
1118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

Synthesis of Power-Managed Sequential Components
Based on Computational Kernel Extraction

Luca Benini, Member, IEEE, Giovanni De Micheli, Fellow, IEEE, Antonio Lioy, Member, IEEE,
Enrico Macii, Senior Member, IEEE, Giuseppe Odasso, and Massimo Poncino, Member, IEEE

Abstract—This paper introduces a power optimization
paradigm for sequential components based on the concept of
computational kernel, a highly simplified logic block whose
behavior mimics the steady-state behavior of the original specifi-
cation. We present a flexible framework that supports a number
of algorithmic options for carrying out kernel extraction. We
first describe an exact symbolic procedure that is applicable to
components for which only a functional specification (i.e., the
state transition graph) is available. Due to its computational
complexity, this procedure is mainly of theoretical interest and it
is not usable for large circuits. We then propose two approximate
algorithms that can be adopted in practical situations. The first
one is simulation-based and it is suitable to cases where input
data streams representing typical operation of the component are
available. The second approach performs kernel extraction by
iteratively refining a structural representation of the component
obtained through synthesis. The impact of the power optimization
paradigm based on kernel extraction is demonstrated by the
results of extensive experimentation carried out on a number of
benchmarks of different characteristics and nature.

Index Terms—Logic synthesis, low-power design, sequential cir-
cuitsl.

I. INTRODUCTION

WHEN specifying and designing a complex sequential
component, engineers must consider not only the basic,

typical behaviors, but also a large number of unusual operating
conditions. In many cases, the number and the nature of these
conditions (sometimes calledcorner cases) is such that they
require considerable attention and design effort. As a result,
final specifications are often much larger and more complex
than what would be needed to just ensure correct functionality
in the average case.

A key consequence of this fact is that sequential components
may have an extremely large number of reachable states, but
during normal operation, the circuits tend to visit only a rel-
atively small subset of them. This intuitive statement is sup-
ported by the evidence provided by the probabilistic analysis of
finite-state machines (FSMs) associated to large networks: only
a few states have sizable occupation probabilities [1]. A similar
situation occurs at the primary outputs; while the circuit walks

Manuscript received October 13, 1999; revised April 12, 2001. This paper
was recommended by Associate Editor M. Papaeftthymiou.

L. Benini is with the Università di Bologna, Dipartimento di Elettronica, In-
formatica, e Sistemistica, Bologna 40136, Italy.

G. De Micheli is with the Computer Systems Laboratory, Stanford University,
Stanford, CA 94305 USA.

A. Lioy, E. Macii, G. Odasso, and M. Poncino are with the Dipartimento di
Automatica e Informatica, Politecnico di Torino, Torino 10129, Italy.

Publisher Item Identifier S 0278-0070(01)06892-0.

through the most probable states, only a few distinct output pat-
terns are generated.

The idea of optimizing complex digital systems based on im-
proving their typical behaviors has been extensively exploited
by computer architects: cache memories, branch prediction
schemes, and variable-latency data paths are just a few notable
examples. The main challenge in the implementation of these
techniques is to effectively partition a design in such a way
that commonly executed computations can follow a highly
optimized path without being slowed down by the circuitry
needed for dealing with all corner cases.

The main contribution of our work is the introduction of
techniques for identifying the most probable behaviors in a se-
quential component and for automatically building a dedicated
logic block that correctly implements such behaviors. The
block, which we callcomputational kernel, is usually much
smaller, faster, and less power-consuming than the module
it is extracted from. Nevertheless, it can replace the original
component for a large fraction of the operation time.

After kernel extraction, we still need to guarantee correct op-
eration under any input condition. Hence, the kernel is con-
nected in parallel to the original circuit and a selection logic
is added, which, depending on the input patterns, selects either
the original circuit or the kernel in a mutually exclusive fashion.
By definition of computational kernel, its likelihood of being
selected is very high. Therefore, the average computational cost
decreases with respect to the original design.

Kernel extraction is key for successful optimization. It should
be accurate (i.e., identify the set of most common cases with
high precision), efficient (i.e., capable of manipulating large
components), and it should produce high-quality implementa-
tions through tight integration with a logic synthesis engine.

We first introduce a kernel extraction procedure that is
applicable to small sequential components for which the
state-transition graph can be fully explored (either explicitly or
implicitly). This procedure features binary decision diagram
(BDD)-based algorithms that exactly determine the compu-
tational kernel through symbolic calculations similar to those
employed in reachability analysis of FSMs. Exact symbolic
kernel extraction is mainly of theoretical interest and normally
not applicable to large components. As the size of the state
transition graph (STG) increases, most symbolic operations are
no longer affordable for both memory and time reasons.

An approximate variant of the exact symbolic algorithm re-
places the most computationally expensive step of the exact al-
gorithm (namely, the probabilistic analysis of the STG) with a
cheaper (but less accurate) one. Although this solution extends

0278–0070/01$10.00 ©2001 IEEE

BENINI et al.: SYNTHESIS OF POWER-MANAGED SEQUENTIAL COMPONENTS BASED ON COMPUTATIONAL KERNEL EXTRACTION 1119

the domain of applicability of the method, it is still of limited
usefulness for handling large components. We, thus, propose
two extensions to the symbolic procedure. The first one is based
on zero-delay functional simulation of typical input streams. In
this case, complete, symbolic state occupation probability com-
putation is bypassed and the set of states belonging to the kernel
is determined directly from the simulation traces. This approach
does not suffer from potential computational blowups as for
the symbolic solution and enables kernel extraction for much
larger components. In principle, even random pattern simula-
tion can be used for kernel computation; however, the effec-
tiveness of the simulation-based approach clearly depends on
the availability of a meaningful stream to be simulated, i.e., one
that well represents the typical operational context of the com-
ponent. As for the two variants of the symbolic method, the sim-
ulation-based algorithm also does not require a structural repre-
sentation (i.e., a gate-level netlist) of the sequential component.
It can be applied directly at the register-transfer level (RTL),
starting from a cycle-accurate functional specification.

In contrast, the second approximate approach we introduce
requires a structural representation of the target module. The
algorithm incrementally constructs the computational kernel
of the component by iteratively modifying the next-state and
output circuitry through logic implication analysis and redun-
dancy removal. The extraction algorithm is driven by a cost
function that monitors the quality of the kernel with respect
to a given optimization target (e.g., performance, power) and,
thus, provides a criterion for stopping the iterations. A side
advantage of this solution is that once the kernel is available as
a gate-level netlist, it may be exploited for further optimizing
the original logic as well, since the input conditions for which
the kernel is active actually representcontrollability don’t cares
for the original component.

We show the practical significance of the optimization par-
adigm based on computational kernel extraction by applying it
to the problem of reducing the power dissipation in sequential
components. This implies a customization of the various extrac-
tion procedures to account for power dissipation as primary op-
timization constraint. Experimental results, obtained on several
benchmarks, demonstrate the viability and effectiveness of the
proposed optimization paradigm.

The remainder of the manuscript is organized as follows.
Section II presents the notation that will be used throughout the
paper. In Section III, we provide the basic theory of computa-
tional kernels and in Section IV we introduce the kernel-based
power optimization paradigm. Section V puts our solution in
perspective with related approaches available in the literature.
Sections VI and VII are devoted to symbolic and approximate
kernel extraction algorithms, respectively, and Section VIII
reports the experimental results. Finally, Section IX provides
closing remarks.

II. BACKGROUND

A. Boolean Operators

We assume the reader to be familiar with the basic concepts of
Boolean functions and with the data structures commonly used
for the symbolic manipulation of such functions, i.e., BDDs.

Background material on this subject can be found in [2]. We
review here two Boolean operators essential for our purposes:
cofactor and existential abstraction.

Given a single-output Boolean function , the
positiveand thenegative cofactorsof with respect to vari-
able are defined as and

, respectively. Theexistential
abstraction(or quantification) of with respect to is defined
as .

B. FSMs

An FSM is defined as the 5-tuple ,
where and are the input and output alphabets,is the finite
set of states, is the unique reset state, and

is theglobal relation. if and only
if, under input , moves from present state to next
state outputting . Thesizeof is the cardinality
of set and it is denoted as . can be represented by an
STG, whose states are elements of and edges are labeled
with pairs .

Given the global relation of an FSM , the transition
relation and theoutput relation of are defined as

and ,
respectively.

The FSM is often the formalism of choice for specifying the
behavior of sequential components. We use it in Section III as
a vehicle for introducing and illustrating the concept of compu-
tational kernel.

C. FSM Markovian Analysis

The probabilistic behavior of an FSM can be studied by re-
garding its transition structure as a Markov chain. It is sufficient
to label each outgoing edge of each state with the probability
for the FSM to make that particular transition to obtain a dis-
crete-parameter Markov chain. On the other hand, studying the
behavior of the Markov chain, i.e., computing the state occupa-
tion probabilities, is related to performing the reachability anal-
ysis of an FSM.

Given the transition relation of an FSM, it is possible to com-
pute the vectorp whose elements are the steady-state probabili-
ties of the FSM to be in each state. For small FSMs, the calcu-
lation can be carried out in an exact fashion using the algebraic
decision diagram (ADD)-based procedures of [1]; for larger ma-
chines, the approximate techniques of [3] may be employed. In
both cases, complex input probability distributions can be spec-
ified in order to have more detailed hardware modeling options.

III. COMPUTATIONAL KERNELS—DEFINITION AND BASIC

THEORY

The functional specification of sequential components is
commonly given in a cycle-accurate fashion, using hardware
description languages (HDLs) with syntactic restrictions
(calledsynthesizable subsets). Consistent with the terminology
adopted by commercial synthesis tools, we call such speci-
fication style RTL to contrast it with structural or gate-level
specifications.

1120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

(a) (b)

Fig. 1. (a) Moore-type FSM and (b) its 0.25-order computational kernel.

Each HDL has its own syntax, but most share the same FSM
semantic. In other words, all sequential RTL specifications de-
scribe a (possibly large) finite-state sequential behavior. To rig-
orously define the concept of computational kernel, we refer to
the FSM semantic of any RTL specification.

Given an FSM , modeling the behavior
of a sequential component and given a probability threshold,
we define the -ordercomputational kernelof , denoted as

, as the following FSM:

where Prob represents the subset of
the states of whose steady-state occupation probabilities are
larger than . equals in case , otherwise is
chosen randomly within . Finally, the global relation of is
defined as

The global relation of the kernel is incompletely specified: next
state and output are uniquely defined only if the present state
belongs to . If this is not the case, the relation does not con-
strain the next-state and output values. In other words, is
thedon’t careset for the next-state and output functions that can
be extracted from . An important characteristics of computa-
tional kernels is their probability Prob , which is defined as
the cumulative occupation probability of the states in.

As an example, consider the simple FSM shown in Fig. 1(a)
in which the input and output values are omitted for the sake
of simplicity and the states are annotated with the steady-state
occupation probabilities calculated through Markovian analysis
of the STG [1]. If we specify a probability threshold ,
the computational kernel of the FSM is depicted in Fig. 1(b).
States in black represent set, while states in grey represent
valid values for in , but they do not belong to .
The kernel probability is Prob

.
We note that in the implementation of the kernel extraction

procedures we propose in Sections VI and VII, threshold prob-
ability is used as arelative threshold. More precisely, kernel
states have steady-state probability greater thantimes the
probability of the most frequently occurring state. For example,

if , all states with steady-state probability80% of
the most probable state are selected. This is necessary for large
circuits, where absolute steady-state probability values are
relatively low because the “kernel” behavior is spread over a
relatively large number of states. In this case, fixing an absolute
value of will not select any state. In other terms, absolute
threshold probability may have conceptual validity, but cannot
be used in practice because it is a circuit-dependent quantity.
For all the experiments we present in Section VIII, a fixed value
of was used. This choice was made after performing
sensitivity analysis on a number of benchmark examples. We
decided to take a conservative approach in the sense that the
threshold is biased toward the selection of kernels with high
state probability even at the price of losing some optimization
opportunities.

Kernel extraction algorithms require two types of inputs,
namely, the specification of and the information on typical
input pattern distribution. The latter is needed for determining
the state probability distribution, which is a prerequisite for
kernel computation.

It is intuitively clear that the complexity of kernel extraction
depends on the number of states and inputs of the specifica-
tion. Kernel extraction is a relatively straightforward process for
small state machines, where exhaustive state and input pattern
enumeration is possible. Most sequential components have large
state and input spaces that cannot be enumerated in a reasonable
amount of time.

For RTL specifications with associated medium-size FSMs (a
few millions of states), computational kernels can be determined
by handling simultaneously sets of states represented as charac-
teristics functions [4]. This is possible thanks to the BDD/ADD
data structures that enable efficient manipulation of large and
complex Boolean and pseudo-Boolean functions. More specif-
ically, the symbolic kernel extraction algorithm we present in
Section VI exploits well-established technology developed in
the context of FSM reachability analysis [5]–[8] to extract ker-
nels for FSMs that are too large to be handled by explicitly enu-
merative algorithms.

Unfortunately, large sequential components, which are the
most common ones in the design practice, are often beyond the
capabilities of the most powerful algorithms based on symbolic
manipulations (in particular, those for state occupation proba-
bility calculation). For this reason, in Section VII, we formulate

BENINI et al.: SYNTHESIS OF POWER-MANAGED SEQUENTIAL COMPONENTS BASED ON COMPUTATIONAL KERNEL EXTRACTION 1121

(a)

(b)

Fig. 2. (a) Sequential component and (b) the kernel-based optimized
architecture.

approximate kernel extraction algorithms that scale well with
the size of the component.

IV. K ERNEL-BASED POWER OPTIMIZATION PARADIGM

In this section, we illustrate how the concept of computa-
tional kernel can be exploited for power optimization. For the
sake of generality, we will refer to the FSM semantic which un-
derlies any RTL specification. A generic FSM can be always
represented as a combinational logic block coupled with se-
quential elements, as shown in Fig. 2(a). The optimized logic
block after kernel extraction can be abstractly represented as in
Fig. 2(b). The essential elements of the optimized FSM archi-
tecture are the combinational logic of the original block (block

), the computational kernel (block), the selector function
(block), the dual-state flip-flops (DSFF), and the output mul-
tiplexors (MUX). The computational kernel can be viewed as a
“dense” implementation of the component it has been extracted
from. In other terms, implements the core functions of the
original component and because of its reduced complexity, it
usually implements such functions in a faster and more efficient
way.

The purpose of the selector function is that of deciding
what logic block between and will provide the output
value and the next-state in the following clock cycle. To take
a decision, examines the values of the next-state outputs at
clock cycle . If the output and next-state values in clock cycle

Fig. 3. Functional model of a DSFF.

can be computed by the kernel, then takes on the
value 1. Otherwise, it takes on the value 0. The value ofis fed
to a flip-flop, whose output is connected to the multiplexors that
select which block produces the correct outputs and next-state.
Obviously, the kernel-based power-optimized implementation
of the component is functionally equivalent to the original one.

The scheme of Fig. 2 is just one among several possible archi-
tectures. The peculiar feature of the proposed solution concerns
the topology of the selection logic. In particular, choosing a se-
lection function that only depends on the next-state outputs is
motivated by the need of obtaining a small implementation. Re-
ducing the support of by not including the primary inputs
helps in this respect.

The sequential elements indicated as DSFFs replace the ordi-
nary flip-flops present in the original design. A DSFF is func-
tionally equivalent to the schematic of Fig. 3 and it operates as
follows. When , flip-flop is loaded with a new value
coming from the external data input, while flip-flop holds
its state. The opposite happens when . In this way, the
state of either the kernel or the original network can be kept un-
changed (i.e., frozen in the DSFFs) while the other logic block
is being used to produce the output and the next state. Clearly,
Fig. 3 only describes the functional behavior of a DSFF. Its ac-
tual implementation can be properly optimized to reduce the
overhead with respect to the standard flip-flops used in the orig-
inal sequential network, as discussed in the Appendix.

It can be observed in the first place that besides the automatic
generation of the kernel, the logic for the selector function
needs to be synthesized as well. Fortunately, such logic can be
obtained as a byproduct of the kernel extraction process. In Sec-
tions VI and VII, we will show how kernel extraction can be
modified to obtain .

The power efficiency of the architecture of Fig. 2(b) stems
from the fact that it enforces mutual exclusion: the large block

is “frozen” when the kernel logic is enabled. In fact, the in-
puts of remain fixed when is active, thereby nullifying
switching activity. In normal operation, is active most of the
time and average switching activity within is much reduced.
Since the logic in is simpler than , the kernel dissipates
much less power than block . On the other hand, the modi-
fied architecture has some overhead with respect to the standard
implementation: DSFFs consume more power than the standard
ones, the selector function is always active and dissipates power,
and so do the output multiplexors. In general, we can expect sig-
nificant power savings only if:

1122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

1) the kernel is significantly smaller than the original circuit;
2) the selector function is very small and power efficient;
3) the kernel is active most of the time.

The kernel extraction algorithms of Sections VI and VII strive
for satisfying all the above requirements.

V. RELATED WORK

The development of computer-aided design techniques for
power minimization has been a very active area of research in
the last few years (refer to the surveys by Pedram [9] and by
Macii et al. [10] for further reading). Our paper is related to
a number of sequential power optimization techniques that are
briefly summarized next.

FSM decomposition for low power [11]–[14] can be seen as a
top–down computational kernel extraction procedure that starts
from explicit STG specifications (i.e., state tables or equivalent
formats). Although decomposition techniques reported sizable
power reductions, they can be applied only to small sequential
components for which the explicit STG description can be ma-
nipulated in reasonable time and memory space. The main ad-
vantage of our approach to kernel extraction is that it can be ap-
plied to much larger sequential components for which not even
the implicit representation of the STG can be constructed.

A few high-level decomposition techniques have also been
presented in the literature [15]–[17]. They exploit information
available during high-level synthesis to find a good controller
and data-path decomposition. Even though we believe that these
solutions have very good potential and may scale well for large
components, they have some limitations. In fact, the approaches
described in [15] and [16] can be applied only to design flows
that are based on behavioral synthesis. Furthermore, the method
presented in [17] operates directly on the HDL specification
using algorithmic transformations such as loop unrolling, con-
stant propagation and partial evaluation, which can be applied
only to a restricted subset of the available HDL constructs. Our
approach to computational kernel extraction is not subject to all
these restrictions: it can be applied to any sequential specifica-
tion. A consequence of its wider scope of usability, however,
is that computational kernel extraction may be less scalable to
very large sequential components.

Automated extraction of clock-gating logic [18]–[22] is based
on the observation that a sequential component can, under some
input conditions, be unobservable or it may not react to input
changes. In these cases, the circuit isidleand power can be saved
by stopping its clock. This is done by creating aclock-gating
functionthat stops the clock when idleness is detected. Clearly,
the larger the number of idle conditions, the higher the oppor-
tunities for power savings. Interestingly enough, we can view
idle conditions as a very special computational kernel, i.e., the
null kernel. In other words, when the circuit is idle, it can be re-
placed by an empty kernel and kernel extraction simply reduces
to the construction of the selection function. From this view-
point, computational kernel extraction can be seen as a gener-
alization of clock-gating function generation. Therefore, since
it exploits other kinds of behaviors than just idleness, it may

Fig. 4. Symbolic kernel extraction algorithm.

potentially provide more prominent opportunities for power re-
duction and it can be applied to sequential blocks for which
clock-gating is ineffective.

Precomputation-based power optimization [23], [24] pushes
the clock-gating concept even further. The simple idleness de-
tection logic is replaced by more complex precomputation func-
tion that can either detectpartial idle conditions (i.e., conditions
in which only part of the original circuit needs to be active to
compute correct output and next-state values) or compute the
values of the outputs one cycle in advance and deactivate the
original circuit. Precomputation can be seen as a kernel extrac-
tion procedure, where the selector function is merged with the
kernel logic, and both are evaluated one cycle in advance. This
choice is suboptimal because it implies that the computational
kernel logic cannot be disabled [while the kernelof Fig. 2(b)
is not evaluated when is active]. Thus, it always contributes
to the overall power consumption. The algorithms for extracting
precomputation logic are not effective for kernel extraction be-
cause they tend to produce very small kernels with limited prob-
ability.

VI. SYMBOLIC KERNEL EXTRACTION

A symbolic algorithm for computational kernel extraction is
an almost direct implementation of the definition given in Sec-
tion III. It leverages state-of-the-art implicit BDD-based algo-
rithms for the manipulation of sets of states and Boolean func-
tions and its pseudocode is shown in Fig. 4.

The inputs to the procedure are the following.

1) A multiterminal BDD (or ADD [25]) whose support is the
set of input variables. The leaves of the ADD represent
occurrence probabilities of the input patterns. The ADD
is a compact representation of function
that associates to each input pattern its probability.

2) A BDD representing the global relation of
the component being optimized.

3) A probability threshold . According to the definition of
Section III, all states with steady-state occupation proba-
bility greater than belong to the state set of kernel.

The first step is to compute steady-state probabilities for all
states . This is accomplished by exact symbolic Markov
analysis [1]. Procedure computes state probabilities and
returns an ADD with support (i.e., the state variables). The
leaves of the ADD are state probabilities. The state setof the
original circuit is then pruned using the operator.
Such operator takes, as inputs, the ADD of the state probabilities

BENINI et al.: SYNTHESIS OF POWER-MANAGED SEQUENTIAL COMPONENTS BASED ON COMPUTATIONAL KERNEL EXTRACTION 1123

(a)

(b)

Fig. 5. Example of kernel extraction. (a) Light grey area: occupation
probability greater than or equal top. (b) Light grey (innermost) area:S (s).
Dark grey (outermost) area: states not belonging toS (s).

and the probability thresholdand returns the BDD of the
kernel state set.

To obtain the next-state and output functions of the kernel,
we first extract the transition relation and the output
relation from the global relation of the original cir-
cuit; then, we compute their conjunction with . This can be
done because the behavior of the computational kernel is spec-
ified only when the current state belongs to .

The result of the conjunction is illustrated in Fig. 5. In
Fig. 5(a), the light grey area identifies the states for which
the occupation probability is greater than or equal to. In
Fig. 5(b), on the other hand, the innermost (light grey) shaded
area represents , while the outer shaded region (dark
grey) represents states not belonging to that are valid
next states for the next-state function of kernelbecause they
are associated with present states that do belong to . In
other words, there is a “corolla” consisting of all the states that
are 1-step reachable from for which the behavior of the
kernel must be specified and consistent with the original one.

Given and , it is relatively easy to extract the next-state
and output functions of the computational kernel by existential
quantification followed by cofactoring (in the pseudocode, we
assume that there arestate variables and output variables).
Finally, the procedure returns functions and that com-
pletely specify the functionality of block in Fig. 2(b) and
function that will be used for synthesizing the selection
logic [block in Fig. 2(b)]. Obviously, is a function of the
next-state; therefore, a formal step of variable substitution (from

to) is done before synthesis. Notice that represents the
don’t careset that can be used to optimize the implementation
of in case the synthesis of such block of logic still needs to
be done.

As mentioned in the introduction, the most computationally
intensive phase of the symbolic kernel extraction algorithm

is the one that calculates state occupation probabilities. One
simple, yet effective way of getting around the complexity
problem consists of replacing the routine with the
implementation of the algorithm for approximate FSM proba-
bilistic analysis of [3].

This solution definitely helps in extending the applicability of
the extraction procedure to circuits whose state space is large, at
a quite limited cost in terms of achievable power savings. Never-
theless, the bottleneck introduced by the overall symbolic com-
putation engine cannot be eliminated. Consequently, radically
different algorithms are needed to make kernel-based power op-
timization applicable in realistic design environments. We pro-
pose two options in Section VII.

VII. A PPROXIMATE KERNEL EXTRACTION

The results of Section VIII-A show that the kernel-based par-
adigm can provide sizable power reductions. On the other hand,
they also prove that the applicability of the symbolic method for
kernel extraction described in Section VI is limited to instances
of components with associated small-to-medium FSMs. In fact,
these are the only cases where state occupation probabilities can
be calculated using the symbolic methods summarized in Sec-
tion II-C. Another limitation of the algorithm is that it assumes
the knowledge of the probability of every possible input pattern
of the circuit (this is required to obtain ADD). In this sec-
tion, we describe approximate kernel extraction techniques that
scale well with the complexity of the components being han-
dled. In particular, we first focus on a solution that considers
RTL components for which only the input–output (I/O) specifi-
cation is available. Then, we move to an algorithm that requires
the availability of gate-level netlists of the components under
optimization.

A. Simulation-Based Extraction

We target large RTL components for which symbolic Mar-
kovian analysis (either exact or approximate) is infeasible. Fur-
thermore, we assume that knowledge of input pattern distribu-
tion is limited to the specification of a set of patterns that repre-
sent typical operating conditions under which the circuit is ex-
pected to run. Finally, we consider components with black box
specifications whose internal structure does not yet exist or it is
not available.

The solution we have identified is simulation-based and as-
sumes the existence of a set of patterns representing typical op-
eration conditions. Alternatively, patterns can be automatically
generated with a user-specified probability distribution. In the
first step, the component is simulated withinput patterns.
During simulation, the number of occurrences of each visited
state is monitored. At the end of simulation, the probability dis-
tribution of thevisited statesis computed by simply dividing the
number of occurrences of each state by.

To compute a -order kernel, all states with probability larger
than are selected. Notice that during simulation, at most
states are visited. State probability computation and state se-
lection simply involve linear processing of the visited state list.
Hence, they are even faster than simulation. The set of selected

1124 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

Fig. 6. Elementary transformation for constructing a computational kernel.

states is taken as state set that is used after formal vari-
able substitution (from to) as specification of block in
Fig. 2(b).

The next-state and output functions of the kernel can be deter-
mined by using the procedure of Fig. 4 in which the ADD
constructed from simulation replaces the one built by procedure

.

B. Structural Extraction

In this section, we present an iterative procedure for deter-
mining the computational kernel of a sequential component that
works on the structural description of the network. Hence, the
method can be employed to optimize components for which a
gate-level netlist is available. However, the technique can also be
employed to optimize circuits for which an existing implemen-
tation is not available. In this case, a preliminary (possibly fast)
synthesis step is carried out to generate a gate-level representa-
tion on which the procedure described below can be applied.

The algorithm is heuristic by nature and it exploits concepts
such aslogic implication and redundancy removalthat have
been in use for quite a long time in applications like test gen-
eration and logic optimization. More specifically, it takes the
netlist of the original circuit and it iteratively computes the
kernel by removing gates and connections from the combina-
tional logic of .

The elementary step of the iterative transformation is shown
in Fig. 6. A connection is selected inside network. Signal
is replaced with either the constant value 0 (shown in Fig. 6) or
1 and the circuit is simplified by propagating the constant value
in the fan-out cone of and by removing all the fan-out-free
logic gates in the transitive fan-in of. Notice that can be a
primary input or a primary output of the logic network.

The computational kernel is obtained from the original
netlist by iteratively applying the elementary transformation
until a stopping criterion is met. The pseudocode of the proce-
dure is shown in Fig. 7. denotes kernel after applications
of the transformation (initially, A).

The procedure takes, as inputs, the original circuit synthe-
sized to gates , the cost function , which controls the stop-
ping criterion, the utility function , which drives the node
selection process and the timing constraintto be used in the
synthesis of the selection logic . This is because the speed
of block must always be kept under consideration since its
delay adds up to the critical delay of the original sequential cir-
cuit. The output of the algorithm is the computational kernel
obtained after iterations of thedo while loop.

Fig. 7. Structural kernel extraction algorithm.

In the sequel, we discuss in detail the key steps of the algo-
rithm: kernel generation by simplification of the initial netlist,
synthesis of the selection logic, and stopping criterion.

1) Node and Value Selection:Performing the selection of
the candidate node on which the elementary transformation
of Fig. 6 is applied (procedure) requires a utility
function that estimates the savings that can be achieved if

is replaced by either 0 or 1. The we adopt is approximate
since we are interested in fast, yet reasonably accurate estimates
of the power savings. It is the sum of the expected power savings
on and the expected power savings on the fan-in and
fan-out

(1)

can be efficiently computed, given the transition probability
and the load capacitance of node as

. On the other hand, can be determined by
finding how many gates will be eliminated fromby the trans-
formation and summing the total power

(2)

The number of gates eliminated can be easily determined by
evaluating how many gates in the fan-in and fan-out cones have
their outputs fixed to some constant value.

Even though the approximate discussed above usually
provides estimates that are accurate enough, for critical cases
(e.g., portions of logic that are always under stress, controllers),
it may be required resorting to exact calculations at the price
of an increased runtime of the kernel extraction procedure. The
exact solution consists of evaluating the actual power savings
resulting by the substitution in the network by running accurate
power estimation. This is clearly much more time and memory
demanding, since estimation must be invoked for every new sub-
stitution; thus, it may be infeasible for large netlists.

Once a candidate node has been selected, there are two
options for the selection of what value is the best to force on

(procedure). For small- to medium-sized
circuits, it may be feasible to force first zero and then one on the
network and then evaluate using (1) for each of the two
choices. The selected valueval will be the one with the highest
value of .

BENINI et al.: SYNTHESIS OF POWER-MANAGED SEQUENTIAL COMPONENTS BASED ON COMPUTATIONAL KERNEL EXTRACTION 1125

For larger circuits in which the propagation of a value can re-
quire a certain amount of time, it is better toestimatethe best
value to assign to . This can be done as follows. The node

will usually have a transition probabilityTp that will be
close to 0.5; this is because under the assumption of temporally
uncorrelated circuit inputs, the transition probability can be ob-
tained as

(3)

where is the signal probability of node . The first term in
(3) indicates the probability of a transition occurring
on node while the second term represents the probability of
the other transition . This function has a maximum at

; therefore, values of the signal probability close to 0.5
imply a high transition probability. This means that oncehas
been selected, the valueval being assigned should be obtained
by the logic expression . In other terms, should be
assigned to zero if , to one otherwise, i.e., to the value
which is more likely to occur.

2) Synthesis of the Selection Logic:TheON-set of the selec-
tion function at theth iteration of the extraction loop is defined
as the set of next-state conditions for which, in the next clock
cycle, output and next-state values ofare equal to output and
next-state values of (i.e., can be used in place of
to compute the output and next-state values). Thus,can be
computed in an exact fashion by the following equation:

(4)

where the product stands for logic conjunction, is the th
output of network [i.e., an element of set , in Fig. 2],

is the th output of network [i.e., an element of set ,
in Fig. 2], are the primary inputs, is the number of primary
outputs, and is the number of next-state outputs.

Since BDDs are used to represent both the kernel and the se-
lection function, can be computed as long as it is possible to
construct its BDD. There may exist circuits for which the BDD
of can not be constructed. In these cases, since the logic im-
plementing the selection function must be synthesized for power
under timing constraints, we use asubsettingalgorithm [26] that
provides an implementation of the selection logic whoseON-set
is smaller than that of [and whose implementation is fast
(or small) enough], but with maximum probability. With sub-
setting, we sacrifice probability for performance and/or area.

Finally, one additional optimization can be obtained by ob-
serving that the original circuit can be optimized using
as controllabilitydon’t careset to reduce the area overhead and
to save additional power. This is because when , the
functionality implemented by is already computed by .

3) Stopping Criterion: The iterative construction of and
tends to yield increasingly small selection functions. Intu-

itively, this corresponds to lowering the probability of using
instead of to compute the outputs and the next states. After
some iterations within thedo while loop, this probability might
become too small, reducing the fraction of time in whichis
selected. The process should then be stopped.

An estimate of the power dissipated by theth version
of the architecture can be computed as

(5)

Equation (5) can be interpreted as follows: when , the
kernel is operating; thus, it dissipates for a fraction
of time equal to . Conversely, when , the
original circuit is operating; thus, it dissipates for a
fraction of time equal to . Then, the condition
to be checked for terminating the iterations occurs when
stops decreasing from one iteration to the next one.

In practice, however, the first iterations of the loop of Fig. 7 do
not always result in a reduction of . Therefore, a greedy test
on the monotonic decrease of would prevent the search of
better solutions.

In order to avoid such cases, in the actual implementation of
procedure , the stopping condition is not tested for the
first few iterations (this is to ensure that the is sufficiently
simpler than). It is then tested again thereafter to make sure
that does not become too small.

Concluding the discussion on the approximate simulation-
based and structural approaches, we point out that both tech-
niques require the availability of next-state and output function
BDDs for the sequential component. Hence, approximate ex-
traction cannot be carried out when BDDs cannot be constructed
because of memory blowup.

VIII. E XPERIMENTAL RESULTS

A. Symbolic Extraction

We have implemented the symbolic extraction algorithm as
an extension of SIS [27] using CUDD [28] as the underlying
BDD package. Experiments were run on a DEC AXP 1000/400
workstation with 256 MB of memory.

We have first applied the algorithm of Fig. 4 to the examples
taken from the ISCAS’89 sequential suite [29] (addendum in-
cluded) for which the exact state occupation probabilities can
be computed using the ADD-based method of [1].

The STGs of the circuits have been initially synthesized as
networks of multiplexors directly from the BDD representation
of the output and transition relation, optimized for area using

(whenever possible) and mapped for area
with onto a 3.3-V 0.5-m complementary
metal–oxide–semiconductor (CMOS) library containing two–
to four-input NAND and NOR gates, inverters and buffers with
three different drive strengths, and a flip-flop.

Table I reports the data for the examples for which some
power savings have been obtained. In particular, columnsIn,
Out, FF, Gates, andDelay report the characteristics of the ref-
erence circuits. Column shows the power in W of the
reference circuit (columnRef) and that of the kernel-based ar-
chitecture (columnOpt) as well as the obtained savings (column
Sav). Column tells the probability of the selector
function to be one, i.e., the probability of kernel to be
active. ColumnArea Overheadshows the area cost of the mod-
ified architecture, expressed as a percentage of the reference

1126 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

TABLE I
RESULTS—SYMBOLIC EXTRACTION USING EXACT MARKOVIAN ANALYSIS

gate count. Similarly, columnDelay Overheadshows the per-
formance penalty introduced by the use of the kernel-based ar-
chitecture. Finally, columnCPU Timeindicates the execution
time in seconds required by the optimization procedure to com-
plete.

Power estimates within the kernel extraction procedure have
been computed using symbolic simulation [30] while those for
the initial and final circuits have been determined using the
Irsim switch-level simulator [31], assuming a clock frequency
of 100 MHz.

Results are very encouraging. An average power savings of
approximately 51% has been achieved with peaks of more than
80%. Notice that some circuits of the complete suite are missing
in the table, namely, , , , , and .
These circuits have the peculiar property of having all states that
are equiprobable; this uniform probability distribution clearly
prevents the application of the kernel-based optimization par-
adigm. For the remaining circuits, however, the existence of a
dense set of states implementing most of the behavior seems to
be the rule. In the cases where the kernel probability
is very high (e.g., ,), we have observed that the ker-
nels typically include very few high-probability states.

Concerning the timing of the optimized circuits in spite of
the fact that the delay of the selector function adds up to the
largest delay between and , the penalty is limited (13%
on average). This is because is optimized using asdon’t
care set. Thus, its delay usually reduces with respect to the orig-
inal circuit. On the other hand, as it was expected, the area
penalty is significant (34% on average). This is because the
kernel-based approach suffers, in principle, from the same over-
head (logic duplication) that affects any type of parallel imple-
mentation.

One final remark concerns the relation between kernel prob-
ability and the actual power savings. In principle, a high prob-
ability is a good indicator for a significant savings. However,
there are other factors that can influence the achievable savings.
For example, the power consumed by the selection logic (i.e.,

selection function and output MUXs) is somehow independent
of the kernel probability; rather, it is tightly related to what states
the kernel contains.

As mentioned in Section VI, one way of reducing the com-
plexity of the symbolic kernel extraction algorithm consists of
replacing the exact Markovian analysis procedure of [1] with the
approximate one of [3]. This allows us to handle larger designs
at the cost of a decreased accuracy in state probability calcu-
lation and, therefore, of smaller power savings. In Table II, we
compare the results we have obtained using approximate Mar-
kovian analysis to those of Table I.

As expected, introducing an approximation in the calcula-
tion of the steady-state occupation probabilities has produced
a degradation, quite limited though, of the power savings with
respect to those obtained using the exact method. On the other
hand, it enhances the computational capabilities of the tool. Cir-
cuits and are, in fact, not manageable by using
exact Markovian analysis.

B. Simulation-Based Extraction

To benchmark the simulation-based extraction method of
Section VII-A, we have considered the RTL circuits from [32]
for which only a functional description (specified in Esterel)
is available. The BDDs for the next-state and output functions
have been constructed directly from the Esterel source code
using a procedure similar to that described in [33]. The data of
the experiments are collected in Table III.

For circuits whose functionality is known, as those in the
table, the simulation-based method works well (average power
savings are around 34%); this is because kernel extraction has
been done by feeding the circuits with meaningful input traces
(each of which consisted of approximately 50 000 patterns).
On the contrary, for circuits whose functionality is unknown,
the only way of providing them with an input trace is through
random generation. In this case, the results are expected to be
less appealing.

BENINI et al.: SYNTHESIS OF POWER-MANAGED SEQUENTIAL COMPONENTS BASED ON COMPUTATIONAL KERNEL EXTRACTION 1127

TABLE II
RESULTS—SYMBOLIC EXTRACTION USING EXACT AND APPROXIMATE MARKOVIAN ANALYSIS

TABLE III
RESULTS—SIMULATION -BASED EXTRACTION

TABLE IV
RESULTS—STRUCTURAL EXTRACTION

C. Structural Extraction

The benchmarks we have used to check the effectiveness of
the structural kernel extraction algorithm of Section VII-B are
all the large ISCAS’89 sequential circuits [29], including the
addendum(i.e., a total of 15 examples). The netlists were opti-
mized and mapped as for the experiments of Section VIII-A.

Table IV reports the data for the examples for which some
power savings have been obtained (ten cases). Power reductions

are still relevant (28% on average), although the area overhead is
quite substantial (55% on average). As expected, delay increase
is very limited (6% on average) thanks to the fine tuning enabled
by the synthesis procedure for the selection logic.

For the remaining five benchmarks in the suite, results are
not provided, since the application of our technique to examples

and did not produce any noticeable power im-
provement, while circuits , , and could
not be mapped using SIS onto our technology library.

1128 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

TABLE V
RESULTS—POWER SAVINGS OBTAINED WITH DIFFERENTEXTRACTION TECHNIQUES

D. Comparison

All the kernel extraction techniques we have presented in this
paper are directly compared in Table V using a total of nine
benchmarks, chosen in equal number from Tables I, III, and IV.
The results provided by the two variants of the symbolic method
(exact and approximate) are reported in columnsSym-Exactand
Sym-Approx, respectively, while those obtained using the sim-
ulation-based method are collected in columnSim-Based. Fi-
nally, data for the structural technique are shown in column
Struct.

For circuits , , and , all the methods are appli-
cable. Since their state spaces are small, theSim-Basedmethod
is almost as good as the symbolic ones because relatively short
simulations are sufficient to bring the circuits into the subsets of
states that make the computational kernels. On the other hand,
theStructmethod works quite poorly. This fact can be explained
by observing that structural transformations in a small circuit
are likely to drastically change the overall behavior, thereby re-
ducing the percentage of time in which the kernel can be acti-
vated.

For benchmarks , , and , the Sim-Based
method works better thanStruct because the patterns used
for simulation are meaningful and not generated with the
assumption of 0.5 input probability. Since these benchmarks
have relatively small size, the structural method does not
have many opportunities for netlist transformations without
drastically altering kernel functionality (and, consequently, its
probability of being selected). The same input probabilities as
those used for theSim-Basedmethod were used for the two
symbolic methods. For example, , the Sym-Exactmethod
did not complete andSym-Approxgives much better results
than Sim-Basedbecause the state space that is explored with
the simulation does not seem to be large enough to identify all
the highly probable states of the kernel. Results for and

obtained withSym-ExactandSym-Approxare close to
those given bySim-Based. This is justified by the fact that since
they have a relatively small state space, the simulation allows
to properly identify the computational kernel.

For circuits , , and , theSym-Exactis ob-
viously not applicable (exact Markovian analysis does not com-
plete). Also, limited savings are achieved with theSim-Based
method because no high-level information is available for the
input signals, which are thus assumed to have a static probability
of 0.5. Since these circuits are fairly large, they do not reach

a computational kernel with the unbiased patterns provided in
simulation. In contrast, the structural method gives better results
because several structural changes can be applied in the circuits
without altering too much their original functionality.

Summarizing, the exact symbolic algorithm produces best re-
sults, but it does not scale well to large circuits. The approxi-
mate symbolic approach can be applied to slightly larger circuits
at the price of marginally inferior power savings. The simula-
tion-based method does not produce good savings for large cir-
cuits with unbiased random patterns, but it works well for small
circuits where a small number of patterns brings the circuit into
a kernel and for large circuits with biased input patterns that
speed up the convergence to a computational kernel. The struc-
tural technique tends to produce good results for large circuits,
but it has insufficiently fine granularity on small circuits.

IX. CONCLUSION

We have described a technique for generating low-power se-
quential RTL components based on the concept of computa-
tional kernel, a small block of logic whose behavior mimics that
of the original specification for most of the operation time.

Kernel extraction is at the basis for the success of our method.
Therefore, we have proposed a number of algorithmic options
for performing this step. Besides an exact symbolic approach
that is only applicable to small components, we have introduced
approximate solutions that have practical interest. In particular,
we have presented a simulation-based technique that is suitable
to the optimization of components for which only a description
of the I/O behavior is available and a structural method that per-
forms kernel extraction by iteratively modifying the gate-level
implementation of a circuit.

The viability and effectiveness of the power optimization
technique based on kernel extraction is proved by the results
we have obtained on a large set of benchmark examples having
different characteristics and nature. Average power savings are
around 50% for the symbolic solution, while they are around
30% when the approximate extraction algorithms are used.

APPENDIX

DSFF IMPLEMENTATIONS

DSFFs are critical for a power-efficient hardware imple-
mentation of computational kernels. In Section IV, we simply
described the functional view of these components. In this

BENINI et al.: SYNTHESIS OF POWER-MANAGED SEQUENTIAL COMPONENTS BASED ON COMPUTATIONAL KERNEL EXTRACTION 1129

Fig. 8. Computational kernel clustered gated-clock architecture.

appendix, we propose two power-efficient implementations of
DSFFs, namely, aclustered gated-clockimplementation and a
low-overhead DSFF library cell.

The main issue with a straightforward implementation of
DSFFs, as shown in Fig. 3, is that it doubles the clock load with
respect to standard flip-flops. In this case, the computational
kernel architecture would be marred by a severe clock loading
overhead that scales with the number of state variables in the
original sequential circuit. Fortunately, we can overcome this
limitation by observing that the computational kernel operates
in a mutual exclusive fashion with the original circuit. Hence,
we can decompose all DSFFs in standard flip-flop pairs and
clock the two flip-flops with mutually exclusive gated-clocks.
All flip-flops feeding data to the kernel are clustered together
and receive the same clock signal. Similarly, the flip-flops
feeding the original circuit are clustered as well under the same
gated-clock domain. This clustered gated-clock implementation
is shown in Fig. 8. Notice that the two phases of the selection
function control clock-gating of the two clusters. Observe also
that no multiplexers are needed for recirculating data as in
Fig. 3.

The clustered implementation virtually eliminates any clock
power overhead because only one cluster at a time receives the
clock signal. However, it still imposes some clock routing over-
head because it does require routing of two gated-clock sig-
nals and skew control on clock-gating logic and wiring. When
clock routing and skew are severely constrained or cannot be
tightly controlled, a cell-based implementation that does not re-
quire clock gating may then be preferable. In this case, we need
to design a DSFF library cell with minimal area, speed, and
clock load overhead with respect to the corresponding standard
flip-flop.

The schematic of a DSFF cell satisfying the requirements
listed above is shown in Fig. 9. This implementation is de-
rived from the single-clock flip-flop introduced by Yuan and
Svensson [34], which has been shown to be ideally suited for
low-power applications [35]. The original D flip-flop described
in [34] has a master-slave structure, where the master latch
samples the input value and steers the bistable slave. The
distinctive characteristics of this flip-flop is its sense-amplifier
structure, where the clock signal is used to control virtual
ground and power supply that activate the slave and the master,
respectively.

We exploit the sense-amplifier architecture to design a DSFF
with exactly the same clock loadas the standard D flip-flop. In
our implementation, the clocked PMOS transistor T12 controls

Fig. 9. Implementation of a DSFF library cell.

the activation of two sampling latches: the master data latch and
the selection signal latch. Similarly, the clocked NMOS tran-
sistor T1 controls the activation of two bistable slaves. Notice
that only one of the slaves is written at any given clock cycle
because writing of the slaves is controlled by the two phases of
the latched selection signal.

Regarding speed overhead, the DSFF is marginally slower
than its standard D flip-flop counterpart, mainly because of the
increased resistance of the pull down virtual ground path in the
slaves. Accurate HSPICE simulation of a DSFF implementation
in - m MOSIS CMOS technology showed a clock-to-
output delay increase of less than 7% for a DSFF loaded by a
single inverter. Area overhead is also well controlled, because
the DSFF occupies sightly less than twice the area of the stan-
dard D flip-flop.

ACKNOWLEDGMENT

The authors would like to thank F. Somenzi for providing
some of the examples used for the experiments and A. Macii
and R. Scarsi for running the experiments.

REFERENCES

[1] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi, “Markovian analysis
of large finite state machines,”IEEE Trans. Computer-Aided Design,
vol. 15, pp. 1479–1493, Dec. 1996.

[2] R. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, pp. 79–85, Aug. 1986.

[3] C.-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. M. Despain, and
B. Lin, “Power estimation methods for sequential logic circuits,”IEEE
Trans. VLSI Syst., vol. 3, pp. 404–416, Sept. 1995.

[4] G. D. Hachtel and F. Somenzi,Algorithms for Logic Synthesis and Ver-
ification. Norwell, MA: Kluwer, 1996.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequen-
tial circuit verification using symbolic model checking,” inProc.
ACM/IEEE Design Automation Conf., Orlando, FL, June 1990, pp.
46–51.

[6] O. Coudert and J. C. Madre, “A unified framework for the formal verifi-
cation of sequential circuits,” inProc. IEEE Int. Conf. Computer-Aided
Design, Santa Clara, CA, Nov. 1990, pp. 126–129.

1130 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

[7] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincen-
telli, “Implicit enumeration of finite state machines using bdds,” inProc.
IEEE Int. Conf. Computer-Aided Design, Santa Clara, CA, Nov. 1990,
pp. 130–133.

[8] H. Cho, G. D. Hachtel, S. W. Jeong, B. Plessier, E. Schwarz, and F.
Somenzi, “ATPG aspects of FSM verification,” inProc. IEEE Int. Conf.
Computer-Aided Design, Santa Clara, CA, Nov. 1990, pp. 134–137.

[9] M. Pedram, “Power minimization in ic design: principles and applica-
tions,” ACM Trans. Design Automat. Electron. Syst., vol. 1, no. 1, pp.
3–56, 1996.

[10] E. Macii, M. Pedram, and F. Somenzi, “High-level power modeling, es-
timation, and optimization,”IEEE Trans. Computer-Aided Design, vol.
17, pp. 1061–1079, Nov. 1998.

[11] S. H. Chow, Y. C. Ho, T. Hwang, and C. L. Liu, “Lower power realiza-
tion of finite state machines—a decomposition approach,”ACM Trans.
Design Automat. Electron. Syst., vol. 1, no. 3, pp. 315–340, July 1996.

[12] S. Roy, P. Banerjee, and M. Sarrafzadeh, “Partitioning sequential circuits
for low power,” in Proc. Int. Conf. VLSI Design, Chennai, India, Jan.
1998, pp. 212–217.

[13] L. Benini, F. Vermeulen, and G. De Micheli, “Finite state machine parti-
tioning for low power consumption,” inProc. IEEE Int. Symp. Circuits
and Systems, vol. 2, Monterey, CA, May 1998, pp. 5–8.

[14] J. Monteiro and A. Oliveira, “Finite state machine decomposition for low
power,” in Proc. ACM/IEEE Design Automation Conf., San Francisco,
CA, June 1998, pp. 763–768.

[15] L. Benini, P. Vuillod, C. Coelho, and G. De Micheli, “Synthesis of
low-power selectively clocked systems from high-level specification,”
in Proc. IEEE Int. Symp. System Synthesis, La Jolla, CA, Oct. 1996,
pp. 57–62.

[16] E. Hwang, F. Vahid, and Y.-C. Hsu, “FSMD functional partitioning for
low power,” in Proc. IEEE Design Automation and Test Eur., Munich,
Germany, Mar. 1999, pp. 22–28.

[17] G. Lakshminarayana, A. Raghunathan, K. S. Khouri, N. K. Jha, and
S. Dey, “Common-case computation: a high-level tecnique for power
and performance optimization,” inProc. ACM/IEEE Design Automa-
tion Conf., New Orleans, LA, June 1999, pp. 56–61.

[18] L. Benini, P. Siegel, and G. De Micheli, “Automatic synthesis of gated
clocks for power reduction in sequential circuits,”IEEE Des. Test
Comput., vol. 11, pp. 32–40, Dec. 1994.

[19] L. Benini and G. De Micheli, “Transformation and synthesis of FSMs for
low power gated clock implementation,”IEEE Trans. Computer-Aided
Design, vol. 15, pp. 630–643, June 1996.

[20] M. Onishi, A. Yamada, H. Noda, and T. Kambe, “A method of redun-
dant clocking detection and power reduction at rt level design,” inProc.
IEEE Int. Symp. Low Power Electronics and Design, Monterey, CA,
Aug. 1997, pp. 131–136.

[21] H. Kapadia, L. Benini, and G. De Micheli, “Reducing switching activity
on datapath buses with control-signal gating,”IEEE J. Solid-State Cir-
cuits, vol. 34, pp. 405–414, Mar. 1999.

[22] L. Benini, G. De Micheli, E. Macii, M. Poncino, and R. Scarsi,
“Symbolic synthesis of clock-gating logic for power optimization of
synchronous controllers,”ACM Trans. Design Automat. Electron. Syst.,
vol. 4, no. 4, pp. 351–375, Oct. 1999.

[23] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power,”
IEEE Trans. VLSI Syst., vol. 2, pp. 426–436, Dec. 1994.

[24] J. Monteiro, S. Devadas, and A. Ghosh, “Sequential logic optimiza-
tion for low power using input-disabling precomputation architectures,”
IEEE Trans. Computer-Aided Design, vol. 17, pp. 279–284, Mar. 1998.

[25] R. I. Bahar, C. Gaona, E. Frohm, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi, “Algebraic decision diagrams and their applications,”
Formal Methods Syst. Des., vol. 10, no. 2/3, pp. 171–206, Apr. 1997.

[26] K. Ravi and F. Somenzi, “High-density reachability analysis,” inProc.
IEEE Int. Conf. Computer-Aided Design, San Jose, CA, Nov. 1995, pp.
154–158.

[27] E. M. Sentovich, K. J. Singh, C. W. Moon, H. Savoj, R. K. Brayton, and
A. Sangiovanni-Vincentelli, “Sequential circuits design using synthesis
and optimization,” inProc. IEEE Int. Conf. Computer Design, Cam-
bridge, MA, Oct. 1992, pp. 328–333.

[28] F. Somenzi, “CUDD: University of Colorado Decision Diagram
Package, Release 2.3.0,” Dept. ECE, Univ. Colorado, Boulder, CO,
1998.

[29] F. Brglez, D. Bryan, and K. Koz´miński, “Combinational profiles of se-
quential benchmark circuits,” inProc. IEEE Int. Symp. Circuits and Sys-
tems, Portland, OR, May 1989, pp. 1929–1934.

[30] J. Monteiro, A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estima-
tion of average switching activity in combinational logic circuits using
symbolic simulation,”IEEE Trans. Computer-Aided Design, vol. 16, pp.
121–127, Jan. 1997.

[31] A. Salz and M. Horowitz, “IRSIM: an incremental mos switch-level sim-
ulator,” in Proc. ACM/IEEE Design Automation Conf., Las Vegas, NV,
June 1989, pp. 173–178.

[32] G. Berry and H. Touati, “Optimized controller synthesis using esterel,”
in Proc. ACM/IEEE Int. Workshop Logic Synthesis, Lake Tahoe, CA,
May 1993.

[33] S. -I. Minato, “Generation of BDDs from hardware algorithm descrip-
tion,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design, San Jose,
CA, Nov. 1996, pp. 644–649.

[34] J. Yuan and C. Svensson, “New single-clock CMOS latches and flip-
flops with improved speed and power savings,”IEEE J. Solid-State Cir-
cuits, vol. 32, pp. 62–69, Jan. 1997.

[35] C. Svensson and J. Yuan, “Latches and flip-flops for low power sys-
tems,” inLow Power CMOS Design, A. Chandrakasan and R. Bridersen,
Eds. Piscataway, NJ: IEEE Press, 1998, pp. 233–238.

Luca Benini (S’94–M’97) received the B.S. degree
(summa cum laude) in electrical engineering from the
University of Bologna, Bologna, Italy, in 1991, and
the M.S. and Ph.D. degrees in electrical engineering
from Stanford University, Stanford, CA, in 1994 and
1997, respectively.

Since 1998, he has been an Assistant Professor in
the Department of Electronics and Computer Science
with the University of Bologna. He also holds Vis-
iting Researcher positions at Stanford University and
the Hewlett-Packard Laboratories, Palo Alto, CA. He

is a member of the organizing commitee of the International Symposium on Low
Power Design and a member of the technical program committee for several
technical conferences, including Design and Test in Europe, the International
Symposium on Low Power Design, and the Symposiom on Hardware-Software
Codesign. He has authored or coauthored more than 120 papers in international
journals and conferences, a book, and several book chapters. His research inter-
ests include all aspects of computer-aided design of digital circuits, with special
emphasis on low-power applications, and in the design of portable systems.

Giovanni De Micheli (S’70–M’83–SM’89–F’94)
received the Nucl. Eng. degree from the Politecnico
di Milano, Milan, Italy, in 1979 and the M.S. and
Ph.D. degrees in electrical engineering and computer
science from the University of California, Berkeley,
in 1980 and 1983, respectively.

He is a Professor of Electrical Engineering and
Computer Science at Stanford University, Stanford,
CA. He is member of the technical advisory board
of several EDA companies, including Magma
Design Automation, Coware and Aplus Design

Technologies and was a member of the technical advisory board of Ambit
Design Systems.He is author ofSynthesis and Optimization of Digital Circuits
(New York: McGraw-Hill, 1994) and coauthor or coeditor of co-author and/or
co-editor of four other books and of over 200 technical papers. His research
interests include several aspects of design technologies for integrated circuits
and systems, with particular emphasis on synthesis, system-level design,
hardware/software codesign, and low-power design.

Dr. De Micheli is a Fellow of ACM. He received the Golden Jubilee Medal
for outstanding contributions to the IEEE Circuits and Systems Society in 2000.
He received the 1987 IEEE TRANSACTIONS ONCOMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS Best Paper Award and two Best Paper
Awards at the Design Automation Conference in 1983 and in 1993.

He is Editor-in-Chief of the IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OFINTEGRATED CIRCUITS AND SYSTEMS. He was Vice President (for
publications) of the IEEE Circuits and Systems Society from 1999 to 2000.
He was the Program Chair and General Chair of the Design Automation
Conference in 1996, 1997, and 2000, respectively, and was also the Program
and General Chair of the International Conference on Computer Design in
1988 and 1989, respectively.

BENINI et al.: SYNTHESIS OF POWER-MANAGED SEQUENTIAL COMPONENTS BASED ON COMPUTATIONAL KERNEL EXTRACTION 1131

Antonio Lioy (S’80–M’89) received the Dr. Eng. de-
gree in electrical engineering and the Ph. D. degree in
computer engineering from the Politecnico di Torino,
Torino, Italy, in 1982 and 1987, respectively.

He was a Research Assistant from 1987 to 1989
and then an Assistant Professor from 1990 to 1992
with the Politecnico di Torino. In 1993, he became
an Associate Professor at the Universitá di Parma,
Parma, Italy. He is currently an Associate Professor
with the Politecnico di Torino. His research interests
include simulation and testing of digital circuits and

systems, as well as advanced networking technologies and computer security.

Enrico Macii (M’92–SM’01) received the Dr. Eng.
degree in electrical engineering from the Politecnico
di Torino, Torino, Italy, in 1990, the Dr. Sc. degree
in computer science from the Universitá di Torino,
Torino, Italy, in 1991, and the Ph. D. degree in com-
puter engineering from the Politecnico di Torino in
1995.

From 1991 through 1994, he was an Adjunct
Faculty Member with the University of Colorado,
Boulder. He is currenlty an Associate Professor
with the Politecnico di Torino. He has authored or

coauthored over 200 journal and conference papers. His research interests
include several aspects of computer-aided design of integrated circuits and
systems, with particular emphasis on synthesis, optimization, and formal
verification.

Dr. Macii received the Best Paper Award at the 1996 IEEE European De-
sign Automation Conference. He was the Technical Program Co-Chair of the
IEEE Alessandro Volta Memorial Workshop on Low-Power Design in 1999
and the Technical Program Co-Chair and the General Chair of the ACM/IEEE
International Symposium on Low Power Electronics and Design in 2000 and
2001, respectively. He is an Associate Editor of the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OFINTEGRATEDCIRCUITS AND SYSTEMSand an As-
sociate Editor of theACM Transactions on Design Automation of Electronic
Systems.

Giuseppe Odassoreceived the Dr. Eng. degree
in electrical engineering and the Ph. D. degree
in computer engineering from the Politecnico di
Torino, Torino, Italy, in 1994 and 2001, respectively.

His research interests include synthesis, verifica-
tion, simulation, and testing of digital circuits, with
special emphasis on low-power and high-perfor-
mance systems.

Massimo Poncino(M’97) received the Dr. Eng. de-
gree in electrical engineering and the Ph.D. degree in
computer engineering from the Politecnico di Torino,
Torino, Italy, in 1989 and 1993, respectively.

From 1993 to 1994, he was a Visiting Faculty
Member with the University of Colorado, Boulder.
He is currently an Assistant Professor with the
Politecnico di Torino. His research interests include
synthesis, verification, simulation, and testing of
digital circuits and systems.

