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Abstract

Power management saves power by shutting down idle
devices. These devices often serve requests from con-
currently running tasks. Ordering task execution can
adjust the lengths of idle periods and exploit better op-
portunities for power management. This paper presents
an on-line low-power scheduling algorithm for multiple
devices. Simulations show that it can save up to 33%
power and reduce 40% state-transition delays. This al-
gorithm is robust under imperfect knowledge of future
requests and timing constraints; therefore, it is applica-
ble to interactive systems.

1. Introduction

Dynamic power management (DPM) shuts down un-
used devices to save power [3]. When serving requests
(busy), a device must be in a high-power working state.
When a device is not serving any requests (idle), it can
be shut down and put into a sleeping state to save power.
Studies show that more than 50% power can be saved
by power management [9]. Power state changes are de-
cided by a power manager (PM); PM wakes up a device
to serve requests and shuts it down to save power. State
changes take time and energy; consequently, a device
should be shut down only if it can sleep long enough to
compensate the performance and energy overhead.

In modern computers, requests are often generated by
concurrently running tasks. For instance, hard disk 10’s
can come from a compiler, a text editor, or a file trans-
fer program (£tp). Similarly, network transmission re-
quests can be generated by an Internet browser or a
telnet session.

Traditional power management focuses on predicting
the lengths of idle periods and implicitly assumes that
request arrival time cannot be changed {3] [9]. In reality,
however, the lengths of idle periods can be adjusted by
ordering task execution, i.e. by scheduling tasks. Even
though scheduling is a standard feature in operating sys-
tems (OS), task scheduling for power management has
not been well studied for OS-based power management
(OSPM) [3].
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Intuitively, scheduling for power management is to make
idle periods clustered and long, instead of scattered and
short, so that power management is applicable. Previous
scheduling techniques focus on processors [8] [10] [14]
or real-time systems [4] [12]. These algorithms deal
with only one service provider— the processor; it is un-
clear how to extend them for multiple devices. The au-
thors do not explain how to integrate the algorithms into
existing systems. Furthermore, they unrealistically as-
sume perfect knowledge of future requests.

This paper presents a greedy on-line scheduling algo-
rithm to facilitate power management for multiple de-
vices. It orders task execution such that devices can have
continuous long idle periods to be shut down. We also
show how to integrate this algorithm into existing sys-
tems. In addition to saving power, task scheduling has
another benefit:” clustered idle periods reduce the num-
bers of shutdowns, hence state-transition delays. Com-
pared to a traditional scheduling algorithm which does
not consider power management, simulations show that
this algorithm can save 33% power and reduce 40%
transition delays. The algorithm is robust under timing
constraints and with imperfect knowledge of future re-
quests. Therefore, it is applicable to interactive systems.

2. Background
2.1. Traditional Task Scheduling

Traditional scheduling algorithms do not consider power
management. Instead, they focus on performance, fair-
ness, and so on [13]. Figure 1 shows the flow of a typi-
cal OS scheduler, specifically the scheduler in Linux [1].
When the scheduler is invoked, it checks whether any
queued task needs to run. The task queue is a mecha-
nism for device drivers to request future execution, such
as polling a device [11]. Then the scheduler executes
interrupt handlers; after checking interrupts, it signals
tasks whose timers expire. Afterwards, it considers task-
specific requirements, such as timing constraints. The
last two steps in the scheduler are to select a task with
higher priority or with the largest unfinished time slice.

———) handle interrupt

Lissue timer l

I order unfinished slice |

l find highest priorityH meet timing constraint l

Figure 1: typical task scheduler



Symbol | Meaning
T time slice
The break-even time
T,/ E, | transition time / energy overhead
P, / P, | power in working / sleeping state
¥ required device set (RDS)
W, current RDS
ky length of ¥
Ia(7) | length of idle period for d at time T
E4(l) | minimum energy in duration ! for d

Table 1: symbols and meanings

Time slice (also called time quantum) is the time unit al-
located to each task [13]. A task may stop execution be-
fore using up its slice by, for example, issuing a system
call. If no task can execute, the idle process is chosen.
This paper focuses on scheduling for interactive systems
without hard timing constraints. In contrast, real-time
scheduling is more tightly constrained because it must
meet hard deadlines [5].

2.2. Break-Even Time

Since changing power states takes time and extra energy,
a device should be shut down only when the length of an
idle period is long enough. The minimum length to save
power by entering the sleeping state is call the break-
even time (Tye). Let P, and P, be the power consump-
tion in the working and the sleeping states (Py > Ps).
T, and E, are the time and energy overhead to shut
down and wake up the device. Tp, can be obtained by
this formula: P, - Tye = E, + Py - (Tpe — To); also, Tpe
must be larger than T,. Consequently,

E,-P, T,

T,
Pw — Ps 3 )

Tbe = ma.x(

@

Tie is a device characteristic unaffected by requests. We
use subscripts to distinguish multiple devices; for in-
stance, The 4, is the break-even time of device d;.

£
Y, 1 2
t 1 2 R
idle P T ¢ idle time
 IEEE
b 112 3
ty 1 2 ] -
. ”
idle time

Figure 2: two schedules of three independent tasks. The
second schedule reorders execution to make a long, con-
tinuous idle period.
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Figure 3: scheduling for multiple devices

2.3. Execution Order and Power Management

Figure 2 is an example of three independent tasks re-
quiring service from a device; T is a time slice. A block
indicates that a task is running. If the task generates
requests, the block is filled; an unfilled block indicates
that the task does not generate requests. In this figure, .
each task has multiple slices (labeled as 1,2, and 3); thé
scheduler cannot rearrange the slices within each task.
When 2T < T} < 5T, the device can be shut down
only in the second schedule because the idle periods are
too short in the first schedule. Even if Ty < 2T, the sec-
ond schedule is still advantageous. When T}, < 2T, the
device will be shut down twice in the first schedule caus-
ing delay (T,) and wasting energy (E,) two times. In
contrast, it is shut down only once in the second sched-
ule. This example shows that, compared to short scat-
tered idle periods, a long continuous idle period can save
power and reduce delays.

In a system with multiple devices, scheduling becomes
more complex. Figure 3 shows three schedules for three
tasks and two devices. In the first schedule, idle peri-
ods are not continuous. The second schedule makes d3
idle first and the third schedule makes d; idle first. If
5T < Thed, < 7T, dz can be shut down only in the
third schedule. On the other hand, if 3T < Tyeq, < 5T,
dy can be shut down only in the second schedule. This
example shows that scheduling may cause one device to
shut down while keeping another in the working state.

3. Problem Formulation

The scheduling problem for power management is to ar-
range execution orders so that idle periods are clustered
instead of scattered. We first assume that the scheduler
can perfectly predict whether a device is used by a task
in the future (¥, defined below). Later, we will show
how prediction accuracy affects power saving.

3.1. Required Device Sets

We define ¥ (¢, n) as the required device set (RDS) for
running task ¢ during its n-th time slice; ¥(t,n) =
{d: t uses d at the n-th slice}. In Figure 3, ¥(¢,,1) =



{dl}, \I’(t2,3) = ¢, 'Il(t3,2) = {dz}, and ‘I’(t2,4) =
{d1,d2}. We call the current RDS ¥,; it is the RDS
of the latest running task. Let I4(7) be the length of the
idle period for device d up to time 7. ¥(7) is the RDS of
the running task at 7. Obviously, I;(r) =0if d € ¥(7)
since this device is used and cannot be idle. Table 2
shows the relationship between I4(7) and Iy(7 + 1).

3.2. Device Energy

E(l) is the minimum energy of a device during an idle
period of length . If the idle period is long enough
(I > Tpe), the device is shut down; otherwise, it remains
in the working state. E(!) is the minimum energy dur-
ing [; it can be achieved by an “oracle” power manager,
such as off-line analysis of requests [6]. An oracle power
manager has full knowledge of future requests and shuts
down a device for all idle periods longer than Tpe.

E,+P,-(I-T,)
P, -1

ifl > Tpe
if I < Tpe

B0 ={ )

We add subscripts, Fy(l), to distinguish differ-
ent devices when necessary. Consider a sequence
of N tasks to~execute and their RDS’s are ¥,
¥y, ..., ¥n. These RDS’s will create a se-
ries of idle and busy periods for each device. Let
(Ld[].], By [1], Ld[2], Bd[Z] ves Ld[nd], Bd[nd]) be the
length of the series for device d; L4[1] and Bg[1] are the
lengths of the first idle and busy periods respectively.
L4[0] and B4[0} are defined as zero. For example, in
the third schedule of Figure 3, (L1[1], B1{1], L1[2]) =
(2,5,2) for d; and (Lz[1), Ba[1], L2[2]) = (0,2,7) for
dz. The energy of these devices during the N slices is

E= Ed:i:(Ed(Ld[il) +Pya-Bdli)) )

i=1

The two terms express the energy during those idle and
busy periods.

3.3. Scheduling for Energy Minimization

The goal of scheduling for power management is to find
a sequence (¥1,¥s,...,¥y) to minimize §. N is
called look-ahead; it is the number of slices the sched-
uler considers in advance.

de (¥(r), ¥(r+1))? [ 1a(7) and Iy(7 + 1)
X, Y) L(r)=L(r+1)=0
(Y, N) Ii(r)=0L{r+1)=1
N Y) If(r+1)=0
(N, N) Ly(r+1) =I4(r) +1

Table 2: ¥(7), ¥(7+1) and I4(7) determines I4(7+1).
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Lschedule a task to continue ‘ch

[ find a task to shut down devices l
)

select a task to maximize
the possibility of shutdowns

Figure 4: steps of selecting tasks

Theorem Optimal scheduling cannot be obtained by
looking ahead a finite number of slices.

Due to space limit, we omit the proof in this paper. This
theorem implies that we cannot find a globally optimal
schedule without considering all slices. Some tasks,
such as tcsh, may execute arbitrarily long; therefore,
it is impossible to consider all slices in advance.

4. Scheduling for Power Management

4.1. Scheduling Boundaries

Since optimal scheduling is impossible by looking ahead
a finite number of slices, we need to determine the
number of slices to look ahead. We use a heuristic
way for finding the number of slices; our algorithm
finds the scheduling boundary of each task. It is the
boundary when the task starts generating requests for
a device which could have been idle previously. It is
the largest m such that ¥(¢t,m — 1) 2 ¥(t,m) and
U(t,m) N ¥(t,m + 1) # ¥(t,m + 1) for task £. In
other words, ¥(t,m) is a subset of ¥(¢,m — 1) while
¥(t,m + 1) is not a subset of ¥(t, m). A limit, M, can
be set for the scheduling boundary so that m < M to
reduce the number of slices considered. For dependent
tasks, M can cause one task to wait until the other is
scheduled. These boundaries create a group of ¥’s to
schedule.

4.2. Task Selection

Figure 4 shows the steps to select tasks. First, it selects
a task whose RDS is the same as ¥; then, it finds a task
that can cause some devices to be shut down. If neither
step succeeds, it selects a task with the best potential to
save power in the near future. These steps follow the
procedure in Figure 1, so certain properties in the origi-
nal systems such as priorities can still hold. Whenever a
task is selected, ¥, is updated accordingly.

The scheduler first tries to find a task whose RDS is the
same as W, to avoid possible state transitions. If ¥,
cannot continue because all remaining tasks have ¥’s
different from ¥, the scheduler finds a task that can shut
down some devices that were busy previously. Because
the scheduler always tries to continue ¥, this step will
find a set of tasks with the same W¥. Suppose there are kg
slices of tasks with the same ¥ and the current time is 7.



I4(7 + kg) is updated by the rules in Tabie 2. This step
tries to minimize the average power during the k slices
by choosing ¥:
. Eq(Ia(7 + ke))
D @
If no device can be be shut down, (4) is the same for all
¥’s. The scheduler finds a task with the best “potential”
to save the most power. This potential is calculated by

Pw,d_Ps,d

max -_—
[ %:(Tbe,d - Id('l' + k;p)

) ®

It finds a W that has the best chance in the future (small
The,a —I4(7+kg)) to save the most power (large P,, g—
P, 4). If a ¥ can cause any device to be shut down, it will
be selected by (4). Consequently, when the scheduler
reaches (5), Toe,a > Ia(T + kg ) for all device and the
denominator is always positive.

This algorithm takes a *“greedy” strategy in selecting
tasks; its complexity is O(n log n) where n is the num-
ber of ¥’s determined by the scheduling boundaries.

4.3. Example

In Figure 3, all tasks need both devices after 7 = 9.
The scheduling boundaries for these tasks are 4, 3, and
2. The scheduler can select ¥, = {d;} or ¥, = {d2};
their lengths are k; = 5and k, = 2. Also, Iy, (k) =2,
Id, (’Cz) = 5, Idz (ky) B Idl (kz) = 0, and ‘I’C = ¢

For simplicity, we assume that these devices consume
the same power in either state (Py g, = Py, and
P, 4, = P, 4,). Suppose Tye,q, = 3T and Tpeq, = 7T
For ¥, formula (4) gets E"l(l,;‘: (ka)) E"J(":(k’)) =
40  Pyd — p,. The formula produces the same
result for ¥,,. Neither device can be shut down immedi-
ately; the scheduler moves to the third step. For ¥, (5)
is (Py— Ps)- (3 + 525): for W, itis (Pw — Ps)- (555 +
%) ¥, has better potential to save power; consequently,
the algorithm selects ¥,, and updates ¥, = {d2}. The
scheduler continues ¥, so the second slice is also oc-
cupied by £3. Now, due to the sequence inside £; and
t2, the only choice the scheduler has is to select tasks
whose RDS’s are {d:}. ¥ is updated to {d;} and this
RDS continues up to five slices. Finally, there are two
slices that use neither devices. The result is shown at the
bottom of Figure 3.

5. Experiments

Evaluating scheduling algorithms can be achieved
by mathematical analysis, simulation, or implementa-
tion [13]. We use a Linux-based scheduling simulator
for deterministic analysis of different workloads.
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5.1. Timing Constraints

We define timing constraints as the maximum numbers
of slices between two executions of a task. For example,
if a slice is 5 millisecond and the timing constraint is 200
slices, the task will execute at least once every second.
Timing constraints are essential for interactive systems
to maintain responsiveness, such as reacting to mouse
movement. We start with a constraint of 1000 slices and
reduce it to 100 slices. The constraints limit the sched-
uler’s choices; meanwhile, they provide shorter response
time and improves interactivity.

5.2. Device Parameters and Task Generatioﬁ

Four hypothetical devices are shown in Table 3. The sys-
tem have five tasks generating requests. Studies show
that requests are often bursty [2]; bursty requests are
simulated by clusters using cluster-interval and cluster-
length distributions in Table 4. Each distribution has two
parameters: mean and standard deviation. For an expo-
nential distribution, the standard deviation is determined
by the mean, so “-” is shown in the table.

5.3. Power Saving and Overhead Reduction

Three scheduling algorithms are compared: base
scheduling, task grouping, and task scheduling. The
comparisons start by assuming that ¥’s are perfectly
predicted; later, we show how imperfect prediction af-
fects power saving. The base scheduling implements
Figure 1 except interrupt handling. The task grouping
algorithm improves the base algorithm by including the
first step in Figure 4; the task scheduling algorithm uses
all three steps. After the execution orders are deter-
mined, a 2-competitive power manager (2CPM) decides
power states. A 2CPM is an on-line power management
algorithm using Tpe,q as the timeout value; it consumes
at most twice of power compared to an oracle power
manager [7)]. Table 5 summarizes the simulation results.
These devices consume totally 30 W in their working
states. Approximately 10% power can be saved when
applying power management to the base scheduling.

Compared to the base scheduling, additional 20% and
33% power can be saved by the grouping and the
scheduling algorithms. Because the grouping algorithm
does not consider which ¥ follows ¥, it can reduce
only 10% state changes. The scheduling algorithm can
reduce the number of state changes by more than 40%.
Since state changes cause delay and consume energy,
fewer changes reduce state-transition overhead (7, and
E,). In other words, task scheduling can save power

Device | Po | P | Tb | Eo | The |
dy 8 2 | 55| 88 128
do 10 1 144|191 | 9.6
ds 5 1050821 | 4.6
ds 7 |15 10] 62| 85

Table 3: hardware parameters. time unit: T



device
task 1 2 3 4
1 (N, 40,20) (U, 10,5 | (U,40,30) (N, 10, 5) (E, 60, -) (U, 10, 5) (E, 50, -) (E, 20,-)
2 (E, 50, -) (E, 10, -) (N, 50, 40) (E, 20, -) | (U, 40, 20) (N, 30, 20) | (N, 50, 20) (U, 15, 10)
3 (E, 60, -) (N, 12, 20) (U, 20, 6) (U, 10, 5) (N, 50, 20) (N, 20, 15) | (N, 30, 10) (U, 20, 15)
4 (E, 80, -) (E, 10, -) (E, 90, -) (E, 15,-) (N, 70, 40) (N, 20, 20) | (U, 90, 30) (U, 10, 10)
5 (U, 90, 60) (E, 15,-) | (N, 50,20) (N, 20,15) | (U, 60, 30) (E, 12,-) (E, 100, -) (N, 15, 10)

Table 4: cluster-interval and cluster-length distributions. Distribution: U- uniform; E~ exponential; N- normal.

and reduce overhead. When timing constraints become
tighter, the scheduler has fewer choices in selecting
tasks. Our simulations show that the scheduling algo-
rithm can save 20 % power when the constraint is 10
times tighter. Finally, we consider inaccurate predic-
tion of ¥’s because an on-line algorithm unlikely has
perfect knowledge of ¥’s in advance. A prediction is
inaccurate if an actual RDS is different from the pre-
dicted one. Inaccurate prediction may make idle periods
shorter than expected and wake up devices earlier. Fig-
ure 5 shows power ratio compared to base scheduling
when the prediction accuracy changes. While less power
can be saved when accuracy deteriorates, the algorithm
can still save nearly 20% power when the accuracy re-
duces by 10%. Because of its robustness under timing
constraints and imperfect knowledge of future requests,
this algorithm can be applied to interactive systems.
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Figure 5: ratio of power consumption for different pre-
diction accuracy when timing constraint is 500-slice.

6. Conclusions

We present a scheduling algorithm that controls the
lengths of idle periods to exploit the opportunities of
power management. This algorithm saves power and re-
duces state-transition overhead. Simulations show that

timing power change ratio
constraint || P, | P [ P, [ Ra% | R %
1000 27.0 |1 21.8 | 18.0 || 90.8 | 57.0
500 27.0 [ 21.8 [ 185 ] 909 | 61.3
100 27.0 | 219 | 21.5 || 91.7 | 849

Table 5: power consumption and ratio of state changes.
P, base; Py: grouping; P; scheduling. Ry, R;: ratio of
numbers of state changes to the base scheduling.
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it can save 33% power and reduce 40% state changes.
It is robust under timing constraints and with imperfect
knowledge of future requests.
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