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Abstract

Sequential logic optimization based on the eztraciion of compu-
tational kernels has proved to be very promising when the target
ts power minimization. Efficient extraction of the kernels is at
the basts of the optimization paradigm; the eztraction procedures
proposed so far exploit common logic synthesis transformations,
and thus assume the availability of a gate-level description of
the circuit being optimized. In this paper we present exact and
approzimate algorithms for the automatic extraction of compu-
tational kernels directly from the functional specification of a
RTL component. We show the effectiveness of such algorithms
by reporting the results of an eztensive ezxperimentation we have
carried out on a large set of standard benchmarks, as well as
on some designs with known functionality.

1 Introduction

When designing a complex sequential circuit, engineers must
consider not only the basic, typical behavior, but also a large
number of unusual operating conditions. In many cases the
number and the nature of these conditions (also known as cor-
ner cases) is such that they require considerable attention and
design effort. As a result, final specifications are often much
larger and more complex than what would be needed to just en-
sure correct functionality in the average case. Then, sequential
components may have an extremely large number of reachable
states, but during normal operation the circuits tend to visit
only a relatively small subset of them. This intuitive statement
is supported by the evidence provided by the probabilistic anal-
ysis of finite state machines associated to large networks: Only
a few states have sizable occupation probabilities [1]. A similar
situation occurs at the primary outputs; while the circuit walks
through the most probable states, only a few distinct patterns
are generated.

Very often designers go through a number of time-consuming re-
finement steps trying to obtain a circuit that is fast and power-
efficient under typical input stimuli, but still operates correctly
in unusual conditions. In [2] we have proved that this type of
optimization can be efficiently automated by exploiting the con-
cept of computational kernel. According to {2], we call computa-
tional kernel of a sequential circuit a logic block that mimics the
typical behavior of the original network. Usually, such block is
much smaller, faster, and less power consuming than the circuit
it is extracted from. Nevertheless, it can replace the original
network for a large fraction of the operation time.
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Fundamental for a successful application of the kernel-based op-
timization paradigm is the procedure adopted for kernel extrac-
tion. In [2] we have proposed an algorithm that relies on iter-
ative simplification of the original network by redundancy re-
moval; because of its intrinsic topological nature, this approach
is suitable for optimizations being performed at the logic level,
that is, in cases where a gate-level netlist of the design being
optimized does exist.

In this work, we raise the level of abstractionat which the kernel-
based optimization strategy can be exploited. More specifically,
we show how RTL components for which only a functional spec-
ification (i.e., the state transition graph (STG) represented in
either an explicit or an implicit form) is available can be fruit-
fully optimized using computational kernels. We do so by first
providing a precise definition of computational kernel that was
only informally introduced in [2]. We then present an innova-
tive technique for computational kernel extraction directly from
the functional specification of 8 RTL module. Given the STG
specification, the proposed algorithm exactly calculates the ker-
nel through symbolic procedures similar to those employed for
FSM reachability analysis.

Unfortunately, as the size of the STG increases, exact solutions
are no longer applicable for both memory and time reasons.
Approximate variants of the exact method are thus required in
order to extend its domain of applicability. We propose two
modifications to the basic procedure. The first one simply re-
places the most computationally expensive step of the exact
algorithm (namely, the probabilistic analysis of the STG) with
an approximate version. The second solution is based on RTL
simulation of a given (random or user-provided) stream. In this
case, full, symbolic state probability computation is by-passed,
and the set of states belonging to the kernel is determined di-
rectly from the simulation traces. This approach does not suffer
from potential computational blow-ups as for the exact solution,
and enables kernel extraction for much larger components. Al-
though in principle even random pattern simulation can be used
for kernel computation, the effectiveness of the simulation-based
approach clearly depends on the availability of a meaningful
stream, that is, one that well represents the typical operational
context of the circuit.

Both the exact and the approximate algorithms primarily tar-
get the extraction of a set of states with high steady-state oc-
cupation probability. This is in contrast with the optimization
procedure presented in [2], whose main limitation is the lack of
control on the occupation probability of the kernel.

We show the usefulness of computational kernel extraction by
applying it to the problem of reducing the power dissipated by a
sequential circuit. Experimental results, obtained on a large set
of benchmarks, demonstrate the validity of the proposed RTL
kernel extraction procedures.



2 Computational Kernels: Basic Theory

We provide the definition of computational kernel of a sequential
design by referring to the finite state machine which models the
behavior of the circuit. A finite state machine (FSM), M, is
defined as the 5-tuple:

M = (X,Z,5,5°R)

where X and Z are the input and output alphabets, S is the
finite set of states, S° is the unique reset state, and R C X x
Sx §Sx Z — {0,1} is the global relation. R(zx,s,t,z) =1 if and
only if, under input * € X, M moves from present state s € S
to next state t € S with output z € Z.

Given a finite state machine, M = (X, Z, S, S°, R), modeling the
behavior of a sequential circuit, and given a probability thresh-
old, p, we define the p-order computational kernel of M, denoted
as Mp, as the following finite state machine:

My = (X, 2, 55,59, Rp)

where Sp = {s € §: Prob(s) > p} is the subset of the states of
M whose steady-state occupation probabilities are larger than p.
59 equals S° in case 5% € Sp, otherwise Sg is chosen randomly
within Sp. Finally the global relation of My is defined as:

Rp(z, 8,t,2) = Sp(s) - R(zx,s,t,2)

where Sp(s) is the characteristic function of set Sp. The global
relation of the kernel is incompletely specified: Next state and
output are uniquely defined only if the present state belongs
to Sp. If this is not the case, the relation does not constrain
the next state and output values. In other words, Sp(s)’ is the
don’t care set for the next state and output functions that can
be extracted from Rp. A key characteristics of computational
kernels is their probability Prob(Rp). This quantity is defined
as the cumulative occupation probability of the states in Sp.
As an example, consider the simple FSM of Figure 1-a, in which
the input and output values are omitted for the sake of simplic-
ity, and the states are annotated with the steady-state occupa-
tion probabilities calculated through Markovian analysis of the
STG {1]. If we specify a probability threshold p = 0.25, the
kernel of the FSM is depicted in Figure 1-b. States in black
represent set Sp, while states in grey represent valid values for
t in Ryp(z,s,t,z), but they do not belong to Sp. The kernel
probability of Rp is Prob(Rp) = 0.29 + 0.25 + 0.32 = 0.86.

(a)
Figure 1: Moore-Type FSM and Corresponding Kernel.

(b)

In this work, we focus on efficient algorithms for extracting the
kernel from a functional specification of a RTL component. The
extractionrequires two types of inputs, namely, the specification
of M and the information on typical input pattern distribution.
The latter is needed for determining the state probability dis-
tribution, the main prerequisite for kernel computation.
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Kernel extraction is a relatively straight-forward process for
small FSMs where exhaustive state and input pattern enumer-
ation is possible. However, most sequential circuits have large
state and input spaces that cannot be enumerated in a reason-
able amount of time. For medium-size FSMs, the computational
kernel can be determined through BDD-based operations by ex-
ploiting well-established technology developed in the context of
FSM reachability analysis 3, 4, 5, 6, 7, 8, 9]. The exact algo-
rithm we present in Section 3 serves this purpose.
Unfortunately, large sequential components are often beyond
the capabilities of the most powerful techniques based on sym-
bolic manipulations (especially those for FSM probabilistic anal-
ysis). For this reason, in Section 4 we propose an approximate
kernel extraction algorithm that scales well with circuit size.

2.1 Kernel-Based Architecture

The computational kernel of a sequential design, once extracted
from a given circuit specification, provides us with an extremely
powerful device to be used for various types of logic optimiza-
tion. Given a sequential circuit with the conventional topology
of Figure 2-a, the paradigm proposed in [2] for improving its
quality with respect to a given cost function (e.g., power dissi-
pation, timing) is based on the architecture shown in Figure 2-b.

(a)

(b)

Figure 2: Kernel-Based Optimized Architecture.

The basic elements of the architecture are: The combinational
portion of the original circuit (block CL), the computational
kernel (block K), the selector function (block S), the double-
state flip-flops (DSFF), and the output multiplexors (MUX). It
is worth noting that the block diagram of Figure 2 bears some re-
semblance with several low-power architectures proposed in the
past, e.g., precomputation [10, 11], gated-clocks {12, 13, 14], de-
composed FSMs {15, 16]. The interested reader may refer to (2]
for an analysis of the relationship between such architectures
and computational kernels, and to [17, 18] for a more compre-
hensive discussion on gate/RTL power management techniques.
The computational kernel can be seen as a “dense” implemen-
tation of the circuit it has been extracted from. In other terms,
K implements the core functions of the original circuit, and
because of its reduced complexity, it usually implements such
functions in a faster and more efficient way.

The purpose of selector function S is that of deciding what logic
block, between CL and K, will provide the output value and
the next-state in the following clock cycle. To take a decision,
examines the values of the next-state outputs at clock cyclen. If
the output and next-state values in cycle n41 can be computed
by the kernel K, then S takes on the value 1. Otherwise, it takes
on the value 0. The value of S is fed to a flip-flop, whose output
is connected to the MUXes that select which block produces
the output and the next-state. The optimized implementation
is functionally equivalent to the original one.



The scheme of Figure 2 is just one among several possible archi-
tectures. The peculiar feature of the proposed solution concerns
the topology of the selection logic. In particular, the choice of
having a selection function that only depends on the next-state
outputs is dictated by the need of obtaining a small implemen-
tation. Reducing the size of the support of S, i.e., not including
the primary inputs, is one way of pursuing this objective.

The sequential elements in Figure 2 indicated as DSFFs are
called dual-state flip-flops [2], and they replace the flip-flops
in the original design. A dual-state flip-flop has two outputs,
one additional control signal and contains two state variables.
Depending on the value of the control signal, only one state
variable (and the corresponding output) is updated, while the
other is kept frozen at its last value. Dual-state flip-flops are
functionally equivalent to two flip-flops with two multiplexors,
but they can be more effectively designed at the transistor-level
and instantiated as an atomic cell.

2.2 Exact Gate-Level Kernel Extraction

The approximate kernel extraction algorithm presented in [2]
targets components specified at the gate-level. It is based on
redundancyremoval, and it can be summarized as follows: First,
the signal probability of all nodes in the the next-state and
output logic of the target circuit is computed. Then, nodes are
selected and stuck either to zero or to one. The next-state and
output logic is then simplified by propagating the constant value
(i.e., by removing the redundancies introduced in the circuit).
Node selection and simplification are iterated until a stopping
criterion is met. Node selection is driven by a heuristic criterion
that privileges nodes with high load and switching activity. The
stopping test is based on the estimated power savings.

One limitation of this algorithm is that it does not allow to
control kernel probability. When selecting nodes, the extraction
procedure does not test the impact of node removal on the be-
havior of the circuit. Even eliminating a single node may cause
drastic changes in such behavior. As a result, the probability
for the modified circuit to work as the original one (i.e., the
probability of the kernel) may decrease very rapidly with the
number of removed nodes. Another issue is that redundancy
removal operates on gate-level netlists, hence the approach is
not suitable for macros for which only a functional specification
is available. Both limitations are addressed by the exact and
approximate algorithms presented in the following sections.

3 Exact RTL Kernel Extraction

The exact kernel extraction algorithm is an almost direct im-
plementation of the definition given in Section 2 that leverages
state-of-the-art implicit BDD-based algorithms for the manipu-
lation of sets of states and Boolean functions. The pseudo-code
of the exact algorithm is reported in Figure 3.

rocedure ExtractKernel (D(2), R(s, 2, 2,t), p) {
P(s) = Markov(D(z), R(s, 2, 2,t));
Sp(s) = Threshold(P(s), »);
T(s,=,t) = IzR(=, 5,¢, z);
Ols, 2, 2) = 3 R(=, s t, 2);
TP(s,z,t) = Sp(s) - T(s, z, t);
OP(s,z,2) = Sp(s)- O(s, 2, 2);
AP(z,9) = ((35?“1 Tp(a,m,t))tl A

AP(a,5) = (3505, OP(8:2,2)),1 1 -

Kernel (s, z) = (AP(=2, 5), AP(2, 3));
return (Kernel, Sp(s));

[Begen TP (0,2, 8)),1 )i

(3 OP(s, 2, z))z‘n);

P
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}

Figure 3: Symbolic Kernel Extraction Algorithm.
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The inputs to the procedure are:

o A multi-terminal BDD (also known as ADD [19]) whose
support is the set of input variables z. The leaves of the
ADD represent occurrence probabilities of the input pat-
terns. The ADD is a compact representation of function
D(z) : X — R that associates to each input pattern its
probability.

e A BDD representing the global relation R(s, z, z, t) of the
target circuit.

e A probability threshold p. According to the definition of
Section 2, all states with steady-state occupation prob-
ability greater than p belong to the state set of kernel
Mp.

The first step is to compute steady-state probabilities for all
states 3 € S. This is accomplished in Line 1 by exact sym-
bolic Markov analysis [1]. Procedure Markov computes state
probabilities and returns an ADD with support s (i.e., the state
variables). The leaves of the ADD are states probabilities. The
state set S is then pruned in Line 2 using the Threshold opera-
tor. Such operator takes, as inputs, the ADD of the state proba-
bilities and the probability threshold p, and returns a BDD that
represents the characteristic function Sp(s) of the state set Sp
of the kernel.

To obtain the next-state and output functions of the kernel,
we first extract the transition relation T'(s,z,t) and the output
relation O(s,z,t) from the global relation of the original cir-
cuit (Lines 3 and 4) and we compute their conjunction with Sp
(Lines 5 and 6). This operation is the key step of the algorithm.
Its intuitive meaning is that the behavior of the computational
kernel is specified only when the current state belongs to Sp.
The result of the conjunction is illustrated in Figure 4. In the
picture on the left, the light grey area identifies the states for
which the occupation probability is greater than or equal to p.
In the picture on the right, the outer shaded region (dark grey)
represents states not belonging to Sy that are valid next states
for the next-state function of My, because they are associated
with present states that do belong to Sp. In other words, thereis
a “corolla” consisting of all the states that are 1-step reachable
from states s € Sp for which the behavior of the kernel must be
specified and consistent with the original one.

Figure 4: Example of Kernel Extraction.

Given TP and OP?, it is relatively easy to extract the next state
and output functions of the computational kernel (Lines 7 and
8) by existential quantification followed by cofactoring (in the
pseudo-code, we assume that there are n state variables and m
output variables). The procedure returns AP (the next-state
function) and AP (the output function) that completely specify
the functionality of block K in Figure 2-b, and function Sp that
specifies the ON-set of function S in Figure 2-b. Notice that S;
represents the don’t care set that can be used to optimize the
implementation of K.



I Circurt | In ] Out { FF I Gates | Delay Power Prob(S) l Area Delay CPU )
e pt av Overhead | Overhead | Time
5208 3 6 | 14 131 20.7 | 361 | 178 | 61% 0.74 39% 9% 53
3349 9 11 15 146 21.4 378 | 279 | 27% 0.77 61% 18% 81
5382 3 6 | 21 178 22.5 453 | 226 | 50% 0.75 35% 15% 170
386 7 7 6 136 22.0 237 | 126 | 47% 0.89 51% 14% 29
5400 3 6 | 21 174 26.5 446 | 224 | 50% 0.75 35% 11% 288
5444 3 6 | 21 175 25.0 460 | 223 | 52% 0.75 31% 12% 276
s510 19 7 6 262 32.5 641 | 586 | 10% 0.45 60% 16% 193
$526 3 6 21 194 16.0 509 | 252 | 51% 0.75 33% 15% 304
5641 35 23 | 17 188 34.0 448 | 340 | 24% 0.63 7% 11% 511
s713 35 23 | 17 202 27.1 470 | 334 | 29% 0.63 62% 15% 506
5820 18 19 5 316 17.3 658 97 | 85% 0.96 19% 12% 49
s832 18 19 5 276 21.8 605 93 | 85% 0.96 18% 7% 46
5967 16 23 29 470 17.9 777 | 602 | 22% 0.35 25% 15% 853
s991 65 i7 | 19 450 43.6 | 1055 | 830 | 21% 0.25 14% 12% 670
51488 6 19 6 685 21.9 | 1414 | 212 | 85% 0.91 7% 16% 73
51494 6 19 6 680 27.3 | 1425 | 205 | 86% 0.91 7% 11% 74

[[Avg. [ 51% ] | 34% | 13% [ ]

Table 1: Experimental Results for the Exact Extraction Procedure.

3.1 Experimental Results

We have implemented the exact extraction algorithm as an ex-
tension of SIS [20], using CUDD ({21] as the underlying BDD
package. Experiments have been run on a DEC AXP 1000/400
with 256MB of memory.

We have applied the algorithm of Figure 3 to the examples taken
from the Iscas’89 sequential suite [22] for which the exact state
occupation probabilities can be computed using the ADD-based
method of [1}.

The STGs of the circuits have been initially synthesized as net-
works of multiplexors directly from the BDD representation of
the output and transition relation, optimized for area using
script.rugged (whenever possible), and mapped for area with
map -mO -AFG onto a library containingtwo to four-input NAND
and NOR gates, inverters and buffers with three different drive
strengths, and a flip-flop.

Table 1 reports the data for the examples for which some power
savings have been obtained. In particular, columns In, Out, FF,
Gates, and Delay report the characteristics of the reference cir-
cuits. Column Power shows the power, in uW, of the reference
circuit (column Ref), and that of the kernel-based architecture
(column Opt), as well as the obtained savings (column Sav).
Column Prob(S) tells the probability of the selector function §
to be 1, that is, the probability of kernel K to be active. Column
Area Overhead shows the area cost of the modified architecture,
expressed as a percentage of the reference gate count. Simi-
larly, column Delay Overhead shows the performance penalty
introduced by the use of the kernel-based architecture. Finally,
column CPU Time indicates the execution time, expressed in
seconds, required by the complete optimization procedure to
terminate.

Power estimates within the kernel extraction procedure have
been computed using symbolic simulation, while those for the
initial and final circuits have been determined using the Irsim
switch-level simulator {23].

Results are very promising. An average power savings of ap-
proximately 51% has been achieved, with peaks of more than
80%. Notice that some circuits included in the original Iscas’89
set are missing from the table, namely s208, s420, s838, s1196,
and s1238. These circuits have the peculiar property that all
states are equiprobable; this uniform probability distribution
clearly prevents the application of the kernel-based optimiza-
tion paradigm, which is most effective in cases where a small
kernel has a high cumulative occupation probability.
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For the remaining circuits, however, the existence of a dense
set of states implementing most of the behavior seems to be
the rule. In the cases where the kernel probability Prob(s) is
very high (e.g., benchmarks 5820, s1196), we have observed that
the computational kernels typically include very few, highly-
probable states.

Concerning the speed of the optimized circuits, although the
delay of the selection function S always adds up to the largest
delay between combinational blocks CL and K, the overall tim-
ing penalty is quite limited (13% on average). This is because
the logic of module CL is optimized using function S as external
don’t care set, thus its delay usually reduces with respect to the
original circuit.

On the other hand, as it could be easily predicted, the impact
of the transformation on circuit area is significant (34% on av-
erage). This is because the kernel-based approach suffers, in
principle, from the same overhead (logic duplication) that af-
fects any type of parallel implementation.

4 Approximate RTL Kernel Extraction
The results of Section 3.1 show that the kernel-based paradigm
can provide sizable power reductions. On the other hand, the
applicability of the exact method described in Section 3 is lim-
ited to instances of small-to-medium circuits. Only in these
cases, in fact, the state occupation probabilities can be calcu-
lated using the symbolic method of [1]. For larger circuits, the
computation simply becomes too memory-intensive. Another
limitation of the exact RTL kernel extraction algorithm is that
it assumes the knowledge of the probability of every possible
input pattern of the circuit (this is required to obtain ADD
In a more realistic setting, the size of the circuit can be such that
Markovian analysis is infeasible, and knowledge of input pattern
distribution is limited to the specification of a set of patterns
that represent typical operating conditions under which the sys-
tem is expected to run. Under these assumptions, we need a
technique that can extract computational kernels for large cir-
cuits based on the available, limited knowledge of input proba-
bility distribution.

We have identified two simple, yet effective ways of getting
around the probability calculation problem. The first one con-
sists of simply replacing the Markov routine in Line 1 of Figure 3
with the implementation of the algorithm for approximate FSM
probabilistic analysis of {24].



Circuit | Power Savings | Prob(S)

Area

Overhead | Delay Overhead | CPU Time |

| Fzact | Approz | Ezact | Approz | Ezact | Approz | Fzact | Approz | Ezact [ Approz |
5298 51% 50% 0.74 0.73 39% 39% 9% 11% 53 40
s349 27% 18% 0.77 0.74 61% 50% 18% 20% 81 52
s382 50% 39% 0.75 0.70 35% 41% 15% 17% 170 59
5386 47% 45% 0.89 0.92 51% 44% 14% 14% 29 38
$400 50% 43% 0.75 0.76 35% 37% 11% 21% 288 64
s444 52% 48% 0.75 0.75 31% 36% 12% 21% 276 69
s510 10% 10% 0.42 0.45 60% 63% 16% 19% 193 71
$526 51% 40% 0.75 0.74 33% 30% 15% 19% 304 73
s641 24% 11% 0.63 0.66 47% 54% 11% 12% 511 86
s713 29% 19% 0.63 0.64 62% 74% 15% 16% 506 84
s820 85% 70% 0.96 0.96 19% 19% 12% 12% 49 29
s832 85% 72% 0.96 0.96 18% 19% 7% 16% 46 26
s967 22% 13% 0.35 0.48 25% 79% 15% 17% 853 93
991 21% 10% 0.25 0.41 14% 15% 12% 19% 670 84
s1488 85% 79% 0.91 0.91 7% 9% 16% 16% 73 48
s1494 86% 80% 0.91 0.92 7% 9% 11% 11% 74 49
[Avg. 51% | 41% | I [ 34% | 38% | 13% | 16% | ] ]
Table 2: Experimental Results: Comparison of Exact and Approximate Extraction Procedures.
Circuit In [ Out | FF | Gates | Delay | Power [ Prob(S) | Area Delay CPU | Markov
‘ ’ I l | Ref T Opt' ] Sav | | Overhead | Overhead | Time | Type
[s1423 [17 | 5[ 74 | 602 | 73.6 | 1809 | 368 | 80% | 0.74 | 70% | 18% | 2292 | Markov |
[ s1512 [29] 21 [ 57 | 475 | 42.7 | 155 | 95 | 39% | _ 0.27 | 26% | 9% | 1840 | Markov |
Boltzmann 7 21 91 367 15.7 134 50 | 63% 0.42 45% 13% 674 [ Simul
FifoWriteCntr 2 2 17 141 16.8 57 42 27% 0.62 58% 25% 93 Simul
Gedl6 33 17 50 1197 32.6 128 83 35% 0.19 36% 19% 578 | Simul
Iqc 10 15 36 1169 23.9 445 220 51% 0.90 21% 18% 492 Simul
Lan 10 8 19 215 19.4 107 99 7% 0.84 44% 19% 116 | Simul
Radio 5 16 16 181 14.6 110 77 30% 0.98 35% 23% 76 Simul
Watch 4 16 11 108 9.1 67 51 24% 0.98 58% 18% 59 Simul
[Avg. [ 40% [ T 44% | 18% | 1 ]

Table 3: Experimental Results for the Approximate Extraction Procedures.

The second procedure is simulation-based and assumes the ex-
istence of a set of patterns representing typical operation con-
ditions. Alternatively, patterns can be automatically generated
with a user-specified probability distribution. In the first step,
the circuit is simulated with L input patterns. During simula-
tion, the number of occurrences of each visited state is moni-
tored. At the end of simulation, the probability distribution of
the visited states is computed by simply dividing the number of
occurrences of each state by L.

To compute a p-order kernel, all states with probability larger
than p are selected. Notice that during simulation at most L
states are visited. State probability computation and state se-
lection simply involve linear processing of the visited state list,
hence they are even faster than simulation. The set of selected
states is taken as the ON-set of characteristic function Sp, which
will be used as a specification for block S of Figure 2-b.

For both solutions, the next-state and output functions of K
can be constructed by exploiting the procedure of Figure 3, in
which the ADD P(s) constructed through approximate Marko-
vian analysis [24] or from simulation replaces the one built im-
plicitly by procedure Markov.

4.1 Experimental Results

We have implemented the two variants, discussed above, of
the approximate kernel extraction procedure. In the sequel we
present the results of two sets of experiments. In the first one we
compare the data of the approximate algorithm which is based
on the Markovian analysis of [24] to those of the exact proce-
dure; this is to measure the quality of the approximation. The
results are shown in Table 2.
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As expected, introducing an approximation in the calculation of
the state occupation probabilities has produced a degradation
in the power savings with respect to those obtained using the
exact method. The amount of degradation is however accept-
able, if we consider the higher speed and the lower complexity of
the approximate method. Then, we can claim with reasonable
confidence that the approximate approach provides us with a
viable solution for the optimization of designs for which the use
of the exact method is either not affordable or infeasible.

In a second set of experiments, we have run the two approximate
extraction procedures on some examples for which the exact
method is inapplicable. In particular, we have chosen some of
the large Iscas’89 benchmarks (addendum included), as well as
some RTL circuits taken from [25] for which only a functional
description (specified in Esterel) was available. The BDDs for
the output and next-state functions for the latter circuits have
been constructed directly from the Esterel source code using a
procedure similar to that described in [26].

Table 3 reports the data of the experiments. Notice that the
indication of which algorithm has been used for collecting the
state occupation probability information is reported in column
Markov Type of such table.

For circuits whose functionality is known, the method based on
simulation works well; this is because kernel identification and
extraction has been done by feeding the circuits with meaningful
and realistic input traces (each of which consisted of approxi-
mately 50.000 binary patterns). This solution is then preferable
to the approximate Markovian analysis approach, since execu-
tion times are much lower with optimization results of compa-
rable quality.



For circuits whose functionality is unknown (as in the case of
the Iscas’89 benchmarks), the only way of providing them with
an input trace is through random generation. In this case, the
results that we have obtained are much less appealing (basically
power savings were negligible, since the size of both the ker-
nel and the selection function was considerable). On the other
hand, resorting to the approximate Markovian analysis has pro-
duced much higher savings (these are the data reported in Ta-
ble 3). It should also be observed that both circuits 1423 and
51512 were used in [2] to benchmark the synthesis-based kernel
extraction procedure proposed in that paper. Although the ref-
erence circuits were different, the achieved power savings were
much lower (27% and 29%, respectively) than those reported
in Table 3. This was somehow expected, since the extraction
algorithms introduced in this paper allow a finer tuning of the
generated kernel.

5 Conclusions

In this paper we have presented methods for the automatic ex-
traction of computational kernels starting from a RT-level de-
scription of a sequential component. Solutions relying on exact
and approximate probabilistic analysis of the STG representa-
tions have been proposed

We have shown the effectiveness of the new extraction algo-
rithms in the context of sequential synthesis for low power by
reporting the results of an extensive experimentation we have
carried out on a large set of standard benchmarks, as well as on
some designs with known functionality.
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