
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 4, APRIL 2000 459

A Multilevel Engine for Fast Power Simulation of
Realistic Input Streams

Luca Benini, Giovanni De Micheli, Fellow, IEEE, Enrico Macii, Massimo Poncino, and Riccardo Scarsi

Abstract—Power estimation for validation and sign-off is a crit-
ical step in the design process. In this phase, accuracy is a key re-
quirement, but there are hard constraints on the time that can be
dedicated to power estimation. Moreover, it is important to esti-
mate the power dissipated by the system while running typical ap-
plications, i.e., extremely long streams of validation patterns pro-
vided by the designer.

The power dissipated by digital systems under realistic input
stimuli is not accurately described by a single average value, but
by a waveform that shows how power consumption varies over
time as the system responds to the inputs. In this paper, we face the
problem of obtaining accurate power waveforms for combinational
and sequential circuits under typical usage patterns. We propose a
multilevel simulation engine that achieves high accuracy in esti-
mating the time-domain power waveform, as well as the average
power with high computational efficiency.

Index Terms—Design automation, digital circuits, power estima-
tion, simulation.

I. INTRODUCTION

T HE ESTIMATION of power dissipation for digital CMOS
circuits is a central issue for designers and system engi-

neers. In the early phases of the design process, a large number
of solutions is explored and evaluated. Estimation techniques for
design exploration operate on incomplete or partially specified
information and must be fast because they are usually applied to
several design alternatives [1]. Clearly, these requirements can
be satisfied at the price of a reduced accuracy, that can be toler-
ated as long as estimation provides reliable information on the
relative power dissipation of competing options.

In this paper, we focus on another aspect of the power estima-
tion problem. After architectural exploration, design decisions
are taken, the system is partitioned, and the specification for its
components is detailed. In this phase, power budgets are given
and power constraints are inferred. As soon as new components
are designed (and synthesized), their power dissipation is eval-
uated and checked against the initial specification. Power esti-
mation in this step must obey to much more stringent accuracy
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requirements than those needed for early exploration, since ab-
solute, rather than relative power figures must be determined.
The implementation of the design is available in this phase, and
the lack of specification is not an issue: accurate power estimates
for gate or switch-level descriptions can then be obtained.

The literature on power estimation for design validation is
extensive. Most techniques target the estimation of theaverage
power dissipation, a scalar quantity that compactly represents
the power consumption over a long period of time. According
to Najm [2], gate and switch-level average power estimation
methods belong to two main categories:Probabilistic (or
Static) andStatistical(or Dynamic). The distinctive feature of
probabilistic techniques is that they do not require the explicit
generation of the input streams to be simulated; rather, they
directly propagate through the circuit user-specified input
probabilities and correlations to estimate the circuit’s internal
activity. Statistical techniques require to explicitly simulate
typical input streams, which are usually randomly generated
under some user-provided constraints concerning the switching
probabilities of the circuit inputs. To obtain trustworthy power
estimates, very long streams are needed; therefore, statistical
methods are very time consuming.

In many practical cases, streams of patterns representing typ-
ical usage of the circuit are available (or can be produced with a
relatively low effort by the designer). Such streams are usually
very long; therefore, accurate power simulation is inherently
slow and extremely expensive from the computational stand-
point. For this reason, a lot of recent research has focussed on the
development of techniques that limit the effort required to carry
out an accurate estimation of the average power dissipated by a
circuit.

We tackle the problem of reducing the simulation time from
a novel point of view. It has been demonstrated in a number of
cases [3]–[5] that average power does not fully characterize the
power dissipation of real-life circuits. Different levels of con-
sumption are in fact observed depending on the state of opera-
tion of the system. This is particularly true for systems that adopt
dynamic power management [6], [7]. In these situations, atime-
dependent power waveformthat can track sudden variations of
power consumption over time can clearly provide much more
complete information. We thus propose a technique that can be
used to quickly, yet accurately determine the power waveform,
as well as the average power, for circuits whose power dissipa-
tion follows an “up–down staircase” curve.

We leverage multilevel simulation to extract high-level infor-
mation that is used to select a subset (sample) of the entire input
stream. Accurate power simulation is then performed on the se-
lected subset. One important strength of our technique is that
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the selection of the sample can be performedon-line, while the
high-level simulation is carried on.

From the user point of view, a fast cycle-based simulation
is performed on the complete input stream. During simulation,
our tool monitors anindicator functionwhich provides infor-
mation on the variations of the input stream and power dissi-
pation. Accurate power simulation is automatically dispatched
when needed for tracking the changes in the “local” mean value
of the input stream. At the end of the cycle-based simulation,
data on the time-varying power consumption of the system are
available at the price of a modest time overhead (due to the ac-
curate simulation performed on a small fraction of the stream).
The tool automatically constructs the time-domain power wave-
form and computes its average.

The indicator function does not necessarily depend on the pri-
mary inputs only. As long as the internal state of the system is
available during cycle-based simulation, its value can be taken
into account as well. The same holds for the system outputs.
In general, any information available during cycle-based sim-
ulation can be exploited for constructing an indicator function.
Obviously, there is a tradeoff between the accuracy of such func-
tion and the overhead it imposes on cycle-based simulation.
Our method is practical only if it guarantees that

, where is the time spent in fast cycle-based
simulation, is the overhead for the computation of the indi-
cator function, is the time required to perform accurate
power simulation on the sample, and is the time required
to perform accurate power simulation on the entire input stream.

Two recently proposed techniques have close relationship to
ours. The power ratio method [8] is based on multilevel sim-
ulation. It assumes that the power estimate provided by
high-level fast power simulation is proportional to the power
dissipation estimated with accurate simulation. In symbols:

. The unknown proportionality constant,, is
simply obtained by computing both and for a small
subset of the complete input stream, and by subsequently taking
their ratio. Unfortunately, for deterministic, designer-supplied
input streams, is usually far from being constant; in these
cases, the method is no longer applicable and may lead to inac-
curate estimates.

Stratified random sampling [9], though developed as an al-
ternative to Monte Carlo methods [10], has some similarities to
the technique we propose in this paper. In fact, it generally re-
quires only a small number of accurate simulations to achieve
power estimates which are acceptable and, as for our method, it
exploits a high-level power estimator to direct the choice of the
patterns that will be simulated with high accuracy. In the form
it has been presented, however, stratified random sampling tar-
gets the estimation of average power of input streams for which
some statistical constraints, such as error and confidence level,
are given; in addition, its applicability to the construction of
time-dependent power waveforms has not yet been investigated.
Finally, its effectiveness has been demonstrated only for combi-
national circuits. On the contrary, our approach works for purely
deterministic input streams, it can provide the user with infor-
mation on the average power values, as well as the changes of
power dissipation over time, and it properly and accurately han-
dles sequential circuits.

The tool has been benchmarked on example circuits taken
from the Iscas’85 [11] and Iscas’89 [12] suites, as well as on a
programmable digital filter. Given a circuit and an input stream,
we have compared the average power value calculated using our
technique to that obtained by switch-level simulation [13] of the
entire stream. Results are satisfactory, the average error being
below 2% for the combinational examples and below 6% for the
sequential circuits. Moreover, the estimated power waveforms
match closely the actual ones. Concerning the average simula-
tion speed-up, it is around 50X for the combinational bench-
marks and around 20X for the sequential examples.

The rest of the manuscript is organized as follows. Section II
shows how theup–down staircase average behavior of a cir-
cuit can be tracked using an indicator function, and introduces a
set of such functions that can be fruitfully used for constructing
a power waveform. In Section III, we describe the multilevel
simulation approach and we show how the indicator function is
used to trigger the accurate power simulation engine. In Sec-
tion IV, we present interpolation schemes for the extraction of
the complete power waveform. Experimental results are pro-
vided in Section V. Section VI concludes the paper.

II. TIME-DEPENDENTPOWER WAVEFORMS

A. Staircase AverageBehavior

Consider a measurable property of a circuit that
changes over time (in our case, power is the property of
interest). We assume discretized time. A time quantum is
calledcycle. The property has anup–down staircase average
behavior,staircasefor brevity, over time when its running (or
sliding) average taken over a window of cycles, ,
changes in a nonmonotonic fashion, with long plateaus where

is approximately constant, mixed with regions where it
changes rapidly. Fig. 1(a) shows the diagram of a time-varying
property with staircase behavior, and Fig. 1(b) shows the
diagram of . The value of (the averaging length) is
shown as well. Notice that is not defined for the first

time points.
Extensive experimentation [14], [15] has shown that, when

the input streams are randomly generated and composed of uni-
formly distributed, uncorrelated patterns, the power dissipation
does not have a staircase behavior. On the other hand, the mea-
sured short-term average power dissipation of many real-life cir-
cuits has a staircase behavior [3]–[5], [7]. The key observation
is that such behavior appears to be induced by the input streams
which are processed by the circuits in typical operating condi-
tions. This is certainly the case for power-manageable circuits,
where the value of some inputs determines the mode of opera-
tion and, consequently, the power consumption level [6], [7].

Our target is to accurately estimate the power dissipation in-
duced in a circuit by realistic input streams, which are not uni-
formly distributed, nor uncorrelated. This is a challenging task,
because it requires a difficult tradeoff choice. The number of
samples, , taken to compute the running average is the key pa-
rameter for achieving the desired accuracy. If we choose an ex-
cessively large , we loose accuracy in the estimation of the av-
erage power waveform . The larger , the more
resembles to a constant. On the other hand, ifis too short, the
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Fig. 1. Waveforms for (a)P (T ) and (b)P (T ).

noise in the estimation of the average power will be too large
(because of the effect of pattern dependency) and accuracy will
be compromised as well.

Power estimation in the staircase situation is further compli-
cated by computational issues. As explained in the introduction,
we cannot afford to simulate entire input streams with an accu-
rate power simulator. Therefore, we exploit information avail-
able during fast high-level simulation (hereafter calledLevel 1
for brevity) to reduce the number of slow, accurate low-level
simulations (hereafter calledLevel 2) needed to estimate the
power. Differently from the existing techniques, this informa-
tion is used to estimate how power changes over time when the
given input stream is applied at the circuit inputs.

B. The Indicator Function

We call indicator functionthe Level 1 information exploited
to track the variations in switching activity of the input stream.
The basic requirement for the indicator function is that it must
change over time, and its changes should be related to the vari-
ations of the power dissipation. Notice that this is a milder re-
quirement than proportionality (as requested by the power ratio
method).

We propose alternative indicator functions based on sampling
the (zero-delay) switching activity and the value of the nodes in
Level 1 simulation. The sampling point selection process allows
us to:

• tradeoff accuracy for computational overhead (increasing
the number of sampling points increases the overhead in
Level 1 simulation);

• exploit designer knowledge, if possible, to select specific
nodes that should be sampled to increase the accuracy of
the indicator.

We focus on indicator functions that do not require any de-
signer intervention in the choice of the sampling points. Our
target is to build a fully automated procedure for power esti-
mation that can be applied successfully even without complete
understanding of the design functionality and hardware archi-
tecture. In [16], it was observed that there exists strong correla-

tion between power dissipation in a combinational logic circuit
and the switching activity at its inputs and outputs. A similar
conclusion was reached in [17], [18], where input and output
switching activities were represented byentropyvalues.

The basic claim in [16] is that power dissipation can be pre-
dicted with reasonable accuracy by computing a function of
input/output (I/O) switching. In symbols

(1)

where is the power dissipated during cycle number
and are, respectively, the values of inputat the

beginning of cycles and and are, respectively,
the output values at the end of cyclesand . The function

is a general (possibly nonlinear) mapping .
The choice of the sampling points for the indicator function

is based on a similar assumption. We propose four different cri-
teria, listed below in order of increasing accuracy and computa-
tional overhead.

• Sampling only the primary inputs. The main limitation of
this criterion is that it does not consider any information on
how input switching propagates through the logic. More-
over, for sequential circuits, the effect of internal state on
power dissipation is not taken into account. On the other
hand, this criterion has minimum overhead. Indeed, Level
1 simulation is not even needed, and analysis of the input
stream is sufficient to extract the required information.

• Sampling primary inputs and outputs. This criterion in-
creases the information on internal switching, since the
end effect of the input propagation is sampled. Again, this
criterion is targeted towards combinational circuits, since
it does not account for internal state. Compared to the pre-
vious one, this choice of sampling points has higher over-
head: the number of sampling points increases and, more
importantly, Level 1 simulation must be executed for com-
puting the correct output values.

• Sampling primary inputs and outputs, as well as the in-
puts and outputs of the flip-flops. This is the full cycle
boundary information that is usually available in Level 1
simulation (which is cycle accurate). This criterion has
higher overhead than the first two (the number of sam-
pling points is greatly increased), but it is well suited for
dealing with sequential circuits, because the internal state
is exposed.

• Estimating the full zero-delay activity (as in the power
ratio method and in stratified random sampling), in-
cluding internal nodes in the combinational logic. This
criterion has high overhead, because it prevents fast
compiled cycle-based simulation (at Level 1) to “compile
away” internal nodes. Moreover, it is not possible to
perform Level 1 simulation at a level of abstraction higher
than the logic level, because the values of the internal
nodes cannot be sampled (they may not be instantiated).
Although zero-delay simulation is still much faster than
full-delay event-driven simulation (or switch-level sim-
ulation), it may be more than one order of magnitude
slower than compiled, cycle-based simulation.
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The computation of the indicator function requires not only
the choice of the sampling points, but also the specification of
how the sampled information should be used to compute a mea-
sure that tracks the temporal variations of the average power.
The main problem is that power is strongly pattern dependent:
its value can change widely in successive clock cycles. More-
over, we are not interested in tracking the pattern-by-pattern
variations of power but, rather, the variations of the short-term
average power. For these reasons, the indicator function must in-
clude a short-term time averaging operation. The simplest one
is then the number of switching events averaged over a time
window of size

(2)

where is the set of sampling points, are Boolean variables
that have value 1 when the sampling pointswitches between
cycle and .

The choice of in (2) is critical. It should be long enough
to smooth out fluctuations due to single-pattern dependence, but
it should be short enough to capture the staircase behavior. The
issue of how to select will be discussed in Section III.

Equation (2) defines the indicator as a function of time. The
short-term average can be seen as asliding window: at time

, we consider sets of values of the sampling points, one
for each simulation cycle from time to . The sliding
window average is well suited to estimate variations over time,
because it evolves in parallel with the advancement of the global
simulation time. This is in sharp contrast with stratified random
sampling, where samples can be selected and averaged together
in any order, without any constraint on temporal adjacency.

The simple time-averaged sum of switching events of (2) can
be replaced by more complex indicator functions. The one we
use computes the weighted sum of switching events averaged
over the window of size

(3)

In this case, of (3) is replaced by . The weights rep-
resent the relative influence of the switching of sampling point
, and can be user-specified. As a default, they are all set to the

value 1; therefore, (3) reduces to the standard time-average sum
of switching events.

III. M ULTILEVEL POWER SIMULATION

The multilevel simulation engine we propose is conceptually
simple. Given a long stream of input patterns, together
with a high-level and a low-level description of the circuit under
analysis, the Level 1 simulation is started, whose tasks are the
following:

1) monitoring the sampling points required for the compu-
tation of the indicator function;

2) computing the indicator function ;
3) performing thestaircase teston .

The purpose of the staircase test is to decide, based on the
changes over time of , when to fire Level 2 simulation.
Whenever the staircase test triggers, the input and state values
are extracted from Level 1 information and used to set the
initial state for Level 2 simulation (this step is essential when
dealing with sequential circuits). After that, the multilevel
simulation can proceed in lock-step.

Level 2 simulation continues until astopping criterionis sat-
isfied. Such criterion decides when sufficient accurate power
data have been collected to obtain a reliable short-term average
power estimate (notice that is a function of time).
The value is a point in the average power waveform.

is conventionally set to the value assumed in the last cycle of
Level 2 simulation.

At the end of the simulation, all patterns have been sim-
ulated at Level 1, but only patterns have been simulated
at Level 2. Typically, . The end result is a set
of values

(4)

where . The power values and the times
are a set of samples of the average powerwaveformof the

circuit.
The definition of the estimation strategy is completed by ad-

dressing the following open issues.

• How to measure the efficiency and accuracy of multilevel
simulation.

• How to choose the length of the sliding window av-
erage needed for computing .

• How to use the value of to decide when firing ac-
curate simulation to track the staircase behavior (i.e., pro-
viding the definition of the staircase test).

• How long to run accurate power simulation every time it
is started by the staircase test on (i.e., providing the
definition of the stopping criterion).

A. Efficiency and Accuracy Metrics

The performance of the multilevel scheme is measured by
the speed-up achieved with respect to accurate simulation of the
entire input stream, because this is the only known way to extract
complete power information of systems whose power holds a
staircase behavior. The speed-up is defined by

(5)

where is the time needed to simulate the circuit for
cycles at Level 2, is the time for simulating cycles at
Level 1, is the time overhead caused by the calculation of
both the indicator function and the staircase tests, and is
the time required to simulate cycles at Level 2 during
multilevel simulation.

The accuracy of the multilevel scheme can be measured by
comparing the average power, , obtained by simulating
the complete input stream at Level 2 with the estimate, ,
obtained by averaging the power samples . Clearly,
the latter must be weighted with theduration of the samples:



BENINI et al.: A MULTILEVEL ENGINE FOR FAST POWER SIMULATION OF REALISTIC INPUT STREAMS 463

. The duration of is
defined as

(6)

where is the clock period of the simulator. The weighted
average is needed because our technique extracts new power
samples only when the staircase behavior is detected, i.e., when
we are moving from one plateau to another. If the average power
remains on a plateau for a long time, only one power sample is
extracted, but it represents the average power dissipation of a
very long time interval.

Although accurate average power estimation over the entire
input stream is a minimum requirement, error on the average
power estimation is not a reliable measure of the accuracy of
our method in tracking the power waveform. Thus, we need
to define a tighter error metric. Observed that and

are both time-dependent functions (i.e., waveforms),
a good metric for estimating the “similarity” of two func-
tions over an interval is theroot-mean-square relative error
(RMSRE). In our discrete-time setting, RMSRE is defined as

(7)

where without time dependency is the total average power.
One difficulty in estimating RMSRE lies in the fact that our
method computes only in a small subset of the entire
interval, namely the sampling points. Hence, we need to de-
fine aninterpolation schemethat, given the values , ex-
tracts the values of for all remaining . Interpolation
schemes are discussed in Section IV.

B. Choosing the Window Size

The choice of the parameter , that is, the length of the
sliding window for the running average, is key. If is too
small, the value of will be noisy: the pattern-dependent
fluctuations of the indicator function may change the value of

too much and too rapidly. As a result, it may become im-
possible to discern slow variations of due to staircase be-
havior from fast variations due to pattern dependence. The con-
sequence of this problem is that the staircase test is triggered too
often and too many Level 2 simulations are executed, causing a
marked slow-down of the multilevel simulation engine.

On the other hand, if is too large, may have exces-
sive inertia and change too slowly. In this case, the variations
of over time may be smoothed down to a constant av-
erage value that does not represent the variation of the average
value over time. As a consequence, the staircase test is almost
never satisfied. The multilevel simulation becomes fast (a min-
imum number of Level 2 simulations is executed), but accuracy
in tracking the power waveform is lost.

To avoid both pitfalls, the choice of must be a compromise
between good tracking capability and noisiness. Our procedure
for choosing is based on a calibration process. We move from
the observation that, when uniformly distributed, uncorrelated
patterns are fed to the system, the average power does not have

a staircase behavior and tends to converge to a constant value.
We conjecture that the same holds for the indicator functions.

Before starting the multilevel simulation on the input stream,
we perform a calibration Level 1 simulation with independent,
uncorrelated input patterns. The simulation is run until conver-
gence is reached on the average value of. Assume that the cali-
bration simulation converges in cycles. is the number
of simulation cycles needed for convergence on a stable average
value of when the input patterns are independent and uncorre-
lated. This value is significant for our purposes, because it gives
us information on the number of cycles needed to smooth out
only the power variations due to strong pattern dependence. The
calibration simulation allows us to separate the effects. During
calibration, the power does not have a staircase behavior, but it
is still strongly pattern dependent.

The number of cycles for short-term average,, is chosen
to be

(8)

where . When , we have ahigh inertia .
When , we may be able to track fast step-wise variations,
but we may sometimes take a simple fluctuation due to strong
pattern dependency at the beginning (the end) of a step. The
choice depends on the target of the power estimation process.
If we are mainly interested in obtaining a single average power
value with maximum efficiency, should be chosen close to
one. On the contrary, if we need great accuracy on the estimate
of the average power value, or we want to finely sample the
power waveform, should be close to 0.5. The price paid for
the increase in accuracy is a longer runtime (a larger number
of Level 2 simulations are required). Values of are not
advisable for performance reasons.

C. Staircase Test

During Level 1 simulation, is computed on every simu-
lation cycle. Although is defined at every clock cycle, it is
meaningless formulating a staircase test that involves decisions
taken on time intervals shorter than, being this the maximum
resolution.

The test is based on an upper bound on variations of ,
and it is applied using the following procedure.

• Initially, Level 2 simulation is started to obtain the first
power sample. Concurrently, Level 1 simulation is run and

is computed. When Level 2 simulation is stopped
(through the criterion described later), the value of
at the stopping time is stored.

• Level 1 simulation and the computation of the indicator
function are carried on for . The staircase test is
disabled for a shortrecovery interval, that is, until

, where . As mentioned above, the
rationale for this choice is to provide a lower bound on the
granularity at which the staircase behavior is tested.

• After the recovery interval, the staircase test is applied at
every clock cycle . A staircase behavior is detected when

(9)
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where is a coefficient
smaller than one, and is an upper bound to vari-
ations of . In the case of the simple indicator function
of (2), , where is the cardinality of the set
of nodes in the circuit whose switching activity is sampled
by the indicator function.

• If the test is satisfied, Level 2 simulation is triggered. Upon
stopping of the latter (at time ), is stored and the
process is restarted.

Parameter controls the sensitivity of the test; its typical
range is . The choice of is again dictated by a
tradeoff between sensitivity and accuracy in the estimation.

D. Stopping Criterion

The last decision to be taken is when to stop the Level 2 simu-
lation after it is started by the staircase test. The simplest choice
is to execute Level 2 simulation for a fixed number of clock
cycles. Unfortunately, no simple criterion is available for the
choice of such number.

We adopt an adaptive strategy, where the number of Level 2
simulations is variable and depends on the operating conditions.
More specifically, the stopping criterion is based on a conver-
gence test on the average power value. Although this choice is
intuitively attractive, it is heuristic and relies on the assumption
that on the short term, the average power dissipation appears
nonstaircase, hence it converges rather rapidly to a constant av-
erage value.

Clearly, this assumption is not true in general. More in detail,
two problems may arise. The first is premature convergence:
Level 2 simulation is stopped because convergence on the av-
erage is reached too rapidly (for example, if, by chance, the
power dissipated at the first two or three cycles of Level 2 simu-
lation is almost constant). The second, and more serious, is lack
of convergence. In this case, Level 2 simulation never stops. To
mitigate both problems, we provide the following lower bound
on the number of vectors that must be simulated in Level 2:

, with , typically between 0.5 and 1. Similarly, the
upper bound is , with , typically between 2 and 3.
The rationale of these bounds is based on the observation that
the convergence of power estimation is related to convergence
of the indicator function, although it is expected to be slower.

IV. I NTERPOLATION SCHEMES

The multilevel simulation engine of Section III computes a
set of samples of the average power waveform. The
estimation of for is calledinterpolation. The
simplest interpolation strategy ispiecewise constant: the value
of is assumed to be equal to the last sampled value

(10)

The piecewise constant interpolation is consistent with the as-
sumption that average power has a staircase behavior, but has
two main limitations. First, it performs quite poorly when the
transitions between plateaus are smooth (or when the waveform
is not constant nor fully staircase); second, it does not com-
pletely exploit the information provided by the indicator func-
tion.

Fig. 2. (a) Discontinuous variation ofR. (b) Linear smoothing ofR. (c) Mixed
smoothing ofR.

We propose an enhanced interpolation scheme that exploits
the availability of to improve accuracy. The method is
based on the assumption that, locally, is proportional to

. In other words, once a sample has been ob-
tained, we can compute a proportionality constant

. Notice that the definition of is the same
as thepower-ratio. However, unlike [8], we do not assume that

is a constant across the simulation.
In our interpolation strategy, is computed at each

power sample; then, its value is used to estimate when
. In symbols

(11)

Experimentally we noticed that, although this scheme leads
to much better predictions than the piecewise constant one, it
still has limited accuracy because of the discontinuity on the
values of . The difference between and
can be big, and this leads to increased estimation errors in the
left neighborhood of the sampling points (i.e., for cycles
immediately before a sampling point).

Error can be further reduced by imposing a smooth transi-
tion between and . We employ simple linear
smoothing. Fig. 2(a) shows a discontinuity between two succes-
sive samples of . Fig. 2(b) shows the simplest linear smoothing
of . Linear smoothing performs well for waveforms with short
plateaus and numerous sampling points. The main limitation
of linear smoothing is that it has limited accuracy for power
waveforms with long plateaus and few (and well apart) sam-
pling points. The accuracy loss is caused by the fact that when

and are far apart, the value of remains close to
for a long time before starting to change. A more robust and
accurate smoothing is shown in Fig. 2(c). is held at the
constant value , then it transitions linearly to .
The transition takes cycles. This scheme gives good results
for long plateaus and reduces the error around sampling points.
The choice of for the duration of the transition is dictated by
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the fact that is the “inertia” of the algorithm. In other words,
transitions faster than are not significant for power estimates
averaged over . Assuming that the entire variation of
takes place in cycles is consistent with the assumption of
staircase power waveform, with steep edges, where the speed of
variation is controlled by the window amplitude .

More complex interpolation schemes could be adopted to
further improve accuracy. In particular, full-fledged regression
models (e.g., [19]) could be constructed. This would increase
the complexity of the method and decrease its performance.

V. EXPERIMENTAL RESULTS

In order to investigate the applicability and the accuracy of the
proposed methodology, we have performed three sets of power
estimation experiments, and we have checked the so computed
results against the ones we have obtained through exhaustive
transistor-level simulation using Irsim [13]. In the following
sections, we report on our findings. Before that, we present an
analysis on how the choice of some of the tuning parameters that
can be selected by the user may impact the performance and ac-
curacy of the method.

A. Sensitivity Analysis

There are five user-selectable parameters that control the op-
erations of the multilevel simulation algorithm described in Sec-
tion III.

• , that controls the size of the sliding window . Pa-
rameter lies within the interval . Remember that,
as , the window size .

• , that defines the amplitude of the recovery interval, i.e.,
the number of clock cycles for which the staircase test is
disabled after a Level 2 simulation is stopped. Parameter

lies within the interval .
• , that controls the sensitivity of the staircase test. Smaller

values of imply higher sensitivity. Parameter lies
within the interval .

• and , that control, respectively, the minimum and the
maximum number of Level 2 simulations to be performed
when a power sample is taken. Parameterlies within
the interval , while parameter lies within the in-
terval .

We study the sensitivity of the algorithm to the values such
parameters can take on. Intuitively,and are critical for tuning
the accuracy and speed of the simulation, sincecontrols the
short-term averaging of the power samples andcontrols the
dispatching of Level 2 simulation. On the other hand,
and are not critical, because they control secondary features
of the simulation engine. Experiments confirm this intuition:
accuracy and simulation speed depend very weakly on and

. Hence, we have assigned them fixed values (
and ) and we have not analyzed them further (these

values are also used for the experiments in Sections V-B, V-C,
and V-D). Conversely, we have studied the impact of parameters

and on efficiency and accuracy.
Fig. 3(a) and (b) shows the simulation accuracy (normalized

RMSRE) and the number of Level 2 simulations as a function
of for a fixed value of , respectively.

(a)

(b)

Fig. 3. (a) Normalized RMSRE. (b) Number of level 2 simulations versusk.

As the value of gets smaller, the sliding window width de-
creases, and the value of becomes noisier. The macro-
scopic effect of the noisiness of is that it has larger vari-
ations on a short time scale with the result that the RMRSE
increases, and Level 2 simulation is started much more often.
Concerning the estimation accuracy [Fig. 3(a)], we can notice
that it is almost constant over the full range of, except for very
small values, where it increases sensibly. Apparently then, the
larger the value of , the smaller the error. However, if we allow

to get values outside the range (typically ), the
RMSRE starts increasing, because for large sliding windows the
indicator function tends to lose its tracking capability, and it is
not able to correctly predict large power variations.

Based on these considerations, the selection ofmight still
appear not critical, as long as average power is locally almost
constant. However, if the target is to construct a power wave-
form, we would like to keep the tracking capability of the tool
as high as possible, that is, to use smaller values of. There-
fore, we pick the smallest value ofthat allows to achieve the
required accuracy. The choice ofis clearly also affected by its
impact on simulation time. As shown in Fig. 3(b), the number of
Level 2 simulations increases asdecreases, whereas for small
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(a)

(b)

Fig. 4. (a) Normalized RMSRE and (b) number of level 2 simulations versus

.

values of it increases dramatically. The shape of the
curves gives hints on the minimum value ofthat can be chosen.
Putting together the constraints resulting from Fig. 3, we used
the value for all the experiments of Sections V-B, V-C,
and V-D. Fig. 4(a) and (b) shows the dependency of simula-
tion accuracy (normalized RMSRE) and the number of Level
2 simulations on the value of parameter(for a fixed value of

), respectively.
As gets larger, the estimation error increases because the

simulation engine cannot effectively track the staircase behavior
of the power waveform. At the same time, for larger values of,
the staircase test becomes less sensitive and Level 2 simulation
is started only for very large variations of . The limiting
case is when Level 2 simulation is performed only once at the
beginning of the input stream. This happens when . If
is too small, accuracy increases but performance decrease, be-
cause Level 2 simulation is triggered too many times. Hence, the
choice of the optimal value of is given by the tradeoff between
accuracy and number of Level 2 simulations. Consistently with
the two plots, we have set for all the experiments de-
scribed in Sections V-B, V-C, and V-D.

B. Combinational Circuits

We have considered all the ISCAS’85 examples [11]. The cir-
cuits were optimized and mapped for area using SIS [20] onto a
gate-library consisting of 2-inputNAND andNORgates, inverters,
and buffers. Tables I and II collect the results of the experiments.
Columns , and of Table I give the number of circuit in-
puts, outputs, and gates, respectively. Column provides the
actual values of average power obtained through complete tran-
sistor-level simulation of the input stream. Finally, columnEsti-
mated Powershows the values of average power obtained with
the technique of this paper. The column is further split in three
sets of columns, one for each of the three sampling points selec-
tion criteria we have considered, namely, input (In), input/output
(In–Out), and global switching activity (Intern). Each column
shows the estimated average power (column ), the abso-
lute value of the relative error, with respect to the actual av-
erage power (column ), and the value of the RMSRE. For
the same benchmarks, Table II gives the time required to esti-
mate the average power through complete transistor-level sim-
ulation (column ), and for each of the three indicator func-
tions, gives the time required to complete
the estimation (column ), the achieved speed-up, SP, and the
number of Level 2 simulations triggered (column). The size
of the sliding window , specific for each circuit, that we have
used in the indicator functions is also shown in the right-most
column.

All power values in Tables I and II, and in those included
in the following sections, are expressed in milliwatts, while the
CPU times are measured in seconds on a DEC AXP 1000/400
with 256 MB of memory.

Since the benchmark circuits do not come with typical input
patterns, we built input streams trying to emulate real-life usage
sequences. The generated input streams have very high tem-
poral and spatial correlation (i.e., correlation between succes-
sive patterns and between input variables) and, more impor-
tantly, are highly nonstationary. The average input activity is
changed abruptly and wide variations are imposed several times
in the stream. Between variations, the average input activity is
roughly constant, although the vectors are correlated. The com-
plete streams consisted of 50 000 patterns.

The error between the average power values provided by the
tool and the ones obtained through complete transistor-level
simulation of the input stream are limited, namely, 1.715%,
1.117%, and 0.572%, depending on the selected sampling cri-
terion. Also, the RMSRE is low (0.071, 0.062, and 0.049). On
the other hand, the simulation speed-up is substantial (50.96X,
49.08X, and 47.13X).

As expected, a more accurate sampling criterion yields in-
creasingly accurate estimates. However, it should be observed
that the difference in accuracy is quite small. This is of interest
when Level 1 simulation is carried out at a high level of abstrac-
tion, e.g., behavioral simulation. In this case, the knowledge of
the internal switchings is not available, and the designer can rely
only on I/O information.

Fig. 5 shows, for benchmarkc432 , how the three sampling
criteria (the top three plots, from left to right), behave in tracking
the power waveform obtained by simulation of the given stream.
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TABLE I
ESTIMATION RESULTS FORCOMBINATIONAL CIRCUITS: AVERAGE POWER, ERROR, AND RMSRE

TABLE II
ESTIMATION RESULTS FORCOMBINATIONAL CIRCUITS: TIME AND SPEED-UP

The waveform, obtained with the indicator function based on
I/O sampling and the mixed smoothing interpolation method, is
the bottom left plot. The actual power waveform is the bottom
right plot. Obviously, the scales for the ordinates of the top three
plots are different from those of the bottom ones, since the indi-
cator functions provide numbers of weighted switching events,
as opposed to actual power values. Comparing the two bottom
plots, we observe that the indicator function based on I/O ac-
tivity provides sufficient information to track the staircase be-
havior of the power for combinational circuits.

To check the robustness of the method, we applied it to input
streams that do not cause a staircase behavior in the power dis-
sipated by the circuit. Table III shows the results obtained using
the I/O sampling points selection criterion. ColumnEstimated
Powerprovides the various data and it is further split in two sets
of columns: the first refers to a uniform random input stream,
the second to a stream that presents slow variations (sinusoid)
of the switching activity with respect to time. As expected, the
RMSRE for theRandomstream is very low and the number of
Level 2 simulations is exactly 1. In fact, since this type of stream
does not present any wide variation of the switching activity, the
method requires only one low-level simulation at the beginning
of the simulation. Also, the RMSRE for theSinusoidalstreams
is quite low, indicating the effectiveness of the two-level simu-

lator in tracking the behavior of streams with different activity
profiles. Clearly, the number of Level 2 simulations is high, due
to the continuous variations of the switching activity.

C. Sequential Circuits

We have selected a subset of the ISCAS’89 benchmarks
[12], so as to create a representative sample, in terms of
functionality, size, and topological structure (sequential depth,
number of inputs, outputs, and flip-flops), of the existing
examples. Tables IV and V show the results obtained for these
circuits (column FF indicates the number of flip-flops). For the
experiments we have used the following indicator functions: 1)
primary input and primary output activity (In–Out); 2) primary
input, primary output and state activity (In–Out-State); 3)
complete internal activity (Intern).

As for the combinational examples, estimates are accurate,
concerning both average power (5.703%, 3.823%, and 2.246%,
depending on the sampling points selection approach) and
RMSRE (0.135, 0.116, and 0.082). On the other hand, the
speed-up with respect to exhaustive simulation is not as high
as in the case of combinational circuits (21.63X, 20.28X, and
17.73X); this is caused by the fact that the convergence of each
Level 2 simulation is usually slower, due to the presence of the
circuit state.
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Fig. 5. Indicator Functions, mixed smoothing interpolation, and power profile for circuitc432 .

TABLE III
ESTIMATION RESULTS FORCOMBINATIONAL CIRCUITS: RANDOM AND SINUSOIDAL STREAMS

TABLE IV
ESTIMATION RESULTS FORSEQUENTIAL CIRCUITS: AVERAGE POWER, ERROR, AND RMSRE

For some sequential circuit topologies, the temporal behavior
of the indicator function based solely on I/O switching may not
be informative enough about the actual power. This is because,

for circuits having far more latches than primary inputs, the de-
gree of switching occurring at the primary inputs has a limited
correlation to the overall activity (and thus power); rather, this is
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TABLE V
ESTIMATION RESULTS FORSEQUENTIAL CIRCUITS: TIME AND SPEED-UP

Fig. 6. Different behavior of two sequential benchmarks.

mainly driven by the switching at the present state lines, which
induces most of the switching inside the combinational logic.

Fig. 6 shows a graphical view of this fact. The plots at the top
of the figure refer to circuits298 . This circuit falls into the class
of circuits just described, since it has 3 inputs and 14 latches. Al-
though the input stream for the circuit has an average switching
activity with staircase behavior, the power dissipation (the top
right plot) has very weak correlation with the input switching
activity (the staircase behavior is heavily smoothed out). Nev-
ertheless, the behavior of power dissipation can be tracked, be-
cause the indicator function also observes the switching activity
of the state variables. The mixed smoothing interpolation of the
power dissipation is shown in the top left plot.

The plots at the bottom of the figure, on the other hand, refer
to circuits344 ; in this case, waveforms seem to exhibit a “com-
binational” behavior, in the sense that the input activity has a

considerable control over the internal degree of switching (and,
consequently, power dissipation).

In general, we expect realistic sequential circuits to have a
behavior similar tos298 . In other words, sampling state in-
formation is key for achieving good accuracy. This conjecture
is confirmed by the average power dissipation estimates. The
accuracy of the estimate based on input, output and state ac-
tivity is much better than that based on just input and output
activity. Obviously, the most accurate estimate is obtained if we
use the complete internal switching activity information (but, in
this case, the computation of may be computationally ex-
pensive, because it requires gate-level zero-delay simulation).

Similarly to the case of combinational circuits, we show in
Table VI some results for input streams that do not exhibit a
staircase behavior in the power dissipated by the circuit. As for
the combinational examples, the results for theRandomstreams
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TABLE VI
ESTIMATION RESULTS FORSEQUENTIAL CIRCUITS: RANDOM AND SINUSOIDAL STREAMS

are good, whereas for theSinusoidalstreams accuracy comes at
at the price of an increased number of Level 2 simulations.

D. Case Study

The effectiveness of the power estimation methodology of
this paper is best illustrated by analyzing its application to a
real-life system. We designed a fully functional programmable
digital filter. Starting from a behavioral description in Verilog,
we synthesized a gate-level implementation using Synopsys De-
sign Compiler, then we obtained the transistor-level implemen-
tation. The design contained 2190 gates (approximately 4000
transistors).

The flow graph of the filter is shown in Fig. 7(a). All coeffi-
cients are programmable, hence any transfer function with three
forward and two backward coefficients can be implemented.
The input, output, and coefficients are 8 bit wide. The high-level
architecture of the design is shown in Fig. 7(b). The inputs
are: IN (the input bus, 8 bit wide), CADDR (the address bus,
3-bit wide, used for programming the coefficients), LD (the load
signal, used for programming the coefficients) and RESET. The
only output is OUT (the output bus, 8 bit wide).

During normal operation, the LD and RESET signals are low,
the input data streams are provided on IN, one new datum per
clock cycle, and the output contains the filtered data, one per
clock cycle. The filter coefficients can be reprogrammed by: 1)
setting LD; 2) selecting the coefficient with CADDR; 3) pro-
viding the coefficient value on IN. One new coefficient can be
programmed per clock cycle. During programming, the output
does not contain valid data. The coefficients and the internal reg-
isters are reset (to zero) by rising the RESET signal. Reset takes
one clock cycle.

Although this is a simple design, the programmable filter is
complex enough to show the usefulness of our power estima-
tion methodology. First, notice that even during normal opera-
tion, successive inputs IN can be strongly correlated, and have
widely varying switching activity over time (consider, for ex-
ample, speech signals, with bursts of sounds and pauses). More-
over, by reprogramming the coefficients, we can completely
change the type of filtering performed, and the switching ac-
tivity. Since reprogramming is expected to be a rather rare occur-

Fig. 7. (a) Flow graph. (b) Architecture of the filter.

rence, it is important to detect when it happens, because power
dissipation after reprogramming can change widely.

In our experiments, we created a (long) typical usage stream,
including reset and reprogramming phases. Then, we tracked
the power dissipation of the filter over time using our power
estimation tool. One important characteristics of the design is
that it is has internal state, and its behavior is determined by
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TABLE VII
ESTIMATION RESULTS FOR THEFILTER

(a)

(b)

Fig. 8. (a) Mixed smoothing interpolation. (b) Power profile for the filter.

the coefficient values, that change very rarely (and require a
maximum of five consecutive clock cycles to be modified).

The filter has been simulated under an input stream consisting
of the repeated and interleaved application of a set of patterns
to program the coefficients and a burst of input data. Obviously,
depending on the type of data to be processed, not all five coef-
ficients need to be reprogrammed. The total length of the stream
was 50 000 patterns.

Fig. 8 compares the estimated power waveform to the actual
one calculated by exhaustive simulation. For this experiment,

was equal to 147, all other tuning parameters have the same
values used for both the combinational and the sequential bench-
marks. Table VII collects the results obtained from the applica-
tion of the input patterns shown on the left of Fig. 8 to the filter.

VI. CONCLUSION

In this work, we demonstrated how a multilevel simulation
engine can be exploited to achieve accurate power estimation
in a fraction of the time that would be needed to perform an
accurate simulation on the entire pattern stream. Under realistic
input stimuli, the average power dissipation of digital systems

is often better described by an up–down staircase function than
by a single value. Our multilevel simulation approach achieves
high accuracy in tracking how average power varies over time.

A fast simulation of the entire, user provided, input stream
is performed. During high-level simulation an indicator func-
tion is computed that provides information on when and how
often the short-term average power dissipation is expected to
change. Low-level accurate simulation is dispatched on small
portions of the input stream whenever it is needed for quanti-
tatively tracking how power dissipation is changing over time.
When the entire input stream has been processed, only a fraction
has been simulated with the slow and accurate power simulator,
but the power waveform and the average power are estimated
typically within a few percents from the actual ones.
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