27.3 | 1425 | 205 | 86% 0.91 7% 11% 74
Avg. [ 51% | T 3% | 13% |

gate count. Similarly, columBelay Overheadhows the per- selection function and output MUXs) is somehow independent
formance penalty introduced by the use of the kernel-based afthe kernel probability; rather, itis tightly related to what states
chitecture. Finally, columi€CPU Timeindicates the execution the kernel contains.
time in seconds required by the optimization procedure to com-As mentioned in Section VI, one way of reducing the com-
plete. plexity of the symbolic kernel extraction algorithm consists of
Power estimates within the kernel extraction procedure hasgplacing the exact Markovian analysis procedure of [1] with the
been computed using symbolic simulation [30] while those fapproximate one of [3]. This allows us to handle larger designs
the initial and final circuits have been determined using tra the cost of a decreased accuracy in state probability calcu-
Irsim switch-level simulator [31], assuming a clock frequenciation and, therefore, of smaller power savings. In Table II, we
of 100 MHz. compare the results we have obtained using approximate Mar-
Results are very encouraging. An average power savingskovian analysis to those of Table I.
approximately 51% has been achieved with peaks of more thams expected, introducing an approximation in the calcula-
80%. Notice that some circuits of the complete suite are missitign of the steady-state occupation probabilities has produced
in the table, namelys208, s420, s838, s1196, ands1238. a degradation, quite limited though, of the power savings with
These circuits have the peculiar property of having all states thaspect to those obtained using the exact method. On the other
are equiprobable; this uniform probability distribution clearlhand, it enhances the computational capabilities of the tool. Cir-
prevents the application of the kernel-based optimization pauits 1423 ands1512 are, in fact, not manageable by using
adigm. For the remaining circuits, however, the existence ofeaact Markovian analysis.
dense set of states implementing most of the behavior seems to
_be the ru_le. In the cases where the kernel probaliftityb(Sel) B. Simulation-Based Extraction
is very high (e.g.s820, £1196), we have observed that the ker-
nels typically include very few high-probability states. To benchmark the simulation-based extraction method of
Concerning the timing of the optimized circuits in spite oBection VII-A, we have considered the RTL circuits from [32]
the fact that the delay of the selector functi adds up to the for which only a functional description (specified in Esterel)
largest delay betweefil. and K, the penalty is limited (13% is available. The BDDs for the next-state and output functions
on average). This is becauSg. is optimized usingsel asdon't have been constructed directly from the Esterel source code
care setThus, its delay usually reduces with respect to the origsing a procedure similar to that described in [33]. The data of
inal circuit. On the other hand, as it was expected, the artee experiments are collected in Table Il
penalty is significant (34% on average). This is because theFor circuits whose functionality is known, as those in the
kernel-based approach suffers, in principle, from the same oviable, the simulation-based method works well (average power
head (logic duplication) that affects any type of parallel implesavings are around 34%); this is because kernel extraction has
mentation. been done by feeding the circuits with meaningful input traces
One final remark concerns the relation between kernel prot@ach of which consisted of approximately 50000 patterns).
ability and the actual power savings. In principle, a high proldn the contrary, for circuits whose functionality is unknown,
ability is a good indicator for a significant savings. Howevethe only way of providing them with an input trace is through
there are other factors that can influence the achievable savimgadom generation. In this case, the results are expected to be
For example, the power consumed by the selection logic (i.kess appealing.
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TABLE I
RESULTS—SYMBOLIC EXTRACTION USING EXACT AND APPROXIMATE MARKOVIAN ANALYSIS
Circuit | Power Savings Prob(Sel) Area Overhead | Delay Overhead CPU Time
Ezact | Approz | Ezact | Approx | Exzact | Approz | Ezact | Approz | Ewact | Approz
5298 51% 50% 0.74 0.73 39% 39% 9% 11% 53 40
s349 27% 18% 0.77 0.74 61% 50% 18% 20% 81 52
s382 50% 39% 0.75 0.70 35% 41% 15% 17% 170 59
s386 47% 64% 0.89 0.97 51% 42% 14% 11% 29 25
5400 50% 43% 0.75 0.76 35% 37% 11% 21% 288 64
s444 52% 48% 0.75 0.75 31% 6% | 12% 21% 276 69
s510 10% 12% 0.45 0.44 60% 64% 16% 19% 193 59
s526 51% 40% 0.75 0.74 33% 30% 15% 19% 304 73
s641 24% 11% 0.63 0.66 47% 54% 11% 12% 511 86
s713 29% 19% 0.63 0.64 62% 74% 15% 16% 506 84
$820 85% 70% 0.96 0.96 19% 19% 12% 12% 49 29
s832 85% 72% 0.96 0.96 18% 19% 7% 16% 46 26
s967 22% 13% 0.35 0.48 25% 79% 15% 17% 853 93
5991 21% 10% 0.25 0.41 14% 15% 12% 19% 670 84
51488 85% 79% 0.91 0.91 7% 9% 16% 16% 73 48
s1494 86% 80% 0.91 0.92 7% 9% 11% 11% 74 49
Avg. [ 51% | 42% | [734% | 39% | 13% | 16% |
$1423 — 80% — 0.74 — 70% — 18% — 2292
s1512 — 39% — 0.27 — 26% — 9% — 1840
TABLE Il
RESULTS—SIMULATION -BASED EXTRACTION
Circut In | Out | FF | Gates | Delay Power Prob(Sel) Area Delay CPU
Ref | Opt [ Sav Overhead | Overhead | Time
Boltzmann 7 21 91 367 15.7 134 50 | 63% 0.42 45% 13% 674
FifoWriteCntr | 2 2 | 17 141 | 16.8 57 42 | 27% 0.62 58% 25% 93
Gcd16 33 17 50 1197 32.6 128 83 | 35% 0.19 36% 19% 578
Iqc 10 15 36 1169 23.9 445 220 | 51% 0.90 21% 18% 492
Lan 10 8 i9 215 19.4 107 99 7% 0.84 44% 19% 116
Radio 5 16 16 181 14.6 110 77 | 30% 0.98 35% 23% 76
Watch 2| 16| 11 108 | 9.1 67 | 51 | 24% 0.98 58% 18% 59
Avg. [ 34% [ 42% | 19% ]
TABLE IV
RESULTS—STRUCTURAL EXTRACTION
Circuit | In | Out | FF | Gates | Delay Power Prob(Sel) Area Delay CPU
Ref T Opt | Sav Owverhead | Overhead | Time
s1269 18 10 37 468 50 965 902 7% 0.45 61% 7% 21
s1423 17 5 74 602 73 1389 460 | 67% 0.62 58% 8% 90
s1512 29 21 57 475 42 1003 843 | 16% 0.80 19% 3% 85
s3271 26 14 | 116 1045 35 3286 1611 | 51% 0.78 44% 8% 204
s3384 | 43 | 26 | 183 | 1393 92 | 11516 | 10757 | 7% 0.38 82% 6% 215
54863 49 16 | 104 2022 86 9590 7809 | 19% 0.97 70% 9% 567
s5378 35 49 | 164 1132 22 978 345 | 65% 0.94 52% 3% 418
56669 83 55 | 239 2703 163 7083 6254 | 11% 0.99 61% 3% 355
513207 | 31 121 | 669 2462 44 8806 6831 | 22% 0.96 52% 6% 633
s15850 | 14 87 | 597 3417 72 8814 7227 | 18% 0.98 48% 5% 1050
Avg. [28% | o079 | 55% | 6% |

C. Structural Extraction are still relevant (28% on average), although the area overhead is

quite substantial (55% on average). As expected, delay increase
The benchmarks we have used to check the effectivenesssafery limited (6% on average) thanks to the fine tuning enabled

the structural kernel extraction algorithm of Section VII-B ar@y the synthesis procedure for the selection logic.

all the large ISCAS’89 sequential circuits [29], including the For the remaining five benchmarks in the suite, results are

addendunti.e., a total of 15 examples). The netlists were optiot provided, since the application of our technique to examples

mized and mapped as for the experiments of Section VIII-A. 53330 and £9234 did not produce any noticeable power im-
Table IV reports the data for the examples for which som@rovement, while circuits35932, 38417, ands38584 could

power savings have been obtained (ten cases). Power reductimtsbe mapped using SIS onto our technology library.
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TABLE V
RESULTS—POWER SAVINGS OBTAINED WITH DIFFERENT EXTRACTION TECHNIQUES
Circuit | Inputs | FFs Power Savings
Sym-Ezact | Sym-Approz | Sim-Based | Siruct
5298 3 14 51% 50% 50% 19%
s713 35 17 29% 19% 20% 15%
5820 18 [3 85% 70% 58% 26%
Iqc 10 36 - 86% 51% 23%
Radio 5 16 37% 35% 30% 19%
Watch 4 11 41% 31% 24% 16%
51423 17 74 - 80% 35% 67%
s1612 29 57 - 39% 11% 16%
53271 26 | 116 - ~ 6% 51%
D. Comparison a computational kernel with the unbiased patterns provided in

All the kernel extraction techniques we have presented in tifignulation. In contrast, the structural method gives better results

paper are directly compared in Table V using a total of nir@cause seyeral structural ch_ang_eg can be a_lpplle_d in the circuits
benchmarks, chosen in equal number from Tables I, 111, and I¥fithout altering too much their original functionality.
The results provided by the two variants of the symbolic method Summarizing, the exact symbolic algorithm produces best re-
(exact and approximate) are reported in colu@ym-Exacand sults, but it d.oes not scale well to Ia}rge circuits. The approxi-
Sym-Approxrespectively, while those obtained using the sinfate symbolic approach can be applied to slightly larger circuits
ulation-based method are collected in colugim-BasedFi- &t the price of marginally inferior power savings. The simula-

nally, data for the structural technique are shown in colunffpn-Pased method does not produce good savings for large cir-
Struct cuits with unbiased random patterns, but it works well for small

For circuitss298, s713, ands820, all the methods are appli- circuits where a small number of patterns brings the circuit into

cable. Since their state spaces are smallSieBasednethod & kernel and for large circuits with biase_:d input patterns that
is almost as good as the symbolic ones because relatively sii§i§ed UP the convergence to a computational kernel. The struc-
simulations are sufficient to bring the circuits into the subsets Bir@l technique tends to produce good results for large circuits,
states that make the computational kernels. On the other haif, it has insufficiently fine granularity on small circuits.
theStructmethod works quite poorly. This fact can be explained

by observing that structural transformations in a small circuit IX. CONCLUSION

are likely to drastically change the overall behavior, thereby r-\We have described a technique for generating low-power se-

ducing the percentage of time in which the kernel can be actﬁ‘ﬂential RTL components based on the concept of computa-
vated. ) tional kernel, a small block of logic whose behavior mimics that
For benchmarkslqc, Radio, and Watch, the Sim-Based qf the original specification for most of the operation time.

method works better thastruct because the patterns used eorne| extraction is at the basis for the success of our method.
for simulation are meaningful and not generated with theneretore, we have proposed a number of algorithmic options
assumpnon of 0.5 mput. probability. Since these benchmarfg performing this step. Besides an exact symbolic approach
have relatively small size, the structural method does tis only applicable to small components, we have introduced
have many opportunities for netlist transformations withouly,yimate solutions that have practical interest. In particular,
drastically altering kernel functionality (and, consequently, itye have presented a simulation-based technique that is suitable
probability of being selected). The same input probabilities §§he optimization of components for which only a description
those used for th&im-Basednethod were used for the WOyt ihe |10 behavior is available and a structural method that per-

symbolic methods. For examplgqe, the Sym-Exacmethod  ¢,rms kemel extraction by iteratively modifying the gate-level
did not complete andGym-Approxgives much better resunsimplementation of a circuit.

than Sim-Basedecause the state space that is explored with,o viability and effectiveness of the power optimization

the simulation does not seem to be large enough to identify fll-pnique based on kernel extraction is proved by the results
the highly probable states of the kernel. Resultskiatio and e have obtained on a large set of benchmark examples having
Watch obtained withSym-Exactind Sym-Approsxare close 10 igterent characteristics and nature. Average power savings are
those given bysim-BasedThis is justified by the fact that since 5rqng 509 for the symbolic solution, while they are around

they have a relatively small state space, the simulation allowgo, \when the approximate extraction algorithms are used.
to properly identify the computational kernel.

For circuitss1423, 1512, ands3271, the Sym-Exacis ob-
viously not applicable (exact Markovian analysis does not com-
plete). Also, limited savings are achieved with tBien-Based
method because no high-level information is available for the DSFFs are critical for a power-efficient hardware imple-
input signals, which are thus assumed to have a static probabititgntation of computational kernels. In Section 1V, we simply
of 0.5. Since these circuits are fairly large, they do not readescribed the functional view of these components. In this

APPENDIX
DSFF MPLEMENTATIONS
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appendix, we propose two power-efficient implementations of

vdd
DSFFs, namely, alustered gated-clocknplementation and a Q_EIIFH _C“;l(
E il

low-overhead DSFF library cell.

The main issue with a straightforward implementation of
DSFFs, as shown in Fig. 3, is that it doubles the clock load with
respect to standard flip-flops. In this case, the computational
kernel architecture would be marred by a severe clock loading
overhead that scales with the number of state variables in the
original sequential circuit. Fortunately, we can overcome thi&d- ©-
limitation by observing that the computational kernel operates
in a mutual exclusive fashion with the original circuit. Hencethe activation of two sampling latches: the master data latch and
we can decompose all DSFFs in standard flip-flop pairs amige selection signal latch. Similarly, the clocked NMOS tran-
clock the two flip-flops with mutually exclusive gated-clockssistor T1 controls the activation of two bistable slaves. Notice
All flip-flops feeding data to the kernel are clustered togethehat only one of the slaves is written at any given clock cycle
and receive the same clock signal. Similarly, the flip-flopsecause writing of the slaves is controlled by the two phases of
feeding the original circuit are clustered as well under the sani® latched selection signal.
gated-clock domain. This clustered gated-clock implementationRegarding speed overhead, the DSFF is marginally slower
is shown in Fig. 8. Notice that the two phases of the selecti@fan its standard D flip-flop counterpart, mainly because of the
function control clock-gating of the two clusters. Observe algacreased resistance of the pull down virtual ground path in the
that no multiplexers are needed for recirculating data as dfaves. Accurate HSPICE simulation of a DSFF implementation
Fig. 3. in A = 0.5-pm MOSIS CMOS technology showed a clock-to-
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power overhead because only one cluster at a time receivesditgjle inverter. Area overhead is also well controlled, because
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head because it does require routing of two gated-clock sigard D flip-flop.
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