0-7803-6445-7/00/$10.00 © 2000 IEEE

Data Path Placement with Regularity

Terry Tao Ye and Giovanni De Micheli
Department of Electrical Engineering, Stanford University, Stanford, CA 94305
Email: {taoye, nanni}@stanford.edu

Abstract

As more data processing functions are integrated into systems-
on-chip, data path is becoming a critical part of the whole VLSI
design. However, traditional physical design methodology can
not satisfy the data path performance requirement because it
has no knowledge of the data path bit-sliced structure. In this
paper, an Abstract Physical Model (APM) is proposed to ez-
tract bit-slice regularity information from Data Flow Graph
(DFG) and it is used for interconnect and congestion plan-
ning. A two step heuristic algorithm is introduced to optimize
the linear placement of APM to satisfy both the wire length
and routing track budget.

1 Introduction

As today’s VLSI design moves to the deep sub-micron do-
main, more and more functions are embedded into a single
chip. The emerging of DSP application and digital commu-
nication in recent years also brings more complicated data
processing operations onto silicon. Data path is becoming the
most critical part of the system. However, high performance
data-path design is still very time consuming, especially in the
mostly hand-crafted physical design stage. Traditional ASIC
design tools often generate inferior results on data path cir-
cuits compared to those designed manually, because they can
not exploit the unique structure of data path: the regular bit-
sliced structure.

Data path circuits placed by traditional physical design
tools are likely to’be congested during routing, especially when
the data path is getting wider (64 bits and more). As the in-
terconnect delay dominates the timing in the deep sub-micron
domain, signal and clock skews vary randomly among differ-
ent bits and the wire delay is hard to estimate accurately. The
timing closure between synthesis and placement has become
a serious problem. This makes the regular placement criti-
cal for data-path design. A regularly placed data path circuit
will eliminate the clock/signal skews among different bits. It
will create well planned routing for interconnects to reduce
congestion. More important, it will generate a predictable
interconnect scheme. Accurate interconnect delay estimation
can be predicated in synthesis stage. The so-called synthesis-
placement gap could be under control.

Data path related research could be categorized into four
areas:

(1) Data path Synthesis: It takes behavioral level HDL or
Data-path Description Language (DDL) as inputs. The design
is synthesized for resource sharing, scheduling, and operator
optimization (e.g. CSA/CPA merging in MAC) [4]. However,
it only generates circuit netlist, with no or little information
to guide the placement.

(2) Module Generation: It is focused on the layout gener-
ation at the transistor level. Askar et al. [1], Serdar et al.
[2], and Kim et al. [3] proposed different techniques for tran-
sistor folding and merging. These techniques are mainly used
for customized designs and they can not fit into ASIC design
flows, where standard cells are used as building blocks.

264

(3) Regularity Extraction: Different extraction techniques
were proposed by Arikati et al. [6], Nijssen et al. [5], and Has-
soun et al. [7], which use template matching methods to find
common structures inside a netlist. However, in ASIC design
flow, when netlist is generated, the data path structural in-
formation is already lost. Even if some regular pattern exists,
the functional information is difficult to retrieve.

(4) Data path module placement: The research carried on
this subject either focused on the reduction of track density
[8] [9] [10], or congestion and total wire length minimization
[11] [12]. It was assumed that numbers of available routing
tracks are the same for all modules. While total wire length
is minimized, there is no control on the length of each inter-
connect.

Here we propose a new method to generate an optimized
data path placement with the regularity information extracted
directly from Data Flow Graph (DFG). It takes both the in-
terconnect delay and bus congestion constraints into account
and creates a bit-sliced placement to satisfy the timing and
routing track budget. It defines a global placement for cir-
cuit blocks, which can be directly used by detailed placement
steps that follow. This proposed methodology could well fit
into current ASIC design flows. There are two contributions
in this work. (1) Abstract Physical Model (APM). Abstrac-
tion of the regularity information of one bit slice of data path,
which includes both the functional connectivity and intercon-
nects congestion estimation during routing. (2) A two step
heuristic method to find an optimal linear relative placement
of data path building blocks.

The paper is organized as follows: Section 2 discusses data
path placement styles and why regularity is necessary for data-
path design. Section 3 analyzes why the traditional data-path
design flow can not satisfy the performance requirement. Sec-
tion 4 gives details on how to model a data path into its
Abstract Physical Model. In Section 5, a two step heuristic
method is used to solve the linear ordering problem of APM
circuit blocks. The results of some benchmark data-path de-
signs are shown in Section 6 and conclusions will be drawn in
Section 7.

2 Regularity of Data Path

Data path is the circuit performing bit-wise data operations
in parallel on multiple bits. Each operation is corresponding to
a dedicated functional block, such as adder, register, buffer,
multiplexer, multiplier, etc. Inter-bit connections might ex-
ist among the bit wise operations (e.g. carries in an adder).
There are two groups of interconnects flowing in perpendicular
directions, as shown in Figure 1. One is the data flow, which
runs parallel horizontally. The other is control flow, which
goes vertically. Control flow can either be global control sig-
nals which operate on every bit simultaneously (e.g. CLOCK
signal, SEL of a MUX array), or local control signals which
operate on adjacent bits (e.g. CARRY-IN/OUT).

Data path regularity has some unique features:

a) Data path circuit is best placed in a bit-sliced structure

{13]. The cells operating on one bit are placed in one row abut-
ted next to each other, assuming they are placed horizontally.
This row structure is repeated for different bits vertically. The
benefits of such a bit-sliced structure are:

o Different bit slice rows have the same height and width.

¢ Control signals (both locally and globally) can be aligned
vertically

b) Interconnects of one bit data flow are routed horizontally
inside the corresponding bit slice row. Even if there are loops
existing in the data flow, the routing is still confined within
that bit slice, as shown in Figure 1.

X[15:0] Y[15:0]

s I O

SEL CARRY IN

Figure 1: Regularity Placement and Routing of Data
path Circuit

Regular placement and routing are necessary for data path
performance [14]. As the wire load on interconnects becomes
more and more significant, non-regular interconnects could
create long wire delays as well as big timing variations among
different bits. Both will greatly deteriorate the circuit per-
formance. By placing the data path in a bit-sliced pattern,
data flow schemes among different bits become identical. Not
only will the signal and clock skews be eliminated, the in-
terconnects and buses can also be better planned in advance
to control their length and congestion. It becomes possible
for data path synthesis tools to make an early estimation on
the interconnect delays for each bit. This will in turn greatly
improve the accuracy of synthesis result.

Regular structured placement is not only area efficient, with
a recognizable structure, it is also easy to modularize as an IP
block for design reuse.

3 Traditional ASIC data-path design flow

In today’s ASIC design flow, the data path circuit is gener-
ated separately from other parts of the design. The data path
is first described in a special Data-path Description Language
(DDL) [4] or in behavioral HDL. The user is required to specify
explicitly what kind of implementation he/she needs for each
operation. For example, the user needs to specify a Ripple-
Carry-Adder (RPA) or a Carry-Lookahead-Adder (CLA) for
an adding operation, a Booth Multiplier or a CSA-Array-
Multiplier for a multiplying operation. The target implemen-
tation is normally in-lined as pragmas in the HDL or DDL.
The data path compiling tools will then generate the circuit
according to the pragmas and create circuit netlist as output.
(Figure 2)

The data path netlist generated is then labeled with a
don’t-touch attribute and merged with netlists of other cir-
cuits in the design. The whole netlist is fed into physical design
tools to perform placing and routing. Because the placement
tool has no knowledge of the data path structure, it has lit-
tle control of the exact location where a cell might be placed.
The bit-sliced structure and regularity information will be lost.

265

Traditional ASIC
Layont Tools Placensent

‘Cwstomized Dataputh
Layout Design

Figure 2: Traditional Data-path Design Flow

The placement has no guarantee of interconnect length and
signal/clock skew. The routing is easy to get congested espe-
cially in the data path area. If performance requirement can
not be met, these steps have to be iterated several times until
timing closure is achieved. (Figure 2)

The problem in the above mentioned design flow lies in the
gap between placement and synthesis of data path circuits.
The synthesis has no control of placement and the placement
has no knowledge of the data path structure.

The analysis above shows a placement tool needs to exploit
the bit-sliced information from the Data Flow Graph (DFG)
before it is lost in merging with other circuits. In the next
section, a new modeling method will be introduced to extract
the bit-sliced information directly from DFG. Both wire length
and congestion could be planned in this model for data path
placement.

4 Abstract Physical Model (APM)
4.1 Model of one bit slice

Abstract Physical Model (APM) is the bit-sliced abstrac-
tion of a data-path circuit. It consists of circuit blocks (CB)
corresponding to one bit operations in the data path. The cir-
cuit block is the basic building unit of APM. It can either be a
standard cell from the library, e.g. AND, OR, XOR, DFF, Full
Adder, or it can be a data-path leaf cell or group of standard
cells, e.g. 1-bit multiplier, Booth MUX. In Abstract Physical
Model, each circuit block is represented as a rectangular box,
with wires indicating its input and output interconnections.
The height of the box is the height of corresponding standard
cell or data path leaf cell, and the width is the cell width or
the sum of widths of the cells in the block.

Some examples of the circuit blocks are shown in Figure 3.
They could have different configurations.

1) 1:1 In-and-Out Like a D-Flip-Flop, the data flow is
just a simple in/out format.

2) Interlacing (2:1 or N:1) For data operations like
bit-wise AND/OR or multiplexing, the circuit is an array of
cells for one bit operation with interlacing inputs. Its circuit
block model is represented as two inputs of the same bit, and
one output. This configuration can also be used for bit-wise
operations on multiple inputs, where the circuit block should
be modeled as N:1 interlacing.

8) N:M The Carry-Save-Adder (CSA) or full adder (FA)
take three inputs and generate two outputs, A 4:2 adder (com-
posed of two FAs) takes four inputs and generates two outputs.
They can be modeled as the N:M configuration.

4) Orthogonal For a multiplication circuit, the two data
flows for multiplier and multiplicand are best routed perpen-
dicular to each other. This not only eliminates the routing con-
gestion, but also yields uniformed propagation delays among

different bits. The circuit block of one-bit operation is mod-
eled as a box with two inputs from orthogonal directions. One
is assigned as the main branch data flow, which is the data
flow running throughout the whole data path and lies in the
same direction as the output data flow. The other will be the
side branch data flow, which is normally the constant, or the
coefficients fetched from memory units.

> 5

Multipller
MOX csA one bit unit

D Flip Flop AND, OR

- B -

Interiacing Orthogonal

In/Out Interlacing

Figure 3: Circuit blocks configuration for APM

The number of wires coming in and out of a circuit block
is the average number of data flow per bit slice. A portion of
CSA array multiplier is shown in Figure 4. For the CSA block
of bit slice n, one input is from the AND cell in the same stage,
one input is the SUM output from CSA of previous stage of
the same bit slice, another input is from the CARRY output of
previous staged CSA, but of the bit slice n-1. One output of
this block is going to the CSA input of the same bit slice in the
next stage, but the other output is going to the CSA input of
the next bit slice n+1. Considering average data flow per bit
slice, this CSA block should be modeled as 3-input 2-output
block.

—

r
B 1R
T

Figure 4: Interconnect Modeling of a circuit block in
APM

Here should be noted that for the bit slice of LSB and MSB
of a data path, there are always fewer interconnects compared
to the bit slice in the center. The Abstract Physical Model
might over estimate the interconnect numbers on LSB and
MSB. This will not be a problem since over estimation in this
case will yield a more conservative result.

4.2 Some Abstract Physical Model Exam-
ples of data path circuit module

1)Array Structure A register array can be simply mod-
eled as a 1:1 in/out block, the AND/MUX array can also be
modeled as a 2:1 interlacing block. (Figure 5)

2)CSA Array Multiplier A portion of CSA Array mul-
tiplier is shown in Figure 6. As in most applications, only
~ the MSBs are going to output. This can keep the data path
width uniform throughout the data flow. The APM extrac-
tion of a CSA array multiplier is a chain of AND blocks and
CSA blocks. As mentioned earlier, the interconnect number
between the blocks is the average number of interconnects per

266

41d

i - ——
v

Figure 5: Abstract Physical Model for an Array Struc-
ture

bit slice. As shown in Figure 6, two adjacent CSA have two in-
terconnects connected. The CSA on the first stage is omitted
because it is not needed for the first bit multiplication.

AND AND CEA AND CSA AND ©EA

Figure 6: Abstract Physical Model for a CSA-Array-
Multiplier

3)Booth Multiplier Booth multiplier uses the Booth
encoding to reduce the partial products by half. The Booth-
MUX will generate the partial products of +2, +1, 0, -2,
or -1 times the multiplicand according to the encoded bits.
The sum of partial products is added up by the CSA array.
The first stage CSA takes the first three partial products and
generates SUM and CARRY as outputs. Each CSA in the
following stages will take one more partial product plus one
SUM from previous CSA of the same bit and CARRY from
CSA on the one-less-significant bit slice. In the last stage, a
carry-propagation-adder (CPA) is used as the vector merger
to merge the carries and sums. The APM extraction for one
bit slice will be a chain of Booth-MUX and CSA, and one CPA
in the final stage. (Figure 7)

4)Carry Look Ahead Adder (CLA) Carry look-ahead
adder normally consists of three stages. 1) The PG generation
block. 2) The carry look-ahead logic, and 3) The final SUM
generation, which is normally a XOR gate of Carry and P.
While it is fairly straightforward to extract one bit slice for
PG generation and SUM generation blocks, it is hard to de-
compose a CLA logic generation circuit into bit-wise blocks,
because the carries in CLA logic are calculated in an incre-
mental manner. However, since the number of cells in CLA
logic can be pre-calculated, a place holder block for the CLA
logic can be reserved with the area estimated to hold all the
CLA logic cells. The number of rows covered by the place

Beoth Boeth Booth
MUX MUX MUX

Figure 7: Abstract Physical Model for a Booth Multi-
plier

holding block is the bit width of the data path to align with
other circuit blocks. In this way, we can use the width of the
CLA place holder block as the average circuit block width per
bit slice in the APM, as shown in Figure 8.

PGGEN ClAlege XOR

Figure 8: Abstract Physical Model for a Carry-
Lookahead Adder

4.3 Wire Length Budget and Routing Track
Budget

Wire Length Budget Wire length budget is the maxi-
mum wire length allowed for each net; therefore its intercon-
nect delay will not exceed the timing slack of the corresponding
path. Consider the logic network of Figure 9. Each node is cor-
responding to a data operation, or circuit block inside one bit
slice. During data path synthesis, a timing slack has already
been calculated for each node (e.g. Sn = 110ps, Sk = 40ps).
Without loss of generality, we assume that the slacks are the
same on all bit slices. If this assumption does not hold, then
the worst timing slack on the corresponding nodes of all the
bits should be considered. This slack could be used as the
interconnect delay allowed for the net connecting them (net
between V;, and Vi, Vi and Vi). In order to calculate the wire
length budget for each net, an RC delay-length look-up ta-
ble is pre-calculated for the interconnect based on the process
and design rules. Wire length budget could then be estimated
directly from this look-up table.

Routing Track Budget Horizontal wires are contributed
in two ways; 1) the IN/OUT connections between circuit blocks,
and 2) the wires feeding through a circuit block. The total
count of interconnects is the sum of the two, affected by the
relative placement or the ordering of the blocks. An example
is given in Figure 10, there are three inputs and two outputs
plus three feeding-through wires on circled block.

As discussed in Section 2, all wires connecting circuit blocks
of one bit should be routed over the cells within the bit slice.

267

Figure 9: Wire length budget can be calculated from
timing slack

Figure 10: Congestion estimation of APM

However, there is a limit on the routing tracks available ver-
tically and horizontally. Normally, vertical interconnects used
by control signals are less than the horizontal ones used by
data flow. When the number of horizontal interconnects ex-
ceeds the track capacity within the cell height, extra tracks
have to be allocated between bit slice rows. This situation is
called congestion overflow. The height of the bit slice row is
determined by the cell height plus the overflow tracks. It can
be written as:

Bitslice_Height = Heightcent + Nover flow * Pitchirack (1)

Where Noyerfiow iS number of overflow routing tracks. Since
the width of the data path is fixed by the abutment of circuit
blocks, the height of bit slice row will then determine the area
of the data path module.

The maximum number of horizontal interconnects allowed
to route on each circuit block is called routing track budget.
It is the total number of interconnects for IN/OUT pin con-
nection, plus the number of tracks available for feed-through.
If the height of data path module is fixed, the routing track
budget is then determined by: 1)The physical structure of
each blocks, e.g. the internal wires, and pin locations. 2)
The relative locations of other blocks connected to this block.
As shown in Figure 11, we assume the circuit block allows a
maximum of 12 horizontal routing tracks. In the first case,
both inputs and outputs are from the same side, four tracks
are used by IN/OUT interconnects, the available feed-through
tracks are 8, the routing track budget is 12. In the second case,
inputs and outputs are from opposite sides, only two tracks
are used for IN/OUT connection, the routing track budget
will thus be 14. To simplify the APM modeling, we like the
routing track budget to be determined only by the internal
structure of the circuit block itself, which is also the worst
case estimation (12 in this example).

4.4 Create APM from HDL

With the analysis above, here we propose a new data-path
design flow (Figure 12). The data-path design is first described
in HDL (or DDL). Data path circuit is then compiled accord-
ing to the pragmas in the HDL/DDL module, along with the

12 horfgontal
tracks apallable

AN/OUY 4 trecks
Feed Through 8 tracks
Routing Track Budget = 12

IN/OU'Y 2 tracka
Feed Through 10 tracks
Routing Track Budget = 14

Figure 11: Congestion estimation of one circuit block

’

cell logic and physical information from the library. Also based
on the pragma specification, APM of the data path is created.
Timing slack is calculated for each node by the synthesis tool.
This slack will be translated into wire-length budget for each
net connecting the circuit blocks in APM. The physical infor-
mation can also be retrieved from the cell library and a routing
track budget could be estimated for each circuit block. Using
the two budgets as constraints, optimization is performed on
APM to find an optimal placement solution.

Figure 12: Proposed data-path design flow

A MAC (multiplication accumulation) design is given in
Figure 13 as an example. The APM for each data operation
is generated based on the pragma specified in HDL (or DDL).
The data flow between circuit blocks is extracted in DFG. The
APM for the whole data path is then created.

@CMZ)
ut [w] e

tmpat [w} b;

cutput (w] 2
pragns

7 multiype specified

A[EY] BEme)

pragma (Mtypeca);
| 7 sader type epedifiod
prugms gnuxtype=mxt);

wire {w) accout =
a'béace_In
= reg(uce_out);
dmoduls

Datapath Compiler
Langusge

Figure 13: Modeling of a MAC circuit

After the data path is abstracted into its APM, data path
placement problems become the linear placement problems of
the circuit blocks. Asshown in Figure 14, both wire length vio-
lation and routing congestion violation exist in Scheme (A). In
placement Scheme (B), the long wire was shortened. Scheme
(C) further eliminates the congestion over cell A.

268

X[15:0) Y[15:0]

Figure 14: Different placement plannings may elimi-
nate wire length violations and congestion violations

Based on the above analysis, an APM circuit block place-
ment should satisfy the following constrains:

1. Place the circuit blocks in one row, where the wire
length of each interconnect should not exceed the wire
length budget.

2. Plan the interconnects routing horizontally, where the
wire congestion should not exceed the routing track bud-
get of each block.

5 Placement of circuit blocks in APM
5.1 Problem Formation

We are given a set of m circuit blocks V = {v1,ve,..., tm}
and a set of n interconnects N = {n;, ng,...,n.}. Each cir-
cuit block v; € V has its own routing track budget r; and is
connected by a subset of interconnects N,; C N. Each in-
terconnect n; € N has its own wire length budget ; and is
connecting a subset of circuit blocks V,; C V. The problem
is to find a linear placement of the V such that all the inter-
connects satisfy the wire length budgets, and all the blocks
satisfy the routing track budgets.

Track(vi) <ri;Vv; €V;1<i<m (2)

Length(n;) < l;;Vnj e N;1<j<n 3)

In data-path design, the circuit blocks are placed abut-
ted to each other. This makes the linear placement problem
equivalent to the linear ordering problem, which is known to
be NP-hard [15). Many heuristic methods have been proposed
on this issue. Kang [16] proposed a method to start the order-
ing process from the most lightly connected seed. Hur et al.
[17] introduced a relaxation and clustering technique for lin-
ear placement. Yim et al. [11] used genetic algorithm for the
initial global ordering and then use the simulated annealing
for further optimization. All these algorithms were focused on
the global interconnect planning. They assumed all the loca-
tions (blocks) have the same routing track budget. However,
in reality, some blocks might be more routable than others,
because they have different internal structures. The above-
mentioned heuristic methods also focused on the total wire
length minimization, and they had no guarantee on each wire
to be routed within wire length budget.

Here we propose a two step heuristic method to solve the
linear ordering problem. A quadratic objective function is first
minimized to find the initial ordering of the circuit blocks. The
relative locations of the blocks will be based on the timing bud-
get of each interconnect. Then a sliding window optimization
is performed on the initial ordering to solve the wire length
violations on each interconnect as well as congestion violations
on each circuit block.

5.2 Quadratic Placement

Giving n blocks v; € V,1 < i < n ,with locations on
Z1,%2, Tn, the total weighted square wire length objective func-
tion can be expressed as

n

®(z) = Z wij (i — 7)° = x"Qx (4

ig=t

where the z;,z; are the locations for block v; and v; €
V, and x is the linear vector for the location [18]. Q is the
quadratic matrix for the weight factor wi;, where w;; is 0 if
there is no connection between block v; and v;. The diagonal
elements w1, W22, Wnn, etc. of the quadratic matrix are the
negative sums of all the elements on the same row. When
block v; and v; are connected, the value of w;; should be a
function of the wire length budget of the interconnect between
v; and v;. Here we call this function force(, j).,

0 i # 7 and no interconnect between
v; and vj
Jorce(i,5) i # j and v;, v; are connected

wi; =

i =j (The sum of wi
in the row i)

n
- Ek:l,k;ﬁ Wik

The function force(3,j) is used to adjust the relative loca-
tions of v; and v;, and it should be a function to decrease as
the wire length budget between v; and v; increases. In our
experiment, we choose the simple reciprocal function

. c
ce = —

where I(3,j) is the wire length budget between v; and v;, ¢
is a constant to be determined by experiment.

Normally, the positions of some circuit blocks are pre-fixed
before the placement, like the IO cells or the input/output
register arrays. These blocks are denoted as V; C V, and their
corresponding location vector is denoted as xy C x. Similarly,
the locations of all the movable blocks are denoted as vector
x. C x. The objective function can then be re-written as:

3(z) = (xe xf)(8;2 8;;)(xc T (©)

Solving the zeros of the derivative of the objective function

Qccxc + chxf =0 (7)
which can be rewritten as ;
Qccxc = —QerXs (8)

By solving this linear equation, we can get the solution for
X¢, which is the linear placement vector for all the movable
circuit blocks. However, the solution for the linear equation
is a real numbered value. The APM circuit blocks are placed
by abutment. The solution in x. can not be used directly as
the actual locations for the blocks; instead, they should be
interpreted as relative ordering of the blocks. By combining
the movable vector x. with the pre-fixed vector xy, an initial
order of all the circuit blocks can be acquired.

Different algorithms could be used for the initial global or-
dering. Using quadratic objective function, the relative order-
ing of the circuit blocks could be easily adjusted by selecting
different force(3, j) functions. Quadratic objective function is
also sensitive to long wires, which could be another benefit
when long interconnect is a concern.

269

5.3 Optimization

The initial ordering solved by the quadratic objective func-
tion only indicates relative locations for the circuit blocks,
which is constrained by the wire length budget of each inter-
connect. For example, when two blocks are connected by an
interconnect having a long wire budget, they will be placed
farther apart than the ones with tighter wire budget. How-
ever, the local ordering of the circuit blocks might not be opti-
mal because quadratic placement has no knowledge of circuit
block size and routing track limit, even though it can generate
a good global placement ordering. A non-optimal local order-
ing might also occur when several blocks have similar values
in the vector solution of the linear equation. A computation
error could misplace them relative to each other.

Local optimization steps are needed after the initial or-
dering. A local optimum is determined when the following
conditions are met: 1) By re-adjusting the order of cells, the
interconnects violating the wire length budget are eliminated
or their number is reduced. 2) The blocks violating the routing
track budget are eliminated or their number is reduced.

Here we present a Sliding Window (SW) heuristic method
for this optimization (Figure 15). At each time, n consecu-
tive blocks are considered for optimization. These n blocks
are covered by the Sliding Window of size n. The window is
sliding from the first block. At each sliding stage, a search
is performed within the window range to find the best local
ordering, then the window is moved to the next block until the
last block is covered. This process could repeat several times
until no further improvement can be found. (Figure 15)

v Silding Window

Figure 15: Sliding Window (SW) Optimization

Within each window boundary, the total width of the blocks
is fixed and the change of the ordering within the window will
not affect the positions of the blocks outside. A local optimal
ordering will always exist which can give the best interconnect
length and routing track congestion.

Different search algorithms can be used to search for a local
optimal ordering within one window. When the window size
n is small, an exhaustive search will suffice. If n is getting
larger, a branch and bound algorithm can be used to reduce
the search space. In order to lead quickly to a promising so-
lution, the branching selection is based on the initial ordering
of the circuit blocks inside the window. The bounding cost
function Current_Cost is determined by the number of viola-
tions on both wire length budget and routing track budget. A
better solution is found if the number of violations on either
budgets is reduced. The best solution found so far is stored in
the variable Current_Best.

In the next section, we will show in most applications, be-
yond a certain range, increasing the window size does not nec-
essarily improve the result.

6 Experiments

The above mentioned methodology and algorithms have
been implemented in C++ and benchmark data path circuits
are tested. Each circuit is first abstracted into its APM and

then optimized under different wire length budgets with differ-
ent window sizes. The results are compared in the tables. The
CPU time is the running time on the Ultra 60 Sparc Station.
The Max Path represents the maximum wire length in the
critical path and different values are tested for different wire
length budgets. The length is measured in A which is the scal-
able unit. #Viire and #Veong are the numbers of violations
of wire length budget and routing track budget respectively.

Table 1 is a 32-bit 4-Tap FIR filter in transposed form.
The multiplication on each tap is implemented with a Booth
multiplier. To reduce the carry propogation time delay, the
carry and sum flows on each tap are not merged; instead,
they propogate to the next tap in parallel. At the end of the
flow, a CPA(Carry Propogation Adder) is used to merge the
final carry and sum flows and generate the output. The data
path is 3800 in width and 3200\ in height and composed of
about 20K gates. Its APM consists of 42 circuit blocks and
70 interconnects.

Table 2 is a 32-bit 8-Tap FIR filter in direct form. Again the
multiplication is implemented with a Booth multiplier. The
products of different taps are summed up by the CSA-Tree
Adder. The design is composed of about 60K gates and its
data path is 7530\ wide and 3200\ high. Its APM consists of
111 circuit blocks with 149 nets.

From these tables, we can see that the optimization will
improve as the window size increases (n= 2, 3, 4). However,
the window size above 5 will not improve the results. The
experiments prove the initial ordering solved by the quadratic
objective function generates a pretty good global placement.
A small window size (in these cases, n = 5) will generate sat-
isfying results.

Also shown in the tables, under tighter wire length budgets,
violations still exist after optimization. This means the con-
straints are too aggressive. Buffers are needed to give bigger
wire length budget or extra overflow tracks should be reserved
for more routing spaces.

7 Conclusion

In this paper, a regular global placement methodology for
data path is introduced. The interconnect length and routing
congestion are planned in parallel with the data path syn-
thesis. There are two contributions in this work: 1) An Ab-
stract Physical Model to extract bit-sliced regularity informa-
tion from DFG, 2) A two step heuristic algorithm to optimize
the linear ordering of circuit blocks in APM. This methodol-
ogy is tested on the benchmark data path circuits. The results
show a feasible placement of the circuit blocks under different
wire length budget and routing track budget constraints.

8 Acknowledgement

We would like to thank Felix Huang , Samit Chaudhuri, and
Hamid Savoj at Magma Design Automation for their helpful
suggestions. We would also like to acknowledge the reviewers
for their valuable comments.

Table 1: Placement Results of 32- blt 4—Tap FIR

co: :
(viol) (vlol)
- T - T T 1T T
7 3 T 3 T
] 3 T [1
(] 5 T 7
i1 13 [13
B2 54 0 B7
Lkdd 367 0 388

References
[1] Askar, S.; Ciesielski, M. ; Analytical approach to custom data-
path design Computer-Aided Design, 1999. Digest of Technical

270

Table 2: Placement Results of 32-bit 8-Tap FIR

MAX Path = 700X MAX Path = 500X =

SWIIT, Uvf#FWV, [# Ve
Sis ?u (v‘%‘l;e oy’

F Vi E:3% T V [F Ve
(viol) ?5" (violy " (viol)® c{‘ﬁ”#("‘1‘ (viol)'|

O

- - T T

1

4 3 1
7

7

10 12

30

-~ o oo

e

FEEEEE

312

1480

1438

|

[2

3]

4]
(8]

8

{7

8]

(9]

{10]

f11]

[12]

[13]

(14]

[18]

[16]

27

(18]

\

Papers. 1999 IEEE/ACM International Conference on , 1999 ,

Page(s): 98 -101

Serdar, T.; Sechen, C. ; AKORD: transistor level and mized
transistor/gate level placement tool for digital data paths

Computer-Aided Design, 1999. Digest of Technical Papers. 1999

IEEE/ACM International Conference on , 1999 , Page(s): 91 -
97

Kim, J.; Kang, SM. ; A timing-driven datas path layout
synthesis with integer programming Computer-Aided Design,
1995. ICCAD-95. Digest of Technical Papers., 1995 IEEE/ACM
International Conference on , 1995 , Page(s): 716 -719

Synopsys Module Compiler User Manual

Nijssen, R. X. T. ; van Eijk, C. A. J. ; Regular layout genera-

tion of logically opt:rmzed datapaths Proceedings of the 1997

international symposium on Physical design , 1997, Page(s): 42
7

Arikati, S.R.; Varadarajan, R. ; A signature based approach to
regularity exztraction Computer-Aided Design, 1997. Digest of
Technical Papers., 1997 IEEE/ACM International Conference
on , 1997 , Page(s): 542 -545

Hassoun, S.; McCreary, C. ; Regularity extraction via clan-
based structural circuit decomposition Computer-Aided De-
sign, 1999. Digest of Technical Papers. 1999 IEEE/ACM Inter-
national Conference on , 1999 , Page(s): 414 -418

Luk, W.K.; Dean, A.A. ; Multistack optimization for data-
path chip layout Computer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions on Volume: 10 1 , Jan.
1991 , Page(s): 116 -129

Cai, H.; Note, S.; Six, P.; de Man, H. ; A data path layout
assembler for high performance DSP circuits Design Automa-
tion Conference, 1990. Proceedings., 27th ACM/IEEE , 1990 ,
Page(s): 306 -311

Buddi, N.; Chrzanowska-Jeske, M.; Saxe, C.L. ; Layout syn-
thesis for data-path designs Design Automation Conference,
1995, with EURO-VHDL, Proceedings EURO-DAC ’985., Euro-
pean , 1995 , Page(s): 86 -90

Yim, J.-S.; Kyung, C.-M. ; Data path layout optimisation
using genetic algorithm and simulated annealing Comput-
ers and Digital Techniques, IEE Proceedings- Volume: 145 2,
March 1998 , Page(s): 135 -141

Nakao, H.; Kitada, O.; Hayashikoshi, M.; Okazaki,
K.;Tsujihashi, Y. ; A high density data path layout genera-
tion method under path delay constraints. Custom Integrated
Circuits Conference, 1993., Proceedings of the IEEE 1993 , 199
3, Page(s): 9.5.1 -9.5.5

Leveugle, R.; Safinia, C.; Magarshack, P.; Sponga, L. ; Data
path implementation: bit-slice structure versus standard cells
Euro ASIC '92, Proceedings. , 1992 , Page(s): 83 -88

Ienne, P.; Griessing, A. ; Practical experiences with standard-
cell based data path design tools. Do we really need regular
layouts? Design Automation Conference, 1998. Proceedings ,
1998 , Page(s): 396 -401

Chowdhury, S. ; Analytical approaches to the combinatorial
optimization in linear placement problems Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions
on Volume: 86 , June 1989 , Page(s): 630 -639

Kang, S. ; Linear Ordering and Application to Placement
Proc "20th Design Automation Conf., 1983, pp. 457-464

Sung-Woo Hur; Lillis, J. ; Relazation and clustering in a
local search framework: application to linear placement De-
sign Automation Conference, 1999. Proceedings. 36th , 1999 ,
Page(s): 360 -366

Alpert, C.J.; Chan, T.; Huang, D.J.-H.; Markov, IL.; Yan, K.
Quadratic Placement Revisited Desxgn Automatxon Confer-
ence, 1997. Proceedings of the 34th , Page(s): 752 -757

