Software Controlled Power Management

Yung-Hsiang Lu, Tajana Simunié, Giovanni De Micheli
Computer System Laboratory, Stanford University
{luyung, tajana, nanni} @stanford.edu

Abstract

Reducing power consumption is critical in many sys-
tem designs. Dynamic power management is an effec-
tive approach to decrease power without significantly
degrading performance. Power management decisions
can be implemented in either hardware or software, A
recent frend on personal computers is to use software
to change hardware power states. This paper presents a
software architecture that allows system designers to in-
vestigate power management algorithms in a systematic
fashion through a template. The architecture exploits the
Advanced Configuration and Power Interface (ACPI), a
standard for hardware and software. We implement two
algorithms for controlling the power states of a hard disk
on a personal computer running Microsoft Windows. By
measuring the current feeding the hard disk, we show
that the algorithms can save up to 25% more energy than
the Windows power manager. Our work has two major
contributions: a template for software-controlled power
management and experimental comparisons of manage-
ment algorithms for a hard disk.

1. Introduction

Low power consurnption is an important goal in design-
ing modern electronic systems. Most previous studies of
low-power techniques focused on ¢ither hardware (HW)
[14] or software (SW) [12] to reduce power consump-
tion. Dynamic power management (DPM) [2] is an ef-
fective approach to reduce power consumption without
significantly degrading performance. DPM shuts down
devices when they are not needed and wakes them up

Permission to make digital or hard capies of all or part of tivis work for
personal of classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advanage and that
copies bear this notice and the fuli citation on the first page. To vopy
atherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee

CODES 99 Rome Traly

Copyright ACM 1999 1-58113-132-1/99/05...$5.00

157

when necessary. Recently, Intel, Microsoft and Toshiba
proposed the Advanced Configuration and Power Inter-
face (ACPI) [1] to provide a uniform HW/SW interface
for power management. ACPI allows hardware vendors,
operating system (OS) designers, and device driver pro-
grammers to use the same interface. A hardware device
complies with ACPT if it can properly respond to ACPI
calls such as setting and querying power states. DPM re-
quires specialized techniques and tools to use software
to control hardware power states; therefore, it is a code-
sign problem, even though it differs from those typically
discussed in literature [6].

In the recent past, research mainly focused on design-
ing power management algorithms (also calied policies).
DPM algorithms can be divided into two major cate-
gories: predictive [7] [9] and stochastic [4] [13]. Typ-
ically, DPM algorithms are evaluated by simulations in-
stead of measurements on real machines, due to the diffi-
culty of setting up an environment that is flexible enough
to test a variety of algorithms. Because of the complex
interactions between hardware and software, only exper-
imental evaluation of systems running real programs can
validate the effectiveness of an algorithm. This paper
addresses the implementation issue and evaluates algo-
rithms on a computer running a commercial OS.

We designed and implemented a software architecture
that allows system designers to perform power manage-
ment through a template. The template is implemented
as kernel-level filter drivers (FD) that attach to the de-
vice drivers from HW vendors. A power manager (PM)
is a program that implements policies and sends the FD
management decisions to change power states. The FD
also reports device ntilization for fufure management de-
cisions. The FD has a generic interface; therefore, de-
signers can evaluate the same algorithms on different
HW devices or different algorithms on the same devices,

In this paper, we address the problem of power man-
aging the hard disk in a personal computer. We set up
a personal computer running Microsoft Windows and

measured the power used by the hard disk, We imple-
mented two management algorithms to compare with
the standard power manager of Windows. The first al-
gorithm is a time-out scheme that performs its own idle-
ness detection by communicating with other programs.
The other algorithm is an adaptive scheme that adjusts
the time-out value by considering the bursty nature of
disk accesses. These two algorithms outperform the PM
in Windows by more than 20% in sample workloads.

DPM is applicable to embedded systems and it is of
critical importance for mobile systems. The techniques
presented in this paper can be applied to mobile sys-
tems with ACPI and Windows without modification. For
other systems, our approach is still applicable but it re-
quires different implementation.

2. Software Controlled Power Management

Software-controlled power management is a technique
to reduce power consumption on computers [10]. In the
past, the lack of standardization made interfaces like ad-
vanced power management (APM) [8] very specific to
each system; as a result, it was hard to port and extend.
In order to achieve larger power saving in a wniform
fashion, Intel, Microsoft and Toshiba proposed ACPI
as a standard for both hardware and software. Device
drivers use the specification for device-specific power
management; the power management API can also be
exported from the OS to application programs. Figure 1
shows the ACPI interface [3] in which the PM resides
in the operating system.

] 0s
|]

Deviee Driver ACPLariver
ACPI
P rane !
08 Register
I} interface &Imrnu interface }
| - !
I
; ACHI Tables } ACPIBIOS } ACP] registers ||
I T —— |
¥ ¥ -

——

Mot | o | e

Figure 1: ACPI Interface and PC Platform

ACPI controls the power states of a whole system as

158

well as the power states of each device. An ACPI-
compliant system has five global states: System-
StatesS0, the working state, and SystemStatesSl
to SystemStateS4, representing the sleeping states.
An ACPI-compliant device has four states: PowerDe-
viceD0O (D0), the working state and, PowerDe-
vicebl (D1) to PowerDeviceD3 (D3}, repre-
senting the sleeping states. The sleeping states are dif-
ferentiated by the power consumed and the time to wake
up; the deeper sleeping state, the less power consumed
and the longer time to wake up.

Simifar to other I/O activities, I/O request packets (IRP)
are used for power management commands, However,
special IRP’s are required to synchronize ACPI com-
mands so that the transient current does not exceed the
maximum capability of the power supply. A device
driver has to appropriately respond to power IRP’s is-
sued from upper-level drivers or OS. Although ACPI
has been used as an interface among hardware, device
drivers, and operating systems, it is still a challenging
task to design and evaluate software-controlled power
management algorithms across devices in a uniform
way. In order to facilitate this HW/SW design cycle, we
propose a software architecture that exports power man-
agement capability outside the operating system through
a template. ‘

3, Application-Level Power Management

e

power commands

Figure 2: PM Controls Power States Based on System
Parameters and Requests

Figure 2 shows that a PM makes decisions based on in-
formation about the system and requests. System param-
eters include the power at each state, transition energy
and delay. The PM issues state-iransition commands to
a system or a device to meet the performance or power
requirements (or both) by predicting future requests. For
example, time-out is a widely used prediction scheme
based on the assumption that if a device has been idle
for a while, it wili not be used in the near future.

| applications]

future requests

rpowcr manager |

command

requests

utilization

operating system

filter driver

device-specific driver

hardware device

Figure 3. Filter Driver Architecture

Figure 3 shows our software architecture. An FD is at-
tached to the vendor-specific device driver. Both drivers
reside in the operating system. Application programs
such as word processors or spreadsheets send requests
to the OS. A power manager is a separate program that
collects device utilization information from the FD and
issues state-transition commands to it. When the PM is-
sues a command, the FD creates a power IRP and sends
it to the device. The dashed line shows that the PM may
communicate with other applications to acquire infor-
mation about future requests. This feature requires sup-
port from the applications. There are two major advan-
tages in our software architecture.

First, i contrast to Figure 1, the power manager resides
outside the operating system in this architecture, As a
result, designers can evaluate DPM algorithms on real
machines without considering the details of ACP1. With
a template, system designers do not have to deal with
the interactions between the OS, the device drivers, and
individual devices. As a result, the product development
process is shortened. Cur software architecture facili-
tates the process and encourages designers to evaluate
different DPM alternatives.

Second, application programs can request task-specific
power management on multiple devices by communi-
cating with the PM. Consider a viewer program that
downloads and presents real-time news from the Inter-
net. The program requires the network adapter, the
graphics adapter and the hard disk running at full perfor-
mance. Turning off one of these three devices would dis-
turb the presentation and seriously affect user satisfac-
tion. Instead, the program can inform the PM io prevent
the OS from shutting down any of these devices. Task-
specific power management makes predictive wake-up a

159

feasible solution to improve performance while saving
power. Predictive wake-up was first proposed in [16] to
reduce the performance penalty during wake-up; how-
ever, accurate prediction is difficult for operating sys-
tems because they do not have enough knowledge about
the future behavior of applications. Inaccurate predic-
tion may either waste energy (wake up too early) or de-
grade performance (wake up too fate) [5]. Our template
makes it possible to perform predictive wake-up since
PM can get information from applications about their
foture behavior to achieve high performance with low
power consumption.

4. DPM Algorithms

Several shutdown algorithms were proposed to reduce
power consumption [7] [9] [13] [15]). However,
“time-out after idleness™ is the only shutdown algorithm
available on most personal computers running Windows.
Users set a time-out value, typically several minutes, in
Windows; it detects all disk activities and shuts down a
hard disk when it is idle fonger than the value. In our
evaluation version of Windows NT, the minimum time-
out is three minutes.

We implemented two power managers for comparison.
The first is a time-out algorithm that performs its own
idleness detection by communicating with other pro-
grams. Whenever an application issues a disk access,
a message is sent to the PM. The PM keeps track of
the timestamps of all accesses and shuts down the disk
when the last access occurs more than one minute ago.
The second is is an adaptive algorithm [11] that dynam-
ically adjusts the time-out value by assuming that disk
accesses are clustered into sessions with varying dura-
tions. It periodically checks whether a disk access oc-
curred in the last period. If the disk is in the spinning
state and no access occurs, the time-out value is decre-
mented on the assumption that the disk has served a
short session. If an access occurs and the time-out value
is smaller than a threshold, the value is incremented to
avoid shutting down the disk too early in along session.
By adjusting the value, the PM can shut down the disk
earlier for shorter sessions and later for longer sessions.
Figure 4 shows the adaptive algorithm, fully described
in {11].

5. Experimental Results

We used an ACPI-compliant personal computer runsing
Windows NT 5.0 beta for the experiments. The com-

M PL/AL: predicted/actual session length W
M a: attenuation factor ¥
e SE: predicted session end time ¥
/& Th: threshold; inc: increment constant ¥
switch(state) {
case spinUp:
state = spinning; PL = a# PL + (1—~a)# AL;
SE = now + PL; break;
case spinDown:
state = sleeping; break;
case sleeping:
if (a request auives) { state = spinUp; }
break;
case ?spinDown:
if ((now 3 SE) && ((now — SE)/PL) « Th1)
{ state = sleeping; }
else { state = spinning; }
break;
case spinning:
if (a request arrives) {
if {(now 2 SE) && {{now — SE)fPLag Th2)}
/v almost ready to shut down; defer SE #
{ PL +=incl; SE +=ine2; }
Felse |
state = TspinDowm; PL—= incl; $E—= jnc2; }
break;

}

Figure 4: Adaptive Algorithm

puter contains an IBM Deskstar EIDE hard disk. The
12V and 5V power lines go through two digital multi-
meters as shown in Figure 5. Both meters contain RS-
232 ports for computerized measurements. The hard
disk can be in one of three states: DO when it is read-
ing or writing, D1 when the plates are spinning and D3
when the plates stop spinning. This hard drive does not
support the D2 state. O requests only wait for seck
and rotation delays when the disk is at D1. If a request
arrives when the hard disk is at D3, it has to wait for
the wake-up procedure in addition to the seck and rota-
tion delays. Figure 6 shows the transitions among these
power states, We measured the time and current and
found that the disk consumed 3.48 W and 0.75 W in
states D1 and D3 respectively. It took approximately 8.1
seconds and 53 Joule to wake up the disk from D3 to
DO, It took 1.1 seconds to enter D3 from D1. We did not
consider the shutdown energy because it is negligible
and the shutdown time is too short to make an accurate
estimation. The energy at DO for reading and writing is
ignored because DPM cannot change the number of disk
accesses; the power manager merely shuts down the disk
- when there is no access.

Two applications (AP1 and AP2) were used a$ sample
workloads for comparison. Repeatable disk accesses
were necessary for fair comparison; therefore, we did

12V from the power supply

PC 12v | meter LRS232
di T """ computer
hard disk e | RS232 port
5V | meRl | R§I3 T —
5Y from the power supply

Figure 5: Measure Hard Disk Power

) : read/write .

10 complete
l shut down

Figure 6: Power State Transition

not dircetly compare power saving in user-interactive
environment due to the difficulty of exactly regenerating
user requests. The first workload reads, writes, appends
and seeks files. The second copies, deletes, and searches
for files, and compiles programs. Each application has
three identical processes running concurrently. The time
between file accesses is uniformly distributed between
30 seconds and 10 minutes, The time-out value for the
first PM was one minute; the initial time-out for the sec-
ond PM was two minutes and the increment or decre-
ment factor was twe seconds according to the principles
explained in [11], We measured the power consumption
by each algorithm for half an hour and compared the re-
sults with two alternatives: an “always-on” algorithm
that kept the disk spinning to provide the maximal per-
formance, and the Windows PM with three-minute time-
out. Table 1 shows the comparison. The first row shows
the sleeping time (the duration when the disk is at D3).
The second row shows the numbers of shut-down com-
mands issued from the PM; a larger number indicates
more requests have to wait for the disk to wake up. This
is the performance penalty for power saving. The third
row shows the total energy consumed, We calculated the
energy by the formula: ener gy = Hweeny - poreros +
{tmen) -powrern) + Feakeny - et gfuakeup. The
last row normalizes the total energy by the result from
the PM in Windows.

The table shows that the power manager in Windows
had fewer wake-ups; in other words, fewer disk accesses
suffered from the wake-up delay, However, this perfor-

-mance advantage was achieved by consuming more en-

ergy. When AP1 and AP2 were executed at the same

160

always on Windows one-min adaptive
workload API [AP2 | both || APT [AP2 [both || API1 [AP2 | both || API [AP2 [both
sleep time (sec) 0 183 | 316 99 || 634 | 863 | BOL|| &7 | 889 | 960
shut-down 0 4 3 2 11 10 13 12 8 18
energy (J) 6264 5976 | 5560 | 6100 || 5116 | 4438 | 4766 || 4697 | 4261 | 4597
ratio 1.05 ' 1.13 | 103 || 1.00| 100 | 10D | 086 | 080 078) 079] 077 | 0.75

Table 1: Power Consumption of Different Policies

time, Windows rarely found a chance to shut down the
disk, The one-minute time-out algorithm saved up to
22% of power compared to the PM in Windows. The
adaptive algorithm consistently outperformed the other
algorithms and saved as muchas 25% of power. This en-
couraging result shows the potentially large design space
for power management algorithms.

6. Conclusion

We designed and implemented an ACPI-based software
architecture that aliows power managers to be tmple-
mented at the application level. The architecture pro-
vides a uniform interface for designers to investigate
power management algorithms on different hardware
devices. We implemented two algorithms and measured
the power of a hard disk and showed that they could out-
perform the power manager in Windows by as much as
25%.

7. Acknowledgments

This work is supported by MARCO/SIA. We would
like to thank Patrick Burke and Charles Orgish at Stan-
ford and Luca Benini and Alessandro Bogliolo at DEIS-
Universitd di Bologna for their assistance and valuable
comments.

8. References

[1]1 ACPL http:/fwww.teleport.com/” acpi.

[2] L. Benini, A. Bogliolo, and G. D. Micheli. Dynamic
Power Management of Electronic Systems. In Inifer-
national Conference on Computer-Aided Design, pages
696-702, 1998.

[31 L. Benini and G, D. Micheli. Dynamic Power Manage-
ment: Design Techniques and CAD Tools. Kluwer, 1997,

[4] E.-Y. Chung, L. Benini, A. Bogliolo, and G. D. Micheli.
Dynamic Power Management for Non-Stationary Ser-
vice Requests. In Design Automation and Test in Europe,
1999.

[5} F. Douglis, P. Krishnan, and B. Marsh. Thwarting the
Power-Hungry Disk. In USENIX Winter Conference,
pages 293-306, 1994,

{6] W. Fornaciari, P. Gubian, D. Sciuto, and C. Silvano.
Power Estimation of Embedded Systems: A hardware
/ Software Codesign Approach, IEEE Trarsactions on
VLSI Systems, 6(2):266-275, June 1998,

[71 C.-H. Hwang and A. C. Wu, A Predictive System Shut-
down Method for Energy Saving of Event-Driven Com-
putation. In Internationgl Conference on Computer-
Aided Design, pages 28-32, 1997.

[8] Intel, Advanced Power Management Overview.
http://developer.intel.com/IAL/powermgm/apmovr.htm.

[9] K. Li, R. Kumpf, P. Horton, and T. Anderson. A Quan-
titative Analysis of Disk Drive Power Management in
Portable Computers. In USENIX Winter Conference,
pages 279-292, 1994,

[10] 1. R. Lorch and A. J. Smith. Software Strategies for
Portable Computer Energy Management. JEEE Personal
Communications, 5(3):60-73, June 1998.

[11] Y.-H. Lu and G. D. Micheli. Adaptive Hard Disk Power
Management on Personal Computers. In Great Lakes
Symposium on VLSI, 1999,

[12] H. Mehta, R. M. Owens, M, L. Irwin, R. Chen, and
D. Ghosh. Techniques for Low Energy Software. In
International Symposium on Low Power Electronics and
Design, pages 7275, 1997,

[13] G. A. Paleologo, L. Benini, A. Bogliolo, and G. D.
Micheli. Policy Optimization for Dynamic Power Man-
agement. In Design Automation Conference, pages 182—
187, 1998. '

[14] A. Raghunathan, N. K. Tha, and S. Dey. High-Level
Power Analysis and Optimization. Klawer, 1998.

[15] M.B. Srivastava, A. P. Chandrakasan, and R. W. Broder-
sen. Predictive System Shutdown and Other Archi-
tecture Techniques for Energy Efficient Programmable
Computation. [EEE Transactions on VLSI Systems,
4(1):42-55, March 1996.

[16] J. Wilkes. Predictive power conservation. Technical re-
port, Hewlett-Packard, HPL-CSP-92-5, 1992.

161

